WorldWideScience

Sample records for gamma-aminobutyric acid transport

  1. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Bassett, M.L.; Mullen, K.D.; Scholz, B.; Fenstermacher, J.D.; Jones, E.A.

    1990-01-01

    Transfer of the inhibitory neurotransmitter gamma-aminobutyric acid across the normal blood-brain barrier is minimal. One prerequisite for gamma-aminobutyric acid in plasma contributing to the neural inhibition of hepatic encephalopathy would be that increased transfer of gamma-aminobutyric acid across the blood-brain barrier occurs in liver failure. The aim of the present study was to determine if brain gamma-aminobutyric acid uptake is increased in rabbits with stage II-III (precoma) hepatic encephalopathy due to galactosamine-induced fulminant hepatic failure. A modification of the Oldendorf intracarotid artery-injection technique was applied. [3H] gamma-aminobutyric acid, [14C] butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation. The ipsilateral brain uptake index of gamma-aminobutyric acid was determined from measurements of the 3 isotopes in 5 brain regions. Uncorrected or simple brain uptake indices of [3H] gamma-aminobutyric acid and [113mIn] transferrin were calculated using [14C] butanol as the highly extracted reference compound. The [113mIn] transferrin data were also used to correct the brain uptake index of [3H] gamma-aminobutyric acid for intravascular retention of [3H] gamma-aminobutyric acid. The methodology adopted minimized problems attributable to rapid [3H] gamma-aminobutyric acid metabolism, and slow brain washout and recirculation of the radiolabeled tracers. Both the uncorrected and corrected brain uptake indices of gamma-aminobutyric acid as well as the simple brain uptake index of transferrin were significantly increased in both stage II and III hepatic encephalopathy in all brain regions studied. Moreover, these brain uptake indices were significantly greater in stage III hepatic encephalopathy than in stage II hepatic encephalopathy

  2. Detection of the in vivo conversion of 2-pyrrolidinone to gamma-aminobutyric acid in mouse brain.

    Science.gov (United States)

    Callery, P S; Stogniew, M; Geelhaar, L A

    1979-01-01

    Labeled gamma-aminobutyric acid was detected in mouse brain following intravenous injections of deuterium labeled 2-pyrrolidinone. [2H6]Pyrrolidinone was prepared by the reduction of [2H4]succinimide with lithium aluminum deuteride. Quantification was accomplished by a gas chromatography mass spectrometry assay method. gamma-Aminobutyric acid and internal standard, 5-aminovaleric acid, were converted to volatile derivatives by treatment with N,N-dimethylformamide dimethyl acetal. Quantitative estimates were derived from peak area measurements obtained from monitoring the parent ions of the gamma-aminobutyric acid and internal standard derivatives by repetitive scanning during the GC run. The conversion of pyrrolidinone to gamma-aminobutyric acid may provide a method for labeling central gamma-aminobutyric acid pools.

  3. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    Energy Technology Data Exchange (ETDEWEB)

    Pallo, Anna; Simon, Agnes [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Bencsura, Akos [Department of Theoretical Chemistry, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Heja, Laszlo [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Kardos, Julianna, E-mail: jkardos@chemres.hu [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary)

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  4. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis

    Science.gov (United States)

    Solanky, Bhavana S.; Muhlert, Nils; Tur, Carmen; Edden, Richard A. E.; Wheeler-Kingshott, Claudia A. M.; Miller, David H.; Thompson, Alan J.; Ciccarelli, Olga

    2015-01-01

    Neurodegeneration is thought to be the major cause of ongoing, irreversible disability in progressive stages of multiple sclerosis. Gamma-aminobutyric acid is the principle inhibitory neurotransmitter in the brain. The aims of this study were to investigate if gamma-aminobutyric acid levels (i) are abnormal in patients with secondary progressive multiple sclerosis compared with healthy controls; and (ii) correlate with physical and cognitive performance in this patient population. Thirty patients with secondary progressive multiple sclerosis and 17 healthy control subjects underwent single-voxel MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) magnetic resonance spectroscopy at 3 T, to quantify gamma-aminobutyric acid levels in the prefrontal cortex, right hippocampus and left sensorimotor cortex. All subjects were assessed clinically and underwent a cognitive assessment. Multiple linear regression models were used to compare differences in gamma-aminobutyric acid concentrations between patients and controls adjusting for age, gender and tissue fractions within each spectroscopic voxel. Regression was used to examine the relationships between the cognitive function and physical disability scores specific for these regions with gamma-aminobuytric acid levels, adjusting for age, gender, and total N-acetyl-aspartate and glutamine-glutamate complex levels. When compared with controls, patients performed significantly worse on all motor and sensory tests, and were cognitively impaired in processing speed and verbal memory. Patients had significantly lower gamma-aminobutyric acid levels in the hippocampus (adjusted difference = −0.403 mM, 95% confidence intervals −0.792, −0.014, P = 0.043) and sensorimotor cortex (adjusted difference = −0.385 mM, 95% confidence intervals −0.667, −0.104, P = 0.009) compared with controls. In patients, reduced motor function in the right upper and lower limb was associated with lower gamma-aminobutyric acid

  5. Serotonin Transporter (5-HTT) and gamma-Aminobutyric Acid Receptor Subunit beta3 (GABRB3) Gene Polymorphisms are not Associated with Autism in the IMGSA Families

    DEFF Research Database (Denmark)

    Maestrini, E.; Lai, C.; Marlow, A.

    1999-01-01

    Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study on...

  6. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Meier, E

    1990-01-01

    The effect of inhibitors of protein synthesis (actinomycin D, cycloheximide), proteases (leupeptin), and intracellular transport (colchicine, monensin) on the gamma-aminobutyric acid (GABA) agonist [4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP)]-induced changes in morphological...... an intracellular and a plasma membrane localization of the receptors. In all experiments cultures treated with THIP alone served as controls. The inhibitors of protein synthesis totally abolished the ability of THIP to induce low-affinity GABA receptors. In contrast, the inhibitors of intracellular transport...

  7. Conformational basis for the Li(+)-induced leak current in the rat gamma-aminobutyric acid (GABA) transporter-1

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Zeuthen, Thomas; Gether, Ulrik

    2002-01-01

    The rat gamma-aminobutyric acid transporter-1 (GAT-1) was expressed in Xenopus laevis oocytes and the substrate-independent Li(+)-induced leak current was examined using two-electrode voltage clamp. The leak current was not affected by the addition of GABA and was not due to H(+) permeation. The Li......(+)-bound conformation of the protein displayed a lower passive water permeability than that of the Na(+)- and choline (Ch(+))-bound conformations and the leak current did not saturate with increasing amounts of Li(+) in the test solution. The mechanism that gives rise to the leak current did not support active water...... transport in contrast to the mechanism responsible for GABA translocation (approximately 330 water molecules per charge). Altogether, these data support the distinct nature of the leak conductance in relation to the substrate translocation process. It was observed that the leak current was inhibited by low...

  8. Application of gamma-aminobutyric acid type A-benzodiazepine receptor imaging for study of neuropsychiatric disorders

    International Nuclear Information System (INIS)

    Bao Weiqi; Qiu Chun; Guan Yihui

    2012-01-01

    Gamma-aminobutyric acid type A-benzodiazepine receptors are heterogeneous polypeptide pentamers widely spread in the central nervous system on the neuron membrane. Different subunit combinations educe various neuro-inhibitory pharmacological effects such as sedative, hypnosis, anticonvulsion and anxiolysis. PET can be utilized to study the binding of the receptors in vivo. PET radioligands of gamma-aminobutyric acid type A-benzodiazepine receptors can be classified into 3 types: antagonists,agonists and reverse agonists, of which antagonist radiotracer 11 C-flumazenil is the most commonly applied in epilepsy, anxiety disorders, depression, vegetative state,addiction and other neuro-psychiatric disorders. (authors)

  9. Brain gamma-aminobutyric acid deficiency in dialysis encephalopathy.

    Science.gov (United States)

    Sweeney, V P; Perry, T L; Price, J D; Reeve, C E; Godolphin, W J; Kish, S J

    1985-02-01

    We measured levels of gamma-aminobutyric acid (GABA) in the CSF and in the autopsied brain of patients with dialysis encephalopathy. GABA concentrations were low in the CSF of three of five living patients. Mean GABA content was reduced by 30 to 50% in five brain regions (frontal, occipital, and cerebellar cortex, caudate nucleus, and medial dorsal thalamus) in five fatal cases. GABA content was normal in brain regions where GABA is characteristically reduced in Huntington's disease. Choline acetyltransferase activity was diminished (by 25 to 35%) in cerebral cortex of the dialysis encephalopathy patients.

  10. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Guoqiang Cai; Youqing Cai; Jian Fei; Guoxiang Liu

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity,impaired sustained attention,impulsivity,and is usually accompanied by varying degrees of learning difficulties and lack of motor coordination.However,the pathophysiology and etiology of ADHD remain inconclusive so far.Our previous studies have demonstrated that the gamma aminobutyric acid transporter subtype 1 (GAT1) gene knockout (ko) mouse (gat1-/-)is hyperactive and exhibited impaired memory performance in the Morris water maze.In the current study,we found that the gat1-/-mice showed low levels of attentional focusing and increased impulsivity.In addition,the gat1-/-mice displayed ataxia characterized by defects in motor coordination and balance skills.The hyperactivity in the ko mice was reduced by both methylphenidate and amphetamine.Collectively,these results suggest that GAT1 ko mouse is a new animal model for ADHD studying and GAT1 may be a new target to treat ADHD.

  11. Antisera to gamma-aminobutyric acid. I. Production and characterization using a new model system.

    Science.gov (United States)

    Hodgson, A J; Penke, B; Erdei, A; Chubb, I W; Somogyi, P

    1985-03-01

    Antisera to the amino acid gamma-aminobutyric acid (GABA) have been developed with the aim of immunohistochemical visualization of neurons that use it as a neurotransmitter. GABA bound to bovine serum albumin was the immunogen. The reactivities of the sera to GABA and a variety of structurally related compounds were tested by coupling these compounds to nitrocellulose paper activated with polylysine and glutaraldehyde and incubating the paper with the unlabeled antibody enzyme method, thus simulating immunohistochemistry of tissue sections. The antisera did not react with L-glutamate, L-aspartate, D-aspartate, glycine, taurine, L-glutamine, L-lysine, L-threonine, L-alanine, alpha-aminobutyrate, beta-aminobutyrate, putrescine, or delta-aminolevulinate. There was cross-reaction with gamma-amino-beta-hydroxybutyrate, 1-10%, and the homologues of GABA: beta-alanine, 1-10%, delta-aminovalerate, approximately 10%, and epsilon-amino-caproate, approximately 10%. The antisera reacted slightly with the dipeptide gamma-aminobutyrylleucine, but not carnosine or homocarnosine. Immunostaining of GABA was completely abolished by adsorption of the sera to GABA coupled to polyacrylamide beads by glutaraldehyde. The immunohistochemical model is simple, amino acids and peptides are bound in the same way as in aldehyde-fixed tissue and, in contrast to radioimmunoassay, it uses an immunohistochemical detection system. This method has enabled us to define the high specificity of anti-GABA sera and to use them in some novel ways. The model should prove useful in assessing the specificity of other antisera.

  12. gamma-Aminobutyric acid stimulates ethylene biosynthesis in sunflower

    International Nuclear Information System (INIS)

    Kathiresan, A.; Tung, P.; Chinnappa, C.C.; Reid, D.M.

    1997-01-01

    gamma-Aminobutyric acid (GABA), a nonprotein amino acid, is often accumulated in plants following environmental stimuli that can also cause ethylene production. We have investigated the relationship between GABA and ethylene production in excised sunflower (Helianthus annuus L.) tissues. Exogenous GABA causes up to a 14-fold increase in the ethylene production rate after about 12 h. Cotyledons fed with [14C]GABA did not release substantial amounts of radioactive ethylene despite its chemical similarity to 1-aminocyclopropane-1-carboxylic acid (ACC), indicating that GABA is not likely to be an alternative precursor for ethylene. GABA causes increases in ACC synthase mRNA accumulation, ACC levels, ACC oxidase mRNA levels, and in vitro ACC oxidase activity. In the presence of aminoethoxyvinylglycine or alpha-aminoisobutyric acid, GABA did not stimulate ethylene production. We therefore conclude that GABA stimulates ethylene biosynthesis mainly by promoting ACC synthase transcript abundance. Possible roles of GABA as a signal transducer are suggested

  13. GABAA [gamma-aminobutyric acid] type binding sites on membranes of spermatozoa

    International Nuclear Information System (INIS)

    Erdoe, S.L.; Wekerle, L.

    1990-01-01

    The binding of [ 3 H] gamma-aminobutyric acid (GABA) to seminal membranes of swines and rams was examined. Specific, GABA binding was demonstrated in both species, which showed the features of GABA A type receptors. The affinity of binding was similar in both species, whereas the density of seminal GABA binding sites was 5 times higher in swine. Our findings suggest that GABA may have a direct effect on spermatozoa

  14. Cloning and characterization of a functional human ¿-aminobutyric acid (GABA) transporter, human GAT-2

    DEFF Research Database (Denmark)

    Christiansen, Bolette; Meinild, Anne-Kristine; Jensen, Anders A.

    2007-01-01

    Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human....... The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT......-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable...

  15. [Construction of a recombinant Escherichia coli BL21/ pET-28a-lpgad and the optimization of transformation conditions for the efficient production of gamma-aminobutyric acid].

    Science.gov (United States)

    Tian, Lingzhi; Xu, Meijuan; Rao, Zhiming

    2012-01-01

    In order to enhance gamma-aminobutyric acid production from L-glutamate efficiently, we amplified the key enzyme glutamate decarboxylase (GAD) encoding gene lpgad from the strain Lactobacillus plantarum GB 01-21 which was obtained by way of multi-mutagenesis and overexpressed it in E. coli BL21. Then we purified GAD by Ni-NTA affinity chromatography and characterized the enzyme to optimize the conditions of the whole-cell transformation. The results showed that the recombinant E. coli BL21 (pET-28a-lpgad) produced 8.53 U/mg GAD, which was increased by 3.24 fold compared with the GAD activity in L. plantarum. The optimum pH and temperature of the enzyme were pH 4.8 and 37 degrees C, respectively. At the same time, we found that Ca2+ and Mg2+ could increase the activity significantly. Based on this, we investigated gamma-aminobutyric acid transformation in 5 L fermentor under the optimum transformation conditions. Accordingly, the yield of gamma-aminobutyric acid was 204.5 g/L at 24 h when the 600 g L-glutamate was added and the mole conversion rate had reached 97.92%. The production of gamma-aminobutyric acid was improved by 42.5% compared with that under the unoptimized transformation conditions. This paved a way for the gamma-aminobutyric acid construction of the industrial applications.

  16. The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Mosbacher, Johannes; Elg, Susanne

    2002-01-01

    The actions of the anticonvulsant gabapentin [1-(aminomethyl)cyclohexaneacetic acid, Neurontin] have been somewhat enigmatic until recently, when it was claimed to be a gamma-aminobutyric acid-B (GABA(B)) receptor agonist acting exclusively at a heterodimeric complex containing the GABA(B(1a...... in vitro assays. In light of these results, we find it highly questionable that gabapentin is a GABA(B) receptor agonist. Hence, the anticonvulsive effects of the compound have to arise from GABA(B) receptor-independent mechanisms. This also implies that the first GABA(B) receptor splice variant...

  17. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice

    NARCIS (Netherlands)

    Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.B.; Werf, van der W.; Duan, L.

    2014-01-01

    Germinated brown rice is a well-known functional food due to its high content of gamma-aminobutyric acid (GABA). This study was designed to test the difference of producing GABA in two domesticated rice genotypes (indica and japonica rice), and the effects of adding exogenous glutamic acid or

  18. Complete Genome Sequence of the Gamma-Aminobutyric Acid-Producing Strain Streptococcus thermophilus APC151.

    Science.gov (United States)

    Linares, Daniel M; Arboleya, Silvia; Ross, R Paul; Stanton, Catherine

    2017-04-27

    Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%. Copyright © 2017 Linares et al.

  19. [The interaction between gamma-aminobutyric acid and other related neurotransmitters in depression].

    Science.gov (United States)

    Li, Zhen; An, Shu-Cheng; Li, Jiang-Na

    2014-06-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system (CNS) in mammalian, which involved in several mood disorders such as anxiety, depression and schizophrenia. Nowadays, there are growing evidences showed that the depression is concerned with a deficiency in brain GABA. However, there are numerous studies based on the monoamine hypothesis and glutamatergic dysfunction, while the study on GABA is relatively less and scattered. Our aim is to discuss the relationship between depression and GABA by introducing the role of GABA receptors and the interaction between GABA and 5-hydroxytryptamine, dopamine and glutamic acid. It provides new ideas for further study on the pathogenesis and therapy of depression.

  20. Enrichment of Gamma-Aminobutyric Acid in Bean Sprouts: Exploring Biosynthesis of Plant Metabolite Using Common Household Reagents

    Science.gov (United States)

    Rojanarata, Theerasak; Plianwong, Samarwadee; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2018-01-01

    The enrichment of plant foods with gamma-aminobutyric acid (GABA) is currently an interesting issue in the field of nutraceuticals and can be used as an experiment for upper-division undergraduate students. Here, an interdisciplinary hands-on experiment to produce GABA-enriched mung bean sprouts using common household reagents is described. Based…

  1. Cortical Gamma-Aminobutyric Acid and Glutamate in Posttraumatic Stress Disorder and Their Relationships to Self-Reported Sleep Quality

    Science.gov (United States)

    Meyerhoff, Dieter J.; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C.

    2014-01-01

    Study Objectives: To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Design: Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. Setting: VA Medical Center Research Service, Psychiatry and Radiology. Patients or Participants: Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD−), recruited from United States Army reservists, Army National Guard, and mental health clinics. Interventions: None. Measurements and Results: 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD−. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Conclusions: Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches. Citation: Meyerhoff DJ, Mon A, Metzler T, Neylan TC. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and

  2. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Elster, L

    1998-01-01

    The correct establishment and function of synapses depend on a variety of factors, such as guidance of pre- and postsynaptic neurons as well as receptor development and localization. gamma-Aminobutyric acid (GABA) has a pronounced effect on these events and elicits differentiation of neurons......; that is, GABA acts as a trophic signal. Accordingly, activating preexisting GABA receptors, a trophic GABA signal enhances the growth rate of neuronal processes, facilitates synapse formation, and promotes synthesis of specific proteins. Transcription and de novo synthesis are initiated by the GABA signal......, but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  3. EFFECT OF FOOD-MICROORGANISMS ON GAMMA-AMINOBUTYRIC ACID PRODUCTION BY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Jozef Hudec

    2012-02-01

    Full Text Available Lactic acid bacteria (LAB are nice targets in order to study γ-aminobutyric acid (GABA production that has been reported to be effective in order to reduce blood pressure in experimental animals and human beings. In this study, we aimed to γ-aminobutyric acid (GABA production in aerobical and anaerobical conditions, using different sources of microorganisms. The highest selectivity of GABA from precursor L-monosodium glutamate (82.22% has been reported using of microorganisms from banana, and with addition of pyridoxal-5-phosphate (P-5-P. For augmentation of selectivity the application of the further stimulating factors of GABA biosynthesis is needed.

  4. Gamma-Aminobutyric Acid Concentration is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression

    OpenAIRE

    Yoon, Jong H.; Maddock, Richard J.; Rokem, Ariel; Silver, Michael A.; Minzenberg, Michael J.; Ragland, J. Daniel; Carter, Cameron S.

    2010-01-01

    The neural mechanisms underlying cognitive deficits in schizophrenia remain largely unknown. The gamma-aminobutyric acid (GABA) hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We employed magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matche...

  5. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    Science.gov (United States)

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  6. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves.

    Science.gov (United States)

    Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.

  7. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking.

    Science.gov (United States)

    Lubbers, Bart R; van Mourik, Yvar; Schetters, Dustin; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-11-01

    Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Elevated gamma-aminobutyric acid levels in chronic schizophrenia.

    Science.gov (United States)

    Ongür, Dost; Prescot, Andrew P; McCarthy, Julie; Cohen, Bruce M; Renshaw, Perry F

    2010-10-01

    Despite widely replicated abnormalities of gamma-aminobutyric acid (GABA) neurons in schizophrenia postmortem, few studies have measured tissue GABA levels in vivo. We used proton magnetic resonance spectroscopy to measure tissue GABA levels in participants with schizophrenia and healthy control subjects in the anterior cingulate cortex and parieto-occipital cortex. Twenty-one schizophrenia participants effectively treated on a stable medication regimen (mean age 39.0, 14 male) and 19 healthy control subjects (mean age 36.3, 12 male) underwent a proton magnetic resonance spectroscopy scan using GABA-selective editing at 4 Tesla after providing informed consent. Data were collected from two 16.7-mL voxels and analyzed using LCModel. We found elevations in GABA/creatine in the schizophrenia group compared with control subjects [F(1,65) = 4.149, p = .046] in both brain areas (15.5% elevation in anterior cingulate cortex, 11.9% in parieto-occipital cortex). We also found a positive correlation between GABA/creatine and glutamate/creatine, which was not accounted for by % GM or brain region. We found elevated GABA/creatinine in participants with chronically treated schizophrenia. Postmortem studies report evidence for dysfunctional GABAergic neurotransmission in schizophrenia. Elevated GABA levels, whether primary to illness or compensatory to another process, may be associated with dysfunctional GABAergic neurotransmission in chronic schizophrenia. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Effects of gamma-aminobutyric acid on the Hering-Breuer inspiration-inhibiting reflex.

    Science.gov (United States)

    Aleksandrova, N P; Aleksandrov, V G; Ivanova, T G

    2010-02-01

    Acute experiments on rats were performed to study the effects of intraventricular microinjections of gamma-aminobutyric acid (GABA) on the volume-time parameters of external respiration and the inspiration-inhibiting Hering-Breuer reflex. The state of this reflex before and after GABA administration was assessed in terms of the extent of changes in the duration and amplitude of inspiratory oscillations in intrathoracic pressure in response to end-expiratory occlusion of the trachea. Administration of 20 microM GABA into the lateral ventricles of the brain decreased the minute ventilation (due to reductions in the respiratory frequency and respiratory volume), weakened respiratory muscle contractions, and decreased the peak airflow rate on inspiration and expiration. The response to end-expiratory occlusion decreased significantly after administration of GABA, demonstrating the involvement of GABAergic mechanisms in mediating the inspiration-inhibiting Hering-Breuer reflex.

  10. Biotechnological advances and perspectives of gamma-aminobutyric acid production.

    Science.gov (United States)

    Xu, Ning; Wei, Liang; Liu, Jun

    2017-03-01

    Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that is widely distributed among various organisms. Since GABA has several well-known physiological functions, such as mediating neurotransmission and hypotensive activity, as well as having tranquilizer effects, it is commonly used as a bioactive compound in the food, pharmaceutical and feed industries. The major pathway of GABA biosynthesis is the irreversible decarboxylation of L-glutamate catalyzed by glutamate decarboxylase (GAD), which develops a safe, sustainable and environmentally friendly alternative in comparison with traditional chemical synthesis methods. To date, several microorganisms have been successfully engineered for high-level GABA biosynthesis by overexpressing exogenous GADs. However, the activity of almost all reported microbial GADs sharply decreases at physiological near-neutral pH, which in turn provokes negative effects on the application of these GADs in the recombinant strains for GABA production. Therefore, ongoing efforts in the molecular evolution of GADs, in combination with high-throughput screening and metabolic engineering of particular producer strains, offer fascinating new prospects for effective, environmentally friendly and economically viable GABA biosynthesis. In this review, we briefly introduce the applications in which GABA is used, and summarize the most important methods associated with GABA production. The major achievements and present challenges in the biotechnological synthesis of GABA, focusing on screening and enzyme engineering of GADs, as well as metabolic engineering strategy for one-step GABA biosynthesis, will be extensively discussed.

  11. Characterization of the gamma-aminobutyric acid receptor system in human brain gliomas

    International Nuclear Information System (INIS)

    Frattola, L.; Ferrarese, C.; Canal, N.; Gaini, S.M.; Galluso, R.; Piolti, R.; Trabucchi, M.

    1985-01-01

    The properties of [ 3 H]-gamma-aminobutyric acid [( 3 H]GABA) binding were studied in biopsied specimens from normal human brain and from 18 cases of human brain gliomas, made up of 6 astrocytomas, 6 glioblastomas, 3 oligodendrogliomas, and 3 medulloblastomas. In fresh membranes obtained from normal gray and white matter one population of Na+-dependent GABA receptors was observed, while in the frozen Triton X-100-treated membranes two distinct populations of Na+-independent binding sites were detected. Specific GABA binding sites in brain gliomas were shown only in frozen Triton X-100-treated membranes. As in normal tissue, these receptors are Na+-independent and bind [ 3 H]GABA with two distinct affinity components. The biochemical profiles of [ 3 H]GABA binding to membranes obtained from different tumors of glial origin are quite similar and cannot be related to the degree of malignancy of the neoplasia

  12. Measurement of gamma-aminobutyric acid in human cerebrospinal fluid: radioreceptor assay using [3H]muscimol

    International Nuclear Information System (INIS)

    Baraczka, K.; Sperk, G.

    1981-01-01

    A method is described for the determination of gamma-aminobutyric acid (GABA) levels in human cerebrospinal fluid by modification of the radioreceptor assay utilizing [ 3 H]muscimol as labelled ligand. This method is compared with the radioreceptor assay using [ 3 H]GABA as labelled ligand. Although the [ 3 H]muscimol assay is less sensitive than the [ 3 H]GABA method, it offers the advantage of being more rapid due to the use of a filtration step instead of the usual, more time-consuming centrifugation of the samples. Samples of CSF of patients with various neurological or psychiatric disturbances were analysed. There was a satisfactory correlation between the GABA values obtained by the two assays. (Auth.)

  13. gamma-Glutamyl amino acids. Transport and conversion to 5-oxoproline in the kidney

    International Nuclear Information System (INIS)

    Bridges, R.J.; Meister, A.

    1985-01-01

    Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of 35 S after incubation of the slices in media containing gamma-glutamyl methionine [ 35 S]sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method was also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices

  14. Design and Mechanism of Tetrahydrothiophene-Based γ-Aminobutyric Acid Aminotransferase Inactivators

    Energy Technology Data Exchange (ETDEWEB)

    Le, Hoang V. [Departments; Hawker, Dustin D. [Departments; Wu, Rui [Department; Doud, Emma [Departments; Widom, Julia [Departments; Sanishvili, Ruslan [X-ray; Liu, Dali [Department; Kelleher, Neil L. [Departments; Silverman, Richard B. [Departments

    2015-03-25

    Low levels of gamma-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinsons disease, Alzheimers disease, Huntingtons disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the bloodbrain barrier and inhibit the activity of gamma-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a pi-pi interaction with Phe-189, and a weak nonbonded (SO)-O-...=C interaction with Glu-270, thereby inactivating the enzyme.

  15. Vertical organization of gamma-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex

    International Nuclear Information System (INIS)

    DeFelipe, J.; Jones, E.G.

    1985-01-01

    Light and electron microscopic methods were used to examine the neurons in the monkey cerebral cortex labeled autoradiographically following the uptake and transport of [ 3 H]-gamma-aminobutyric acid (GABA). Nonpyramidal cell somata in the sensory-motor areas and primary visual area (area 17) were labeled close to the injection site and at distances of 1 to 1.5 mm beyond the injection site, indicating labeling by retrograde axoplasmic transport. This labeling occurred preferentially in the vertical dimension of the cortex. Prior injections of colchicine, an inhibitor of axoplasmic transport, abolished all labeling of somata except those within the injection site. In each area, injections of superficial layers (I to III) produced labeling of clusters of cell somata in layer V, and injections of the deep layers (V and VI) produced labeling of clusters of cell somata in layers II and III. In area 17, injections of the superficial layers produced dense retrograde cell labeling in three bands: in layers IVC, VA, and VI. Vertically oriented chains of silver grains linked the injection sites with the resulting labeled cell clusters. In all areas, the labeling of cells in the horizontal dimension was insignificant. Electron microscopic examination of labeled neurons confirms that the neurons labeled at a distance from an injection site are nonpyramidal neurons, many with somata so small that they would be mistaken for neuroglial cells light microscopically. They receive few axosomatic synapses, most of which have symmetric membrane thickenings. The vertical chains of silver grains overlie neuronal processes identifiable as both dendrites and myelinated axons, but unmyelinated axons may also be included. The clusters of [ 3 H]GABA-labeled cells are joined to one another and to adjacent unlabeled cells by junctional complexes, including puncta adherentia and multi-lamellar cisternal complexes

  16. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality.

    Science.gov (United States)

    Meyerhoff, Dieter J; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C

    2014-05-01

    To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. VA Medical Center Research Service, Psychiatry and Radiology. Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD-), recruited from United States Army reservists, Army National Guard, and mental health clinics. None. 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD-. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches.

  17. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    Science.gov (United States)

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  18. gamma-Aminobutyric acid production in small and large intestine of normal and germ-free Wistar rats. Influence of food intake and intestinal flora.

    Science.gov (United States)

    van Berlo, C L; de Jonge, H R; van den Bogaard, A E; van Eijk, H M; Janssen, M A; Soeters, P B

    1987-09-01

    In recent hypotheses concerning the pathogenesis of hepatic encephalopathy, gamma-aminobutyric acid (GABA) is claimed to be produced by the colonic flora, although enzymes necessary to generate GABA have been reported to be present in intestinal mucosa. In this study, using normal and germ-free Wistar rats, we determined GABA levels and amino-grams of arterial blood and of venous effluent from small and large bowel. The data indicate that large and small intestinal mucosa significantly contribute to GABA production. In the fasted state GABA concentrations are greater in the venous effluent of the small bowel than in the venous effluent of the large bowel. Feeding increases the arterioportal differences, and uptake in the small bowel is still significantly higher than in the large bowel. This process is not, or can only be to a minor degree, bacterially mediated, because GABA production in the gut both in the fed and fasted state is of similar magnitude in germ-free and normal animals. gamma-Aminobutyric acid release correlates significantly with glutamine uptake in the small bowel of fasted rats. Only a small fraction of the glutamine taken up is needed to account for GABA release, so that conclusions concerning which amino acids may serve as precursors of GABA cannot be drawn. Further studies are needed to delineate the metabolic pathways leading to GABA synthesis.

  19. Embryonic cerebellar neurons accumulate [3H-gamma-aminobutyric acid: visualization of developing gamma-aminobutyric acid-utilizing neurons in vitro and in vivo

    International Nuclear Information System (INIS)

    Hatten, M.E.; Francois, A.M.; Napolitano, E.; Roffler-Tarlov, S.

    1984-01-01

    gamma-Aminobutyric acid (GABA) is the proposed neurotransmitter for four types of cerebellar neurons-Purkinje, Golgi, basket, and stellate neurons. With this investigation we have begun studies to establish when these neurons acquire their neurotransmitter ''identification''. Autoradiographic studies of both cultured embryonic (embryonic day 13) cerebellar cells and of intact embryonic cerebellum (embryonic day 13) were conducted with tritiated GABA. Two to 5% of the embryonic cerebellar cells accumulated [ 3 H]GABA in vitro. By morphological and immunocytochemical criteria, labeled cells were large neurons with either a thick, apical process, a multipolar shape, or were bipolar with longer processes. The identification of cells which accumulated [ 3 H]GABA as neuronal precursors was supported by the differential sensitivity to drugs that preferentially inhibit accumulation of [ 3 H]GABA by neurons and glia. The results of the in vitro experiments were confirmed and extended with in vivo experiments. When intact cerebellar tissue was removed at embryonic day 13, stripped of meninges and choroid plexus, exposed to low concentrations of [ 3 H]GABA, and processed for light microscopic autoradiography, heavily labeled cells were seen in the middle of the cerebellar anlage. Labeled cells were not seen in the ventricular zone of proliferating neuroblasts lining the fourth ventricle or in the external granular layer emerging at the lateral aspect of the pial surface. The accumulation of [ 3 H]GABA by these cells also showed the pharmacological characteristics of uptake by neurons. This study shows that among migrating, immature forms of the larger neurons of the embryonic cerebellum, there is a select group which accumulates [ 3 H]GABA and other classes of cells which do not. These results indicate very early acquisition of transmitter expression by cerebellar neurons, far in advance of their final positioning and establishment of synapses

  20. Effects of exogenous gamma-aminobutyric acid on α-amylase activity in the aleurone of barley seeds.

    Science.gov (United States)

    Sheng, Yidi; Xiao, Huiyuan; Guo, Chunli; Wu, Hong; Wang, Xiaojing

    2018-03-03

    Gamma-aminobutyric acid (GABA), a nonprotein amino acid, often accumulates in plants exposed to certain environmental stimuli. Previous studies indicated that a closed relationship existed between endogenous GABA and seed germination. However, there are few studies on the effect of exogenous GABA on seed germination. The objective of this study was to explore whether exogenous GABA affected α-amylase activity which the activation is an important stage in seed germination. The level of endogenous GABA in barley seeds rose gradually during germination, suggesting that endogenous GABA was involved in germination. We measured starch degradation under application of various concentration GABA and found that GABA promoted seed starch degradation with a dose-responsive effect. The relationship between GABA and α-amylase activity was investigated by treating barley aleurone with exogenous GABA. The result showed that α-amylase activity began to rise after about 24 h and reached a peak at 48 h. Molecular evidence suggested that GABA increased α-amylase gene expression. We explore the possible roles played by GABA in signal transduction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. MS transport assays for γ-aminobutyric acid transporters--an efficient alternative for radiometric assays.

    Science.gov (United States)

    Schmitt, Sebastian; Höfner, Georg; Wanner, Klaus T

    2014-08-05

    Transport assays for neurotransmitters based on radiolabeled substrates are widely spread and often indispensable in basic research and the drug development process, although the use of radioisotopes is inherently coupled to issues concerning radioactive waste and safety precautions. To overcome these disadvantages, we developed mass spectrometry (MS)-based transport assays for γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system (CNS). These "MS Transport Assays" provide all capabilities of [(3)H]GABA transport assays and therefore represent the first substitute for the latter. The performance of our approach is demonstrated for GAT1, the most important GABA transporter (GAT) subtype. As GABA is endogenously present in COS-7 cells employed as hGAT1 expression system, ((2)H6)GABA was used as a substrate to differentiate transported from endogenous GABA. To record transported ((2)H6)GABA, a highly sensitive, short, robust, and reliable HILIC-ESI-MS/MS quantification method using ((2)H2)GABA as an internal standard was developed and validated according to the Center for Drug Evaluation and Research (CDER) guidelines. Based on this LC-MS quantification, a setup to characterize hGAT1 mediated ((2)H6)GABA transport in a 96-well format was established, that enables automated processing and avoids any sample preparation. The K(m) value for ((2)H6)GABA determined for hGAT1 is in excellent agreement with results obtained from [(3)H]GABA uptake assays. In addition, the established assay format enables efficient determination of the inhibitory potency of GAT1 inhibitors, is capable of identifying those inhibitors transported as substrates, and furthermore allows characterization of efflux. The approach described here combines the strengths of LC-MS/MS with the high efficiency of transport assays based on radiolabeled substrates and is applicable to all GABA transporter subtypes.

  2. Gamma-aminobutyric acid (GABA)-B receptor 1 in cerebellar cortex of essential tremor.

    Science.gov (United States)

    Luo, C; Rajput, A H; Robinson, C A; Rajput, A

    2012-06-01

    Some reports suggest cerebellar dysfunction as the basis of essential tremor (ET). Several drugs with the action of gamma-aminobutyric acid (GABA) are known to improve ET. Autopsy studies were performed on brains from nine former patients followed at the Movement Disorders Clinic Saskatchewan, Canada, and compared with five normal control brains. We aimed to measure the concentration of GABA B receptor 1 (GBR1) in the brains of patients who had had ET and to compare them to the GABA concentration in brains of controls. Western blot was used to determine the expression of GBR1 in cerebellar cortex tissue. We found that compared to the controls, the ET brains had three different patterns of GBR1 protein concentration--two with high, four comparable, and three with marginally low levels. There was no association between the age of onset, severity or duration of tremor, the response to alcohol or other drugs and GBR1 level. Thus, we conclude that our study does not support that GBR1 is involved in ET. Further studies are needed to verify these results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Gamma-aminobutyric acid aggravates nephrotoxicity induced by cisplatin in female rats.

    Science.gov (United States)

    Peysepar, Elham; Soltani, Nepton; Nematbakhsh, Mehdi; Eshraghi-Jazi, Fatemeh; Talebi, Ardeshir

    2016-01-01

    Cisplatin (CP) is a major antineoplastic drug for treatment of solid tumors. CP-induced nephrotoxicity may be gender-related. This is while gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the central nervous system that has renoprotective impacts on acute renal injury. This study was designed to investigate the protective role of GABA against CP-induced nephrotoxicity in male and female rats. Sixty Wistar male and female rats were used in eight experimental groups. Both genders received GABA (50 μg/kg/day; i. p.) for 14 days and CP (2.5 mg/kg/day; i. p.) was added from day 8 to the end of the study, and they were compared with the control groups. At the end of the study, all animals were sacrificed and the serum levels of blood urea nitrogen (BUN), creatinine (Cr), nitrite, malondialdehyde (MDA), and magnesium (Mg) were measured. The kidney tissue damage was also determined via staining. CP significantly increased the serum levels of Cr and BUN, kidney weight, and kidney tissue damage score in both genders (PGABA did not attenuate these markers in males; even these biomarkers were intensified in females. Serum level of Mg, and testis and uterus weights did not alter in the groups. However, the groups were significantly different in terms of nitrite and MDA levels. It seems that GABA did not improve nephrotoxicity induced by CP-treated rats, and it exacerbated renal damage in female rats.

  4. Anxiety in major depression and cerebrospinal fluid free gamma-aminobutyric acid.

    Science.gov (United States)

    Mann, J John; Oquendo, Maria A; Watson, Kalycia Trishana; Boldrini, Maura; Malone, Kevin M; Ellis, Steven P; Sullivan, Gregory; Cooper, Thomas B; Xie, Shan; Currier, Dianne

    2014-10-01

    Low gamma-aminobutyric acid (GABA) is implicated in both anxiety and depression pathophysiology. They are often comorbid, but most clinical studies have not examined these relationships separately. We investigated the relationship of cerebrospinal fluid (CSF) free GABA to the anxiety and depression components of a major depressive episode (MDE) and to monoamine systems. Patients with a DSM-IV major depressive episode (N = 167: 130 major depressive disorder; 37 bipolar disorder) and healthy volunteers (N = 38) had CSF free GABA measured by gas chromatography mass spectroscopy. Monoamine metabolites were assayed by high performance liquid chromatography. Symptomatology was assessed by Hamilton depression rating scale. Psychic anxiety severity increased with age and correlated with lower CSF free GABA, controlling for age. CSF free GABA declined with age but was not related to depression severity. Other monoamine metabolites correlated positively with CSF GABA but not with psychic anxiety or depression severity. CSF free GABA was lower in MDD compared with bipolar disorder and healthy volunteers. GABA levels did not differ based on a suicide attempt history in mood disorders. Recent exposure to benzodiazepines, but not alcohol or past alcoholism, was associated with a statistical trend for more severe anxiety and lower CSF GABA. Lower CSF GABA may explain increasing severity of psychic anxiety in major depression with increasing age. This relationship is not seen with monoamine metabolites, suggesting treatments targeting the GABAergic system should be evaluated in treatment-resistant anxious major depression and in older patients. © 2014 Wiley Periodicals, Inc.

  5. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    Science.gov (United States)

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The gamma-aminobutyric acid uptake inhibitor, tiagabine, is anticonvulsant in two animal models of reflex epilepsy.

    Science.gov (United States)

    Smith, S E; Parvez, N S; Chapman, A G; Meldrum, B S

    1995-02-06

    The effects of i.p. administration of the gamma-aminobutyric acid (GABA) uptake inhibitors R(-)N-(4,4-di(3-methylthien-2-yl)-but-3-enyl) nipecotic acid hydrochloride (tiagabine; molecular weight 412.0), (1-(2-(((diphenylmethylene)-amino)oxy)ethyl)-1,2,5,6-tetrahydro-3- pyridinecarboxylic acid hydrochloride (NNC-711; molecular weight 386.9), and (+/-)-nipecotic acid (molecular weight 128.2) are compared with those of carbamazepine (molecular weight 236.3) on sound-induced seizures and locomotor performance in genetically epilepsy-prone (GEP) rats. The ED50 value against clonic seizures (in mumol kg-1 at the time of maximal anticonvulsant effect) for tiagabine was 23 (0.5 h), and for NNC-711 was 72 (1 h), and for carbamazepine was 98 (2 h). (+/-)-Nipecotic acid (0.4-15.6 mmol kg-1) was not anticonvulsant. High doses of NNC-711 (207-310 mumol kg-1) and of (+/-)-nipecotic acid (39-78 mmol kg-1) induced ataxia and myoclonic seizures 0.25-1 h. Tiagabine and carbamazepine did not induce myoclonic seizures and had similar therapeutic indices (locomotor deficit ED50/anticonvulsant ED50) ranging from 0.4 to 1.9. In Papio papio, we observed a reduction in photically induced myoclonic seizures with tiagabine (2.4 mumol kg-1 i.v.) accompanied with neurological impairment. Tiagabine has comparable anticonvulsant action to carbamazepine in rats and has anticonvulsant effects in non-human primates supporting the potential use of inhibitors of GABA uptake as therapy for epilepsy.

  7. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    Science.gov (United States)

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  8. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. ANXIETY IN MAJOR DEPRESSION AND CEREBROSPINAL FLUID FREE GAMMA-AMINOBUTYRIC ACID

    Science.gov (United States)

    Mann, J. John; Oquendo, Maria A.; Watson, Kalycia Trishana; Boldrini, Maura; Malone, Kevin M.; Ellis, Steven P.; Sullivan, Gregory; Cooper, Thomas B.; Xie, Shan; Currier, Dianne

    2016-01-01

    Background Low gamma-aminobutyric acid (GABA) is implicated in both anxiety and depression pathophysiology. They are often comorbid, but most clinical studies have not examined these relationships separately. We investigated the relationship of cerebrospinal fluid (CSF) free GABA to the anxiety and depression components of a major depressive episode (MDE) and to monoamine systems. Methods and Materials Patients with a DSM-IV major depressive episode (N = 167: 130 major depressive disorder; 37 bipolar disorder) and healthy volunteers (N = 38) had CSF free GABA measured by gas chromatography mass spectroscopy. Monoamine metabolites were assayed by high performance liquid chromatography. Symptomatology was assessed by Hamilton depression rating scale. Results Psychic anxiety severity increased with age and correlated with lower CSF free GABA, controlling for age. CSF free GABA declined with age but was not related to depression severity. Other monoamine metabolites correlated positively with CSF GABA but not with psychic anxiety or depression severity. CSF free GABA was lower in MDD compared with bipolar disorder and healthy volunteers. GABA levels did not differ based on a suicide attempt history in mood disorders. Recent exposure to benzodiazepines, but not alcohol or past alcoholism, was associated with a statistical trend for more severe anxiety and lower CSF GABA. Conclusions Lower CSF GABA may explain increasing severity of psychic anxiety in major depression with increasing age. This relationship is not seen with monoamine metabolites, suggesting treatments targeting the GABAergic system should be evaluated in treatment-resistant anxious major depression and in older patients. PMID:24865448

  10. Determination of gamma-aminobutyric acid in food matrices by isotope dilution hydrophilic interaction chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Zazzeroni, Raniero; Homan, Andrew; Thain, Emma

    2009-08-01

    The estimation of the dietary intake of gamma-aminobutyric acid (GABA) is dependent upon the knowledge of its concentration values in food matrices. To this end, an isotope dilution liquid chromatography-mass spectrometry method has been developed employing the hydrophilic interaction chromatography technique for analyte separation. This approach enabled accurate quantification of GABA in apple, potato, soybeans, and orange juice without the need of a pre- or post-column derivatization reaction. A selective and precise analytical measurement has been obtained with a triple quadrupole mass spectrometer operating in multiple reaction monitoring using the method of standard additions and GABA-d(6) as an internal standard. The concentrations of GABA found in the matrices tested are 7 microg/g of apple, 342 microg/g of potatoes, 211 microg/g of soybeans, and 344 microg/mL of orange juice.

  11. Successful combination immunotherapy of anti-gamma aminobutyric acid (GABA)A receptor antibody-positive encephalitis with extensive multifocal brain lesions.

    Science.gov (United States)

    Fukami, Yuki; Okada, Hiroaki; Yoshida, Mari; Yamaguchi, Keiji

    2017-08-31

    A 78-year old woman who presented with akinetic mutism was admitted to our hospital. Brain MRI showed multifocal increased T 2 /FLAIR signal with extensive cortical-subcortical involvement. We suspected autoimmune encephalitis and the patient received methylprednisolone pulse. Her conscious level gradually recovered, but later relapsed again and presented with refractory status epilepticus. We treated her with intravenous immunoglobulin, plasma exchange and pulsed cyclophosphamide, with satisfactory response. A brain biopsy showed perivascular lymphocytic infiltrates and reactive gliosis. Anti-gamma aminobutyric acid (GABA) A receptor antibodies test came back to be positive after her recovery, and the diagnosis of anti-GABA A receptor antibody-positive encephalitis was made. This is a very rare case where brain biopsies were performed in a patient with anti-GABA A receptor antibody-positive encephalitis.

  12. Transcriptional dysregulation of γ-aminobutyric acid transporter in parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia.

    Science.gov (United States)

    Bitanihirwe, Byron K Y; Woo, Tsung-Ung W

    2014-12-30

    Parvalbumin (PV)-containing neurons are functionally compromised in schizophrenia. Using double in situ hybridization in postmortem human prefrontal cortex, we found that the messenger RNA (mRNA) for the γ-aminobutyric acid (GABA) transporter GAT-1 was undetectable in 22-41% of PV neurons in layers 3-4 in schizophrenia. In the remaining PV neurons with detectable GAT-1 mRNA, transcript expression was decreased by 26% in layer 3. Hence, the dysfunction of PV neurons involves the molecular dysregulation of presynaptic GABA reuptake. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    Science.gov (United States)

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  14. Food deprivation modulates gamma-aminobutyric acid receptors and peripheral benzodiazepine binding sites in rats.

    Science.gov (United States)

    Weizman, A; Bidder, M; Fares, F; Gavish, M

    1990-12-03

    The effect of 5 days of food deprivation followed by 5 days of refeeding on gamma-aminobutyric acid (GABA) receptors, central benzodiazepine receptors (CBR), and peripheral benzodiazepine binding sites (PBzS) was studied in female Sprague-Dawley rats. Starvation induced a decrease in the density of PBzS in peripheral organs: adrenal (35%; P less than 0.001), kidney (33%; P less than 0.01), and heart (34%; P less than 0.001). Restoration of [3H]PK 11195 binding to normal values was observed in all three organs after 5 days of refeeding. The density of PBzS in the ovary, pituitary, and hypothalamus was not affected by starvation. Food deprivation resulted in a 35% decrease in cerebellar GABA receptors (P less than 0.01), while CBR in the hypothalamus and cerebral cortex remained unaltered. The changes in PBzS observed in the heart and kidney may be related to the long-term metabolic stress associated with starvation and to the functional changes occurring in these organs. The down-regulation of the adrenal PBzS is attributable to the suppressive effect of hypercortisolemia on pituitary ACTH release. The reduction in cerebellar GABA receptors may be an adaptive response to food deprivation stress and may be relevant to the proaggressive effect of hunger.

  15. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.

    Science.gov (United States)

    Tyzio, Roman; Minlebaev, Marat; Rheims, Sylvain; Ivanov, Anton; Jorquera, Isabelle; Holmes, Gregory L; Zilberter, Yuri; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2008-05-01

    During postnatal development of the rat hippocampus, gamma-aminobutyric acid (GABA) switches its action on CA3 pyramidal cells from excitatory to inhibitory. To characterize the underlying changes in the GABA reversal potential, we used somatic cell-attached recordings of GABA(A) and N-methyl-D-aspartate channels to monitor the GABA driving force and resting membrane potential, respectively. We found that the GABA driving force is strongly depolarizing during the first postnatal week. The strength of this depolarization rapidly declines with age, although GABA remains slightly depolarizing, by a few millivolts, even in adult neurons. Reduction in the depolarizing GABA driving force was due to a progressive negative shift of the reversal potential of GABA currents. Similar postnatal changes in GABA signalling were also observed using the superfused hippocampus preparation in vivo, and in the hippocampal interneurons in vitro. We also found that in adult pyramidal cells, somatic GABA reversal potential is maintained at a slightly depolarizing level by bicarbonate conductance, chloride-extrusion and chloride-loading systems. Thus, the postnatal excitatory-to-inhibitory switch in somatic GABA signalling is associated with a negative shift of the GABA reversal potential but without a hyperpolarizing switch in the polarity of GABA responses. These results also suggest that in adult CA3 pyramidal cells, somatic GABAergic inhibition takes place essentially through shunting rather than hyperpolarization. Apparent hyperpolarizing GABA responses previously reported in the soma of CA3 pyramidal cells are probably due to cell depolarization during intracellular or whole-cell recordings.

  16. Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome.

    Science.gov (United States)

    Tyzio, Roman; Khalilov, Ilgam; Represa, Alfonso; Crepel, Valerie; Zilberter, Yuri; Rheims, Sylvain; Aniksztejn, Laurent; Cossart, Rosa; Nardou, Romain; Mukhtarov, Marat; Minlebaev, Marat; Epsztein, Jérôme; Milh, Mathieu; Becq, Helene; Jorquera, Isabel; Bulteau, Christine; Fohlen, Martine; Oliver, Viviana; Dulac, Olivier; Dorfmüller, Georg; Delalande, Olivier; Ben-Ari, Yehezkel; Khazipov, Roustem

    2009-08-01

    The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies. Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery. Neurons in SWS cortex were characterized by a relatively depolarized resting membrane potential, as was estimated from cell-attached recordings of N-methyl-D-aspartate channels. Many cells spontaneously fired action potentials at a rate proportional to the level of neuronal depolarization. The reversal potential for GABA-activated currents, assessed by cell-attached single channel recordings, was close to the resting membrane potential. All spontaneously firing neurons recorded in cell-attached mode or imaged with biphoton microscopy were inhibited by GABA. Spontaneous epileptiform activity in the form of recurrent population bursts was suppressed by glutamate receptor antagonists, the GABA(A) receptor agonist isoguvacine, and the positive allosteric GABA(A) modulator diazepam. Blockade of GABA(A) receptors aggravated spontaneous epileptiform activity. The NKCC1 antagonist bumetanide had little effect on epileptiform activity. SWS cortical neurons have a relatively depolarized resting membrane potential and spontaneously fire action potentials that may contribute to increased network excitability. In contrast to previous data depicting excitatory and proconvulsive actions of GABA in certain pediatric and adult epilepsies, GABA plays mainly an inhibitory and anticonvulsive role in SWS pediatric cortex.

  17. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2008-01-01

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate

  18. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2008-05-15

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate.

  19. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis.

    Science.gov (United States)

    Hasegawa, Momoko; Yamane, Daisuke; Funato, Kouichi; Yoshida, Atsushi; Sambongi, Yoshihiro

    2018-03-01

    Dates are commercially consumed as semi-dried fruit or processed into juice and puree for further food production. However, the date residue after juice and puree production is not used, although it appears to be nutrient enriched. Here, date residue was fermented by a lactic acid bacterium, Lactobacillus brevis, which has been generally recognized as safe. Through degradation of sodium glutamate added to the residue during the fermentation, γ-aminobutyric acid (GABA), which reduces neuronal excitability, was produced at the conversion rate of 80-90% from glutamate. In order to achieve this GABA production level, pretreatment of the date residue with carbohydrate-degrading enzymes, i.e., cellulase and pectinase, was necessary. All ingredients used for this GABA fermentation were known as being edible. These results provide us with a solution for the increasing commercial demand for GABA in food industry with the use of date residue that has been often discarded. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    Science.gov (United States)

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (Pheat-stressed dairy cows can improve their immune function and antioxidant activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gamma aminobutyric acid radioreceptor assay: a confirmatory quantitative assay for toxaphene in environmental and biological samples

    International Nuclear Information System (INIS)

    Saleh, M.A.; Blancato, J.N.

    1993-01-01

    Toxaphene is a complex mixture of polychlorinated monoterpenes, and was found to be acutely and chronically toxic to aquatic and wild life and posed a carcinogenic risk to humans before its ban in 1982. However, it is still found in the environment due to its relative persistence with an estimated half life time of about 10 years in soils. Toxaphenes neurotoxicity is attributed to a few isomers with a mode of action through binding to the chloride channel of the gamma-aminobutyric acid (GABA) receptor ionophore complex. [ 35 S] tertiary butylbicyclophosphorothionate (TBPS) with specific activity higher than 60 Ci/mmole has a high binding affinity to the same sites and is now commercially available and can be used to label the GABA receptor for the development of radioreceptor assay technique. The GABA receptor was prepared by a sequence of ultra centrifugation and dialysis of mammalian (rats, cows, catfish and goats) brain homogenates. The receptor is then labeled with [ 35 S] TBPS and the assay was conducted by measuring the displacement of radioactivity following incubation with the sample containing the analytes. The assay is fast, sensitive and requires very little or no sample preparation prior to the analysis. (Author)

  2. Role of sialic acid in synaptosomal transport of amino acid transmitters

    International Nuclear Information System (INIS)

    Zaleska, M.M.; Erecinska, M.

    1987-01-01

    Active, high-affinity, sodium-dependent uptake of [ 14 C]-aminobutyric acid and of the acidic amino acid D-[ 3 H]-aspartate was inhibited by pretreatment of synaptosomes with neuraminidase from Vibrio cholerae. Inhibition was of a noncompetitive type and was related to the amount of sialic acid released. The maximum accumulation ratios of both amino acids (intracellular [amino acid]/extracellular [amino acid]) remained largely unaltered. Treatment with neuraminidase affected neither the synaptosomal energy levels nor the concentration of internal potassium. It is suggested that the γ-aminobutyric acid and acidic amino acid transporters are glycosylated and that sialic acid is involved in the operation of the carrier proteins directly and not through modification of driving forces responsible for amino acid uptake

  3. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    NARCIS (Netherlands)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O.; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate

  4. In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches

    Directory of Open Access Journals (Sweden)

    Zhijun Liao

    2016-01-01

    Full Text Available Gamma-aminobutyric acid type-A receptors (GABAARs belong to multisubunit membrane spanning ligand-gated ion channels (LGICs which act as the principal mediators of rapid inhibitory synaptic transmission in the human brain. Therefore, the category prediction of GABAARs just from the protein amino acid sequence would be very helpful for the recognition and research of novel receptors. Based on the proteins’ physicochemical properties, amino acids composition and position, a GABAAR classifier was first constructed using a 188-dimensional (188D algorithm at 90% cd-hit identity and compared with pseudo-amino acid composition (PseAAC and ProtrWeb web-based algorithms for human GABAAR proteins. Then, four classifiers including gradient boosting decision tree (GBDT, random forest (RF, a library for support vector machine (libSVM, and k-nearest neighbor (k-NN were compared on the dataset at cd-hit 40% low identity. This work obtained the highest correctly classified rate at 96.8% and the highest specificity at 99.29%. But the values of sensitivity, accuracy, and Matthew’s correlation coefficient were a little lower than those of PseAAC and ProtrWeb; GBDT and libSVM can make a little better performance than RF and k-NN at the second dataset. In conclusion, a GABAAR classifier was successfully constructed using only the protein sequence information.

  5. A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study.

    Science.gov (United States)

    Calderón, Naima; Betancourt, Luis; Hernández, Luis; Rada, Pedro

    2017-03-06

    The ketogenic diet (KD) is acknowledged as an unconventional option in the treatment of epilepsy. Several lines of investigation point to a possible role of glutamate and gamma-aminobutyric acid (GABA) as main contributors in this protective effect. Other biomolecules could also be involved in the beneficial consequence of the KD, for example, the diamine agmatine has been suggested to block imidazole and glutamate NMDA receptor and serves as an endogenous anticonvulsant in different animal models of epilepsy. In the present report, we have used microdialysis coupled to capillary electrophoresis to monitor microdialysate levels of GABA, glutamate and agmatine in the hippocampus of rats submitted to a KD for 15days compared to rats on a normal rat chow diet. A significant increase in GABA and agmatine levels while no change in glutamate levels was observed. These results support the notion that the KD modifies different transmitters favoring inhibitory over excitatory neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Role of Ventral Tegmental Area Gamma-Aminobutyric Acid in Chronic Neuropathic Pain after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Ko, Moon Yi; Jang, Eun Young; Lee, June Yeon; Kim, Soo Phil; Whang, Sung Hun; Lee, Bong Hyo; Kim, Hee Young; Yang, Chae Ha; Cho, Hee Jung; Gwak, Young S

    2018-04-20

    Spinal cord injury (SCI) frequently results in chronic neuropathic pain (CNP). However, the understanding of brain neural circuits in CNP modulation is unclear. The present study examined the changes of ventral tegmental area (VTA) putative GABAergic and dopaminergic neuronal activity with CNP attenuation in rats. SCI was established by T10 clip compression injury (35 g, 1 min) in rats, and neuropathic pain behaviors, in vivo extracellular single-cell recording of putative VTA gamma-aminobutyric acid (GABA)/dopamine neurons, extracellular GABA level, glutamic acid decarboxylase (GAD), and vesicular GABA transporters (VGATs) were measured in the VTA, respectively. The results revealed that extracellular GABA level was significantly increased in the CNP group (50.5 ± 18.9 nM) compared to the sham control group (10.2 ± 1.7 nM). In addition, expression of GAD 65/67 , c-Fos, and VGAT exhibited significant increases in the SCI groups compared to the sham control group. With regard to neuropathic pain behaviors, spontaneous pain measured by ultrasound vocalizations (USVs) and evoked pain measured by paw withdrawal thresholds showed significant alteration, which was reversed by intravenous (i.v.) administration of morphine (0.5-5.0 mg/kg). With regard to in vivo electrophysiology, VTA putative GABAergic neuronal activity (13.6 ± 1.7 spikes/sec) and putative dopaminergic neuronal activity (2.4 ± 0.8 spikes/sec) were increased and decreased, respectively, in the SCI group compared to the sham control group. These neuronal activities were reversed by i.v. administration of morphine. The present study suggests that chronic increase of GABAergic neuronal activity suppresses dopaminergic neuronal activity in the VTA and is responsible for negative emotion and motivation for attenuation of SCI-induced CNP.

  7. Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia.

    Science.gov (United States)

    Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon

    2012-11-01

    In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Study on Processing Technology and Quality of Moringa oleifera leaves with y - Aminobutyric Acid

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2017-01-01

    Full Text Available In order to obtain the high level of γ-aminobutyric acid Moringa oleifera leaves, Use 7% sodium glutamate solution to soak the fresh Moringa oleifera leaves, study effect of different treatment times and three different drying methods( hot air drying, vacuum freeze drying, shadow drying on the formation of y-aminobutyric acid and quality (total flavonoids, soluble sugar, amino acids, polyphenols, colorof dried Moringa oleifera leaves. The results indicated that shadow-dried Moringa oleifera leaves had the hightest retention of γ-aminobutyric acid, but its browning degree were not preferable, soluble sugar was damaged gravely, and its vulnerable to weather conditions. Vacuum freeze dried Moringa oleifera leaves had the hightest retention of flavonoids, polyphenols and amino acids. The y-aminobutyric acid content of Vacuum freeze dried and hot air dried Moringa oleifera leaves had no much difference. Hot air dried Moringa oleifera leaves browning degree were preferable, it’s had an moderate content of soluble sugar and amino acids, the short drying time is characteristics of this drying method.with the treatment time increased, the content of γ-aminobutyric acid and amino acids content first increased and then decreased. Flavonoids and polyphenols content first decreased and then increased. Soluble sugar content decreased. In summary, after soaking with 7% sodium glutamate solution for 10h, then dried by hot air drying(drying temperature of 60°C, was the most suitable way for industrial production of the high level of γ-aminobutyric acid Moringa oleifera leaves.

  9. Analysis of subcomponents of the gamma-aminobutyric acid/benzodiazepine receptor macromolecular complex in mammalian central nervous system

    International Nuclear Information System (INIS)

    McCabe, R.T.

    1987-01-01

    Since the presence of endogenous gamma-aminobutyric acid (GABA) may affect benzodiazepine binding to tissue sections in autoradiographic studies, a protocol designed to check for this influence has been investigated. [ 3 H]Flunitrazepam (1 nM) was used to label benzodiazepine receptors for autoradiographic localization. Bicuculline was added to the incubation medium of an additional set of tissue sections to antagonize any potential effect of endogenous GABA. Binding in these sections was compared to that occurring in another set in which excess GABA was added to create further GABA enhancement. Binding was also compared to adjacent sections which were treated similarly but also preincubated in distilled-deionized water to burst the cells by osmotic shock and eliminate endogenous GABA, thereby preventing any effect on benzodiazepine binding. The results indicated that endogenous GABA is indeed present in the slide-mounted tissue sections and is affecting benzodiazepine receptor binding differentially in various regions of the brain depending on the density of GABAergic innervation. Scatchard analysis of saturation data demonstrated that the alteration in BZ binding due to GABA was a result of a change in the affinity rather than number of receptors present

  10. The association of plasma gamma-aminobutyric acid concentration with postoperative delirium in critically ill patients.

    Science.gov (United States)

    Yoshitaka, Shiho; Egi, Moritoki; Kanazawa, Tomoyuki; Toda, Yuichiro; Morita, Kiyoshi

    2014-12-01

    Delirium is a common complication in postoperative, critically ill patients. The mechanism of postoperative delirium is not well understood but many studies have shown significant associations between benzodiazepine use, alcohol withdrawal and cirrhosis, and an increased risk of delirium. We aimed to investigate a possible link with alterations of gamma-aminobutyric acid (GABA) activity. A prospective observational investigation of 40 patients > 20 years old who had undergone elective surgery with general anaesthesia and were expected to need postoperative intensive care for more than 48 hours. We assessed postoperative delirium using the confusion assessment method in the intensive care unit at 1 hour after the operation and on postoperative Day (POD) 1 and POD 2. We collected blood samples for measurement of plasma GABA concentrations before the operation and on POD 1 and 2. Postoperative delirium and perioperative plasma GABA concentrations in patients with and without delirium. Postoperative delirium occurred in 13 of the patients. Patients with delirium had significantly higher Acute Physiology and Chronic Health Evaluation II scores than patients without delirium. The mean plasma GABA concentration on POD 2 was significantly lower in patients with delirium than in those without delirium. After adjustment of relevant variables, plasma GABA concentration on POD 2 was independently associated with postoperative delirium. Plasma GABA level on POD 2 has a significant independent association with postoperative delirium.

  11. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation

    NARCIS (Netherlands)

    Ent, S. van der; Hulten, M.H.A. van; Pozo, Maria J.; Czechowski, Tomasz; Udvardi, Michael K.; Pieterse, C.M.J.; Ton, J.

    Pseudomonas fluorescens WCS417r bacteria and β-aminobutyric acid can induce disease resistance in Arabidopsis, which is based on priming of defence. In this study, we examined the differences and similarities of WCS417r- and β-aminobutyric acid-induced priming. Both WCS417r and β-aminobutyric acid

  12. The importance of glutamate, glycine, and γ-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    International Nuclear Information System (INIS)

    Fitsanakis, Vanessa A.; Aschner, Michael

    2005-01-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and γ-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb

  13. Effect of “Jian-Pi-Zhi-Dong Decoction” on Gamma-Aminobutyric Acid in a Mouse Model of Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2014-01-01

    Full Text Available The purpose of this study was to explore the positive effects of Jian-Pi-Zhi-Dong Decoction (JPZDD on Tourette syndrome (TS by investigating the expression of gamma-aminobutyric acid (GABA and its type A receptor (GABAAR in the striatum of a TS mice model. The model was induced by 3,3′-iminodipropionitrile (IDPN treatment; then mice were divided into 4 groups (n=22, each; control and IDPN groups were gavaged with saline and the remaining 2 groups were gavaged with tiapride and JPZDD. We recorded the stereotypic behaviors of TS mice and measured the content of GABA in striatum by HPLC and GABAAR expression by immunohistochemistry and real-time PCR. Our results showed that JPZDD inhibited the abnormal behaviors of TS model mice and decreased GABA levels and GABAAR protein and mRNA expression in the striatum of TS model mice. In brief, the mechanism by which JPZDD alleviates TS symptoms may be associated with GABAAR expression downregulation in striatum which may regulate GABA metabolism.

  14. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment

    Science.gov (United States)

    Hu, Hong; Bai, Xi; Shah, Assar Ali; Dai, Sifa; Wang, Like; Hua, Jinling; Che, Chuanyan; He, Shaojun; Wen, Aiyou; Jiang, Jinpeng

    2016-06-01

    The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased ( P muscle at 28, 35, and 42 days, while it increased ( P muscle, the Gln supplementation increased ( P muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.

  15. Study on Process Parameters of Extraction of γ-aminobutyric Acid Instant Moringa oleifera Powder

    Science.gov (United States)

    Tiaokun, Fu; Suhui, Zhang; Neng, Liu; Jihua, Li; Shaodan, Peng; Changqing, Guo; Wei, Zhou

    2017-12-01

    To preliminary optimize the extraction of γ-aminobutyric acid instant tea powder from Moringa oleifera leaves,taking γ-aminobutyric acid Moringa oleifera leaves as raw material and pure water as extraction solvent and GABA content as the main evaluation index,the effects of extraction temperature, ratio of liquid to material and extraction time on biochemical components and sensory qualities of Moringa oleifera leaves extractor was studied by using one-factor-at-a-time experiment.The results showed shat the optimal extraction conditions for γ-aminobutyric acid instant tea powder were extraction temperature of 60 °C, material-to-water ration of 1:10 and extraction time of 40 min.

  16. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    Science.gov (United States)

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  17. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    Science.gov (United States)

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current

  18. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    OpenAIRE

    Lin,Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxyl...

  19. Gamma-aminobutyric acid esters. 1. Synthesis, brain uptake, and pharmacological studies of aliphatic and steroid esters of gamma-aminobutyric acid

    International Nuclear Information System (INIS)

    Shashoua, V.E.; Jacob, J.N.; Ridge, R.; Campbell, A.; Baldessarini, R.J.

    1984-01-01

    Labeled and unlabeled aliphatic and steroid esters of gamma-amino[U- 14 C]butyric acid (GABA) were synthesized and tested for their capacity to penetrate the blood-brain barrier and for evidence of central neuropharmacological activity in rodents. The uptake of the labeled 9,12,15-octadecatrienyl (linolenyl), 3-cholesteryl, 1-butyl, and the 9-fluoro-11 beta,17-dihydroxy-16 alpha-methyl-3,20-dioxopregna -1,4-dien-21-yl (dexamethasone) esters of GABA into mouse brain increased 2-, 25-, 74-, and 81-fold over GABA, respectively. The cholesteryl ester of GABA depressed the general motor activity of mice and rats in a dose-dependent manner, whereas the 1-butyl, linolenyl, and dexamethasone esters were inactive by this test. Studies of the rates of hydrolysis, GABA receptor binding capacity, and octanol/water partition coefficients indicated that pharmacological activity of the esters after entry into the central nervous system (CNS) was dependent on their capacity to release GABA by enzymatic hydrolysis and their lipid solubility

  20. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research.

    Science.gov (United States)

    Tse, Maric T; Piantadosi, Patrick T; Floresco, Stan B

    2015-06-01

    Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative "GABA hypothesis" of schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Gamma-Aminobutyric Acid Concentration is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression

    Science.gov (United States)

    Yoon, Jong H.; Maddock, Richard J.; Rokem, Ariel; Silver, Michael A.; Minzenberg, Michael J.; Ragland, J. Daniel; Carter, Cameron S.

    2010-01-01

    The neural mechanisms underlying cognitive deficits in schizophrenia remain largely unknown. The gamma-aminobutyric acid (GABA) hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We employed magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an approximately 10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n=16), we found a highly significant positive correlation (r=0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r=-0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS. PMID:20220012

  2. Decreased Hepatocyte Growth Factor (HGF) and Gamma Aminobutyric Acid (GABA) in Individuals with Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Russo, Anthony J; Pietsch, Stefanie C

    2013-01-01

    There is support for the role of gamma aminobutyric acid (GABA) in the etiology of mood disorders. Recent research has shown that hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. This study was designed to determine and correlate plasma levels of HGF and GABA as well as symptom severity in individuals with obsessive-compulsive disorder (OCD). Plasma from 15 individuals with OCD (9 males, 6 females;, mean age 38.7 years) and 17 neurotypical controls (10 males, 7 females; mean age 35.2 years) was assessed for HGF, GABA, urokinase plasminogen activator (uPA), and urokinase plasminogen activator receptor (uPAR) concentration using enzyme-linked immunosorbest assays ELISAs. Symptom severity was assessed in these OCD individuals and compared with HGF and GABA concentrations. In this preliminary study, individuals with OCD had significantly decreased HGF levels, decreased plasma levels of GABA and decreased uPA. We found that both uPA and uPAR levels correlate with HGF. Both low uPA and low uPAR levels correlate with high symptom severity in individuals with OCD. Low GABA levels in OCD individuals also correlate with high symptom severity. These results demonstrate a preliminary association between HGF, GABA, uPA levels, and OCD and suggest that plasma GABA and uPA levels are related to symptom severity in individuals with OCD.

  3. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  4. A fluorescence-coupled assay for gamma aminobutyric acid (GABA reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Joseph E Ippolito

    Full Text Available Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA have been implicated in the pathogenesis of high grade neuroendocrine (NE neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1, was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  5. Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABA-B1-deficient mice

    DEFF Research Database (Denmark)

    Kaupmann, Klemens; Cryan, John F; Wellendorph, Petrine

    2003-01-01

    gamma-Hydroxybutyrate (GHB), a metabolite of gamma-aminobutyric acid (GABA), is proposed to function as a neurotransmitter or neuromodulator. gamma-Hydroxybutyrate and its prodrug, gamma-butyrolactone (GBL), recently received increased public attention as they emerged as popular drugs of abuse. T...

  6. Phenibut (β-Phenyl-γ-aminobutyric Acid) Dependence and Management of Withdrawal: Emerging Nootropics of Abuse.

    Science.gov (United States)

    Ahuja, Tania; Mgbako, Ofole; Katzman, Caroline; Grossman, Allison

    2018-01-01

    This case report describes the development of withdrawal from phenibut, a gamma-aminobutyric acid-receptor type B agonist. Although phenibut is not an FDA-approved medication, it is available through online retailers as a nootropic supplement. There are reports of dependence in patients that misuse phenibut. We report a case in which a patient experienced withdrawal symptoms from phenibut and was successfully treated with a baclofen taper. This case report highlights the development of phenibut use disorder with coingestion of alcohol and potential management for phenibut withdrawal. We believe clinicians must be aware of how phenibut dependence may present and how to manage the withdrawal syndrome.

  7. Phenibut (β-Phenyl-γ-aminobutyric Acid Dependence and Management of Withdrawal: Emerging Nootropics of Abuse

    Directory of Open Access Journals (Sweden)

    Tania Ahuja

    2018-01-01

    Full Text Available This case report describes the development of withdrawal from phenibut, a gamma-aminobutyric acid-receptor type B agonist. Although phenibut is not an FDA-approved medication, it is available through online retailers as a nootropic supplement. There are reports of dependence in patients that misuse phenibut. We report a case in which a patient experienced withdrawal symptoms from phenibut and was successfully treated with a baclofen taper. This case report highlights the development of phenibut use disorder with coingestion of alcohol and potential management for phenibut withdrawal. We believe clinicians must be aware of how phenibut dependence may present and how to manage the withdrawal syndrome.

  8. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis

    Science.gov (United States)

    D'Amelio, F.; Wu, L. C.; Fox, R. A.; Daunton, N. G.; Corcoran, M. L.; Polyakov, I.

    1998-01-01

    Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.

  9. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia.

    Science.gov (United States)

    Enomoto, Takeshi; Tse, Maric T; Floresco, Stan B

    2011-03-01

    Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. GABA(A) receptor- and GABA transporter polymorphisms and risk for essential tremor

    DEFF Research Database (Denmark)

    Thier, S; Kuhlenbäumer, G; Lorenz, D

    2011-01-01

    Background:  Clinical features and animal models of essential tremor (ET) suggest gamma-aminobutyric acid A receptor (GABA(A) R) subunits and GABA transporters as putative candidate genes. Methods:  A total of 503 ET cases and 818 controls were investigated for an association between polymorphisms...

  11. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats.

    Science.gov (United States)

    Cardoso, Nancy; Pandolfi, Matías; Lavalle, Justina; Carbone, Silvia; Ponzo, Osvaldo; Scacchi, Pablo; Reynoso, Roxana

    2011-12-01

    The aim of the present study was to investigate the effects of bisphenol A (BPA) on the neuroendocrine mechanism of control of the reproductive axis in adult male rats exposed to it during pre- and early postnatal periods. Wistar mated rats were treated with either 0.1% ethanol or BPA in their drinking water until their offspring were weaned at the age of 21 days. The estimated average dose of exposure to dams was approximately 2.5 mg/kg body weight per day of BPA. After 21 days, the pups were separated from the mother and sacrificed on 70 day of life. Gn-RH and gamma-aminobutyric acid (GABA) release from hypothalamic fragments was measured. LH, FSH, and testosterone concentrations were determined, and histological and morphometrical studies of testis were performed. Gn-RH release decreased significantly, while GABA serum levels were markedly increased by treatment. LH serum levels showed no changes, and FSH and testosterone levels decreased significantly. Histological studies showed abnormalities in the tubular organization of the germinal epithelium. The cytoarchitecture of germinal cells was apparently normal, and a reduction of the nuclear area of Leydig cells but not their number was observed. Taken all together, these results provide evidence of the effect caused by BPA on the adult male reproductive axis when exposed during pre- and postnatal period. Moreover, our findings suggest a probable GABA involvement in its effect at the hypothalamic level.

  12. The γ-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens.

    Science.gov (United States)

    Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan

    2012-07-10

    Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  13. gamma-Aminobutyric acid- and benzodiazepine-induced modulation of [35S]-t-butylbicyclophosphorothionate binding to cerebellar granule cells

    International Nuclear Information System (INIS)

    Gallo, V.; Wise, B.C.; Vaccarino, F.; Guidotti, A.

    1985-01-01

    t-Butylbicyclophosphorothionate (TBPS) is a bicyclophosphate derivative with potent picrotoxin-like convulsant activity that binds with high affinity and specificity to a Cl- channel-modulatory site of the gamma-aminobutyric acid (GABA)/benzodiazepine receptor complex. Using intact cerebellar granule cells maintained in primary culture, the authors have studied the modifications induced by GABA and diazepam on the ion channel-modulatory binding site labeled by [ 35 S]TBPS. At 25 degrees C, and in a modified Locke solution, the [ 35 S]TBPS specific binding, determined by displacing the radioligand with an excess (10(-4) M) of picrotoxin, was approximately 70% of the total radioactivity bound to the cells. [ 35 S]TBPS specific binding was saturable with a Kd of approximately 100 nM, a Bmax of approximately 440 fmol/mg of protein, and a Hill coefficient of 1.18. Neither cerebellar astrocytes maintained in culture for 2 weeks nor a neuroblastoma cell line (NB-2A) exhibited any specific [ 35 S]TBPS binding. Muscimol (0.3 to 5 microM) enhanced and bicuculline (0.1 to 5 microM) inhibited [ 35 S]TBPS specific binding to intact cerebellar granule cells. The effect of muscimol and bicuculline on [ 35 S]TBPS binding was noncompetitive. Muscimol (0.1 to 5 microM) reversed bicuculline inhibition in a dose-dependent fashion but failed to reverse picrotoxin-induced inhibition. [ 35 S]TBPS binding was also modulated by benzodiazepine receptor ligands. The binding was increased by diazepam and decreased by 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methylester. Muscimol (0.05 microM) failed to reverse bicuculline inhibition in the absence of diazepam, but it became effective in the presence of 0.1 to 1 microM diazepam

  14. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content

    OpenAIRE

    TIANSAWANG,Kasarin; LUANGPITUKSA,Pairoj; VARANYANOND,Warunee; HANSAWASDI,Chanida

    2016-01-01

    Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA) that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation) followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber con...

  15. Comparison of the density of gamma-aminobutyric acid in the ventromedial prefrontal cortex of patients with first-episode psychosis and healthy controls.

    Science.gov (United States)

    Yang, Zhilei; Zhu, Yajing; Song, Zhenhua; Mei, Li; Zhang, Jianye; Chen, Tianyi; Wang, Yingchan; Xu, Yifeng; Jiang, Kaida; Li, Yao; Liu, Dengtang

    2015-12-25

    Abnormality in the concentration and functioning of gamma-aminobutyric acid (γ-aminobutyric acid, GABA) in the brain is not only an important hypothetical link to the cause of schizophrenia but it may also be correlated with the cognitive decline and negative symptoms of schizophrenia. Studies utilizing high field magnetic resonance spectroscopy (MRS) report abnormal density of GABA in the ventromedial prefrontal cortex (vmPFC) of patients with chronic schizophrenia, but these results may be confounded by study participants' prior use of antipsychotic medications. Compare the density of GABA in the vmPFC of patients with first-episode psychosis to that in healthy controls and assess the relationship of GABA density in the vmPFC to the severity of psychotic symptoms. Single-voxel (1)H-MRS was used to assess the concentration of GABA and other metabolites in the vmPFC of 22 patients with first-episode psychosis (10 with schizophrenia and 12 with schizophreniform disorder) and 23 healthy controls. Thirteen of the 22 patients were drug-naïve and 9 had used antipsychotic medication for less than 3 days. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate the severity of psychotic symptoms in the patient group. The mean (sd) GABA density in the vmPFC was significantly higher in patients than in controls (2.28 [0.54] v. 1.93 [0.32] mM, t=2.62, p=0.012). The densities of other metabolites - including N-acetylaspartic acid (NAA), glutamic acid (GLU), and glutamine (GLN) - were not significantly different between patients and controls. Among the patients, GABA density in the vmPFC was not significantly correlated with PANSS total score or with any of the three PANSS subscale scores for positive symptoms, negative symptoms, and general psychopathology. GABA concentration was not associated with the duration of illness, but it was significantly correlated with patient age (r=0.47, p=0.026). Elevation of GABA density in the vmPFC of patients with first

  16. Ca2+ and aminoguanidine on γ-aminobutyric acid accumulation in germinating soybean under hypoxia–NaCl stress

    Directory of Open Access Journals (Sweden)

    Runqiang Yang

    2015-06-01

    Full Text Available Gamma-aminobutyric acid (GABA, a nonproteinous amino acid with some benefits on human health, is synthesized by GABA-shunt and the polyamine degradation pathway in plants. The regulation of Ca2+ and aminoguanidine on GABA accumulation in germinating soybean (Glycine max L. under hypoxia-NaCl stress was investigated in this study. Exogenous Ca2+ increased GABA content significantly by enhancing glutamate decarboxylase gene expression and its activity. Addition of ethylene glycol tetra-acetic acid into the culture solution reduced GABA content greatly due to the inhibition of glutamate decarboxylase activity. Aminoguanidine reduced over 85% of diamine oxidase activity, and 33.28% and 36.35% of GABA content in cotyledon and embryo, respectively. Under hypoxia–NaCl stress, the polyamine degradation pathway contributed 31.61–39.43% of the GABA formation in germinating soybean.

  17. Channel opening of gamma-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses.

    Science.gov (United States)

    Cash, D J; Subbarao, K

    1987-12-01

    The function of gamma-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36Cl- isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36Cl- influx was completed in three phases of ca. 3% (t 1/2 = 0.6 s), 56% (t 1/2 = 82 s), and 41% (t 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36Cl- influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles with initial first-order rate constants of 9.5 s-1 and 2.3 s-1 and desensitizing with first-order rate constants of 21 s-1 and 1.4 s-1, respectively, at saturation. The half-response concentrations were similar for both receptors, 150 microM and 114 microM GABA for desensitization and 105 microM and 82 microM for chloride exchange, for the faster and slower desensitizing receptors, respectively. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of "low-affinity" to "high-affinity" GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. In Vivo Dentate Nucleus Gamma-aminobutyric Acid Concentration in Essential Tremor vs. Controls.

    Science.gov (United States)

    Louis, Elan D; Hernandez, Nora; Dyke, Jonathan P; Ma, Ruoyun E; Dydak, Ulrike

    2018-04-01

    Despite its high prevalence, essential tremor (ET) is among the most poorly understood neurological diseases. The presence and extent of Purkinje cell (PC) loss in ET is the subject of controversy. PCs are a major storehouse of central nervous system gamma-aminobutyric acid (GABA), releasing GABA at the level of the dentate nucleus. It is therefore conceivable that cerebellar dentate nucleus GABA concentration could be an in vivo marker of PC number. We used in vivo 1 H magnetic resonance spectroscopy (MRS) to quantify GABA concentrations in two cerebellar volumes of interest, left and right, which included the dentate nucleus, comparing 45 ET cases to 35 age-matched controls. 1 H MRS was performed using a 3.0-T Siemens Tim Trio scanner. The MEGA-PRESS J-editing sequence was used for GABA detection in two cerebellar volumes of interest (left and right) that included the dentate nucleus. The two groups did not differ with respect to our primary outcome of GABA concentration (given in institutional units). For the right dentate nucleus, [GABA] in ET cases = 2.01 ± 0.45 and [GABA] in controls = 1.86 ± 0.53, p = 0.17. For the left dentate nucleus, [GABA] in ET cases = 1.68 ± 0.49 and [GABA] controls = 1.80 ± 0.53, p = 0.33. The controls had similar dentate nucleus [GABA] in the right vs. left dentate nucleus (p = 0.52); however, in ET cases, the value on the right was considerably higher than that on the left (p = 0.001). We did not detect a reduction in dentate nucleus GABA concentration in ET cases vs. One interpretation of the finding is that it does not support the existence of PC loss in ET; however, an alternative interpretation is the observed pattern could be due to the effects of terminal sprouting in ET (i.e., collateral sprouting from surviving PCs making up for the loss of GABA-ergic terminals from PC degeneration). Further research is needed.

  19. Time-course study and effects of drying method on concentrations of gamma-aminobutyric acid, flavonoids, anthocyanin, and 2''-hydroxynicotianamine in leaves of buckwheats.

    Science.gov (United States)

    Suzuki, Tatsuro; Watanabe, Masami; Iki, Makiko; Aoyagi, Yasuo; Kim, Sun-Ju; Mukasa, Yuji; Yokota, Satoshi; Takigawa, Shigenobu; Hashimoto, Naoto; Noda, Takahiro; Yamauchi, Hiroaki; Matsuura-Endo, Chie

    2009-01-14

    Concentrations of gamma-aminobutyric acid (GABA), rutin, minor flavonoids (such as orientin), anthocyanin, and 2''-hydroxynicotianamine (2HN) were quantified in the leaves of common and tartary buckwheat (Fagopyrum esculentum Moench and Fagopyrum tataricum Gaertn., respectively), at 14, 28, and 42 days after sowing (DAS). GABA and rutin concentrations peaked at 42 DAS, whereas anthocyain, 2HN, and minor flavonoid concentrations declined with the age of the plants. However, at 42 DAS, anthocyanin concentrations in the leaves of tartary buckwheat Hokkai T10 leaves were at least 10-fold greater than in the other buckwheats tested. In addition, the effects on target compound concentrations and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of three different drying methods (20 h at 40 degrees C, 7 h at 70 degrees C, or lyophilization) were investigated. In general, the drying method had no significant effect on the parameters tested. These results indicate that, in terms of GABA, rutin, and anthocyanin concentrations, leaf powder from 42 day old Hokkai T10 has the potential to be a useful food ingredient, such as Ao-jiru juice.

  20. CHANGES IN SELECTIVITY OF GAMMA-AMINOBUTYRIC ACID FORMATION EFFECTED BY FERMENTATION CONDITIONS AND MICROORGANISMS RESOURCES

    Directory of Open Access Journals (Sweden)

    Kamila Kovalovská

    2011-10-01

    Full Text Available In this study we observe the effect of fermentation conditions and resources of microorganisms for production of γ-aminobutyric acid (GABA. The content of produced GABA depends on various conditions such as the amount of precursor, an addition of salt, enzyme and the effect of pH. The highest selectivity of GABA (74.0 % from the precursor (L-monosodium glutamate has been determinate in the follow conditions: in the presence of pre-cultured microorganisms from Encián cheese in amount 1.66 % (w/v the source of microorganisms/volume of the fermentation mixture, after the addition of 0.028 % (w/v of CaCl2/volume of the fermentation mixture, 100 μM of pyridoxal-5-phosphate (P-5-P and the GABA precursor concentration in the fermentation mixture 2.6 mg ml-1 in an atmosphere of gas nitrogen. Pure cultures of lactic acid bacteria increased the selectivity of GABA by an average of 20 % compared with bacteria from the path of Encián.

  1. γ-Aminobutyric acid (GABA) signalling in plants.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Gilliham, Matthew; Xu, Bo

    2017-05-01

    The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABA A receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.

  2. Highly Atom Economic Synthesis of d?2?Aminobutyric Acid through an In?Vitro Tri?enzymatic Catalytic System

    OpenAIRE

    Chen, Xi; Cui, Yunfeng; Cheng, Xinkuan; Feng, Jinhui; Wu, Qiaqing; Zhu, Dunming

    2017-01-01

    Abstract d?2?Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by?product is a pressing demand. A tri?enzymatic catalytic system, which is composed of l?threonine ammonia lyase (l?TAL), d?amino acid dehydrogenase (d?AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d?2?aminobutyric acid with high optical purity. I...

  3. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA production

    Directory of Open Access Journals (Sweden)

    Qian Lin

    2013-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 µM of pyridoxal phosphate (PLP, produced 187 mM of GABA.

  4. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    Science.gov (United States)

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  5. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence.

    Science.gov (United States)

    Bhattacharyya, Pallab K; Phillips, Micheal D; Stone, Lael A; Lowe, Mark J

    2011-04-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm(3) voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Porters and neurotransmitter transporters.

    Science.gov (United States)

    Nelson, N; Lill, H

    1994-11-01

    Uptake of neurotransmitters involves multiple transporters acting in different brain locations under different physiological conditions. The vesicular transporters are driven by a proton-motive force generated by a V-ATPase and their substrates are taken up via proton/substrate exchange. The plasma membrane transporters are driven by an electrochemical gradient of sodium generated by a Na+/K(+)-ATPase. Two distinct families of transporters were identified in this group. One cotransports sodium with glutamate and other amino acids and requires additionally an outwardly directed potassium gradient. The second cotransports sodium, chloride and a variety of neurotransmitters, including gamma-aminobutyric acid (GABA), glycine and monoamines. Genes and cDNA encoding several members of the latter family have been cloned and studied in detail. The structure and function as well as the evolutionary relationships among these neurotransmitter transporters are discussed.

  7. The effect of amino acid backbone length on molecular packing: crystalline tartrates of glycine, β-alanine, γ-aminobutyric acid (GABA) and DL-α-aminobutyric acid (AABA).

    Science.gov (United States)

    Losev, Evgeniy; Boldyreva, Elena

    2018-02-01

    We report a novel 1:1 cocrystal of β-alanine with DL-tartaric acid, C 3 H 7 NO 2 ·C 4 H 6 O 6 , (II), and three new molecular salts of DL-tartaric acid with β-alanine {3-azaniumylpropanoic acid-3-azaniumylpropanoate DL-tartaric acid-DL-tartrate, [H(C 3 H 7 NO 2 ) 2 ] + ·[H(C 4 H 5 O 6 ) 2 ] - , (III)}, γ-aminobutyric acid [3-carboxypropanaminium DL-tartrate, C 4 H 10 NO 2 + ·C 4 H 5 O 6 - , (IV)] and DL-α-aminobutyric acid {DL-2-azaniumylbutanoic acid-DL-2-azaniumylbutanoate DL-tartaric acid-DL-tartrate, [H(C 4 H 9 NO 2 ) 2 ] + ·[H(C 4 H 5 O 6 ) 2 ] - , (V)}. The crystal structures of binary crystals of DL-tartaric acid with glycine, (I), β-alanine, (II) and (III), GABA, (IV), and DL-AABA, (V), have similar molecular packing and crystallographic motifs. The shortest amino acid (i.e. glycine) forms a cocrystal, (I), with DL-tartaric acid, whereas the larger amino acids form molecular salts, viz. (IV) and (V). β-Alanine is the only amino acid capable of forming both a cocrystal [i.e. (II)] and a molecular salt [i.e. (III)] with DL-tartaric acid. The cocrystals of glycine and β-alanine with DL-tartaric acid, i.e. (I) and (II), respectively, contain chains of amino acid zwitterions, similar to the structure of pure glycine. In the structures of the molecular salts of amino acids, the amino acid cations form isolated dimers [of β-alanine in (III), GABA in (IV) and DL-AABA in (V)], which are linked by strong O-H...O hydrogen bonds. Moreover, the three crystal structures comprise different types of dimeric cations, i.e. (A...A) + in (III) and (V), and A + ...A + in (IV). Molecular salts (IV) and (V) are the first examples of molecular salts of GABA and DL-AABA that contain dimers of amino acid cations. The geometry of each investigated amino acid (except DL-AABA) correlates with the melting point of its mixed crystal.

  8. Effects of γ-Aminobutyric acid transporter 1 inhibition by tiagabine on brain glutamate and γ-Aminobutyric acid metabolism in the anesthetized rat In vivo.

    Science.gov (United States)

    Patel, Anant B; de Graaf, Robin A; Rothman, Douglas L; Behar, Kevin L

    2015-07-01

    γ-Aminobutyric acid (GABA) clearance from the extracellular space after release from neurons involves reuptake into terminals and astrocytes through GABA transporters (GATs). The relative flows through these two pathways for GABA released from neurons remains unclear. This study determines the effect of tiagabine, a selective inhibitor of neuronal GAT-1, on the rates of glutamate (Glu) and GABA metabolism and GABA resynthesis via the GABA-glutamine (Gln) cycle. Halothane-anesthetized rats were administered tiagabine (30 mg/kg, i.p.) and 45 min later received an intravenous infusion of either [1,6-(13)C2]glucose (in vivo) or [2-(13)C]acetate (ex vivo). Nontreated rats served as controls. Metabolites and (13)C enrichments were measured with (1)H-[(13)C]-nuclear magnetic resonance spectroscopy and referenced to their corresponding endpoint values measured in extracts from in situ frozen brain. Metabolic flux estimates of GABAergic and glutamatergic neurons were determined by fitting a metabolic model to the (13)C turnover data measured in vivo during [1,6-(13)C2]glucose infusion. Tiagabine-treated rats were indistinguishable (P > 0.05) from controls in tissue amino acid levels and in (13)C enrichments from [2-(13)C]acetate. Tiagabine reduced average rates of glucose oxidation and neurotransmitter cycling in both glutamatergic neurons (↓18%, CMR(glc(ox)Glu): control, 0.27 ± 0.05 vs. tiagabine, 0.22 ± 0.04 µmol/g/min; ↓11%, V(cyc(Glu-Gln)): control 0.23 ± 0.05 vs. tiagabine 0.21 ± 0.04 µmol/g/min and GABAergic neurons (↓18-25%, CMR(glc(ox)GABA): control 0.09 ± 0.02 vs. tiagabine 0.07 ± 0.03 µmol/g/min; V(cyc(GABA-Gln)): control 0.08 ± 0.02 vs. tiagabine 0.07 ± 0.03 µmol/g/min), but the changes in glutamatergic and GABAergic fluxes were not significant (P > 0.10). The results suggest that any reduction in GABA metabolism by tiagabine might be an indirect response to reduced glutamatergic drive rather than direct compensatory effects. © 2015 Wiley

  9. Failure of gamma-aminobutyrate acid-beta agonist baclofen to improve balance, gait, and postural control after vestibular schwannoma resection.

    Science.gov (United States)

    De Valck, Claudia F J; Vereeck, Luc; Wuyts, Floris L; Van de Heyning, Paul H

    2009-04-01

    Incomplete postural control often occurs after vestibular schwannoma (VS) surgery. Customized vestibular rehabilitation in man improves and speeds up this process. Animal experiments have shown an improved and faster vestibular compensation after administration of the gamma-aminobutyrate acid (GABA)-beta agonist baclofen. To examine whether medical treatment with baclofen provides an improvement of the compensation process after VS surgery. A time-series study with historical control. Tertiary referral center. Thirteen patients who underwent VS resection were included and compared with a matched group of patients. In addition to an individualized vestibular rehabilitation protocol, the study group received medical treatment with 30 mg baclofen (a GABA-beta agonist) daily during the first 6 weeks after surgery. Clinical gait and balance tests (Romberg maneuver, standing on foam, tandem Romberg, single-leg stance, Timed Up & Go test, tandem gait, Dynamic Gait Index) and Dizziness Handicap Inventory. Follow-up until 24 weeks after surgery. When examining the postoperative test results, the group treated with baclofen did not perform better when compared with the matched (historical control) group. Repeated-measures analysis of variance revealed no significant group effect, but a significant time effect for almost all balance tests during the acute recovery period was found. An interaction effect between time and intervention was seen concerning single-leg stance and Dizziness Handicap Inventory scores for the acute recovery period. Medical therapy with baclofen did not seem to be beneficial in the process of central vestibular compensation.

  10. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    DEFF Research Database (Denmark)

    Carvill, Gemma L; McMahon, Jacinta M; Schneider, Amy

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutatio...

  11. Theoretical studies on the inactivation mechanism of γ-aminobutyric acid aminotransferase.

    Science.gov (United States)

    Durak, A T; Gökcan, H; Konuklar, F A S

    2011-07-21

    The inactivation mechanism of γ-aminobutyric acid aminotransferase (GABA-AT) in the presence of γ-vinyl-aminobutyric acid, an anti-epilepsy drug, has been studied by means of theoretical calculations. Density functional theory methods have been applied to compare the three experimentally proposed inactivation mechanisms (Silverman et al., J. Biol. Chem., 2004, 279, 363). All the calculations were performed at the B3LYP/6-31+G(d,p) level of theory. Single point solvent calculations were carried out in water, by means of an integral equation formalism-polarizable continuum model (IEFPCM) at the B3LYP/6-31+G(d,p) level of theory. The present calculations provide an insight into the mechanistic preferences of the inactivation reaction of GABA-AT. The results also allow us to elucidate the key factors behind the mechanistic preferences. The computations also confirm the importance of explicit water molecules around the reacting center in the proton transfer steps.

  12. Glutamate decarboxylase and. gamma. -aminobutyric acid transaminase activity in brain structures during action of high concentrated sulfide gas on a background of hypo- and hypercalcemia

    Energy Technology Data Exchange (ETDEWEB)

    Kadyrov, G.K.; Aliyev, A.M.

    Activity of the following enzymes was studied on the background of hypo- and hypercalcemia and exposure to high concentration of sulfide gas: glutamate decarboxylase (GDC) and {gamma}-aminobutyric acid transaminase (GABA-T). These enzymes regulate metabolism of GABA. The results showed that a 3.5 hr exposure to sulfide gas at a concentration of 0.3 mg/1 led to significantly increased activity of GDC in cerebral hemispheres, cerebellum and in brain stem. Activity of GABA-T dropped correspondingly. On the background of hypercalcemia induced by im. injection of 10% calcium gluconate (0.6 m1/200 g body weight of experimental rats) the negative effect caused by the exposure to sulfide gas was diminished. Under conditions of hypocalcemia (im. injection of 10 mg/200 g body weight of sodium oxalate), exposure to sulfide gas led to a significantly decreased activity of GDC and GABA-T in the hemispheres and in the brain stem, but in the cerebellum the activity of GDC increased sharply while that of GABA-T decreased correspondingly. 8 refs.

  13. Effects of gamma-aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia.

    Science.gov (United States)

    Menzies, Lara; Ooi, Cinly; Kamath, Shri; Suckling, John; McKenna, Peter; Fletcher, Paul; Bullmore, Ed; Stephenson, Caroline

    2007-02-01

    Cognitive impairment causes morbidity in schizophrenia and could be due to abnormalities of cortical interneurons using the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To test the predictions that cognitive and brain functional responses to GABA-modulating drugs are correlated and abnormal in schizophrenia. Pharmacological functional magnetic resonance imaging study of 2 groups, each undergoing scanning 3 times, using an N-back working memory task, after placebo, lorazepam, or flumazenil administration. Eleven patients with chronic schizophrenia were recruited from a rehabilitation service, and 11 healthy volunteers matched for age, sex, and premorbid IQ were recruited from the local community. Intervention Participants received 2 mg of oral lorazepam, a 0.9-mg intravenous flumazenil bolus followed by a flumazenil infusion of 0.0102 mg/min, or oral and intravenous placebo. Working memory performance was summarized by the target discrimination index at several levels of difficulty. Increasing (or decreasing) brain functional activation in response to increasing task difficulty was summarized by the positive (or negative) load response. Lorazepam impaired performance and flumazenil enhanced it; these cognitive effects were more salient in schizophrenic patients. Functional magnetic resonance imaging demonstrated positive load response in a frontoparietal system and negative load response in the temporal and posterior cingulate regions; activation of the frontoparietal cortex was positively correlated with deactivation of the temporocingulate cortex. After placebo administration, schizophrenic patients had abnormally attenuated activation of the frontoparietal cortex and deactivation of the temporocingulate cortex; this pattern was mimicked in healthy volunteers and exacerbated in schizophrenic patients by lorazepam. However, in schizophrenic patients, flumazenil enhanced deactivation of the temporocingulate and activation of the anterior cingulate

  14. An open-label tolerability study of BL-1020 antipsychotic: a novel gamma aminobutyric acid ester of perphenazine.

    Science.gov (United States)

    Anand, Ravi; Geffen, Yona; Vasile, Daniel; Dan, Irina

    2010-01-01

    BL-1020, a novel gamma aminobutyric acid (GABA) ester of perphenazine, is a new oral antipsychotic with a strong affinity for dopamine and serotonin receptors. Unlike first- and second-generation antipsychotics, it has agonist activity at GABA(A). This is the first study to examine tolerability and safety of BL-1020 in schizophrenia. This was a phase-II, open-label, multicenter, 6-week study treating patients (n = 36) with chronic schizophrenia. Dosing started at 20 mg/d and increased over 7 days to 40 mg/d. Weekly assessments were conducted. All but 1 patient was titrated to 30 mg/d at day 4; on day 7, 30 were titrated to 40 mg/d. Four patients discontinued the study prematurely. There was no clinically relevant increase in vital signs, sedation, dizziness, or other central nervous system effects or electrocardiogram or laboratory abnormalities and a small increase in weight. Ten patients experienced extrapyramidal symptoms (EPS) requiring treatment with an anticholinergic; 4 patients were unable to reach maximum dose because of EPS. Extrapyramidal Symptom Rating Scale did not indicate clinically significant changes in EPS. The most common adverse event was insomnia (6 patients); other frequent adverse effects (all n = 3) were extrapyramidal disorder, headache, parkinsonism, tremor, and hyperprolactinemia. There was improvement on Positive and Negative Syndrome Scale and Clinical Global Impression of Change with 22 patients showing at least 20% decrease by end point on Positive and Negative Syndrome Scale and 31 patients showing at least minimal improvement on Clinical Global Impression of Change. These data suggest that 20 to 40 mg/d of BL-1020 is associated with clinically relevant improvement of psychosis with no worsening of EPS and support further testing in randomized controlled trials.

  15. Design and mechanism of tetrahydrothiophene-based γ-aminobutyric acid aminotransferase inactivators.

    Science.gov (United States)

    Le, Hoang V; Hawker, Dustin D; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-04-08

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O═C interaction with Glu-270, thereby inactivating the enzyme.

  16. Optimization of culture conditions for gamma-aminobutyric acid production in fermented adzuki bean milk

    Directory of Open Access Journals (Sweden)

    Hung Yi Song

    2018-01-01

    Full Text Available γ-Aminobutyric acid (GABA, a nonprotein amino acid, is widely distributed in nature and fulfills several physiological functions. In this study, various lactic acid strains commonly used to produce fermented milk products were inoculated into adzuki bean milk for producing GABA. The high GABA producing strain was selected in further experiment to improve the GABA production utilizing culture medium optimization. The results demonstrated that adzuki bean milk inoculated with Lactobacillus rhamnosus GG increased GABA content from 0.05 mg/mL to 0.44 mg/mL after 36 hours of fermentation, which showed the greatest elevation in this study. Furthermore, the optimal cultural condition to adzuki bean milk inoculated with L. rhamnosus GG to improve the GABA content was performed using response surface methodology. The results showed that GABA content was dependent on the addition of galactose, monosodium glutamate, and pyridoxine with which the increasing ratios of GABA were 23–38%, 24–68%, and 8–36%, respectively. The optimal culture condition for GABA production of adzuki bean milk was found at the content of 1.44% galactose, 2.27% monosodium glutamate, and 0.20% pyridoxine. Under the optimal cultural condition, the amount of GABA produced in the fermented adzuki bean milk was 1.12 mg/mL, which was 22.4-fold higher than that of the unfermented adzuki bean milk (0.05 mg/100 mL. The results suggested that the optimized cultural condition of adzuki bean milk inoculated with L. rhamnosus GG can increase GABA content for consumers as a daily supplement as suggested.

  17. A functional assay to measure postsynaptic gamma-aminobutyric acidB responses in cultured spinal cord neurons: Heterologous regulation of the same K+ channel

    Energy Technology Data Exchange (ETDEWEB)

    Kamatchi, G.L.; Ticku, M.K. (Univ. of Texas Health Science Center, San Antonio (USA))

    1991-02-01

    The stimulation of postsynaptic gamma-aminobutyric acid (GABA)B receptors leads to slow inhibitory postsynaptic potentials due to the influx of K(+)-ions. This was studied biochemically, in vitro in mammalian cultured spinal cord neurons by using 86Rb as a substitute for K+. (-)-Baclofen, a GABAB receptor agonist, produced a concentration-dependent increase in the 86Rb-influx. This effect was stereospecific and blocked by GABAB receptor antagonists like CGP 35 348 (3-aminopropyl-diethoxymethyl-phosphonic acid) and phaclofen. Apart from the GABAB receptors, both adenosine via adenosine1 receptors and 5-hydroxytryptamine (5-HT) via 5-HT1 alpha agonists also increased the 86Rb-influx. These agonists failed to show any additivity between them when they were combined in their maximal concentration. In addition, their effect was antagonized specifically by their respective antagonists without influencing the others. These findings suggest the presence of GABAB, adenosine1 and 5-HT1 alpha receptors in the cultured spinal cord neurons, which exhibit a heterologous regulation of the same K(+)-channel. The effect of these agonists were antagonized by phorbol 12,13-didecanoate, an activator of protein kinase C, and pretreatment with pertussis toxin. This suggests that these agonists by acting on their own receptors converge on the same K(+)-channel through the Gi/Go proteins. In summary, we have developed a biochemical functional assay for studying and characterizing GABAB synaptic pharmacology in vitro, using spinal cord neurons.

  18. Relationship of executive functioning deficits to N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) in youth with bipolar disorder.

    Science.gov (United States)

    Huber, Rebekah S; Kondo, Douglas G; Shi, Xian-Feng; Prescot, Andrew P; Clark, Elaine; Renshaw, Perry F; Yurgelun-Todd, Deborah A

    2018-01-01

    Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy ( 1 H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1 H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1 H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p NAA and GABA levels increased. Small sample size and lack of control for medications. These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. cAMP and forskolin decrease γ-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Heuschneider, G.; Schwartz, R.D.

    1989-01-01

    The effects of the cyclic nucleotide cAMP on γ-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N 6 , O 2' -dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36 Cl - uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the γ-aminobutyric acid-gated Cl - channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36 Cl - uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl - channel directly. The data suggest that γ-aminobutyric acid (GABA A ) receptor function in brain can be regulated by cAMP-dependent phosphorylation

  20. Affective and cognitive effects of global deletion of alpha3-containing gamma-aminobutyric acid-A receptors.

    Science.gov (United States)

    Fiorelli, Roberto; Rudolph, Uwe; Straub, Carolin J; Feldon, Joram; Yee, Benjamin K

    2008-09-01

    Gamma-aminobutyric acid (GABA)A receptors characterized by the presence of the alpha3 subunit are the major GABAA receptor subtype expressed in brain stem monoaminergic nuclei. These alpha3-GABAA receptors are therefore in a unique position to regulate monoaminergic functions. To characterize the functional properties of alpha3-GABAA receptors, we present a preliminary assessment of the expression of affective and cognitive behaviour in male mice with a targeted deletion of the Gabra3 gene encoding the alpha3 subunit [alpha3 knockout (KO) mice] on a C57BL/6Jx129X1/SvJ F1 hybrid genetic background. The alpha3 KO mice did not exhibit any gross change of anxiety-like behaviour or spontaneous locomotor behaviour. In the Porsolt forced swim test for potential antidepressant activity, alpha3 KO mice exhibited reduced floating and enhanced swimming behaviour relative to wild-type controls. Performance on a two-choice sucrose preference test, however, revealed no evidence for an increase in sucrose preference in the alpha3 KO mice that would have substantiated a potential phenotype for depression-related behaviour. In contrast, a suggestion of an enhanced negative contrast effect was revealed in a one-bottle sucrose consumption test across different sucrose concentrations. These affective phenotypes were accompanied by alterations in the balance between conditioned responding to the discrete conditioned stimulus and to the context, and a suggestion of faster extinction, in the Pavlovian conditioned freezing paradigm. Spatial learning in the water maze reference memory test, however, was largely unchanged in the alpha3 KO mice, except for a trend of preservation during reversal learning. The novel phenotypes following global deletion of the GABAA receptor alpha3 subunit identified here provided relevant insights, in addition to our earlier study, into the potential behavioural relevance of this specific receptor subtypes in the modulation of both affective and cognitive

  1. Potentiation of gamma aminobutyric acid receptors (GABAAR by Ethanol: How are inhibitory receptors affected?

    Directory of Open Access Journals (Sweden)

    Benjamin eFörstera

    2016-05-01

    Full Text Available In recent years there has been an increase in the understanding of ethanol actions on the type A -aminobutyric acid chloride channel (GABAAR, a member of the pentameric ligand gated ion channels (pLGICs. However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR, another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.

  2. Study on flavour volatiles of γ-aminobutyric acid (GABA) green tea ...

    African Journals Online (AJOL)

    The volatile components of γ-aminobutyric acid (GABA) tea produced by two different kinds of technological process separately namely: vacuum and water immersion were studied. It was shown by the sensory evaluation that the color of the soup and the extracted leaves of GABA tea were similar to that of the oolong tea, ...

  3. Effects of electroacupuncture on the levels of retinal gamma-aminobutyric acid and its receptors in a guinea pig model of lens-induced myopia.

    Science.gov (United States)

    Sha, F; Ye, X; Zhao, W; Xu, C-L; Wang, L; Ding, M-H; Bi, A-L; Wu, J-F; Jiang, W-J; Guo, D-D; Guo, J-G; Bi, H-S

    2015-02-26

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter of the retina and affects myopic development. Electroacupuncture (EA) is widely utilized to treat myopia in clinical settings. However, there are few reports on whether EA affects the level of retinal GABA during myopic development. To study this issue, in the present study, we explored the changes of retinal GABA content and the expression of its receptor subtypes, and the effects of EA stimulation on them in a guinea pig model with lens-induced myopia (LIM). Our results showed that the content of GABA and the expression of GABAA and GABAC receptors of retina were up-regulated during the development of myopia, and this up-regulation was inhibited by applying EA to Hegu (LI4) and Taiyang (EX-HN5) acupoints. Moreover, these effects of EA show a positional specificity. While applying EA at a sham acupoint, no apparent change of myopic retinal GABA and its receptor subtypes was observed. Taken together, our findings suggest that LIM is effective to up-regulate the level of retinal GABA, GABAA and GABAC receptors in guinea pigs and the effect may be inhibited by EA stimulation at LI4 and EX-HN5 acupoints. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives.

    Science.gov (United States)

    Fee, Corey; Banasr, Mounira; Sibille, Etienne

    2017-10-15

    The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA (. gamma. -aminobutyric acid) antagonists bicycloorthocarboxylates and endosulfan

    Energy Technology Data Exchange (ETDEWEB)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie (Shimane Univ. (Japan)); Matsumura, Fumio (Univ. of California, Davis (USA))

    1990-05-01

    To study structural requirements for picrotoxinin-type GABA ({gamma}-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo(7.2.1.0{sup 2,8})dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing ({sup 35}S)tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C{sub 3}-C{sub 5} straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist ({sup 35}S)TBPS to housefly head membranes by 29-53% at 10 {mu}M. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent.

  6. Alterations of neurotransmitter norepinephrine and gamma-aminobutyric acid correlate with murine behavioral perturbations related to bisphenol A exposure.

    Science.gov (United States)

    Ogi, Hiroshi; Itoh, Kyoko; Ikegaya, Hiroshi; Fushiki, Shinji

    2015-09-01

    Humans are commonly exposed to endocrine-disrupting chemical bisphenol A (BPA), giving rise to concern over the psychobehavioral effects of BPA. The aim of this study was to investigate the effects of prenatal and lactational BPA exposure on neurotransmitters, including norepinephrine (NE), gamma-aminobutyric acid (GABA) and glutamate (Glu), and to assess the association with behavioral phenotypes. C57BL/6J mice were orally administered with BPA (500 μg/bwkg/day) or vehicle daily from embryonic day 0 to postnatal week 3 (P3W), through their dams. The IntelliCage behavioral experiments were conducted from P11W to P15W. At around P14-16W, NE, GABA and Glu levels in nine brain regions were measured by high performance liquid chromatography. Furthermore, the associations between the neurotransmitter levels and the behavioral indices were statistically analyzed. In females exposed to BPA, the GABA and Glu levels in almost all regions, and the NE levels in the cortex, hypothalamus and thalamus were higher than those in the controls. In males exposed to BPA, the GABA levels in the amygdala and hippocampus showed lower values, while Glu levels were higher in some regions, compared with the controls. In regard to the associations, the number of "diurnal corner visits without drinking" was correlated with the NE levels in the cortex and thalamus in females. The "nocturnal corner visit duration without drinking" was correlated with the GABA level in the hippocampus in males. These results suggest that prenatal and lactational exposure to low doses of BPA might modulate the NE, GABA and Glu systems, resulting in behavioral alterations. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  7. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet.

    Science.gov (United States)

    Shang, Wenting; Si, Xu; Zhou, Zhongkai; Strappe, Padraig; Blanchard, Chris

    2018-05-23

    In this study, the level of gamma-aminobutyric acid (GABA) in wheat bran was increased to be six times higher through the action of endogenous glutamate decarboxylase compared with untreated bran. The process of GABA formation in wheat bran also led to an increased level of phenolic compounds with enhanced antioxidant capacity 2 times higher than the untreated status. The interventional effect of a diet containing GABA-enriched bran on hyperinsulinemia induced by a high-fat diet (HFD) was investigated in a rat model. The results showed that, when compared with animals fed with HFD-containing untreated bran (NB group), the consumption of HFD-containing GABA-enriched bran (GB group) demonstrated a greater improvement of insulin resistance/sensitivity as revealed by the changes in the homeostatic model assessment for insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). The expression of hepatic genes, cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) and ubiquitin C (Ubc), which are involved in the adipogenesis-associated PPAR signalling pathway, was found to be significantly down-regulated in the GB group compared with the HFD group (P = 0.0055). Meanwhile, changes in the expression of a number of genes associated with lipid metabolism and gluconeogenesis were also noted in the GB group versus the HFD group, but not in the NB group, indicating different regulatory patterns between the two brans in a high-fat diet. More importantly, the analysis of key genes related to glucose metabolism further revealed that the expression of insulin-induced gene 1/2 (Insig-1/2) was increased following GB intervention with a corresponding reduction in phosphoenolpyruvate carboxykinase 1 (Pepck) and glucose-6-phosphatase, catalytic subunit (G6pc) expression, suggesting that glucose homeostasis is greatly improved through the intervention of GABA-enriched bran in the context of a high-fat diet.

  8. The role of gamma-aminobutyric acid/glycinergic synaptic transmission in mediating bilirubin-induced hyperexcitation in developing auditory neurons.

    Science.gov (United States)

    Yin, Xin-Lu; Liang, Min; Shi, Hai-Bo; Wang, Lu-Yang; Li, Chun-Yan; Yin, Shan-Kai

    2016-01-05

    Hyperbilirubinemia is a common clinical phenomenon observed in human newborns. A high level of bilirubin can result in severe jaundice and bilirubin encephalopathy. However, the cellular mechanisms underlying bilirubin excitotoxicity are unclear. Our previous studies showed the action of gamma-aminobutyric acid (GABA)/glycine switches from excitatory to inhibitory during development in the ventral cochlear nucleus (VCN), one of the most sensitive auditory nuclei to bilirubin toxicity. In the present study, we investigated the roles of GABAA/glycine receptors in the induction of bilirubin hyperexcitation in early developing neurons. Using the patch clamp technique, GABAA/glycine receptor-mediated spontaneous inhibitory synaptic currents (sIPSCs) were recorded from bushy and stellate cells in acute brainstem slices from young mice (postnatal day 2-6). Bilirubin significantly increased the frequency of sIPSCs, and this effect was prevented by pretreatments of slices with either fast or slow Ca(2+) chelators BAPTA-AM and EGTA-AM suggesting that bilirubin can increase the release of GABA/glycine via Ca(2+)-dependent mechanisms. Using cell-attached recording configuration, we found that antagonists of GABAA and glycine receptors strongly attenuated spontaneous spiking firings in P2-6 neurons but produced opposite effect in P15-19 neurons. Furthermore, these antagonists reversed bilirubin-evoked hyperexcitability in P2-6 neurons, indicating that excitatory action of GABA/glycinergic transmission specifically contribute to bilirubin-induced hyperexcitability in the early stage of development. Our results suggest that bilirubin-induced enhancement of presynaptic release GABA/Glycine via Ca(2+)-dependent mechanisms may play a critical role in mediating neuronal hyperexcitation associated with jaundice, implicating potential new strategies for predicting, preventing, and treating bilirubin neurotoxicity. Copyright © 2015. Published by Elsevier Ireland Ltd.

  9. Prefrontal and Striatal Gamma-Aminobutyric Acid Levels and the Effect of Antipsychotic Treatment in First-Episode Psychosis Patients.

    Science.gov (United States)

    de la Fuente-Sandoval, Camilo; Reyes-Madrigal, Francisco; Mao, Xiangling; León-Ortiz, Pablo; Rodríguez-Mayoral, Oscar; Jung-Cook, Helgi; Solís-Vivanco, Rodolfo; Graff-Guerrero, Ariel; Shungu, Dikoma C

    2018-03-15

    Abnormally elevated levels of gamma-aminobutyric acid (GABA) in the medial prefrontal cortex (mPFC) have been reported in antipsychotic-free patients with schizophrenia. Whether such GABA elevations are also present in other brain regions and persist after antipsychotic treatment has not been previously investigated. Twenty-eight antipsychotic-naïve patients with first-episode psychosis (FEP) and 18 healthy control subjects completed the study. Following baseline proton magnetic resonance spectroscopy scans targeting the mPFC and a second region, the dorsal caudate, patients with FEP were treated with oral risperidone for 4 weeks at an initial dose of 1 mg/day that was titrated as necessary based on clinical judgment. After the 4-week treatment period, both groups were brought back to undergo outcome magnetic resonance spectroscopy scans, which were identical to the scans conducted at baseline. At baseline, higher GABA levels were found both in the mPFC and in the dorsal caudate of patients with FEP compared with healthy control subjects. Following 4 weeks of antipsychotic treatment, GABA levels in patients with FEP decreased relative to baseline in the mPFC, but decreased only at the trend level relative to baseline in the dorsal caudate. For either brain region, GABA levels at 4 weeks or posttreatment did not differ between patients with FEP and healthy control subjects. The results of the present study documented elevations of GABA levels both in the mPFC and, for the first time, in the dorsal caudate of antipsychotic-naïve patients with FEP, which normalized in both regions following 4 weeks of antipsychotic treatment. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain

    Directory of Open Access Journals (Sweden)

    Cui Yan Lu

    2017-01-01

    Full Text Available Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD. Gamma-aminobutyric acid (GABA deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5 in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.

  11. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana.

    Science.gov (United States)

    Mekonnen, Dereje Worku; Flügge, Ulf-Ingo; Ludewig, Frank

    2016-04-01

    A rapid accumulation of γ-aminobutyric acid (GABA) during biotic and abiotic stresses is well documented. However, the specificity of the response and the primary role of GABA under such stress conditions are hardly understood. To address these questions, we investigated the response of the GABA-depleted gad1/2 mutant to drought stress. GABA is primarily synthesized from the decarboxylation of glutamate by glutamate decarboxylase (GAD) which exists in five copies in the genome of Arabidopsis thaliana. However, only GAD1 and GAD2 are abundantly expressed, and knockout of these two copies dramatically reduced the GABA content. Phenotypic analysis revealed a reduced shoot growth of the gad1/2 mutant. Furthermore, the gad1/2 mutant was wilted earlier than the wild type following a prolonged drought stress treatment. The early-wilting phenotype was due to an increase in stomata aperture and a defect in stomata closure. The increase in stomata aperture contributed to higher stomatal conductance. The drought oversensitive phenotype of the gad1/2 mutant was reversed by functional complementation that increases GABA level in leaves. The functionally complemented gad1/2 x pop2 triple mutant contained more GABA than the wild type. Our findings suggest that GABA accumulation during drought is a stress-specific response and its accumulation induces the regulation of stomatal opening thereby prevents loss of water. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Gamma-aminobutyric acid agonists for antipsychotic-induced tardive dyskinesia.

    Science.gov (United States)

    Alabed, Samer; Latifeh, Youssef; Mohammad, Husam Aldeen; Bergman, Hanna

    2018-04-17

    Chronic antipsychotic drug treatment may cause tardive dyskinesia (TD), a long-term movement disorder. Gamma-aminobutyric acid (GABA) agonist drugs, which have intense sedative properties and may exacerbate psychotic symptoms, have been used to treat TD. 1. Primary objectiveThe primary objective was to determine whether using non-benzodiazepine GABA agonist drugs for at least six weeks was clinically effective for the treatment of antipsychotic-induced TD in people with schizophrenia, schizoaffective disorder or other chronic mental illnesses.2. Secondary objectivesThe secondary objectives were as follows.To examine whether any improvement occurred with short periods of intervention (less than six weeks) and, if this did occur, whether this effect was maintained at longer periods of follow-up.To examine whether there was a differential effect between the various compounds.To test the hypothesis that GABA agonist drugs are most effective for a younger age group (less than 40 years old). We searched the Cochrane Schizophrenia Group Trials Register (last searched April 2017), inspected references of all identified studies for further trials, and, when necessary, contacted authors of trials for additional information. We included randomised controlled trials of non-benzodiazepine GABA agonist drugs in people with antipsychotic-induced TD and schizophrenia or other chronic mental illness. Two review authors independently selected and critically appraised studies, extracted and analysed data on an intention-to-treat basis. Where possible and appropriate we calculated risk ratios (RRs) and their 95% confidence intervals (CIs). For continuous data we calculated mean differences (MD). We assumed that people who left early had no improvement. We contacted investigators to obtain missing information. We assessed risk of bias for included studies and created a 'Summary of findings' table using GRADE. We included 11 studies that randomised 343 people. Overall, the risk of bias

  13. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    DEFF Research Database (Denmark)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P

    2017-01-01

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate...... concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus...... glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. METHODS: Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia...

  14. Autoradiographic localization of binding sites for (/sup 3/H). gamma. -aminobutyrate, (/sup 3/H) muscimol, (+) (/sup 3/H) bicuculline methiodide and (/sup 3/H) flunitrazepam in cultures of rat cerebellum and spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Hoesli, E; Hoesli, L [Basel Univ. (Switzerland); Moehler, H; Richards, J G [Hoffmann-La Roche (F.) and Co., Basel (Switzerland)

    1980-01-01

    Cultures of rat cerebellum and spinal cord were used to visualize sites for (/sup 3/H)..gamma..-aminobutyrate, (/sup 3/H)muscimol, (/sup 3/H)bicuculline methiodide and (/sup 3/H) flunitrazepam by autoradiography. In cerebellar cultures, many large neurons (presumably Purkinje cells) and interneurons were labelled. In spinal cord cultures, these compounds were mainly bound to small and medium-sized neurons, whereas the majority of large neurons were unlabelled. No binding sites for these radioligands were found on glial cells. Binding of (/sup 3/H)..gamma..-aminobutyrate, (/sup 3/H)muscimol and (/sup 3/H)bicuculline methiodide was markedly reduced or inhibited by adding unlabelled ..gamma..-aminobutyrate, muscimol and bicuculline (10/sup -3/M) respectively to the incubation medium. Addition of a thienobenzazepine markedly reduced binding with (/sup 3/H)flunitrazepam. It is concluded that tissues cultures are an excellent tool to visualize the cellular localization of binding sites for neurotransmitters and drugs using autoradiography.

  15. The modern view of the idea of gamma-aminobutyric acid and its metabolite use to restore the motor function

    Directory of Open Access Journals (Sweden)

    А. G. Rodinskij

    2015-08-01

    Full Text Available Aim. The literature review is devoted to the idea of using gamma-aminobutyric acid and its metabolites as medicines in conditions of peripheral nervous system injury. We examined the modern problems of denervated muscles restoration and a wide range of GABA effects which could be useful in conditions of injury. GABA and its metabolites have elements of nootropic, antihypoxic, organoprotective and anabolic activity. It is obvious that traumas of peripheral nerves lead to degeneration of injured fibers and significant disorders of metabolism at a number of regulatory levels. Regeneration of the nerve and the rate of recovery of muscle activity depend significantly on the level of resistivity of the injured nerve tissue and on possibilities for supply of this tissue by additional energetic reserves. Under the above-mentioned conditions, disorders are determined, to a significant extent, by the development of hypoxia. This is why elucidation of the phenomenology and mechanisms of action of GABA and its metabolites (agent are having, as was mentioned above, protective and antihypoxic properties on the nerve/muscle apparatus and its links under conditions of traumatization of a large nerve is urgent. GABA and its metabolites have an antinociceptive activity which helps not only in inhibition of central and spinal neurons, but also helps to decrease pain sensitivity of patient after traumatic neuropathy to forming of motivation to recovery rehabilitation. Besides above mentioned, the ability of GABA to increase concentration of Ca2 + after injury was discussed. This ability may affect the expression of genes, the direction of the growth cone, and, perhaps, reduce cell death. Conclusion. This indicates that the GABA has a selectivity of action to the damaged structure and can be prospective agent for regenerative therapy.

  16. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder.

    Science.gov (United States)

    Streeter, C C; Gerbarg, P L; Saper, R B; Ciraulo, D A; Brown, R P

    2012-05-01

    A theory is proposed to explain the benefits of yoga practices in diverse, frequently comorbid medical conditions based on the concept that yoga practices reduce allostatic load in stress response systems such that optimal homeostasis is restored. It is hypothesized that stress induces (1) imbalance of the autonomic nervous system (ANS) with decreased parasympathetic nervous system (PNS) and increased sympathetic nervous system (SNS) activity, (2) underactivity of the gamma amino-butyric acid (GABA) system, the primary inhibitory neurotransmitter system, and (3) increased allostatic load. It is further hypothesized that yoga-based practices (4) correct underactivity of the PNS and GABA systems in part through stimulation of the vagus nerves, the main peripheral pathway of the PNS, and (5) reduce allostatic load. Depression, epilepsy, post traumatic stress disorder (PTSD), and chronic pain exemplify medical conditions that are exacerbated by stress, have low heart rate variability (HRV) and low GABAergic activity, respond to pharmacologic agents that increase activity of the GABA system, and show symptom improvement in response to yoga-based interventions. The observation that treatment resistant cases of epilepsy and depression respond to vagal nerve stimulation corroborates the need to correct PNS underactivity as part of a successful treatment plan in some cases. According to the proposed theory, the decreased PNS and GABAergic activity that underlies stress-related disorders can be corrected by yoga practices resulting in amelioration of disease symptoms. This has far-reaching implications for the integration of yoga-based practices in the treatment of a broad array of disorders exacerbated by stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study.

    Science.gov (United States)

    Chiu, P W; Lui, Simon S Y; Hung, Karen S Y; Chan, Raymond C K; Chan, Queenie; Sham, P C; Cheung, Eric F C; Mak, Henry K F

    2018-03-01

    Gamma-aminobutyric acid (GABA) dysfunction and its consequent imbalance are implicated in the pathophysiology of schizophrenia. Reduced GABA production would lead to a disinhibition of glutamatergic neurons and subsequently cause a disruption of the modulation between GABAergic interneurons and glutamatergic neurons. In this study, levels of GABA, Glx (summation of glutamate and glutamine), and other metabolites in the anterior cingulate cortex were measured and compared between first-episode schizophrenia subjects and healthy controls (HC). Diagnostic potential of GABA and Glx as upstream biomarkers for schizophrenia was explored. Nineteen first-episode schizophrenia subjects and fourteen HC participated in this study. Severity of clinical symptoms of patients was measured with Positive and Negative Syndrome Scale (PANSS). Metabolites were measured using proton magnetic resonance spectroscopy, and quantified using internal water as reference. First-episode schizophrenia subjects revealed reduced GABA and myo-inositol (mI), and increased Glx and choline (Cho), compared to HC. No significant correlation was found between metabolite levels and PANSS scores. Receiver operator characteristics analyses showed Glx had higher sensitivity and specificity (84.2%, 92.9%) compared to GABA (73.7%, 64.3%) for differentiating schizophrenia patients from HC. Combined model of both GABA and Glx revealed the best sensitivity and specificity (89.5%, 100%). This study simultaneously showed reduction in GABA and elevation in Glx in first-episode schizophrenia subjects, and this might provide insights on explaining the disruption of modulation between GABAergic interneurons and glutamatergic neurons. Elevated Cho might indicate increased membrane turnover; whereas reduced mI might reflect dysfunction of the signal transduction pathway. In vivo Glx and GABA revealed their diagnostic potential for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    NARCIS (Netherlands)

    Luna, E.; Van Hulten, M.; Zhang, Y.; Berkowitz, O.; López, A.; Pétriacq, P.; Sellwood, M.A.; Chen, B.; Burrell, M.; Van de Meene, A.; Pieterse, C.M.J.; Flors, V.; Ton, J.

    2014-01-01

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense

  19. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    NARCIS (Netherlands)

    Luna, Estrella; van Hulten, Marieke; Zhang, Yuhua; Berkowitz, Oliver; López, Ana; Pétriacq, Pierre; Sellwood, Matthew A; Chen, Beining; Burrell, Mike; van de Meene, Allison; Pieterse, Corné M J; Flors, Victor; Ton, Jurriaan

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense

  20. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma.

    Science.gov (United States)

    Schuller, Hildegard M; Al-Wadei, Hussein A N; Majidi, Mourad

    2008-10-01

    Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.

  1. SLC6A1 Mutation and Ketogenic Diet in Epilepsy With Myoclonic-Atonic Seizures.

    Science.gov (United States)

    Palmer, Samantha; Towne, Meghan C; Pearl, Phillip L; Pelletier, Renee C; Genetti, Casie A; Shi, Jiahai; Beggs, Alan H; Agrawal, Pankaj B; Brownstein, Catherine A

    2016-11-01

    Epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy or Doose syndrome, has been recently linked to variants in the SLC6A1 gene. Epilepsy with myoclonic-atonic seizures is often refractory to antiepileptic drugs, and the ketogenic diet is known for treating medically intractable seizures, although the mechanism of action is largely unknown. We report a novel SLC6A1 variant in a patient with epilepsy with myoclonic-atonic seizures, analyze its effects, and suggest a mechanism of action for the ketogenic diet. We describe a ten-year-old girl with epilepsy with myoclonic-atonic seizures and a de novo SLC6A1 mutation who responded well to the ketogenic diet. She carried a c.491G>A mutation predicted to cause p.Cys164Tyr amino acid change, which was identified using whole exome sequencing and confirmed by Sanger sequencing. High-resolution structural modeling was used to analyze the likely effects of the mutation. The SLC6A1 gene encodes a transporter that removes gamma-aminobutyric acid from the synaptic cleft. Mutations in SLC6A1 are known to disrupt the gamma-aminobutyric acid transporter protein 1, affecting gamma-aminobutyric acid levels and causing seizures. The p.Cys164Tyr variant found in our study has not been previously reported, expanding on the variants linked to epilepsy with myoclonic-atonic seizures. A 10-year-old girl with a novel SLC6A1 mutation and epilepsy with myoclonic-atonic seizures had an excellent clinical response to the ketogenic diet. An effect of the diet on gamma-aminobutyric acid reuptake mediated by gamma-aminobutyric acid transporter protein 1 is suggested. A personalized approach to epilepsy with myoclonic-atonic seizures patients carrying SLC6A1 mutation and a relationship between epilepsy with myoclonic-atonic seizures due to SLC6A1 mutations, GABAergic drugs, and the ketogenic diet warrants further exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Aminobutyric acid and formation of higher alcohols by Saccharomyces carlsbergenesis

    Energy Technology Data Exchange (ETDEWEB)

    Babaeva, S A; Veselov, I Ya; Gracheva, I M

    1966-01-01

    Aminobutyric acid (1) added before the start of fermentation increased the formation of propyl-, isobutyl-, and isoamyl alcohols. With addition of I after 24, 28, or 72 hours of fermentation, the formation of the alcohols gradually decreased. Addition of I after 3 days of fermentation did not affect formation of the higher alcohols. I was not the source of formation of the higher alcohols, but affected the metabolism of carbohydrates and N in the cells. Formation of hexyl alcohols and high amounts of aldehydes was observed only during aerobic fermentation.

  3. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  4. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    International Nuclear Information System (INIS)

    Esquifino, A.I.; Seara, R.; Fernandez-Rey, E.; Lafuente, A.

    2001-01-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  5. Chronic effects of dichloromethane on amino acids, glutathione and phosphoethanolamine in gerbil brain

    Energy Technology Data Exchange (ETDEWEB)

    Briving, C.; Hamberger, A.; Kjellstrand, P.; Rosengren, L.; Karlsson, J.E.; Haglid, K.G.

    1986-06-01

    Mongolian gerbils were exposed to dichloromethane for three months by continuous inhalation at 210 ppm. Total free tissue amino acids, glutathione, and phosphoethanolamine were determined in the vermis posterior of the cerebellum and the frontal cerebral cortex. These two brain areas were chosen because humans occupationally exposed to dichloromethane have shown abnormalities in the electroencephalogram of the frontal part of the cerebral cortex. This study showed that long-term exposure of gerbils to dichloromethane (210 ppm) for three months leads to decreased levels of glutamate, gamma-aminobutyric acid, and phosphoethanolamine in the frontal cerebral cortex, while glutamine and gamma-aminobutyric acid are elevated in the posterior cerebellar vermis.

  6. Nicotine stimulates pancreatic cancer xenografts by systemic increase in stress neurotransmitters and suppression of the inhibitory neurotransmitter gamma-aminobutyric acid.

    Science.gov (United States)

    Al-Wadei, Hussein A N; Plummer, Howard K; Schuller, Hildegard M

    2009-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality in Western countries. We have shown previously that four representative human PDAC cell lines were regulated by beta-adrenoreceptors via cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signaling. In the current study, we have tested the hypothesis that nicotine stimulates the growth of PDAC xenografts in nude mice by increasing the systemic levels of the stress neurotransmitters adrenaline and noradrenaline, which are the physiological agonists for beta-adrenoreceptors and that inhibition by gamma-aminobutyric acid (GABA) of the adenylyl cyclase-dependent pathway downstream of adrenoreceptors blocks this effect. The size of xenografts from PDAC cell line Panc-1 was determined 30 days after inoculation of the cancer cells. Stress neurotransmitters in serum as well as cAMP in the cellular fraction of blood and in tumor tissue were assessed by immunoassays. Levels of GABA, its synthesizing enzymes GAD65 and GAD67 and beta-adrenergic signaling proteins in the tumor tissue were determined by western blotting. Nicotine significantly increased the systemic levels of adrenaline, noradrenaline and cAMP while increasing xenograft size and protein levels of cAMP, cyclic AMP response element-binding protein and p-extracellular signal-regulated kinase 1/2 in the tumor tissue. Nicotine additionally reduced the protein levels of both GAD isozymes and GABA in tumor tissue. Treatment with GABA abolished these responses to nicotine and blocked the development of xenografts in mice not exposed to nicotine. These findings suggest that the development and progression of PDAC is subject to significant modulation by stimulatory stress neurotransmitters and inhibitory GABA and that treatment with GABA may be useful for marker-guided cancer intervention of PDAC.

  7. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [ 3 H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10 -5 -10 -3 M, enhanced potassium stimulated [ 3 H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [ 3 H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA A receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA A agonist muscimol, 10 -4 M, mimicked the effect of GABA, but the GABA B agonist (±)baclofen, 10 -4 M, did not affect the release of [ 3 H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA A , but not GABA B , receptors. In contrast to the results that would be predicted for an event involving GABA A receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10 -8 and 10 -4 M. Thus these receptors may constitute a subclass of GABA A receptors. These results support a role of GABA uptake and GABA A receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  8. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  9. Absence of c-Aminobutyric Acid-A Receptor Potentiation in Central Hypersomnolence Disorders

    OpenAIRE

    Dauvilliers, Yves; Evangelista, Elisa; Lopez, Regis; Barateau, Lucie; Jaussent, Isabelle; Cens, Thierry; Rousset, Matthieu; Charnet, Pierre

    2016-01-01

    International audience; Objective: The pathophysiology of idiopathic hypersomnia (IH) remains unclear. Recently, cerebrospinal fluid (CSF)-induced enhancement of c-aminobutyric acid (GABA)-A receptor activity was found in patients with IH compared to controls. Methods: Fifteen unrelated patients (2 males and 13 females) affected with typical IH, 12 patients (9 males and 3 females) with narcolepsy type 1, and 15 controls (9 males and 6 females) with unspecified hypersomnolence (n 5 7) and misc...

  10. Biochemical evidence for. gamma. -aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    Glutamate decarboxylase activity, a specific marker for ..gamma..-aminobutyrate-containing neurons, has been analysed in microdissected samples from rat mesencephalon following unilateral electrocoagulations of the nucleus accumbens. This lesion resulted in a consistent decrease of 50% in the enzyme activity in the rostromedial substantia nigra, and a slight, but insignificant decrease (- 15%) in the medial parts of the caudal pars compacta of the substantia nigra. No change was found in the lateral pars compacta or the central pars reticulata. In the ventral tegmental area, the highest activity was found in the rostromedial part, adjacent to the mammillary body. At this level, a significant decrease of 20% was found in the ventral tegmental area on the lesioned side. In contrast, the activities in the medial accessory optic nucleus and the caudal ventral tegmental area adjacent to the interpenduncular nucleus were unchanged. The results indicate that the nucleus accumbens sends ..gamma..-aminobutyrate-containing fibres to the rostromedial substantia nigra and to the rostral ventral tegmental area. The caudal ventral tegmental area, the lateral pars compacta and the central pars reticulata do not receive measurable amounts of such fibres.

  11. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  12. Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity*

    OpenAIRE

    Yang, Xiao-e; Peng, Hong-yun; Tian, Sheng-ke

    2005-01-01

    A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 μmol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves. The leaf Asp level negatively correlated with leaf Cu level, while leaf GABA level positively correlated with le...

  13. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    Directory of Open Access Journals (Sweden)

    Hadiza Altine Adamu

    2016-02-01

    Full Text Available Background: Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective: The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR and GBR-derived gammaaminobutyric acid (GABA extract on epigenetically mediated high fat diet–induced insulin resistance. Design: Pregnant Sprague Dawley rats were fed high-fat diet (HFD, HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4 were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results: Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions: These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis.

  14. A gene duplication led to specialized gamma-aminobutyrate and beta-alanine aminotransferase in yeast

    DEFF Research Database (Denmark)

    Andersen, Gorm; Andersen, Birgit; Dobritzsch, D.

    2007-01-01

    and related yeasts have two different genes/enzymes to apparently 'distinguish' between the two reactions in a single cell. It is likely that upon duplication similar to 200 million years ago, a specialized Uga1p evolved into a 'novel' transaminase enzyme with broader substrate specificity.......In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue...... to characterize the substrate specificity and kinetic parameters of the four enzymes. It was found that the cofactor pyridoxal 5'-phosphate is needed for enzymatic activity and alpha-ketoglutarate, and not pyruvate, as the amino group acceptor. SkPyd4p preferentially uses BAL as the amino group donor (V...

  15. Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food.

    Science.gov (United States)

    Lim, Hee Seon; Cha, In-Tae; Roh, Seong Woon; Shin, Hae-Hun; Seo, Myung-Ji

    2017-03-28

    This study evaluated the effects of culture conditions, including carbon and nitrogen sources, L-monosodium glutamate (MSG), and initial pH, on gamma-aminobutyric acid (GABA) production by Lactobacillus brevis HYE1 isolated from kimchi, a Korean traditional fermented food. L. brevis HYE1 was screened by the production analysis of GABA and genetic analysis of the glutamate decarboxylase gene, resulting in 14.64 mM GABA after 48 h of cultivation in MRS medium containing 1% (w/v) MSG. In order to increase GABA production by L. brevis HYE1, the effects of carbon and nitrogen sources on GABA production were preliminarily investigated via one-factor-at-a-time optimization strategy. As the results, 2% maltose and 3% tryptone were determined to produce 17.93 mM GABA in modified MRS medium with 1% (w/v) MSG. In addition, the optimal MSG concentration and initial pH were determined to be 1% and 5.0, respectively, resulting in production of 18.97 mM GABA. Thereafter, response surface methodology (RSM) was applied to determine the optimal conditions of the above four factors. The results indicate that pH was the most significant factor for GABA production. The optimal culture conditions for maximum GABA production were also determined to be 2.14% (w/v) maltose, 4.01% (w/v) tryptone, 2.38% (w/v) MSG, and an initial pH of 4.74. In these conditions, GABA production by L. brevis HYE1 was predicted to be 21.44 mM using the RSM model. The experiment was performed under these optimized conditions, resulting in GABA production of 18.76 mM. These results show that the predicted and experimental values of GABA production are in good agreement.

  16. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments

    NARCIS (Netherlands)

    Dauwe, B.; Middelburg, J.J.

    1998-01-01

    Sediment cores from six stations in the eastern North Sea were analyzed for protein amino acids, the nonprotein amino acids beta-alanine and gamma-aminobutyric acid and the hexosamines galactosamine and glucosamine, and bulk parameters (organic carbon, nitrogen, total hydrolyzable amino acids and

  17. The γ-Aminobutyrate Permease GabP Serves as the Third Proline Transporter of Bacillus subtilis

    Science.gov (United States)

    Zaprasis, Adrienne; Hoffmann, Tamara; Stannek, Lorena; Gunka, Katrin; Commichau, Fabian M.

    2014-01-01

    PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates. PMID:24142252

  18. Molecular determinants of desensitization and assembly of the chimeric GABA(A) receptor subunits (alpha1/gamma2) and (gamma2/alpha1) in combinations with beta2 and gamma2

    DEFF Research Database (Denmark)

    Elster, L; Kristiansen, U; Pickering, D S

    2001-01-01

    Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma......, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important...... for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed...

  19. The structure and diffusion behaviour of the neurotransmitter γ-aminobutyric acid (GABA) in neutral aqueous solutions

    International Nuclear Information System (INIS)

    Rodrigo, M.M.; Esteso, M.A.; Barros, M.F.; Verissimo, L.M.P.; Romero, C.M.; Suarez, A.F.; Ramos, M.L.; Valente, A.J.M.; Burrows, H.D.; Ribeiro, A.C.F.

    2017-01-01

    Highlights: • Diffusion coefficients and densities of binary aqueous solutions of γ-aminobutyric acid (GABA). • Dependence on both shape and size of GABA on its diffusion. • Interactions intramolecular and the solute-water interactions in these systems. - Abstract: GABA (γ-aminobutyric acid) is a non-protein amino acid with important physiological properties, and with considerable relevance to the food and pharmaceutical industries. Particular interest has focused on its role as an inhibitory neurotransmitter in the mammalian cerebral cortex. In this paper, we report density and mutual diffusion coefficients of GABA in non-buffered aqueous solutions (0.001–0.100) mol·dm −3 at 298.15 K. Under these conditions, 1 H and 13 C NMR spectroscopy and pH measurements show that it is present predominantly as a monomeric zwitterionic species. Diffusion coefficients have been computed assuming that this behaves as the binary system GABA/water. From density and intermolecular diffusion coefficients measurements, the molar volume, hydrodynamic radii, R h , diffusion coefficients at infinitesimal concentration, D 0 , activity coefficients and the thermodynamic factors, F T , have been estimated. Within experimental error, the hydrodynamic volume calculated from this is identical to the molar volume obtained from density measurements. From the NMR spectra and literature data, it is suggested that this amino acid diffuses in aqueous solution as a curved, coil-like hydrated zwitterionic entity.

  20. Production of gaba (γ - aminobutyric acid by microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    2012-12-01

    Full Text Available GABA (γ-aminobutyric acid is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB, which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  1. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  2. Increased Cortical Gamma-Aminobutyric Acid Precedes Incomplete Extinction of Conditioned Fear and Increased Hippocampal Excitatory Tone in a Mouse Model of Mild Traumatic Brain Injury.

    Science.gov (United States)

    Schneider, Brandy L; Ghoddoussi, Farhad; Charlton, Jennifer L; Kohler, Robert J; Galloway, Matthew P; Perrine, Shane A; Conti, Alana C

    2016-09-01

    Mild traumatic brain injury (mTBI) contributes to development of affective disorders, including post-traumatic stress disorder (PTSD). Psychiatric symptoms typically emerge in a tardive fashion post-TBI, with negative effects on recovery. Patients with PTSD, as well as rodent models of PTSD, demonstrate structural and functional changes in brain regions mediating fear learning, including prefrontal cortex (PFC), amygdala (AMYG), and hippocampus (HC). These changes may reflect loss of top-down control by which PFC normally exhibits inhibitory influence over AMYG reactivity to fearful stimuli, with HC contribution. Considering the susceptibility of these regions to injury, we examined fear conditioning (FC) in the delayed post-injury period, using a mouse model of mTBI. Mice with mTBI displayed enhanced acquisition and delayed extinction of FC. Using proton magnetic resonance spectroscopy ex vivo, we examined PFC, AMYG, and HC levels of gamma-aminobutyric acid (GABA) and glutamate as surrogate measures of inhibitory and excitatory neurotransmission, respectively. Eight days post-injury, GABA was increased in PFC, with no significant changes in AMYG. In animals receiving FC and mTBI, glutamate trended toward an increase and the GABA/glutamate ratio decreased in ventral HC at 25 days post-injury, whereas GABA decreased and GABA/glutamate decreased in dorsal HC. These neurochemical changes are consistent with early TBI-induced PFC hypoactivation facilitating the fear learning circuit and exacerbating behavioral fear responses. The latent emergence of overall increased excitatory tone in the HC, despite distinct plasticity in dorsal and ventral HC fields, may be associated with disordered memory function, manifested as incomplete extinction and enhanced FC recall.

  3. Relationship of nocturnal concentrations of melatonin, gamma-aminobutyric acid and total antioxidants in peripheral blood with insomnia after stroke: study protocol for a prospective non-randomized controlled trial

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Fang Li; Tong Zhang

    2017-01-01

    Melatonin and gamma-aminobutyric acid (GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective single-center non-randomized controlled clinical trial performed in the China Rehabilitation Research Center, we analyzed the relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke. Patients during rehabilitation of stroke were recruited and assigned to the insomnia group or non-insomnia group. Simultaneously, persons without stroke or insomnia served as normal controls. Each group contained 25 cases. The primary outcome was nocturnal concentrations of melatonin, GABA and total antioxidants in peripheral blood. The secondary outcomes were Pittsburgh Sleep Quality Index, Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Morningness-Eveningness Questionnaire (Chinese version), and National Institute of Health Stroke Scale. The relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke was analyzed and showed that they were lower in the insomnia group than in the non-insomnia group. The severity of stroke was higher in the insomnia group than in the non-insomnia group. Correlation analysis demonstrated that the nocturnal concentrations of melatonin and GABA were associated with insomnia after stroke. This trial was regis-tered at ClinicalTrials.gov, identifier: NCT03202121.

  4. Widespread abnormality of the γ-aminobutyric acid-ergic system in Tourette syndrome

    Science.gov (United States)

    Bagic, Anto; Simmons, Janine M.; Mari, Zoltan; Bonne, Omer; Xu, Ben; Kazuba, Diane; Herscovitch, Peter; Carson, Richard E.; Murphy, Dennis L.; Drevets, Wayne C.; Hallett, Mark

    2012-01-01

    Dysfunction of the γ-aminobutyric acid-ergic system in Tourette syndrome may conceivably underlie the symptoms of motor disinhibition presenting as tics and psychiatric manifestations, such as attention deficit hyperactivity disorder and obsessive–compulsive disorder. The purpose of this study was to identify a possible dysfunction of the γ-aminobutyric acid-ergic system in Tourette patients, especially involving the basal ganglia-thalamo-cortical circuits and the cerebellum. We studied 11 patients with Tourette syndrome and 11 healthy controls. Positron emission tomography procedure: after injection of 20 mCi of [11C]flumazenil, dynamic emission images of the brain were acquired. Structural magnetic resonance imaging scans were obtained to provide an anatomical framework for the positron emission tomography data analysis. Images of binding potential were created using the two-step version of the simplified reference tissue model. The binding potential images then were spatially normalized, smoothed and compared between groups using statistical parametric mapping. We found decreased binding of GABAA receptors in Tourette patients bilaterally in the ventral striatum, globus pallidus, thalamus, amygdala and right insula. In addition, the GABAA receptor binding was increased in the bilateral substantia nigra, left periaqueductal grey, right posterior cingulate cortex and bilateral cerebellum. These results are consistent with the longstanding hypothesis that circuits involving the basal ganglia and thalamus are disinhibited in Tourette syndrome patients. In addition, the abnormalities in GABAA receptor binding in the insula and cerebellum appear particularly noteworthy based upon recent evidence implicating these structures in the generation of tics. PMID:22577221

  5. Delta Subunit-Containing Gamma-Aminobutyric Acid A Receptor Disinhibits Lateral Amygdala and Facilitates Fear Expression in Mice.

    Science.gov (United States)

    Liu, Zhi-Peng; He, Qing-Hai; Pan, Han-Qing; Xu, Xiao-Bin; Chen, Wen-Bing; He, Ye; Zhou, Jin; Zhang, Wen-Hua; Zhang, Jun-Yu; Ying, Xiao-Ping; Han, Ren-Wen; Li, Bao-Ming; Gao, Tian-Ming; Pan, Bing-Xing

    2017-06-15

    Maintaining gamma-aminobutyric acidergic (GABAergic) inhibition in the amygdala within a physiological range is critical for the appropriate expression of emotions such as fear and anxiety. The synaptic GABA type A receptor (GABA A R) is generally known to mediate the primary component of amygdala inhibition and prevent inappropriate expression of fear. However, little is known about the contribution of the extrasynaptic GABA A R to amygdala inhibition and fear. By using mice expressing green fluorescent protein in interneurons (INs) and lacking the δ subunit-containing GABA A R (GABA A (δ)R), which is exclusively situated in the extrasynaptic membrane, we systematically investigated the role of GABA A (δ)R in regulating inhibition in the lateral amygdala (LA) and fear learning using the combined approaches of immunohistochemistry, electrophysiology, and behavior. In sharp contrast to the established role of synaptic GABA A R in mediating LA inhibition, we found that either pharmacological or physiological recruitment of GABA A (δ)R resulted in the weakening of GABAergic transmission onto projection neurons in LA while leaving the glutamatergic transmission unaltered, suggesting disinhibition by GABA A (δ)R. The disinhibition arose from IN-specific expression of GABA A (δ)R with its activation decreasing the input resistance of local INs and suppressing their activation. Genetic deletion of GABA A (δ)R attenuated its role in suppressing LA INs and disinhibiting LA. Importantly, the GABA A (δ)R facilitated long-term potentiation in sensory afferents to LA and permitted the expression of learned fear. Our findings suggest that GABA A (δ)R serves as a brake rather than a mediator of GABAergic inhibition in LA. The disinhibition by GABA A (δ)R may help to prevent excessive suppression of amygdala activity and thus ensure the expression of emotion. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  7. Brain Targeted Intranasal Zaleplon Nano-emulsion: In-Vitro Characterization and Assessment of Gamma Aminobutyric Acid Levels in rabbits' Brain and Plasma at low and high Doses.

    Science.gov (United States)

    Abd-Elrasheed, Eman; El-Helaly, Sara Nageeb; El-Ashmoony, Manal M; Salah, Salwa

    2017-11-30

    Zaleplon is a pyrazolopyrimidin derivative hypnotic drug indicated for the short-term management of insomnia. Zaleplon belongs to Class II drugs, according to the biopharmaceutical classification system (BCS), showing poor solubility and high permeability. It undergoes extensive first-pass hepatic metabolism after oral absorption, with only 30% of Zaleplon being systemically available. It is available in tablet form which is unable to overcome the previous problems. The aim of this study is to enhance solubility and bioavailability via utilizing nanotechnology in the formulation of intranasal Zaleplon nano-emulsion (ZP-NE) to bypass the barriers and deliver an effective therapy to the brain. Screening studies were carried out wherein the solubility of zaleplon in various oils, surfactants(S) and co-surfactants(CoS) were estimated. Pseudo-ternary phase diagrams were constructed and various nano-emulsion formulations were prepared. These formulations were subjected to thermodynamic stability, in-vitro characterization, histopathological studies and assessment of the gamma aminobutyric acid (GABA) level in plasma and brain in rabbits compared to the market product (Sleep aid®). Stable NEs were successfully developed with a particle size range of 44.57±3.351 to 136.90±1.62 nm. A NE composed of 10% Miglyol® 812, 40%Cremophor® RH40 40%Transcutol® HP and 10% water successfully enhanced the bioavailability and brain targeting in the rabbits, showing a three to four folds increase than the marketed product. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    Science.gov (United States)

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Effect of ethanol on γ-aminobutyric acid in the brain

    International Nuclear Information System (INIS)

    Lassanova, M.; Tursky, T.; Homerova, D.

    1989-01-01

    The effect of acute and chronic ethanol administration on the level of γ-aminobutyric acid (GABA), glutamate, aspartate, and glutamine was investigated using 14 C-labelled compounds. The level of GABA rose after both acute and chronic ethanol administration. In chronic experiments also the levels of glutamate, aspartate and glutamine were increased. In acute experiments the incorporation from glucose into the studied amino acids (neuronal compartment) increased, while in chronic experiments a decreasing trend was observed. In the glial compartment the incorporation increased only into glutamate and glutamine in acute experiments, while in chronic experiments a decreased incorporation into glutamine was recorded. The activities of three enzymes were studied in seven parts of the brain after acute ethanol administration. The activity of glutamic acid decarboxylase increased in the hypothalamus and brain cortex and decreased in the medulla oblongata. The activity of GABA transaminase did not change and the activity of glutamine synthetase decreased only in the hippocampus. In accordance with several other studies, the presented results show that ethanol interferes with the GABA system in the brain. It is suggested that the primary effect of ethanol is exerted on the cell membranes with preference for the regions connected with the GABA system. (author). 3 figs., 6 tabs., 18 refs

  11. Novel high-affinity and selective biaromatic 4-substituted ¿-hydroxybutyric acid (GHB) analogues as GHB ligands

    DEFF Research Database (Denmark)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte

    2008-01-01

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites...

  12. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  13. Anticonvulsant action of gamma-irradiated diazepam with correlation to certain brain amino acids and electrocorticogram activity in experimental animals

    International Nuclear Information System (INIS)

    Saad, S.F.; Roushdy, H.M.; Hassan, S.H.M.; Elkashef, H.S.; Mahdy, A.M.; Elsayeh, B.M.

    1994-01-01

    The effect of sterilization by gamma irradiation (215 KGy) of diazepam on is anticonvulsant action, on norma and depleted cerebral gamma aminobutyric acid (GABA), on glutamic acid, as well as electrocorticogram activity (ECOG) was determined in the experimental animals. For the evaluation of the anticonvulsant action of either diazepam (D) or irradiated diazepam (ID), pentyl ene tetrazole seizure test, was used and the protective dose 50 (PD50) was determined in adult male mice. GABA, the main central inhibitory transmitter which is implicated in the mechanism of the anticonvulsant action of D and its precursor glutamic acid, were electrophoretically separated and spectrophotometrical evaluated. Moreover, brain electrical activity was recorded using an electroencephalograph apparatus. Although the PD50 of ID as well the effect on normal brain cerebral GABA and glutamic acids did not differ significantly from that of D, yet there was certain variabilities. Thus, the effect of D was about 4 times more potent than the ID on elevating depleted cerebral GABA. Also, electrocorticogram records demonstrated that D produced a slight inhibition while ID induced a decrease in B rhythm with remarkable in the amplitude of ECOG waves. The same pattern of effects were obtained when D or ID were used in combination with INH (250 mg kg-1). 1 tab. 1 fig

  14. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  15. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    Science.gov (United States)

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P sauce production.

  16. Effect of temperature on the partial molar volume, isentropic compressibility and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Rodríguez, Diana M.; Ribeiro, Ana C.F.; Esteso, Miguel A.

    2017-01-01

    Highlights: • Apparent volumes, apparent compressibilities, viscosities of DL-2-aminobutyric acid. • Effect of temperature on the values for these properties. • Hydrophobic and hydrophilic interactions and the effect of sodium chloride. - Abstract: Density, sound velocity and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions have been measured at temperatures of (293.15, 298.15, 303.15, 308.15 and 313.15) K. The experimental results were used to determine the apparent molar volume and the apparent molar compressibility as a function of composition at these temperatures. The limiting values of both the partial molar volume and the partial molar adiabatic compressibility at infinite dilution of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions were determined at each temperature. The experimental viscosity values were adjusted by a least-squares method to a second order equation as proposed by Tsangaris-Martin to obtain the viscosity B coefficient which depends on the size, shape and charge of the solute molecule. The influence of the temperature on the behaviour of the selected properties is discussed in terms of both the solute hydration and the balance between hydrophobic and hydrophilic interactions between the acids and water, and the effect of the sodium chloride concentration.

  17. Calming effect of orally administered γ-aminobutyric acid in Shih Tzu dogs.

    Science.gov (United States)

    Uetake, Katsuji; Okumoto, Ayano; Tani, Noriko; Goto, Akihiro; Tanaka, Toshio

    2012-12-01

    The calming effects of γ-aminobutyric acid (GABA) by oral administration were investigated in four adult Shih Tzu dogs. Three dosage levels (1, 2 and 4 mg/kg body weight) and non-administration were tested by an increase and decrease method. Changes in activity (for 1.5 h) and urinary cortisol levels (pre-administration, 3 and 7 h later) of dogs were monitored after administration. Without reference to dosage level, the mean times spent standing (P = 0.06), sitting (P level was observed at 7 h after administration (P GABA exerts calming effects on dogs as well as humans. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  18. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    Science.gov (United States)

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  19. Syntheses of {gamma}-aminobutyric-1-{sup 14}C and of {alpha}-aminoadipic-6-{sup 14}C acid from methoxy-3 chloropropyl-magnesium and marked carbon dioxide; Syntheses de l'acide {gamma}-aminobutyrique{sup 14}C-1 et de l'acide {alpha}-aminoadipique {sup 14}C-6 a partir de methoxy-3 chloropropylmagnesium et d'anhydride carbonique marque

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Phung Nhu [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires, Departement des radioelements, Service des molecules marquees

    1967-04-01

    Carbonation of {gamma}-methoxypropyl-magnesium chloride by CO{sub 2} gives {gamma}-methoxy-butyric carboxylic-{sup 14}C acid with a yield of about 95 per cent. When the latter is treated successively with anhydrous HBr and with diazomethane, methyl carboxylic {gamma}-bromobutyrate-{sup 14}C is formed. This in turn gives {gamma}-amino-butyric carboxylic-{sup 14}C acid with an overall yield of 66 per cent with respect to Ba{sup 14}CO{sub 3}, when it is condensed with potassium phthalimide and hydrolyzed by acid. By reacting methyl-{gamma}-bromobutyrate-{sup 14}C with the sodium derivative of ethyl cyanacetamido-acetate in ethanol, followed by an acid hydrolysis, {alpha}-aminoadipic-6-{sup 14}C acid is obtained with an overall yield of 46 per cent with respect to Ba{sup 14}CO{sub 3}. (author) [French] La carbonatation du chlorure de {gamma}-methoxypropylmagnesium par {sup 14}CO{sub 2} donne l'acide {gamma}-methoxybutyrique carboxyle {sup 14}C avec un rendement d'environ 95 pour cent. Ce dernier traite successivement par HBr anhydre et par le diazomethane conduit au {gamma}-bromobutyrate de methyle carboxyle {sup 14}C. Celui-ci condense avec le phtalimide de potassium suivi d'une hydrolyse acide fournit l'acide {gamma}-aminobutyrique carboxyle {sup 14}C avec un rendement global de 66 pour cent par rapport a Ba{sup 14}CO{sub 3}. L'action du {gamma}-bromobutyrate de methyle {sup 14}C sur le derive sode du cyanacetamidoacetate d'ethyle dans l'ethanol suivie d'hydrolyse acide donne l'acide {alpha}-aminoadipique {sup 14}C-6 avec un rendement global de 46 pour cent par rapport a Ba{sup 14}CO{sub 3}. (auteur)

  20. Antagonistic properties of a natural product-Bicuculline with the gamma-aminobutyric acid receptor: studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory.

    Science.gov (United States)

    Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B P

    2011-12-15

    (+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap ΔE, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Human α1β3γ2L gamma-aminobutyric acid type A receptors: High-level production and purification in a functional state.

    Science.gov (United States)

    Dostalova, Zuzana; Zhou, Xiaojuan; Liu, Aiping; Zhang, Xi; Zhang, Yinghui; Desai, Rooma; Forman, Stuart A; Miller, Keith W

    2014-02-01

    Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABA(A)Rs determine their function and pharmacological profile. GABAA Rs are heteropentamers of subunits, and (α1)2 (β3)2 (γ2L)1 is a common subtype. Biochemical and biophysical studies of GABA(A)Rs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high-level production of active human α1β3 GABA(A)R using tetracycline-inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline-inducible HEK293-TetR cell line expressing human (N)-FLAG-α1β3γ2L-(C)-(GGS)3 GK-1D4 GABA(A)R. These cells achieved expression levels of 70-90 pmol [(3)H]muscimol binding sites/15-cm plate at a specific activity of 15-30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [(3)H]flunitrazepam to [(3)H]muscimol binding sites and sensitivity of GABA-induced currents to benzodiazepines and zinc. The α1β3γ2L GABA(A)Rs were solubilized in dodecyl-D-maltoside, purified by anti-FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼ 30%. Typical purifications yielded 1.0-1.5 nmoles of [(3)H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [(3)H]muscimol binding were maintained in the purified state. © 2013 The Protein Society.

  2. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees.

    Science.gov (United States)

    Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid

    2015-04-15

    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.

  3. Optimization of γ-Aminobutyric Acid Production by Lactobacillus plantarum Taj-Apis362 from Honeybees

    Directory of Open Access Journals (Sweden)

    Naser Tajabadi

    2015-04-01

    Full Text Available Dominant strains of lactic acid bacteria (LAB isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM. The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.

  4. GABA (γ-aminobutyric acid production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content

    Directory of Open Access Journals (Sweden)

    Kasarin TIANSAWANG

    2016-01-01

    Full Text Available Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber content also increased in all grains during germination where the insoluble dietary fiber fractions were always found in higher proportions to soluble dietary fiber fractions. Our results also confirmed that germinated mung bean is a rich source of GABA and dietary fibers. Microwave cooking resulted in the smallest loss of GABA in mung bean and sesame, while steaming led to the least GABA content loss in soybean and black bean. Therefore microwave cooking and steaming are the most recommended cooking processes to preserve GABA in germinated legumes and sesame.

  5. Production of γ-aminobutyric acid by microorganisms from different food sources.

    Science.gov (United States)

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  6. Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats.

    Science.gov (United States)

    Takeshima, Kazuhito; Yamatsu, Atsushi; Yamashita, Yusuke; Watabe, Kazuya; Horie, Noriko; Masuda, Kazuyuki; Kim, Mujo

    2014-06-01

    γ-Aminobutyric acid (GABA) is an amino acid compound contained in vegetables such as tomatoes and also widely distributed in mammals. GABA acts as an inhibitory neurotransmitter and promotes parasympathetic activity to provide several beneficial effects, for instance, relaxation, anti-stress, and insomnia. GABA, produced via a fermentation process, has been available as a functional food ingredient. As part of a program to assess its safety, GABA was administered by oral gavage at doses of 500, 1250, and 2500mg/kg body weight to groups of 10 male and 10 female Sprague-Dawley rats for 13weeks. Treatment was not associated with the test substance-related mortality and appeared to be well tolerated. There were no toxicologically and statistically significant changes in urinalysis, hematology, clinical chemistry parameters, and in necropsy findings. A few statistically significant changes in food consumption and body weights were noted in the male groups while any significant changes were not noted in female groups. There was no effect of treatment on organ weights or on the results of the histopathological examinations. The results of toxicity evaluation support the safety use of GABA and the potential use as a functional food ingredient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases.

    Science.gov (United States)

    Inamoto, Teruo; Azuma, Haruhito; Sakamoto, Takeshi; Kiyama, Satoshi; Ubai, Takanobu; Kotake, Yatsugu; Watanabe, Masahito; Katsuoka, Yoji

    2007-10-01

    Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.

  8. High gamma-aminobutyric acid level in cortical tubers in epileptic infants with tuberous sclerosis complex measured with the MEGA-editing J-difference method and a three-Tesla clinical MRI Instrument.

    Science.gov (United States)

    Taki, Masako Minato; Harada, Masafumi; Mori, Kenji; Kubo, Hitoshi; Nose, Ayumi; Matsuda, Tsuyoshi; Nishitani, Hiromu

    2009-10-01

    The purpose of this study was to estimate the gamma-aminobutyric acid (GABA) and glutamate plus glutamine (Glx) concentrations in the cortical tubers of patients with tuberous sclerosis complex (TSC) using the MEGA-editing J-difference method and a stimulated echo-acquisition mode with a short echo time, and to determine which abnormality was more dominant between GABA and Glx in patients with TSC with epilepsy. This study included six patients with TSC (mean age, 4.3 years) and seven control subjects (mean age, 4.8 years). Measurements were obtained with a three-Tesla apparatus and postprocessing was conducted with an LCModel. The GABA level in the cortical gray matter (cgGABA) was calculated as a result of segmentation in voxels and from the literature values for gray and white matter ratios for GABA. Increased GABA and myo-inositol (mI) concentrations and a decreased N-acetyl aspartate (NAA) concentration were observed in the cortical tubers. The cgGABA level, and cgGABA/NAA and cgGABA/Glx ratios were also higher in patients with TSC than in control subjects. No significant difference was found in Glx concentration between patients with TSC and control subjects. Although the number of patients with TSC in this study was small, the increase in GABA and no significant change in Glx were consistent with previous neurochemical studies and support the hypothesis that brain GABA plays a key role in the pathophysiology of epilepsy during the process of neuronal development.

  9. An overview of gamma-hydroxybutyric acid: pharmacodynamics, pharmacokinetics, toxic effects, addiction, analytical methods, and interpretation of results.

    Science.gov (United States)

    Andresen, H; Aydin, B E; Mueller, A; Iwersen-Bergmann, S

    2011-09-01

    Abuse of gamma-hydroxybutyric acid (GHB) has been known since the early 1990's, but is not as widespread as the consumption of other illegal drugs. However, the number of severe intoxications with fatal outcomes is comparatively high; not the least of which is brought about by the consumption of the currently legal precursor substances gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD). In regards to previous assumptions, addiction to GHB or its analogues can occur with severe symptoms of withdrawal. Moreover, GHB can be used for drug-facilitated sexual assaults. Its pharmacological effects are generated mainly by interaction with both GABA(B) and GHB receptors, as well as its influence on other transmitter systems in the human brain. Numerous analytical methods for determining GHB using chromatographic techniques were published in recent years, and an enzymatic screening method was established. However, the short window of GHB detection in blood or urine due to its rapid metabolism is a challenge. Furthermore, despite several studies addressing this problem, evaluation of analytical results can be difficult: GHB is a metabolite of GABA (gamma-aminobutyric acid); a differentiation between endogenous and exogenous concentrations has to be made. Apart from this, in samples with a longer storage interval and especially in postmortem specimens, higher levels can be measured due to GHB generation during this postmortem interval or storage time. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Effect of Feeding High Gamma-Aminobutyric Acid-Containing Giant Embryo Black Sticky Rice (Oryza sativa L.) on Anxiety-Related Behavior of C57BL/6 Mice.

    Science.gov (United States)

    Jung, Woo-Young; Kim, Sung-Gon; Lee, Jin-Seong; Kim, Hyeon-Kyeong; Son, Beung-Gu; Kim, Jong-Woo; Suh, Jae-Won

    2017-08-01

    The aim of this study was to determine the effect of feeding high gamma-aminobutyric acid (GABA)-containing black sticky rice giant embryo (BSRGE, Oryza sativa L.) on anxiety-related behavior of C57BL/6 mice. Experimental feedstuff (BSRGE with high GABA+AIN-76A) and control (AIN-76A) were provided to C57BL/6 mouse for 10 days. Antianxiety effects of BSRGE with high GABA were measured using an elevated plus maze. On day 8, the number of open arm entries by GABA and control groups were 1.10 ± 1.60 (mean ± SD) and 0.00 ± 0.00 (P = .030). On day 10, the number of open arm entries by the GABA group was 2.00 ± 1.89, which was significantly (P = .025) higher than that in the control group (0.40 ± 0.84). On day 8, the time the mice spent in open arm in the GABA group and control group was 3.60 ± 7.06 and 0.00 ± 0.00 sec (P = .068), respectively. On day 10, the time the mice in the GABA and control groups spent in open arm was 6.20 ± 5.35 sec and 1.80 ± 3.82 sec (P = .042), respectively. In repeated analysis of variance for the number of entries into open arm and time spent in open arm, significant differences were found between the two groups. Therefore, BSRGE with high GABA content might have an antianxiety effect. This study can serve as a preliminary study so that further antianxiety effects of BSRGE can be determined in more extended animal or clinical research studies in the future.

  11. High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2017-11-22

    γ-Aminobutyric acid (GABA) and GABA-rich foods have shown anti-hypertensive and anti-depressant activities as the major functions in humans and animals. Hence, high GABA-producing lactic acid bacteria (LAB) could be used as functional starters for manufacturing novel fermented dairy foods. Glutamic acid decarboxylases (GADs) from LAB are highly conserved at the species level based on the phylogenetic tree of GADs from LAB. Moreover, two functionally distinct GADs and one intact gad operon were observed in all the completely sequenced Lactobacillus brevis strains suggesting its common capability to synthesize GABA. Difficulties and strategies for the manufacture of GABA-rich fermented dairy foods have been discussed and proposed, respectively. In addition, a genetic survey on the sequenced LAB strains demonstrated the absence of cell envelope proteinases in the majority of LAB including Lb. brevis, which diminishes their cell viabilities in milk environments due to their non-proteolytic nature. Thus, several strategies have been proposed to overcome the non-proteolytic nature of Lb. brevis in order to produce GABA-rich dairy foods.

  12. NCBI nr-aa BLAST: CBRC-GACU-20-0000 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-20-0000 emb|CAK04591.2| novel protein similar to vertebrate gamma-aminobu...tyric acid (GABA) B receptor, 2 (GABBR2) [Danio rerio] emb|CAN88500.1| novel protein similar to vertebrate g...amma-aminobutyric acid (GABA) B receptor, 2 (GABBR2) [Danio rerio] emb|CAN88045.1| novel protein similar to vertebrate...b|CAN88602.1| novel protein similar to vertebrate gamma-aminobutyric acid (GABA) B receptor, 2 (GABBR2) [Dan...io rerio] emb|CAK05338.2| novel protein similar to vertebrate gamma-aminobutyric acid (GABA) B receptor, 2 (GABBR2) [Danio rerio] CAK04591.2 1e-142 35% ...

  13. NCBI nr-aa BLAST: CBRC-TNIG-21-0000 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TNIG-21-0000 emb|CAK04591.2| novel protein similar to vertebrate gamma-aminobu...tyric acid (GABA) B receptor, 2 (GABBR2) [Danio rerio] emb|CAN88500.1| novel protein similar to vertebrate g...amma-aminobutyric acid (GABA) B receptor, 2 (GABBR2) [Danio rerio] emb|CAN88045.1| novel protein similar to vertebrate...b|CAN88602.1| novel protein similar to vertebrate gamma-aminobutyric acid (GABA) B receptor, 2 (GABBR2) [Dan...io rerio] emb|CAK05338.2| novel protein similar to vertebrate gamma-aminobutyric acid (GABA) B receptor, 2 (GABBR2) [Danio rerio] CAK04591.2 0.0 92% ...

  14. Carrier-mediated ¿-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-01-01

    and the anticancer prodrug d-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least...... two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290µM and V(max) of 75pmolcm(-2)min(-1) and a low affinity system with a K(m) of approximately 64mM and V(max) of 1.6nmolcm(-2)min(-1). The high...

  15. Brain Gamma-Aminobutyric Acid (GABA) Concentration of the Prefrontal Lobe in Unmedicated Patients with Obsessive-Compulsive Disorder: A Research of Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Zhang, Zongfeng; Fan, Qing; Bai, Yanle; Wang, Zhen; Zhang, Haiyin; Xiao, Zeping

    2016-10-25

    In recent years, a large number of neuroimaging studies found that the Cortico-Striato- Thalamo-Cortical circuit (CSTC), including the prefrontal lobe, a significant part of CSTC, has disturbance metabolically in patients with Obsessive-Compulsive Disorder (OCD). Explore the correlation between the neuro-metabolic features and clinical characteristics of OCD patients using magnetic resonance spectroscopy technology. 88 patients with OCD who were not received medication and outpatient treatment for 8 weeks and 76 health controls were enrolled, there was no significant difference in gender, age or education level between the two groups. SIEMENS 3.0T MRI scanner was used to measure the spectral wave of Orbito Frontal Cortex (OFC) and Anterior Cingulate Cortex (ACC) of participants, setting mega-press sequences. Meanwhile, the concentrations of gamma-aminobutyric acid (GABA), glutamine/glutamate complex (Glx) and N-Acetyl Aspartate (NAA) were measured relative to concentration of water, on the ACC and OFC of participants, for statistical analysis via LC model version 6.3 software. The concentration of metabolic substances of the OCD group compared to the healthy control group was analyzed using two sample t-test. The correlation between substance concentration and scores on the scales, including Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Hamilton Anxiety scale (HAMA) and Hamilton Depression scale (HAMD) was carried out using the Pearson correlation method. Compared with healthy controls, the GABA/W and NAA/W concentration in individuals with OCD are significantly decreased ( p =0.031, t =2.193, p =0.002, t =3.223). Also, the concentration of GABA/W had a trend of decrease in the ACC. The GABA/W of the OFC had a negative correlation with Y-BOCS-O, Y-BOCS-C and Y-BOCS-T scores ( p =0.037, r =0.221; p =0.007, r =0.283; p =0.014, r =0.259). These results support that GABA concentration in the OFC area of patients with OCD is significantly decreased and the

  16. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1 S ,3 S )-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunbeom [Department; Doud, Emma H. [Department; Department; Wu, Rui [Department; Sanishvili, Ruslan [X-ray; Juncosa, Jose I. [Department; Liu, Dali [Department; Kelleher, Neil L. [Department; Department; Silverman, Richard B. [Department; Department

    2015-02-10

    gamma-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.

  17. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  18. Increased gamma-aminobutyric acid levels in mouse brain induce loss of righting reflex, but not immobility, in response to noxious stimulation.

    Science.gov (United States)

    Katayama, Sohtaro; Irifune, Masahiro; Kikuchi, Nobuhito; Takarada, Tohru; Shimizu, Yoshitaka; Endo, Chie; Takata, Takashi; Dohi, Toshihiro; Sato, Tomoaki; Kawahara, Michio

    2007-06-01

    The general anesthetic state comprises behavioral and perceptual components, including amnesia, unconsciousness, and immobility. gamma-Aminobutyric acidergic (GABAergic) inhibitory neurotransmission is an important target for anesthetic action at the in vitro cellular level. In vivo, however, the functional relevance of enhancing GABAergic neurotransmission in mediating essential components of the general anesthetic state is unknown. Gabaculine is a GABA-transaminase inhibitor that inhibits degradation of released GABA, and consequently increases endogenous GABA in the central nervous system. Here, we examined, behaviorally, the ability of increased GABA levels to produce components of the general anesthetic state. All drugs were administered systemically in adult male ddY mice. To assess the general anesthetic components, two end-points were used. One was loss of righting reflex (LORR; as a measure of unconsciousness); the other was loss of movement in response to tail-clamp stimulation (as a measure of immobility). Gabaculine induced LORR in a dose-dependent fashion with a 50% effective dose of 100 (75-134; 95% confidence limits) mg/kg. The behavioral and microdialysis studies revealed that the endogenous GABA-induced LORR occurred in a brain concentration-dependent manner. However, even larger doses of gabaculine (285-400 mg/kg) produced no loss of tail-clamp response. In contrast, all the tested volatile anesthetics concentration-dependently abolished both righting and tail-clamp response, supporting the evidence that volatile anesthetics act on a variety of molecular targets. These findings indicate that LORR is associated with enhanced GABAergic neurotransmission, but that immobility in response to noxious stimulation is not, suggesting that LORR and immobility are mediated through different neuronal pathways and/or regions in the central nervous system.

  19. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk

    OpenAIRE

    Qinglong Wu; Yee-Song Law; Nagendra P. Shah

    2015-01-01

    Most high ?-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to manufacture GABA-rich f...

  20. The Enantiomers of 4-Amino-3-fluorobutanoic Acid as Substrates for γ-Aminobutyric Acid Aminotransferase. Conformational Probes for GABA Binding†

    Science.gov (United States)

    Clift, Michael; Ji, Haitao; Deniau, Gildas P.; O’Hagan, David; Silverman, Richard B.

    2008-01-01

    γ-Aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5’-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5’-phosphate (PLP) to pyridoxamine 5’-phosphate (PMP). The enzyme then catalyzes the conversion of α-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred based on the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical

  1. An autocrine γ-aminobutyric acid signaling system exists in pancreatic β-cell progenitors of fetal and postnatal mice.

    Science.gov (United States)

    Feng, Mary M; Xiang, Yun-Yan; Wang, Shuanglian; Lu, Wei-Yang

    2013-01-01

    Gamma-aminobutyric acid (GABA) is produced and secreted by adult pancreatic β-cells, which also express GABA receptors mediating autocrine signaling and regulating β-cell proliferation. However, whether the autocrine GABA signaling involves in β-cell progenitor development or maturation remains uncertain. By means of immunohistochemistry we analyzed the expression profiles of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) and the α1-subunit of type-A GABA receptor (GABAARα1) in the pancreas of mice at embryonic day 15.5 (E15.5), E18.5, postnatal day 1 (P1) and P7. Our data showed that at E15.5 the pancreatic and duodenum homeobox-1 (Pdx1) was expressed in the majority of cells in the developing pancreata. Notably, insulin immunoreactivity was identified in a subpopulation of pancreatic cells with a high level of Pdx1 expression. About 80% of the high-level Pdx-1 expressing cells in the pancreas expressed GAD and GABAARα1 at all pancreatic developmental stages. In contrast, only about 30% of the high-level Pdx-1 expressing cells in the E15.5 pancreas expressed insulin; i.e., a large number of GAD/GABAARα1-expressing cells did not express insulin at this early developmental stage. The expression level of GAD and GABAARα1 increased steadily, and progressively more GAD/GABAARα1-expressing cells expressed insulin in the course of pancreatic development. These results suggest that 1) GABA signaling proteins appear in β-cell progenitors prior to insulin expression; and 2) the increased expression of GABA signaling proteins may be involved in β-cell progenitor maturation.

  2. Contribution to gamma ray transport calculation in heterogeneous media

    International Nuclear Information System (INIS)

    Bourdet, L.

    1985-04-01

    This thesis presents the development of gamma transport calculation codes in three dimension heterogeneous geometries. These codes allow us to define the protection against gamma-rays or verify their efficiency. The laws that govern the interactions of gamma-rays with matters are briefly revised. A library with the all necessary constants for these codes is created. TRIPOLI-2, a code that treats in exact way the neutron transport in matters using Monte-Carlo method, has been adapted to deal with the transport of gamma-rays in matters as well. TRINISHI, a code which considers only one collision, has been realized to treat heterogeneous geometries containing voids. Elaborating a formula that calculates the albedo for gamma-ray reflection (the code ALBANE) allows us to solve the problem of gamma-ray reflection on plane surfaces. NARCISSE-2 deals with gamma-rays that suffer only one reflection on the inner walls of any closed volume (rooms, halls...) [fr

  3. Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies

    Science.gov (United States)

    Wang, Ke-Dong; Wang, Mei-Ting; Meng, Ju

    2014-10-01

    Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.

  4. Anterior Cingulate Cortex γ-Aminobutyric Acid in Depressed Adolescents

    Science.gov (United States)

    Gabbay, Vilma; Mao, Xiangling; Klein, Rachel G.; Ely, Benjamin A.; Babb, James S.; Panzer, Aviva M.; Alonso, Carmen M.; Shungu, Dikoma C.

    2013-01-01

    Context Anhedonia, a core symptom of major depressive disorder (MDD) and highly variable among adolescents with MDD, may involve alterations in the major inhibitory amino acid neurotransmitter system of γ-aminobutyric acid (GABA). Objective To test whether anterior cingulate cortex (ACC) GABA levels, measured by proton magnetic resonance spectroscopy, are decreased in adolescents with MDD. The associations of GABA alterations with the presence and severity of anhedonia were explored. Design Case-control, cross-sectional study using single-voxel proton magnetic resonance spectroscopy at 3 T. Setting Two clinical research divisions at 2 teaching hospitals. Participants Twenty psychotropic medication-free adolescents with MDD (10 anhedonic, 12 female, aged 12–19 years) with episode duration of 8 weeks or more and 21 control subjects group matched for sex and age. Main Outcome Measures Anterior cingulate cortex GABA levels expressed as ratios relative to unsuppressed voxel tissue water (w) and anhedonia scores expressed as a continuous variable. Results Compared with control subjects, adolescents with MDD had significantly decreased ACC GABA/w (t= 3.2; PGABA/w levels compared with control subjects (t=4.08; PGABA/w levels were negatively correlated with anhedonia scores for the whole MDD group (r = −0.50; P = .02), as well as for the entire participant sample including the control subjects (r=−0.54; PGABA, the major inhibitory neurotransmitter in the brain, may be implicated in adolescent MDD and, more specifically, in those with anhedonia. In addition, use of a continuous rather than categorical scale of anhedonia, as in the present study, may permit greater specificity in evaluating this important clinical feature. PMID:21969419

  5. Protective Therapies for Monomethylhydrazine: Comparison of Pyridoxine and Physical Restraint in the Monkey

    Science.gov (United States)

    1979-04-01

    Pharmaco1, Exp. Ther. 140:133. 14. Meldrum , B. S. (1975). Epilepsy and y-aminobutyric acid -mediated inhibition. Int. Rev. Neurobiol. 17:1-36. 15. Rougeul, A...within the context of established neurochemical influences of the hydrazines on synthesis of the inhibitory neurotransmitter, gamma amino- butyric acid ...pyridoxal phosphate, a reaction which absorbs this coenzyme in the synthesis of glutamic acid decar- boxylase (GAD) and gamma-aminobutyric acid (GABA

  6. Exposure of mother rats to chronic unpredictable stress before pregnancy alters the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus of offspring in early adolescence in a sexually dimorphic manner.

    Science.gov (United States)

    Huang, Yuejun; Shen, Zhiwei; Hu, Liu; Xia, Fang; Li, Yuewa; Zhuang, Jingwen; Chen, Peishan; Huang, Qingjun

    2016-12-30

    There is increasing evidence that mothers' exposure to stress before or during pregnancy is linked to an incidence of psychiatric disorders in offspring. However, a few studies have estimated the role of sex in the detrimental effects of pre-gestational stress on the offspring rats at early adolescence. Sex differences regarding the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus were investigated by MRS when the offspring rats reached 30 days. Additionally, the impact of pre-gestational stress exposed on an additional short-term acute stressor, such as forced swim, was examined in the male and female offspring rats. Our findings showed female offspring rats were more vulnerable to stressful conditions for either pre-gestational stress or acute stress in early adolescence, and had decreased GABA/Cr+PCr and Glu/Cr+PCr in the right hippocampus. Interestingly, in response to forced swim, male offspring rats whose mothers were exposed to pre-gestational stress were more affected by the short-term acute stressor and this was manifested by change of Glu/GABA and Glu/Gln in the right hippocampus. These data indicated that although female offspring rats were more vulnerable to pre-gestational stress from their mothers than males, in response to an additional acute stressor they showed better response. Therefore, both sexually dimorphic manner and combination of stressful procedures should be carefully considered in the study of stress-related psychiatric disorders in early adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Development of Monte Carlo decay gamma-ray transport calculation system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Kawasaki, Nobuo [Fujitsu Ltd., Tokyo (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)

    2001-06-01

    In the DT fusion reactor, it is critical concern to evaluate the decay gamma-ray biological dose rates after the reactor shutdown exactly. In order to evaluate the decay gamma-ray biological dose rates exactly, three dimensional Monte Carlo decay gamma-ray transport calculation system have been developed by connecting the three dimensional Monte Carlo particle transport calculation code and the induced activity calculation code. The developed calculation system consists of the following four functions. (1) The operational neutron flux distribution is calculated by the three dimensional Monte Carlo particle transport calculation code. (2) The induced activities are calculated by the induced activity calculation code. (3) The decay gamma-ray source distribution is obtained from the induced activities. (4) The decay gamma-rays are generated by using the decay gamma-ray source distribution, and the decay gamma-ray transport calculation is conducted by the three dimensional Monte Carlo particle transport calculation code. In order to reduce the calculation time drastically, a biasing system for the decay gamma-ray source distribution has been developed, and the function is also included in the present system. In this paper, the outline and the detail of the system, and the execution example are reported. The evaluation for the effect of the biasing system is also reported. (author)

  8. γ-Aminobutyric acid ameliorates fluoride-induced hypothyroidism in male Kunming mice.

    Science.gov (United States)

    Yang, Haoyue; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Pengcheng

    2016-02-01

    This study evaluated the protective effects of γ-aminobutyric acid (GABA), a non-protein amino acid and anti-oxidant, against fluoride-induced hypothyroidism in mice. Light microscope sample preparation technique and TEM sample preparation technique were used to assay thyroid microstructure and ultrastructure; enzyme immunoassay method was used to assay hormone and protein levels; immunohistochemical staining method was used to assay apoptosis of thyroid follicular epithelium cells. Subacute injection of sodium fluoride (NaF) decreased blood T4, T3 and thyroid hormone-binding globulin (TBG) levels to 33.98 μg/l, 3 2.8 ng/ml and 11.67 ng/ml, respectively. In addition, fluoride intoxication induced structural abnormalities in thyroid follicles. Our results showed that treatment of fluoride-exposed mice with GABA appreciably decreased metabolic toxicity induced by fluoride and restored the microstructural and ultrastructural organisation of the thyroid gland towards normalcy. Compared with the negative control group, GABA treatment groups showed significantly upregulated T4, T3 and TBG levels (42.34 μg/l, 6.54 ng/ml and 18.78 ng/ml, respectively; Plevel and apoptosis inhibition in thyroid follicular epithelial cells. To the best of our knowledge, this is the first study to establish the therapeutic efficacy of GABA as a natural antioxidant in inducing thyroprotection against fluoride-induced toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The novel isoxazoline ectoparasiticide lotilaner (Credelio™): a non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACls)

    OpenAIRE

    Rufener, Lucien; Danelli, Vanessa; Bertrand, Daniel; Sager, Heinz

    2017-01-01

    Background The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls). Lotilaner (Credelio™), a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. Methods In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the success...

  10. Discovery of α-Substituted Imidazole-4-acetic Acid Analogues as a Novel Class of ρ1 γ-Aminobutyric Acid Type A Receptor Antagonists with Effect on Retinal Vascular Tone

    DEFF Research Database (Denmark)

    Krall, Jacob; Brygger, Benjamin M.; Sigurðardóttir, Sara B.

    2016-01-01

    The ρ-containing γ-aminobutyric acid type A receptors (GABAA Rs) play an important role in controlling visual signaling. Therefore, ligands that selectively target these GABAA Rs are of interest. In this study, we demonstrate that the partial GABAA R agonist imidazole-4-acetic acid (IAA) is able...... to penetrate the blood-brain barrier in vivo; we prepared a series of α- and N-alkylated, as well as bicyclic analogues of IAA to explore the structure-activity relationship of this scaffold focusing on the acetic acid side chain of IAA. The compounds were prepared via IAA from l-histidine by an efficient...

  11. Excitatory amino acid transmitters in epilepsy.

    Science.gov (United States)

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  12. Detection of Glutamate and γ-aminobutyric Acid in Vitreous of Patients with Proliferative Diabetic Retinopathy

    Institute of Scientific and Technical Information of China (English)

    Juan Deng; De-Zheng Wu; Rulong Gao

    2000-01-01

    Purpose: To study the levels of glutamate and γ-aminobutyric acid (GABA) in vitreous of patients with proliferative diabetic retinopathy(PDR) and to investigate their roles in retinal ischemia.Method: Vitreous samples were collected from 25 patients (27 eyes) with PDR and 14patients ( 14 eyes) with idiopathic macular hole. Glutamate and GABA detection were performed by high-performance liquid chromatography (HPLC).Results: Patients with PDR had significantly higher concentrations of glutamate and GABA than the control group. The glutamate level has a significantly positive correlation with GABA level.Conclusion: Detection of glutamate and GABA in vitreous provides biochemical support for the mechanism and treatment of ischemic retinal damage in patients with PDR.

  13. Screening and mutagenesis of lactobacillus brevis for biosynthesis of γ-aminobutyric acid

    International Nuclear Information System (INIS)

    Xia Jiang; Mei Lehe; Huang Jun

    2006-01-01

    γ-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system. In this study, a GABA-producing strain, hjxj-01, was isolated from the milk samples and identified as Lactobacillus brevis. In this GYP medium containing sodium glutamate, the highest GABA concentration accumulated by Lactobacillus brevis hjxj-01 is 7 g/L. The strain was treated with UV and 60 Co γ-rays. Based on high positive mutation rate, the final mutagenesis conditions were UV light 30 W, irradiation distance 45 cm, irradiation time 50 s, and 60 Co γ-rays irradiation of 500 Gy. The mutant strain, hjxj-08119, was bred by GABA resistance selection. Cultured for 12 generations continually, the GABA-producing capacity of hjxj-08119 maintained stably. The fermentation results indicate that compared with the origin strain hjxj-01, the average yield of GABA by hjij-08119 is 17 g/L, which is 142.9% of the origin strain. (authors)

  14. Use of 3h-γ-aminobutyric acid for transport studies with isolated nerve-terminals from rat brain

    International Nuclear Information System (INIS)

    Halvarsson, G.B.; Karlsson, I.; Sellstroem, A.

    1985-01-01

    Isolated synaptosomes were used to study the problem of net accumulation of neurotransmitters. The time-course and the kinetics of exogenous and endogenous GABA transport were studied by liquid-scintillation counting and HPLC-amino acid analysis respectively. Different pools of GABA were suggested by a 6-fold difference in tissue-to-medium-ratio of endogenous vs. exogenous GABA. Net accumulation, exchange and net efflux of GABA was found to be a function of the GABA concentration in the incubation medium. The K/sub m/s for net accumulation and for 3 H-GABA accumulation were 2.68 +/- 1.16 and 6.19 +/- 1.26 μM respectively, whereas the V/sub max/s were 5.9 +/- 4.9 and 134 +/- 13 pmol/mg w.w min respectively. This means that the transport studies which use exogenous substances (e.g. 3 H-GABA) considerably overestimate the transport by overlooking the magnitude of the counter transport. 22 references, 5 figures, 2 tables

  15. Quantification of γ-Aminobutyric Acid in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    Science.gov (United States)

    Arning, Erland; Bottiglieri, Teodoro

    2016-01-01

    We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of GABA in CSF (50 μL) was performed utilizing high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Determination of total GABA in CSF requires additional sample preparation in order to hydrolyze all the bound GABA in the sample to the free form. This requires hydrolyzing the sample by boiling in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90 % acetonitrile/0.1 % formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 nM to 1000 nM and 0.63 μM to 80 μM for free and total GABA, respectively.

  16. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Science.gov (United States)

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  17. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  18. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings.

    Science.gov (United States)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    2017-03-15

    The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    Science.gov (United States)

    Carvill, Gemma L.; McMahon, Jacinta M.; Schneider, Amy; Zemel, Matthew; Myers, Candace T.; Saykally, Julia; Nguyen, John; Robbiano, Angela; Zara, Federico; Specchio, Nicola; Mecarelli, Oriano; Smith, Robert L.; Leventer, Richard J.; Møller, Rikke S.; Nikanorova, Marina; Dimova, Petia; Jordanova, Albena; Petrou, Steven; Helbig, Ingo; Striano, Pasquale; Weckhuysen, Sarah; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather C.

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ∼4% of unsolved MAE cases. PMID:25865495

  20. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    Science.gov (United States)

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter.

  1. Neocortical gamma oscillations in idiopathic generalized epilepsy

    DEFF Research Database (Denmark)

    Benedek, Krisztina; Berenyi, Antal; Gombkoto, Peter

    2016-01-01

    Objective: Absence seizures in patients with idiopathic generalized epilepsy (IGE) may in part be explained by a decrease in phasic GABAA (type-A c-aminobutyric acid) receptor function, but the mechanisms are only partly understood. Here we studied the relation between ictal and interictal spike......-wave discharges (SWDs) and electroencephalography (EEG) gamma oscillatory activity (30-60 Hz) in patients with IGE. Methods: EEG recordings were obtained of 14 children with IGE (mean age, 8.5 +/- 5 years) and 14 age-and sex-matched controls. Time-frequency analysis of each seizure and seizure-free control epochs...... was performed and cross-coherences of neocortical gamma oscillations were calculated to describe interictal and ictal characteristics of generalized seizures. Results: SWDs were characterized with an abrupt increase of oscillatory activity of 34 and 13-60 Hz, peaking at 3-4 and 30-60 Hz, and with a simultaneous...

  2. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  3. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  4. Identification of ɤ-Aminobutyric Acid (GABA in Loloh as A Potential Drink as Antihipertension

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Wita Kusumawati

    2018-04-01

    Full Text Available Loloh sembung (Blumea balsamifera is a functional drink that is widely consumed by Balinesse people and exhibit health-promoting effect. The purpose of this study was to identify GABA of loloh sembung which has physiological effect as antihypertensive. Proximate analysis was performed to determine nutritional value content of loloh sembung. Atomic Absorption Spectrophotometric (AAS method was employed to determine potassium and sodium content, and identificatio of ɤ-aminobutyric acid (GABA using Thin Layer Chromatography (TLC method. In this study, water content of loloh sembung was 99.2324%, ash 0.0117. Fresh sembung leaves have water content 83.8112%, ash content 2.0617%, protein 0.9659%, fat 2.850%, and carbohydrate 10.3109%. Loloh sembung contained sodium, 51.65 mg/L and potassium 1353.10 mg/L. Subsequently, fresh sembung leaves contained sodium 579.72 mg/L and pottasium 1353.19 mg/L respectively. In this study, GABA was detected in loloh sembung and has promising prospect as antihypertensive-functional drink.

  5. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    Science.gov (United States)

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  6. Inactivation of γ-aminobutyric acid aminotransferase by γ-ethynyl- and γ-vinyl GABA

    International Nuclear Information System (INIS)

    Silverman, R.B.; Burke, J.R.; Nanavati, S.M.

    1989-01-01

    γ-Ethynyl- and γ-vinyl GABA (vigabatrin) are anticonvulsant agents that have been shown to be mechanism-based inactivators of γ-aminobutyric acid aminotransferase (GABA-T). The inactivation mechanisms of these compounds have been investigated. Inactivation of GABA-T by [ 3 H]γ-ethynyl GABA led to the incorporation of 1.0 equiv of 3 H into the enzyme which is not released by enzyme denaturation. Inactivation by γ-ethynyl GABA of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PLP. Eight different possible adducts are consistent with that result. Experiments have been carried out to differentiate these possibilities. Similar studies have been carried out with γ-vinyl GABA. Inactivation by [ 14 C]γ-vinyl GABA resulted in the incorporation of 1.0 equiv of 14 C per active site. Unlike the case with γ-ethynyl GABA, γ-vinyl GABA inactivation of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PMP

  7. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    Science.gov (United States)

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  8. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses.

    Science.gov (United States)

    Franciosi, Elena; Carafa, Ilaria; Nardin, Tiziana; Schiavon, Silvia; Poznanski, Elisa; Cavazza, Agostino; Larcher, Roberto; Tuohy, Kieran M

    2015-01-01

    "Nostrano-cheeses" are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of "Nostrano-cheeses" and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.

  9. The transport of neutrons and gamma-rays in the air

    International Nuclear Information System (INIS)

    Adamski, J.

    1980-01-01

    The transport of neutrons and gamma rays in the infinite homogeneous air has been investigated. For the calculations has been used the Multigroup One Dimensional Discrete Ordinates Transport Code ANISN-W. The calculations have been performed for three types of neutron sources. The neutrons and gamma ray doses in the air have been analyzed, and comparison to the other authors' results has been given. (author)

  10. Effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Torres, Andres Felipe

    2015-01-01

    Highlights: • Effect of α-amino acids on the temperature of maximum density of water is presented. • The addition of α-amino acids decreases the temperature of maximum density of water. • Despretz constants suggest that the amino acids behave as water structure breakers. • Despretz constants decrease as the number of CH 2 groups of the amino acid increase. • Solute disrupting effect becomes smaller as its hydrophobic character increases. - Abstract: The effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65 to 278.65) K at intervals of T = 0.50 K over the concentration range between (0.0300 and 0.1000) mol · kg −1 . A linear relationship between density and concentration was obtained for all the systems in the temperature range considered. The temperature of maximum density was determined from the experimental results. The effect of the three amino acids is to decrease the temperature of maximum density of water and the decrease is proportional to molality according to Despretz equation. The effect of the amino acids on the temperature of maximum density decreases as the number of methylene groups of the alkyl chain becomes larger. The results are discussed in terms of (solute + water) interactions and the effect of amino acids on water structure

  11. Integral transport computation of gamma detector response with the CPM2 code

    International Nuclear Information System (INIS)

    Jones, D.B.

    1989-12-01

    CPM-2 Version 3 is an enhanced version of the CPM-2 lattice physics computer code which supports the capabilities to (1) perform a two-dimensional gamma flux calculation and (2) perform Restart/Data file maintenance operations. The Gamma Calculation Module implemented in CPM-2 was first developed for EPRI in the CASMO-1 computer code by Studsvik Energiteknik under EPRI Agreement RP2352-01. The gamma transport calculation uses the CPM-HET code module to calculate the transport of gamma rays in two dimensions in a mixed cylindrical-rectangular geometry, where the basic fuel assembly and component regions are maintained in a rectangular geometry, but the fuel pins are represented as cylinders within a square pin cell mesh. Such a capability is needed to represent gamma transport in an essentially transparent medium containing spatially distributed ''black'' cylindrical pins. Under a subcontract to RP2352-01, RPI developed the gamma production and gamma interaction library used for gamma calculation. The CPM-2 gamma calculation was verified against reference results generated by Studsvik using the CASMO-1 program. The CPM-2 Restart/Data file maintenance capabilities provide the user with options to copy files between Restart/Data tapes and to purge files from the Restart/Data tapes

  12. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.

    Science.gov (United States)

    Shan, Y; Man, C X; Han, X; Li, L; Guo, Y; Deng, Y; Li, T; Zhang, L W; Jiang, Y J

    2015-04-01

    Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies.

    Science.gov (United States)

    Gao, Qiang; Duan, Qiang; Wang, Depei; Zhang, Yunze; Zheng, Chunyang

    2013-02-27

    To date, the multifunctional γ-aminobutyric acid (GABA) is mainly produced by microbial fermentation in industry. The purpose of this study was to find an effective method for separation and purification of 31.2 g/L initial GABA from the fermentation broth of Enterococcus raffinosus TCCC11660. To remove the impurities from fermentation broth, flocculation pretreatment using chitosan and sodium alginate was first implemented to facilitate subsequent filtration. Ultrafiltration followed two discontinuous diafiltration steps to effectively remove proteins and macromolecular pigments, and the resulting permeate was further decolored by DA201-CII resin at a high decoloration ratio and GABA recovery. Subsequently, ion exchange chromatography (IEC) with Amberlite 200C resin and gradient elution were applied for GABA separation from glutamate and arginine. Finally, GABA crystals of 99.1% purity were prepared via warm ethanol precipitation twice. Overall, our results reveal that the successive process including flocculation, filtration, ultrafiltration, decoloration, IEC, and crystallization is promising for scale-up GABA extraction from fermentation broth.

  14. Neutron and gamma-ray transport experiments in liquid air

    International Nuclear Information System (INIS)

    Farley, W.E.

    1976-01-01

    Accurate estimates of neutron and gamma radiations from a nuclear explosion and their subsequent transport through the atmosphere are vital to nuclear-weapon employment studies: i.e., for determining safety radii for aircraft crews, casualty and collateral-damage risk radii for tactical weapons, and the kill range from a high-yield defensive burst for a maneuvering reentry vehicle. Radiation transport codes, such as the Laboratory's TARTNP, are used to calculate neutron and gamma fluences. Experiments have been performed to check and update these codes. Recently, a 1.3-m-radius liquid-air (21 percent oxygen) sphere, with a pulsed source of 14-MeV neutrons at its center, was used to measure the fluence and spectra of emerging neutrons and secondary gamma rays. Comparison of measured radiation dose with TARTNP showed agreement within 10 percent

  15. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels

    Science.gov (United States)

    Li, Shao-Jun; Ou, Chao-Yan; He, Sheng-Nan; Huang, Xiao-Wei; Luo, Hai-Lan; Meng, Hao-Yang; Lu, Guo-Dong; Jiang, Yue-Ming; Vieira Peres, Tanara; Luo, Yi-Ni; Deng, Xiang-Fa

    2017-01-01

    Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism. PMID:28394286

  16. Residues in the extracellular loop 4 are critical for maintaining the conformational equilibrium of the gamma-aminobutyric acid transporter-1

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Meinild, Anne-Kristine; Zeuthen, Thomas

    2003-01-01

    . Oocytes expressing M345H showed a decrease in apparent GABA affinity, an increase in apparent affinity for Na+, a shift in the charge/voltage (Q/Vm) relationship to more positive membrane potentials, and an increased Li+-induced leak current. Oocytes expressing T349H showed an increase in apparent GABA...... affinity, a decrease in apparent Na+ affinity, a profound shift in the Q/Vm relationship to more negative potentials, and a decreased Li+-induced leak current. The data are consistent with a shift in the conformational equilibrium of the mutant transporters, with M345H stabilized in an outward...

  17. Studies of a Bulbospinal Pathway that Regulates Cardiovascular Function: Inhibition by GABA at the Ventral Medulla and Mediation by Spinal Cord Substance P

    Science.gov (United States)

    1984-12-13

    rat. Neurosci. Abstr. 10:299. Meldrum , B.S. (1975) Epilepsy and gamma aminobutyric acid -mediated in- hibition. In: International Review of Neurobiology...Table 1 AGENTS THAT INDUCE CARDIOVASCULAR CHANGES WHEN TOPICALLY APPLIED TO OR MICROINJECTED NEAR THE VSMO acetylchol ine Y-aminobutyric acid ...va , 1981; Blessing and Reis, 1983; Keeler et _al_., 1984a Feldberg, 1976; Feldberg and Guertzenstein, 1976 Table 1 (continuation) kainic acid

  18. Poly-gamma-glutamic acid a substitute of salivary protein statherin

    International Nuclear Information System (INIS)

    Qamar, Z.; Rahim, Z.B.H.A.; Fatima, T.

    2016-01-01

    The modus operandi of salivary proteins in reducing the kinetics of enamel dissolution during simulated caries challenges is thought to be associated with interaction of glutamic acid residues with human teeth surfaces. Japanese traditional food stuff natto is rich with chain of repeating glutamic acid residues linked by gamma-peptide bond and hence, named poly-gamma-glutamic acid (PGGA). It is a naturally occurring polypeptide and may therefore perform similar caries inhibitory functions as statherin. (author)

  19. Gamma radiolysis of aqueous solution of ascorbic acid

    International Nuclear Information System (INIS)

    Loyola V, V.M.; Azamer B, J.A.; Laviada C, A.; Luna V, P.

    1977-01-01

    A preliminary study of the gamma radiolysis of a 1.13 x 10 -4 Maqueous solution of ascorbic acid is presented. It was found that dehydroascorbic acid was the principal product at doses of about 75 Krad. An increase in the dehydroascorbic acid concentration rangins from 5 to 40% was obtained, these values depend mainly on the initial ascorbic acid concentration. (author)

  20. Particle transport simulation for spaceborne, NaI gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Sims, A.J.; Comber, C.; Hammond, N.D.A.

    1988-11-01

    Radioactivity induced in detectors by protons and secondary neutrons limits the sensitivity of spaceborne gamma-ray spectrometers. Three dimensional Monte Carlo transport codes have been employed to simulate particle transport of cosmic rays and inner-belt protons in various representations of the Gamma Ray Observatory Spacecraft and the Oriented Scintillation Spectrometer Experiment. Results are used to accurately quantify the contributions to the radioactive background, assess shielding options and examine the effect of detector and space-craft orientation in anisotropic trapped proton fluxes. (author)

  1. Incorporation and distribution of dihomo-gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid in cultured human keratinocytes

    International Nuclear Information System (INIS)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1986-01-01

    Human keratinocytes in culture were labelled with 14 C-dihomo-gamma-linolenic acid, 14 C-arachidonic acid or 14 C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neutral lipids a substantial amount, and as free unesterified fatty acids only a minor amount. Most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-gamma-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerols as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes

  2. Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat

    Science.gov (United States)

    Hori, Tomohide; Gardner, Lindsay B.; Hata, Toshiyuki; Chen, Feng; Baine, Ann-Marie T.; Uemoto, Shinji; Nguyen, Justin H.

    2014-01-01

    Summary Background: Gamma-aminobutyric acid (GABA) is found throughout the body. The regulation of GABA receptor (GABAR) reduces oxidative stress (OS). Ischemia/reperfusion injury after orthotopic liver transplantation (OLT) causes OS-induced graft damage. The effects of GABAR regulation in donors in vivo were investigated. Material/Methods: Donor rats received saline, a GABAR agonist or GABAR antagonist 4 h before surgery. Recipient rats were divided into four groups according to the donor treatments: laparotomy, OLT with saline, OLT with GABAR agonist and OLT with GABAR antagonist. Histopathological, biochemical and immunohistological examinations were performed at 6, 12 and 24 h after OLT. Protein assays were performed at 6 h after OLT. The 4-hydroxynonenal (4-HNE), ataxia-telangiectasia mutated kinase (ATM), phosphorylated histone H2AX (γH2AX), phosphatidylinositol-3 kinase (PI3K), Akt and superoxide dismutase (SOD) were assessed by western blot analysis. Results: In the univariate analysis, histopathological and biochemical profiles verified that the GABAR agonist reduced graft damage. Immunohistology revealed that the GABAR agonist prevented the induction of apoptosis. Measurement of 4-4-HNE levels confirmed OS-induced damage after OLT, and the GABAR agonist improved this damage. In the γH2AX, PI3K, Akt and antioxidant enzymes (SODs), ATM and H2AX were greatly increased after OLT, and were reduced by the GABAR agonist. In the multivariate analyses between multiple groups, histopathological assessment, aspartate aminotransferase level, immunohistological examinations for apoptotic induction and γH2AX showed statistical differences. Conclusions: A specific agonist demonstrated regulation of GABAR in vivo in the liver. This activation in vivo reduced OS after OLT via the ATM/H2AX pathway. PMID:23792534

  3. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives.

    Science.gov (United States)

    Schöffmann, Angela; Wimmer, Laurin; Goldmann, Daria; Khom, Sophia; Hintersteiner, Juliane; Baburin, Igor; Schwarz, Thomas; Hintersteininger, Michael; Pakfeifer, Peter; Oufir, Mouhssin; Hamburger, Matthias; Erker, Thomas; Ecker, Gerhard F; Mihovilovic, Marko D; Hering, Steffen

    2014-07-10

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure-activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators.

  4. γ-Aminobutyric acid inhibits the proliferation and increases oxaliplatin sensitivity in human colon cancer cells.

    Science.gov (United States)

    Song, Lihua; Du, Aiying; Xiong, Ying; Jiang, Jing; Zhang, Yao; Tian, Zhaofeng; Yan, Hongli

    2016-11-01

    γ-Aminobutyric acid (GABA) is a natural non-protein amino acid, which broadly exists in many plant parts and is widely used as an ingredient in the food industry. In mammals, it is widely distributed in central nervous system and non-neural tissues. In addition to a primary inhibitory neurotransmitter in the central nervous system, endogenous GABA content has been found to be elevated in neoplastic tissues in colon cancer. However, the effect of extraneous GABA on colon cancer has rarely been reported. In this study, we found the inhibitory effects of GABA on the proliferation of colon cancer cells (CCCs). The amino acid also suppressed metastasis of SW480 and SW620 cells. To further study the correlated mechanism, we analyzed the changes in cell cycle distribution and found that GABA suppressed cell cycle progression through G2/M or G1/S phase. Furthermore, RNA sequencing analysis revealed GABA-induced changes in the mRNA expression of 30 genes, including EGR1, MAPK4, NR4A1, Fos, and FosB, in all the three types of CCC. Importantly, GABA enhanced the anti-tumor efficacy of oxaliplatin (OXA) in subcutaneous xenograft tumor model in nude mice. The data suggest that GABA inhibits colon cancer cell proliferation perhaps by attenuating EGR1-NR4A1 axis, EGR1-Fos axis, and by disrupting MEK-EGR1 signaling pathway. This work reveals the pharmacological value of GABA derived from food and suggests that exogenous GABA might play an auxiliary role in polychemotherapy of colon cancer.

  5. Transport of Gamma Radiography Apparatus (Dangerous Goods 1978, no. 7)

    International Nuclear Information System (INIS)

    1978-01-01

    The Minister of Transport amended the Regulations on the Transport of Dangerous Goods of 15 April 1945 by Order dated 24 August 1978. The modifications concern the safety conditions to be complied with for the transport of portable industrial gamma radiography apparatus containing sealed radioactive sources. (NEA) [fr

  6. The novel isoxazoline ectoparasiticide lotilaner (Credelio™: a non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACls

    Directory of Open Access Journals (Sweden)

    Lucien Rufener

    2017-11-01

    Full Text Available Abstract Background The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA-gated chloride channels (GABACls and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls. Lotilaner (Credelio™, a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. Methods In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the successful gene identification, cDNA cloning and functional expression in Xenopus oocytes of Drosohpila melanogaster (wild type and dieldrin/fipronil-resistant forms, Lepeophtheirus salmonis (an ectoparasite copepod crustacean of salmon, Rhipicephalus microplus and Canis lupus familiaris GABACls. Automated Xenopus oocyte two-electrode voltage clamp electrophysiology was used to assess GABACls functionality and to compare ion channel inhibition by lotilaner with that of established insecticides addressing GABACls as targets. Results In these assays, we demonstrated that lotilaner is a potent non-competitive antagonist of insects (fly GABACls. No cross-resistance with dieldrin or fipronil resistance mutations was detected, suggesting that lotilaner might bind to a site at least partly different from the one bound by known GABACl blockers. Using co-application experiments, we observed that lotilaner antagonism differs significantly from the classical open channel blocker fipronil. We finally confirmed for the first time that isoxazoline compounds are not only powerful antagonists of GABACls of acari (ticks but also of crustaceans (sea lice, while no activity on a dog GABAA receptor was observed up to a concentration of 10 μM. Conclusions Together, these results demonstrate that lotilaner is a non-competitive antagonist specific to invertebrate’s γ-aminobutyric acid-gated chloride channels (GABACls. They contribute to our understanding of the mode of

  7. The novel isoxazoline ectoparasiticide lotilaner (Credelio™): a non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACls).

    Science.gov (United States)

    Rufener, Lucien; Danelli, Vanessa; Bertrand, Daniel; Sager, Heinz

    2017-11-01

    The isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and, to a lesser extent, of inhibitory glutamate-gated chloride channels (GluCls). Lotilaner (Credelio™), a novel representative of this chemical class, is currently evaluated for its excellent ectoparasiticide properties. In this study, we investigated the molecular mode of action and pharmacology of lotilaner. We report the successful gene identification, cDNA cloning and functional expression in Xenopus oocytes of Drosohpila melanogaster (wild type and dieldrin/fipronil-resistant forms), Lepeophtheirus salmonis (an ectoparasite copepod crustacean of salmon), Rhipicephalus microplus and Canis lupus familiaris GABACls. Automated Xenopus oocyte two-electrode voltage clamp electrophysiology was used to assess GABACls functionality and to compare ion channel inhibition by lotilaner with that of established insecticides addressing GABACls as targets. In these assays, we demonstrated that lotilaner is a potent non-competitive antagonist of insects (fly) GABACls. No cross-resistance with dieldrin or fipronil resistance mutations was detected, suggesting that lotilaner might bind to a site at least partly different from the one bound by known GABACl blockers. Using co-application experiments, we observed that lotilaner antagonism differs significantly from the classical open channel blocker fipronil. We finally confirmed for the first time that isoxazoline compounds are not only powerful antagonists of GABACls of acari (ticks) but also of crustaceans (sea lice), while no activity on a dog GABA A receptor was observed up to a concentration of 10 μM. Together, these results demonstrate that lotilaner is a non-competitive antagonist specific to invertebrate's γ-aminobutyric acid-gated chloride channels (GABACls). They contribute to our understanding of the mode of action of this new ectoparasiticide compound.

  8. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation

    Directory of Open Access Journals (Sweden)

    Chien-Hui Wu

    2018-01-01

    Full Text Available Lactic acid bacteria were isolated from fish and evaluated for their γ-aminobutyric acid (GABA-producing abilities. Out of thirty-two isolates, Lactobacillus brevis RK03 showed the highest GABA production ability. The effects of various fermentation parameters including initial glutamic acid level, culture temperature, initial pH, and incubation time on GABA production were investigated via a singleparameter optimization strategy. For industrial large-scale production, a low-cost GABA producing medium (GM broth was developed for fermentation with L. brevis RK03. We found that an optimized GM broth recipe of 1% glucose; 2.5% yeast extract; 2 ppm each of CaCO3, MnSO4, and Tween 80; and 10 μM pyridoxal phosphate (PLP resulted in a maximum GABA yield of 62,523 mg/L after 88 h following the addition of 650 mM monosodium glutamate (MSG, for a conversion rate of 93.28%. Our data provide a practical approach for the highly efficient and economic production of GABA. In addition, L. brevis RK03 is highly resistant to gastric acid and bovine bile salt. Thus, the discovery of Lactobacillus strains with the ability to synthesize GABA may offer new opportunities in the design of improved health-promoting functional foods.

  9. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation.

    Science.gov (United States)

    Wu, Chien-Hui; Hsueh, Yi-Huang; Kuo, Jen-Min; Liu, Si-Jia

    2018-01-04

    Lactic acid bacteria were isolated from fish and evaluated for their γ-aminobutyric acid (GABA)-producing abilities. Out of thirty-two isolates, Lactobacillus brevis RK03 showed the highest GABA production ability. The effects of various fermentation parameters including initial glutamic acid level, culture temperature, initial pH, and incubation time on GABA production were investigated via a singleparameter optimization strategy. For industrial large-scale production, a low-cost GABA producing medium (GM) broth was developed for fermentation with L. brevis RK03. We found that an optimized GM broth recipe of 1% glucose; 2.5% yeast extract; 2 ppm each of CaCO₃, MnSO₄, and Tween 80; and 10 μM pyridoxal phosphate (PLP) resulted in a maximum GABA yield of 62,523 mg/L after 88 h following the addition of 650 mM monosodium glutamate (MSG), for a conversion rate of 93.28%. Our data provide a practical approach for the highly efficient and economic production of GABA. In addition, L. brevis RK03 is highly resistant to gastric acid and bovine bile salt. Thus, the discovery of Lactobacillus strains with the ability to synthesize GABA may offer new opportunities in the design of improved health-promoting functional foods.

  10. Biodiversity and γ-Aminobutyric Acid Production by Lactic Acid Bacteria Isolated from Traditional Alpine Raw Cow’s Milk Cheeses

    Directory of Open Access Journals (Sweden)

    Elena Franciosi

    2015-01-01

    Full Text Available “Nostrano-cheeses” are traditional alpine cheeses made from raw cow’s milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA, an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months. A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR and differentiated into 583 clusters. LAB strains from dominant clusters (n=97 were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC. About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg was a Sc. thermophilus.

  11. Extraction, purification and anti-fatigue activity of γ-aminobutyric acid from mulberry (Morus alba L.) leaves

    Science.gov (United States)

    Chen, Hengwen; He, Xuanhui; Liu, Yan; Li, Jun; He, Qingyong; Zhang, Cuiying; Wei, Benjun; Zhang, Ye; Wang, Jie

    2016-01-01

    Mulberry (Morus alba L.) is a tree species of Moraceae widely distributed in Southern China. In the present study, the white crystal of γ-aminobutyric acid (GABA) was purified from mulberry leaves, and its bioactivity was also investigated. The main results were as follows: first, the crude GABA was extracted from mulberry leaves by using biochemical methods. Then, the crude was purified by chromatography over an S-8 macroporous resin, Sephadex G-10, and 732 cation exchange resin to yield a white crystal. Lavage administration and exposure of GABA to male NIH mice showed no adverse effects on their growth and development. In an endurance capacity test, the average loaded-swimming time of medium dose was 111.60% longer than the control (P levels of blood urea nitrogen (BUN) were 36.83% and 40.54% lower (P levels were 12.81% and 17.22% lower (P GABA has an advantage over taurine of anti-fatigue effect. These findings were indicative of the anti-fatigue activity of GABA.

  12. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity

    DEFF Research Database (Denmark)

    Bolvig, T; Larsson, O M; Pickering, D S

    1999-01-01

    The inhibitory action of bicyclic isoxazole gamma-aminobutyric acid (GABA) analogues and their 4,4-diphenyl-3-butenyl (DPB) substituted derivatives has been investigated in cortical neurones and astrocytes as well as in human embryonic kidney (HEK 293) cells transiently expressing either mouse GA...... anticonvulsant activity, lack of proconvulsant activity and the ability of THPO to increase extracellular GABA concentration, indicate that these bicyclic isoxazole GABA analogues and their DPB derivatives may be useful lead structures in future search for new antiepileptic drugs....

  13. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    Science.gov (United States)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  15. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  16. Cloning of the γ-aminobutyric acid (GABA) ρ1 cDNA: A GABA receptor subunit highly expressed in the retina

    International Nuclear Information System (INIS)

    Cutting, G.R.; Lu, Luo; Kasch, L.M.; Montrose-Rafizadeh, C.; Antonarakis, S.E.; Guggino, W.B.; Kazazian, H.H. Jr.; O'Hara, B.F.; Donovan, D.M.; Shimada, Shoichi; Uhl, G.R.

    1991-01-01

    Type A γ-aminobutyric acid (GABA A ) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. The authors have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence is 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABA A subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA ρ 1 , with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family

  17. Pharmacological approaches to the study of CHOLINO- and GABA-receptor states in nerve cells after irradiation with low intensity

    International Nuclear Information System (INIS)

    Anan'eva, T.V.; Dvoretskij, A.I.

    2000-01-01

    The peculiarities of functioning specific cholino- and GABA-receptors (ChR and GABA-R) by modeling the effect of synaptic neuromediators, correspondingly acetocholine (ACh) and gamma-aminobutyric acid (GABA), in low concentrations on the K + active transport in the rats cerebral cortex after single-time or chronical total irradiation with the dose of 0.25 Gy are studied. As a result of the study of both the acetocholine (10 -10 and 10 -6 mole/l) and gamma-aminobutyric avid (10 -9 and 10 -5 mole/l) effects on the K + active transport in the rats cerebral cortex slices in presence of any selective antagonists of the choline- and GABA-receptors, it is shown, that after the whole body irradiation with 25 c Gy (1.75 m Gy/min) the metabotropic muscarinic ChR and GABA B - receptors were involved into the processes of neurotransmitter modulation, whereas under ionotropic nicotinic choline- and GAB A - receptors. The observed changes are supposed to be of adaptive character. The post irradiation structural and functional disturbances may be considered as one of the causes of essential distortions in the processes of interneuronal metabolic communication in the central nerve system [ru

  18. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  19. Influence of high-pressure processing on the generation of γ-aminobutyric acid and microbiological safety in coffee beans.

    Science.gov (United States)

    Chen, Bang-Yuan; Huang, Hsiao-Wen; Cheng, Ming-Ching; Wang, Chung-Yi

    2018-04-27

    The aim of this study was to investigate the influence of high-pressure processing (HPP) on γ-aminobutyric acid (GABA) content, glutamic acid (Glu) content, glutamate decarboxylase (GAD) activity, growth of Aspergillus fresenii, and accumulated ochratoxin A (OTA) content in coffee beans. The results indicated that coffee beans subjected to HPP at pressures ≥50 MPa for 5 min increased GAD activity and promoted the conversion of Glu to GABA, and showed a significantly doubling of GABA content compared with unprocessed coffee beans. Additionally, investigation of the influence of HPP on A. fresenii growth on coffee beans showed that application ≥400 MPa reduced A. fresenii concentrations to beans subjected to processing pressures of 600 MPa was 0.0066 μg g -1 , which was significantly lower than the OTA content of 0.1143 μg g -1 in the control group. This study shows that HPP treatment can simultaneously increase GABA content and inhibit the growth of A. fresenii, thereby effectively reducing the production and accumulation of OTA and maintaining the microbiological safety of coffee beans. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. Luminescence from {gamma}-irradiated humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Goraczko, Wieslaw [Faculty of Chemical Technology, Radio- and Photochemistry Department, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan (Poland); Slawinski, Janusz [Institute of Ecotechnology, State Higher Vocational School, ul. Ks. Kard. S.Wyszynskiego 38, 62-200 Gniezno (Poland)

    2008-07-15

    This study was conducted to investigate the ultraweak delayed radiochemiluminescence (RCL) spectra, kinetics and spectroscopic properties of humic acids (HAs) after {gamma}-radiation exposure (absorbed doses of 1-10 kGy, Co-60) in model systems. The kinetics and spectral distribution of RCL (340-650 nm) were measured using the single photon counting (SPC) method and cut-off filters. The intensity of fluorescence ({lambda}{sub ex}=390, 440, 490 and 540 nm) covering the spectral range 400-580 nm was heavily dependent on the {lambda}{sub ex} and slightly increased with the absorbed dose of {gamma}-radiation. Absorption spectra (the range 240-800 nm) and color coefficients E{sub 2.6/4} and E{sub 4/6} of irradiated solutions indicated that post-radiative degradation/polymerization processes take place in the HA, changing their macromolecule size or properties. Comparison of FTIR spectra and elemental analysis proved an increased O and decreased C atoms in irradiated samples. The data indicate on the radiolysis-induced degradation of native HA into fulvic-like acids with higher hydrophilicity and lower molecular size.

  1. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk

    Science.gov (United States)

    Wu, Qinglong; Law, Yee-Song; Shah, Nagendra P.

    2015-01-01

    Most high γ-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to manufacture GABA-rich fermented milk. It was observed that all the selected strains of Streptococcus thermophilus, but not Lactobacillus delbrueckii subsp. bulgaricus, improved the viability of L. brevis NPS-QW-145 in milk. Only certain strains of S. thermophilus improved the gadA mRNA level in L. brevis NPS-QW-145, thus enhanced GABA biosynthesis by the latter. These results suggest that certain S. thermophilus strains are highly recommended to co-culture with high GABA producer for manufacturing GABA-rich fermented milk. PMID:26245488

  2. Comparison of γ-aminobutyric acid and biogenic amine content of different types of ewe’s milk cheese produced in Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    Gavina Manca

    2015-06-01

    Full Text Available The bioactive compounds γ-aminobutyric acid (GABA and biogenic amines (BA, together with protein-free amino acids, were measured by high-performance liquid chromatography in ewe’s milk cheeses produced in Sardinia with different technological traits. The study included three types of cheese: Pecorino Sardo PDO, Pecorino and Casu Marzu. Farmhouse Casu Marzu and Pecorino showed GABA content (maximum levels: 1001.3 and 378.1 mg 100 g–1 respectively that had never been found so high in cheese before, suggesting that these types of cheese present ideal conditions to produce GABA. These two types of cheese also showed high levels of BA (their total maximum levels were 1035.7 and 288.0 mg 100 g–1 respectively. Pearson correlation analysis detected significant correlation between GABA and the main BA present in the cheeses (tyramine, cadaverine and putrescine, suggesting that the factors affecting the production of GABA are the same as those influencing BA formation.

  3. Dairy Streptococcus thermophilus improves cell viability of Lactobacillus brevis NPS-QW-145 and its γ-aminobutyric acid biosynthesis ability in milk.

    Science.gov (United States)

    Wu, Qinglong; Law, Yee-Song; Shah, Nagendra P

    2015-08-06

    Most high γ-aminobutyric acid (GABA) producers are Lactobacillus brevis of plant origin, which may be not able to ferment milk well due to its poor proteolytic nature as evidenced by the absence of genes encoding extracellular proteinases in its genome. In the present study, two glutamic acid decarboxylase (GAD) genes, gadA and gadB, were found in high GABA-producing L. brevis NPS-QW-145. Co-culturing of this organism with conventional dairy starters was carried out to manufacture GABA-rich fermented milk. It was observed that all the selected strains of Streptococcus thermophilus, but not Lactobacillus delbrueckii subsp. bulgaricus, improved the viability of L. brevis NPS-QW-145 in milk. Only certain strains of S. thermophilus improved the gadA mRNA level in L. brevis NPS-QW-145, thus enhanced GABA biosynthesis by the latter. These results suggest that certain S. thermophilus strains are highly recommended to co-culture with high GABA producer for manufacturing GABA-rich fermented milk.

  4. [Enhanced electro-chemical oxidation of Acid Red 3R solution with phosphotungstic acid supported on gamma-Al2O3].

    Science.gov (United States)

    Yue, Lin; Wang, Kai-Hong; Guo, Jian-Bo; Yang, Jing-Liang; Liu, Bao-You; Lian, Jing; Wang, Tao

    2013-03-01

    Supported phosphotungstic acid catalysts on gamma-Al2O3 (HPW/gamma-Al2O3) were prepared by solution impregnation and characterized by FTIR, XRD, TG-DTA and SEM. The heteropolyanion shows a Keggin structure. Electro-chemical oxidation of Acid Red 3R was investigated in the presence of HPW supported on gamma-Al2O3 as packing materials in the reactor. The results show that HPW/gamma-Al2O3 has a good catalytic activity for decolorization of Acid Red 3R. When HPW loading was 4.6%, pH value of Acid Red 3R was 3, the voltage was 25.0 V, air-flow was 0.04 m3 x h(-1), and electrode span was 3.0 cm, the decolorization efficiency of Acid Red 3R can reach 97.6%. The removal rate of color had still about 80% in this electro-chemical oxidation system, after HPW/gamma-Al2O3 was used for 10 times, but active component loss existed. The interim product was analyzed by means of Vis-UV absorption spectrum. It shows that the conjugated structure of dye is destroyed primarily.

  5. Basic mechanisms of gabitril (tiagabine) and future potential developments.

    Science.gov (United States)

    Meldrum, B S; Chapman, A G

    1999-01-01

    Gabitril (tiagabine) is a potent selective inhibitor of the principal neuronal gamma-aminobutyric acid (GABA) transporter (GAT-1) in the cortex and hippocampus. By slowing the reuptake of synaptically-released GABA, it prolongs inhibitory postsynaptic potentials. In animal models of epilepsy, tiagabine is particularly effective against kindled (limbic) seizures and against reflexly-induced generalized convulsive seizures. These data are predictive of its efficacy in complex partial seizures in humans. Possible clinical applications outside the field of epilepsy include bipolar disorder and pain.

  6. Recent advances on uric acid transporters

    Science.gov (United States)

    Xu, Liuqing; Shi, Yingfeng; Zhuang, Shougang; Liu, Na

    2017-01-01

    Uric acid is the product of purine metabolism and its increased levels result in hyperuricemia. A number of epidemiological reports link hyperuricemia with multiple disorders, such as kidney diseases, cardiovascular diseases and diabetes. Recent studies also showed that expression and functional changes of urate transporters are associated with hyperuricemia. Uric acid transporters are divided into two categories: urate reabsorption transporters, including urate anion transporter 1 (URAT1), organic anion transporter 4 (OAT4) and glucose transporter 9 (GLUT9), and urate excretion transporetrs, including OAT1, OAT3, urate transporter (UAT), multidrug resistance protein 4 (MRP4/ABCC4), ABCG-2 and sodium-dependent phosphate transport protein. In the kidney, uric acid transporters decrease the reabsorption of urate and increase its secretion. These transporters’ dysfunction would lead to hyperuricemia. As the function of urate transporters is important to control the level of serum uric acid, studies on the functional role of uric acid transporter may provide a new strategy to treat hyperuricemia associated diseases, such as gout, chronic kidney disease, hyperlipidemia, hypertension, coronary heart disease, diabetes and other disorders. This review article summarizes the physiology of urate reabsorption and excretion transporters and highlights the recent advances on their roles in hyperuricemia and various diseases. PMID:29246027

  7. Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees.

    Science.gov (United States)

    Näsholm, T; Ericsson, A

    1990-09-01

    Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all

  8. Radioprotective effects of chlorogenic acid against mortality induced by gamma irradiation in mice

    International Nuclear Information System (INIS)

    Seyed Jalal Hosseinimehr; Amirhossein Ahmadi; Shahram Akhlaghpoor; Tehran University of Medical Sciences, Tehran

    2007-01-01

    Complete text of publication follows. The radioprotective effects of the naturally occurring compound chlorogenic acid has been investigated against mortality induced by gamma irradiation in mice. Chlorogenic acid administrated at single doses of 100, 200 and 400 mg/kg 1 and 24 h prior to lethal dose of gamma irradiation (8.5 Gy). At 30 days after treatment, the percentage of animal survival in each group was: control, 20%; 100 mg/kg, 20% and 15%; 200 mg/kg, 45% and 15%; 400 mg/kg, 25% and 35% for 1 h and 24 h treatment prior gamma irradiation, respectively. Percentage of survival increased in animal treated with this agent at 200 mg/kg at 1 h statistically compared with irradiated alone group. Other doses of chlorogenic acid have not showed any enhanced survival at 1 and 24 h before irradiation. Chlorogenic acid exhibited concentration-dependent activity on 1, 1-diphenyl 2-picrylhydrazyl free radical to show strong antioxidant activity. It appeared that chlorogenic acid with antioxidant activity reduced mortality induced by gamma irradiation.

  9. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and neuron-like γ-aminobutyric acid transport

    International Nuclear Information System (INIS)

    Levi, G.; Gallo, V.; Ciotti, T.

    1986-01-01

    When postnatal rat cerebellar cells were cultured in a chemically defined, serum-free medium, the only type of astrocyte present was unable to accumulate γ-[ 3 H]aminobutyric acid (GABA), did not express surface antigens recognized by two monoclonal antibodies, A2B5 and LB1, and showed minimal proliferation. In these cultures, nonneuronal A2B5 + , LB1 + stellate cells exhibiting neuron-like [ 3 H]GABA uptake formed cell colonies of increasing size and were GFAP - . After about one week of culturing, the A2B5 + , LB1 + , GABA-uptake positive cell groups became galactocerebroside (GalCer) positive. Immunocytolysis of the A2B5 + cells at 3 and 4 days in vitro prevented the appearance of the A2B5 + , LB1 + , GABA-uptake positive cell colonies, and also of the GalCer + cell groups. If 10% (vol/vol) fetal calf serum was added to 6-day cultures, the A2B5 + , LB1 + , GABA-uptake positive cell groups expressed GFAP and not GalCer. If the serum was added to the cultures 2 days after lysing the A2B5 + cells, only A2B5 - , LB1 - , GABA-uptake negative astrocytes proliferated. It is concluded that the putative fibrous astrocytes previously described in serum-containing cultures derive from bipotential precursors that differentiate into oligodendrocytes (GalCer + ) in serum-free medium or into astrocytes (GFAP + ) in the presence of serum, while the epithelioid A2B5 - , LB1 - , GABA-uptake negative astrocytes originate from a different precursor not yet identified

  10. Radiation exposures of workers resulting from the transport of gamma radiography sources in Germany

    International Nuclear Information System (INIS)

    Sentuc, F.N.; Schwarz, G.

    2006-01-01

    Gamma radiation sources are widely used for industrial purposes e.g. for non-destructive material testing. Many of these sources are permanently installed at a facility within instruments e.g. for level or thickness gauging. Other radioactive sources are implemented in portable devices for industrial gamma radiography which have to be carried to the various remote usage sites. In Germany, approximately 20 000 - 25 000 shipments of gamma radiography sources are proceeding annually on public transport routes. Since routine radiation monitoring programmes do not permit task-specific determination of occupational doses e.g. doses incurred during the movement phase and handling related doses, work has been carried out with the objective to determine the radiation exposures of the personnel attributable to transportation. For this purpose, a survey was launched in 2005 collecting data about e.g. the number and conditions of transports, the activity and type of transported radiation sources and the radiation level within the driver's cab to allow a dose assessment to be made for transport workers. The results of this survey covering the most important companies for gamma radiography services in Germany are presented in this paper. (authors)

  11. Nicotinic and iso nicotinic acids: interactions with gamma radiation and acid-base equilibrium

    International Nuclear Information System (INIS)

    Ribeiro, Z.A.

    1984-01-01

    The values of pKa 1 and pKa 2 for nicotinic and iso nicotinic acids in aqueous medium were determined. The effects of gamma radiation about these acids by infrared and ultraviolet spectrophotometry and thermal gravimetric analysis were also studied. It was verified that the radiolysis of acids occurred by the two process of first order, determining the degradation constant and the degradation factors for each one of the solutions. (C.G.C.)

  12. Modelling zwitterions in solution: 3-fluoro-γ-aminobutyric acid (3F-GABA).

    Science.gov (United States)

    Cao, Jie; Bjornsson, Ragnar; Bühl, Michael; Thiel, Walter; van Mourik, Tanja

    2012-01-02

    The conformations and relative stabilities of folded and extended 3-fluoro-γ-aminobutyric acid (3F-GABA) conformers were studied using explicit solvation models. Geometry optimisations in the gas phase with one or two explicit water molecules favour folded and neutral structures containing intramolecular NH···O-C hydrogen bonds. With three or five explicit water molecules zwitterionic minima are obtained, with folded structures being preferred over extended conformers. The stability of folded versus extended zwitterionic conformers increases on going from a PCM continuum solvation model to the microsolvated complexes, though extended structures become less disfavoured with the inclusion of more water molecules. Full explicit solvation was studied with a hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme and molecular dynamics simulations, including more than 6000 TIP3P water molecules. According to free energies obtained from thermodynamic integration at the PM3/MM level and corrected for B3LYP/MM total energies, the fully extended conformer is more stable than folded ones by about -4.5 kJ mol(-1). B3LYP-computed (3)J(F,H) NMR spin-spin coupling constants, averaged over PM3/MM-MD trajectories, agree best with experiment for this fully extended form, in accordance with the original NMR analysis. The seeming discrepancy between static PCM calculations and experiment noted previously is now resolved. That the inexpensive semiempirical PM3 method performs so well for this archetypical zwitterion is encouraging for further QM/MM studies of biomolecular systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis.

    Science.gov (United States)

    Gallardo, W G; Hagiwara, A; Hara, K; Soyano, K; Snell, T W

    2000-11-01

    gamma-Aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) have been shown to increase the reproduction of the Brachionus plicatilis (NH3L strain). In the present study, the endogenous presence of GABA and 5-HT in the rotifers B. plicatilis (NH3L and Kamiura strains) and Brachionus rotundiformis (Langkawi strain) were confirmed by dot blot immunoassay and high-performance liquid chromatography (HPLC). HPLC showed that GABA and 5-HT concentrations in the three rotifer strains range from 71 to 188 pmol/mg and from 12 to 64 pmol/mg, respectively. A total of 33 amino acids were also detected in B. plicatilis and B. rotundiformis, with glutamic acid, serine, glycine, taurine, threonine, alanine, arginine, proline, valine and isoleucine in high concentrations relative to other amino acids.

  14. Mechanism of inactivation of γ-aminobutyric acid aminotransferase by (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115).

    Science.gov (United States)

    Lee, Hyunbeom; Doud, Emma H; Wu, Rui; Sanishvili, Ruslan; Juncosa, Jose I; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-02-25

    γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.

  15. Quantitative Autoradiography on [(35)S]TBPS Binding Sites of Gamma- Aminobutyric Acid(A) Receptors in Discrete Brain Regions of High- Alcohol-Drinking and Low-Alcohol- Drinking Rats Selectively Bred forHigh- and Low-Alcohol Preference.

    Science.gov (United States)

    Hwang, B.H.; Kunkler, P.E.; Lumeng, L.

    1997-01-01

    It has been documented that ethanol can potentiate brain gamma-aminobutyric acid (GABA)ergic function, and there is a close link between the GABA(A) receptor complex and effects of ethanol, including reinforcement of alcohol which is a fundamental element of alcohol preference. However, it is unknown in what discrete brain regions GABA(A) receptors might be associated with alcohol preference. In the present study, [(35)S]t-butylbicyclophosphorothionate ([(35)S]TBPS) was used to localize GABA(A) receptors in high-alcohol-drinking (HAD) rats and low-alcohol-drinking (LAD) rats which were selectively bred for high and low alcohol preference, respectively. Initial qualitative observations indicated that [(35)S]TBPS binding sites were abundant in many brain areas including the cerebral cortex, hypothalamus and amygdala of HAD and LAD rats. Furthermore, the quantitative autoradiographic analysis revealed fewer [(35)S]TBPS binding sites of GABA(A) receptors in the amygdaloid complex, central medial thalamic nucleus, lateral hypothalamic nucleus and anterior hypothalamic nucleus of HAD rats than LAD rats. Collectively, this study has indicated that HAD rats selectively bred for high alcohol preference possess lower [(35)S]TBPS binding in the brain. Since lower TBPS binding has been proposed to reflect enhanced GABAergic function, as evidenced in rats with seizure or under alcohol withdrawal, the results from the present study suggest that HAD rats might have an enhanced GABAergic function. It is thus likely that enhanced GABAergic function in the brain might be related to high alcohol preference which is characteristic in HAD rats. In addition, the present result showing no difference of [(35)S]TBPS binding in the nucleus accumbens is also in agreement with a notion that [(35)S]TBPS binding may represent only a small spectrum of the GABA(A) receptor complex which is constituted of a sophisticated subunit combination whose functional compositions are still unknown. In

  16. Modelling plastic scintillator response to gamma rays using light transport incorporated FLUKA code

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar Kohan, M. [Physics Department, Tafresh University, Tafresh (Iran, Islamic Republic of); Etaati, G.R. [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology, Tehran (Iran, Islamic Republic of); Ghal-Eh, N., E-mail: ghal-eh@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Safari, M.J. [Department of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Afarideh, H. [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology, Tehran (Iran, Islamic Republic of); Asadi, E. [Department of Physics, Payam-e-Noor University, Tehran (Iran, Islamic Republic of)

    2012-05-15

    The response function of NE102 plastic scintillator to gamma rays has been simulated using a joint FLUKA+PHOTRACK Monte Carlo code. The multi-purpose particle transport code, FLUKA, has been responsible for gamma transport whilst the light transport code, PHOTRACK, has simulated the transport of scintillation photons through scintillator and lightguide. The simulation results of plastic scintillator with/without light guides of different surface coverings have been successfully verified with experiments. - Highlights: Black-Right-Pointing-Pointer A multi-purpose code (FLUKA) and a light transport code (PHOTRACK) have been linked. Black-Right-Pointing-Pointer The hybrid code has been used to generate the response function of an NE102 scintillator. Black-Right-Pointing-Pointer The simulated response functions exhibit a good agreement with experimental data.

  17. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches

    DEFF Research Database (Denmark)

    Giannakis, Marios; Stappenbeck, Thaddeus S; Mills, Jason C

    2006-01-01

    pathways. Wnt/beta-catenin, phosphoinositide-3/Akt kinase, insulin-like growth factor-1, vascular endothelial growth factor, integrin, and gamma-aminobutyric acid receptor signaling cascades, plus glycerolipid, fatty acid, and amino acid metabolic pathways are among those prominently represented in adult...

  18. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    Directory of Open Access Journals (Sweden)

    Wen Li

    2016-08-01

    Full Text Available In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  19. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells.

    Science.gov (United States)

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man-Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  20. Determination and comparison of γ-aminobutyric acid (GABA) content in pu-erh and other types of Chinese tea.

    Science.gov (United States)

    Zhao, Ming; Ma, Yan; Wei, Zhen-zhen; Yuan, Wen-xia; Li, Ya-li; Zhang, Chun-hua; Xue, Xiao-ting; Zhou, Hong-jie

    2011-04-27

    Two previous studies have reported that pu-erh tea contains a high level of γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system and has several physiological functions. However, two other researchers have demonstrated that the GABA content of several pu-erh teas was low. Due to the high value and health benefits of GABA, analysis of mass-produced pu-erh tea is necessary to determine whether it is actually enriched with GABA. A high-performance liquid chromatography (HPLC) method was developed for the determination of GABA in tea, the results of which were verified by amino acid analysis using an Amino Acid Analyzer (AAA). A total of 114 samples of various types of Chinese tea, including 62 pu-erh teas, 13 green teas, 8 oolong teas, 8 black teas, 3 white teas, 4 GABA teas, and 16 process samples from two industrial fermentations of pu-erh tea (including the raw material and the first to seventh turnings), were analyzed using HPLC. Statistical analysis demonstrated that the GABA content in pu-erh tea was significantly lower than that in other types of tea (p GABA content decreased during industrial fermentation of pu-erh tea (p GABA was not a major bioactive constituent and resolved the disagreement GABA content in pu-erh tea. In addition, the GABA content in white tea was found to be significantly higher than that in the other types of tea (p GABA-enriched white tea.

  1. On-line near-infrared spectroscopy optimizing and monitoring biotransformation process of γ-aminobutyric acid

    Directory of Open Access Journals (Sweden)

    Guoyu Ding

    2016-06-01

    Full Text Available Near-infrared spectroscopy (NIRS with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS regression can be used as a rapid analytical method to simultaneously quantify l-glutamic acid (l-Glu and γ-aminobutyric acid (GABA in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2, root mean square error of prediction (RMSEP and residual predictive deviation (RPD of the external validation for the l-Glu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, respectively. This NIRS model was then used to optimize the biotransformation process through a Box-Behnken experimental design. Under the optimal conditions without pH adjustment, 200 g/L l-Glu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD to GABA, reaching 99% conversion at the fifth hour. NIRS analysis provided timely information on the conversion from l-Glu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.

  2. Amino acid neurotransmitters and new approaches to anticonvulsant drug action.

    Science.gov (United States)

    Meldrum, B

    1984-01-01

    Amino acids provide the most universal and important inhibitory (gamma-aminobutyric acid (GABA), glycine) and excitatory (glutamate, aspartate, cysteic acid, cysteine sulphinic acid) neurotransmitters in the brain. An anticonvulsant action may be produced (1) by enhancing inhibitory (GABAergic) processes, and (2) by diminishing excitatory transmission. Possible pharmacological mechanisms for enhancing GABA-mediated inhibition include (1) GABA agonist action, (2) GABA prodrugs, (3) drugs facilitating GABA release from terminals, (4) inhibition of GABA-transaminase, (5) allosteric enhancement of the efficacy of GABA at the receptor complex, (6) direction action on the chloride ionophore, and (7) inhibition of GABA reuptake. Examples of these approaches include the use of irreversible GABA-transaminase inhibitors, such as gamma-vinyl GABA, and the development of anticonvulsant beta-carbolines that interact with the "benzodiazepine receptor." Pharmacological mechanisms for diminishing excitatory transmission include (1) enzyme inhibitors that decrease the maximal rate of synthesis of glutamate or aspartate, (2) drugs that decrease the synaptic release of glutamate or aspartate, and (3) drugs that block the post-synaptic action of excitatory amino acids. Compounds that selectively antagonise excitation due to dicarboxylic amino acids have recently been developed. Those that selectively block excitation produced by N-methyl-D-aspartate (and aspartate) have proved to be potent anticonvulsants in many animal models of epilepsy. This provides a novel approach to the design of anticonvulsant drugs.

  3. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (Agrostis stolonifera

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2018-05-01

    Full Text Available Gamma-aminobutyric acid (GABA may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass (Agrostis stolonifera to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar “Penncross” plants were treated with 0.5 mM GABA or water (untreated control as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night, drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3, POD, APX, HSP90, DHN3, and MT1 during heat stress and the expression of CDPK26, MAPK1, ABF3, WRKY75, MYB13, HSP70, MT1, 14-3-3, and genes (SOD, CAT, POD, APX, MDHAR, DHAR, and GR encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.

  4. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA) Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Peng, Yan; Huang, Bingru

    2018-05-31

    Gamma-aminobutyric acid (GABA) may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass ( Agrostis stolonifera ) to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar "Penncross") plants were treated with 0.5 mM GABA or water (untreated control) as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night), drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3 , POD , APX , HSP90 , DHN3 , and MT1 during heat stress and the expression of CDPK26 , MAPK1 , ABF3 , WRKY75 , MYB13 , HSP70 , MT1 , 14-3-3 , and genes ( SOD , CAT , POD , APX , MDHAR , DHAR , and GR ) encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.

  5. Effect of gamma irradiation on fatty acids of tomato seed oil

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Raouf, M.S.; Morad, M.M.; Rady, A.H.

    1979-01-01

    Since gamma irradiation of tomatoes is investigated as a tool for increasing tomato shelf-lefe, in this study the tomato seed oil produced from irradiated tomatoes was compared with that produced from industrial tomato seeds and with cotton seeds. Fatty acid contents of tomato seed oil, produced from industrial tomato seed waste and from tomato seeds (Variety Ace), were found nearly the same as in the edible cotton seed oil. Hence, both tomato seed oils may be considered as an additional source of essential fatty acids especially linoleic. Gamma irradiation doses ranged from 50-200 Krad had no significant effect on total saturated and total unsaturated fatty acids. 200 Krad led to significant increases in lenolic acid on the account of insignificant decrease in palmatic acid. Essentail and non essential amino acids of tomato seed meal seem to be equivalent to these of cotton seed meal. This suggests the possible use of tomato seed meal in animal feeding

  6. Effect of Gamma Radiation on Amino Acid Based Vesicle Carrying Radiosensitizer

    International Nuclear Information System (INIS)

    Nur Ratasha Alia Mohd Rosli; Faizal Mohamed; Muhammad Amir Syafiq Mohd Sah; Irman Abdul Rahman

    2014-01-01

    Vesicles has been developed and studied to be used as a medium to transport radiosensitizer in treating cancer cells by increasing its sensitivity effectively towards the radiation given during radiotherapy. This study was conducted to investigate the effect of gamma radiation on amino acid-based vesicle carrying radiosensitizer. Amino acid based vesicles carrying radiosensitizer were synthesized using sonication method with sodium N-lauroylsarcosinate hydrate and decanol being the primary surfactant, while hydrogen peroxide and sodium hyaluronate as the encapsulated radiosensitizer. The synthesized vesicle was then irradiated at radiation doses equivalent to those given during radiotherapy. Irradiated vesicle carrying radiosensitizer were then characterized using Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Polarized Light Microscope. Results obtained shows that there were no significant changes in morphology and molecular conformation of the synthesized vesicle after irradiation. Even at higher radiation dose of 100 Gray and 200 Gray, the results remained unchanged. This indicates that the synthesized vesicle carrying radiosensitizer is morphologically and spectroscopically stable even at high radiation doses. (author)

  7. [Study on the encapsulation technique of high purity gamma-linolenic acid, part 1--saponification reaction and saponification value].

    Science.gov (United States)

    Liu, Feng-xia; Xue, Gang; Gao, Qiu-hua; Gao, Wei-xia; Zhang, Li-hua

    2005-03-01

    To measure the saponification value and fatty acid formation of evening primrose oil, to study the effects of pH value on production yield and fatty acid formation during the saponification reaction, and to provide rationales for the selection of raw material, the enhancement of production yield of saponification, and the encapsulation of gamma-linolenic acid with urea. To measure fatty acid's formation with gas chromatographic method and to measure the saponification value. The content of gamma-linolenic acid is 7%-10% in evening primrose oil. The content of gamma-linolenic acid is inversely correlated with that of unsaturated fatty acid. The saponification value, the amount of KOH for saponification of evening primrose oil, and the pH value for subsequent isolations of oils are determined. From the measurement of fatty acids of evening primrose oil in two different cultivation locations, the content of gamma-linolenic acid is determined to be 7%-10%, unsaturated oils account for 90%. The saponification value of evening primrose oil is between 180-200, pH value of isolated oil is 1.5-2.0 after saponification reaction. Fatty acids mainly include palmitic acid, stearic acid, oleic acid, linolic acid and gamma-linolenic acid.

  8. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  9. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    Science.gov (United States)

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  10. Determination of fatty acid composition of {gamma}-irradiated hazelnuts, walnuts, almonds, and pistachios

    Energy Technology Data Exchange (ETDEWEB)

    Gecgel, Umit [Namik Kemal University, Agricultural Faculty, Department of Food Engineering, 59030 Tekirdag (Turkey); Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet [Namik Kemal University, Agricultural Faculty, Department of Food Engineering, 59030 Tekirdag (Turkey)

    2011-04-15

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  11. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    Science.gov (United States)

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity.

  12. Induced resistance in tomato fruit by γ-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata.

    Science.gov (United States)

    Yang, Jiali; Sun, Cui; Zhang, Yangyang; Fu, Da; Zheng, Xiaodong; Yu, Ting

    2017-04-15

    The study investigated the effect of γ-aminobutyric acid (GABA) on the control of alternaria rot in tomato fruit and the possible mechanism involved. Our results showed exogenous GABA could stimulate remarkable resistance to the alternaria rot, while it had no direct antifungal activity against Alternaria alternata. Moreover, the activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase, along with the expression of these corresponding genes, were significantly induced in the GABA treatment. The obtained data suggested GABA induced resistance against the necrotrophic pathogen A. alternata, at least in part by activating antioxidant enzymes, restricting the levels of cell death caused by reactive oxygen species. Meanwhile, the key enzyme genes of GABA shunt, GABA transaminase and succinic-semialdehyde dehydrogenase, were found up-regulated in the GABA treatment. The activation of the GABA shunt might play a vital role in the resistance mechanism underpinning GABA-induced plant immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of gamma irradiation on the amino acid contents of seafood cooking drips

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Yeon Joo; Choi, Jong Il; Kim, Yun Joo; Kim, Jae Hun; Kim, Jin Kyu; Byun, Myung Woo; Kwon, Joong Ho; Ahn, Dong Hyun; Chun, Byung Soo

    2008-01-01

    In this study, the effects of gamma irradiation on the change of structural and free amino acids contents of cooking drips from Hizikia fusiformis (HF) and Enteroctopus dofleini (ED) were investigated. The main structural amino acids were glutamic acid in HF cooking drip, and glutamic acid, glycine, arginine and aspartic acid in ED cooking drip, respectively. The concentrations of structural amino acids in both cooking drip extracts were decreased by the gamma irradiation at the dose of 10 kGy. Especially, the sulfur-containing amino acids were severely degraded by the irradiation. In free amino acid, ED cooking drip extract was contained the larger amount of free amino acid than that of HF cooking drip affecting its rich flavor. The free amino acid concentrations of cooking drips extracts from HF and ED were both increased by irradiation, and it explained the higher protein content by the irradiation

  14. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    Science.gov (United States)

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. © 2014 Wiley Periodicals, Inc.

  15. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1

    DEFF Research Database (Denmark)

    Larsen, Mie; Larsen, Birger Brodin; Frølund, Bente

    2008-01-01

    The objective of this study was to investigate transepithelial amino acid transport as a function of Caco-2 cell culture time. Furthermore, the objective was to investigate apical uptake characteristics of hPAT1-mediated transport under various experimental conditions. Apical amino acid uptake......, which has been shown to function as a carboxylic acid bioisostere for substrates of the GABA receptor and transport systems....

  16. Potential measurement and radial transport in GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ishii, K.; Katanuma, I.; Segawa, T.; Ohkawara, H.; Mase, A.; Miyoshi, S.

    1989-01-01

    GAMMA 10 is an effectively axisymmetric tandem mirror with thermal barriers. Potential information is important to investigate the plasma confinement. The barrier and central space potentials are determined by means of two gold neutral beam probes. Two-dimensional potential profiles have been measured in the barrier cell. In GAMMA 10, to assure magneto-hydrodynamic (MHD) stability, the nonaxisymmetric minimum-B mirror cells are contained between the central-solenoid and the plug/barrier cells at the ends of the machine. From the point of view of neoclassical resonant-plateau transport in circular equipotential contours, this effective axisymmetrization is successful. The measured potential profiles are slightly elongated during the onset of ω ce ECRH. In this paper we report the beam probe potential measurement, the neoclassical ion radial transport in the noncircular equipotential surface and the thermal barrier potential. (author) 6 refs., 5 figs

  17. Accumulation mechanism of γ-aminobutyric acid in tomatoes (Solanum lycopersicum L.) under low O2 with and without CO2.

    Science.gov (United States)

    Mae, Nobukazu; Makino, Yoshio; Oshita, Seiichi; Kawagoe, Yoshinori; Tanaka, Atsushi; Aoki, Koh; Kurabayashi, Atsushi; Akihiro, Takashi; Akama, Kazuhito; Koike, Satoshi; Takayama, Mariko; Matsukura, Chiaki; Ezura, Hiroshi

    2012-02-01

    The storage of ripe tomatoes in low-O(2) conditions with and without CO(2) promotes γ-aminobutyric acid (GABA) accumulation. The activities of glutamate decarboxylase (GAD) and α-ketoglutarate-dependent GABA transaminase (GABA-TK) were higher and lower, respectively, following storage under hypoxic (2.4 or 3.5% O(2)) or adjusted aerobic (11% O(2)) conditions compared to the activities in air for 7 days at 25 °C. GAD activity was consistent with the expression level of mRNA for GAD. The GABA concentration in tomatoes stored under hypoxic conditions and adjusted aerobic conditions was 60-90% higher than that when they are stored in air on the same day. These results demonstrate that upregulation of GAD activity and downregulation of GABA-TK activity cause GABA accumulation in tomatoes stored under low-O(2) conditions. Meanwhile, the effect of CO(2) on GABA accumulation is probably minimal.

  18. Effect of gamma-irradiation on the phenolic acids of some Indian spices

    International Nuclear Information System (INIS)

    Variyar, P.S.; Bandyopadhyay, C.; Thomas, P.

    1998-01-01

    Five commercially important spices, namely cinnamon, clove, cardamom, nutmeg and mace, were subjected to gamma-irradiation using a dose of 10 kGy, which is recommended for microbial decontamination. Various phenolic acids present in these spices were analysed by high-performance liquid chromatography (HPLC). In clove and nutmeg, quantitatively significant changes were noted in some of the phenolic acids upon irradiation. The content of gallic and syringic acids in irradiated clove increased by 2.2- and 4.4-fold respectively, whereas in irradiated nutmeg many of the phenolic acids showed wide increases and decreases in the range of two- to sixfold compared with the control samples. No qualitative and major quantitative changes were, however, observed in the phenolic acids of cinnamon, cardamom and mace upon irradiation. The possibility that gamma-radiation induced breakdown of tannins could be responsible for the changes in phenolic acids content of clove and nutmeg is discussed

  19. FMCEIR: a Monte Carlo program for solving the stationary neutron and gamma transport equation

    International Nuclear Information System (INIS)

    Taormina, A.

    1978-05-01

    FMCEIR is a three-dimensional Monte Carlo program for solving the stationary neutron and gamma transport equation. It is used to study the problem of neutron and gamma streaming in the GCFR and HHT reactor channels. (G.T.H.)

  20. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  1. Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity

    OpenAIRE

    Haeusler, Rebecca A.; Camastra, Stefania; Nannipieri, Monica; Astiarraga, Brenno; Castro-Perez, Jose; Xie, Dan; Wang, Liangsu; Chakravarthy, Manu; Ferrannini, Ele

    2015-01-01

    We measured plasma bile acids, markers of bile acid synthesis, and expression of bile acid transporters in obese and nonobese subjects. We found that obesity was associated with increased bile acid synthesis and 12-hydroxylation, blunted response of plasma bile acids to insulin infusion or a mixed meal, and decreased expression of liver bile acid transporters.

  2. Effects of a series of acidic drugs on L-lactic acid transport by the monocarboxylate transporters MCT1 and MCT4.

    Science.gov (United States)

    Leung, Yat Hei; Belanger, Francois; Lu, Jennifer; Turgeon, Jacques; Michaud, Veronique

    2018-03-07

    Drug-induced myopathy is a serious side effect that often requires removal of a medication from a drug regimen. For most drugs, the underlying mechanism of drug-induced myopathy remains unclear. Monocarboxylate transporters (MCTs) mediate L-lactic acid transport, and inhibition of MCTs may potentially lead to perturbation of L-lactic acid accumulation and muscular disorders. Therefore, we hypothesized that L-lactic acid transport may be involved in the development of drug-induced myopathy. The aim of this study was to assess the inhibitory potential of 24 acidic drugs on L-lactic acid transport using breast cancer cell lines Hs578T and MDA-MB-231, which selectively express MCT1 and MCT4, respectively. The influx transport of L-lactic acid was minimally inhibited by all drugs tested. The efflux transport was next examined: loratadine (IC50: 10 and 61 µM) and atorvastatin (IC50: 78 and 41 µM) demonstrated the greatest potency for inhibition of L-lactic acid efflux by MCT1 and MCT4, respectively. Acidic drugs including fluvastatin, cerivastatin, simvastatin acid, lovastatin acid, irbesartan and losartan exhibited weak inhibitory potency on L-lactic acid efflux. Our results suggest that some acidic drugs, such as loratadine and atorvastatin, can inhibit the efflux transport of L-lactic acid. This inhibition may cause an accumulation of intracellular L-lactic acid leading to acidification and muscular disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. ZZ AIRFEWG, Gamma, Neutron Transport Calculation in Air Using FEWG1 Cross-Section

    International Nuclear Information System (INIS)

    1985-01-01

    1 - Description of program or function: Format: ANISN; Number of groups: 37 neutron / 21 gamma-ray; Nuclides: air (79% N and 21% O); Origin: DLC-0031/FEWG1 cross sections (ENDF/B-IV). Weighting spectrum: 1/E. The AIRFEWG library has been generated by an ANISN multigroup calculation of gamma-ray, neutron, and secondary gamma-ray transport in infinite homogeneous air using DLC-0031/FEWG1 cross sections. 2 - Method of solution: The results were generated with a P3, ANISN run with a source in a single energy group. Thus, 58 such runs were required. For sources in the 37 neutron groups, both neutron and secondary gamma-ray fluence results were calculated. For gamma-ray sources only gamma-ray fluences were calculated

  4. Ascorbic acid transport and accumulation in human neutrophils

    International Nuclear Information System (INIS)

    Washko, P.; Rotrosen, D.; Levine, M.

    1989-01-01

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake

  5. Effect of gamma radiation on the titrable acidity and vitamin c content of citrus fruits

    Directory of Open Access Journals (Sweden)

    Iftekhar Ahmad

    2012-06-01

    Full Text Available The study was carried out to assess effect of gamma radiation on the acidity and vitamin C content of the Citrus macroptera (Satkora and Citrus assamensis (Ginger lime. Irradiation with doses 0.5, 1.0, 2.0, 3.0 kGy were applied to assess the effect on the titrable acidity and vitamin C contents every one week interval for total five weeks. Both titrable acidity and vitamin C content of C. macroptera, and C. assamensis are sensitive to both gamma radiation and storage time; have decreased with increase of radiation does as well as storage time and this changes of vitamin C and titrable acidity content with gamma radiation and increasing storage period have found statistically significant.

  6. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Glutamate decarboxylase (GAD catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA. In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C. Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C, superior thermostability (2.8-fold greater than that of GAD-C, and higher kcat/Km (1.6-fold higher than that of GAD-C. Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA.

  7. Effects of Aeration Treatment on γ-Aminobutyric Acid Accumulation in Germinated Tartary Buckwheat (Fagopyrum tataricum

    Directory of Open Access Journals (Sweden)

    Yuanxin Guo

    2016-01-01

    Full Text Available To explore the optimum condition of γ-aminobutyric acid (GABA accumulation in germinated tartary buckwheat, effects of some factors including aeration treatment, physiological indexes, air flow rate, culture temperature, and pH value of cultivating solution under hypoxia on GABA in germinated tartary buckwheat were investigated. The results showed that the dark cultures with distilled water at 30°C, 2 days, and aeration stress with 1.0 L/min air flow rate at 30°C were optimal for GABA accumulation. Under these conditions, the predicted content of GABA was up to 371.98 μg/g DW. The analysis of correlation indicated that there was a significant correlation (P<0.01 between GABA accumulation and physiological indexes. Box-Behnken experimental analysis revealed that optimal conditions with aeration treatment for GABA accumulation in germinated tartary buckwheat were air flow rate of 1.04 L/min, culture temperature of 31.25°C, and a pH value of 4.21. Under these conditions, the GABA content was predicted as high as 386.20 μg/g DW, which was close to the measured value (379.00±9.30 μg/g DW. The variance analysis and validation test suggested that this established regression model could predict GABA accumulation in tartary buckwheat during germination.

  8. J-difference-edited MRS measures of γ-aminobutyric acid before and after acute caffeine administration.

    Science.gov (United States)

    Oeltzschner, Georg; Zöllner, Helge J; Jonuscheit, Marc; Lanzman, Rotem S; Schnitzler, Alfons; Wittsack, Hans-Jörg

    2018-05-12

    The aim of this study was to investigate potential effects of acute caffeine intake on J-difference-edited MRS measures of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA). J-difference-edited Mescher-Garwood PRESS (MEGA-PRESS) and conventional PRESS data were acquired at 3T from voxels in the anterior cingulate and occipital area of the brain in 15 healthy subjects, before and after oral intake of a 200-mg caffeine dose. MEGA-PRESS data were analyzed with the MATLAB-based Gannet tool to estimate GABA+ macromolecule (GABA+) levels, while PRESS data were analyzed with LCModel to estimate levels of glutamate, glutamate+glutamine, N-acetylaspartate, and myo-inositol. All metabolites were quantified with respect to the internal reference compounds creatine and tissue water, and compared between the pre- and post-caffeine intake condition. For both MRS voxels, mean GABA+ estimates did not differ before and after caffeine intake. Slightly lower estimates of myo-inositol were observed after caffeine intake in both voxels. N-acetylaspartate, glutamate, and glutamate+glutamine did not show significant differences between conditions. Mean GABA+ estimates from J-difference-edited MRS in two different brain regions are not altered by acute oral administration of caffeine. These findings may increase subject recruitment efficiency for MRS studies. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Induced resistance against the Asian citrus psyllid, Diaphorina citri, by β-aminobutyric acid in citrus.

    Science.gov (United States)

    Tiwari, Siddharth; Meyer, Wendy L; Stelinski, Lukasz L

    2013-10-01

    β-Aminobutyric acid (BABA) is known to induce resistance to microbial pathogens, nematodes and insects in several host plant/pest systems. The present study was undertaken to determine whether a similar effect of BABA occurred against the Asian citrus psyllid, Diaphorina citri Kuwayama, in citrus. A 25 mM drench application of BABA significantly reduced the number of eggs/plant as compared with a water control, whereas 200 and 100 mM applications of BABA reduced the numbers of nymphs/plant and adults/plants, respectively. A 5 mM foliar application of BABA significantly reduced the number of adults but not eggs or nymphs when compared with a water control treatment. In addition, leaf-dip bioassays using various concentrations (25–500 mM) of BABA indicated no direct toxic effect on 2nd and 5th instar nymphs or adult D. citri. BABA-treated plants were characterized by significantly lower levels of iron, magnesium, phosphorus, sodium, sulfur and zinc as compared with control plants. The expression level of the PR-2 gene (β-1,3-glucanase) in BABA-treated plants that were also damaged by D. citri adult feeding was significantly higher than in plants exposed to BABA, D. citri feeding alone or control plants. Our results indicate the potential for using BABA as a systemic acquired resistance management tool for D. citri.

  10. Ultraviolet B irradiation induces changes in the distribution and release of arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture

    International Nuclear Information System (INIS)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1987-01-01

    There is increasing evidence that derivatives of 20-carbon polyunsaturated fatty acids, the eicosanoids, play an important role in the inflammatory responses of the human skin. To better understand the metabolic fate of fatty acids in the skin, the effect of ultraviolet B (UVB) irradiation (280-320 nm) on the distribution and release of 14 C-labeled arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture was investigated. Ultraviolet B irradiation induced the release of all three 14 C-labeled fatty acids from the phospholipids, especially from phosphatidylethanolamine, and this was accompanied by increased labeling of the nonphosphorus lipids. This finding suggests that UVB induces a significant liberation of eicosanoid precursor fatty acids from cellular phospholipids, but the liberated fatty acids are largely reincorporated into the nonphosphorus lipids. In conclusion, the present study suggests that not only arachidonic acid but also dihomo-gamma-linolenic acid, and eicosapentaenoic acid might be involved in the UVB irradiation-induced inflammatory reactions of human skin

  11. Transport of acidic amino acids by human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Harig, J.M.; Adams, M.B.; Ramaswamy, K.

    1987-01-01

    This study characterizes the transport of radiolabeled acidic amino acids into brush-border membrane vesicles prepared from human jejunum. The uptakes of L-glutamic, L-aspartic, and D-aspartic acids were stimulated by a Na + gradient. Concentrative uptake (resulting in an overshoot phenomenon) of these dicarboxylic amino acids occurred when there was an outward K + gradient. In addition, increasing K + gradients resulted in enhanced uptake of L-glutamic acid. This K + requirement is somewhat specific as Rb + and Cs + could enhance uptake to a limited extent, whereas Li + and choline + showed no enhancement. The presence of a K + gradient did not affect the affinity of the carrier system for L-glutamic acid but it did increase the V/sub max/. The presence of extravesicular anions having differing membrane permeabilities did not altar L-glutamic acid uptake indicating an absence of an effect of membrane potential on the transport process. Finally, the human transport system for L-glutamic acid appears to be specific for acidic amino acids as demonstrated by inhibition studies. The studies demonstrate a transport system in human jejunum specific for acidic amino acids that is energized by an inward Na + gradient and an outward K + gradient

  12. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    International Nuclear Information System (INIS)

    Fujiwara, Tohru; Okamoto, Koji; Niikuni, Ryoyu; Takahashi, Kiwamu; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Nakamura, Yukio; Nakajima, Motowo; Tanaka, Tohru; Harigae, Hideo

    2014-01-01

    expressed in erythroid cells. Thus, gamma-aminobutyric acid (GABA) was added to K562 cells to competitively inhibit SLC36A1-mediated transport. GABA treatment significantly impeded the ALA-mediated increase in the number of hemoglobinized cells as well as the induction of HBG, HBA, and HMOX1. Finally, small-interfering RNA-mediated knockdown of ALAS2 in HiDEP cells considerably decreased the expression of HBA, HBG, and HMOX1, and these expression levels were rescued with ALA treatment. In summary, ALA appears to be transported into erythroid cells mainly by SLC36A1 and is utilized to generate heme. ALA may represent a novel therapeutic option for CSA treatment, particularly for cases harboring ALAS2 mutations

  13. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Tohru [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai (Japan); Okamoto, Koji; Niikuni, Ryoyu [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Takahashi, Kiwamu [SBI Pharmaceuticals Co., Ltd., Tokyo (Japan); Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Ishizawa, Kenichi [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai (Japan); Ichinohasama, Ryo [Department of Hematopathology, Tohoku University Graduate School, Sendai (Japan); Nakamura, Yukio [Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki (Japan); Nakajima, Motowo; Tanaka, Tohru [SBI Pharmaceuticals Co., Ltd., Tokyo (Japan); Harigae, Hideo, E-mail: harigae@med.tohoku.ac.jp [Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai (Japan); Department of Molecular Hematology/Oncology, Tohoku University Graduate School, Sendai (Japan)

    2014-11-07

    expressed in erythroid cells. Thus, gamma-aminobutyric acid (GABA) was added to K562 cells to competitively inhibit SLC36A1-mediated transport. GABA treatment significantly impeded the ALA-mediated increase in the number of hemoglobinized cells as well as the induction of HBG, HBA, and HMOX1. Finally, small-interfering RNA-mediated knockdown of ALAS2 in HiDEP cells considerably decreased the expression of HBA, HBG, and HMOX1, and these expression levels were rescued with ALA treatment. In summary, ALA appears to be transported into erythroid cells mainly by SLC36A1 and is utilized to generate heme. ALA may represent a novel therapeutic option for CSA treatment, particularly for cases harboring ALAS2 mutations.

  14. Binding interactions of convulsant and anticonvulsant gamma-butyrolactones and gamma-thiobutyrolactones with the picrotoxin receptor

    International Nuclear Information System (INIS)

    Holland, K.D.; McKeon, A.C.; Covey, D.F.; Ferrendelli, J.A.

    1990-01-01

    Alkyl-substituted gamma-butyrolactones (GBLs) and gamma-thiobutyrolactones (TBLs) are neuroactive chemicals. beta-Substituted compounds are convulsant, whereas alpha-alkyl substituted GBLs and TBLs are anticonvulsant. The structural similarities between beta-alkyl GBLs and the convulsant picrotoxinin suggested that alkyl substituted GBLs and TBLs act at the picrotoxin receptor. To test this hypothesis we examined the interactions of convulsant and anticonvulsant GBLs and TBLs with the picrotoxin, benzodiazepine and gamma-aminobutyric acid (GABA) binding sites of the GABA receptor complex. All of these convulsants and anticonvulsants studied competitively displaced 35S-t-butylbicyclophosphorothionate (35S-TBPS), a ligand that binds to the picrotoxin receptor. This inhibition of 35S-TBPS binding was not blocked by the GABA antagonist bicuculline methobromide. The convulsant GBLs and TBLs also partially inhibited [3H]muscimol binding to the GABA site and [3H]flunitrazepam binding to the benzodiazepine site, but they did so at concentrations substantially greater than those that inhibited 35S-TBPS binding. The anticonvulsant GBLs and TBLs had no effect on either [3H]muscimol or [3H]flunitrazepam binding. In contrast to the GBLs and TBLs, pentobarbital inhibited TBPS binding in a manner that was blocked by bicuculline methobromide, and it enhanced both [3H]flunitrazepam and [3H]muscimol binding. Both ethosuximide and tetramethylsuccinimide, neuroactive compounds structurally similar to GBLs, competitively displaced 35S-TBPS from the picrotoxin receptor and both compounds were weak inhibitors of [3H] muscimol binding. In addition, ethosuximide also partially diminished [3H]flunitrazepam binding. These data demonstrate that the site of action of alkyl-substituted GBLs and TBLs is different from that of GABA, barbiturates and benzodiazepines

  15. Isoguvacine binding, uptake, and release: relation to the GABA system

    Energy Technology Data Exchange (ETDEWEB)

    White, W F; Snodgrass, S R

    1983-06-01

    Isoguvacine (1,2,3,6-tetrahydropyridine-4-carboxylic acid) is a GABA (gamma-aminobutyric acid) agonist with limited conformational flexibility. In these studies we investigated the binding, uptake, and release of (3H) isoguvacine by use of tissue preparations of rat CNS, comparing the results with similar studies of (3H)GABA. The results from these investigations indicate that isoguvacine binds to membrane preparations of rat forebrain with pharmacological characteristics similar to the post-synaptic GABA recognition site; that it is transported into synaptosomal preparations by an uptake system similar to the high-affinity GABA uptake system; and that recently accumulated isoguvacine is released in a Ca2+-dependent manner and by heteroexchange with external GABA. The ability of isoguvacine and gamma-hydroxybutyric acid to decrease the K+-stimulated Ca2+-dependent release process was also investigated. The results indicate that isoguvacine interactions have many of the biochemical features of GABA synaptic function, isoguvacine being, however, less potent than GABA.

  16. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  17. Sustained enhancement of OCTN1 transporter expression in association with hydroxyurea induced gamma-globin expression in erythroid progenitors

    OpenAIRE

    Walker, Aisha L.; Ofori-Acquah, Solomon

    2016-01-01

    The clinical benefits of hydroxyurea treatment in patients with sickle cell disease (SCD) are due largely to increased gamma-globin expression. However, mechanisms that control gamma-globin expression by hydroxyurea in erythroid progenitors are incompletely understood. Here, we investigated the role of two hydroxyurea transporters, urea transporter B (UTB) and organic cation/carnitine transporter 1 (OCTN1), in this process. Endogenous expression of both transporters peaked towards the end of ...

  18. Relationship among Glutamine, γ-Aminobutyric Acid, and Social Cognition in Autism Spectrum Disorders

    Science.gov (United States)

    Sikoglu, Elif M.; Hodge, Steven M.; Edden, Richard A.E.; Foley, Ann; Kennedy, David N.; Moore, Constance M.; Frazier, Jean A.

    2015-01-01

    Abstract Objective: An imbalance of excitatory and inhibitory neurotransmission in autism spectrum disorder (ASD) has been proposed. We compared glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC) of 13 males with ASD and 14 typically developing (TD) males (ages 13–17), and correlated these levels with intelligence quotient (IQ) and measures of social cognition. Methods: Social cognition was evaluated by administration of the Social Responsiveness Scale (SRS) and the Reading the Mind in the Eyes Test (RMET). We acquired proton magnetic resonance spectroscopy (1H-MRS) data from the bilateral ACC using the single voxel point resolved spectroscopy sequence (PRESS) to quantify Glu and Gln, and Mescher–Garwood point-resolved spectroscopy sequence (MEGA-PRESS) to quantify GABA levels referenced to creatine (Cr). Results: There were higher Gln levels (p=0.04), and lower GABA/Cre levels (p=0.09) in the ASD group than in the TD group. There was no difference in Glu levels between groups. Gln was negatively correlated with RMET score (rho=−0.62, p=0.001) and IQ (rho=−0.56, p=0.003), and positively correlated with SRS scores (rho=0.53, p=0.007). GABA/Cre levels were positively correlated with RMET score (rho=0.34, p=0.09) and IQ (rho=0.36, p=0.07), and negatively correlated with SRS score (rho=−0.34, p=0.09). Conclusions: These data suggest an imbalance between glutamatergic neurotransmission and GABA-ergic neurotransmission in ASD. Higher Gln levels and lower GABA/Cre levels were associated with lower IQ and greater impairments in social cognition across groups. PMID:25919578

  19. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication.

    Science.gov (United States)

    Ding, Junzhou; Ulanov, Alexander V; Dong, Mengyi; Yang, Tewu; Nemzer, Boris V; Xiong, Shanbai; Zhao, Siming; Feng, Hao

    2018-01-01

    Red rice (Oryza sativa L.) that has a red (reddish brown) bran layer in de-hulled rice is known to contain rich biofunctional components. Germination is an effective technique to improve the nutritional quality, digestibility, and flavor of de-hulled rice. Ultrasonication, a form of physical stimulation, has been documented as a novel approach to improve the nutritional quality of plant-based food. This study was undertaken to test the use of ultrasound to enhance the nutritional value of red rice. Ultrasonication (5min, 16W/L) was applied to rice during soaking or after 66h germination. Changes of metabolites (amino acids, sugars, and organic acids) in red rice treated by ultrasonication were determined using a GC/MS plant primary metabolomics analysis platform. Differential expressed metabolites were identified through multivariate statistical analysis. Results showed that γ-aminobutyric acid (GABA) and riboflavin (vitamin B 2 ) in red rice significantly increased after germination for 72h, and then experienced a further increase after treatment by ultrasound at different stages during germination. The metabolomics analysis showed that some plant metabolites, i.e. GABA, O-phosphoethanolamine, and glucose-6-phosphate were significantly increased after the ultrasonic treatment (VIP>1.5) in comparison with the untreated germinated rice. The findings of this study showed that controlled germination with ultrasonic stress is an effective method to enhance GABA and other health-promoted components in de-hulled rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gamma Amino Butyric Acid Attenuates Liver and Kidney Damage Associated with Insulin Alteration in γ-Irradiated and Streptozotocin-Treated Rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Eltahawy, N.A.; Hammad, A.S.; Morcos, N.Y.S.

    2016-01-01

    Gamma aminobutyric acid (GABA) is one of the inhibitory neurotransmitters that may have the ability to relive the intensity of stress. The aim of the current study was to evaluate the role of γ-amino butyric acid (GABA) in modulating insulin disturbance associated with liver and kidney damage in γ-irradiated and streptozotocin-treated rats. Irradiation was performed by whole body exposure to 6 Gy from a Cs-137 source. Streptozotocin (STZ) was administered in a single intraperitoneal dose (60 mg/kg body weight). GABA (200 mg/Kg body weight/day) was administered daily via gavages during 3 weeks to γ-irradiated and STZ-treated-rats. The results obtained showed that γ-irradiation induced hyperglycemia, hyperinsulinaemia and insulin resistance (similar to type 2 Diabetes), while STZ-treatment produced hyperglycemia, insulin deficiency with no insulin resistance detected (similar to type 1 Diabetes). In both cases, significant increases of alanine amino transferase (ALT) and aspartate amino transferase (AST) activities, urea and creatinine levels were recorded in the serum. These changes were associated with oxidative damage to the liver and kidney tissues notified by significant decreases of superoxide dismutase (SOD ), catalase and glutathione peroxidase ( GSH-Px) activities in parallel to significant increases of malondialdehyde (MDA) and advanced oxidation protein products ( AOPP) levels. The administration of GABA to irradiated as well as STZ-treated rats regulated insulin and glucose levels, minimized oxidative stress and reduced the severity of liver and kidney damage. It could be concluded that GABA could be a useful adjunct to reduce some metabolic complications associated with insulin deficiency and insulin resistance

  1. Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain

    DEFF Research Database (Denmark)

    Oliveira, Letícia C; Saraiva, Tessália D L; Soares, Siomar C

    2014-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 is a nondairy lactic acid bacterium, a xylose fermenter, and a gamma-aminobutyric acid (GABA) producer isolated from frozen peas. Here, we report the complete genome sequence of L. lactis NCDO 2118, a strain with probiotic potential activity....

  2. Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

    Science.gov (United States)

    Dawson, Paul A.

    2011-01-01

    Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970

  3. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  4. RADHEAT-V3, a code system for generating coupled neutron and gamma-ray group constants and analyzing radiation transport

    International Nuclear Information System (INIS)

    Koyama, Kinji; Taji, Yukichi; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1977-07-01

    The modular code system RADHEAT is for producing coupled multigroup neutron and gamma-ray cross section sets, analyzing the neutron and gamma-ray transport, and calculating the energy deposition and atomic displacements due to these radiations in a nuclear reactor or shield. The basic neutron cross sections and secondary gamma-ray production data are taken from ENDF/B and POPOP4 libraries respectively. The system (1) generates multigroup neutron cross sections, energy deposition coefficients and atomic displacement factors due to neutron reactions, (2) generates multigroup gamma-ray cross sections and energy transfer coefficients, (3) generates secondary gamma-ray production cross sections, (4) combines these cross sections into the coupled set, (5) outputs and updates the multigroup cross section libraries in convenient formats for other transport codes, (6) analyzes the neutron and gamma-ray transport and calculates the energy deposition and the number density of atomic displacements in a medium, (7) collapses the cross sections to a broad-group structure, by option, using the weighting functions obtained by one-dimensional transport calculation, and (8) plots, by option, multigroup cross sections, and neutron and gamma-ray distributions. Definitions of the input data required in various options of the code system are also given. (auth.)

  5. Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype- and tissue-dependent manner.

    Science.gov (United States)

    Guan, Le; Wu, Benhong; Hilbert, Ghislaine; Li, Shaohua; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2017-08-01

    Amino acid composition of the grape berry at harvest is important for wine making. The present study investigates the complex interplay between tissue, cultivar and light conditions that determine berry amino acid content. Twenty amino acids were assessed in the berry skin and pulp of two grape cultivars (Gamay Noir and Gamay Fréaux), grown under either light exposure or cluster shading conditions. In all samples, cluster shading significantly reduced most amino acids, except gamma-aminobutyric acid (GABA) and phenylalanine. However, the magnitude of the decrease was stronger in the skin (67.0% decrease) than in the pulp (30.4%) and stronger in cv. Gamay Noir (69.7%) than in Gamay Fréaux (30.7%). Cluster shading also significantly modified amino acid composition by decreasing the proline content while increasing the GABA content. These results are of oenological interest for shaping the amino acid composition of the must and improving wine quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Kwangwon [Eulji Univ. Hospital, Daejeon (Korea, Republic of); Kwon, Jungkee [Chonbuk National Univ., Jeonju (Korea, Republic of); Kim, Taewoon [Jeonbuk Technopark, Jeonju (Korea, Republic of)

    2012-03-15

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage.

  7. Prevention Effect of Poly-Gamma-Glutamic Acid on Tissue Damage Induced by Gamma Irradiation as a Natural Cross-Linker

    International Nuclear Information System (INIS)

    Kim, Jaehun; Sung, Nakyun; Kim, Jeongsoo; Jo, Euri; Choi, Jongil; Park, Jongheum; Lee, Juwoon; Lee, Kwangwon; Kwon, Jungkee; Kim, Taewoon

    2012-01-01

    This study was to determine the prevention effect of poly-gamma-glutamic acid (PGA) on tissue damage induced by gamma irradiation for development of xenograft. PGA (MW 2000 kDa) extracted from permeated soy bean (natto) was used in this study as natural compound, and glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as a control, chemical based cross-linking agents. GA, EDC and PGA treated porcine tendons were gamma-irradiated at the dose of 30 kGy. Prevention effects against tissue damage were measured as the result of tensile strength, hydroxyproline contents and tissue morphological analysis. Tensile of porcine tendon was remarkably decreased by gamma irradiation, but increased in PGA treated group. Morphological analysis showed that collagen structure was broken by gamma irradiation, but attenuated by PGA treatment. Base on the results, it demonstrated that gamma irradiation can induce severe alteration of porcine tendon, but PGA can effectively improve the tissue damage

  8. OGRE, Monte-Carlo System for Gamma Transport Problems

    International Nuclear Information System (INIS)

    1984-01-01

    1 - Nature of physical problem solved: The OGRE programme system was designed to calculate, by Monte Carlo methods, any quantity related to gamma-ray transport. The system is represented by two examples - OGRE-P1 and OGRE-G. The OGRE-P1 programme is a simple prototype which calculates dose rate on one side of a slab due to a plane source on the other side. The OGRE-G programme, a prototype of a programme utilizing a general-geometry routine, calculates dose rate at arbitrary points. A very general source description in OGRE-G may be employed by reading a tape prepared by the user. 2 - Method of solution: Case histories of gamma rays in the prescribed geometry are generated and analyzed to produce averages of any desired quantity which, in the case of the prototypes, are gamma-ray dose rates. The system is designed to achieve generality by ease of modification. No importance sampling is built into the prototypes, a very general geometry subroutine permits the treatment of complicated geometries. This is essentially the same routine used in the O5R neutron transport system. Boundaries may be either planes or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. Cross section data is prepared by the auxiliary master cross section programme XSECT which may be used to originate, update, or edit the master cross section tape. The master cross section tape is utilized in the OGRE programmes to produce detailed tables of macroscopic cross sections which are used during the Monte Carlo calculations. 3 - Restrictions on the complexity of the problem: Maximum cross-section array information may be estimated by a given formula for a specific problem. The number of regions must be less than or equal to 50

  9. Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1.

    Science.gov (United States)

    Yuan, Qiang; Yang, Feng; Xiao, Yixin; Tan, Shawn; Husain, Nilofer; Ren, Ming; Hu, Zhonghua; Martinowich, Keri; Ng, Julia S; Kim, Paul J; Han, Weiping; Nagata, Koh-Ichi; Weinberger, Daniel R; Je, H Shawn

    2016-08-15

    Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Palovarotene, a novel retinoic acid receptor gamma agonist for the treatment of emphysema.

    Science.gov (United States)

    Hind, Matthew; Stinchcombe, Sian

    2009-11-01

    Emphysema is characterized by the destruction of alveoli and alveolar ducts within the lungs. Retinoid signaling is believed to play a role in alveologenesis, with the retinoic acid receptor gamma thought to be required for alveolar formation. Based on this hypothesis, Roche Holding AG is developing palovarotene (R-667, RO-3300074), a selective retinoic acid receptor gamma agonist for the treatment of emphysema. In small animal studies, palovarotene was claimed to reverse the structural, functional and inflammatory features of cigarette smoke-induced emphysema. Phase I clinical trials of palovarotene in patients with emphysema demonstrated that the drug is well tolerated, with improvements observed in markers of emphysema progression. Unlike all-trans retinoic acid, the pharmacokinetic profile of palovarotene appears to be dose-proportional. At the time of publication, a phase II, placebo-controlled trial was ongoing, and was expected to report prospective measurements of exercise, gas transfer and lung densitometry endpoints. The development of a selective retinoic acid receptor gamma agonist for the treatment of emphysema represents the first of a new class of small-molecule regenerative therapies that may prove useful for the treatment of destructive or age-related lung disease.

  11. Calculation of neutron and gamma transport at the FOA:type of problems and calculation methods

    International Nuclear Information System (INIS)

    Lefvert, T.

    1975-11-01

    Protection against the effects of nuclear warfare involves the analysis of the forms of results of a nuclear charge explosion producing neutron and gamma radiation. It brings out problems leading to the calculation of criticality, leakage, and deep transmission. Methods have been developed for various kinds of particle transport problems. Applications to radiation therapy, storage of fissile materials, and fast reactors are discussed. A list (with brief description) of all neutron and gamma transport programmes of the FOA is given. (J.S.)

  12. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.

    Science.gov (United States)

    Somogyi, P; Minson, J B; Morilak, D; Llewellyn-Smith, I; McIlhinney, J R; Chalmers, J

    1989-09-04

    The source and possible role of excitatory amino acid projections to areas of the ventrolateral medulla (VLM) involved in cardiovascular control were studied. Following the injection of [3H]D-aspartate ([3H]D-Asp), a selective tracer for excitatory amino acid pathways, into vasopressor or vasodepressor areas of the VLM in rats, more than 90% of retrogradely labelled neurones were found in the nucleus of the solitary tract (NTS). Very few of the [3H]D-Asp-labelled cells were immunoreactive for tyrosine hydroxylase, none for phenylethanolamine-N-methyltransferase or gamma-aminobutyric acid. The density of labelled cells in the NTS was similar to that obtained with the non-selective tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and WGA-colloidal gold, but these tracers also labelled other cell groups in the medulla. Furthermore, the decrease in blood pressure, caused by pharmacological activation of neurones in the NTS of rats, or by electrical stimulation of the aortic depressor nerve in rabbits could be blocked by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate injected into the caudal vasodepressor area of the VLM. This area corresponds to the termination of [3H]D-Asp transporting NTS neurones. These results provide evidence that a population of NTS neurones projecting to the VLM use excitatory amino acids as transmitters. Among other possible functions, this pathway may mediate tonic and reflex control of blood pressure via NMDA receptors in the VLM.

  13. High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation

    Science.gov (United States)

    Azzam, Edouard I.; Ferraris, Ronaldo P.; Howell, Roger W.

    2015-01-01

    We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays. PMID:26484399

  14. Changes of tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid levels in the germinated brown rice of pigmented and nonpigmented cultivars.

    Science.gov (United States)

    Ng, Lean-Teik; Huang, Shao-Hua; Chen, Yen-Ting; Su, Chun-Han

    2013-12-26

    This study examined the changes of tocopherols (Toc), tocotrienols (T3), γ-oryzanol (GO), and γ-aminobutyric acid (GABA) contents in germinated brown rice (GBR) of pigmented and nonpigmented cultivars under different germination conditions. Results showed that the Toc and T3 contents in GBR were significantly different between treatments in both rice cultivars. The pigmented GBR possessed higher total vitamin E, total Toc, total T3, and GO contents than the nonpigmented GBR; however, its level of GABA was lower. The order of the three highest vitamin E homologues in pigmented and nonpigmented GBR was γ-T3 > γ-Toc > α-Toc and α-Toc > γ-T3 > α-T3, respectively; β-Toc, β-T3, δ-Toc, and δ-T3 were present in only small amounts (≤1.0 mg/kg) in GBR of both cultivars. Although both cultivars showed an increase in GABA contents with increasing germination time, the GABA content in nonpigmented GBR was higher.

  15. Remote sensing of acid sulfate soils using multispectral and gamma-ray data

    International Nuclear Information System (INIS)

    Bierwirth, P.N.; Graham, T.L.

    1998-01-01

    Acid sulfate soils are a significant environmental problem in coastal regions of Australia. Drainage and disturbance of coastal lands can result in acid soil degradation and the release of sulfuric acid and toxic metals into coastal waters. Remote sensing can provide a useful tool for detection of these soils and monitoring of their disturbance. As acid sulfate soils become oxidised with exposure to air, iron-minerals are produced and precipitate at the surface. This results from the breakdown of pyrite to form hydrated iron minerals and elemental sulfur, the oxidation of which produces acidity. The concentration of iron minerals at the surface can be an indicator of the level of acid sulfate soil activity in the near subsurface. These iron minerals include goethite, ferrihydrite and jarosite. Space-borne remote sensing scanners such as Landsat TM are capable of detecting iron minerals as a result of ferric ion absorption of solar radiation. Hyperspectral scanners are capable of further discrimination of individual minerals. This paper will discuss spectral characteristics of active acid sulfate soils and demonstrate the use of spectral unmixing algorithms on Landsat TM to detect problem areas at the surface. This method matches multispectral data to material reflectance-spectra known as end-members. These end-members or materials are then resolved mathematically as to their respective contributions to the overall reflectance (Bierwirth, 1990). In this way, abundances for particular materials can be derived.Digital elevation data was used to distinguish between the iron minerals due to weathering of bedrock in upland areas and acid sulfate soils on the plains. Also, the results of a high resolution (200m linespacing) airborne gamma-ray survey are presented. This data senses the concentration of radioelements down to about 40 cm depth and is largely unaffected by vegetation. Concentrations of gamma-emitting elements can indicate the type and depth of alluvium that

  16. Extraordinary arousal from semi-comatose state on zolpidem ...

    African Journals Online (AJOL)

    propylene amine oxime (99mTc HMPAO) brain single photon emission computed tomography (SPECf) before and after administration of the gamma-aminobutyric acid (GABA) agonist zolpidem. It was observed that 15 minutes after application ...

  17. Modulation of cardiopulmonary depressor reflex in nucleus ambiguus by electroacupuncture: roles of opioids and γ-aminobutyric acid.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Li, Peng; Li, Min; Longhurst, John C

    2012-04-01

    Stimulation of cardiopulmonary receptors with phenylbiguanide (PBG) elicits depressor cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated in part by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus (NAmb). The present study examined NAmb neurotransmitter mechanisms underlying the influence of electroacupuncture (EA) on the PBG-induced hypotension and bradycardia. We hypothesized that somatic stimulation during EA modulates PBG responses through opioid and γ-aminobutyric acid (GABA) modulation in the NAmb. Anesthetized and ventilated cats were studied during repeated stimulation with PBG or cardiac vagal afferents while low-frequency EA (2 Hz) was applied at P5-6 acupoints overlying the median nerve for 30 min and NAmb neuronal activity, heart rate, and blood pressure were recorded. Microinjection of kainic acid into the NAmb attenuated the PBG-induced bradycardia from -60 ± 11 to -36 ± 11 beats/min. Likewise, EA reduced the PBG-induced depressor and bradycardia reflex by 52 and 61%, respectively. Cardiac vagal afferent evoked preganglionic cellular activity in the NAmb was reduced by EA for about 60 min. Blockade of opioid or GABA(A) receptors using naloxone and gabazine reversed the EA-related modulation of the evoked cardiac vagal activity by 73 and 53%, respectively. Similarly, naloxone and gabazine reversed EA modulation of the negative chronotropic responses from -11 ± 5 to -23 ± 6 and -13 ± 4 to -24 ± 3 beats/min, respectively. Thus EA at P5-6 decreases PBG evoked hypotension and bradycardia as well as the NAmb PBG-sensitive preganglionic cardiac vagal outflow through opioid and GABA neurotransmitter systems.

  18. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    International Nuclear Information System (INIS)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.; Holan, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial [ 3 H]diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli [ 3 H]diazepam binding are those that are active in displacing [ 3 H]benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed

  19. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy?

    Directory of Open Access Journals (Sweden)

    Joeri eVan Liefferinge

    2013-08-01

    Full Text Available The vesicular neurotransmitter transporters (VNTs are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3, the vesicular excitatory amino acid transporter (VEAT, the vesicular nucleotide transporter (VNUT, vesicular monoamine transporters (VMAT1/2, the vesicular acetylcholine transporter (VAChT and the vesicular γ-aminobutyric acid (GABA transporter (VGAT in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.

  20. Effect of gamma radiation on the titrable acidity and vitamin c content of citrus fruits

    OpenAIRE

    Iftekhar Ahmad

    2012-01-01

    The study was carried out to assess effect of gamma radiation on the acidity and vitamin C content of the Citrus macroptera (Satkora) and Citrus assamensis (Ginger lime). Irradiation with doses 0.5, 1.0, 2.0, 3.0 kGy were applied to assess the effect on the titrable acidity and vitamin C contents every one week interval for total five weeks. Both titrable acidity and vitamin C content of C. macroptera, and C. assamensis are sensitive to both gamma radiation and storage time; have decreased wi...

  1. Physiological response of marigold (calendula officinalis L.) plants to gamma radiation, gibberellic acid and kinetin

    International Nuclear Information System (INIS)

    Noby, M.F.A.

    2010-01-01

    This study was carried out during the two successive seasons of 2005/2006 and 2006/2007 at the Experimental Field of Plant Research Department, Nuclear Research Center, Atomic Energy Authority at Inshas in a newly reclaimed sandy loam soil. The aim of this work was to study the effect of gamma radiation, gibberellic acid or kinetin and their interaction on the growth, flowering and the productivity of pot-marigold (Calendula officinalis L.) plants. The experimental trials included two factorial experiments; the first one was to study the effect of gamma radiation and gibberellic acid and the interaction between them on pot-marigold plants. Another experiment was conducted to study the effect of gamma radiation and kinetin and the interaction between them on pot-marigold plants. Pot-marigold seeds were irradiated before sowing with gamma rays at 0, 50, 100, 150 or 200 Gray (Gy) of gamma rays. After planting, plants were sprayed with either gibberellic acid (at the concentrations of 0, 50, 100, 150 or 200 ppm) or kinetin (at the concentrations of 0, 10, 20, 30 or 40 ppm). Generally, gamma rays treatments (50, 100 and 150 Gy) increased plant height, branch number/plant, leaf area, vegetative growth and roots fresh and dry weights of pot-marigold plants. Also, the same gamma doses accelerated flowering and decreased the period from sowing until flowering while increased flower head diameter, flower number/plant and flowers fresh and dry weights per plant and per feddan. In addition, gamma rays (50 - 150 Gy) increased volatile oil yield in flowers, leaf chlorophyll content, carotenoids and beta carotene in flowers, total soluble sugars and NPK %. The best values were obtained by 50 Gy dose of gamma rays, whereas the dose of 200 Gy gave the lowest values.

  2. Gas Phase Hydrogenation of Levulinic Acid to gamma-Valerolactone

    NARCIS (Netherlands)

    Bonrath, Werner; Castelijns, Anna Maria Cornelia Francisca; de Vries, Johannes Gerardus; Guit, Rudolf Philippus Maria; Schuetz, Jan; Sereinig, Natascha; Vaessen, Henricus Wilhelmus Leonardus Marie

    The gas phase hydrogenation of levulinic acid to gamma-valerolactone over copper and ruthenium based catalysts in a continuous fixed-bed reactor system was investigated. Among the catalysts a copper oxide based one [50-75 % CuO, 20-25 % SiO2, 1-5 % graphite, 0.1-1 % CuCO3/Cu(OH)(2)] gave

  3. Effect of feeding Rumen-protected capsule containing niacin, K2SO4, vitamin C, and gamma-aminobutyric acid on heat stress and performance of dairy cows.

    Science.gov (United States)

    Guo, W J; Zhen, L; Zhang, J X; Lian, S; Si, H F; Guo, J R; Yang, H M

    2017-10-01

    This study was conducted to evaluate the effects of supplemental rumen-protected capsule (RPC) on animal performance, serological indicators, and serum heat shock protein 70 (HSP70) of lactating Holstein cows under heat stress (HS). During summer months, 30 healthy multiparous lactating Holstein cows with a parity number of 3.1 ± 0.44, 70 ± 15 d in milk, an average body weight of 622 ± 62kg, and an average milk yield of 32.28 ± 0.96kg/d, were used. The cows were randomly allocated to two groups: a control group and an RPC-supplemented group (0.13373kg K 2 SO 4 , 0.02488kg vitamin C, 0.021148kg niacin, and 0.044784kggamma-aminobutyric acid per cow). During the 42-d experiment, ambient air temperature and relative humidity inside and outside the barn were recorded hourly every day for the determination of temperature-humidity index (THI). Milk and blood samples were collected every week, and body weight and body condition scoring were measured on day 0. Based on the THI values, the animals had moderate HS. On day 42, the RPC group had lower HSP70, adrenocorticotropic hormone (P = 0.0001), lactate dehydrogenase (P = 0.0338), and IL-6 (P = 0.0724) levels than the control group, with no significant differences in creatine kinase, glucocorticoid, or IL-2 levels. Milk yield, energy-corrected milk, and dry matter intake were higher in RPC than in the control group (P = 0.0196). There were no significant differences in milk fat or daily protein levels between the two groups; however, daily protein and milk fat levels were higher in the RPC group than in the control group (P = 0.0114 and P = 0.0665, respectively). Somatic cell counts were no different between the two groups. In conclusion, RPC may alleviate HS and improve dairy cow performance. Copyright © 2017. Published by Elsevier Ltd.

  4. Endogenous synthesis of taurine and GABA in rat ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    Heinaemaeki, A.A.

    1988-01-01

    The endogenous production of taurine and ..gamma..-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine on the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye.

  5. Effect of gamma sterilization on the fatty acid profile of lyophilized buffalo cheese

    International Nuclear Information System (INIS)

    Ivanova, S.; Nacheva, I.; Miteva, D.; Loginovska, K.; Tsvetkov, Ts.

    2009-01-01

    The changes in the fatty acid profile of buffalo cheese after lyophilization and gamma rays treatment at 2 kGy and 4 kGy doses have been studied with the objective of its shelf-live prolongation. The results of the experiments show a decrease of the content of the saturated fatty acids after irradiation at the aforesaid gamma rays doses. A favorable effect on human organism has the decrease of the quantity of the short-chain fatty acids – by 13.16 % on irradiation at 2 kGy and by 18.73% on irradiation at 4 kGy, compared to the control sample. A satisfactory correlation between the essential fatty acids omega-6/omega3 has been observed in the lyophilized buffalo cheese. In the process of irradiation this balanced correlation changes and increases up to 7.32 and 8.31 at 2 kGy and 4 kGy respectively

  6. Protective propensity of bacoside A and bromelain on renal cholinesterases, γ-Aminobutyric acid and serotonin level of Mus musculus intoxicated with dichlorvos.

    Science.gov (United States)

    Agarwal, Sonam; Chaudhary, Bharti; Bist, Renu

    2017-01-05

    Current study established a protective action of bacoside A and bromelain against the toxic effects of dichlorvos in kidneys of mice. Experimental design included five groups. The first group was control. Mice of groups II, III and IV were administered doses of dichlorvos, bromelain and bacoside A respectively. In group V, mice were treated with both the antioxidants (bacoside A and bromelain) and dichlorvos. After 21 days of exposure of different doses, levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), γ-aminobutyric acid (GABA) and serotonin were measured in renal tissues. Dichlorvos significantly reduced the kidney AChE (p GABA level (p level (p GABA level. Meanwhile, a significant decline in serotonin level (p < 0.001) was revealed, compared to dichlorvos exposed mice. Bacoside A and bromelain occupy a tremendous antioxidant action in the mice kidneys and a combination of the same ameliorates the renal toxicity induced by dichlorvos. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor

    NARCIS (Netherlands)

    Hartmann, J.; Dedic, N.; Pöhlmann, M.L.; Häusl, A.; Karst, H.; Engelhardt, C.; Westerholz, S.; Wagner, K.V.; Labermaier, C.; Hoeijmakers, L.; Kertokarijo, M.; Chen, A.; Joëls, M.; Deussing, J.M.; Schmidt, M.V.

    2017-01-01

    Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in

  8. DNA Methylation at the Neonatal State and at the Time of Diagnosis: Preliminary Support for an Association with the Estrogen Receptor 1, Gamma-Aminobutyric Acid B Receptor 1, and Myelin Oligodendrocyte Glycoprotein in Female Adolescent Patients with OCD.

    Science.gov (United States)

    Nissen, Judith Becker; Hansen, Christine Søholm; Starnawska, Anna; Mattheisen, Manuel; Børglum, Anders Dupont; Buttenschøn, Henriette Nørmølle; Hollegaard, Mads

    2016-01-01

    Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Non-genetic factors and their interaction with genes have attracted increasing attention. Epigenetics is regarded an important interface between environmental signals and activation/repression of genomic responses. Epigenetic mechanisms have not previously been examined in OCD in children and adolescents. The aim of the present study was to examine the DNA methylation profile of selected genes in blood spots from neonates later diagnosed with OCD and in the same children/adolescents at the time of diagnosis compared with age- and sex-matched controls. Furthermore, we wanted to characterize the association of the differential methylation profiles with the severity of OCD and treatment outcome. Dried and new blood spot samples were obtained from 21 female children/adolescents with verified OCD and 12 female controls. The differential methylation was analyzed using a linear model and the correlation with the severity of OCD and treatment outcome was analyzed using the Pearson correlation. We evaluated selected Illumina Infinium HumanMethylation450 BeadChip probes within and up to 100,000 bp up- and downstream of 14 genes previously associated with OCD (SLC1A1, SLC25A12, GABBR1, GAD1, DLGAP1, MOG, BDNF, OLIG2, NTRK2 and 3, ESR1, SL6A4, TPH2, and COMT). The study found no significantly differential methylation. However, preliminary support for a difference was found for the gamma-aminobutyric acid (GABA) B receptor 1 (cg10234998, cg17099072) in blood samples at birth and for the estrogen receptor 1 (ESR1) (cg10939667), the myelin oligodendrocyte glycoprotein (MOG) (cg16650906), and the brain-derived neurotrophic factor (BDNF) (cg14080521) in blood samples at the time of diagnosis. Preliminary support for an association was observed between the methylation profiles of GABBR1 and MOG and baseline severity, treatment effect, and responder status; and between the methylation profile of ESR1 and baseline

  9. Impaired expression of GABA transporters in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Fuhrer, Tessa E; Palpagama, Thulani H; Waldvogel, Henry J; Synek, Beth J L; Turner, Clinton; Faull, Richard L; Kwakowsky, Andrea

    2017-05-20

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. We found a significant increase in BGT-1 expression associated with AD in all layers of the dentate gyrus, in the stratum oriens of the CA2 and CA3 and the superior temporal gyrus. In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  11. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.

    Science.gov (United States)

    Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H

    2010-03-01

    The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.

  12. Analysis of persistent changes to γ-aminobutyric acid receptor gene expression in Plutella xylostella subjected to sublethal amounts of spinosad.

    Science.gov (United States)

    Yin, X-H; Wu, Q-J; Zhang, Y-J; Long, Y-H; Wu, X-M; Li, R-Y; Wang, M; Tian, X-L; Jiao, X-G

    2016-07-25

    A multi-generational approach was used to investigate the persistent effects of a sub-lethal dose of spinosad in Plutella xylostella. The susceptibility of various sub-populations of P. xylostella to spinosad and the effects of the insecticide on the gene expression of γ-aminobutyric acid receptor (GABAR) were determined. The results of a leaf dip bioassay showed that the sensitivity of P. xylostella to spinosad decreased across generations. The sub-strains had been previously selected based on a determined LC25 of spinosad. Considering that GABA-gated chloride channels are the primary targets of spinosad, the cDNA of P. xylostella was used to clone GABARα by using reverse transcription-polymerase chain reaction (RT-PCR). The mature peptide cDNA was 1477-bp long and contained a 1449-bp open reading frame encoding a protein of 483 amino acids. The resulting amino acid sequence was used to generate a neighbor-joining dendrogram, and homology search was conducted using NCBI BLAST. The protein had high similarity with the known GABAR sequence from P. xylostella. Subsequent semi-quantitative RT-PCR and real-time PCR analyses indicated that the GABAR transcript levels in the spinosad-resistant strain (RR, 145.82-fold) and in Sub1 strain (selected with LC25 spinosad for one generation) were the highest, followed by those in the spinosad-susceptible strain, the Sub10 strain (selected for ten generations), and the Sub5 strain (selected for five generations). This multi-generational study found significant correlations between spinosad susceptibility and GABAR gene expression, providing insights into the long-term effects of sub-lethal insecticide exposure and its potential to lead to the development of insecticide-resistant insect populations.

  13. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows.

    Science.gov (United States)

    Cheng, J B; Bu, D P; Wang, J Q; Sun, X Z; Pan, L; Zhou, L Y; Liu, W

    2014-09-01

    This experiment was conducted to investigate the effects of rumen-protected γ-aminobutyric acid (GABA) on performance and nutrient digestibility in heat-stressed dairy cows. Sixty Holstein dairy cows (141±15 d in milk, 35.9±4.3kg of milk/d, and parity 2.0±1.1) were randomly assigned to 1 of 4 treatments according to a completely randomized block design. Treatments consisted of 0 (control), 40, 80, or 120mg of true GABA/kg of dry matter (DM). The trial lasted 10wk. The average temperature-humidity indices at 0700, 1400, and 2200h were 78.4, 80.2, and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA concentration. Supplementation of GABA had no effect on respiration rates at any time point. Dry matter intake, energy-corrected milk, 4% fat-corrected milk, and milk fat yield tended to increase linearly with increasing GABA concentration. Supplementation of GABA affected, in a quadratic manner, milk protein and lactose concentrations, and milk protein yield, and the peak values were reached at a dose of 40mg of GABA/kg. Milk urea nitrogen concentration responded quadratically. Total solids content increased linearly with increasing GABA concentration. Supplementation of GABA had no effect on milk yield, lactose production, total solids, milk fat concentration, somatic cell score, or feed efficiency. Apparent total-tract digestibilities of DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were similar among treatments. These results indicate that rumen-protected GABA supplementation to dairy cows can alleviate heat stress by reducing rectal temperature, increase DM intake and milk production, and improve milk composition. The appropriate supplemental GABA level for heat-stressed dairy cows is 40mg/kg of DM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effects of gamma irradiation and ozone treatment on microbial decontamination and fatty acid compositions of aloe and pollen powders

    International Nuclear Information System (INIS)

    Yook, H.S.; Chung, Y.J.; Kim, J.O.; Kwon, O.J.; Byun, M.W.

    1997-01-01

    The comparative effects of gamma irradiation and ozone treatment on the microbial inactivation and fatty acid composition were investigated for improving hygienic quality of aloe and pollen powders. Gamma irradiation at 10 kGy resulted in sterilizing total aerobic bacteria, molds and coliforms below detective levels, while ozone treatment for 8 hours up to 18 ppm did not sufficiently eliminate the microorganisms of aloe and pollen powders. The compositions of fatty acid were not significantly changed by gamma irradiation up to 10 kGy. However, ozone treatment markedly decreased unsaturated fatty acids by approximately 20-80% in contents, whereas it significantly increased saturated fatty acids (p<0.05)

  15. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble

    DEFF Research Database (Denmark)

    Christgau, S; Schierbeck, H; Aanstoot, H J

    1991-01-01

    The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular...

  16. Effects of the insecticide fipronil on reproductive endocrinology in the fathead minnow

    Science.gov (United States)

    Gamma aminobutyric acid (GABA) and GABA receptors play an important role in neuroendocrine regulation in fish. Disruption of the GABAergic system by environmental contaminants could interfere with normal regulation of the hypothalamic pituitary gonadal (HPG) axis, leading to imp...

  17. Evaluation of amino acids changes in liver and serum during the recovery from gamma-irradiation in rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Saada, H.N.; Roushdy, H.M.; Abdelsamie, M.A.

    1989-01-01

    Recovery from radiation induced changes in glutamic and aspartic acids in both liver and serum was evaluated in rats treated with a mixture of testosterone and vitamin E and subjected to whole body gamma irradiation of 5.5 Gy. The intraperitoneal injection of the mixture 10 days before exposing the rat gamma radiation improved the recovery process from radiation induced changes in the level of aspartic and glutamic acid. The recovery occurred in liver two weeks after irradiation in injected irradiated rats, while in irradiated rats self recovery was noticed on the third week after irradiation for aspartic acid but this mixture has no protective effect on the radiation induced changes in the liver glutamic acid. With respect to changes in blood serum, recovery was recorded in the first week after irradiation in the case of aspartic acid while recovery in glutamic acid was attained latter, in the second week. The results suggested that blood serum is more sensitive to the radiation dose 5.5 Gy than the liver of whole body gamma-irradiated rats. Also, it could be suggested that glutamic acid and aspartic acid have different susceptibility to this radiation dose.2 tab

  18. Protective role of ascorbic acid in the decontamination of cow milk casein by gamma-irradiation.

    Science.gov (United States)

    Kouass Sahbani, Saloua; Klarskov, Klaus; Aloui, Amine; Kouass, Salah; Landoulsi, Ahmed

    2013-06-01

    The aim of this work was to investigate the protective role of ascorbic acid on irradiation-induced modification of casein. Casein stock solutions were irradiated with increasing doses 2-10 kGy using (60)Co Gamma rays at a dose rate D• = 136.73 Gy/min at room temperature. The total viable microorganism content of cow milk casein was evaluated by Plate Count Agar (PCA) incubation for 48 h at 37°C. Sodium dodecylsulfate gel electrophoresis (SDS-PAGE) and Matrix-Assisted Laser Desorption-Ionization Time-of-Flight mass spectrometry (MALDI-TOF-MS) analysis were used to evaluate the effect of gamma irradiation on casein integrity. Gamma irradiation reduced the bacterial contamination of casein solutions at a lower irradiation dose when performed in the presence of ascorbic acid. The irradiation treatment of casein in the absence of ascorbic acid with a dose of 4 kGy could reduce 99% of the original amount of bacterial colonies. However, in the presence of ascorbic acid the irradiation treatment of casein with a dose lower than 2 kGy could reduce 99% of the original amount of bacterial colonies which suggested that the irradiation dose lower than 2 kGy achieved almost the entire decontamination result. SDS-PAGE and MALDI-TOF-MS analysis showed that ascorbic acid protected cow milk casein from degradation and subsequent aggregation probably by scavenging oxygen and protein radicals produced by the irradiation. It is demonstrated that the combination of gamma irradiation and ascorbic acid produce additive effects, providing acceptable hygienic quality of cow milk casein and protects caseins against Reactive Oxygen Species (ROS) generated, during the irradiation process.

  19. Evaluation and improvement of gamma-ray stability of chelating resins containing oxy-acid groups of phosphorus

    International Nuclear Information System (INIS)

    Jyo, Akinori; Yamabe, Kazunori; Shuto, Taketomi

    1998-01-01

    Chelating resins containing oxy-acid groups of phosphorus, such as phosphonic and phosphoric acid groups have been studied from the point of view of solvent extraction processes for the separation of nuclear fuel elements as well as of fission product ones. The present work was planned to evaluate the effect of gamma-ray on properties of the resins and to obtain directional information for design of the resins having high stability to gamma-ray. It was clarified that gamma-ray stability of the resins is not high; tolerance limit is ca. 2.3x10 3 C/kg. The present work also clarified that polymers crosslinked with divinylbenzene have much higher gamma-ray stability than ones crosslinked with dimetacrylate esters of oligo (ethylene glycol)s. (J.P.N.)

  20. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  1. Brain GABA levels across psychiatric disorders : A systematic literature review and meta-analysis of 1H-MRS studies

    NARCIS (Netherlands)

    Schür, Remmelt R.; Draisma, Luc W R; Wijnen, Jannie P.; Boks, Marco P.; Koevoets, Martijn G J C; Joëls, Marian; Klomp, Dennis W.; Kahn, René S.; Vinkers, Christiaan H.

    2016-01-01

    The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy (1H-MRS) is

  2. Immunocytochemical indications for neuronal co-localization of GABA and aspartate in cultured neocortex explants

    NARCIS (Netherlands)

    de Jong, B. M.; Ruijter, J. M.; Buijs, R. M.

    1989-01-01

    The application of postembedding immunocytochemistry on serial semithin plastic sections, revealed the presence of gamma-aminobutyric acid (GABA)-positive and aspartate-positive neurons in cultured neocortex explants. GABA-positive neurons were found in all layers of the cultured cortex, whereas

  3. The pathways for absorbtion of stearin acid and leucine in the rat small intestine after gamma-irradiation

    International Nuclear Information System (INIS)

    Nadtochij, V.V.; Brodskij, P.A.

    1983-01-01

    Males of rats were used to study the disorders of structural-functional mechanisms of lipid absorption in late periods after coarse-fractionated gamma irradiation of abdomen (35 Gr integral dose, 7 Gr x 5 every other day, Co 60 , 2.3 Gr/min dose rate) Lipid absorption and separation was studied according to intensity of 3 H-stearic acid inclusion into ultrastructures of epitheliocyte of small intestine villus of irradiated animals. The state of protein-synthesizing epitheliocyte system was evaluated by pulse mark (fragment incubation with 3 H-lencine in vitro). The correlation between the rate of mark passing into Golgi complex and its separation into intercellular space was revealed. Lipid passing with 3 H-stearic acid through Golgi complex, granular endoplasmic net and disorder of their separation into lacunar intercellular space decelerated in late periods after irradiation. It is shown that the transport of fatty acid, avoiding the stages of esterification and triglyceride synthesis in enduplasmic net, increases in small intestine epitheliocytes during radiation effect. Mechanisms. of some phenomena are explained presumably

  4. The four human ¿-aminobutyric acid (GABA) transporters

    DEFF Research Database (Denmark)

    Kvist, Trine; Christiansen, Bolette; Jensen, Anders Asbjørn

    2009-01-01

    in high throughput screening. We find that the assay is categorized by high Z'-factors (Z' > 0.5) for all four GAT subtypes, demonstrating that the assay is excellent for a high throughput screen. This [3H]GABA uptake assay therefore enables future high through put screening of compound libraries...

  5. Conformational preferences of γ-aminobutyric acid in the gas phase and in water

    Science.gov (United States)

    Song, Il Keun; Kang, Young Kee

    2012-09-01

    The conformational study of γ-aminobutyric acid (GABA) has been carried out at the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water. In the gas phase, the folded conformation gG1 with gauche- and gauche+ conformations for the Cβsbnd Cα and Cγsbnd Cβ bonds, respectively, is found to be lowest in energy and enthalpy, which can be ascribed to the favored hyperconjugative n → π* interaction between the lone electron pair of the amine nitrogen atom and the Cdbnd O bond of the carboxylic group and the favored antiparallel dipole-dipole interaction between the Nsbnd H bond and the Cdbnd O bond. In addition, the intramolecular hydrogen bonds between the carboxylic group and the amine Nsbnd H group have contributed to stabilize some low-energy conformers. However, the most preferred conformation is found to be tG1 and more stable by 0.4 kcal/mol in ΔG than the conformer gG1, in which the favored entropic term due to the conformational flexibility and the other favored n → σ*, σ → σ*, and π → σ* interactions seem to play a role. The conformational preferences of the neutral GABA calculated by ΔG's are reasonably consistent with the populations deduced from FT microwave spectroscopy in supersonic jets combined with laser ablation. In water, the two folded conformers Gg and gG of the zwitterionic GABA are dominantly populated, each of which has the population of 47%, and the hydrogen bond between the ammonium Nsbnd H group and the lone electron pair of the Csbnd O- group seems to be crucial in stabilizing these conformers. Our calculated result that the folded conformers preferentially exist in water is consistent with the 1H NMR experiments in D2O.

  6. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  7. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit*

    Science.gov (United States)

    Hannan, Saad; Wilkins, Megan E.; Dehghani-Tafti, Ebrahim; Thomas, Philip; Baddeley, Stuart M.; Smart, Trevor G.

    2011-01-01

    γ-Aminobutyric acid type B (GABAB) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABAB receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABAB receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABAB receptor. PMID:21724853

  8. Effects of whole-body gamma irradiation on oxygen transport by rat erythrocytes

    International Nuclear Information System (INIS)

    Thiriot, Christian; Kergonou, J.F.; Rocquet, Guy; Allary, Michel; Saint-Blancard, Jacques

    1982-01-01

    In this work, we studied the influence of whole-body gamma irradiation (8 Gy) upon oxygen transport by erythrocytes, through the erythrocyte count and related parameters, and through the factors affecting the oxygen affinity of hemoglobin. The oxygen affinity of hemoglobin is increased from day D + 5 after irradiation, and a severe erythropenia develops from day D + 8. These modifications probably result in tissue hypoxia via diminished oxygen transport from lungs to tissues, and decreased oxygen release from oxyhemoglobin in tissues

  9. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    Science.gov (United States)

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation.

  10. Specific lysosomal transport of small neutral amino acids

    International Nuclear Information System (INIS)

    Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

    1986-01-01

    Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-[ 14 C]proline (50 μM) uptake by fibroblast lysosomes at 37 0 C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-[ 14 C]proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na + is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na +

  11. Application of neutron/gamma transport codes for the design of explosive detection systems

    International Nuclear Information System (INIS)

    Elias, E.; Shayer, Z.

    1994-01-01

    Applications of neutron and gamma transport codes to the design of nuclear techniques for detecting concealed explosives material are discussed. The methodology of integrating radiation transport computations in the development, optimization and analysis phases of these new technologies is discussed. Transport and Monte Carlo codes are used for proof of concepts, guide the system integration, reduce the extend of experimental program and provide insight into the physical problem involved. The paper concentrates on detection techniques based on thermal and fast neutron interactions in the interrogated object. (authors). 6 refs., 1 tab., 5 figs

  12. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  13. Acid-base transport in pancreas – new challenges

    Directory of Open Access Journals (Sweden)

    Ivana eNovak

    2013-12-01

    Full Text Available Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+ and base (HCO3- transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO3- and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H+-K+-ATPases, as well as the calcium-activated K+ and Cl- channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signalling, fine-tune and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis and cancer.

  14. DNA methylation of amino acid transporter genes in the human placenta.

    Science.gov (United States)

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  15. Electrical stimulation of the substantia nigra reticulata : Detection of neuronal extracellular GABA in the ventromedial thalamus and its regulatory mechanism using microdialysis in awake rats

    NARCIS (Netherlands)

    Timmerman, W; Westerink, B.H.C.

    A combination of electrical stimulation and microdialysis was used to study the nigrothalamic gamma aminobutyric acid (GABA)ergic system and its regulatory mechanisms in awake rats. Extracellular GABA levels in the ventromedial nucleus of the thalamus were detected in S-min fractions collected

  16. Glutamate and GABA in schizophrenia

    NARCIS (Netherlands)

    Marsman, A.

    2013-01-01

    Schizophrenia is characterized by a loss of brain tissue, which may represent an ongoing pathophysiological process. Possible mechanisms that may be involved are the glutamatergic and GABAergic (gamma-aminobutyric acid) systems. Particularly hypofunction of the N-methyl-D-aspartate (NMDA) type of

  17. Effects of lesogaberan on reflux and lower esophageal sphincter function in patients with gastroesophageal reflux disease

    NARCIS (Netherlands)

    Boeckxstaens, Guy E.; Beaumont, Hanneke; Mertens, Veerle; Denison, Hans; Ruth, Magnus; Adler, John; Silberg, Debra G.; Sifrim, Daniel

    2010-01-01

    BACKGROUND & AIMS: Transient lower esophageal sphincter relaxations (TLESRs) are a major mechanism behind reflux. This study assessed the effects of lesogaberan (AZD3355), a novel gamma-aminobutyric acid type B receptor agonist, on reflux and lower esophageal sphincter (LES) function when used as

  18. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.

    Science.gov (United States)

    Jang, Eun Kyeong; Kim, Nam Yeun; Ahn, Hyung Jin; Ji, Geun Eog

    2015-08-01

    To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30°C and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

  19. Desensitization of γ-aminobutyric acid receptor from rat brain: two distinguishable receptors on the same membrane

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    Transmembrane chloride flux mediated by γ-aminobutyric acid (GABA) receptor can be measured with a mammalian brain homogenate preparation containing sealed membrane vesicles. The preparation can be mixed rapidly with solutions of defined composition. Influx of 36 Cl - tracer initiated by mixing with GABA was rapidly terminated by mixing with bicuculline methiodide. The decrease in the isotope influx measurement due to prior incubation of the vesicle preparation with GABA, which increased with preincubation time and GABA concentration, was attributed to desensitization of the GABA receptor. By varying the time of preincubation with GABA between 10 ms and 50 s with quench-flow technique, the desensitization rates could be measured over their whole time course independently of the chloride ion flux rate. Most of the receptor activity decreased in a fast phase of desensitization complete in 200 ms at saturation with GABA. Remaining activity was desensitized in a few seconds. These two phases of desensitization were each kinetically first order and were shown to correspond with two distinguishable GABA receptors on the same membrane. The receptor activities could be estimated, and the faster desensitizing receptor was the predominant one, giving on average ca. 80% of the total activity. The half-response concentrations were similar, 150 and 114 μM for the major and minor receptors, respectively. The dependence on GABA concentration indicated that desensitization is mediated by two GABA binding sites. The fast desensitization rate was approximately 20-fold faster than previously reported rates while the slower desensitization rate was slightly faster than previously reported rates

  20. Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity

    International Nuclear Information System (INIS)

    Hainzl, D.; Casida, J.E.

    1996-01-01

    Fipronil is an outstanding new insecticide for crop protection with good selectivity between insects and mammals. The insecticidal action involves blocking the gamma-aminobutyric acid-gated chloride channel with much greater sensitivity of this target in insects than in mammals. Fipronil contains a trifluoromethylsulfinyl moiety that is unique among the agrochemicals and therefore presumably important in its outstanding performance. We find that this substituent unexpectedly undergoes a novel and facile photoextrusion reaction on plants upon exposure to sunlight, yielding the corresponding trifluoromethylpyrazole, i.e., the desulfinyl derivative. The persistence of this photoproduct and its high neuroactivity, resulting from blocking the gamma-aminobutyric acid-gated chloride channel, suggest that it may be a significant contributor to the effectiveness of fipronil. In addition, desulfinylfipronil is not a metabolite in mammals, so the safety evaluations must take into account not only the parent compound but also this completely new environmental product

  1. Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2).

    Science.gov (United States)

    Edwards, Noel; Anderson, Catriona M H; Gatfield, Kelly M; Jevons, Mark P; Ganapathy, Vadivel; Thwaites, David T

    2011-01-01

    The H(+)-coupled amino acid transporter PAT2 (SLC36A2) transports the amino acids proline, glycine, alanine and hydroxyproline. A physiological role played by PAT2 in amino acid reabsorption in the renal proximal tubule is demonstrated by mutations in SLC36A2 that lead to an iminoglycinuric phenotype (imino acid and glycine uria) in humans. A number of proline, GABA and tryptophan derivatives were examined to determine if they function either as transported substrates or non-transported inhibitors of PAT2. The compounds were investigated following heterologous expression of rat PAT2 in Xenopus laevis oocytes. PAT2 function was characterised by: radiotracer uptake and competition (cis-inhibition) studies; radiotracer efflux and trans-stimulation; and measurement of substrate-induced positive inward current by two-electrode voltage-clamp. In general, the proline derivatives appeared to be transported substrates and the relative ability to induce current flow was closely related to the inhibitory effects on PAT2-mediated l-[(3)H]proline uptake. In contrast, certain heterocyclic GABA derivatives (e.g. l-pipecolic acid) were translocated only slowly. Finally, the tryptophan derivatives inhibited PAT2 function but did not undergo transport. l-Proline uptake was inhibited by 5-hydroxy-l-tryptophan (IC(50) 1.6±0.4mM), α-methyl-d,l-tryptophan (3.5±1.5mM), l-tryptophan, 1-methyl-l-tryptophan and indole-3-propionic acid. Although neither 5-hydroxy-l-tryptophan nor α-methyl-d,l-tryptophan were able to elicit inward current in PAT2-expressing oocytes both reduced the current evoked by l-proline. 5-Hydroxy-l-tryptophan and α-methyl-d,l-tryptophan were unable to trans-stimulate l-proline efflux from PAT2-expressing oocytes, confirming that the two compounds act as non-transported blockers of PAT2. These two tryptophan derivatives should prove valuable experimental tools in future investigations of the physiological roles of PAT2. Copyright © 2010 Elsevier B.V. All rights

  2. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    Science.gov (United States)

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  3. Acid-base transport in pancreas-new challenges

    DEFF Research Database (Denmark)

    Novak, Ivana; Haanes, Kristian Agmund; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO-3) transporters, respectively. Nevertheless, they share the same challenges...... to consider in pancreas are the proton pumps (H-K-ATPases), as well as the calcium-activated K and Cl channels, such as K3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport...

  4. The effect of fermented buckwheat on producing l-carnitine- and γ-aminobutyric acid (GABA)-enriched designer eggs.

    Science.gov (United States)

    Park, Namhyeon; Lee, Tae-Kyung; Nguyen, Thi Thanh Hanh; An, Eun-Bae; Kim, Nahyun M; You, Young-Hyun; Park, Tae-Sub; Kim, Doman

    2017-07-01

    The potential of fermented buckwheat as a feed additive was studied to increase l-carnitine and γ-aminobutyric acid (GABA) in designer eggs. Buckwheat contains high levels of lysine, methionine and glutamate, which are precursors for the synthesis of l-carnitine and GABA. Rhizopus oligosporus was used for the fermentation of buckwheat to produce l-carnitine and GABA that exert positive effects such as enhanced metabolism, antioxidant activities, immunity and blood pressure control. A novel analytical method for simultaneously detecting l-carnitine and GABA was developed using liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS. The fermented buckwheat extract contained 4 and 34 times more l-carnitine and GABA respectively compared with normal buckwheat. Compared with the control, the fermented buckwheat extract-fed group showed enriched l-carnitine (13.6%) and GABA (8.4%) in the yolk, though only l-carnitine was significantly different (P < 0.05). Egg production (9.4%), albumen weight (2.1%) and shell weight (5.8%) were significantly increased (P < 0.05). There was no significant difference in yolk weight, and total cholesterol (1.9%) and triglyceride (4.9%) in the yolk were lowered (P < 0.05). Fermented buckwheat as a feed additive has the potential to produce l-carnitine- and GABA-enriched designer eggs with enhanced nutrition and homeostasis. These designer eggs pose significant potential to be utilized in superfood production and supplement industries. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  6. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.

    Science.gov (United States)

    Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong

    2013-11-01

    γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.

  7. Enhancement of γ-aminobutyric acid (GABA) in Nham (Thai fermented pork sausage) using starter cultures of Lactobacillus namurensis NH2 and Pediococcus pentosaceus HN8.

    Science.gov (United States)

    Ratanaburee, Anussara; Kantachote, Duangporn; Charernjiratrakul, Wilawan; Sukhoom, Ampaitip

    2013-10-15

    The aim was to produce Nham that was enriched with γ-aminobutyric acid (GABA); therefore two GABA producing lactic acid bacteria (Pediococcus pentosaceus HN8 and Lactobacillus namurensis NH2) were used as starter cultures. By using the central composite design (CCD) we showed that addition of 0.5% monosodium glutamate (MSG) together with an inoculum size of roughly 6logCFU/g of each of the two strains produced a maximal amounts of GABA (4051 mg/kg) in the 'GABA Nham' product. This was higher than any current popular commercial Nham product by roughly 8 times. 'GABA Nham' with the additions of both starters and MSG (TSM) supported maximum populations of lactic acid bacteria (LAB) with a minimum of yeasts and no staphylococci or molds when compared to the controls that had no addition of any starters or MSG (TNN), or only the addition of MSG (TNM), or with only the starter (TSN). Based on proximate analysis among the Nham sets, 'GABA Nham' was low in fat, carbohydrate and energy although its texture and color were slightly different from the control (TNN). However, sensory evaluations of 'GABA Nham' were more acceptable than the controls and commercial Nham products for all tested parameters. Hence, a unique novel 'GABA Nham' fermented pork sausage was successfully developed. © 2013.

  8. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    NARCIS (Netherlands)

    Boonstra, E.; Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S.

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer

  9. (1) H-MRS processing parameters affect metabolite quantification: The urgent need for uniform and transparent standardization

    NARCIS (Netherlands)

    Bhogal, A.A.; Schur, R.R.; Houtepen, L.C.; Bank, B.L. van de; Boer, V.O.; Marsman, A.; Barker, P.B.; Scheenen, T.W.J.; Wijnen, J.P.; Vinkers, C.H.; Klomp, D.W.J.

    2017-01-01

    Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, gamma-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite

  10. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A

    2000-01-01

    if glutamate in addition to gamma-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [(3)H]D-aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the alpha-amino-3-hydroxy-5-methyl-4......-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [(3)H]D-aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium......, the release of [(3)H]D-aspartate was decreased by about 40%. These results indicated that some of the released [(3)H]D-aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [(3)H]D-aspartate was increased 2-fold and could not be prevented or decreased...

  11. The effect of gamma-ray transport on afterheat calculations for accident analysis

    International Nuclear Information System (INIS)

    Reyes, S.; Latkowski, J.F.; Sanz, J.

    2000-01-01

    Radioactive afterheat is an important source term for the release of radionuclides in fusion systems under accident conditions. Heat transfer calculations are used to determine time-temperature histories in regions of interest, but the true source term needs to be the effective afterheat, which considers the transport of penetrating gamma rays. Without consideration of photon transport, accident temperatures may be overestimated in others. The importance of this effect is demonstrated for a simple, one-dimensional problem. The significance of this effect depends strongly on the accident scenario being analyzed

  12. Transport of phosphoric acid through supported liquid membrane

    International Nuclear Information System (INIS)

    Zayzafoon, G.; Yassine, T.; Baidoun, R.

    2003-01-01

    The transport of phosphhoric acid through liquid membranes of amylalkohol, 1-octanol and 2-octanol was studied. It was found that phosphoric acid is transfered from feed side to strip side and the transport increased with the concentration of phosphoric acid up to 5M. The permeability in each membrane was determined for 5M phosphoic acid. It was found that the permeability values are 1.45 x 10 1 0 m 2 s 1 for amylakohol and ∼ 1x10 1 0 m 2 s 1 for each of 1-octanol and 2-octanol

  13. Renal transport and metabolism of nicotinic acid

    International Nuclear Information System (INIS)

    Schuette, S.; Rose, R.C.

    1986-01-01

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [ 3 H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [ 14 C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14 C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  14. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) and contribution to normal cognitive function (ID 532) and maintenance

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) and contribution to normal cognitive function and maintenance of normal bone. The scientific substantiation is based on the information provided by the Member States in the consolidated list...... and fish oil”. From the references provided, the Panel assumes that the food constituents that are the subject of the claims are the n-6 fatty acid gamma-linolenic acid (GLA) in evening primrose oil and the n-3 long-chain polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA...... of Article 13 health claims and references that EFSA has received from Member States or directly from stakeholders. The food constituents that are the subjects of the health claims are “omega-3 and omega-6 fatty acids (GLA)”, “gamma-linolenic acid + eicosapentaenoic acid (GLA+EPA)”, and “evening primrose oil...

  15. GABA and homovanillic acid in the plasma of Schizophrenic and bipolar I patients.

    Science.gov (United States)

    Arrúe, Aurora; Dávila, Ricardo; Zumárraga, Mercedes; Basterreche, Nieves; González-Torres, Miguel A; Goienetxea, Biotza; Zamalloa, Maria I; Anguiano, Juan B; Guimón, José

    2010-02-01

    We have determined the plasma (p) concentration of gamma-aminobutyric acid (GABA) and the dopamine metabolite homovanillic acid (HVA), and the pHVA/pGABA ratio in schizophrenic and bipolar patients. The research was undertaken in a geographic area with an ethnically homogeneous population. The HVA plasma concentrations were significantly elevated in the schizophrenic patients compared to the bipolar patients. The levels of pGABA was significantly lower in the two groups of patients compared to the control group, while the pHVA/pGABA ratio was significantly greater in the both groups of patients compared to the controls. As the levels of pHVA and pGABA are partially under genetic control it is better to compare their concentrations within an homogeneous population. The values of the ratio pHVA/pGABA are compatible with the idea of an abnormal dopamine-GABA interaction in schizophrenic and bipolar patients. The pHVA/pGABA ratio may be a good peripheral marker in psychiatric research.

  16. p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo.

    Science.gov (United States)

    Scheepens, Arjan; Bisson, Jean-Francois; Skinner, Margot

    2014-02-01

    The increasing prevalence and social burden of subclinical anxiety in the western world represents a significant psychosocial and financial cost. Consumers are favouring a more natural and nonpharmacological approach for alleviating the effects of everyday stress and anxiety. The gamma-aminobutyric acid (GABA) receptor is the primary mediator of central inhibitory neurotransmission, and GABA-receptor agonists are well known to convey anxiolytic effects. Using an in vitro screening approach to identify naturally occurring phytochemical GABA agonists, we discovered the plant secondary metabolite p-coumaric acid to have significant GABAergic activity, an effect that could be blocked by co-administration of the specific GABA-receptor antagonist, picrotoxin. Oral administration of p-coumaric acid to rodents induced a significant anxiolytic effect in vivo as measured using the elevated plus paradigm, in line with the effects of oral diazepam. Given that p-coumaric acid is reasonably well absorbed following oral consumption in man and is relatively nontoxic, it may be suitable for the formulation of a safe and effective anxiolytic functional food. Copyright © 2013 John Wiley & Sons, Ltd.

  17. BLINDAGE: A neutron and gamma-ray transport code for shieldings with the removal-diffusion technique coupled with the point-kernel technique

    International Nuclear Information System (INIS)

    Fanaro, L.C.C.B.

    1984-01-01

    It was developed the BLINDAGE computer code for the radiation transport (neutrons and gammas) calculation. The code uses the removal - diffusion method for neutron transport and point-kernel technique with buil-up factors for gamma-rays. The results obtained through BLINDAGE code are compared with those obtained with the ANISN and SABINE computer codes. (Author) [pt

  18. The effect of gamma irradiation and endole butyric acid on Olive cutting

    Energy Technology Data Exchange (ETDEWEB)

    Albachir, M [Atomic Energy Commission, P.O. Box 6091, Damascus, (Syrian Arab Republic)

    1995-10-01

    This study was performed to investigate the effect of 2 - 4 - 6 Gy doses of gamma radiation, 2000 - 4000 ppm concentrations of indole butyric acid (IBA), and combined treatment of IBA, and combined treatment of IBA followed by irradiation,followed by IBA on root formation of olive cuttings (var. Khodairi). The results indicated that two Gy gamma radiation increased rooting percentage, and root length at the cuttings collected in january. Both concentrations of IBA increased rooting percentage, callus formation, number and length of the roots at all collection times. The best IBA concentration for rooting was 2000 ppm in october and march, and 4000 in january. However, the stimulatory effects of 2 Gy gamma radiation did not reach that obtained by either concentration of IBA used. 2 tabs.

  19. Effect of Γ-aminobutyric acid on kidney injury induced by renal ischemia-reperfusion in male and female rats: Gender-related difference.

    Science.gov (United States)

    Vafapour, Marzieh; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Talebi, Nahid; Shirdavani, Soheyla

    2015-01-01

    The most important cause of kidney injury is renal ischemia/reperfusion injury (IRI), which is gender-related. This study was designed to investigate the protective role of Γ-aminobutyric acid (GABA (against IRI in male and female rats. Thirty-six female and male wistar rats were assigned to six experimental groups. The IRI was induced by clamping renal vessels for 45 min then was performed reperfusion for 24 h. The group sex posed to IRI were pretreated with GABA and were compared with the control groups. Serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score increased in the IRI alone groups, (P GABA decreased these parameters in female significantly (P GABA. Testis weight did not alter in male rats. Serum level of nitrite and kidney level of malondialdehyde (MDA) had no significant change in both female and male rats. Kidney level of nitrite increased significantly in female rats experienced IRI and serum level of MDA increased significantly in males that were exposed to IRI (P GABA could ameliorate kidney injury induced by renal IRI in a gender dependent manner.

  20. Effect of dietary γ-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens.

    Science.gov (United States)

    Zhang, Min; Zou, Xiao-Ting; Li, Hui; Dong, Xin-Yang; Zhao, Wenjing

    2012-02-01

    This study was conducted to evaluate the effect of γ-aminobutyric acid (GABA) on laying performance, egg quality, digestive enzyme activity, hormone level and immune activities in Roman hens under heat stress. Roman hens (320 days old) were fed with 0, 25, 50, 75 and 100 mg/kg GABA, respectively during a 60-day experiment. Compared with control, supplementation of 50 mg/kg GABA improved the laying performance and egg quality by significantly increasing egg production, average egg weight and shell strength (P level. Anti-oxidation activity was improved by significantly increasing the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), but decreasing malondialdehyde level in serum (P level, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E(2) ), insulin, triiodothyronine (T(3) ) and free triiodothyronine (FT(3) ) levels, and IgG, IgA and complement (C3)activity in serum (P GABA improved laying performance and physical condition mainly by modulating hormone secretion, enhancing anti-oxidation and immune activity, and maintaining electrolyte balance. Fifty mg/kg was the optimum level for laying hens under heat stress in the present study. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  1. Genetic polymorphisms related to delirium tremens: a systematic review

    NARCIS (Netherlands)

    van Munster, Barbara C.; Korevaar, Johanna C.; de Rooij, Sophia E.; Levi, Marcel; Zwinderman, Aeilko H.

    2007-01-01

    BACKGROUND: Delirium tremens (DT) is one of the more severe complications of alcohol withdrawal (AW), with a 5 to 10% lifetime risk for alcohol-dependent patients. The 2 most important neurosystems involved in AW are gamma-aminobutyric acid and glutamate. It is unknown whether these neurosystems are

  2. Neurochemical Correlates of Autistic Disorder: A Review of the Literature

    Science.gov (United States)

    Lam, Kristen S. L.; Aman, Michael G.; Arnold, L. Eugene

    2006-01-01

    Review of neurochemical investigations in autistic disorder revealed that a wide array of transmitter systems have been studied, including serotonin, dopamine, norepinephrine, acetylcholine, oxytocin, endogenous opioids, cortisol, glutamate, and gamma-aminobutyric acid (GABA). These studies have been complicated by the fact that autism is a very…

  3. The Memory-Impairing Effects of Septal GABA Receptor Activation Involve GABAergic Septo-Hippocampal Projection Neurons

    Science.gov (United States)

    Krebs-Kraft, Desiree L.; Wheeler, Marina G.; Parent, Marise B.

    2007-01-01

    Septal infusions of the [gamma]-aminobutyric acid (GABA)[subscript A] agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA[subscript A] receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are…

  4. GABA, a natural immunomodulator of T lymphocytes

    DEFF Research Database (Denmark)

    Bjurstöm, Helen; Wang, Junyang; Ericsson, Ida

    2008-01-01

    gamma-aminobutyric acid (GABA) is the main neuroinhibitory transmitter in the brain. Here we show that GABA in the extracellular space may affect the fate of pathogenic T lymphocytes entering the brain. We examined in encephalitogenic T cells if they expressed functional GABA channels that could...

  5. Toxicological studies on the Use of acid applied or combined with gamma radiation for controlling the mediterranean fruit fly Ceratitis Capitata Wied

    International Nuclear Information System (INIS)

    Fadel, A.M.; Othman, K.S.A.

    1997-01-01

    Biological studies were conducted to determine the effect of boric acid applied alone to different stages of ceratitis capitata or combined with gamma radiation of the produced treated pupae (9 days old). At a concentration range of 200-2000 ppm of boric acid per gm larval diet, larval and pupal durations were insignificantly affected. Pupation significantly decreased with increasing concentration, and adult emergence significantly increased at higher concentrations. Lc50 value of boric acid applied to the larval diet was 250 ppm. Applying boric acid as a powder mixed with pupal medium, the Lc50 was 96 mg/gm sand. Male and emergence significantly decreased. Significant mortality was obtained in adults of C capitata after applying boric acid as a thin film on the inner surface of the experimental cages where the adults were kept or when mixed with their food or as powder on the cage bottom. Applying boric acid to larval diet and gamma radiation to the produced pupae (9 days old) insignificantly affected larval and durations, percent pupation, adult emergence or adult survival. In cross-mating experiments, egg hatch ability was significantly reduced in the combination treatments of boric acid (500, 1000 ppm) and gamma radiation (90 Gy). On the other hand gamma radiation combined with boric acid treatments significantly increased male mating competitiveness at the concentration of 1000 ppm of boric acid followed by gamma irradiation (90 Gy). 2 figs., 5 tabs

  6. Channel opening of γ-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    The function of γ-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36 Cl - isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36 Cl - influx was completed in three phases of ca. 3% (t/sub 1/2/ = 0.6 s), 56% (t/sub 1/2 = 82 s), and 41% (t/sub 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36 Cl - influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles. The half-response concentrations were similar for both receptors. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of low affinity to high-affinity GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria. For both receptors, the measurements over a 2000-fold GABA concentration range required a minimal mechanism involving the occupation of both of the two GABA binding sites for significant channel opening; then the receptors were ca. 80% open. Similarly for both receptors, desensitization was mediated by a different pair of binding sites, although desensitization with only one ligand molecule bound could occur at a 20-fold slower rate

  7. Beta-and gamma-turns in proteins revisited: a new set of amino acid turn-type dependent positional preferences and potentials.

    Science.gov (United States)

    Guruprasad, K; Rajkumar, S

    2000-06-01

    The number of beta-turns in a representative set of 426 protein three-dimensional crystal structures selected from the recent Protein Data Bank has nearly doubled and the number of gamma-turns in a representative set of 320 proteins has increased over seven times since the previous analysis. Beta-turns (7153) and gamma-turns (911) extracted from these proteins were used to derive a revised set of type-dependent amino acid positional preferences and potentials. Compared with previous results, the preference for proline, methionine and tryptophan has increased and the preference for glutamine, valine, glutamic acid and alanine has decreased for beta-turns. Certain new amino acid preferences were observed for both turn types and individual amino acids showed turn-type dependent positional preferences. The rationale for new amino acid preferences are discussed in the light of hydrogen bonds and other interactions involving the turns. Where main-chain hydrogen bonds of the type NH(i + 3) --> CO(i) were not observed for some beta-turns, other main-chain hydrogen bonds or solvent interactions were observed that possibly stabilize such beta-turns. A number of unexpected isolated beta-turns with proline at i + 2 position were also observed. The NH(i + 2) --> CO(i) hydrogen bond was observed for almost all gamma-turns. Nearly 20% classic gamma-turns and 43% inverse gamma-turns are isolated turns.

  8. GHB acid: A rage or reprive

    Directory of Open Access Journals (Sweden)

    Prakhar Kapoor

    2013-01-01

    Full Text Available Gamma-hydroxybutyric acid (GHB is a naturally occurring analog of gamma-aminobutyric acid (GABA that has been used in research and clinical medicine for many years. GHB was used clinically as an anesthetic in the 1960s but was withdrawn due to side effects that included seizures and coma. GHB has been implicated in a number of crime types; most notably in drug-facilitated sexual assault. GHB is abused by three main groups of users: Body builders who use the substance believing that it stimulated the release of growth hormone; sexual predators who covertly administer the drug for its sedative and amnesic effects and club-goers (rave parties who take the drug for its euphoric effects. The short-lived hypnotic effects, relative safety and widespread availability of the drug have made it particularly well suited to this role. The drug has an addictive potential if used for long term. The primary effects of GHB use are those of a CNS depressant and therefore range from relaxation, to euphoria, confusion, amnesia, hallucinations, and coma. Despite the increased regulation, GHB remains widely available through the Internet where one can easily purchase the necessary reagents as well as recipes for home production. There are reports of patients being unresponsive to painful stimuli and cases of oral self-mutilations linked to the abuse of GHB, though quiet rare. Such cases should remind odontologists that intra-oral lesions may be the result of self-mutilation either due to mental illness or altered states caused by the use of prescription or non-prescription drugs.

  9. Effects of glutamic acid analogues on identifiable giant neurones, sensitive to beta-hydroxy-L-glutamic acid, of an African giant snail (Achatina fulica Férussac).

    Science.gov (United States)

    Nakajima, T.; Nomoto, K.; Ohfune, Y.; Shiratori, Y.; Takemoto, T.; Takeuchi, H.; Watanabe, K.

    1985-01-01

    The effects of the seven glutamic acid analogues, alpha-kainic acid, alpha-allo-kainic acid, domoic acid, erythro-L-tricholomic acid, DL-ibotenic acid, L-quisqualic acid and allo-gamma-hydroxy-L-glutamic acid were examined on six identifiable giant neurones of an African giant snail (Achatina fulica Férussac). The neurones studied were: PON (periodically oscillating neurone), d-RPLN (dorsal-right parietal large neurone), VIN (visceral intermittently firing neurone), RAPN (right anterior pallial neurone), FAN (frequently autoactive neurone) and v-RCDN (ventral-right cerebral distinct neurone). Of these, d-RPLN and RAPN were excited by the two isomers (erythro- and threo-) of beta-hydroxy-L-glutamic acid (L-BHGA), whereas PON, VIN, FAN and v-RCDN were inhibited. L-Glutamic acid (L-Glu) had virtually no effect on these neurones. alpha-Kainic acid and domoic acid showed marked excitatory effects, similar to those of L-BHGA, on d-RPLN and RAPN. Their effective potency quotients (EPQs), relative to the more effective isomer of L-BHGA were: 0.3 for both substances on d-RPLN, and 1 for alpha-kainic acid and 3-1 for domoic acid on RAPN. alpha-Kainic acid also had excitatory effects on FAN and v-RCDN (EPQ for both: 0.3), which were inhibited by L-BHGA but excited by gamma-aminobutyric acid (GABA). Erythro-L-tricholomic acid showed marked effects, similar to those of L-BHGA, on VIN (EPQ: 0.3) and RAPN (EPQ: 3-1), but produced weaker effects on PON and d-RPLN (EPQ: 0.1). DL-Ibotenic acid produced marked effects, similar to those of L-BHGA, on PON, VIN (EPQ for both: 1) and RAPN (EPQ: 1-0.3), but had weak effects on d-RPLN (EPQ: less than 0.1) and FAN (EPQ: 0.1). It had excitatory effects on v-RCDN (EPQ: 0.1). This neurone was inhibited by L-BHGA but excited by GABA. L-Quisqualic acid showed the same effects as L-BHGA on all of the neurones examined (EPQ range 30-0.1). It was the most potent of the compounds tested on RAPN (EPQ: 30-10), FAN (EPQ: 30) and v-RCDN (EPQ: 3). alpha

  10. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Qinhu Wang

    2018-04-01

    Full Text Available Trichothecene mycotoxins, such as deoxynivalenol (DON produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA, a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2 is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum.

  11. Utilization of gamma rays in the selection of Aspergillus niger for acid production

    International Nuclear Information System (INIS)

    Silva, J.C. da; Azevedo, J.L.

    1978-01-01

    Selection of Aspergillus niger for acid production was studied by the method of Foster and Davis with the use of gamma rays. Three selection cycles were carried out, and the acid production character of each population was analyzed quantitatively by the unitage acid factor. Isolates with high unitage values in relation to the paternal strain were assayed in a liquid fermentation medium. No correlation was found that would indicate unlimited use of Foster and Davis' method in the selection of more productive strains. (Author) [pt

  12. Acute effects of sodium valproate and gamma-vinyl GABA on regional amino acid metabolism in the rat brain: incorporation of 2-[14C]glucose into amino acids.

    Science.gov (United States)

    Chapman, A G; Riley, K; Evans, M C; Meldrum, B S

    1982-09-01

    Amino acid concentrations have been determined in rat brain regions (cortex, striatum, cerebellum, and hippocampus) by HPLC after administration of acute anticonvulsant doses of sodium valproate (400 mg/kg, i.p.) and gamma-vinyl-GABA (1 g/kg, i.p.). After valproate administration the GABA level increases only in the cortex; aspartic acid concentration decreases in the cortex and hippocampus, and glutamic acid decreases in the hippocampus and striatum and increases in the cortex and cerebellum. There are no changes in the concentrations of glutamine, taurine, glycine, serine, and alanine following valproate administration. Only the GABA level increases in all the regions after gamma-vinyl-GABA administration. Cortical analyses 2, 4 and 10 minutes after pulse labeling with 2-[14C]glucose, i.v., show no change in the rate of cortical glucose utilization in the valproate treated group. The rate of labeling of glutamic acid is also unchanged, but the rate of labeling of GABA is reduced following valproate administration. After gamma-vinyl-GABA administration there is no change in the rate of labeling of GABA. These biochemical findings can be interpreted in terms of a primary anticonvulsant action of valproate on membrane receptors with secondary effects on the metabolism of amino acid neurotransmitters. This contrasts with the primary action of gamma-vinyl-GABA on GABA-transaminase activity.

  13. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  14. Effect of paraoxon on muscarinic, dopamine and γ-aminobutyric acid receptors of brain and sensitivity to muscarinic antagonists

    International Nuclear Information System (INIS)

    Fernando, J.C.R.; Hoskins, B.; Ho, I.K.

    1986-01-01

    Several acetylcholinesterase (AChE) inhibitors decrease muscarinic cholinergic (mACh) receptors in the brain, alteration of dopamine (DA) and γ-aminobutyric acid (GABA) receptors after AChE inhibition was also reported. In view of the important interactions among DA, GABA and ACh systems, whether this is a common effect of AChE inhibitors should be established. They report the effect of the AChE inhibitor, paraoxon, on DA, GABA and mACh receptors in the rat. The binding of 3 H-QNB (for mACh), 3 H-spiperone (for DA) and 3 H-muscimol (for GABA) to striatal and hippocampal membranes was analyzed. Also, behavioral sensitivity to atropine was studied. Twenty-four hr after a single dose (0.75 mg/kg, s.c.) of paraoxon, the density of mACh receptors in the striatum was decreased but, at 3 days, no change was seen. In the hippocampus, the mACh receptors were not affected. Repeated treatment with paraoxon (0.3 mg/kg, 48 hourly) for 2 weeks reduced the mACh receptor density in both regions. Neither single nor repeated paraoxon treatment had an effect on DA or GABA receptors. After single or repeated dosing with paraoxon, myoclonus induced by atropine (10 mg/kg, i.p.) was enhanced. The results show rapid downregulation of mACh receptors by paraoxon. DA or GABA, however, appear not to be affected under these treatment regimens

  15. Production and Its Anti-hyperglycemic Effects of γ-Aminobutyric Acid from the Wild Yeast Strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1.

    Science.gov (United States)

    Han, Sang-Min; Lee, Jong-Soo

    2017-09-01

    This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats.

  16. Reduced γ-Aminobutyric Acid and Glutamate+Glutamine Levels in Drug-Naïve Patients with First-Episode Schizophrenia but Not in Those at Ultrahigh Risk

    Directory of Open Access Journals (Sweden)

    Junjie Wang

    2016-01-01

    Full Text Available Altered γ-aminobutyric acid (GABA, glutamate (Glu levels, and an imbalance between GABAergic and glutamatergic neurotransmissions have been involved in the pathophysiology of schizophrenia. However, it remains unclear how these abnormalities impact the onset and course of psychosis. In the present study, 21 drug-naïve subjects at ultrahigh risk for psychosis (UHR, 16 drug-naïve patients with first-episode schizophrenia (FES, and 23 healthy controls (HC were enrolled. In vivo GABA and glutamate+glutamine (Glx levels in the medial prefrontal cortex were measured using proton magnetic resonance spectroscopy. Medial prefrontal GABA and Glx levels in FES patients were significantly lower than those in HC and UHR, respectively. GABA and Glx levels in UHR were comparable with those in HC. In each group, there was a positive correlation between GABA and Glx levels. Reduced medial prefrontal GABA and Glx levels thus may play an important role in the early stages of schizophrenia.

  17. Reduced γ-Aminobutyric Acid and Glutamate+Glutamine Levels in Drug-Naïve Patients with First-Episode Schizophrenia but Not in Those at Ultrahigh Risk.

    Science.gov (United States)

    Wang, Junjie; Tang, Yingying; Zhang, Tianhong; Cui, Huiru; Xu, Lihua; Zeng, Botao; Li, Yu; Li, Gaiying; Li, Chunbo; Liu, Hui; Lu, Zheng; Zhang, Jianye; Wang, Jijun

    2016-01-01

    Altered γ -aminobutyric acid (GABA), glutamate (Glu) levels, and an imbalance between GABAergic and glutamatergic neurotransmissions have been involved in the pathophysiology of schizophrenia. However, it remains unclear how these abnormalities impact the onset and course of psychosis. In the present study, 21 drug-naïve subjects at ultrahigh risk for psychosis (UHR), 16 drug-naïve patients with first-episode schizophrenia (FES), and 23 healthy controls (HC) were enrolled. In vivo GABA and glutamate+glutamine (Glx) levels in the medial prefrontal cortex were measured using proton magnetic resonance spectroscopy. Medial prefrontal GABA and Glx levels in FES patients were significantly lower than those in HC and UHR, respectively. GABA and Glx levels in UHR were comparable with those in HC. In each group, there was a positive correlation between GABA and Glx levels. Reduced medial prefrontal GABA and Glx levels thus may play an important role in the early stages of schizophrenia.

  18. The γ-aminobutyric acid-producing ability under low pH conditions of lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory peptides.

    Science.gov (United States)

    Barla, Florin; Koyanagi, Takashi; Tokuda, Naoko; Matsui, Hiroshi; Katayama, Takane; Kumagai, Hidehiko; Michihata, Toshihide; Sasaki, Tetsuya; Tsuji, Atsushi; Enomoto, Toshiki

    2016-06-01

    Many traditional fermented products are onsumed in Ishikawa Prefecture, Japan, such as kaburazushi , narezushi , konkazuke , and ishiru. Various kinds of lactic acid bacteria (LAB) are associated with their fermentation, however, characterization of LAB has not yet been elucidated in detail. In this study, we evaluated 53 isolates of LAB from various traditional fermented foods by taxonomic classification at the species level by analyzing the 16S ribosomal RNA gene (rDNA) sequences and carbohydrate assimilation abilities. We screened isolates that exhibited high angiotensin-converting enzyme (ACE) inhibitory activities in skim milk or soy protein media and produced high γ-aminobutyric acid (GABA) concentrations in culture supernatants when grown in de Man Rogosa Sharpe broth in the presence of 1% (w/v) glutamic acid. The results revealed that 10 isolates, i.e., Lactobacillus buchneri (2 isolates), Lactobacillus brevis (6 isolates), and Weissella hellenica (2 isolates) had a high GABA-producing ability of >500 mg/100 ml after 72 h of incubation at 35 °C. The ACE inhibitory activity of the whey cultured with milk protein by using L. brevis (3 isolates), L. buchneri (2 isolates), and W. hellenica (2 isolates) was stronger than that of all whey cultured with soy protein media, and these IC 50 were GABA-producing activities at pH 3, suggesting that they could be powerful candidates for use in the fermentation of food materials having low pH.

  19. Acidity function p(a(H) gamma(Cl)) as a step to pH assessment.

    Science.gov (United States)

    Camões, Maria Filomena; Guiomar Lito, Maria

    2002-11-01

    The conventional assignment of pH reference buffer standards, pH(S), is achieved by means of a series of procedures that follow from measurement of Harned cell potentials for an electrolyte solution which is the buffer solution of interest. An intermediate step is assessment of the acidity function p( a(H) gamma(Cl))(0), the extrapolated value of a linear representation of the dependence of p( a(H) gamma(Cl)) on m(Cl) for at least three different molalities, m(Cl), of added alkali chloride (0.005; 0.010; 0.015 mol kg(-1) KCl). This experimental value can be compared with a theoretically expected value calculated from the dissociation constants of the buffer species. Whereas these calculations always give negative slopes for diprotic and triprotic acids and zero slope for monoprotic acids, experimental values with negative or positive slopes can be obtained for well fitting straight lines obtained for buffer solutions with ionic strengths from 0.0025 to 0.144 mol kg(-1). Such disagreement between theoretically and experimentally obtained values introduce an extra source of uncertainty in the establishment of pH(S) and on its traceability chain. In this work examples are presented and discussed for which the discrepancy between expected and experimental values leads to different intercept p( a(H) gamma(Cl))(0).

  20. Continuous weighing of conveyor-transported materials based on gamma radiation conversion to electric current

    International Nuclear Information System (INIS)

    The principle is described of the continuous weighing of conveyer-transported materials applied in the food industry. The weighing technique is based on the measurement of the absorption of gamma radiation emitted by a source located behind the material to be scaled. (Z.M.)

  1. Bioconversion of sugar cane molasses into glutamic acid by gamma irradiated corynebacterium glutamicum

    International Nuclear Information System (INIS)

    El-Batal, A.I.

    1996-01-01

    Corynebacterium glutamicum (ATCC 13058) was used for glutamic acid production from sugar cane molasses which contain sufficient. The addition of 5 units ml 4 of penicillin G was superior in glutamic acid production (11.5 g L 4 ). Tweens and their saturated fatty acids were effective on the accumulation of glutamic acid in the culture medium and the maximum yield (16.6 g L 4 ) was the addition of 5 mg ml 4 Tween 40. Gamma irradiation prior to Tween-40 treatment of bacterial cells resulted in an obvious increase in glutamic acid production and it was maximum (23.72 g L 4 ) at 0.1 k Gy exposure dose of inocula. 5 tabs

  2. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Science.gov (United States)

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  3. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  4. GAD65 Antibodies, Chronic Psychosis, and Type 2 Diabetes Mellitus

    OpenAIRE

    Yarlagadda, Atmaram; Taylor, Jerome H.; Hampe, Christiane S.; Alfson, Elizabeth; Clayton, Anita H.

    2011-01-01

    Glutamic acid decarboxylase is the rate-limiting enzyme in the production of gamma aminobutyric acid, an inhibitory neurotransmitter. Autoantibodies to the glutamic acid decarboxylase 65 isoform have been associated with chronic psychotic disorders and are found in neurons and pancreatic islets. Blood samples were collected from normal controls (n=16), individuals with chronic psychosis with type 2 diabetes mellitus (n=3), and patients with chronic psychosis without diabetes (n=8). No differe...

  5. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Wettstein, Stephanie G.; Alonso, David Martin; Gurbuz, Elif Ispir

    2016-06-28

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  6. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A; Wettstein, Stephanie G; Alonso, David Martin; Gurbuz, Elif Ispir

    2015-02-24

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  7. Detecting Electron Transport of Amino Acids by Using Conductance Measurement

    Directory of Open Access Journals (Sweden)

    Wei-Qiong Li

    2017-04-01

    Full Text Available The single molecular conductance of amino acids was measured by a scanning tunneling microscope (STM break junction. Conductance measurement of alanine gives out two conductance values at 10−1.85 G0 (1095 nS and 10−3.7 G0 (15.5 nS, while similar conductance values are also observed for aspartic acid and glutamic acid, which have one more carboxylic acid group compared with alanine. This may show that the backbone of NH2–C–COOH is the primary means of electron transport in the molecular junction of aspartic acid and glutamic acid. However, NH2–C–COOH is not the primary means of electron transport in the methionine junction, which may be caused by the strong interaction of the Au–SMe (methyl sulfide bond for the methionine junction. The current work reveals the important role of the anchoring group in the electron transport in different amino acids junctions.

  8. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  9. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    International Nuclear Information System (INIS)

    Murakami, Taro; Yoshinaga, Mariko

    2013-01-01

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles

  10. GABA(A)-benzodiazepine receptor complex sensitivity in 5-HT(1A) receptor knockout mice on a 129/Sv background.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Oosting, R.S.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2002-01-01

    Previous studies in 5-HT(1A) receptor knockout (1AKO) mice on a mixed Swiss Websterx129/Sv (SWx129/Sv) and a pure 129/Sv genetic background suggest a differential gamma-aminobutyric acid (GABA(A))-benzodiazepine receptor complex sensitivity in both strains, independent from the anxious phenotype. To

  11. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    International Nuclear Information System (INIS)

    Rosenspire, K.C.; Gelbard, A.S.

    1986-01-01

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  12. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase

    Science.gov (United States)

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang

    2014-01-01

    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca2+-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca2+ increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca2+-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca2+-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes. PMID:24799560

  13. Estimation of gamma dose rate from hulls and shield design for the hull transport cask of Fuel Reprocessing Plant (FRP)

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    In Fuel Reprocessing Plant (FRP), un-dissolved clad of fuel pins known as hulls are the major sources of high level solid waste. Safe handling, transport and disposal require the estimation of radioactivity as a consequent of gamma dose rate from hulls in fast reactor fuel reprocessing plant in comparison with thermal reactor fuel. Due to long irradiation time and low cooling of spent fuel, the evolution of activation products 51 Cr, 58 Co, 54 Mn and 59 Fe present as impurities in the fuel clad are the major sources of gamma radiation. Gamma dose rate from hull container with hulls from Fuel Sub Assembly (FSA) and Radial Sub Assembly (RSA) of Fuel Reprocessing Plant (FRP) was estimated in order to design the hull transport cask. Shielding computations were done using point kernel code, IGSHIELD. This paper describes the details of source terms, estimation of dose rate and shielding design of hull transport cask in detail. (author)

  14. Yields of 2-deoxy-D-gluconic, D-gluconic and other sugar acids in gamma-irradiated aqueous solutions of D-glucose. [Gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Esterbauer, H; Schubert, J; Sanders, E B; Sweeley, C C [Pittsburgh Univ., Pa. (USA); Michigan State Univ., East Lansing (USA). Dept. of Biochemistry)

    1977-03-01

    The yields of 2-deoxy-D-gluconic, D-gluconic and other sugar acids from /sup 60/Co-gamma irradiated (dose-rate = 4 Krads/min) D-glucose solutions are reported. The acids produced upon radiolysis were separated from glucose and neutral products by anion exchange, assayed by gas chromatography of the trimethylsilyl derivatives, and definitive identification made by mass spectrometry. In He degassed, irradiated 0.055 M glucose G(2-deoxy-D-gluconic acid) = 0.62 and G(D-gluconic acid) = 0.20. The approximate G values for the other identified acids are: glyceric acid 0.03, 2-deoxy-tetronic acid 0.04, tetronic acid 0.03, 4-deoxypentonic acid 0.02, deoxyketogluconic acid 0.17. In N/sub 2/O saturated glucose solutions D-gluconic acid yields increased by a factor of approximately 1.9 while that of 2-deoxy-D-gluconic acid increased by a factor of only approximately 1.1.

  15. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer's disease.

    Science.gov (United States)

    Bazzigaluppi, Paolo; Beckett, Tina L; Koletar, Margaret M; Lai, Aaron Y; Joo, Illsung L; Brown, Mary E; Carlen, Peter L; McLaurin, JoAnne; Stefanovic, Bojana

    2018-03-01

    Alzheimer's disease (AD) is pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aβ-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABA A ) receptor subunits α1 , α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67). Concomitant to amyloid deposition and tau hyperphosphorylation, low-gamma band power was strongly attenuated in the HPC and mPFC of TgF344-AD rats in comparison to those in non-transgenic littermates. In addition, the phase-amplitude coupling of the neuronal networks in both areas was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude in TgF344-AD animals. Finally, the gamma coherence between HPC and mPFC was attenuated as well. These results demonstrate significant neuronal network dysfunction at an early stage of AD-like pathology. This network dysfunction precedes the onset of cognitive deficits and is likely driven by Aβ and tau pathologies. This article is part of the Special Issue "Vascular Dementia". © 2017 Her Majesty the Queen in Right of Canada Journal of Neurochemistry © 2017 International Society for Neurochemistry.

  16. Effect of gamma irradiation on hyaluronic acid and dipalmitoylphosphatidylcholine (DPPC) interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ainee Fatimah; Mohd, Hur Munawar Kabir; Taqiyuddin Mawardi bin Ayob, Muhammad; Rosli, Nur Ratasha Alia Md; Mohamed, Faizal; Radiman, Shahidan; Rahman, Irman Abdul [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    DPPC lipids are the major component constituting the biological membrane, and their importances in various physiological functions are well documented. Hyaluronic acid (HA) in the synovial joint fluid functions as a lubricant, shock absorber and a nutrient carrier. Gamma irradiation has also been found to be effective in depolymerizing and cleaving molecular chains related to free radicals, thus extends with changes in chemical composition as well as its physiological functions. This research are conducted to investigate the hyaluronic acid (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) interaction in form of vesicles and its effect to gamma radiation. The size of DPPC vesicles formed via gentle hydration method is between 100 to 200 nm in diameter. HA (0.1, 0.5 and 1.0 mg/ml) was added into the vesicles and characterized by using TEM to determine vesicle size distributions, fusion and rupture of DPPC structure. The results demonstrated that the size of the vesicles approximately between 200 to 300 nm which caused by vesicles fusion with HA and formed even larger vesicles. After being irradiated by 0 to 200 Gy, the size of vesicles decreased as HA was degraded. To elucidate the mechanism of these effects, FTIR spectra were carried out and have shown that at absorption bands at 1700–1750 cm{sup −1} due to formation of carboxylic acid and leads to alteration of HA structure.

  17. The Protective Effect of γ-aminobutyric Acid on Kidney Injury Induced by Renal Ischemia-reperfusion in Ovariectomized Estradiol-treated Rats.

    Science.gov (United States)

    Talebi, Nahid; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Vafapour, Marzieh

    2016-01-01

    Renal ischemia-reperfusion injury (IRI) is one of the most important causes of kidney injury, which is possibly gender-related. This study was designed to investigate the role of γ-aminobutyric acid (GABA) against IRI in ovariectomized estradiol-treated rats. Thirty-five ovariectomized Wistar rats were used in six experimental groups. The first three groups did not subject to estradiol treatment and assigned as sham-operated, control, and GABA-treated groups. GABA (50 μmol/kg) and saline were injected in the treated and control groups 30 min before the surgery, respectively. The second three groups received the same treatments but received estradiol valerate (500 μg/kg, intramuscularly) 3 days prior to the surgery. The IRI was induced in the control and treated groups by clamping the renal artery for 45 min and then 24 h of reperfusion. All animals were sacrificed for the measurements. The serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score significantly increased in the IRI rats (P GABA significantly decreased the aforementioned parameters (P levels of nitrite (nitric oxide metabolite) did not alter significantly. Serum level of malondialdehyde increased significantly in the ovariectomized rats exposed to IRI (P GABA improved IRI in ovariectomized rats. Estradiol was also nephroprotective against IRI. However, co-administration of estradiol and GABA could not protect the kidney against IRI.

  18. The effect of D,L-β-aminobutyric acid on the growth and development of Fusarium oxysporum f. sp. tulipae (Apt.

    Directory of Open Access Journals (Sweden)

    Anna Jarecka

    2012-12-01

    Full Text Available The effect of D,L-β-aminobutyric acid (BABA on the growth and development of the root system and the development of fusariosis on tulip bulbs cv. Apeldoorn infected by Fusarium oxysporum f. sp. tulipae (F.ox.t. 218 was studied. The length and fresh weight of roots, the development of fusariosis on bulbs and the linear growth of mycelium of F.ox.t. 218 on PDA medium were measured. Preventively used BABA at a concentration of 100, 250 and 300 µg·cm-3 for soaking uncooled and cooled tulip bulbs greatly inhibited the development of fusariosis on the root system; the length and fresh weight of roots were similar to those of the bulbs not inoculated with F.ox.t. 218. At a concentration of 100 µg·cm-3;, BABA used for soaking bulbs limited the development of fusariosis on scales in about 50% and the concentration of 200 µg·cm-3 totally inhibited the disease symptoms induced by F.ox.t. 218. At a concentration of 100 - 1000 µg·cm-3, BABA did not inhibit the mycelium growth of F.ox.t. 17 and F.xo.t. 218 on PDA medium. This study suggests that BABA protects tulip roots and bulb scales against F. oxysporum f. sp. tulipae by inducing resistance in these organs and has no direct influence on the pathogen.

  19. Study of stability of humic acids from soil and peat irradiated by gamma rays

    International Nuclear Information System (INIS)

    Silva, Wilson Tadeu Lopes da

    1995-01-01

    Humic acids samples (one deriving from a sedimentary soil and other from a peat), in aqueous media, were irradiated with gamma rays, in doses of 10, 50 and 100 kGy, in order to understand their chemical behavior after the irradiation. The material, before and after irradiation, was analyzed by Elemental Analysis, Functional Groups (carboxylic acids and phenols), UV/Vis Spectroscopy (E 4 /E 6 ratio), IR spectroscopy, CO 2 content and Gel permeation Chromatography (GPC) ). The Elemental Analysis showed the humic acid derived from a peat had a most percentage quantity of Carbon and Hydrogen than the material from a sedimentary soil. From the UV/Vis Spectroscopy, it was observed a decrease of E 4 /E 6 ratio with an increase of the applied dose. The data from GPC are in agreement with this. The results showed that the molecular weight of the material increased by exposing it to a larger radiolitical dose. The peat material was less affected by the gamma radiation than the soil material. The carboxylic groups were responsible by radiochemical behavior of the material. (author)

  20. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  1. Paclitaxel Causes Electrophysiological Changes in the Anterior Cingulate Cortex via Modulation of the γ-Aminobutyric Acid-ergic System.

    Science.gov (United States)

    Nashawi, Houda; Masocha, Willias; Edafiogho, Ivan O; Kombian, Samuel B

    The aim of this study was to elucidate any electrophysiological changes that may contribute to the development of neuropathic pain during treatment with the anticancer drug paclitaxel, particularly in the γ-aminobutyric acid (GABA) system. One hundred and eight Sprague-Dawley rats were used (untreated control: 43; vehicle-treated: 21, and paclitaxel-treated: 44). Paclitaxel (8 mg/kg) was administered intraperitoneally on 2 alternate days to induce mechanical allodynia. The rats were sacrificed 7 days after treatment to obtain slices of the anterior cingulate cortex (ACC), a brain region involved in the central processing of pain. Field excitatory postsynaptic potentials (fEPSPs) were recorded in layer II/III of ACC slices, and stimulus-response curves were constructed. The observed effects were pharmacologically characterized by bath application of GABA and appropriate drugs to the slices. The paclitaxel-treated rats developed mechanical allodynia (i.e. reduced withdrawal threshold to mechanical stimuli). Slices from paclitaxel-treated rats produced a significantly higher maximal response (Emax) than those from untreated rats (p GABA (0.4 µM) reversed this effect and returned the excitability to a level similar to control. Pretreatment of the slices with the GABAB receptor blocker CGP 55845 (50 µM) increased Emax in slices from untreated rats (p GABA deficit in paclitaxel-treated rats compared to untreated ones. Such a deficit could contribute to the pathophysiology of paclitaxel-induced neuropathic pain (PINP). Thus, the GABAergic system might be a potential therapeutic target for managing PINP. © 2016 S. Karger AG, Basel.

  2. FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends

    International Nuclear Information System (INIS)

    Ilcin, M.; Hola, O.; Bakajova, B.; Kucerik, J.

    2010-01-01

    Samples of pure polyvinyl alcohol (PVA) and PVA doped with humic acids were exposed to gamma radiation. Gamma rays induced the degradation of the pure polymer. Degradation changes were observed using ATR FT-IR equipment. Dehydration, double bond creation, and their subsequent oxidation (surrounding atmosphere was air) were found out. Also, other degradation reactions (e.g. chain scission, cyclization) occur simultaneously. Formation of C=C and C=O bonds is apparent from FT-IR spectra. In contrast the presence of humic acids in the PVA sample showed stabilizing effect on PVA structure within the concentration range 0.5-10%. (author)

  3. Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys

    Science.gov (United States)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.

  4. The γ-aminobutyric acid-producing ability under low pH conditions of lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory peptides

    Directory of Open Access Journals (Sweden)

    Florin Barla

    2016-06-01

    Full Text Available Many traditional fermented products are onsumed in Ishikawa Prefecture, Japan, such as kaburazushi, narezushi, konkazuke, and ishiru. Various kinds of lactic acid bacteria (LAB are associated with their fermentation, however, characterization of LAB has not yet been elucidated in detail. In this study, we evaluated 53 isolates of LAB from various traditional fermented foods by taxonomic classification at the species level by analyzing the 16S ribosomal RNA gene (rDNA sequences and carbohydrate assimilation abilities. We screened isolates that exhibited high angiotensin-converting enzyme (ACE inhibitory activities in skim milk or soy protein media and produced high γ-aminobutyric acid (GABA concentrations in culture supernatants when grown in de Man Rogosa Sharpe broth in the presence of 1% (w/v glutamic acid. The results revealed that 10 isolates, i.e., Lactobacillus buchneri (2 isolates, Lactobacillus brevis (6 isolates, and Weissella hellenica (2 isolates had a high GABA-producing ability of >500 mg/100 ml after 72 h of incubation at 35 °C. The ACE inhibitory activity of the whey cultured with milk protein by using L. brevis (3 isolates, L. buchneri (2 isolates, and W. hellenica (2 isolates was stronger than that of all whey cultured with soy protein media, and these IC50 were < 1 mg protein/ml. Three of 10 isolates had high GABA-producing activities at pH 3, suggesting that they could be powerful candidates for use in the fermentation of food materials having low pH.

  5. Copper(II) 12-metallacrown-4 complexes of alpha-, beta- and gamma-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution.

    Science.gov (United States)

    Tegoni, Matteo; Remelli, Maurizio; Bacco, Dimitri; Marchiò, Luciano; Dallavalle, Francesco

    2008-05-28

    A complete thermodynamic study of the protonation and Cu(II) complex formation equilibria of a series of alpha- and beta-aminohydroxamic acids in aqueous solution was performed. The thermodynamic parameters obtained for the protonation of glycine-, (S)-alpha-alanine-, (R,S)-valine-, (S)-leucine-, beta-alanine- and (R)-aspartic-beta-hydroxamic acids were compared with those previously reported for gamma-amino- and (S)-glutamic-gamma-hydroxamic acids. The enthalpy/entropy parameters calculated for the protonation microequilibria of these three types of ligands are in very good agreement with the literature values for simple amines and hydroxamic acids. The pentanuclear complexes [Cu5L4H(-4)]2+ contain the ligands acting as (NH2,N-)-(O,O-) bridging bis-chelating and correspond to 12-metallacrown-4 (12-MC-4) which are formed by self-assembly between pH 4 and 6 with alpha-aminohydroxamates (HL), while those with beta- and gamma-derivatives exist in a wider pH range (4-11). The stability order of these metallomacrocycles is beta- > alpha- > gamma-aminohydroxamates. The formation of 12-MC-4 with alpha-aminohydroxamates is entropy-driven, and that with beta-derivatives is enthalpy-driven, while with gamma-GABAhydroxamate both effects occur. These results are interpreted on the basis of specific enthalpies or entropy contributions related to chelate ring dimensions, charge neutralization and solvation-desolvation effects. The enthalpy/entropy parameters of 12-MC-4 with alpha-aminohydroxamic acids considered are also dependent on the optical purity of the ligands. Actually, that with (R,S)-valinehydroxamic acid presents an higher entropy and a lower enthalpy value than those of enantiopure ligands, although the corresponding stabilities are almost equivalent. Moreover, DFT calculations are in agreement with a more exothermic enthalpy found for metallacrowns with enantiomerically pure ligands.

  6. The effect of gamma irradiation on the nucleic acids content of the mediterranean fruit fly ceratitis capitata (Wied)

    International Nuclear Information System (INIS)

    Fadel, A.M.; Amin, T.R.; Al-Elimi, M.H.

    1999-01-01

    This work was carried out study the effect of gamma irradiation on the deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) content in the whole body homogenate of the mediterranean fruit fly, ceratitis capitata (Wied.) pupae were gamma irradiated with different doses (o, 50, 70, 90 and 110 Gy) at two different pupal ages (2 and 4 days before adult emergence ) to estimate the nucleic acids in pupae and adult males, and females. Experimental results showed that gamma irradiation of pupae reduced RNA content, and this reduction was proportional with the applied dose and more pronounced in the younger pupae. However, DNA content was reduced only when the highest dose was applied to pupae irradiated 2 days before adult emergence (older pupae). Concerning adult insects which were gamma irradiated as pupae, the results revealed, generally, that males and females which were irradiated 2 days before adult emergence were more affected than those irradiated 4 days before adult emergence. The male DNA content and the female RNA content showed high degrees of reduction which, more or less, increased with increasing the dose used. On the other hand, female DNA and male RNA contents were slightly, changed. The significant importance of the results and some statistical interrelations were discussed

  7. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    Science.gov (United States)

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  8. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    DEFF Research Database (Denmark)

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...... velocity or the uptake. No effect on acropetal transport was observed. The data have been used to discuss the similarities in effects of abscisic acid and visible radiation and a hypothesis is proposed to explain the phenomena of phototropism....

  9. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    Science.gov (United States)

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  10. Effects of dietary supplementation with eicosapentaenoic acid or gamma-linolenic acid on neutrophil phospholipid fatty acid composition and activation responses.

    Science.gov (United States)

    Fletcher, M P; Ziboh, V A

    1990-10-01

    Previous data that alimentation with fish oil rich in eicosapentaenoic acid (EPA; 20:n-3) or vegetable oil rich in gamma-linolenic acid (GLA; 18:3n-6) can reduce symptoms of inflammatory skin disorders lead us to determine the effects of dietary supplements of oils rich in EPA or GLA on guinea pig (GP) neutrophil (PMN) membrane potential (delta gamma), secretion, and superoxide (O2-) responses. Weanling GPs were initially fed diets supplemented with olive oil (less than 0.1% EPA; less than 0.1% GLA) for 2 weeks, followed by a crossover by two sets of animals to diets supplemented with fish oil (19% EPA) or borage oil (25% GLA). At 4-week intervals, 12% sterile casein-elicited peritoneal neutrophils (PMN) were assessed for membrane polyunsaturated fatty acid (PUFA) profiles and FMLP-, LTB4-, and PMA-stimulated delta gamma changes, changes in flow cytometrically measured forward scatter (FWD-SC) (shape change), 90 degrees scatter (90 degrees -SC) in cytochalasin B-pretreated-PMN (secretion response), and superoxide responses, GP incorporated EPA and GLA (as the elongation product, dihomo-GLA or DGLA) into their PMN phospholipids by 4 weeks. The peritoneal PMN of all groups demonstrated broad resting FWD-SC and poor activation-related FWD-SC increases, suggesting in vivo activation. While secretion was comparable in the three groups in response to FMLP, there was a trend toward inhibition of LTB4-stimulated 90 degrees -SC loss in both fish and borage oil groups. This was significant only with borage oil (21.7 +/- 2.1 vs 15.3 +/- 1.2% loss of baseline 90 degrees -SC, olive vs borage: P = 0.03). PMN from borage- and fish oil-fed GPs showed a progressively lower O2- response to FMLP than the olive oil group (73.9 +/- 3.9 and 42.9 +/- 6.8% of olive oil response for borage and fish oils, respectively; P less than 0.005 and P less than 0.01, respectively, at 12 weeks), while PMA-stimulated O2- was inhibited only in the fish oil-fed group and only at 12 weeks (62.0 +/- 2

  11. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA [γ-aminobutyric acid] antagonists bicycloorthocarboxylates and endosulfan

    International Nuclear Information System (INIS)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie; Matsumura, Fumio

    1990-01-01

    To study structural requirements for picrotoxinin-type GABA (γ-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo[7.2.1.0 2,8 ]dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing [ 35 S]tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C 3 -C 5 straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist [ 35 S]TBPS to housefly head membranes by 29-53% at 10 μM. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent

  12. Study on the optimal moisture adding rate of brown rice during germination by using segmented moisture conditioning method.

    Science.gov (United States)

    Cao, Yinping; Jia, Fuguo; Han, Yanlong; Liu, Yang; Zhang, Qiang

    2015-10-01

    The aim of this study was to find out the optimal moisture adding rate of brown rice during the process of germination. The process of water addition in brown rice could be divided into three stages according to different water absorption speeds in soaking process. Water was added with three different speeds in three stages to get the optimal water adding rate in the whole process of germination. Thus, the technology of segmented moisture conditioning which is a method of adding water gradually was put forward. Germinated brown rice was produced by using segmented moisture conditioning method to reduce the loss of water-soluble nutrients and was beneficial to the accumulation of gamma aminobutyric acid. The effects of once moisture adding amount in three stages on the gamma aminobutyric acid content in germinated brown rice and germination rate of brown rice were investigated by using response surface methodology. The optimum process parameters were obtained as follows: once moisture adding amount of stage I with 1.06 %/h, once moisture adding amount of stage II with 1.42 %/h and once moisture adding amount of stage III with 1.31 %/h. The germination rate under the optimum parameters was 91.33 %, which was 7.45 % higher than that of germinated brown rice produced by soaking method (84.97 %). The content of gamma aminobutyric acid in germinated brown rice under the optimum parameters was 29.03 mg/100 g, which was more than two times higher than that of germinated brown rice produced by soaking method (12.81 mg/100 g). The technology of segmented moisture conditioning has potential applications for studying many other cereals.

  13. The effect of the GABA-A agonist THIP on regional cortical blood flow in humans. A new test of hemispheric dominance

    DEFF Research Database (Denmark)

    Roland, PE; Friberg, L

    1988-01-01

    We studied the effect of a gamma-aminobutyric acid (GABA)-A receptor-induced postsynaptic inhibition on regional CBF (rCBF) in awake humans. For this purpose we used a new specific GABA-A agonist, 4,5,6,7-tetrahydroisoxazolo(5,4)-pyridin-3-ol (THIP). As part of a new diagnostic procedure for the ...

  14. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  15. Discovery of Azetidinone Acids as Conformationally-Constrained Dual PPARalpha/gamma Agonists

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Devasthale, P; Farrelly, D; Gu, L; Harrity, T; Cap, M; Chu, C; Kunselman, L; Morgan, N; et. al.

    2008-01-01

    A novel class of azetidinone acid-derived dual PPAR{alpha}/{gamma} agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARa and PPAR? receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.

  16. Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. Strain 6803

    International Nuclear Information System (INIS)

    Labarre, J.; Thuriaux, P.; Chauvat, F.

    1987-01-01

    The existence of active transport systems (permeases) operating on amino acids in the photoautotrophic cyanobacterium Synechocystis sp. strain 6803 was demonstrated by following the initial rates of uptake with 14 C-labeled amino acids, measuring the intracellular pools of amino acids, and isolating mutants resistant to toxic amino acids. One class of mutants (Pfa1) corresponds to a regulatory defect in the biosynthesis of the aromatic amino acids, but two other classes (Can1 and Aza1) are defective in amino acid transport. The Can1 mutants are defective in the active transport of three basic amino acids (arginine, histidine, and lysine) and in one of two transport systems operating on glutamine. The Aza1 mutants are not affected in the transport of the basic amino acids but have lost the capacity to transport all other amino acids except glutamate. The latter amino acid is probably transported by a third permease which could be identical to the Can1-independent transport operating on glutamine. Thus, genetic evidence suggests that strain 6803 has only a small number of amino acid transport systems with fairly broad specificity and that, with the exception of glutamine, each amino acid is accumulated by only one major transport system. Compared with heterotrophic bacteria such as Escherichia coli, these permeases are rather inefficient in terms of affinity (apparent K/sub m/ ranging from 6 to 60 μM) and of V/sub max/

  17. Gamma amino butyric acid accumulation in medicinal plants without stress.

    Science.gov (United States)

    Anju, P; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F-254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague.

  18. Responses of garlic bulbs to gamma irradiation. Changes in major amino acids

    International Nuclear Information System (INIS)

    Parolo, Maria E.; Orioli, Gustavo A.; Croci, Clara A.

    1997-01-01

    Studies were conducted to provide information about the amino acids composition of garlic bulbs cv Colorado and to determinate the effect of a dose of 60 Gy of gamma rays on the behavior of the major free amino acids in relation to sprout growth radioinhibition. TLC and HPLC were used for identification and quantification of free amino acids. Eighteen free amino acids were identified in both parts of garlic bulbs: alanine, glycine, proline, methionine, serine, phenylalanine, aspartic acid, glutamic acid, lysine, glutamine, arginine, tyrosine, threonine, cystine, cysteine, leucine + isoleucine and asparagine. In the inner sprout the major amino acids founded were: glutamine, glutamic acid, threonine, asparagine, cystine, cysteine and methionine; in the storage leaf also arginine was also predominant. In general concentration of amino acids appeared to less affected by irradiation in the storage leaf that in the inner sprout. An increase in the short time post-irradiation in glutamine, glutamic acid, asparagine, theorine and methionine was observed. Sprout grouth radioinhibition was evident about 70 days after treatment and was preceded by a decrease in the major amino acids except methionine. It appears that concentration of same major amino acidscan be used as monitors of radioinhibition process in inner sprout of garlic. (author). 15 refs., 8 figs

  19. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    Science.gov (United States)

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  20. Biogenic amines, amino acids and regional blood flow in rat brain after prenatal irradiation

    International Nuclear Information System (INIS)

    Deroo, J.; Gerber, G.B.; Maes, J.

    1986-01-01

    Damage to nerve cells after prenatal irradiation could affect their later ability to function normally. The concentration of several biogenic amines and amino acids was therefore determined at different times after prenatal irradiation with 0.95 Gy on day 10, 12 or 15 of pregnancy. The offspring was sacrified 0.5, 1, 3 and 6 months after birth and the following structures were dissected: Cortex, hippocampus, striatum, thalamus, hypothalamus, cerebellum and medulla. Biogenic amines isolated by HPLC and detected electrochemically were: Dopamine, DOPA, DOPAC, epinephrine, norepinephrine, serotonin and hydroxyindolacetate. Amino acids converted to their dansyl derivatives and separated by HPLC were: Aspartate, glutamate, glutamine, gamma aminobutyrate and taurine. Many neurotransmitters were found increased in brain after prenatal irradiation, particularly on day 12 and 15 p.c. Marked changes were found for serotonin in several brain structures and for dopamin in striatum. An increase was also found in glutamate, glutamine and GABA. Studies on regional blood flow using injection of labelled 15 μ microspheres did not reveal significant alterations after prenatal irradiation. (orig.)

  1. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Elster, L

    1998-01-01

    , but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  2. Physicochemical properties of cross-linked poly-gamma-glutamic acid and its flocculating activity against kaolin suspension

    International Nuclear Information System (INIS)

    Taniguchi, M.; Kato, K.; Shimauchi, A.; Ping, X.; Fujita, K.; Tanaka, T.; Tarui, Y.; Hirasawa, E.

    2005-01-01

    Cross-linked poly-Gamma-glutamic acid (C-L Gamma-PGA) was prepared with Gamma-PGA irradiated with Gamma-PGA at various kGy values. The physicochemical properties including viscosity and water absorption capacity were compared between C-L Gamma-PGA and several typical flocculating agents. The viscosity of C-L Gamma-PGA increased with the dose of Gamma-lrradiatio, although the water absorption capacity of C-L Gamma-PGA did not, which showed a maximum of 1005.6 ml/g at 20 kGy. Flocculating activity against kaolin suspension was not observed for any of the test compounds when used singly. However, the activity of C-L Gamma-PGA markedly increased following the addition of polyaluminum chloride. The activity increased with temperature up to 80deg C and remained at 80 deg C of heat pretreatment for 1 h, but did not at more than 50 deg C of beat pretreatment for 24 h. The activity was also observed within a pH range of 4.5-10.0. Roth the water absorption capacity and flocculating activity of C-L Gamma-PGA decreased in parallel with increasing NaCl concentration, suggesting that the hocculating activity of C-L Gamma-PGA was associated with its water absorption capacity, rather than viscosity. An investigation of the effects of various cations on the flocculating activity of C-L Gamma-PGA showed that only trivalent catlons had a synergistic effect. The mechanism of C-L Gamma-PGA flocculating activity is discussed based on the results of preliminary experiments

  3. "Facilitated" amino acid transport is upregulated in brain tumors.

    Science.gov (United States)

    Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R

    1998-05-01

    The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary

  4. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue

    Science.gov (United States)

    Salameh, Ahmad; Daquinag, Alexes C.; Staquicini, Daniela I.; An, Zhiqiang; Pasqualini, Renata; Kolonin, Mikhail G.

    2016-01-01

    We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases. PMID:27468426

  5. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  6. Inclusion polymerization of vinyl chloride monomer in deoxycholic acid host via {gamma}-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chirachanchai, S.; Kumkrong, A. [The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok (Thailand); Ishida, Hatsuo [Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH (United States)

    2000-03-01

    Inclusion polymerization of vinyl chloride monomer (VCM) was studied in the system of 3{alpha}, 12{alpha} -dihydroxy-5{beta}-cholan-24-oic acid (deoxycholic acid, DCA). DCA-VCM inclusion compound system was originally prepared by guest intercalation technique in DCA guest free crystal. The inclusion polymerization of DCA-VCM by {gamma}-irradiation at total dose 2 Mrad, gives a syndiotactic rich polyvinyl chloride (PVC) as can be confirmed by FT-IR and FT-NMR. (author)

  7. SAM-CE, Time-Dependent 3-D Neutron Transport, Gamma Transport in Complex Geometry by Monte-Carlo

    International Nuclear Information System (INIS)

    2003-01-01

    1 - Nature of physical problem solved: The SAM-CE system comprises two Monte Carlo codes, SAM-F and SAM-A. SAM-F supersedes the forward Monte Carlo code, SAM-C. SAM-A is an adjoint Monte Carlo code designed to calculate the response due to fields of primary and secondary gamma radiation. The SAM-CE system is a FORTRAN Monte Carlo computer code designed to solve the time-dependent neutron and gamma-ray transport equations in complex three-dimensional geometries. SAM-CE is applicable for forward neutron calculations and for forward as well as adjoint primary gamma-ray calculations. In addition, SAM-CE is applicable for the gamma-ray stage of the coupled neutron-secondary gamma ray problem, which may be solved in either the forward or the adjoint mode. Time-dependent fluxes, and flux functionals such as dose, heating, count rates, etc., are calculated as functions of energy, time and position. Multiple scoring regions are permitted and these may be either finite volume regions or point detectors or both. Other scores of interest, e.g., collision and absorption densities, etc., are also made. 2 - Method of solution: A special feature of SAM-CE is its use of the 'combinatorial geometry' technique which affords the user geometric capabilities exceeding those available with other commonly used geometric packages. All nuclear interaction cross section data (derived from the ENDF for neutrons and from the UNC-format library for gamma-rays) are tabulated in point energy meshes. The energy meshes for neutrons are internally derived, based on built-in convergence criteria and user- supplied tolerances. Tabulated neutron data for each distinct nuclide are in unique and appropriate energy meshes. Both resolved and unresolved resonance parameters from ENDF data files are treated automatically, and extremely precise and detailed descriptions of cross section behaviour is permitted. Such treatment avoids the ambiguities usually associated with multi-group codes, which use flux

  8. Nano and Mesoscale Ion and Water Transport in Perfluorosulfonic AcidMembranes

    Science.gov (United States)

    2017-10-01

    Nano- and Mesoscale Ion and Water Transport in Perfluorosulfonic-Acid Membranes A. R. Crothers a,b , C. J. Radke a,b , A. Z. Weber a a...Berkeley, CA 94720, USA Water and aqueous cations transport along multiple length scales in perfluorosulfonic-acid membranes. Molecular interactions...as a function of hydration. A resistor network upscales the nanoscale properties to predict effective membrane ion and water transport and their

  9. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots.

    Science.gov (United States)

    Renault, Hugues; El Amrani, Abdelhak; Berger, Adeline; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Bouchereau, Alain; Deleu, Carole

    2013-05-01

    Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress. © 2012 Blackwell Publishing Ltd.

  10. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    International Nuclear Information System (INIS)

    Esmaeili-sani, Vahid; Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein

    2012-01-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a 137 Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  11. A direct HPLC method for the resolution and quantitation of the R-(-)- and S-(+)-enantiomers of vigabatrin (gamma-vinyl-GABA) in pharmaceutical dosage forms using teicoplanin aglycone chiral stationary phase.

    Science.gov (United States)

    Al-Majed, Abdulrahman A

    2009-08-15

    A direct chiral high-performance liquid chromatography (HPLC) method was developed and validated for the resolution and quantification of antiepileptic drug enantiomers, R-(-)- and S-(+)-vigabatrin (gamma-vinyl-gamma-aminobutyric acid) in pharmaceutical products. The separation was optimized on a macrocyclic glycopeptide antibiotic chiral stationary phase (CSP) based on teicoplanin aglycone, chirobiotic (TAG), using a mobile phase system containing ethanol-water (80:20, v/v), at a flow rate of 0.4ml/min and UV detection set at 210nm. The stability of vigabatrin enantiomers under different degrees of temperature was also studied. The enantiomers of vigabatrin were separated from each other. The calibration curves were linear over a range of 100-1600microg/ml (r=0.999) for both enantiomers. The overall recoveries of R-(-)- and S-(+)-vigabatrin enantiomers from pharmaceutical products were in the range of 98.3-99.8% with %RSD ranged from 0.48 to 0.52%. The limit of quantification (LOQ) and limit of detection (LOD) for each enantiomer were 100 and 25microg/ml, respectively. No interferences were found from commonly co-formulated excipients.

  12. EPR study of gamma induced radicals in amino and iminodiacetic acid derivatives

    International Nuclear Information System (INIS)

    Aydin, Murat; Baskan, M. Halim; Osmanoglu, Y. Emre

    2009-01-01

    In this study, electron paramagnetic resonance spectroscopy was used to investigate free radicals formed in gamma irradiated L-glutamine hydrochloride, iminodiacetic acid hydrochloride and N-(2-hydroxyethyl) iminodiacetic acid powders. The free radicals produced in L-glutamine hydrochloride powders were attributed to the CH 2 CHCOOH radical; and those in iminodiacetic acid hydrochloride and N-(2-hydroxyethyl) iminodiacetic acid powders to the HNCHCH 2 (CO OH) 2 and HOCH 2 CH 2 NCHCH 2 (CO OH) 2 , respectively. The g-values of the radicals and the hyperfine structure constants of the free electron with the environmental protons and 14 N nucleus were determined. The samples were not displayed before they were not irradiated. The free radicals were found stable at room temperature for more than six months. Some spectroscopic properties and suggestions concerning possible structure of the radicals are discussed in this paper. (author)

  13. Localization of (/sup 3/H). gamma. -aminobutyric acid in the cochlea. Light and electron microscopic autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Richrath, W; Kraus, H; Fromme, H G [Muenster Univ. (F.R. Germany). Hals-, Nasen- und Ohrenklinik; Muenster Univ. (F.R. Germany). Inst. fuer Medizinische Physik)

    1974-01-01

    In guinea pigs, 1 h after intraarterial and local administration of /sup 3/H-GABA, autoradiographs of the cochlea and the brain were performed. As a parameter of distribution of this substance, silver grain density was examined by means of light and electron microscopy. Intraarterial injection was not followed by any activity neither in brain nor in the cochlea, an observation suggesting the existence of a blood-perilymph barrier additional to the blood-brain barrier. Perfusion of the cochlea produced a marked activity in the spiral ganglion. Different from other tritium labelled amino acids, /sup 3/H-GABA activity could be found only in glia cells but not in nerve cell bodies or axons. The significance of this finding is open to question. In the organ of Corti a selective labelling of efferent nerve fibres could be found by means of light microscopy, additionally, using electron microscopy, only efferent synapses proved to be labelled. Most of silver grains were attached to vesicles and mitochondria, some grains to the synaptie deft. Afferent synapses remained unlabelled. Comparing with publications concerning GABA localization and concentration in the brain, we conclude that the efferent system of the Organ of Corti contains a high concentration of GABA. As present electrophysiological results are contradictory the GABA distribution alone gives no convincing evidence that this substance may serve as a transmitter.

  14. Association between Single Nucleotide Polymorphisms in Gamma-Aminobutyric Acid B Receptor, Insulin Receptor Substrate-1, and Hypocretin Neuropeptide Precursor Genes and Susceptibility to Obstructive Sleep Apnea Hypopnea Syndrome in a Chinese Han Population.

    Science.gov (United States)

    Li, Zhijun; Tang, Tingyu; Du, Jianzong; Wu, Wenjuan; Zhou, Xiaoxi; Qin, Guangyue

    2016-01-01

    To investigate genotype-phenotype changes between rs29230 in γ-aminobutyric acid B receptor (GABBR1), rs1801278 in insulin receptor substrate-1 (IRS-1), and rs9902709 in hypocretin neuropeptide precursor (HCRT) and obstructive sleep apnea hypopnea syndrome (OSAHS) in Chinese Han individuals. A total of 130 patients with OSAHS and 136 age- and gender-matched healthy controls were enrolled in this study. A brief description of DNA extraction and genotyping is given. Multivariate unconditional logistic regression analysis adjusted for gender and age was used to estimate the associations of single nucleotide polymorphisms (SNPs) rs29230 (GABBR1), rs1801278 (IRS-1), and rs9902709 (HCRT) with OSAHS risk. Subgroup analysis was performed to evaluate differences in these SNPs among subgroups according to gender, body mass index (BMI), and severity of disease. Genotype and allele frequencies of rs29230 were significantly different between cases and controls (p = 0.0205 and p = 0.0191, respectively; odds ratio = 0.493, 95% confidence interval = 0.271-0.896), especially for male patients (p = 0.0259 and p = 0.0202, respectively). Subgroup analysis according to BMI also revealed a significant allele difference for rs29230 between cases and controls in the overweight subgroup (p = 0.0333). Furthermore, allele and genotype frequencies of rs1801278 showed significant differences between cases and controls (p = 0.0488 and p = 0.0471, respectively). However, no association was observed between rs9902709 and OSAHS risk (p = 0.2762), and no differences were identified in other subgroups. In this study, there was an association between variants of rs29230 and rs1801278 and OSAHS risk in the Chinese Han population but not for rs9902709. © 2016 S. Karger AG, Basel.

  15. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  16. Furan formation from fatty acids as a result of storage, gamma irradiation, UV-C and heat treatments

    Science.gov (United States)

    Furan is a possible human carcinogen that has been found in many thermally processed foods. The effects of thermal processing, gamma and UV-C irradiation on formation of furan from different fatty acids was studied. In addition, formation of furan from fatty acid emulsions during storage at 25C and...

  17. Gamma-irradiation effect on a commercial composite anticorrosive pigment and acidity-to-alkalinity conversion

    Science.gov (United States)

    Song, Weiqiang; Niu, Kaihui; Wu, Longchao

    2016-05-01

    A commercial composite anticorrosive pigment based on aluminum dihydrogen tripolyphosphate was studied after exposure to gamma irradiation (Co60, 0, 20, 50, 100 and 150 kGy) using FTIR, XRD, TGA and acid-base titration technologies. Although the FTIR spectra showed that the effect of the irradiation on functional groups in the pigments was not obvious, the decrease in the crystal lattice parameters of the irradiated pigments was observed in the XRD spectra compared to the non-irradiated sample. But the extent of the lattice parameter decrease monotonically with the increase of absorbed dose from 20 to 150 kGy, which was attributed to the decomposition of water and the simultaneous occurrence of lattice damage when the pigments were exposed to gamma rays. Of particular significance was the displayed basicity of the aqueous solutions of the irradiated pigments compared to the acidity of the solution of the non-irradiated pigment, which was attributed to the decomposition of P-OH groups (combined water).

  18. Gamma radiolytic stability of CyMe4BTBP and effect of nitric acid

    Czech Academy of Sciences Publication Activity Database

    Schmidt, H.; Wilden, A.; Modolo, G.; Švehla, Jaroslav; Grüner, Bohumír; Ekberg, C.

    Roč. 60, č. 4 ( 2015 ), s. 879-884 ISSN 0029-5922 R&D Projects: GA MŠk(CZ) 7G13003 EU Projects: European Commission(XE) 323282 - SACSESS Institutional support: RVO:61388980 Keywords : CyMe4BTBP * Protective effect * Gamma radiolysis * Liquid-liquid extraction * Nitric acid Subject RIV: CA - Inorganic Chemistry Impact factor: 0.546, year: 2015

  19. The Effects of Cobalt-60 Gamma Radiation on Vitamin B{sub 6} and Folic Acid; Effets des rayons gamma (cobalt-60) sur la vitamine B{sub 6} et l’acide folique

    Energy Technology Data Exchange (ETDEWEB)

    Galatzeanu, I.; Antoni, F. [International Atomic Energy Agency, Vienna (Austria)

    1967-09-15

    A study has been made of the behaviour of pyridoxine and folic acid, including structural changes, after {sup 60}Co gamma irradiation. The irradiation of pyridoxine (vitamin B{sub 6}) and folic acid in aqueous solutions leads to their partial or total destruction, depending on the dose. The irradiation of pyridoxine and folic acid in the solid state mainly results in the elimination of hydrogen atoms (free radicals). After dissolving the irradiated samples in acid solutions it was observed that the irradiated molecule was renewed through replacement of the eliminated hydrogen atoms, which depend on the pH-value of the solution. This gives the possibility of sterilizing both pyridoxine and folic acid in the solid state by irradiation at 2 Mrad. Most of the radiolysis products of pyridoxine and folic acid irradiated in solution and in the solid state have been separated and identified by means of chromatography (paper and thin layer) and cellulose column electrophoresis. Electron spin resonance was used to determine the concentration and nature of the free radicals after irradiation of pyridoxine and folic acid in the solid state. (author) [French] On a Studie le comportement de la pyridoxine et de l'acide folique apres exposition aux rayons gamma ({sup 60}Co) et les changements dans leurs structures. L'irradiation de la pyridoxine (Vitamine B{sub 6}) et de l'acide folique en solutions aqueuses enttarne leur destruction partielle ou totale selon la dose. L'irradiation de la pyridoxine et de l'acide folique á l'etat solide enttarne principalement l'elimination d'atomes d'hydrogene (radicaux libres). Par dissolution des echanrilions irradies dans des solutions acides, on a observe un renouvellement de la molecule irradiee par remplacement des atomes d'hydrogene elimines qui est fonction du pH de la solution, ce qui permet de radiosteriliser a 2 Mrad á l'etat solide tant la pyridoxine que l'acide folique. On a separe et identifie la majorite des produits de radiolyse

  20. Sedative-hypnotic drug withdrawal syndrome: recognition and treatment [digest].

    Science.gov (United States)

    Santos, Cynthia; Olmedo, Ruben E; Kim, Jeremy

    2017-03-22

    Sedative-hypnotic drugs include gamma-Aminobutyric acid (GABA)ergic agents such as benzodiazepines, barbiturates, gamma-Hydroxybutyric acid [GHB], gamma-Butyrolactone [GBL], baclofen, and ethanol. Chronic use of these substances can cause tolerance, and abrupt cessation or a reduction in the quantity of the drug can precipitate a life-threatening withdrawal syndrome. Benzodiazepines, phenobarbital, propofol, and other GABA agonists or analogues can effectively control symptoms of withdrawal from GABAergic agents. Managing withdrawal symptoms requires a patient-specific approach that takes into account the physiologic pathways of the particular drugs used as well as the patient's age and comorbidities. Adjunctive therapies include alpha agonists, beta blockers, anticonvulsants, and antipsychotics. Newer pharmacological therapies offer promise in managing withdrawal symptoms. [Points & Pearls is a digest of Emergency Medicine Practice].

  1. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  2. Effect of combination treatment of gamma irradiation and ascorbic acid on physicochemical and microbial quality of minimally processed eggplant (Solanum melongena L.)

    Science.gov (United States)

    Hussain, Peerzada R.; Omeera, A.; Suradkar, Prashant P.; Dar, Mohd A.

    2014-10-01

    Gamma irradiation alone and in combination with ascorbic acid was tested for preventing the surface browning and maintaining the quality attributes of minimally processed eggplant. Eggplant samples after preparation were subjected to treatment of gamma irradiation in the dose range of 0.25-1.0 kGy and to combination treatments of ascorbic acid dip at a concentration of 2.0% w/v and gamma irradiation (dose range 0.5-2.0 kGy) followed by storage at 3±1 °C, RH 80%. Studies revealed inverse correlation (r=-0.93) between the polyphenol oxidase (PPO) activity, browning index and the treatments of ascorbic acid and gamma irradiation. Combinatory treatment of 2.0% w/v ascorbic acid and 1.0 kGy gamma irradiation proved to be significantly (p≤0.05) effective in inhibiting the PPO activity, preventing the surface browning and maintaining the creamy white color and other quality attributes of minimally processed eggplant up to 6 days of refrigerated storage. Sensory evaluation revealed that control and 0.25 kGy irradiated samples were unacceptable only after 3 days of storage. Samples irradiated at 0.5 kGy and 0.75 kGy were unacceptable after 6 days of storage. Microbial analysis revealed that radiation processing of minimally processed eggplant at 1.0 kGy with and without ascorbic acid resulted in around 1 and 1.5 log reduction in yeast and mold count as well as bacterial count just after treatment and 6 days of storage therefore, enhances the microbial safety.

  3. Fenton-enhanced {gamma}-radiolysis of cyanuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Rani [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Aravind, Usha K. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Aravindakumar, Charuvila T. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India)]. E-mail: CT-Aravindakumar@rocketmail.com

    2007-04-02

    Degradation of cyanuric acid (OOOT), a stable end product of oxidative decomposition of atrazine, is investigated in a combined field of gamma radiolysis and fenton reaction. The reaction of hydroxyl radical ({center_dot}OH) at pH 6 was carried out by irradiating N{sub 2}O saturated aqueous solutions containing OOOT (1 x 10{sup -3} mol dm{sup -3}), and this resulted only a marginal degradation (20%). However, when the same reaction was carried out in the presence of varying concentrations of ferrous sulfate ((5-10) x 10{sup -5} mol dm{sup -3}), the decay of OOOT has been enhanced to more than 80%. This decay followed a first order kinetics. Nearly similar effects were observed with another triazine derivative, 2,4-dioxohexahydro-1,3,5-triazine (DHT). Two major reaction mechanisms are proposed for the enhanced decay of OOOT. The formation of unstable hydroxyl radical adducts from the reaction of {center_dot}OH which is the result of gamma radiolysis and the Fenton reaction (resulting from the reaction of the added Fe(II) and of the H{sub 2}O{sub 2} from the radiolysis of water), is proposed as the first mechanism. The second mechanism, which is likely the major contributor to degradation, is proposed as the reaction of a nucleophilic adduct, Fe(II)OOH, which could directly react with the electron deficient triazine ring. It is highlighted that such degradation reactions must be explored for the complete degradation of the byproducts of the oxidative decomposition of atrazine.

  4. Protective effects of lipoic acid against oxidative stress induced by lead acetate and gamma-irradiation in the kidney and lung in albino rats

    International Nuclear Information System (INIS)

    Rezk, R.G.; Abdel-Rahman, N.A.

    2013-01-01

    Lipoic acid is widely used as antioxidant that protects tissues against a range of oxidative stress. The present study was designed to determine the protective effect of lipoic acid against oxidative organ damage induced by lead intoxication and/or gamma-irradiation. Rats were treated daily intrapritonealy (i. p.) with lipoic acid( 200 mg/kg/b.w.) for 15 consecutive days before lead acetate injection(30 mg/kg/b.w) i.p. for 5 days and/ or whole body. gamma-irradiation (3 Gy). Animals were sacrificed on the 3rd day post the last treatment. Histological examination of kidney and lung tissues through light microscope showed that lead acetate injection and/or exposure to gamma radiation has provoked severe architectural damage in both tissues as necrotic lesions, atrophoid glomerulei and degenerated proximal and distal convoluted tubules, severe bronchiole fibrosis, decreased ciliated bronchioles and dilated and widened pulmonary artery. Histological damage was associated with significant biochemical. changes as increase in lead, copper, iron, zinc and calcium levels in both kidney and lung tissues. Kidney and lung of rats treated with lipoic acid before lead intoxication and/or gamma-irradiation showed significant regenerated glomerulei structure, well-defined structure of proximal and distal convoluted tubules, regenerated ciliated bronchiole structure and improved pulmonary artery. Tissue regeneration was associated with significant decrease in Pb, Cu, Fe, Zn, and Ca levels in kidney and lung and prevented the accumulation of metals in these organs. It could be concluded that lipoic acid administration before lead and/or whole body gamma-irradiation might be capable to attenuate lead and/or gamma radiation induced organ injury and organ metals disruption

  5. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-02-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a {sup 137}Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  6. Efect of Gamma 60Co Irradiation on The Growth, Lipid Content and Fatty Acid Composition of Botryococcus sp. Microalgae

    Directory of Open Access Journals (Sweden)

    Dini Ermavitalini

    2017-04-01

    Full Text Available Botryococcus sp. is one of microalgae species that has a high lipid content as much as 75% of their dry weight. But, lipid production by microalgae is regulated by their environmental condition (pH, light, temperature, nutrition, etc. Mutagenesis induced by Gamma 60Co irradiation can be utilized to alter the Botryococcus sp. genetic to get microalgae mutant strain that can produce a higher lipid content than the wild strain. Botryococcus sp. was irradiated with different doses of gamma ray of 60Co  (0, 2, 4, 6, and 10 Gy,  and the effect  on the growth, lipid content, and fatty acid composition of microalgae were observed. Research design used is random complete (RAL with 95 %  confident level for quantitive analysis based on the biomass and lipid contents. More over fatty acid composition was analyzed by Gas Cromatography-Mass Spectrometry (GC-MS. Results showed that Gamma irradiated gave an effect on growth and lipid content of Botryococcus sp. But between the control treatment (0 Gy with microalgae irradiated dose of 2 Gy, 4 Gy and 6 Gy were not significantly different. Whereas between the control with 10 Gy irradiated was significantly different. The highest biomassa and lipid content are found in 10 Gy irradiated microalgae with 0.833 gram biomass and 41% lipid content. Fatty acid profile of Botryococcus sp. control has 6 fatty acids while 10 Gy irradiated microalgae has 12 fatty acids, with the long-chain fatty acids increased, whereas short-chain fatty acids decreased.

  7. Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Boudens, Ryan; Reid, Thomas; VanMensel, Danielle; Sabari Prakasanm, M.R. [Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON (Canada); Ciborowski, Jan J.H. [Biological Sciences, University of Windsor, Windsor, ON (Canada); Weisener, Christopher G., E-mail: weisener@uwindsor.ca [Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON (Canada)

    2016-01-01

    Naphthenic acids (NAs) are persistent compounds that are components of most petroleum, including those found in the Athabasca oil sands. Their presence in freshly processed tailings is of significant environmental concern due to their toxicity to aquatic organisms. Gamma irradiation (GI) was used to reduce the toxicity and concentration of NAs in oil sands process water (OSPW) and fluid fine tailings (FFT). This investigation systematically studied the impact of GI on the biogeochemical development and progressive reduction of toxicity using laboratory incubations of fresh and aged tailings under anoxic and oxic conditions. GI reduced NA concentrations in OSPW by up to 97% in OSPW and in FFT by 85%. The GI-treated FFT exhibited increased rates of biogeochemical change, dependent on the age of the tailings source. Dissolved oxygen (DO) flux was enhanced in GI-treated FFT from fresh and aged source materials, whereas hydrogen sulfide (HS{sup −}) flux was stimulated only in the fresh FFT. Acute toxicity to Vibrio fischeri was immediately reduced following GI treatment of fresh OSPW. GI treatment followed by 4-week incubation reduced toxicity of aged OSPW to V. fischeri. - Highlights: • Gamma irradiation substantially reduced concentrations of ecotoxic naphthenic acids • Acute toxicity was reduced in gamma irradiated process water • Gamma irradiated tailings exhibited increased rates of microbial respiration.

  8. Use of 15N reverse gradient two-dimensional nuclear magnetic resonance spectroscopy to follow metabolic activity in Nicotiana plumbaginifolia cell-suspension cultures.

    Science.gov (United States)

    Mesnard, F; Azaroual, N; Marty, D; Fliniaux, M A; Robins, R J; Vermeersch, G; Monti, J P

    2000-02-01

    Nitrogen metabolism was monitored in suspension cultured cells of Nicotiana plumbaginifolia Viv. using nuclear magnetic resonance (NMR) spectroscopy following the feeding of (15NH4)2SO4 and K15NO3. By using two-dimensional 15N-1H NMR with heteronuclear single-quantum-coherence spectroscopy and heteronuclear multiple-bond-coherence spectroscopy sequences, an enhanced resolution of the incorporation of 15N label into a range of compounds could be detected. Thus, in addition to the amino acids normally observed in one-dimensional 15N NMR (glutamine, aspartate, alanine), several other amino acids could be resolved, notably serine, glycine and proline. Furthermore, it was found that the peak normally assigned to the non-protein amino-acid gamma-aminobutyric acid in the one-dimensional 15N NMR spectrum was resolved into a several components. A peak of N-acetylated compounds was resolved, probably composed of the intermediates in arginine biosynthesis, N-acetylglutamate and N-acetylornithine and, possibly, the intermediate of putrescine degradation into gamma-aminobutyric acid, N-acetylputrescine. The occurrence of 15N-label in agmatine and the low detection of labelled putrescine indicate that crucial intermediates of the pathway from glutamate to polyamines and/or the tobacco alkaloids could be monitored. For the first time, labelling of the peptide glutathione and of the nucleotide uridine could be seen.

  9. Hypoxia and the anticoagulants dalteparin and acetylsalicylic acid affect human placental amino acid transport.

    Directory of Open Access Journals (Sweden)

    Marc-Jens Kleppa

    Full Text Available BACKGROUND: Anticoagulants, e.g. low-molecular weight heparins (LMWHs and acetylsalicylic acid (ASA are prescribed to women at risk for pregnancy complications that are associated with impaired placentation and placental hypoxia. Beyond their role as anticoagulants these compounds exhibit direct effects on trophoblast but their impact on placental function is unknown. The amino acid transport systems A and L, which preferably transfer essential amino acids, are well-described models to study placental nutrient transport. We aimed to examine the effect of hypoxia, LMWHs and ASA on the activity of the placental amino acid transport systems A and L and associated signalling mechanisms. METHODS: The uptake of C14-MeAIB (system A or H3-leucin (system L was investigated after incubation of primary villous fragments isolated from term placentas. Villous tissue was incubated at 2% O2 (hypoxia, 8% O2 and standard culture conditions (21% O2 or at 2% O2 and 21% O2 with dalteparin or ASA. Activation of the JAK/STAT or mTOR signalling pathways was determined by Western analysis of total and phosphorylated STAT3 or Raptor. RESULTS: Hypoxia decreased system A mediated MeAIB uptake and increased system L mediated leucine uptake compared to standard culture conditions (21% O2. This was accompanied by an impairment of STAT3 and a stimulation of Raptor signalling. System L activity increased at 8% O2. Dalteparin treatment reduced system A and system L activity under normoxic conditions and ASA (1 mM decreased system A and L transporter activity under normoxic and hypoxic conditions. CONCLUSIONS: Our data underline the dependency of placental function on oxygen supply. LMWHs and ASA are not able to reverse the effects of hypoxia on placental amino acid transport. These findings and the uncovering of the signalling mechanisms in more detail will help to understand the impact of LMWHs and ASA on placental function and fetal growth.

  10. GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion.

    Science.gov (United States)

    Balz, Johanna; Keil, Julian; Roa Romero, Yadira; Mekle, Ralf; Schubert, Florian; Aydin, Semiha; Ittermann, Bernd; Gallinat, Jürgen; Senkowski, Daniel

    2016-01-15

    In everyday life we are confronted with inputs of multisensory stimuli that need to be integrated across our senses. Individuals vary considerably in how they integrate multisensory information, yet the neurochemical foundations underlying this variability are not well understood. Neural oscillations, especially in the gamma band (>30Hz) play an important role in multisensory processing. Furthermore, gamma-aminobutyric acid (GABA) neurotransmission contributes to the generation of gamma band oscillations (GBO), which can be sustained by activation of metabotropic glutamate receptors. Hence, differences in the GABA and glutamate systems might contribute to individual differences in multisensory processing. In this combined magnetic resonance spectroscopy and electroencephalography study, we examined the relationships between GABA and glutamate concentrations in the superior temporal sulcus (STS), source localized GBO, and illusion rate in the sound-induced flash illusion (SIFI). In 39 human volunteers we found robust relationships between GABA concentration, GBO power, and the SIFI perception rate (r-values=0.44 to 0.53). The correlation between GBO power and SIFI perception rate was about twofold higher when the modulating influence of the GABA level was included in the analysis as compared to when it was excluded. No significant effects were obtained for glutamate concentration. Our study suggests that the GABA level shapes individual differences in audiovisual perception through its modulating influence on GBO. GABA neurotransmission could be a promising target for treatment interventions of multisensory processing deficits in clinical populations, such as schizophrenia or autism. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Use of X-ray and gamma-induced mutants of lactic acid bacteria in the manufacture of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Dilanian, Z; Makarian, K; Chuprina, D [Erevan Zootechnical and Veterinary Inst. (USSR). Chair of Dairying

    1976-04-01

    With the aid of X-ray and gamma irradiation were got mutants of lactic acid bacteria, which steadily retain acquired properties. Use of proteolytically active mutant strains in the production of armianski and sovetski cheeses shortened the time of their ripening and increased their quality. Gamma-mutant strain L. lactis 1621/I-M with high phenolstability was received and antibiotic activity with respect to some representatives of pathogenic microflora of the bowels. Use of this mutant in starters for sour milk products will raise their therapeutic effect against intestinal diseases. Deep morphological changes are taking place in lactic acid bacteria under the influence of ionizing radiation.

  12. Relation Between Acid and Catalytic Properties of Chlorinated Gamma-Alumina. a 31p Mas Nmr and Ftir Investigation

    Directory of Open Access Journals (Sweden)

    Guillaume D.

    1999-07-01

    Full Text Available In this paper, we have studied the effect of chlorine on the surface properties of gamma-alumina, especially on their acid properties. The use of FTIR spectroscopy and 31P MAS NMR of adsorbed trimethylphosphine allows to propose a chlorination mechanism. To correlate the surface properties of these chlorinated gamma-alumina with their catalytic properties, we have used a model reaction, the cracking of n-heptane under reforming conditions. The analysis of the correlation between acid properties determined by 31P MAS NMR and the catalytic results (in terms of activities and selectivities allows to identify which sites are involved in the cracking reaction.

  13. Use of X-ray and gamma-induced mutants of lactic acid bacteria in the manufacture of dairy products

    International Nuclear Information System (INIS)

    Dilanian, Z.; Makarian, K.; Chuprina, D.

    1976-01-01

    With the aid of X-ray and gamma irradiation were got mutants of lactic acid bacteria, which steadily retain acquired properties. Use of proteolytically active mutant strains in the production of armianski and sovetski cheeses shortened the time of their ripening and increased their quality. Gamma-mutant strain L. lactis 1621/I-M with high phenolstability was received and antibiotic activity with respect to some representatives of pathogenic microflora of the bowels. Use of this mutant in starters for sour milk products will raise their therapeutic effect against intestinal diseases. Deep morphological changes are taking place in lactic acid bacteria under the influence of ionizing radiation. (orig.) [de

  14. Multispectroscopic investigation of the interaction of BSA and DNA with the anticancer drug, N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid methyl ester

    Science.gov (United States)

    Rajina, S. R.; Sudhi, Geethu; Austin, P.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The interaction of a drug with DNA and BSA play a great role in studying anti cancer activity and drug transport properties, which can be effectively, investigated using vibrational spectroscopy, UV visible spectroscopy and Fluorescence spectroscopy. The present work reports the structural features of N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid Methyl ester (FNGABME) based on FTIR and FTRaman spectroscopy. The absorption and fluorescence spectroscopic methods were used to study the efficiency of the interaction of the compound FNGABME with BSA and DNA and also molecular docking were performed computationally to validate the results which shows that the title compound may exhibit inhibitory activity against the cancer cells.

  15. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    Science.gov (United States)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  16. Methods for conversion of lignocellulosic-derived products to transportation fuel precursors

    Science.gov (United States)

    Lilga, Michael A.; Padmaperuma, Asanga B.

    2017-10-03

    Methods are disclosed for converting a biomass-derived product containing levulinic acid and/or gamma-valerolactone to a transportation fuel precursor product containing diesel like hydrocarbons. These methods are expected to produce fuel products at a reduced cost relative to conventional approaches.

  17. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2017-09-01

    Full Text Available Despite its transport by glucose transporters (GLUTs in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/− unable to synthesize ascorbate (vitamin C were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo.

  18. Genetic manipulation of gamma-linolenic acid (GLA) synthesis in a commercial variety of evening primrose (Oenothera sp.).

    Science.gov (United States)

    de Gyves, Emilio Mendoza; Sparks, Caroline A; Sayanova, Olga; Lazzeri, Paul; Napier, Johnathan A; Jones, Huw D

    2004-07-01

    A robust Agrobacterium-mediated transformation procedure was developed for Rigel, a commercial cultivar of evening primrose, and used to deliver a cDNA encoding a Delta(6)-desaturase from borage under the control of a cauliflower mosaic virus (CaMV) 35S promoter. Analysis of the transformed plants demonstrated an altered profile of polyunsaturated fatty acids, with an increase in gamma-linolenic acid and octadecatetraenoic acid in leaf tissues when compared with control lines.

  19. Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    Science.gov (United States)

    Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.

    2018-03-01

    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.

  20. Hybrid ATDL-gamma distribution model for predicting area source acid gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jakeman, A J; Taylor, J A

    1985-01-01

    An air quality model is developed to predict the distribution of concentrations of acid gas in an urban airshed. The model is hybrid in character, combining reliable features of a deterministic ATDL-based model with statistical distributional approaches. The gamma distribution was identified from a range of distributional models as the best model. The paper shows that the assumptions of a previous hybrid model may be relaxed and presents a methodology for characterizing the uncertainty associated with model predictions. Results are demonstrated for the 98-percentile predictions of 24-h average data over annual periods at six monitoring sites. This percentile relates to the World Health Organization goal for acid gas concentrations.