WorldWideScience

Sample records for gamma spectroscopy optimization

  1. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  2. Optimal digital filtering in gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Messai, A.; Nour, A.; Abdellani, I.

    2009-01-01

    In this paper, we address the subject of the digital nuclear spectroscopy as seen as a counterpart of the classic analogue approach. Consequently, we will present the design as well as the implementation on a DSP (Digital Signal Processor) board, of the various necessary digital pulse processing techniques via digital filtering in order to provide the principal tasks which often take place in a generic 'Gamma' digital spectroscopic setup. The first part will be devoted to the design of the digital IIR filter used for the charge preamplifier's slow-pole compensation. This will be followed by the practical estimation of the power spectral density relating to the electrical noise components present at the spectrometer's input. Thereafter, a very detailed attention will be given to the design of the digital optimal filter to be used for the charge measurements. We follow by another FIR filter that deals with the digital estimation of the reference line of measurements. Finally, we give a hardware implementation of the designed filters on the board: 'TMS320C6713-DSK', a DSP KIT developed by 'DIGITAL Spectrum'. (authors)

  3. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  4. Complete system for portable gamma spectroscopy

    International Nuclear Information System (INIS)

    Fuess, D.A.

    1978-01-01

    The report described a system built around the Computing Gamma Spectrometer (PSA) LEA 74-008. The software primarily supports high-resolution gamma-ray spectroscopy using either a high-purity intrinsic germanium detector (HPGe) or a lithium-drifted germanium detector [Ge(Li)

  5. Gamma spectroscopy of the isotope 253No

    International Nuclear Information System (INIS)

    Kalaninova, Z.

    2009-01-01

    The first part deals with the evaluation of the relative and absolute efficiency of detectors for the registration of gamma radiation to separator SHIP at GSI Darmstadt (Germany). In the second part we discussed the decay alpha-gamma coincidence spectroscopy of isotope 253 No. In conclusion, the basic characteristics of deexcitation of K-isomeric state in isotope 253 No are evaluated. Only sort abstract is published.

  6. Method Validation Procedure in Gamma Spectroscopy Laboratory

    International Nuclear Information System (INIS)

    El Samad, O.; Baydoun, R.

    2008-01-01

    The present work describes the methodology followed for the application of ISO 17025 standards in gamma spectroscopy laboratory at the Lebanese Atomic Energy Commission including the management and technical requirements. A set of documents, written procedures and records were prepared to achieve the management part. The technical requirements, internal method validation was applied through the estimation of trueness, repeatability , minimum detectable activity and combined uncertainty, participation in IAEA proficiency tests assure the external method validation, specially that the gamma spectroscopy lab is a member of ALMERA network (Analytical Laboratories for the Measurements of Environmental Radioactivity). Some of these results are presented in this paper. (author)

  7. Gamma and Xray spectroscopy at high performance

    International Nuclear Information System (INIS)

    Borchert, G.L.

    1984-01-01

    The author determines that for many interesting problems in gamma and Xray spectroscopy it is necessary to use crystal diffractometers. The basic features of such instruments are discussed and the special performance of crystal spectrometers is demonstrated by means of typical examples of various applications

  8. Prompt Gamma Ray Spectroscopy for process monitoring

    International Nuclear Information System (INIS)

    Zoller, W.H.; Holmes, J.L.

    1991-01-01

    Prompt Gamma Ray Spectroscopy (PGRS) is a very powerful analytical technique able to measure many metallic, contamination problem elements. The technique involves measurement of gamma rays that are emitted by nuclei upon capturing a neutron. This method is sensitive not only to the target element but also to the particular isotope of that element. PGRS is capable of measuring dissolved metal ions in a flowing system. In the field, isotopic neutron sources are used to produce the desired neutron flux ( 252 Cf can produce neutron flux of the order of 10 8 neutrons/cm 2 --sec.). Due to high penetrating power of gamma radiation, high efficiency gamma ray detectors can be placed in an appropriate geometry to maximize sensitivity, providing real-time monitoring with low detection level capabilities

  9. High resolution gamma spectroscopy well logging system

    International Nuclear Information System (INIS)

    Giles, J.R.; Dooley, K.J.

    1997-01-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porosity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions

  10. Gamma ray spectroscopy monitoring method and apparatus

    Science.gov (United States)

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  11. Gamma ray spectroscopy with Arduino UNO

    Science.gov (United States)

    Lavelle, C. M.

    2018-05-01

    We review a simple gamma ray spectrometer constructed on a solderless breadboard. The spectrometer's detector consists of a CsI(Tl) scintillator and silicon photomultiplier (SiPM) and its readout is facilitated by an Arduino UNO. The system is low cost and utilizes a minimum of components while still achieving satisfactory charge linearity and noise levels. This instrument can be used in instructional laboratories to introduce both radiation detection and analog signal processing concepts. We also expect it will be of interest to those seeking to introduce gamma spectroscopy to the expanding ecosystem of Arduino hardware.

  12. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  13. Gamma spectroscopy in water cooled reactors

    International Nuclear Information System (INIS)

    Persault, M.

    1977-10-01

    Gamma spectroscopy analysis of spent fuels in power reactors; study of two typical cases: determination of the power distribution by the mean of the activity of a low periodic element (Lanthanum 140) and determination of the burnup absolute rate by examining the ratio of Cesium 134 and Cesium 137 activities. Measures were realized on fuel solutions and on fuel assemblies. Development of a power distribution map of the assemblies and comparison with the results of a three dimensional calculation of core evolution [fr

  14. Fast amplification system for gamma spectroscopy

    International Nuclear Information System (INIS)

    Jesus, E.F.O.; Lopes, R.T.

    1992-01-01

    An amplification system for gamma spectroscopy with high counting rates was developed. The system was constructed with operational amplifiers, and tested and compared with ORTEC conventional system, using Iridium-192 as source of 9,25 x 10 1 0 Bq of activity and NaI (Tl) detector. The constructed system showed a better performance in relation to efficiency and resolution parameters, tested before. (C.G.C.)

  15. Gamma-ray spectroscopy measurements and simulations for uranium mining

    Science.gov (United States)

    Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.

  16. Gamma Spectroscopy with Pixellated CdZnTe Gamma Detectors

    International Nuclear Information System (INIS)

    Shor, A.; Mardor, I.; Eisen, Y.

    2002-01-01

    Pixellated CdZnTe detectors are good candidates for room temperature gamma detection requiring spectroscopic performance with imaging capabilities. The CdZnTe materials possess high resistivity and good electron charge transport properties. The poor charge transport for the holes inherent in the CdZnTe material can be circumvented by fabricating the electrodes in any one of a number of structures designed for unipolar charge detection[1]. Recent interest in efficient gamma detection at relatively higher gamma energies has imposed more stringent demands on the CdZnTe material and on detector design and optimization. We developed at Soreq a technique where signals from all pixels and from the common electrode are processed, and then a correction is applied for improving the energy resolution and the photopeak efficiency. For illumination with an un-collimated 133 Ba source , we obtain a combined detector energy resolution of 5.0 % FWHM for the 81 keV peak, and 1.5 % FWHM for the 356 keV peak. We discuss the importance of detector material with high electron (μτ) e for thick Pixellated detectors

  17. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  18. Validating the Melusine Gamma Spectroscopy Tool

    Energy Technology Data Exchange (ETDEWEB)

    Erikson, Luke E.; Keillor, Martin E.; Stavenger, Timothy J.

    2013-11-26

    This technical report describes testing to evaluate the gamma spectroscopy tool, Melusine, under development by Pacific Northwest National Laboratory. The goal was to verify that the software can successfully be used to provide accurate results and statistical uncertainties for the detection of isotopes of interest and their activities. Of special interest were spectra similar to those produced by radionuclide stations that contribute to the Comprehensive Nuclear Test Ban Treaty Organization’s International Monitoring System. Two data sets were used to test Melusine’s capabilities. The first was the result of a multi-lab calibration effort based on neutron activations produced at the University of California at Davis. The second was taken from the Proficiency Test Exercises conducted by the CTBTO directly in 2005. In 37 of 42 cases, Melusine produced results in agreement with the best answer presently available, in most cases with calculated uncertainties comparable to or better than competing analyses. In fact, Melusine technically provided one more result than CTBTO’s PTE analyses that agreed with the “book answer” (Monte Carlo simulation). Despite these promising results, the Melusine software is still under development. Effort is especially needed to simplify its analysis process, improve stability, and provide user documentation. Some significant analysis tasks require further vetting, such as those to address summing effects. However, our test results indicate that Melusine’s calculations as presently implemented are sound and can be used to reliably analyze spectra from the CTBTO’s radionuclide stations.

  19. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Abstract. Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  20. Impurities in radioactive solutions for gamma spectroscopy

    International Nuclear Information System (INIS)

    Delgado, J.U.

    1990-01-01

    The absolute and relative methods for radioactive sources calibration, like 4 Πβ-γ and 4Πγ ionization chamber respectively, allows to reach 0,1% of exactiness in activity measurement, but cannot distinguish radioactive impurities that interfere in the activity. Then, one of the problems associated to a quality control of calibrated sources furnished to users is the identification and quantification of the impurities. In this work, a routine technical procedure, using the facilities of gamma spectrometry method that allows to identify and to determine the impurities relative contribution to the source main radionuclide activity, is described. (author) [pt

  1. Gamma-ray and electron spectroscopy in nuclear physics

    International Nuclear Information System (INIS)

    Ejiri, H.

    1989-01-01

    This book is devoted to the role of gamma-ray and conversion-electron (γ-e) spectroscopy in developing our understanding of nuclear structure and nuclear reaction-mechanisms. The book was written because of the spectacular development in the last decade of new γ-e spectroscopic methods, and their application to various kinds of nuclear reactions and the need to present γ-e spectroscopy from the point of view of nuclear structure as well as of reaction mechanism. The importance of γ-e spectroscopy is due to the simplicity and familiarity of the electromagnetic interaction, which gives accurate values for many nuclear quantities and reveals special nuclear properties. γ-e spectroscopy is applied to investigate static as well as dynamic nuclear properties over a wide range of excitation energies from the ground state to states of extreme temperatures and angular momentum, including some new degrees of freedom. (author)

  2. Gamma spectroscopy: from steady beams to radioactive beams

    International Nuclear Information System (INIS)

    Stezowski, O.

    2008-06-01

    The author gives an overview of his research works in the field of gamma spectroscopy. First, he recalls some results of experiments performed for the study of peculiar structures associated with different modes of nucleus rotation, and notably in the case of collective rotation of deformed and even super-deformed nuclei. Then, he details tools and methods used to experimentally determine the level scheme. The main characteristics of steady and radioactive beams are briefly presented, and their complementarities and differences are highlighted. Specific spectrometers and sensors are described. In a last chapter, the author discusses several research projects he is involved in, and more particularly the 'gamma tracking' which is the fundamental principle for gamma multi-sensors of the next generations

  3. Application of gamma-ray spectroscopy in environmental monitoring

    International Nuclear Information System (INIS)

    Hobbs, B.B.; Kanipe, L.G.; Clayton, W.R.; Belvin, E.A.

    1976-01-01

    Gamma-ray spectroscopy is used as the primary analytical method in the Tennessee Valley Authority's environmental radiation monitoring program. Routine sample screening is done by means of least-squares analysis of spectra from NaI(Tl) detectors. Nonroutine or suspicious samples are analyzed by means of Ge(Li) spectral analysis. A laboratory quality control program provides internal and external checks on the reliability of analyses

  4. In-beam gamma spectroscopy of /sup 82/Sr

    CERN Document Server

    Dewald, A; Gelberg, A; Kaup, U; Von Brentano, P; Zell, K O

    1981-01-01

    The excited levels of /sup 82/Sr have been investigated by means of in-beam gamma-ray spectroscopy via the reactions /sup 72/Ge(/sup 12/C, 2n), /sup 66/Zn(/sup 19/F, p2n), and /sup 79/Br(/sup 6/Li, 3n). Lifetimes of excited states were measured by the recoil distance method. Excitation energies and B(E2) values have been compared with calculations using the Interacting Boson Model. (19 refs).

  5. Neutron counting and gamma spectroscopy with PVT detectors

    International Nuclear Information System (INIS)

    Mitchell, Dean James; Brusseau, Charles A.

    2011-01-01

    Radiation portals normally incorporate a dedicated neutron counter and a gamma-ray detector with at least some spectroscopic capability. This paper describes the design and presents characterization data for a detection system called PVT-NG, which uses large polyvinyl toluene (PVT) detectors to monitor both types of radiation. The detector material is surrounded by polyvinyl chloride (PVC), which emits high-energy gamma rays following neutron capture reactions. Assessments based on high-energy gamma rays are well suited for the detection of neutron sources, particularly in border security applications, because few isotopes in the normal stream of commerce have significant gamma ray yields above 3 MeV. Therefore, an increased count rate for high-energy gamma rays is a strong indicator for the presence of a neutron source. The sensitivity of the PVT-NG sensor to bare 252 Cf is 1.9 counts per second per nanogram (cps/ng) and the sensitivity for 252 Cf surrounded by 2.5 cm of polyethylene is 2.3 cps/ng. The PVT-NG sensor is a proof-of-principal sensor that was not fully optimized. The neutron detector sensitivity could be improved, for instance, by using additional moderator. The PVT-NG detectors and associated electronics are designed to provide improved resolution, gain stability, and performance at high-count rates relative to PVT detectors in typical radiation portals. As well as addressing the needs for neutron detection, these characteristics are also desirable for analysis of the gamma-ray spectra. Accurate isotope identification results were obtained despite the common impression that the absence of photopeaks makes data collected by PVT detectors unsuitable for spectroscopic analysis. The PVT detectors in the PVT-NG unit are used for both gamma-ray and neutron detection, so the sensitive volume exceeds the volume of the detection elements in portals that use dedicated components to detect each type of radiation.

  6. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Haas, F.X.; Lemming, J.F.

    1976-01-01

    A nondestructive technique is described for calculating plutonium-238, plutonium-240, plutonium-241 and americium-241 relative to plutonium-239 from measured peak areas in the high resolution gamma-ray spectra of solid plutonium samples. Gamma-ray attenuation effects were minimized by selecting sets of neighboring peaks in the spectrum whose components are due to the different isotopes. Since the detector efficiencies are approximately the same for adjacent peaks, the accuracy of the isotopic ratios is dependent on the half-lives, branching intensities, and measured peak areas. The data presented describe the results obtained by analyzing gamma-ray spectra in the energy region from 120 to 700 keV. Most of the data analyzed were obtained from plutonium material containing 6 percent plutonium-240. Sample weights varied from 0.25 g to approximately 1.2 kg. The methods were also applied to plutonium samples containing up to 23 percent plutonium-240 with weights of 0.25 to 200 g. Results obtained by gamma-ray spectroscopy are compared to chemical analyses of aliquots taken from the bulk samples

  7. Elastic properties of gamma-Pu by resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORXESTER, MA

    2009-01-01

    Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.

  8. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    International Nuclear Information System (INIS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-01-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  9. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Butterling, Maik, E-mail: maik.butterling@googlemail.com [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Jungmann, Marco; Krause-Rehberg, Reinhard [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Krille, Arnold; Wagner, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany)

    2011-11-15

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  10. A phoswich detector for simultaneous alpha–gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, S. Rajabi [Department of Radiation Application, Shahid Beheshti University G.C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H., E-mail: A_feghhi@sbu.ac.ir [Department of Radiation Application, Shahid Beheshti University G.C., Tehran (Iran, Islamic Republic of); Safari, M.J. [Amirkabir University of Technology, Department of Energy Engineering and Physics, Tehran (Iran, Islamic Republic of)

    2015-11-01

    Phoswich detectors are of value for radiation spectroscopy, especially in cases where a low-cost solution for a mixed radiation field is desired. Meanwhile, simultaneous spectroscopy of alpha particles and gamma-rays has many applications in quantification and distinguishing the alpha-emitting radionuclides which usually occur in the analysis of environmental solid samples. Here, we have developed a system for detection of radioactive actinides (e.g., {sup 241}Am) based on the alpha–gamma coincidence technique. The underlying concept, is to assemble two appropriately selected scintillators (i.e., a fast and a slow one) together with a discriminating unit for analysis of their data. Detailed Monte Carlo simulation procedure has been developed using the GEANT4 toolkit to design and find enough knowledge about the response of the system in the studied radiation field. Various comparisons were made between experimental and simulation data which showed appropriate agreement between them. The calibration was performed and the MDA was estimated as 60 mBq for the phoswich system.

  11. A phoswich detector for simultaneous alpha–gamma spectroscopy

    International Nuclear Information System (INIS)

    Moghadam, S. Rajabi; Feghhi, S.A.H.; Safari, M.J.

    2015-01-01

    Phoswich detectors are of value for radiation spectroscopy, especially in cases where a low-cost solution for a mixed radiation field is desired. Meanwhile, simultaneous spectroscopy of alpha particles and gamma-rays has many applications in quantification and distinguishing the alpha-emitting radionuclides which usually occur in the analysis of environmental solid samples. Here, we have developed a system for detection of radioactive actinides (e.g., 241 Am) based on the alpha–gamma coincidence technique. The underlying concept, is to assemble two appropriately selected scintillators (i.e., a fast and a slow one) together with a discriminating unit for analysis of their data. Detailed Monte Carlo simulation procedure has been developed using the GEANT4 toolkit to design and find enough knowledge about the response of the system in the studied radiation field. Various comparisons were made between experimental and simulation data which showed appropriate agreement between them. The calibration was performed and the MDA was estimated as 60 mBq for the phoswich system

  12. Gamma ray spectroscopy and timing using LSO and PIN photodiodes

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Melcher, C.L.; Manente, R.A.

    1994-11-01

    The high density, high light output, and short decay time of LSO (lutetium orthosilicate, Lu 2 SiO 5 :Ce) make it an attractive scintillator for gamma ray spectroscopy. The low cost, small size, high quantum efficiency, and ruggedness of silicon photodiodes make them attractive photodetectors for this same application, although their high noise (Compared to a photomultiplier tube) reduces their appeal. In this work the authors measure the gamma ray energy resolution, timing accuracy, and conversion factor from gamma energy to number of electron-hole pairs produced with a 3 x 3 x 22 mm 3 LSO scintillator crystal read out with a 3 x 3 mm 2 silicon PIN photodiode. When the detector is excited with 511 keV photons, a photopeak centered at 1,940 e - with 149 keV fwhm is observed and a timing signal with 35 ns fwhm jitter is produced. When the detector is excited with 1,275 keV photons, a photopeak centered at 4,910 e - with 149 keV fwhm is observed and a timing signal with 25 ns fwhm jitter is produced. While these performance measures are inferior to those obtained with photomultiplier tubes, they are acceptable for some applications

  13. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    Science.gov (United States)

    Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.

    2009-03-01

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.

  14. Gamma-ray tracking - A new detector concept for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Gast, W.

    2001-01-01

    In the framework of an European collaboration the nest generation of large efficiency, high resolution spectrometers for nuclear spectroscopy is under development. The new spectrometers are large volume, segmented Ge-detectors featuring 3D position sensitivity in order to allow Gamma-Ray Tracking. That is, knowing the interaction positions and the energies released at each interaction, the track each gamma-ray follows during its scattering process inside the detector volume can be reconstructed on basis of the Compton-scattering formula. The resulting high add-back efficiency an effective granularity significantly improves peak-to-total ratio, efficiency, and Doppler-broadening of the spectrometer. In this contribution the states of the project concerning detector design and development of digital signal processing techniques to achieve an optimal 3D position sensitivity is presented. (authors)

  15. Neutron Capture Gamma-Ray Spectroscopy. Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-11-15

    Experimental capabilities in the field of neutron capture gamma-ray spectroscopy have expanded greatly in the last few years; this has been due in large part to the advent of high-quality Ge(Li) detectors, improvements in electronic data processing, and improvements in bent-crystal spectrometers. Previously unsuspected phenomena, such as the '5. 5-MeV1 anomaly, have appeared and new research tools, such as neutron guide tubes, have been brought into use. Equally exciting developments have occurred in the theory of neutron capture. Complex spectra have yielded to analysis after account had been taken of such effects as vibration, rotation and Coriolis forces, and the theoretical prediction of capture spectra seems to be a future possibility. In view of the International Atomic Energy Agency's close interest in this subject and the need for an international exchange of ideas to analyse and study the latest developments, the organizers of the Symposium felt that work on neutron capture gamma-ray spectroscopy had achieved such valuable and significant results that the time had come for this information to be presented, examined and discussed internationally.

  16. Neutron Capture Gamma-Ray Spectroscopy. Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy

    International Nuclear Information System (INIS)

    1969-01-01

    Experimental capabilities in the field of neutron capture gamma-ray spectroscopy have expanded greatly in the last few years; this has been due in large part to the advent of high-quality Ge(Li) detectors, improvements in electronic data processing, and improvements in bent-crystal spectrometers. Previously unsuspected phenomena, such as the '5. 5-MeV1 anomaly, have appeared and new research tools, such as neutron guide tubes, have been brought into use. Equally exciting developments have occurred in the theory of neutron capture. Complex spectra have yielded to analysis after account had been taken of such effects as vibration, rotation and Coriolis forces, and the theoretical prediction of capture spectra seems to be a future possibility. In view of the International Atomic Energy Agency's close interest in this subject and the need for an international exchange of ideas to analyse and study the latest developments, the organizers of the Symposium felt that work on neutron capture gamma-ray spectroscopy had achieved such valuable and significant results that the time had come for this information to be presented, examined and discussed internationally

  17. Evaluation of gamma spectroscopy gauge for uranium-plutonium assay

    International Nuclear Information System (INIS)

    Notea, A.; Segal, Y.

    1975-01-01

    A procedure is presented for the characterization of a gamma passive method for nondestructive analysis of nuclear fuel. The approach provides an organized and systematic way for optimizing the assay system. The key function is the relative resolving power defined as the smallest relative change in the Quantity of radionuclide measured, that may be detected within a certain confidence level. This function is derived for nuclear fuel employing a model based on empirical parameters. The ability to detect changes in fuels of binary and trinary compositions with a 50 cc Ge(Li) at a 1 min counting period is discussed. As an example to a binary composition, an enriched uranium fuel was considered. The 185 keV and 1001 keV gamma lines are used for the assay of 235 U and 238 U respectively. As a trinary composition a plutonium-containing gamma line. The interference of the high energy lines is carefully analyzed, and numerical results are presented. For both cases the range of measurement under specific accuracy demands is determined. The approach described is suitable also for evaluation of other passive as well as active assay methods. (author)

  18. Measurement of plutonium isotopic composition by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Kim, J. S.; Shin, J. S.; Ahn, J. S.

    1998-01-01

    The technology of the analysis of plutonium isotopic ratio is independent of the measurement geometry and applicable to samples of physical and chemical composition. Three standard plutonium samples were measured in the HPGe system. The results showed that CRM 136 and CRM 137 containing 238 Pu(0.223%) and 238 Pu(0.268%) were 18.4% and 14.2% error and CRM 138 of 238 Pu(0.01%) was 76% error. However the analysis represented less than 1.6% and 9% error in the three standard samples of highly involved 239 Pu and 240 Pu. Therefore, gamma-ray spectroscopy is very effective in the plutonium isotope analysis, having greater than 10% in content

  19. Digital gamma-ray spectroscopy based on FPGA technology

    CERN Document Server

    Bolic, M

    2002-01-01

    A digital pulse processing system convenient for high rate gamma-ray spectroscopy with NaI(Tl) detectors has been designed. The new programmable logic device has been used for implementation of dedicated high-speed pulse processor, as the central part of the system. The processor is capable to operate at the speed of fast ADC, preserving maximum throughput of the system. Special care has been taken to reduce the distortion of energy spectrum caused by pile-up at high-count rates. The developed system is highly flexible, and the parameters of its operation can be changed in software. The performance of the system was tested for high counting rate of 400000 s sup - sup 1.

  20. Application of neuro-fuzzy methods to gamma spectroscopy

    Science.gov (United States)

    Grelle, Austin L.

    Nuclear non-proliferation activities are an essential part of national security activities both domestic and abroad. The safety of the public in densely populated environments such as urban areas or large events can be compromised if devices using special nuclear materials are present. Therefore, the prompt and accurate detection of these materials is an important topic of research, in which the identification of normal conditions is also of importance. With gamma-ray spectroscopy, these conditions are identified as the radiation background, which though being affected by a multitude of factors is ever present. Therefore, in nuclear non-proliferation activities the accurate identification of background is important. With this in mind, a method has been developed to utilize aggregate background data to predict the background of a location through the use of an Artificial Neural Network (ANN). After being trained on background data, the ANN is presented with nearby relevant gamma-ray spectroscopy data---as identified by a Fuzzy Inference System - to create a predicted background spectra to compare to a measured spectra. If a significant deviation exists between the predicted and measured data, the method alerts the user such that a more thorough investigation can take place. Research herein focused on data from an urban setting in which the number of false positives was observed to be 28 out of a total of 987, representing 2.94% error. The method therefore currently shows a high rate of false positives given the current configuration, however there are promising steps that can be taken to further minimize this error. With this in mind, the method stands as a potentially significant tool in urban nuclear nonproliferation activities.

  1. Use of gamma spectroscopy in activation analysis; Utilisation de la spectrographie gamma dans l'analyse par activation

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Brief review of the principles of activation analysis: calculation of activities, decay curves, {beta} absorption curves, examples of application. - Principle and description of the {gamma} spectrograph. - Practical utilisation of the {gamma} spectrograph: analysis by activation, analysis by {beta} - x fluorescence. - Sensitivity limit of the method and precision of the measurements. - Possible improvements to the method: {gamma} spectroscopy with elimination of the Compton effect. (author) [French] Bref rappel des principes de l'analyse par activation: calcul des activites, courbes de decroissance, courbes d'absorption {beta}, exemples d'utilisation. - Principe et description du spectrographe {gamma}. - Utilisation pratique de la spectrographie {gamma}: analyse par activation, analyse par fluorescence {beta} - x. - Limite de sensibilite de la methode et precision des mesures. - Ameliorations possibles de la methode: spectrographe {gamma} avec elimination de l'effet Compton. (auteur)

  2. A segmented detector for airbone gamma ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burgada, G.; Iovene, A.; Petrucci, S.; Tintori, C., E-mail: g.burgada@caen.it [Costruzioni Apparecchiature Elettroniche Nucleari S.p.A. (CAEN), Viareggio (Italy); Alvarez, M.A.G., E-mail: malvarez@if.usp.br [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Baldoncini, M.; Xhixha, G.; Strati, V., E-mail: gerti.xhixha@unife.it [University of Ferrara, Department of Physics and Earth Sciences, Ferrara (Italy); Mantovani, F., E-mail: mantovani@fe.infn.it [Istituto Nazionale di Fisica Nucleare (INFN), Ferrara (Italy); Garosi, P.; Mou, L., E-mail: li.mou@libero.it [University of Siena (Italy); Alvarez, C. Rossi, E-mail: rossialvarez@pd.infn.it [Istituto Nazionale di Fisica Nucleare (INFN), Legnaro (Italy)

    2014-07-01

    The airborne gamma-ray spectrometry (AGRS) is widely acknowledged as a very efficient technique for large areas monitoring. The detector system mounted on a helicopter allows for an extensive survey in a single flight time, thus reducing the exposure risk for the operator. Results from AGRS techniques are exploited in many fields, from the geological research to the homeland security for the search of orphan radioactive sources, from the mining and hydrocarbon exploration to the construction industry. The new generation of compact digital data acquisition and online processing equipment allows for faster airborne survey campaigns, and enhances the flexibility of operations. In addition, the algorithm for the extrapolation of the nuclide concentrations from the acquired gamma spectra is a challenging step of the entire technique. We are going to present a new device for advanced AGRS measurements, with an innovative detector configuration and data processing algorithms for optimizing the source localization and the on-line response capabilities. The new compact structure makes the system easily portable by a single operator, and rapidly mountable on most common helicopters. Preliminary feasibility studies have been performed to test the mechanics and the hardware of the whole system, which is intended to work without any human attendance. The first flights are planned by the end of 2014, with the aim of detecting artificial point sources having intensities on the order of 10^8 Bq and natural enriched fields already monitored. (author)

  3. A segmented detector for airbone gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Burgada, G.; Iovene, A.; Petrucci, S.; Tintori, C.; Alvarez, M.A.G.; Mantovani, F.; Garosi, P.; Mou, L.; Alvarez, C. Rossi

    2014-01-01

    The airborne gamma-ray spectrometry (AGRS) is widely acknowledged as a very efficient technique for large areas monitoring. The detector system mounted on a helicopter allows for an extensive survey in a single flight time, thus reducing the exposure risk for the operator. Results from AGRS techniques are exploited in many fields, from the geological research to the homeland security for the search of orphan radioactive sources, from the mining and hydrocarbon exploration to the construction industry. The new generation of compact digital data acquisition and online processing equipment allows for faster airborne survey campaigns, and enhances the flexibility of operations. In addition, the algorithm for the extrapolation of the nuclide concentrations from the acquired gamma spectra is a challenging step of the entire technique. We are going to present a new device for advanced AGRS measurements, with an innovative detector configuration and data processing algorithms for optimizing the source localization and the on-line response capabilities. The new compact structure makes the system easily portable by a single operator, and rapidly mountable on most common helicopters. Preliminary feasibility studies have been performed to test the mechanics and the hardware of the whole system, which is intended to work without any human attendance. The first flights are planned by the end of 2014, with the aim of detecting artificial point sources having intensities on the order of 10^8 Bq and natural enriched fields already monitored. (author)

  4. Gamma-ray spectroscopy of 120-130Te nuclei

    International Nuclear Information System (INIS)

    Vanhoy, J.R.; Champine, B.R.; Coleman, R.T.; Crandell, K.A.; Tanyi, J.A.; Hicks, S.F.; Alexander, G.K.; Burkett, P.G.; Burns, M.C.; Collard, C.J.

    2000-01-01

    Complete text of publication follows. Structure of the even 120-130 Te nuclei have been investigated with prompt gamma-ray spectroscopy following the 122-126,nat Te(n,n'γ) reactions and the (α,2nγ) 120,124,126 Te reactions. Gamma-ray excitation functions, angular distributions, γγ-coincidences, and Doppler shifts have been measured. Level schemes have been constructed to approximately 3.3 MeV excitation energy, and spectroscopic information including level spins and parities, branching and multipole-mixing ratios, and lifetimes have been extracted. Three different types of structure are thought to play an important role in these low-lying excitations. These are: collective, two-particle, and 4p-2h intruder excitations. Because there are seven stable even-even Te nuclei, the evolution of these excitation modes over this wide range in neutron number is investigated. Level sequences and transition rates obtained from these measurements are compared to IBM-2 model calculations both with and without intruder-state mixing by Rikovska et al. (1), and to particle-vibrational coupling model calculations by Lopac (2). The IBM-2 model calculations with intruder mixing well reproduce the level energies in the low-mass Te; however, examination of the electromagnetic transition rates reveals that there is no clear improvement in the description of these nuclei by adding the intruder configurations. Additionally, no evidence of the 2 + mixed-symmetry strength is observed in the 2 3 + and 2 4 + levels in these nuclei. The particle-vibration model calculations appear to do a good job describing both the level scheme and the transition rates in the heavier nuclei investigated. (author)

  5. Exploring atmospheric radon with airborne gamma-ray spectroscopy

    Science.gov (United States)

    Baldoncini, Marica; Albéri, Matteo; Bottardi, Carlo; Minty, Brian; Raptis, Kassandra G. C.; Strati, Virginia; Mantovani, Fabio

    2017-12-01

    222Rn is a noble radioactive gas produced along the 238U decay chain, which is present in the majority of soils and rocks. As 222Rn is the most relevant source of natural background radiation, understanding its distribution in the environment is of great concern for investigating the health impacts of low-level radioactivity and for supporting regulation of human exposure to ionizing radiation in modern society. At the same time, 222Rn is a widespread atmospheric tracer whose spatial distribution is generally used as a proxy for climate and pollution studies. Airborne gamma-ray spectroscopy (AGRS) always treated 222Rn as a source of background since it affects the indirect estimate of equivalent 238U concentration. In this work the AGRS method is used for the first time for quantifying the presence of 222Rn in the atmosphere and assessing its vertical profile. High statistics radiometric data acquired during an offshore survey are fitted as a superposition of a constant component due to the experimental setup background radioactivity plus a height dependent contribution due to cosmic radiation and atmospheric 222Rn. The refined statistical analysis provides not only a conclusive evidence of AGRS 222Rn detection but also a (0.96 ± 0.07) Bq/m3 222Rn concentration and a (1318 ± 22) m atmospheric layer depth fully compatible with literature data.

  6. Principles of resonance-averaged gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1981-01-01

    The unambiguous determination of excitation energies, spins, parities, and other properties of nuclear levels is the paramount goal of the nuclear spectroscopist. All developments of nuclear models depend upon the availability of a reliable data base on which to build. In this regard, slow neutron capture gamma-ray spectroscopy has proved to be a valuable tool. The observation of primary radiative transitions connecting initial and final states can provide definite level positions. In particular the use of the resonance-averaged capture technique has received much recent attention because of the claims advanced for this technique (Chrien 1980a, Casten 1980); that it is able to identify all states in a given spin-parity range and to provide definite spin parity information for these states. In view of the importance of this method, it is perhaps surprising that until now no firm analytical basis has been provided which delineates its capabilities and limitations. Such an analysis is necessary to establish the spin-parity assignments derived from this method on a quantitative basis; in other words a quantitative statement of the limits of error must be provided. It is the principal aim of the present paper to present such an analysis. To do this, a historical description of the technique and its applications is presented and the principles of the method are stated. Finally a method of statistical analysis is described, and the results are applied to recent measurements carried out at the filtered beam facilities at the Brookhaven National Laboratory

  7. Optimal hemodynamic response model for functional near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad Kamran

    2015-06-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF is modeled by using two Gamma functions with six unknown parameters. The HRF model is supposed to be linear combination of HRF, baseline and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown. An objective function is developed as a square of the residuals with constraints on twelve free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using ten real and fifteen simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis, i.e., (t-value >tcritical and p-value < 0.05.

  8. CsI(Tl)-photodiode detectors for gamma-ray spectroscopy

    CERN Document Server

    Fioretto, E; Viesti, G; Cinausero, M; Zuin, L; Fabris, D; Lunardon, M; Nebbia, G; Prete, G

    2000-01-01

    We report on the performances of CsI(Tl)-photodiode detectors for gamma-ray spectroscopy applications. Light output yield and energy resolution have been measured for different crystals and read-out configurations.

  9. Planetary gamma-ray spectroscopy: the effects of hydrogen absorption cross-section of the gamma-ray spectrum

    International Nuclear Information System (INIS)

    Lapides, J.R.

    1981-01-01

    The gamma-ray spectroscopy of planet surfaces is one of several possible methods that are useful in determining the elemental composition of planet surfaces from orbiting spacecraft. This has been demonstrated on the Apollos 15 and 16 missions as well as the Soviet Mars-5 mission. Planetary gamma-ray emission is primarily the result of natural radioactive decay and cosmic-ray and solar-flare-induced nuclear reactions. Secondary neutron reactions play a large role in the more intense gamma-ray emission. The technique provides information on the elemental composition of the top few tens of centimeters of the planet surface. Varying concentrations of hydrogen and compositional variations that alter the macroscopic thermal-neutron absorption cross section have a significant effect on the neutron flux in the planet surface and therefore also on the gamma-ray emission from the surface. These effects have been systematically studied for a wide range of possible planetary compositions that include Mercury, the moon, Mars, the comets, and the asteroids. The problem of the Martian atmosphere was also investigated. The results of these calculations, in which both surface neutron fluxes and gamma-ray emission fluxes were determined, were used to develop general procedures for obtaining planet compositions from the gamma-ray spectrum. Several changes have been suggested for reanalyzing the Apollos 15 and 16 gamma-ray results. In addition, procedures have been suggested that can be applied to neutron-gamma techniques in mineral and oil exploration

  10. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  11. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  12. Plug pattern optimization for gamma knife radiosurgery treatment planning

    International Nuclear Information System (INIS)

    Zhang Pengpeng; Wu, Jackie; Dean, David; Xing Lei; Xue Jinyue; Maciunas, Robert; Sibata, Claudio

    2003-01-01

    Purpose: To develop a novel dose optimization algorithm for improving the sparing of critical structures during gamma knife radiosurgery by shaping the plug pattern of each individual shot. Method and Materials: We first use a geometric information (medial axis) aided guided evolutionary simulated annealing (GESA) optimization algorithm to determine the number of shots and isocenter location, size, and weight of each shot. Then we create a plug quality score system that checks the dose contribution to the volume of interest by each plug in the treatment plan. A positive score implies that the corresponding source could be open to improve tumor coverage, whereas a negative score means the source could be blocked for the purpose of sparing normal and critical structures. The plug pattern is then optimized via the GESA algorithm that is integrated with this score system. Weight and position of each shot are also tuned in this procedure. Results: An acoustic tumor case is used to evaluate our algorithm. Compared to the treatment plan generated without plug patterns, adding an optimized plug pattern into the treatment planning process boosts tumor coverage index from 95.1% to 97.2%, reduces RTOG conformity index from 1.279 to 1.167, lowers Paddick's index from 1.34 to 1.20, and trims the critical structure receiving more than 30% maximum dose from 16 mm 3 to 6 mm 3 . Conclusions: Automated GESA-based plug pattern optimization of gamma knife radiosurgery frees the treatment planning team from the manual forward planning procedure and provides an optimal treatment plan

  13. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    Science.gov (United States)

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  14. Gamma-Ray Instrument for Polarimetry, Spectroscopy and Imaging (GIPSI)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Inderhees, S. E; Phlips, B. F; Graham, B. L

    1996-01-01

    .... Gamma-ray polarimetry in the energy band around 60-300 keV is an interesting area of high energy astrophysics where observations have not been possible with the technologies employed in current and past space missions...

  15. Quasi-optimum gamma and X spectroscopy based on real-time digital techniques

    CERN Document Server

    Pullia, Antonio; Ripamonti, G

    2000-01-01

    An adaptive, self-calibrated instrument for gamma- and X-ray digital spectroscopy is proposed and demonstrated. Most of the typical processing features (pole-zero cancellation, baseline restoration, and shaping) are digitally implemented and optimized. Initialization is performed through a software procedure, which makes the system particularly flexible and allows periodical adaptivity. It is shown that spectroscopy performances are achieved even while using low-cost, low-frequency (5 Ms/s), and relatively low-resolution (12-bit) AD converters. The ADC differential nonlinearity (DNL), for example, is improved of two orders of magnitude, as estimated over the Compton shoulder of a sup 6 sup 0 Co spectrum, owing to an equivalent built-in sliding-scale effect. Using the system with an high-purity germanium (HPGe) detector a resolution of 1.9 keV FWHM (1.6 per mille) is obtained on the 1.17 MeV spectral line of a sup 6 sup 0 Co source. An Integral Nonlinearity (INL) of 0.3 per mille is measured in the range from ...

  16. Solid state structural investigations of the bis(chalcone) compound with single crystal X-ray crystallography, DFT, gamma-ray spectroscopy and chemical spectroscopy methods

    Science.gov (United States)

    Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut

    2018-04-01

    A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.

  17. The Northern Marshall Islands radiological survey: A quality control program for radiochemical and gamma spectroscopy analysis

    International Nuclear Information System (INIS)

    Kehl, S.R.; Mount, M.E.; Robison, W.L.

    1995-09-01

    From 1979 to 1989, approximately 25,000 Post Northern Marshall Islands Radiological Survey (PNMIRS) samples were collected, and over 71,400 radiochemical and gamma spectroscopy analyses were performed to establish the concentration of 90 Sr, 137 Cs, 241 Am, and plutonium isotopes in soil, vegetation, fish, and animals in the Northern Marshall Islands. While the Low Level Gamma Counting Facility (B379) in the Health and Ecological Assessment (HEA) division accounted for over 80% of all gamma spectroscopy analyses, approximately 4889 radiochemical and 5437 gamma spectroscopy analyses were performed on 4784 samples of soil, vegetation, terrestrial animal, and marine organisms by outside laboratories. Four laboratories were used by Lawrence Livermore National Laboratory (LLNL) to perform the radiochemical analyses: Thermo Analytical Norcal, Richmond, California (TMA); Nuclear Energy Services, North Carolina State University (NCSU); Laboratory of Radiation Ecology, University of Washington (LRE); and Health and Ecological Assessment (HEA) division, LLNL, Livermore, California. Additionally, LRE and NCSU were used to perform gamma spectroscopy analyses. The analytical precision and accuracy were monitored by including blind duplicates and natural matrix standards in each group of samples analyzed. On the basis of reported analytical values for duplicates and standards, 88% of the gamma and 87% of the radiochemical analyses in this survey were accepted. By laboratory, 93% of the radiochemical analyses by TMA; 88% of the gamma-ray spectrometry and 100% of the radiochemistry analyses by NCSU; 89% of the gamma spectroscopy and 87% of the radiochemistry analyses by LRE; and 90% of the radiochemistry analyses performed by HEA's radiochemistry department were accepted

  18. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  19. VAT-69, a software system for gamma spectroscopy

    International Nuclear Information System (INIS)

    Furr, A.K.; Roscoe, B.A.; Parkinson, T.F.

    1979-01-01

    The software system was originally developed solely for neutron activation analysis. Its usefulness has been enhanced by adding modules that allow processing of gamma spectra from natural radioisotopes and from fission products. It allows: (1) separation of overlapping peaks, allowing retrieval of a peak of interest in the presence of an interfering peak, (2) calibration of each gamma spectrum for energy and peak width, using criteria based on gamma peak data internal to the individual spectrum, (3) correction for errors due to rapidly changing dead times during the counting interval, permitting accurate count data for samples containing mixed short-, medium-, and long-lived isotopes. One disadvantage of the original software was that it produced more output information than desired. The modifications that have been implemented to produce final concentration values include: (1) computation of a weighted-average concentration of the ith element where two or more gamma peaks are available, (2) rejection of gamma peaks when the difference in energies of the located peak and library peak exceeds a preset value, (3) rejection of concentration values based on gamma peaks which do not satisfy preselected criteria for irradiation time and wait time, (4) computation of the error in concentration of the ith element, and (5) correction of sample concentration for trace elements in the irradiation vials. Overall performance of the software system is checked periodically by analyzing standards. Several thousand spectra are processed each year with VAT-69, with typically 25 to 40 elements quantitatively determined

  20. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    Energy Technology Data Exchange (ETDEWEB)

    Pinault, Jean-Louis [IAEA Expert, 96 rue du Port David, 45370 Dry (France)], E-mail: jeanlouis_pinault@hotmail.fr; Solis, Jose [Instituto Peruano de Energia Nuclear, Av. Canada No. 1470, San Borja, Lima 41 (Peru)

    2009-04-15

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  1. Experimental approaches for the development of gamma spectroscopy well logging system

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jehyun; Hwang, Seho; Kim, Jongman [Korea Institute of Geoscience and Mineral Resources (124 Gwahang-no, Yuseong-gu, Daejeon, Korea) (Korea, Republic of); Won, Byeongho [Heesong Geotek Co., Ltd (146-8 Sangdaewon-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea) (Korea, Republic of)

    2015-03-10

    This article discusses experimental approaches for the development of gamma spectroscopy well logging system. Considering the size of borehole sonde, we customize 2 x 2 inches inorganic scintillators and the system including high voltage, preamplifier, amplifier and multichannel analyzer (MCA). The calibration chart is made by test using standard radioactive sources so that the measured count rates are expressed by energy spectrum. Optimum high-voltage supplies and the measurement parameters of each detector are set up by experimental investigation. Also, the responses of scintillation detectors have been examined by analysis according to the distance between source and detector. Because gamma spectroscopy well logging needs broad spectrum, high sensitivity and resolution, the energy resolution and sensitivity as a function of gamma ray energy are investigated by analyzing the gamma ray activities of the radioactive sources.

  2. Feasibility study of plutonium isotopic analysis of resin beads by nondestructive gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Li, T.K.

    1985-01-01

    We have initiated a feasibility study on the use of nondestructive low-energy gamma-ray spectroscopy for plutonium isotopic analysis on resin beads. Seven resin bead samples were measured, with each sample containing an average of 9 μg of plutonium; the isotopic compositions of the samples varied over a wide range. The gamma-ray spectroscopy results, obtained from 4-h counting-time measurements, were compared with mass spectrometry results. The average ratios of gamma-ray spectroscopy to mass spectrometry were 1.014 +- 0.025 for 238 Pu/ 239 Pu, 0.996 +- 0.018 for 240 Pu/ 239 Pu, and 0.980 +- 0.038 for 241 Pu/ 239 Pu. The rapid, automated, and accurate nondestructive isotopic analysis of resin beads may be very useful to process technicians and International Atomic Energy Agency inspectors. 3 refs., 1 fig., 3 tabs

  3. Optimization of radiation protection in gamma radiography facilities

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    1999-01-01

    To determine optimized dose limits for workers, a study of optimization of radiation protection was undertaken in gamma radiography facilities closed, using the Technique Multiple Attributes Utility Analysis. A total of 217 protection options, distributed in 34 irradiation scenarios for tree facility types ( fixed open, moveable and closed (bunker) were analyzed. In the determination of the optimized limit dose, the following attributes were considered; costs of the protection barriers, costs attributed to the biological detriment for different alpha (the reference value of unit collective dose), size of the isolation area, constrained limits dose of annual individual equivalent doses and collective dose. The variables studied in the evaluation included: effective work load, type and activity of the sources of radiation ( 192 Ir and 60 Co), source-operator distance related to the characteristic of the length of the command cable and the guide tube, type and thickness of the materials used in the protection barriers (concrete, barite, ceramic, lead, steel alloy and tungsten). The optimal analytic solutions obtained in the optimization process that resulted in the indication of the optimized dose limit were determined by means of a sensitivity analysis and by direct and logic evaluations, thus, independent of the values of the monetary coefficient attributed to the biological detriment, of the annual interest rate applied to the protection cost and of the type of installation studied, it was concluded that the primary limit of annual equivalent dose for workers (now 50 mSv) can be easily reduced to an optimized annual dose limit of 5 mSv. (author)

  4. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    Science.gov (United States)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  5. Quantitative portable gamma-spectroscopy sample analysis for non-standard sample geometries

    International Nuclear Information System (INIS)

    Ebara, S.B.

    1998-01-01

    Utilizing a portable spectroscopy system, a quantitative method for analysis of samples containing a mixture of fission and activation products in nonstandard geometries was developed. This method was not developed to replace other methods such as Monte Carlo or Discrete Ordinates but rather to offer an alternative rapid solution. The method can be used with various sample and shielding configurations where analysis on a laboratory based gamma-spectroscopy system is impractical. The portable gamma-spectroscopy method involves calibration of the detector and modeling of the sample and shielding to identify and quantify the radionuclides present in the sample. The method utilizes the intrinsic efficiency of the detector and the unattenuated gamma fluence rate at the detector surface per unit activity from the sample to calculate the nuclide activity and Minimum Detectable Activity (MDA). For a complex geometry, a computer code written for shielding applications (MICROSHIELD) is utilized to determine the unattenuated gamma fluence rate per unit activity at the detector surface. Lastly, the method is only applicable to nuclides which emit gamma-rays and cannot be used for pure beta or alpha emitters. In addition, if sample self absorption and shielding is significant, the attenuation will result in high MDA's for nuclides which solely emit low energy gamma-rays. The following presents the analysis technique and presents verification results using actual experimental data, rather than comparisons to other approximations such as Monte Carlo techniques, to demonstrate the accuracy of the method given a known geometry and source term. (author)

  6. Quantitative portable gamma spectroscopy sample analysis for non-standard sample geometries

    International Nuclear Information System (INIS)

    Enghauser, M.W.; Ebara, S.B.

    1997-01-01

    Utilizing a portable spectroscopy system, a quantitative method for analysis of samples containing a mixture of fission and activation products in nonstandard geometries was developed. The method can be used with various sample and shielding configurations where analysis on a laboratory based gamma spectroscopy system is impractical. The portable gamma spectroscopy method involves calibration of the detector and modeling of the sample and shielding to identify and quantify the radionuclides present in the sample. The method utilizes the intrinsic efficiency of the detector and the unattenuated gamma fluence rate at the detector surface per unit activity from the sample to calculate the nuclide activity and Minimum Detectable Activity (MDA). For a complex geometry, a computer code written for shielding applications (MICROSHIELD) is utilized to determine the unattenuated gamma fluence rate per unit activity at the detector surface. Lastly, the method is only applicable to nuclides which emit gamma rays and cannot be used for pure beta emitters. In addition, if sample self absorption and shielding is significant, the attenuation will result in high MDA's for nuclides which solely emit low energy gamma rays. The following presents the analysis technique and presents verification results demonstrating the accuracy of the method

  7. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  8. Optimizing laser crater enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  9. Gamma-ray spectroscopy of neutron-rich products of heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    Thick-target {gamma}{gamma} coincidence techniques are being used to explore the spectroscopy of otherwise hard-to-reach neutron-rich products of deep-inelastic heavy ion reactions. Extensive {gamma}{gamma} coincidence measurements were performed at ATLAS using pulsed beams of {sup 80}Se, {sup 136}Xe, and {sup 238}U on lead-backed {sup 122,124}Sn targets with energies 10-15% above the Coulomb barrier. Gamma-ray coincidence intensities were used to map out yield distributions with A and Z for even-even product nuclei around the target and around the projectile. The main features of the yield patterns are understandable in terms of N/Z equilibration. We had the most success in studying the decays of yrast isomers. Thus far, more than thirty new {mu}s isomers in the Z = 50 region were found and characterized. Making isotopic assignments for previously unknown {gamma}-ray cascades proves to be one of the biggest problems. Our assignments were based (a) on rare overlaps with radioactivity data, (b) on the relative yields with different beams, and (c) on observed cross-coincidences between {gamma} rays from light and heavy reaction partners. However, the primary products of deep inelastic collisions often are sufficiently excited for subsequent neutron evaporation, so {gamma}{gamma} cross-coincidence results require careful interpretation.

  10. GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Greiner, J.; Mannheim, K.; Hudec, René; Mészáros, A.

    2012-01-01

    Roč. 34, č. 2 (2012), s. 551-582 ISSN 0922-6435 Institutional research plan: CEZ:AV0Z10030501 Keywords : compton and pair creation telescope * gamma-ray bursts * nucleosynthesis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.969, year: 2012

  11. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  12. Gamma-ray spectroscopy of nuclei near {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Seweryniak, D; Nyberg, J; Fahlander, C [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Cederwall, B; Norline, L; Johnson, A; Kerek, A [Manne Siegbahn Inst. of Physics, Stockholm (Sweden); [Royal Inst. of Tech., Stockholm (Sweden); Adamides, E [National Centre for Scientific Research, Ag. Paraskevi, Attiki (Greece); Atac, A; Piiparinen, M; Sletten, G [Niels Bohr Inst., Copenhagen (Denmark); Angelis, G de [Laboratori Nazionali di legnaro (Italy); Grawe, H; Schubart, R [Hahn-Meitner-Institut Berlin GmbH (Germany); Ideguchi, E; Mitarai, S [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Julin, R; Juutinen, S; Tormanen, S; Virtanen, A [Jyvaeskylae Univ. (Finland). Dept. of Physics; Karczmarczyk, W; Kownacki, J [Warsaw Univ. (Poland)

    1992-08-01

    Proton rich nuclei close to {sup 100}Sn have been investigated in an in-beam {gamma}-ray spectroscopic study using the NORDBALL detector array, including arrays of charged particle and neutron detectors. Excited states were identified for the first time in {sup 102}In, {sup 106,107,108}Sb and tentatively in {sup 108,109}Te. The nucleus {sup 110}Te was also populated and studied for the first time in an in-beam experiment. (author). 4 figs.

  13. Optimization of gamma-ray cameras of Anger type

    International Nuclear Information System (INIS)

    Jatteau, Michel; Lelong, Pierre; Normand, Gerard; Ott, Jean; Pauvert, Joseph; Pergrale, Jean

    1979-01-01

    Most of the radionuclide imaging equipments used for the diagnosis in nuclear medicine include a scintillation camera of the Anger type. Following a period of camera improvements connected to pure technological advances, perfecting the camera can only result nowadays from more thorough studies based on numerical approaches and computer simulations. Two important contributions to an optimization study of Anger gamma-ray cameras are presented, the first one being related to the light collection by the photomultiplier tubes, i.e. one of the processes which determine for a large part the performance parameters; the second one being connected to the computation of the intrinsic geometrical and spectral resolutions, which are two of the main characteristics acting on the image quality. The validity of computer simulation is shown by comparison between theoretical and experimental results before the simulation programmes to study the influence of various parameters are used [fr

  14. Feasibility of identification of gamma knife planning strategies by identification of pareto optimal gamma knife plans.

    Science.gov (United States)

    Giller, C A

    2011-12-01

    The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use computer models to show that Pareto analysis may be feasible for GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant to B if the prescription isodose volume of A covers more tumor but not more normal tissue than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal if it is not dominated by any other plan. Two different Pareto optimal plans represent different tradeoffs between dose to tumor and normal tissue, because neither plan dominates the other. 'GK simulator' software calculated dose distributions for GK plans, and was called repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor shapes were tested in 17 trials using various combinations of shots. The mean number of Pareto dominant plans/trial was 59 ± 17 (sd). Different planning strategies were identified by large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto dominant plans represent different dosimetric tradeoffs and can be systematically calculated using genetic algorithms. Automatic identification of non-intuitive planning strategies may be feasible with these methods.

  15. Quantification of 235 U and 226 Ra in soil samples by means of Gamma spectroscopy

    International Nuclear Information System (INIS)

    Quintero P, E.; Rojas M, V.P.; Montes M, F.R.; Gaso P, M.I.; Cervantes N, M.L.

    2000-01-01

    In this work it is presented the Gamma Spectroscopy method which is realized in the Environmental Radiological Surveillance Laboratory using the option of deconvolution of a commercial software for the quantification of 235 U and 226 Ra; also is presented the method for the 226 Ra correction activity. (Author)

  16. Development of a gamma ray spectroscopy capability at LANSCE

    International Nuclear Information System (INIS)

    Nelson, R.O.; Strottman, D.D.; Sterbenz, S.M.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to explore an upgrade to the GEANIE high-resolution gamma-ray spectrometer at the Los Alamos Neutron Science Center (LANSCE) to help build additional experimental capabilities. The improvements identified have significantly added to the capabilities of GEANIE and made the facility more attractive for studies supporting the core national security mission as well as for use by outside collaborators. These benefits apply to both basic and applied studies

  17. {gamma} ray spectroscopy of neutron rich nuclei around N=20; Spectroscopie {gamma} des noyaux riches en neutrons autour de N=20

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, M

    2007-09-15

    There is an island of inversion around {sup 32}Mg (12 protons, 20 neutrons) in contradiction with a shell closure N=20. It means a coexistence of spherical and deformed shapes. This work is devoted to the study of {gamma}-ray spectroscopy for nuclei in this region, based on an experiment done at GANIL with a composite secondary beam produced by fragmentation. The originality of the method used here lies in the possibility to study simultaneously several nuclei, and for each of them to explore several reaction channels. The VAMOS spectrometer was used for the identification of the ejectiles. The {gamma}-rays were detected with EXOGAM, a germanium clover array. The detectors used before and after the target allowed for a unique identification and a selection of the reaction channel: inelastic scattering, transfer and fragmentation reaction. In this thesis the following nuclei were studied: {sup 28}Ne, {sup 30-32}Mg {sup 31-34}Al, {sup 33-35}Si, {sup 35}P. New {gamma}-rays have been observed. The {gamma}-ray angular distributions and {gamma}-{gamma} angular correlations have been measured for some transitions. Assignment of spins and parities has been proposed for some states. In particular, in {sup 34}Si, the 3{sup -} assignment is confirmed and a new candidate for the second 0{sup +} has been proposed. In {sup 32}Mg, the state at 2.321 MeV, for which conflicting assignment existed, is deduced from the present data as a 4{sup +}, and a 6{sup +} state is proposed. (author)

  18. Currie detection limits in gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Geer, L.-E. de

    2004-01-01

    Currie Hypothesis testing is applied to gamma-ray spectral data, where an optimum part of the peak is used and the background is considered well known from nearby channels. With this, the risk of making Type I errors is about 100 times lower than commonly assumed. A programme, PeakMaker, produces random peaks with given characteristics on the screen and calculations are done to facilitate a full use of Poisson statistics in spectrum analyses. Short technical note summary: The Currie decision limit concept applied to spectral data is reinterpreted, which gives better consistency between the selected error risk and the observed error rates. A PeakMaker program is described and the few count problem is analyzed

  19. Standard methods for sampling and sample preparation for gamma spectroscopy

    International Nuclear Information System (INIS)

    Taskaeva, M.; Taskaev, E.; Nikolov, P.

    1993-01-01

    The strategy for sampling and sample preparation is outlined: necessary number of samples; analysis and treatment of the results received; quantity of the analysed material according to the radionuclide concentrations and analytical methods; the minimal quantity and kind of the data needed for making final conclusions and decisions on the base of the results received. This strategy was tested in gamma spectroscopic analysis of radionuclide contamination of the region of Eleshnitsa Uranium Mines. The water samples was taken and stored according to the ASTM D 3370-82. The general sampling procedures were in conformity with the recommendations of ISO 5667. The radionuclides was concentrated by coprecipitation with iron hydroxide and ion exchange. The sampling of soil samples complied with the rules of ASTM C 998, and their sample preparation - with ASTM C 999. After preparation the samples were sealed hermetically and measured. (author)

  20. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Gunnink, R.

    1973-11-01

    A method is reported for analysis of isotopic and total plutonium by detecting and analyzing gamma rays emitted by the sample. A computerized prototype-system was developed and is now being routinely used at the Savannah River Plant for the nondestructive assay of solution samples. The analyses for 238 Pu, 239 Pu, 240 Pu, 241 Pu, and for 241 Am, when it is present, can be made in counting times as short as 10 to 15 minutes under optimum conditions. Comparison of isotopic ratio values with mass spectrometry generally shows agreement within 0.1 percent for 239 Pu and about 1 percent for 240 Pu and 241 Pu. Some preliminary isotopic measurements on solids are also discussed. (U.S.)

  1. Gamma spectroscopy analysis of archived Marshall Island soil samples

    International Nuclear Information System (INIS)

    Herman, S.; Hoffman, K.; Lavelle, K.; Trauth, A.; Glover, S.E.; Connick, W.; Spitz, H.; LaMont, S.P.; Hamilton, T.

    2016-01-01

    Four samples of archival Marshall Islands soil were subjected to non-destructive, broad energy (17 keV-2.61 MeV) gamma-ray spectrometry analysis using a series of different high-resolution germanium detectors. These archival samples were collected in 1967 from different locations on Bikini Atoll and were contaminated with a range of fission and activation products, and other nuclear material from multiple weapons tests. Unlike samples collected recently, these samples have been stored in sealed containers and have been unaffected by approximately 50 years of weathering. Initial results show that the samples contained measurable but proportionally different concentrations of plutonium, 241 Am, and 137 Cs, and 60 Co. (author)

  2. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    Science.gov (United States)

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Experience gained in gamma spectroscopy; Experience acquise dans la spectrometrie gamma

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmaire, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    There are two types of method which make it possible to estimate the internal contamination of individuals. On the one hand these are the indirect techniques based on measurements of the excreted products, on the other there are the direct techniques in which attempts are made to measure directly the radio-activity existing in the organism. We propose to give a few of the results obtained by the direct method using equipment built by the Commissariat a l'Energie Atomique. The apparatus consists of a {gamma} spectrometer. It includes: 1) A crystal of sodium iodide 20 cm in diameter and 10 cm high. The large size of this crystal ensures a good sensitivity and makes it possible to carry out rapid measurements. 2) A 25 channel type SAE 25 selector which classifies the pulses according to their amplitude. It is therefore possible to distinguish between {gamma} rays of varying energy. 3) A comparatively very light radiation protection, consisting of only 5 cm thickness of lead which diminishes the ambient {gamma} ray intensity to a sufficient level for the majority of the measurements. A certain collimation is thus obtained which makes it possible to localise the source approximately and to reduce the undesirable effects of external contamination. (author) [French] Deux types de methodes permettent d'apprecier la contamination interne d'un individu. D'une part, les techniques indirectes basees sur la mesure des produits excretes, d'autre part, les techniques directes au moyen desquelles on essaie de mesurer directement la radioactivite existant dans l'organisme. Nous nous proposons d'indiquer quelques resultats obtenus par la methode directe, au moyen d'ensembles realises par le Commissariat a l'Energie Atomique. L'appareillage est un spectrometre {gamma}. II comprend: 1) Un cristal d'iodure de sodium de 20 cm de diametre et 10 cm de hauteur. La grande taille de ce cristal assure une bonne sensibilite et permet d'effectuer des mesures rapides. 2) Un selecteur a 25 canaux

  4. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A.; Gorini, G. [Dipartimento di Fisica ' ' G. Occhialini' ' and CNISM, Universita Degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E. [Dipartimento di Fisica and Centro NAST, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma (Italy); Grazzi, F. [Istituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche, Via Madonna del Piano n.10, I-50019 Sesto Fiorentino, Firenze (Italy); Schooneveld, E. M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2009-09-15

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  5. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  6. Gamma-ray spectroscopy of Λ11B

    International Nuclear Information System (INIS)

    Miura, Yusuke

    2004-01-01

    Numbers of bound states have been predicted for the hypernucleus Λ 11 B. Experiment KEK-PS E518 was performed to investigate the spin dependence of the effective ΛN interaction of p-shell hypernucleus as well as the magnetic moment of Λ particle inside nucleus by measuring B(M1) of the Λ spin-flip transition. Experiment was carried out by using Hyperball detector which consists of fourteen germanium detectors to detect γ-rays from Λ 11 B produced by 11 B(π + , K + ) Λ 11 B reaction. Six gamma ray peaks were observed from the bound state of Λ 11 B at 262, 454, 500, 564, 1482, and 2479 keV. The 2479 keV peak was revealed by applying Doppler correction. The 1482 keV peak was identified as the Λ 11 B (E2;1/2 + → 5/2 + ) due to the short γ-transition life, good yield and the closeness of the γ-ray emission level to the ground state. Statistics were too poor for the rest five peaks to identify their origin without γ-γ coincidence measurement. The result shows that discrepancy between the experiment and theoretical prediction is large compared with other hypernuclei. Upgrading of the Hyperball and the γ-γ coincidence are considered for the future experiment. (S. Funahashi)

  7. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    International Nuclear Information System (INIS)

    Aleksieva, K.I.; Dimov, K.G.; Yordanov, N.D.

    2014-01-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation. - Highlights: • The EPR analysis of juices, nectars and syrups proves that the sample has been irradiated. • Two sample preparation procedures were used. • The stability of the radiation induced EPR signals was studied over 2 months. • Application of European standards can be extended for irradiated juices and syrups

  8. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    Science.gov (United States)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  9. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    International Nuclear Information System (INIS)

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs

  10. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Christopher [XIA LLC, Hayward, CA (United States)

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need by developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry

  11. Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Stability

    International Nuclear Information System (INIS)

    Dr. Norbert Pietralla

    2006-01-01

    The research project ''Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Stability'' with sponsor ID ''DE-FG02-04ER41334'' started late-summer 2004 and aims at the investigation of highly excited low-spin states of selected key-nuclei in the vicinity of the particle separation threshold by means of high-resolution gamma-ray spectroscopy in electromagnetic excitation reactions. This work addresses nuclear structures with excitation energies close to the binding energy or highly excited off-yrast states in accordance with the NSAC milestones. In 2005 the program was extended towards additional use of virtual photons and theoretical description of the low-lying collective excitations in the well deformed nuclei

  12. Time dependent deadtime and pile-up corrections for gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roscoe, B A; Furr, A K [Virginia Polytechnic Inst. and State Univ., Blacksburg (USA)

    1977-01-15

    The losses of pulses in gamma spectroscopy due to the analog-to-digital (ADC) conversion process and due to pulse pile-up is a major problem in quantitative gamma ray spectroscopy. It is especially serious if the count rate varies significantly during the counting interval and if the nuclear events of interest are associated with an isotope with a half-life shorter than or comparable to the counting interval as is often the case for isotopes with half-lives of the order of 10 min or less. The count rates at which dead time losses become a problem depend upon the available equipment but, in the present work, the problem became acute at count rates in excess of 25000 cps. A technique developed at VPI and SU is discussed in the present work which very satisfactorily corrects for both ADC and pile-up losses and is dependent upon the half-life of the decaying radioisotope.

  13. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mozin, Vladimir [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Campbell, Luke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunt, Alan W. [Idaho State Univ., Pocatello, ID (United States); Reedy, Edward T. [Idaho State Univ., Pocatello, ID (United States); Seipel, Heather A. [Idaho State Univ., Pocatello, ID (United States)

    2015-06-01

    Modeling capabilities were added to an existing framework and codes were adapted as needed for analyzing experiments and assessing application-specific assay concepts including simulation of measurements over many short irradiation/spectroscopy cycles. The code package was benchmarked against the data collected at the IAC for small targets and assembly-scale data collected at LANL. A study of delayed gamma-ray spectroscopy for nuclear safeguards was performed for a variety of assemblies in the extensive NGSI spent fuel library. The modeling results indicate that delayed gamma-ray responses can be collected from spent fuel assemblies with statistical quality sufficient for analyzing their isotopic composition using a 1011 n/s neutron generator and COTS detector instrumentation.

  14. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy

    Science.gov (United States)

    Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.

  15. Investigation of electric quadrupole interaction in TiO2 by means of perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Martucci, Thiago; Ramos, Juliana Marques; Carbonari, Artur Wilson; Silva, Andreia S.; Saxena, Rajendra Narain

    2011-01-01

    TiO 2 has called attention in both basic research and technological applications as an energy converter in solar cells, photo catalyst for water purification, sunscreen material, drug detection, and other applications. In addition TiO 2 is a candidate for use in medical devices, food preparation surfaces, air conditioning filters and sanitary ware surfaces.TiO 2 has two crystalline phases: anatase and rutile. The structural properties and hyperfine interactions in TiO 2 were investigated by perturbed gamma-gamma angular correlation (PAC) spectroscopy using 111 In and 181 Hf as probe nuclei. The PAC spectroscopy provides information on crystalline and electronic structure at an atomic scale. In the present work, PAC measurements on TiO 2 were focused on the development of a methodology to prepare bulk samples, which have been characterized by conventional techniques such as x-ray diffraction, (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The samples were prepared by the sol gel Pechini method. The resulting powders were annealed at different temperatures in a tubular furnace under nitrogen atmosphere. The PAC measurements were carried out at room temperature in air. The occupation fraction of the probe nuclei reached 50% when the sample was annealed at 1373K and after measured at room temperature.In this case the frequency measured in site 1 is in agreement with that found in literature for substitutional titanium site in rutile structure when 111 In were used as probe nuclei. It was measured a frequency more closely to that was found in literature[7] for the case in which 181 Hf were used as probe nuclei when the sample annealed at 1373 K and measured at 973 K. (author)

  16. Random pulsing of neutron source for inelastic neutron scattering gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1981-01-01

    Method and apparatus are described for use in the detection of inelastic neutron scattering gamma ray spectroscopy. Data acquisition efficiency is enhanced by operating a neutron generator such that a resulting output burst of fast neutrons is maintained for as long as practicably possible until a gamma ray is detected. Upon the detection of a gamma ray the generator burst output is terminated. Pulsing of the generator may be accomplished either by controlling the burst period relative to the burst interval to achieve a constant duty cycle for the operation of the generator or by maintaining the burst period constant and controlling the burst interval such that the resulting mean burst interval corresponds to a burst time interval which reduces contributions to the detected radiation of radiation occasioned by other than the fast neutrons

  17. Design and construction of prompt-gamma spectroscopy facility applied to the boron determination

    International Nuclear Information System (INIS)

    Poblete, Victor; Henriquez, Carlos; Klein, Juan; Navarro, Gustavo

    1996-01-01

    A prompt-gamma spectroscopy facility was developed using the south tangential neutron beam of the RECH-1 research reactor for boron determination. The implementation of a thermal neutron beam was performed considering different aspects such as biological protection of working area and the beam collimation for a Ge detector, design and sample holder selection, standards and sample preparation. One ppm of Boron in different samples with counting-rate of 20 minutes and a good accuracy were determined. (author)

  18. Design optimization of high speed gamma-ray tomography

    International Nuclear Information System (INIS)

    Maad, Rachid

    2009-01-01

    This thesis concerns research and development of efficient gamma-ray systems for high speed tomographic imaging of hydrocarbon flow dynamics with a particular focus on gas liquid imaging. The Bergen HSGT (High Speed Gamma-ray Tomograph) based on instant imaging with a fixed source-detector geometry setup, has been thoroughly characterized with a variety of image reconstruction algorithms and flow conditions. Experiments in flow loops have been carried out for reliable characterization and error analysis, static flow phantoms have been applied for the majority of experiments to provide accurate imaging references. A semi-empirical model has been developed for estimation of the contribution of scattered radiation to each HSGT detector and further for correction of this contribution prior to data reconstruction. The Bergen FGGT (Flexible Geometry Gamma-ray Tomograph) has been further developed, particularly on the software side. The system emulates any fan beam tomography. Based on user input of geometry and other conditions, the new software perform scanning, data acquisition and storage, and also weight matrix calculation and image reconstruction with the desired method. The FGGT has been used for experiments supporting those carried out with the HSGT, and in addition for research on other fan beam geometries suitable for hydrocarbon flow imaging applications. An instant no-scanning tomograph like the HSGT has no flexibility with respect to change of geometry, which usually is necessary when applying the tomograph for a new application. A computer controlled FGGT has been designed and built at the UoB. The software developed for the FGGT controls the scanning procedure, the data acquisition, calculates the weight matrix necessary for the image reconstruction, reconstructs the image using standard reconstruction algorithms, and calculates the error of the reconstructed image. The performance of the geometry has been investigated using a 100 mCi 241 Am disk source, a

  19. Determination of planetary surfaces elemental composition by gamma and neutron spectroscopy

    International Nuclear Information System (INIS)

    Diez, B.

    2009-06-01

    Measuring the neutron and gamma ray fluxes produced by the interaction of galactic cosmic rays with planetary surfaces allow constraining the chemical composition of the upper tens of centimeters of material. Two different angles are proposed to study neutron and gamma spectroscopy: data processing and data interpretation. The present work is in line with two experiments, the Mars Odyssey Neutron Spectrometer (MONS) and the Selene Gamma Ray Spectrometer. A review of the processing operations applied to the MONS dataset is proposed. The resulting dataset is used to determine the depth of the hydrogen deposits below the Martian surface. In water depleted regions, neutron data allow constraining the concentration in elements likely to interact with neutrons. The confrontation of these results to those issued from the Gamma Ray Spectrometer onboard Mars Odyssey provides interesting insight on the geologic context of the Central Elysium Planitia region. These martian questions are followed by the study of the Selene gamma ray data. Although only preliminary processing has been done to date, qualitative lunar maps of major elements (Fe, Ca, Si, Ti, Mg, K, Th, U) have already been realized. (author)

  20. The Optimal Wavelengths for Light Absorption Spectroscopy Measurements Based on Genetic Algorithm-Particle Swarm Optimization

    Science.gov (United States)

    Tang, Ge; Wei, Biao; Wu, Decao; Feng, Peng; Liu, Juan; Tang, Yuan; Xiong, Shuangfei; Zhang, Zheng

    2018-03-01

    To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm-particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.

  1. Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy

    Science.gov (United States)

    Reeder, P. L.; Bowyer, T. W.

    1998-02-01

    Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.

  2. Feasibility study of performing high precision gamma spectroscopy of {lambda}{lambda} hypernuclei in the anti PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Lorente, Alicia

    2010-09-30

    Hypernuclear research will be one of the main topics addressed by the anti PANDA experiment at the planned Facility for Antiproton and Ion Research anti FAIR. Thanks to the use of stored anti p beams, copious production of double {lambda} hypernuclei is expected at the anti PANDA experiment, which will enable high precision {gamma} spectroscopy of such nuclei for the first time. At anti PANDA excited states of {xi}{sup -} hypernuclei will be used as a basis for the formation of double {lambda} hypernuclei. For their detection, a devoted hypernuclear detector setup is planned. This setup consists of a primary nuclear target for the production of {xi}{sup -}+ anti {xi} pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform {gamma} spectroscopy. In the present work, the feasibility of performing high precision {gamma} spectroscopy of double {lambda} hypernuclei at the anti PANDA experiment has been studied by means of a Monte Carlo simulation. For this issue, the designing and simulation of the devoted detector setup as well as of the mechanism to produce double {lambda} hypernuclei have been optimized together with the performance of the whole system. In addition, the production yields of double hypernuclei in excitedparticle stable states have been evaluated within a statistical decay model. A strategy for the unique assignment of various newly observed {gamma}-transitions to specific double hypernuclei has been successfully implemented by combining the predicted energy spectra of each target with the measurement of two pion momenta from the subsequent weak decays of a double hypernucleus. Indeed, based on these Monte Carlo simulation, the analysis of the statistical decay of {sup 13}{sub {lambda}}{sub {lambda}}B has been performed. As result, three {gamma}-transitions associated to the double hypernuclei {sup 11}{sub {lambda}}{sub {lambda}}Be and to the single

  3. Improvement in minimum detectable activity for low energy gamma by optimization in counting geometry

    Directory of Open Access Journals (Sweden)

    Anil Gupta

    2017-01-01

    Full Text Available Gamma spectrometry for environmental samples of low specific activities demands low minimum detection levels of measurement. An attempt has been made to lower the gamma detection level of measurement by optimizing the sample geometry, without compromising on the sample size. Gamma energy of 50–200 keV range was chosen for the study, since low energy gamma photons suffer the most self-attenuation within matrix. The simulation study was carried out using MCNP based software “EffCalcMC” for silica matrix and cylindrical geometries. A volume of 250 ml sample geometry of 9 cm diameter is optimized as the best suitable geometry for use, against the in-practice 7 cm diameter geometry of same volume. An increase in efficiency of 10%–23% was observed for the 50–200 keV gamma energy range and a corresponding lower minimum detectable activity of 9%–20% could be achieved for the same.

  4. Optimized Design of Spacing in Pulsed Neutron Gamma Density Logging While Drilling

    Directory of Open Access Journals (Sweden)

    ZHANG Feng;HAN Zhong-yue;WU He;HAN Fei

    2016-10-01

    Full Text Available Radioactive source, used in traditional density logging, has great impact on the environment, while the pulsed neutron source applied in the logging tool is more safety and greener. In our country, the pulsed neutron-gamma density logging technology is still in the stage of development. Optimizing the parameters of neutron-gamma density instrument is essential to improve the measuring accuracy. This paper mainly studied the effects of spacing to typical neutron-gamma density logging tool which included one D-T neutron generator and two gamma scintillation detectors. The optimization of spacing were based on measuring sensitivity and counting statistic. The short spacing from 25 to 35 cm and long spacing from 60 to 65 cm were selected as the optimal position for near and far detector respectively. The result can provide theoretical support for design and manufacture of the instrument.

  5. Camel molar tooth enamel response to gamma rays using EPR spectroscopy.

    Science.gov (United States)

    El-Faramawy, N A; El-Somany, I; Mansour, A; Maghraby, A M; Eissa, H; Wieser, A

    2018-03-01

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH pp ) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry.

  6. Determination of moisture content and natural radioactivity in soils using gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Hady, E E [Department of Physics, Faculty of Science, Qater University (Qatar); El-Sayed, A M.A.; Alaa, H B [Department of Physics, Faculty of Science, El-Minia University, Minia (Egypt)

    1997-12-31

    The gamma-ray transmission method has been used to study the soil-water properties in the laboratory as well as in the field. The present measurements were performed using gamma-ray spectroscopy system based on a 5 x 5 cm Nal (T 1) scintillation detector and combined sources ({sup 137} Cs and {sup 241} Am). The two sources are placed in a suitable lead collimator to obtain a pin beam of 1 mm diameter. Suitable samples of clay and sandy soils obtained from the local field were prepared to determine the water content and the soil bulk densities by the combined method for different moisture stages. From the results obtained, it is clear that the soil density at both stages (saturated and after drainage) remains the same. this is because the soil particles do not rearrange during the wetting and drying process. The full results will be presented in the text. Natural radioactivity of the investigated samples was also studied using gamma-ray spectrometer having HPGe detector. Qualitative and quantitative analysis of natural gamma radiations revealed the presence of {sup 40} K, {sup 214} Bi, {sup 208} TI and {sup 228} Ac in meaningful concentrations. 3 figs.

  7. Camel molar tooth enamel response to gamma rays using EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El-Faramawy, N.A.; El-Somany, I. [Ain Shams University, Physics Department, Faculty of Science, Cairo (Egypt); Mansour, A. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Maghraby, A.M.; Eissa, H. [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Giza (Egypt); Wieser, A. [Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Department of Radiation Sciences, Institute of Radiation Protection, Neuherberg (Germany)

    2018-03-15

    Tooth enamel samples from molar teeth of camel were prepared using a combined procedure of mechanical and chemical tooth treatment. Based on electron paramagnetic resonance (EPR) spectroscopy, the dose response of tooth enamel samples was examined and compared to that of human enamel. The EPR dose response of the tooth enamel samples was obtained through irradiation to gamma doses from 1 Gy up to 100 kGy. It was found that the radiation-induced EPR signal increased linearly with gamma dose for all studied tooth enamel samples, up to about 15 kGy. At higher doses, the dose response curve leveled off. The results revealed that the location of the native signal of camel tooth enamel was similar to that of enamel from human molars at 2.00644, but different from that of enamel from cows and goats. In addition, the peak-to-peak width (ΔH{sub pp}) for human and camel molar teeth was similar. It was also found that the response of camel enamel to gamma radiation was 36% lower than that of human enamel. In conclusion, the results indicate the suitability of camel teeth for retrospective gamma dosimetry. (orig.)

  8. Development of a low-level setup for gamma spectroscopy: Application for nuclear astrophysics using reverse kinematics

    International Nuclear Information System (INIS)

    Genard, G.; Nuttens, V.E.; Bouchat, V.; Terwagne, G.

    2010-01-01

    It is more and more necessary to improve the sensitivity of gamma-ray spectroscopy systems, especially in nuclear astrophysics. In the case of radiative proton capture reactions, one means is to avoid the reactions on the target impurities by using reverse kinematics. This technique is possible with the LARN accelerator and can provide very clean cross-section measurements. For that purpose, a hydrogen standard has been carried out by means of ion implantation in silicon. In addition, a low-level setup has been put in place on a new beam line of the accelerator. A high efficiency and high resolution germanium detector is used conjointly with a double shielding. A passive lead castle shielding system is used to reduce the natural radioactivity and an active shielding consisting of an anti-cosmic veto is provided by an anticoincidence between the plastic scintillator and the gamma-ray detector. The setup allows a reduction of 70% of the background interference and provides an approximately 200 fold sensitivity gain of between 600 and 3000 keV. Some other developments have also been carried out to optimize the setup. The entire setup and the reverse kinematics have been validated by measuring the cross-section of the 13 C(p,γ) 14 N and 15 N(p,γ) 16 O reactions that present some astrophysical interest.

  9. Determination of nuclear fuel burnup by non-destructive gamma spectroscopy

    International Nuclear Information System (INIS)

    Soares, A.J.

    1979-01-01

    The determination of nuclear fuel burnup by the non-destructive gamma spectroscopy method is studied. A MTR (Materials Testing Reactor) -type fuel element is used in the measurement. The fuel element was removed from the reactor core in 1958 and, because of the long decay time, show only one peak in is gamma spectrum at 661.6 Kev. Corresponding to 137 Cs. Measurements are made at 330 points of the element using a Nal detector and the final result revealed that the quantity of 235 U consumed was 3.3 +- 0,8 milligram in the entire element. The effect of the migration of 137 Cs in the element is neglected in view of the fact that it occurs only when the temperature is above 1000 0 C, which is not the case in IEAR-1. (Author)

  10. Testing FLUKA on neutron activation of Si and Ge at nuclear research reactor using gamma spectroscopy

    Science.gov (United States)

    Bazo, J.; Rojas, J. M.; Best, S.; Bruna, R.; Endress, E.; Mendoza, P.; Poma, V.; Gago, A. M.

    2018-03-01

    Samples of two characteristic semiconductor sensor materials, silicon and germanium, have been irradiated with neutrons produced at the RP-10 Nuclear Research Reactor at 4.5 MW. Their radionuclides photon spectra have been measured with high resolution gamma spectroscopy, quantifying four radioisotopes (28Al, 29Al for Si and 75Ge and 77Ge for Ge). We have compared the radionuclides production and their emission spectrum data with Monte Carlo simulation results from FLUKA. Thus we have tested FLUKA's low energy neutron library (ENDF/B-VIIR) and decay photon scoring with respect to the activation of these semiconductors. We conclude that FLUKA is capable of predicting relative photon peak amplitudes, with gamma intensities greater than 1%, of produced radionuclides with an average uncertainty of 13%. This work allows us to estimate the corresponding systematic error on neutron activation simulation studies of these sensor materials.

  11. Line and continuum spectroscopy as diagnostic tools for gamma ray bursts

    International Nuclear Information System (INIS)

    Liang, E.P.

    1990-12-01

    We review the theoretical framework of both line and continuum spectra formation in gamma ray bursts. These include the cyclotron features at 10's of keV, redshifted annihilation features at ∼400 keV, as well as other potentially detectable nuclear transition lines, atomic x-ray lines, proton cyclotron lines and plasma oscillation lines. By combining the parameters derived from line and continuum modeling we can try to reconstruct the location, geometry and physical conditions of the burst emission region, thereby constraining and discriminating the astrophysical models. Hence spectroscopy with current and future generations of detectors should provide powerful diagnostic tools for gamma ray bursters. 48 refs., 10 figs., 4 tabs

  12. Effects of gamma irradiation on microhardness and Fourier Transform Infrared Spectroscopy of bovine bone

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Derly Augusto; Pereira, Daisa L.; Gomes, Gabriela V.; Sugahara, Vanessa M.L.; Mathor, Monica B.; Zezell, Denise Maria, E-mail: zezell@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro para Lasers e Aplicacoes

    2017-07-01

    The skeletal systems with the structural arrangement of the bone are very important for load distribution, mechanical resistance and vital organs protection. The bone structure is multiphase and composed of organic, inorganic (mineral) compounds and water. Gamma radiation is an ionizing radiation that comes from gamma radiation sources or X-ray generator is commonly used in health establishments such as radio diagnostic exams, radiotherapy and sterilization of allograft. The characterization of the irradiated bone tissue can be is an important tool to study of the components that are affected and how much each dose of ionizing radiation can alter its mechanical properties. This information will be very important in in vitro and ex vivo studies where sterilization of the bone material is necessary and may still be useful in understanding the effects on the bone tissue of patients undergoing short-term radiotherapy. For this, 110 samples of bovine femur diaphysis were randomized into 11 groups: G1 untreated (control); G2 to G11 were submitted to gamma irradiation ({sup 60}Co Gammacel). Samples were polished before irradiation and submitted to a Knoop Microhardness Test to determine the hardness of bovine bone and Fourier transform Infrared spectroscopy (FTIR) to biochemical characterization. Spectra were collected in the mid-infrared range in Attenuated Total Reflectance (ATR) sampling mode associated whit PCA multivariate technique to evaluate the molecular changes in bone matrix. It was observed that hardness was not altered by gamma irradiation and FTIR spectroscopy associated with PCA is a good method to analyze the changes in bone tissue submitted to ionizing radiation. (author)

  13. Effects of gamma irradiation on microhardness and Fourier Transform Infrared Spectroscopy of bovine bone

    International Nuclear Information System (INIS)

    Dias, Derly Augusto; Pereira, Daisa L.; Gomes, Gabriela V.; Sugahara, Vanessa M.L.; Mathor, Monica B.; Zezell, Denise Maria

    2017-01-01

    The skeletal systems with the structural arrangement of the bone are very important for load distribution, mechanical resistance and vital organs protection. The bone structure is multiphase and composed of organic, inorganic (mineral) compounds and water. Gamma radiation is an ionizing radiation that comes from gamma radiation sources or X-ray generator is commonly used in health establishments such as radio diagnostic exams, radiotherapy and sterilization of allograft. The characterization of the irradiated bone tissue can be is an important tool to study of the components that are affected and how much each dose of ionizing radiation can alter its mechanical properties. This information will be very important in in vitro and ex vivo studies where sterilization of the bone material is necessary and may still be useful in understanding the effects on the bone tissue of patients undergoing short-term radiotherapy. For this, 110 samples of bovine femur diaphysis were randomized into 11 groups: G1 untreated (control); G2 to G11 were submitted to gamma irradiation ("6"0Co Gammacel). Samples were polished before irradiation and submitted to a Knoop Microhardness Test to determine the hardness of bovine bone and Fourier transform Infrared spectroscopy (FTIR) to biochemical characterization. Spectra were collected in the mid-infrared range in Attenuated Total Reflectance (ATR) sampling mode associated whit PCA multivariate technique to evaluate the molecular changes in bone matrix. It was observed that hardness was not altered by gamma irradiation and FTIR spectroscopy associated with PCA is a good method to analyze the changes in bone tissue submitted to ionizing radiation. (author)

  14. Detection of gamma-irradiated peanuts by ESR spectroscopy and GC analysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Wei Mingli; An Li [Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing (China); Yi Mingha, E-mail: wangyilwm@163.co [Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing (China); Feng Wang [Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing (China); Yan Lizhang [Division of Metrology in Ionizing Radiation and Medicine, National Institute of Metrology, 100013 Beijing (China)

    2011-03-15

    Peanuts were analyzed by electron spin resonance (ESR) spectroscopy and gas chromatography (GC) before and after gamma irradiation. Using European protocols, the validity and effectiveness of these two techniques were compared with regard to sample preparation, sample and solvent consumption and dose-response curves after irradiation. The results showed the possibility of using ESR and GC for distinguishing between irradiated and unirradiated peanuts. A radiation dose of 0.1 kGy could be detected by ESR but not by GC. The results also indicated that GC is an effective method for qualitative analysis of irradiated peanut, while ESR is suitable for the rapid detection of irradiated peanuts.

  15. Heavy ion deep inelastic collisions studied by discrete gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Krolas, W.

    1996-05-01

    The discrete gamma ray spectroscopy has been used as a tool to investigate the heavy ion collision. It has been shown that such experimental information supplemented by results of additional of-line radioactivity measurements is complete enough to reconstruct distributions of products of very complex nuclear reactions. Three experiments have been performed in which the 208 Pb + 64 Ni, 130 Te + 64 Ni and 208 Pb + 58 Ni systems have been created. The production cross sections of fragment isotopes have been determined and compared with existing model predictions

  16. Heavy ion deep inelastic collisions studied by discrete gamma ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krolas, W. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1996-05-01

    The discrete gamma ray spectroscopy has been used as a tool to investigate the heavy ion collision. It has been shown that such experimental information supplemented by results of additional of-line radioactivity measurements is complete enough to reconstruct distributions of products of very complex nuclear reactions. Three experiments have been performed in which the {sup 208}Pb + {sup 64}Ni, {sup 130}Te + {sup 64}Ni and {sup 208}Pb + {sup 58}Ni systems have been created. The production cross sections of fragment isotopes have been determined and compared with existing model predictions 64 refs, 59 figs, 19 tabs

  17. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  18. A large-capacity sample-changer for automated gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Andeweg, A.H.

    1980-01-01

    An automatic sample-changer has been developed at the National Institute for Metallurgy for use in gamma-ray spectroscopy with a lithium-drifted germanium detector. The sample-changer features remote storage, which prevents cross-talk and reduces background. It has a capacity for 200 samples and a sample container that takes liquid or solid samples. The rotation and vibration of samples during counting ensure that powdered samples are compacted, and improve the precision and reproducibility of the counting geometry [af

  19. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    International Nuclear Information System (INIS)

    Williams, R.E.

    1981-01-01

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed

  20. Development of a Reference Database for Particle Induced Gamma Ray Emission (PIGE) Spectroscopy

    International Nuclear Information System (INIS)

    2017-09-01

    Ion beam analysis techniques are non-destructive analytical techniques used to identify the composition and structure of surface layers of materials. The applications of these techniques span environmental control, cultural heritage and conservation, materials and fusion technologies. The particle-induced gamma-ray emission (PIGE) spectroscopy technique in particular, is a powerful tool for detecting light elements in certain depths of surface layers. This publication describes the coordinated effort to measure and compile cross section data relevant to PIGE analysis and make these data available to the community of practice through a comprehensive online database.

  1. Quantification by Raman spectroscopy of the gamma radiation effects in water purification

    International Nuclear Information System (INIS)

    Perez C, V.M.; Santiago J, P.; Castano, V.M.

    1999-01-01

    The world problem about water pollution has been confronted by traditional methods such as: chlorination, filtration, etc. In this work is presented an alternative method, which consists in to radiate different concentrations of simulated polluted water (purified water + thinner) at different gamma radiation doses. The structural changes were analysed by Raman spectroscopy. Using a 52.5 Krad dose it was possible to eliminate all the thinner chemical linkages, which appear in the Raman spectra corresponding to the 87.5/12.5 water/thinner mixture. (Author)

  2. Bismuth germanate's role in the new revolution in gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Johnson, N.R.; Baktash, C.; Lee, I.Y.

    1983-01-01

    Some of the considerations on how to effectively incorporate bismuth germanate into complex detection systems are covered, and some of these new systems now in operation or under construction are discussed. Significant achievements in gamma ray spectroscopy are reviewed as well as some recent results based on data taken with coincidence arrays of germanium detectors and Compton-suppression spectrometers. Then the first impact of bismuth germanate detectors on our understanding of the properties of nuclei that have high energy and very high angular momentum states are addressed

  3. Application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2007-01-01

    In applying neural network to identification of gamma spectra back propagation (BP) algorithm is usually trapped to a local optimum and has a low speed of convergence, whereas particle swarm optimization (PSO) is advantageous in terms of globe optimal searching. In this paper, we propose a new algorithm for neural network training, i.e. combined BP and PSO optimization, or PSO-BP algorithm. Practical example shows that the new algorithm can overcome shortcomings of BP algorithm and the neural network trained by it has a high ability of generalization with identification result of 100% correctness. It can be used effectively and reliably to identify gamma spectra. (authors)

  4. Optimized coincidence Doppler broadening spectroscopy using deconvolution algorithms

    International Nuclear Information System (INIS)

    Ho, K.F.; Ching, H.M.; Cheng, K.W.; Beling, C.D.; Fung, S.; Ng, K.P.

    2004-01-01

    In the last few years a number of excellent deconvolution algorithms have been developed for use in ''de-blurring'' 2D images. Here we report briefly on one such algorithm we have studied which uses the non-negativity constraint to optimize the regularization and which is applied to the 2D image like data produced in Coincidence Doppler Broadening Spectroscopy (CDBS). The system instrumental resolution functions are obtained using the 514 keV line from 85 Sr. The technique when applied to a series of well annealed polycrystalline metals gives two photon momentum data on a quality comparable to that obtainable using 1D Angular Correlation of Annihilation Radiation (ACAR). (orig.)

  5. Strong equivalence, Lorentz and CPT violation, anti-hydrogen spectroscopy and gamma-ray burst polarimetry

    International Nuclear Information System (INIS)

    Shore, Graham M.

    2005-01-01

    The strong equivalence principle, local Lorentz invariance and CPT symmetry are fundamental ingredients of the quantum field theories used to describe elementary particle physics. Nevertheless, each may be violated by simple modifications to the dynamics while apparently preserving the essential fundamental structure of quantum field theory itself. In this paper, we analyse the construction of strong equivalence, Lorentz and CPT violating Lagrangians for QED and review and propose some experimental tests in the fields of astrophysical polarimetry and precision atomic spectroscopy. In particular, modifications of the Maxwell action predict a birefringent rotation of the direction of linearly polarised radiation from synchrotron emission which may be studied using radio galaxies or, potentially, gamma-ray bursts. In the Dirac sector, changes in atomic energy levels are predicted which may be probed in precision spectroscopy of hydrogen and anti-hydrogen atoms, notably in the Doppler-free, two-photon 1s-2s and 2s-nd (n∼10) transitions

  6. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mozin, Vladimir [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Campbell, Luke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunt, Alan W. [Iowa State Univ., Ames, IA (United States); Reedy, Edward T.E. [Iowa State Univ., Ames, IA (United States); Seipel, Heather A. [Iowa State Univ., Ames, IA (United States)

    2015-09-28

    This project has been a collaborative effort of researchers from four National Laboratories, Lawrence Berkley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL), and Idaho State University’s (ISU) Idaho Accelerator Center (IAC). Experimental measurements at the Oregon State University (OSU) were also supported. The research included two key components, a strong experimental campaign to characterize the delayed gamma-ray signatures of the isotopes of interests and of combined targets, and a closely linked modeling effort to assess system designs and applications. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Detailed signature knowledge is essential for analyzing the capabilities of the delayed gamma technique, optimizing measurement parameters, and specifying neutron source and gamma-ray detection system requirements. The research was divided into three tasks: experimental measurements, characterization of fission yields, and development of analysis methods (task 1), modeling in support of experiment design and analysis and for the assessment of applications (task 2), and high-rate gamma-ray detector studies (task 3).

  7. Detection and evaluation of uranium in different minerals by gamma spectrometry and laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Sergani, F.M.; Khedr, M.A.; Harith, M.A.; El Mongy, S.A.

    2004-01-01

    Analysis, detection and evaluation of source nuclear materials (e.g. uranium) in different minerals by sensitive techniques are a vital objective for uranium exploration, nuclear materials extraction, processing and verification. In this work, uranium in different geological formations was determined using gamma spectrometry and laser induced breakdown spectroscopy (LIBS). The investigated samples were collected from different regions distributed all over Egypt. The samples were then prepared for non-destructive analysis. A hyper pure germanium detector was used to measure the emitted gamma rays of uranium and its daughters in the samples. The concentrations of uranium in ppm (μg/g) in the investigated samples are given and discussed in this work. The highest uranium concentration (4354.9 ppm) was found in uranophane samples of Gattar rocks. In Laser induced breakdown spectroscopy (LIBS) technique, plasma was formed by irradiating the rock surface with focused Q-switched Nd:Yag laser pulses of 7 ns pulse duration at the fundamental wavelength (1064 nm). Atoms and ions originating from the rock surface are excited and ionized in the laser produced hot plasma (∝10 000 K). The plasma emission spectral line is characteristic of the elements present in the plasma and allows identification of the uranium in the uranophane mineral. The strong atomic line at 424.2 nm is used for the qualitative identification of uranium. It can be mentioned that the elevated levels of uranium in some of the investigated uranophane samples are of great economic feasibility to be extracted. (orig.)

  8. Two-dimensional neutron scintillation detector with optimal gamma discrimination

    International Nuclear Information System (INIS)

    Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.

    1993-01-01

    The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented

  9. Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements

    Science.gov (United States)

    Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick

    2017-09-01

    Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.

  10. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Hunt, Alan W.; Reedy, Edward T.E.; Seipel, Heather

    2015-01-01

    High-energy, beta-delayed gamma-ray spectroscopy is a potential, non-destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried out at the IAC using a photo-neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-energy delayed gamma rays from 235 U, 239 Pu, and 241 Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241 Pu, a significant fissile constituent in spent fuel, was measured and compared to 239 Pu. The 241 Pu/ 239 Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-ray emission was developed and demonstrated on a limited 235 U data set. De-convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-rate LaBr 3 detectors was investigated as a potential alternative to HPGe detectors. Modeling capabilities were added to an

  11. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mozin, Vladimir [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Campbell, Luke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunt, Alan W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reedy, Edward T.E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Seipel, Heather [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    High-­energy, beta-delayed gamma-­ray spectroscopy is a potential, non-­destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried out at the IAC using a photo-­neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-­energy delayed gamma rays from 235U, 239Pu, and 241Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241Pu, a significant fissile constituent in spent fuel, was measured and compared to 239Pu. The 241Pu/239Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-­3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-­ray emission was developed and demonstrated on a limited 235U data set. De-­convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-­rate LaBr3 detectors

  12. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nocente, M., E-mail: massimo.nocente@mib.infn.it; Gorini, G. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Fazzi, A.; Lorenzoli, M.; Pirovano, C. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Cazzaniga, C.; Rebai, M. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Uboldi, C.; Varoli, V. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy)

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  13. The application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2006-01-01

    Aiming at the shortcomings that BP algorithm is usually trapped to a local optimum and it has a low speed of convergence in the application of neural network to identify gamma spectrum, according to the advantage of the globe optimal searching of particle swarm optimization, this paper put forward a new algorithm for neural network training by combining BP algorithm and Particle Swarm Optimization-mixed PSO-BP algorithm. In the application to identify gamma spectrum, the new algorithm overcomes the shortcoming that BP algorithm is usually trapped to a local optimum and the neural network trained by it has a high ability of generalization with identification result of one hundred percent correct. Practical example shows that the mixed PSO-BP algorithm can effectively and reliably be used to identify gamma spectrum. (authors)

  14. The Monte Carlo simulation of the neutron-induced prompt gamma ray spectroscopy of the CW abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Yang Zhongping; Zhan Wenzhong

    2003-01-01

    This paper introduced the principle of identifying the chemical weapon abandoned by Japan by neutron-induced prompt gamma ray. Using the MCNP-4C Monte Carlo program, this paper simulated and analyzed the neutron-induced prompt gamma ray spectroscopy of chemical weapon abandoned by Japan, whereby supply important datum and reference for the aftertime deeper research and disposal of Japan-abandoned chemical weapon. (authors)

  15. Feasibility Study on Fiber-optic Radiation Sensor for Remote Gamma-ray Spectroscopy

    International Nuclear Information System (INIS)

    Jeon, Hyesu; Jang, Kyoung Won; Shin, Sang Hun and others

    2014-01-01

    In this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors. As a result, the BGO was suitable for the sensing probe of fiber-optic radiation sensor due to its high scintillation output and exact photoelectric peak for the gamma-ray energy. The basic principle of radiation detection is to detect the signals caused by interactions between radiations and materials. There are various types of radiation detectors depending on types of radiation to be detected and physical quantities to be measured. As one of the radiation detectors, a fiber-optic radiation sensor using a scintillator and an optical fiber has two advantages such as no space restraint and remote sensing. Moreover, in nuclear environments, this kind of sensor has immunities for electromagnetic field, temperature, and pressure. Thus, the fiber-optic radiation sensor can be used in various fields including nondestructive inspection, radioactive waste management, nuclear safety, radiodiagnosis and radiation therapy. As a fundamental study of the fiber-optic radiation sensor for remote gamma-ray spectroscopy, in this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors

  16. Evaluation of a gamma-spectroscopy gauge for uranium-plutonium assay

    International Nuclear Information System (INIS)

    Notea, A.; Segal, Y.

    1976-01-01

    A procedure is presented for the characterization of a gamma passive method for non-destructive analysis of nuclear fuel. The approachh provides an organized and systematic way for optimizing the assay system. The key function is the relative resolving power defined as the smallest relative change in the quantity of radionuclide measured that may be detected within a certain confidence level. This function is derived for nuclear fuel employing a model based on empirical parameters. The ability to detect changes in fuels of binary and trinary compositions with a 50-cm 3 Ge(Li) at a 1-min counting period is discussed. As an example to a binary composition, an enriched uranium fuel was considered. The 185-keV and 1001-keV gamma lines are used for the assay of 235 U and 238 U, respectively. As a trinary composition a plutonium-containing fuel was examined. The plutonium was identified by the 414-keV gamma line. The interference of the high-energy lines is carefully analysed, and numerical results are presented. For both cases the range of measurement under specific accuracy demands is determined. The approac described is suitable also for evaluation of other passive as well as active assay methods. (author)

  17. Optimization of electret ionization chambers for dosimetry in mixed neutron-gamma fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.

    1984-01-01

    The properties of combination dosemeters consisting of two air-filled electret ionization chambers in mixed neutron-gamma fields have been investigated. The first chamber, polyethylene-walled, is sensitive to neutrons and gamma rays, the second, having walls of teflon, is sensitive to gamma rays only. The properties of the dosemeters are determined by the resulting errors and the measuring range. As both properties depend on the dimensions of the electret ionization chambers they have been taken into account in optimizing the dimensions. The results show that with the use of the dosemeters the effective dose equivalent in mixed neutron-gamma fields can be determined nearly independently of the spectra. The lower detection limit is less than 1 mSv and the maximum uncertainty of dose measurements about 12%. (author)

  18. {sup 1}H MR spectroscopy of mesial temporal lobe epilepsies treated with Gamma knife

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, Milan; Dezortova, Monika [MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague (Czech Republic); Center for Cell Therapy and Tissue Repair, V Uvalu 84, 150 00 Prague (Czech Republic); Liscak, Roman; Vymazal, Josef; Vladyka, Vilibald [Department of Stereotactic and Radiation Neurosurgery, Hospital Na Homolce, 151 19, Prague (Czech Republic)

    2003-05-01

    Proton MR spectroscopy was used to observe long-term post-irradiation metabolic changes in epileptogenic tissue and in the contralateral parts of the brain which are not available with conventional imaging methods. We studied these changes in the temporal lobe in six patients, following radiosurgery on the amygdala and hippocampus. {sup 1}H MR spectroscopy at 1.5 T with short and long echo times (TE=10 and 135 ms) were used together with standard MR imaging sequences (T1-, T2-weighted). The treatment was performed by Leksell Gamma Knife with a dose of 50 Gy to the center and a 50% isodose to the margin of the target, represented by the mean volume of approximately 7.5 ml. Magnetic resonance imaging and MR spectroscopy examinations were performed at least once per year for 3 years. The most significant changes in spectra were observed approximately 1 year after the irradiation when edema in irradiated area was observed and strong signal of lipids was identified. Later, edema and lipid signals disappeared and follow-up was characterized by a decrease of NAA, Cr, and Cho concentrations in the ipsilateral region of the brain to the irradiation (LCModel calculation from voxel of interest 3.8-4.5 ml positioned into the centrum of target volume). The concentration of NAA, Cr, and Cho after radiosurgery was significantly different from control values (p<0.05) and also from concentrations in the contralateral part of the brain (p<0.05). In the contralateral part, the concentration of NAA was significantly increased (p<0.05) (NAA: before treatment 8.81, after treatment 11.33 mM). No radiotoxic changes were observed in the contralateral part of the brain or behind the area of target volume. The MR spectroscopy findings precluded MRI observation and MRS results completed data about the development of radiotoxic changes in the target volume. (orig.)

  19. Modeling a gamma spectroscopy system and predicting spectra with Geant-4

    International Nuclear Information System (INIS)

    Sahin, D.; Uenlue, K.

    2009-01-01

    An activity predictor software was previously developed to foresee activities, exposure rates and gamma spectra of activated samples for Radiation Science and Engineering Center (RSEC), Penn State Breazeale Reactor (PSBR), Neutron Activation Analysis (NAA) measurements. With Activity Predictor it has been demonstrated that the predicted spectra were less than satisfactory. In order to obtain better predicted spectra, a new detailed model for the RSEC NAA spectroscopy system with High Purity Germanium (HPGe) detector is developed using Geant-4. The model was validated with a National Bureau of Standards certified 60 Co source and tree activated high purity samples at PSBR. The predicted spectra agreed well with measured spectra. Error in net photo peak area values were 8.6-33.6%. Along with the previously developed activity predictor software, this new model in Geant-4 provided realistic spectra prediction for NAA experiments at RSEC PSBR. (author)

  20. Sampling optimization trade-offs for long-term monitoring of gamma dose rates

    NARCIS (Netherlands)

    Melles, S.J.; Heuvelink, G.B.M.; Twenhöfel, C.J.W.; Stöhlker, U.

    2008-01-01

    This paper applies a recently developed optimization method to examine the design of networks that monitor radiation under routine conditions. Annual gamma dose rates were modelled by combining regression with interpolation of the regression residuals using spatially exhaustive predictors and an

  1. Experimental study of the burned of nuclear fuel by the gamma spectroscopy method

    International Nuclear Information System (INIS)

    Amador V, P.

    2009-01-01

    Accurate information on nuclear fuel burnup is of vital importance in reactor operation, fuel management and fuel-characteristics studies. Conventionally fuel management of the TRIGA III Reactor from the National Institute of Nuclear Research (ININ) is done through the thermal balance method (management) of the power generated during reactor operation, since it is known that with 1.24 grams of 235 U is possible to generate a power or 1 MW per day during the reactor operation. On the other hand, it is possible to calculate the operation time in days during a power of 1 MW with the help of the data registered in logs. With the information just mentioned one can calculate the quantity of 235 U consumed in the fuel during a complete period of irradiation. In order to compare and prove that the burnup values, calculated through the thermal balance method, are correct, the ININ implemented, for the first time, the gamma-ray spectroscopy method as an experimental technique to calculate the burnup of several fuel elements. Gamma-ray spectroscopy is a nondestructive method, so that the integrity of the fuel element is not affected which is of great importance. Since there is a direct relation between the activity of 137 Cs contained in the fuel elements and a series of constants which are unique for the radioisotope and for the high resolution system, the problem just simplifies in measuring the 137 Cs activities. Furthermore the 137 Cs concentration equation was developed theoretically and I wrote a computer program (AMAVAL) in Fortran. The task of this program is to calculate the concentrations and the activity through the use of the equation just mentioned and the history of each fuel element. The purpose of this is to compare and validate the experimental activities with the theoretical ones for each fuel element. (Author)

  2. The recent developments in the technology of scintillator detectors for gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Verdebout, J.

    1988-01-01

    The goal of this report is to review the recent developments in the use of high stopping power materials and solid state readout for scintillation gamma -ray spectroscopy as these techniques may give rise to a new generation of low powered portable instruments. The report is a bibliographical study based on papers published mainly these last five years. The main subject is preceded by a general introduction in which the principal characteristics of a scintillator gamma-ray spectrometer are discussed. The properties of some scintillator materials (NaI(T1), CsI(T1), CsI(Na), BGO, GSO(Ce) and CdWO 4 ) are then briefly presented. In this section, a special emphasis has been given to BGO as this material has recently received much attention and is now well documented. Finally, the results obtained by measuring the intensity of the light generated in the crystal with three types of solid-state photodetectors (Si photodiodes, HgI 2 photodetectors and avalanche Si photodiodes) are summarized

  3. Raman spectroscopy of 2-hydroxyethyl methacrylate-acrylamide copolymer using gamma irradiation for crosslinking

    International Nuclear Information System (INIS)

    Goheen, Steven C.; Saunders, Rachel M.; Davis, Rachel M.; Harvey, Scott D.; Olsen, Peter C.

    2006-01-01

    A copolymer hydrogel was made by mixing acrylamide and 2-hydroxyethyl methacrylate monomers in water and polymerizing with gamma irradiation. The progress of polymerization and the vibrational structure of the hydrogel was examined using Raman spectroscopy. Raman spectra indicated that the co-polymer has a molecular structure different from polyacrylamide or the individual monomers. The Raman data also indicate the presence of crosslinking at the C=O, NH2 and OH side chains. The spectra further suggest the continuous lengthening of the backbone of the polymers with increasing gamma dose. This is shown as the increase in C-C modes as C=C vibrations decrease. Raman spectra changed most dramatically as the monomer mixture became a gel at a dose of approximately 320 Gy. Spectral differences were subtler with doses exceeding 640 Gy, although chain lengthening continued beyond 1500 Gy. Potential applications of the copolymer hydrogel include reconstructive tissue as well as a standard material for radiation protection dosimetry. Results are discussed in relation to other potential applications of this polymer and dose-dependent changes in the Raman spectrum

  4. Statistical methods applied to gamma-ray spectroscopy algorithms in nuclear security missions.

    Science.gov (United States)

    Fagan, Deborah K; Robinson, Sean M; Runkle, Robert C

    2012-10-01

    Gamma-ray spectroscopy is a critical research and development priority to a range of nuclear security missions, specifically the interdiction of special nuclear material involving the detection and identification of gamma-ray sources. We categorize existing methods by the statistical methods on which they rely and identify methods that have yet to be considered. Current methods estimate the effect of counting uncertainty but in many cases do not address larger sources of decision uncertainty, which may be significantly more complex. Thus, significantly improving algorithm performance may require greater coupling between the problem physics that drives data acquisition and statistical methods that analyze such data. Untapped statistical methods, such as Bayes Modeling Averaging and hierarchical and empirical Bayes methods, could reduce decision uncertainty by rigorously and comprehensively incorporating all sources of uncertainty. Application of such methods should further meet the needs of nuclear security missions by improving upon the existing numerical infrastructure for which these analyses have not been conducted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Investigation of LaBr3:Ce probe for gamma-ray spectroscopy and dosimetry

    Science.gov (United States)

    Maghraby, Ahmed M.; Alzimami, K. S.; Alkhorayef, M. A.; Alsafi, K. G.; Ma, A.; Alfuraih, A. A.; Alghamdi, A. A.; Spyrou, N. M.

    2014-02-01

    The main thrust of this work is the investigation of performance of relatively new commercial LaBr3:Ce probe (Inspector 1000™ with LaBr3:Ce crystal) for gamma-ray spectroscopy and dosimetry measurements in comparison to LaCl3:Ce and NaI:Tl scintillators. The crystals were irradiated by a wide range of energies (57Co, 22Na, 18F, 137Cs and 60Co). The study involved recording of detected spectra and measurement of energy resolution, photopeak efficiency, internal radioactivity measurements as well as dose rate. The Monte Carlo package, Geant4 Application for Tomographic Emission (GATE) was used to validate the experiments. Overall results showed very good agreement between the measurements and the simulations. The LaBr3:Ce crystal has excellent energy resolution, energy resolutions of (3.37±0.05)% and (2.98±0.07)% for a 137Cs 662 keV and a 60Co 1332 keV gamma-ray point sources respectively, were recorded. The disadvantage of the lanthanum halide scintillators is their internal radioactivity. Inspector 1000™ with LaBr3:Ce scintillator has shown an accurate and quick dose measurements at Positron Emission Tomography (PET) Units which allows accurate assessment of the radiation dose received by staff members compared to the use of electronic personal dosimeters (EPD).

  6. Implementation of neutron-induced gamma-ray spectroscopy in industrial applications

    International Nuclear Information System (INIS)

    Abernethy, D. A.; Lim, C. S.

    2006-01-01

    Full text: Neutron based analytical techniques are commonly used in a wide variety of industrial applications, with new applications continually being found. As a result, despite popular concerns about the harmful health effects of radiation the number of these analysers is increasing. This is because neutron-induced gamma-ray techniques have the capability of combining elemental sensitivity with significant penetrating power, enabling non-intrusive and non-destructive bulk elemental measurements to be averaged over a large volume of material. Neutron induced gamma ray spectroscopy has been developed by several groups, including CSIRO Minerals, for on-line measurement of elemental composition in a range of industrial applications in vessels, pipes and on conveyor belts. Compared to those typically found in a scientific laboratory, conditions in industrial plants differ substantially in a number of ways, such as environmental variability, operator skill and training, and shielding requirements. As a result of these differences, equipment and techniques which are used as a matter of course in a laboratory often have to undergo major modification to render them suitable for use in an industrial context. This paper will discuss some of the factors that have to be considered when deciding such matters with particular emphasis on the implications of radiation safety requirements

  7. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    Science.gov (United States)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  8. Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy

    Science.gov (United States)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson

    2013-04-01

    As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.

  9. Multielement CdZnTe detectors for high-efficiency, ambient-temperature gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Moss, C.E.; Sweet, M.R.; Ianakiev, K.; Reedy, R.C.; Li, J.; Valentine, J.D.

    1998-01-01

    CdZnTe is an attractive alternative to scintillator-based technology for ambient-temperature, gamma-ray spectroscopy. Large, single-element devices up to 3500 mm 3 have been developed for gamma-ray spectroscopy and are now available commercially. Because CdZnTe is a wide band-gap semiconductor, it can operate over a wide range of ambient temperatures with minimal power consumption. Over this range, CdZnTe detectors routinely yield better overall performance for gamma-ray spectroscopy than scintillator detectors. Manufacturing issues and material electronic properties limit the maximum size of single-element CdZnTe detectors. The authors are investigating methods to combine CdZnTe detectors together to improve detection efficiency and overall performance of gamma-ray spectroscopy. The applications include the assay and identification of radioisotopes for nuclear material safeguards and nonproliferation (over the energy range 50 keV to 1 MeV), and the analysis of elemental composition for planetary science (over the energy range 1 MeV to 10 MeV). Design issues for the two energy ranges are summarized

  10. Determination of natural radioactive elements in building materials by gamma spectroscopy, trace dosimetry and neutron activation analysis

    International Nuclear Information System (INIS)

    Perez, G.; Desdin, L.F.; Hernandez, A.T.; Gonzalez, D.; Labrada, A.; Tenreiro, J.J.; Capote, G.; Perelyguin, V.P.; Herrera, H.; Tellez, E.

    1993-01-01

    Five types of Cuban concretes and their main components (minerals aggregates and cement) were investigated in order to analyze the content of uranium, thorium, radium, potassium and radon 220,222, using gamma spectroscopy, trace dosimetry and neutron activation analysis. The comparative evaluation of different concretes, aggregates and two types of cements according to natural radioactivity is shown

  11. Design and fabrication of 4π Clover Detector Array Assembly for gamma-spectroscopy studies using thermal neutrons

    International Nuclear Information System (INIS)

    Kumar, Manish; Kamble, S.R.; Chaudhari, A.T.; Sabharwal, T.P.; Pathak, Kavindra; Prasad, N.K.; Kinage, L.A.; Biswas, D.C.; Bhagwat, P.V.

    2017-01-01

    Nuclear spectroscopy has been studied earlier from the measurement of prompt gamma rays produced in reactions with thermal neutrons from CIRUS reactor. For studying the prompt γ-spectroscopy using thermal neutrons from Dhruva Reactor, BARC, the development of a dedicated beam line (R-3001) is in progress. In this beam line a detector assembly consisting of Clover Ge detectors will be used. This experimental setup will be utilized to investigate nuclear structure using prompt (n,γ) reactions and also to study the spectroscopy of neutron-rich fission-fragment nuclei

  12. Importance of design optimization of gamma processing plants

    International Nuclear Information System (INIS)

    George, Jain Reji

    2014-01-01

    Radiation processing of food commodities using ionizing radiations is well established world wide. In India too, novel designs are coming up for food irradiation as well as for multiproduct irradiation. It has been observed that though the designs of the product movement systems are excelling, the actual purpose for which the designs are made are failing in some. In such situations it is difficult to achieve an effective dose delivery by controlling the process parameters or even by modifying the source activity distribution without compromising some other aspects like throughput. It is very essential to arrive at an optimization in all components such as radiation source geometry, source product geometry and protective barriers of an irradiator system. Optimization of the various parameters can be done by modeling and analysis of the design

  13. Investigations of 131I concentration in indoor air using charcoal filters and gamma spectroscopy

    International Nuclear Information System (INIS)

    Fischer, H.W.; Pittauerova, D.; Foschepoth, S.; Poppe, B.

    2008-01-01

    Full text: Radiation protection standards require the recording of staff radiation dose in nuclear medicine thyroid radiotherapy. A commonly used method measures the 131 I thyroid activity externally with a gamma detector, followed by calculation of the committed equivalent thyroid dose. The main disadvantages are the low sensitivity and the uncertainty of the time of uptake, which can only be compensated by long measurement times and short measurement intervals. The measurements have to be applied to all staff members. An alternative can be provided by the measurement of the cumulated concentration of 131 I in indoor air using charcoal filters. The filters are placed in patient rooms at representative locations, exposed for several days and then investigated for absorbed 131 I activity. Both above mentioned disadvantages can be overcome: the measurement records the cumulated concentration history of the room and the obtained value can be used for dose calculation for all staff members knowing their working history. Standard charcoal filters (PicoRad vials, Accustar Labs, normally used for indoor radon measurements) were placed into patient rooms in a thyroid therapy department and exposed to room air for 72 hours. The vials were then subjected to high resolution low level gamma spectroscopy using a high purity germanium (hpGe) detector (50% relative efficiency, 10 cm lead shielding). Absolute activity determination was based on the net count rate in the 364 keV gamma peak and absolute counting efficiency obtained mathematically from detector and vial geometry using the commercial Labsocs (Canberra Inc.) program. Using the mean air activity/vial activity calibration factor obtained in a similar study pioneering this application, but using liquid scintillation spectroscopy as detection method (F. Jimenez et al, 2nd. European IRPA Congress, Paris 2006), mean air concentrations between 0.09 and 2.01 Bq/m 3 were found. The data correlated well with patient administered

  14. A miniature modular multichannel analyzer system for automated, low- resolution gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Halbig, J.K.; Klosterbuer, S.F.; Russo, P.A.; Smith, S.E.

    1992-01-01

    Throughout the nuclear complex, the demand for measurements of nuclear materials holdup is increasing. Plant-wide campaigns to quantify holdup in ventilation ducts and holdup measurements in support of duct remediation are in progress at most DOE sites. Plans to satisfy more stringent requirements for holdup measurements are being developed. Facility decommissioning that accompanies downsizing the complex will require extensive holdup measurement efforts. In the early phases of planning for the modem complex, holdup measurements for new facilities are being specified at the facility design stage. Beyond the DOE, international inspection activities are relying, increasingly, on holdup measurements for verification. Developments in nondestructive assay technologies in the past decade have provided some support for measurements of this Mx. The user's requirements of ruggedness and reliability have been satisfied with compact gamma-ray detectors and spectroscopy instrumentation, but improvements are still needed in simplicity, portability, and speed. Current portable spectroscopy instruments require user sophistication as well as more than one person for transport between measurement locations. However, it is becoming clear that the real measurement need is the simultaneous operation of dozens of units, each by a single relatively unsophisticated user, to perform thousands of measurements per inventory period. The rapid and reliable conversion of measurement data to holdup quantities is essential

  15. Gamma-induced positron annihilation spectroscopy and application to radiation-damaged alloys

    International Nuclear Information System (INIS)

    Wells, D.P.; Hunt, A.W.; Tchelidze, L.; Kumar, J.; Smith, K.; Thompson, S.; Selim, F.; Williams, J.; Harmon, J.F.; Maloy, S.; Roy, A.

    2006-01-01

    Radiation damage and other defect studies of materials are limited to thin samples because of inherent limitations of well-established techniques such as diffraction methods and traditional positron annihilation spectroscopy (PAS) [P. Hautojarvi, et al., Positrons in Solids, Springer, Berlin, 1979, K.G. Lynn, et al., Appl. Phys. Lett. 47 (1985) 239]. This limitation has greatly hampered industrial and in-situ applications. ISU has developed new methods that use pair-production to produce positrons throughout the volume of thick samples [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. Unlike prior work at other laboratories that use bremsstrahlung beams to create positron beams (via pair-production) that are then directed at a sample of interest, we produce electron-positron pairs directly in samples of interest, and eliminate the intermediate step of a positron beam and its attendant penetrability limitations. Our methods include accelerator-based bremsstrahlung-induced pair-production in the sample for positron annihilation energy spectroscopy measurements (PAES), coincident proton-capture gamma-rays (where one of the gammas is used for pair-production in the sample) for positron annihilation lifetime spectroscopy (PALS), or photo-nuclear activation of samples for either type of measurement. The positrons subsequently annihilate with sample electrons, emitting coincident 511 keV gamma-rays [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D

  16. Gamma ray tracking with the AGATA demonstrator. A novel approach for in-beam spectroscopy

    International Nuclear Information System (INIS)

    Birkenbach, Benedikt

    2014-01-01

    -rays were detected with the AGATA demonstrator consisting of five AGATA triple cluster detectors. An additional micro channel plate detector for particle detection was mounted inside the scattering chamber in order to request kinematic coincidences. The analysis procedures for the two complex sub-detectors AGATA and PRISMA were extended and adapted to the specific requirements of this new approach for actinide spectroscopy. First the complex analysis of the magnetic spectrometer PRISMA and solutions for unexpected detector behaviour like time drifts and aberration corrections are described. As a result the individual isotopes of elements from Barium to Tellurium were identified confirming the very high quality of the PRISMA spectrometer and its design parameters. The analysis of the γ-ray spectra comprised a detailed PSA and GRT analysis of the AGATA demonstrator. This analysis included also data analysis developments for the AGATA collaboration. The data of the AGATA demonstrator, the PRISMA spectrometer and the ancillary detectors were merged to obtain background free Doppler corrected spectra for the beam- and target-like reaction products. The simultaneous Doppler correction for beam and target-like ions included an elaborate optimization procedure for unobservable experimental parameters. The γ-ray spectra for the individual isotopes is consistent with the isotope identification of the PRISMA analysis. For the beam like particles γ-ray spectra of the isotopes 128-139 Xe are presented and discussed. For the target like nuclei γ-ray spectra of the isotopes 236-240 U are deduced. By gating on the remaining excitation energy after the multi-nucleon transfer reaction the neutron evaporation and fission of the excited actinide nuclei were suppressed. Coincidences between AGATA and PRISMA were exploited for the first time together with the particle coincidence between beam- and target-like nuclei. These triple coincidences allowed further background reduction. The results

  17. A constrained tracking algorithm to optimize plug patterns in multiple isocenter Gamma Knife radiosurgery planning

    International Nuclear Information System (INIS)

    Li Kaile; Ma Lijun

    2005-01-01

    We developed a source blocking optimization algorithm for Gamma Knife radiosurgery, which is based on tracking individual source contributions to arbitrarily shaped target and critical structure volumes. A scalar objective function and a direct search algorithm were used to produce near real-time calculation results. The algorithm allows the user to set and vary the total number of plugs for each shot to limit the total beam-on time. We implemented and tested the algorithm for several multiple-isocenter Gamma Knife cases. It was found that the use of limited number of plugs significantly lowered the integral dose to the critical structures such as an optical chiasm in pituitary adenoma cases. The main effect of the source blocking is the faster dose falloff in the junction area between the target and the critical structure. In summary, we demonstrated a useful source-plugging algorithm for improving complex multi-isocenter Gamma Knife treatment planning cases

  18. Modeling and Optimizing Antennas for Rotational Spectroscopy Applications

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-12-01

    Full Text Available In the paper, dielectric and metallic lenses are modeled and optimized in order to enhance the gain of a horn antenna in the frequency range from 60 GHz to 100 GHz. Properties of designed lenses are compared and discussed. The structures are modeled in CST Microwave Studio and optimized by Particle Swarm Optimization (PSO in order to get required antenna parameters.

  19. Proceeding of the workshop on gamma-ray spectroscopy utilizing heavy-ion, photon and RI beams

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Masumi; Sugita, Michiaki; Hayakawa, Takehito [eds.

    1998-03-01

    Three time since 1992, we have held the symposia entitled `Joint Spectroscopy Experiments Utilizing JAERI Tandem-Booster Accelerator` at the Tokai Research Establishment. In the symposia, we have mainly discussed the plans of experiments to be done in this joint program. The joint program started in 1994. Several experiments have been made since and some new results have already come up. This symposium `Gamma-ray Spectroscopy utilizing heavy-ion, Photon and RI beams` was held at Tokai Research Establishment of JAERI. Because this symposium is the first occasion after the program started, the first purpose of the symposium is to present and discuss the experimental results so far obtained using the JAERI Tandem-Booster. The second purpose of the symposium is to discuss new possibilities of gamma-ray spectroscopy using new resources such as RI-beam and Photon-beam. The participants from RIKEN, Tohoku University and JAERI Neutron Science Research Center presented the future plans of experiments with RI-beam at each facility. Compared with these nuclear beams, photon beam provides a completely new tool for the {gamma}-ray spectroscopy, which is achieved by inverse Compton scattering between high-energy electron and laser beams. The 23 of the presented papers are indexed individually. (J.P.N.)

  20. Innovative Applications of In Situ Gamma Spectroscopy for Non-destructive Assay of Transuranic Wastes

    International Nuclear Information System (INIS)

    Watters, D.J.; Weismann, J.J.; Duke, S.J.; Nicosia, W.C.

    2009-01-01

    Cabrera Services (CABRERA), under contract to National Security Technologies, LLC (NSTec), supported the transuranic (TRU) waste reduction initiative at the Radioactive Waste Management Complex of the Nevada Test Site (NTS). CABRERA developed advanced NDA techniques for oversized boxes (OSB) and drums using in situ gamma spectroscopy during several phases of the project. A more thorough characterization method was employed during the planning phase of the project to better understand the TRU content and distribution within each container, while a comprehensive NDA program was designed and implemented during the intrusive phase that guided waste segregation and re-packaging of both TRU and low-level wastes (LLW). NSTec took receipt of 58 oversized boxes of suspect TRU waste from Lawrence Livermore National Lab (LLNL). TRU waste is defined as greater than 3.7 kilobecquerels per gram [kBq/g] (100 nanocuries (nCi)/g) activity from alpha-emitting radionuclides with atomic number greater than 92 having a half-life greater than 20 years. Each box was custom-made to house a variety of suspect TRU wastes resulting from years of weapons program research, development, and testing. Since their arrival at NTS, the boxes have undergone several iterations of non-destructive assay (NDA) in preparation for the comprehensive repackaging effort. NDA has included two rounds of in situ gamma spectroscopy and real-time radiography (RTR) scans that were videotaped. Contents have been confirmed to include glove boxes, HEPA filters and their housings, and assorted process equipment and piping. TRU content was determined via directly measuring plutonium-239 (Pu-239), americium-241 (Am-241), and other radionuclides, while adding calculated results for non-measurable nuclides using reliable scaling factors developed from acceptable knowledge (AK). Advantages of CABRERA's NDA methods included: - More NDA information is available in the same amount of counting time, allowing NSTec to make more

  1. Recoil Distance Method lifetime measurements via gamma-ray and charged-particle spectroscopy at NSCL

    Science.gov (United States)

    Voss, Philip Jonathan

    The Recoil Distance Method (RDM) is a well-established technique for measuring lifetimes of electromagnetic transitions. Transition matrix elements derived from the lifetimes provide valuable insight into nuclear structure. Recent RDM investigations at NSCL present a powerful new model-independent tool for the spectroscopy of nuclei with extreme proton-to-neutron ratios that exhibit surprising behavior. Neutron-rich 18C is one such example, where a small B(E2; 2+1 → 0+gs) represented a dramatic shift from the expected inverse relationship between the B(E2) and 2+1 excitation energy. To shed light on the nature of this quadrupole excitation, the RDM lifetime technique was applied with the Koln/NSCL plunger. States in 18C were populated by the one-proton knockout reaction of a 19N secondary beam. De-excitation gamma rays were detected with the Segmented Germanium Array in coincidence with reaction residues at the focal plane of the S800 Magnetic Spectrometer. The deduced B(E2) and excitation energy were both well described by ab initio no-core shell model calculations. In addition, a novel extension of RDM lifetime measurements via charged-particle spectroscopy of exotic proton emitters has been investigated. Substituting the reaction residue degrader of the Koln/NSCL plunger with a thin silicon detector permits the study of short-lived nuclei beyond the proton dripline. A proof of concept measurement of the mean lifetime of the two-proton emitter 19Mg was conducted. The results indicated a sub-picosecond lifetime, one order of magnitude smaller than the published results, and validate this new technique for lifetime measurements of charged-particle emitters.

  2. Internet accessible hot cell with gamma spectroscopy at the Missouri S and T nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Edwin [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States); Mueller, Gary, E-mail: gmueller@mst.edu [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States); Castano, Carlos; Usman, Shoaib; Kumar, Arvind [Nuclear Engineering, Missouri University of Science and Technology, 203 Fulton Hall, 300 W. 13th St., Rolla, MO 65409 (United States)

    2011-08-15

    Highlights: > A dual-chambered internet-accessible heavily shielded facility has been built. > The facility allows distance users to analyze neutron irradiated samples remotely. > The Missouri S and T system uses computer automation with user feedback. > The system can analyze multiple samples and assist several researchers concurrently. - Abstract: A dual-chambered internet-accessible heavily shielded facility with pneumatic access to the University of Missouri Science and Technology (Missouri S and T) 200 kW Research Nuclear Reactor (MSTR) core has been built and is currently available for irradiation and analysis of samples. The facility allows authorized distance users engaged in collaborative activities with Missouri S and T to remotely manipulate and analyze neutron irradiated samples. The system consists of two shielded compartments, one for multiple sample storage, and the other dedicated exclusively for radiation measurements and spectroscopy. The second chamber has multiple detector ports, with graded shielding, and has the capability to support gamma spectroscopy using radiation detectors such as an HPGe detector. Both these chambers are connected though a rapid pneumatic system with access to the MSTR nuclear reactor core. This new internet-based system complements the MSTR's current bare pneumatic tube (BPT) and cadmium lined pneumatic tube (CPT) facilities. The total transportation time between the core and the hot cell, for samples weighing 10 g, irradiated in the MSTR core, is roughly 3.0 s. This work was funded by the DOE grant number DE-FG07-07ID14852 and expands the capabilities of teaching and research at the MSTR. It allows individuals who do not have on-site access to a nuclear reactor facility to remotely participate in research and educational activities.

  3. Internet accessible hot cell with gamma spectroscopy at the Missouri S and T nuclear reactor

    International Nuclear Information System (INIS)

    Grant, Edwin; Mueller, Gary; Castano, Carlos; Usman, Shoaib; Kumar, Arvind

    2011-01-01

    Highlights: → A dual-chambered internet-accessible heavily shielded facility has been built. → The facility allows distance users to analyze neutron irradiated samples remotely. → The Missouri S and T system uses computer automation with user feedback. → The system can analyze multiple samples and assist several researchers concurrently. - Abstract: A dual-chambered internet-accessible heavily shielded facility with pneumatic access to the University of Missouri Science and Technology (Missouri S and T) 200 kW Research Nuclear Reactor (MSTR) core has been built and is currently available for irradiation and analysis of samples. The facility allows authorized distance users engaged in collaborative activities with Missouri S and T to remotely manipulate and analyze neutron irradiated samples. The system consists of two shielded compartments, one for multiple sample storage, and the other dedicated exclusively for radiation measurements and spectroscopy. The second chamber has multiple detector ports, with graded shielding, and has the capability to support gamma spectroscopy using radiation detectors such as an HPGe detector. Both these chambers are connected though a rapid pneumatic system with access to the MSTR nuclear reactor core. This new internet-based system complements the MSTR's current bare pneumatic tube (BPT) and cadmium lined pneumatic tube (CPT) facilities. The total transportation time between the core and the hot cell, for samples weighing 10 g, irradiated in the MSTR core, is roughly 3.0 s. This work was funded by the DOE grant number DE-FG07-07ID14852 and expands the capabilities of teaching and research at the MSTR. It allows individuals who do not have on-site access to a nuclear reactor facility to remotely participate in research and educational activities.

  4. Gamma-ray spectroscopy in the decay of (83)Se to levels of (83)Br.

    Science.gov (United States)

    Krane, K S

    2015-03-01

    High-resolution γ ray spectroscopy experiments have been done to study the emissions from the radioactive decay of 22-min (83g)Se produced from neutron capture using samples of enriched (82)Se. Energy and intensity values have been obtained to roughly an order of magnitude greater precision than in previous studies. Based on energy sums, 2 new levels are proposed in the daughter (83)Br and one previously proposed level is shown to be doubtful. Some 25 new transitions appear to decay with the (83)Se halflife, about half of which can be accommodated among the previous or newly proposed levels. Several previous γ ray placements are shown to be inconsistent with the new determinations of the (83)Br energy levels, but cannot be accommodated anywhere else among the known levels. As a result of the missing γ ray placements, some of the β branchings in the decay to levels of (83)Br appear to be negative. Gamma rays from the 2.4-h decay of the daughter (83)Br to levels of (83)Kr have also been observed, along with decays of (81g)(,m)Se present as a small impurity in the enriched samples and also as a strong component in irradiated samples of natural Se. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    International Nuclear Information System (INIS)

    Riley, M A; Simpson, J; Paul, E S

    2016-01-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’ . High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum–excitation energy plane that continue to surprise and fascinate scientists. (invited comment)

  6. High rate gamma spectroscopy system for activation analysis of short-lived isomeric transitions

    Energy Technology Data Exchange (ETDEWEB)

    Westphall, G P [Atominstitut der Oesterreichischen Hochschulen, Vienna

    1976-07-15

    A high rate spectroscopy system specially suited for measurement of short-lived isomeric transitions is described, which, as part of a fast activation analysis facility at the TRIGA Mark II reactor, provides for automatic recording and immediate evaluation of gamma spectra taken from nuclides activated at stationary or pulsed reactor power. The system consists of a commercial de-coupled Ge(Li)-detector of 70 cm/sup 3/ modified for recycling operation for input rates in excess of 500000 c/s /sup 60/Co, a time variant trapezoidal shaping section and a fast constant dead-time ADC coupled to a programmed multichannel analyzer. Novel circuits for efficient pile-up rejection and time variant base line restoration extend the concept of gated integration up to count rates of more than 200000 c/s /sup 60/Co. Time-sequenced recording of spectra is performed by a minicomputer operated as a front-end processor of a larger laboratory computer, where final data processing takes place. New concepts for very simple and cost-effective implementation of multichannel analyzers by means of general purpose small computers are described.

  7. Characterization system for Germanium detectors dedicated to gamma spectroscopy applied to nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roccaz, J.; Portella, C.; Saurel, N. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2009-07-01

    CEA-Valduc produces some radioactive waste (mainly alpha emitters). Legislation requires producers to sort their waste by activity and type of isotopes, and to package them in order to forward them to the appropriate reprocessing or storage facility. Our lab LMDE (laboratory for measurements on nuclear wastes and valuation) is in charge of the characterization of the majority of waste produced by CEA-Valduc. Among non-destructive methods to characterize a radioactive object, gamma-spectroscopy is one of the most efficient. We present to this conference the method we use to characterize nuclear waste and the system we developed to characterize our germanium detectors. The goal of this system is to obtain reliable numerical models of our detectors and calculate their efficiency curves. Measurements are necessary to checks models and improve them. These measurements are made on a bench using pinpoint sources ({sup 133}Ba, {sup 152}Eu) from 60 keV to 1500 keV, with distances from 'on contact' to a few meters from the diode and variable angles between the source and the detector axis. We have demonstrated that we are able to obtain efficiency curves

  8. A high rate gamma spectroscopy system for activation analysis of short lived isomeric transitions

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, G P [Atominstitut, Vienna (Austria)

    1976-07-01

    A high rate spectroscopy system specially suited for measurement of short-lived isomeric transitions is described, which, as part of a fast activation analysis facility at the TRIGA Mark II reactor, provides for automatic recording and immediate evaluation of gamma spectra taken from nuclides activated at stationary or pulsed reactor power. The system consists of a commercial DC-coupled Ge(Li)-detector of 70 cm{sup 3} modified for recycling operation for input rates in excess of 500,000 c/s Co-60, a time variant trapezoidal shaping section and a fast constant dead-time ADC coupled to a programmed multi-channel analyzer. Novel circuits for efficient pile-up rejection and time variant base line restoration extend the concept of gated integration up to count rates of more than 300,000 c/s Co-60. Time-sequenced recording of spectra is performed by a mini computer operated as a front-end processor of a larger laboratory computer, where final data processing takes place. New concepts for very simple and cost-effective implementation of multi-channel analyzers by means of general purpose small computers are described. (author)

  9. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    Science.gov (United States)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  10. NMR spectroscopy in the optimization and evaluation of RAFT agents

    NARCIS (Netherlands)

    Klumperman, B.; McLeary, J.B.; van den Dungen, E.; Pound, G.

    2007-01-01

    The selection of a suitable mediating agent in Reversible Addition-Fragmentation Chain Transfer (RAFT) mediated polymerization is crucial to the degree of control that can be achieved. An overview of work from the Stellenbosch group is presented in which the use of NMR spectroscopy as a tool for

  11. CdZnTe detectors for gamma-ray Burst ArcSecond Imaging and Spectroscopy (BASIS)

    International Nuclear Information System (INIS)

    Stahle, C.M.; Palmer, D.; Bartlett, L.M.; Parsons, A.; Shi Zhiqing; Lisse, C.M.; Sappington, C.; Cao, N.; Shu, P.; Gehrels, N.; Teegarden, B.; Birsa, F.; Singh, S.; Odom, J.; Hanchak, C.; Tueller, J.; Barthelmy, S.; Krizmanic, J.; Barbier, L.

    1996-01-01

    A CdZnTe detector array is being developed for the proposed gamma-ray Burst ArcSecond Imaging and Spectroscopy (BASIS) spaceflight mission to accurately locate gamma-ray bursts, determine their distance scale, and measure the physical characteristics of the emission region. Two-dimensional strip detectors with 100 μm pitch have been fabricated and wire bonded to readout electronics to demonstrate the ability to localize 60 and 122 keV gamma-rays to less than 100 μm. Radiation damage studies on a CdZnTe detector exposed to MeV neutrons showed a small amount of activation but no detector performance degradation for fluences up to 10 10 neutrons/cm 2 . A 1 x 1 in. CdZnTe detector has also been flown on a balloon payload at 115 000 ft in order to measure the CdZnTe background rates. (orig.)

  12. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    International Nuclear Information System (INIS)

    Ishii, T.; Asai, M.; Matsuda, M.; Ichikawa, S.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.

    2002-01-01

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T 1/2 >1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68 Ni and its neighbor 69,71 Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed. (orig.)

  13. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    Science.gov (United States)

    Ishii, T.; Asai, M.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.; Matsuda, M.; Ichikawa, S.

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T1/2 > 1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68Ni and its neighbor 69,71Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed.

  14. SU-E-T-453: Optimization of Dose Gradient for Gamma Knife Radiosurgery.

    Science.gov (United States)

    Sheth, N; Chen, Y; Yang, J

    2012-06-01

    The goals of stereotactic radiosurgery (SRS) are the ablation of target tissue and sparing of critical normal tissue. We develop tools to aid in the selection of collimation and prescription (Rx) isodose line to optimize the dose gradient for single isocenter intracranial stereotactic radiosurgery (SRS) with GammaKnife 4C utilizing the updated physics data in GammaPlan v10.1. Single isocenter intracranial SRS plans were created to treat the center of a solid water anthropomorphism head phantom for each GammaKnife collimator (4 mm, 8 mm, 14 mm, and 18 mm). The dose gradient, defined as the difference of effective radii of spheres equal to half and full Rx volumes, and Rx treatment volume was analyzed for isodoses from 99% to 20% of Rx. The dosimetric data on Rx volume and dose gradient vs. Rx isodose for each collimator was compiled into an easy to read nomogram as well as plotted graphically. The 4, 8, 14, and 18 mm collimators have the sharpest dose gradient at the 64%, 70%, 76%, and 77% Rx isodose lines, respectively. This corresponds to treating 4.77 mm, 8.86 mm, 14.78 mm, and 18.77 mm diameter targets with dose gradients radii of 1.06 mm, 1.63 mm, 2.54 mm, and 3.17 mm, respectively. We analyzed the dosimetric data for the most recent version of GammaPlan treatment planning software to develop tools that when applied clinically will aid in the selection of a collimator and Rx isodose line for optimal dose gradient and target coverage for single isocenter intracranial SRS with GammaKnife 4C. © 2012 American Association of Physicists in Medicine.

  15. Optimized endoscopic autofluorescence spectroscopy for the identification of premalignant lesions in Barrett's oesophagus

    NARCIS (Netherlands)

    Holz, Jasmin A.; Boerwinkel, David F.; Meijer, Sybren L.; Visser, Mike; van Leeuwen, Ton G.; Aalders, Maurice C. G.; Bergman, Jacques J. G. H. M.

    2013-01-01

    Fluorescence spectroscopy has the potential to detect early cellular changes in Barrett's oesophagus before these become visible. As the technique is based on varying concentrations of intrinsic fluorophores, each with its own optimal excitation wavelength, it is important to assess the optimal

  16. Ultraviolet-visible and fluorescence spectroscopy can be used as a diagnostic tool for gamma irradiation detection in vivo.

    Science.gov (United States)

    K-Abdelhalim, Mohamed Anwar; Moussa, Sherif A-Abdelmottaleb

    2016-09-01

    The spectroscopic properties can indicate important features about the nature and severity of the disease. However, no earlier studies have been used the spectroscopic properties as a diagnostic tool for radiation detection. This study was aimed to use ultraviolet-visible and fluorescence spectroscopy as a diagnostic tool for gamma irradiation detection in rats in vivo. Adult male rats were exposed to 25, 50, 75 and 100 Gray as single dose, using Cobalt-60 (Co-60) source with a dose rate of 0.883 centi Gray/sec (cGy/s). Ultraviolet and fluorescence spectroscopy of rat's blood serum were measured. After gamma irradiation of rats in vivo, the blood serum absorbance peaks for 25, 50, 75 and 100 Gray (Gy) decreased and shifted towards the ultra violet wavelength. A maximal change in fluorescence intensity of blood serum at 350 nm was obtained when exciting light at 194 nm after irradiation. The fluorescence intensity also decreased with the dose. The highest radiation gamma dose might be accompanied with the highest oxidative stress. This study suggests that at the above mentioned gamma radiation doses, the blood is highly fragmented; with low aggregation at 25 Gy and with high aggregation at 50-100 Gy.

  17. Quantification by Raman spectroscopy of the gamma radiation effects in water purification; Cuantificacion por espectroscopia Raman de los efectos de la radiacion gamma en la purificacion de agua

    Energy Technology Data Exchange (ETDEWEB)

    Perez C, V M; Santiago J, P; Castano, V M [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The world problem about water pollution has been confronted by traditional methods such as: chlorination, filtration, etc. In this work is presented an alternative method, which consists in to radiate different concentrations of simulated polluted water (purified water + thinner) at different gamma radiation doses. The structural changes were analysed by Raman spectroscopy. Using a 52.5 Krad dose it was possible to eliminate all the thinner chemical linkages, which appear in the Raman spectra corresponding to the 87.5/12.5 water/thinner mixture. (Author)

  18. Prederivatives of gamma paraconvex set-valued maps and Pareto optimality conditions for set optimization problems.

    Science.gov (United States)

    Huang, Hui; Ning, Jixian

    2017-01-01

    Prederivatives play an important role in the research of set optimization problems. First, we establish several existence theorems of prederivatives for γ -paraconvex set-valued mappings in Banach spaces with [Formula: see text]. Then, in terms of prederivatives, we establish both necessary and sufficient conditions for the existence of Pareto minimal solution of set optimization problems.

  19. A study on the optimization of optical guide of gamma camera detector

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Cho, Gyu Seong; Kim, Ho Kyung; Lee, Wan No; Kim, Young Soo

    2000-01-01

    An optical guide, which is a light guide located between NaI(Tl) scintillation-crystal and array of photo-multiplier tubes (PMTs) in the gamma camera detector system, is an essential component to deliver the spatial information recorded in scintillator to the PMTs. Without the optical guide, the spatial information within the range of a single PMT could not be obtained. For the design of the optimal optical guide, it is necessary to characterize its properties, especially sensitivity and spatial resolution of detector. In this study, the thickness and the refractive index of optical guide, which affect not only on the sensitivity but also on the spatial resolution of gamma-camera detector, were investigated by using Monte Carlo simulation. A 12'x12'x3/8' NaI(Tl) and 23 PMTs with each 5' diameter were considered as a gamma-camera detector components. Interactions of optical photons in the scintillator and the optical guide were simulated using a commercial code DETECT97, and the spatial resolution, mainly interfered by the intrinsic inward distortion within the PMT, was investigated using our own ANGER program, which was developed to calculate positions of incident photons in the gamma camera. From the simulation results, it was found that an optical guide with 1.6 of refractive index and 10 mm of thickness give maximum sensitivity and minimum spatial distortion, respectively

  20. Gamma ray spectroscopy of soil samples from apple orchards in Lamingo dam and Vom area in Jos, Plateau State, Nigeria

    International Nuclear Information System (INIS)

    Mangset, W. E.; Wilson, M. S.

    2011-01-01

    Five samples each were collected from the apple orchards in Lamingo dam and Vom area of Jos East and Jos South local government areas respectively. The samples were allowed to decay for three weeks to ensure efficiency in acquiring the radionuclides. The samples were analyzed using Gamma Ray spectroscopy. Barium- 204 with gamma activity energy level 1765.50keV was used to check the presence of Uranium-235 in the samples. The results showed that samples Lams 2,3,4 and Voms 1,4,5 had high gamma activity energy levels of 2436.356keV, l837.24keV 2928.37 keV and 1656.32keV, 1635.48keV, 2351.87keV respectively as compared to ( 204 B). While Lams 1,5 and Voms 2,3 had relatively lower gamma activity energy levels of 1325.23KeV, 1272.73keV and 1462.61KeV, 1183.24keV respectively. The samples with high gamma activity energy levels imply that radionuclide in the form of 235 U is present in trace amounts in the sampled areas. This can affect the output of apples cultivated in such areas as the chemical composition or structure of plants will be altered.

  1. Optimization of Pan Bread Prepared with Ramie Powder and Preservation of Optimized Pan Bread Treated by Gamma Irradiation during Storage

    International Nuclear Information System (INIS)

    Lee, H.J.; Joo, N.M.

    2012-01-01

    This study was conducted to develop an optimal composite recipe for pan bread with ramie powder that has high sensory approval with all age groups and to estimate the DPPH radical scavenging activity and the pan bread shelf life after gamma irradiation. The sensory evaluation results showed significant differences in flavor (p less than 0.05), appearance (p less than 0.01), color (p less than 0.01), moistness (p less than 0.01), and overall quality (p less than 0.05) based on the amount of ramie powder added. As a result, the optimum formulations by numerical and graphical methods were calculated to be as follows: ramie powder 2.76 g (0.92%) and water 184.7 mL. Optimized pan bread with ramie powder and white pan bread were irradiated with gamma-rays at doses of 0, 10, 15, and 20 kGy. The total bacterial growth increased with the longer storage time and the least amount of ramie powder added. Consequently, these results suggest that the addition of ramie powder to pan bread provides added value to the bread in terms of increased shelf life

  2. Study of radioactivity levels in detergent powders samples by gamma spectroscopy

    Directory of Open Access Journals (Sweden)

    Ali A. Abojassim

    2014-10-01

    Full Text Available This study focuses on the evaluation of the natural radioactivity levels in ten samples of the detergent powders that available in Iraqi markets. We have determined the specific activities of uranium, thorium and potassium using gamma spectroscopy and calculation of radiation hazard indices. The results of the activities of radionuclides (238U, 232Th, 40K for detergent powders samples, are found that the 238U specific activities were varied from (11.489 ± 2.089 Bq/kg to (36.062 ± 2.478 Bq/kg, while the 232th specific activities were varied from (1.411 ± 0.609 Bq/kg to (9.272 ± 1.642 Bq/kg and 40K were varied from (8.189 ± 2.339 Bq/kg to (91.888 ± 4.164 Bq/kg. These values are always lower than those of raw materials, what is explained by the conservation of radioactive material throughout the manufacturing process. The radium equivalent activity Raeq, the external hazard index Hex and the internal hazard index Hin dose due to natural radioactivity estimated below the regulatory standard recommended which are (370 Bq/kg, 1 and 1 according to OECD 1979 and ICRP 2000, allows us to show that Detergent powders samples products are not contaminated by radioactivity, are healthy and do not have harmful radiological impact on the consumer.

  3. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, P., E-mail: P.Dimitriou@iaea.org [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria); Becker, H.-W. [Ruhr Universität Bochum, Gebäude NT05/130, Postfach 102148, Bochum 44721 (Germany); Bogdanović-Radović, I. [Department of Experimental Physics, Institute Rudjer Boskovic, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Chiari, M. [Istituto Nazionale di Fisica Nucleare, Via Sansone 1, Sesto Fiorentino, 50019 Firenze (Italy); Goncharov, A. [Kharkov Institute of Physics and Technology, National Science Center, Akademicheskaya Str.1, Kharkov 61108 (Ukraine); Jesus, A.P. [Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (Portugal); Kakuee, O. [Nuclear Science and Technology Research Institute, End of North Karegar Ave., PO Box 14395-836, Tehran (Iran, Islamic Republic of); Kiss, A.Z. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, PO Box 51, 4001 Debrecen (Hungary); Lagoyannis, A. [National Center of Scientific Research “Demokritos”, Agia Paraskevi, P.O. Box 60228, 15310 Athens (Greece); Räisänen, J. [Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 43, 00014 University of Helsinki (Finland); Strivay, D. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liège, Sart Tilman, B15 4000 Liège (Belgium); Zucchiatti, A. [Centro de Micro Análisis de Materiales, Universidad Autónoma de Madrid, Faraday 3, Madrid 28049 (Spain)

    2016-03-15

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL) ( (http://www-nds.iaea.org/ibandl)) by members of the IBA community by 2011, however a preliminary survey of this body of unevaluated experimental data has revealed numerous discrepancies beyond the uncertainty limits reported by the authors. Using the resources and coordination provided by the IAEA, a concerted effort to improve the situation was made within the Coordinated Research Project on the Development of a Reference Database for PIGE spectroscopy, from 2011 to 2015. The aim of the CRP was to create a data library for Ion Beam Analysis that contains reliable and usable data on charged particle γ-ray emission cross sections that would be made freely available to the user community. As the CRP has reached its completion, we shall present its main achievements, including the results of nuclear cross-section evaluations and the development of a computer code that will become available to the public allowing for the implementation of a standardless PIGE technique.

  4. Optimization of Gamma Knife treatment planning via guided evolutionary simulated annealing

    International Nuclear Information System (INIS)

    Zhang Pengpeng; Dean, David; Metzger, Andrew; Sibata, Claudio

    2001-01-01

    We present a method for generating optimized Gamma Knife trade mark sign (Elekta, Stockholm, Sweden) radiosurgery treatment plans. This semiautomatic method produces a highly conformal shot packing plan for the irradiation of an intracranial tumor. We simulate optimal treatment planning criteria with a probability function that is linked to every voxel in a volumetric (MR or CT) region of interest. This sigmoidal P + parameter models the requirement of conformality (i.e., tumor ablation and normal tissue sparing). After determination of initial radiosurgery treatment parameters, a guided evolutionary simulated annealing (GESA) algorithm is used to find the optimal size, position, and weight for each shot. The three-dimensional GESA algorithm searches the shot parameter space more thoroughly than is possible during manual shot packing and provides one plan that is suitable to the treatment criteria of the attending neurosurgeon and radiation oncologist. The result is a more conformal plan, which also reduces redundancy, and saves treatment administration time

  5. Optimization of plastic scintillator thicknesses for online beta/gamma detection

    Directory of Open Access Journals (Sweden)

    Pourtangestani K.

    2012-04-01

    Full Text Available For efficient beta detection in a mixed beta gamma field, Monte Carlo simulation models have been built to optimize the thickness of a plastic scintillator, used in a whole body monitor. The simulation has been performed using the MCNP/X code for different thicknesses of plastic scintillator from 150 μm to 600 μm. The relationship between the thickness of the scintillator and the efficiency of the detector has been analyzed. For 150 μm thickness, an experimental investigation has been conducted with different beta sources at different positions on the scintillator and the counting efficiency of the unit has been measured. Evaluated data along with experimental ones have been discussed. A thickness of 300 μm to 500 μm has been found to be the optimum thickness for high efficiency beta detection in the presence of low energy gamma-rays.

  6. Clinical treatment planning optimization by Powell's method for gamma unit treatment system

    International Nuclear Information System (INIS)

    Yan Yulong; Shu Huazhong; Bao Xudong; Luo Limin; Bai Yi

    1997-01-01

    Purpose: This article presents a new optimization method for stereotactic radiosurgery treatment planning for gamma unit treatment system. Methods and Materials: The gamma unit has been utilized in stereotactic radiosurgery for about 30 years, but the usual procedure for a physician-physicist team to design a treatment plan is a trial-and-error approach. Isodose curves are viewed on two-dimensional computed tomography (CT) or magnetic resonance (MR) image planes, which is not only time consuming but also seldom achieves the optimal treatment plan, especially when the isocenter weights are regarded. We developed a treatment-planning system on a computer workstation in which Powell's optimization method is realized. The optimization process starts with the initial parameters (the number of iso centers as well as corresponding 3D iso centers' coordinates, collimator sizes, and weight factors) roughly determined by the physician-physicist team. The objective function can be changed to consider protection of sensitive tissues. Results: We use the plan parameters given by a well-trained physician-physicist team, or ones that the author give roughly as the initial parameters for the optimization procedure. Dosimetric results of optimization show a better high dose-volume conformation to the target volume compared to the doctor's plan. Conclusion: This method converges quickly and is not sensitive to the initial parameters. It achieves an excellent conformation of the estimated isodose curves with the contours of the target volume. If the initial parameters are varied, there will be a little difference in parameters' configuration, but the dosimetric results proved almost to be the same

  7. Optimization and decision-making radiation protection in gamma radiography facilities 192 Ir - with roof bunker

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    2001-01-01

    To determine optimized dose limits for workers, a study was undertaken of radiation protection optimization in gamma radiography facilities, using the Multi-Attribute Utility Analysis technique. A total of 66 protection options, distributed in 6 irradiation configurations in a closed installation, with roof, type 'bunker', were analyzed. In the determination of the optimized dose limit, the following attributes were considered: cost of the protection, cost of the detriment for different alpha values, cost of the isolation area, individual equivalent doses and collective dose. The variables considered in the evaluation included: effective work load, type and activity of the radiation sources, source-operator distance, and type and thickness of the material used in the protection shielding. Other parameters analyzed included the quality of the radiographic image and the technical procedures employed. The optimal analytic solutions obtained that resulted in the optimized dose limit were determined by means of a sensitivity analysis and by direct and logical evaluations. Thus, independent of the values of the monetary coefficient attributed to the detriment, the annual interests applied to the protection cost, and the type of installation studied, it was concluded that the primary limit of annual dose for workers, 50 mSv, can be easily reduced to an optimized annual dose limit of 5 mSv. (author)

  8. Stereotactic radiosurgery with the gamma knife. Possibilities of dose distribution optimizations

    International Nuclear Information System (INIS)

    Stuecklschweiger, G.

    1995-01-01

    On April 1992, the first stereotactic radiosurgical procedure using the gamma knife was performed at the University Medical School Graz, Department of Neurosurgery. Accurate dose optimization is the foundation of a convenient and responsible utilization of this modality. But there are limits, because the final collimation is only achieved by 1 of the 4 special helm collimators. The possibilities of dose optimization and its influence on the dose distributions were investigated and partly compared with results of film densitometry measurements. In detail, the technique, which uses the same isocenter, but different sized collimators was studied. The influence of these optimization techniques on the resulting dose distributions and the dose gradient at the edge of the treatment planning volume was analyzed. Also the visions for an effective dose optimization are discussed. With 2 shots of different diameters, located at the same target coordinates and different weighting of time any collimator size between the 4 mm and 18 mm can be achieved. Because of that, a combination of more than 2 collimators is not meaningful. With the combined shots the dose fall gradient was less than that of either of the single shots involved in the combination. With the available physical and technical possibilities only a limited, very time consuming optimization is practicable. The quality control of isodose distributions requires optimizations in hard-and software, that enable CT- or MRT-based 3-dimensional visualization and dose volume analysis. (orig./MG) [de

  9. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  10. Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy

    Science.gov (United States)

    Minh, David D. L.; Adib, Artur B.

    2008-05-01

    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.

  11. Proximal gamma-ray spectroscopy to predict soil properties using windows and full-spectrum analysis methods.

    Science.gov (United States)

    Mahmood, Hafiz Sultan; Hoogmoed, Willem B; van Henten, Eldert J

    2013-11-27

    Fine-scale spatial information on soil properties is needed to successfully implement precision agriculture. Proximal gamma-ray spectroscopy has recently emerged as a promising tool to collect fine-scale soil information. The objective of this study was to evaluate a proximal gamma-ray spectrometer to predict several soil properties using energy-windows and full-spectrum analysis methods in two differently managed sandy loam fields: conventional and organic. In the conventional field, both methods predicted clay, pH and total nitrogen with a good accuracy (R2 ≥ 0.56) in the top 0-15 cm soil depth, whereas in the organic field, only clay content was predicted with such accuracy. The highest prediction accuracy was found for total nitrogen (R2 = 0.75) in the conventional field in the energy-windows method. Predictions were better in the top 0-15 cm soil depths than in the 15-30 cm soil depths for individual and combined fields. This implies that gamma-ray spectroscopy can generally benefit soil characterisation for annual crops where the condition of the seedbed is important. Small differences in soil structure (conventional vs. organic) cannot be determined. As for the methodology, we conclude that the energy-windows method can establish relations between radionuclide data and soil properties as accurate as the full-spectrum analysis method.

  12. Evaluation of the generalized gamma as a tool for treatment planning optimization

    Directory of Open Access Journals (Sweden)

    Emmanouil I Petrou

    2014-12-01

    independent software. Furthermore, it was proved that after a small change in dose, the organ that is being affected most is the organ with the highest Generalized Gamma. Apart from that, the validity of the theoretical expressions that describe the change in response and the associated Generalized Gamma was verified but only for the case of small change in dose. Especially for the case of 50% TCP and NTCP, the theoretical values (ΔPapprox. and those calculated by the RayStation show close agreement, which proves the high importance of the D50 parameter in specifying clinical response levels. Finally, the presented findings show that the behavior of ΔPapprox. looks sensible because, for both of the models that were used (Poisson and Probit, it significantly approaches the real ΔP around the region of 37% and 50% response. The present study managed to evaluate the mathematical expression of Generalized Gamma for the case of non-uniform dose delivery and the accuracy of the RayStation to calculate its values for different organs. Conclusion: A very important finding of this work is the establishment of the usefulness and clinical relevance of Generalized Gamma. That is because it gives the planner the opportunity to precisely determine which organ will be affected most after a small increase in dose and as a result an optimal treatment plan regarding tumor control and normal tissue complications can be found.

  13. The structure of neutron-rich nuclei explored via in-beam gamma-ray spectroscopy of fast beams

    International Nuclear Information System (INIS)

    Glasmacher, T.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Hansen, P.G.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Bazin, D.; Enders, J.; Gade, A.; Hu, Z.; Mueller, W.F.

    2003-01-01

    In-beam gamma-ray spectroscopy with fast exotic beams provides an efficient tool to study bound states in exotic neutron-rich nuclei. Specialized experimental techniques have been developed and explore different aspects of nuclear structure. Inelastic scattering experiments with γ-ray detection can measure the response of exotic nuclei to electromagnetic (Coulomb excitation with a heavy target) or hadronic probes (proton scattering with hydrogen target). In-beam fragmentation populates higher-lying bound states to establish levels. Single- and two-nucleon knockout reactions allow for detailed wavefunction spectroscopy of individual levels and for the measurement of spectroscopic factors. Experimental programs employing these techniques are now underway at all projectile-fragmentation facilities around the world. Here we report on several successful in-beam gamma-ray spectroscopy experiments that have been performed at the Coupled Cyclotron Facility at Michigan State University with an emphasis on elucidating the evolution of nuclear structure around neutron numbers N=16, N=20, and N=28 in the π(sd) shell. (orig.)

  14. Tangential channel for nuclear gamma-resonance spectroscopy in thermal neutron capture

    International Nuclear Information System (INIS)

    Belogurov, V.N.; Bondars, H.Ya.; Lapenas, A.A.; Reznikov, R.S.; Senkov, P.E.

    1979-01-01

    Design of a tangential reactor channel which has been made to replace the radial one in the pulsed research reactor IRT-2000 is described. It allows to use the same hole in biological reactor schielding. Characteristics of neutron and gamma-background spectra at the excit of the channel are given and compared with analogous characteristics of the radial one. The gamma background in the tangential channel is lower than in the radial channel. The gamma spectra in the Gd 155 (n, γ)Gd 156 , Gd 157 (n, γ)Gd 158 , Er 167 (n, γ)Er 168 and Hf 177 (n, γ)Hf 178 reactions show that the application of X-ray detection units BDR with the tangential channel allows to carry out the gamma spectrometry of gamma quanta emitted in the thermal neutron capture by both high and low neutron capture cross section nuclei (e.g., Gdsup(157, 155) and Er 167 , Hf 177 , respectively)

  15. Optimization of measure parameters for an X- and gamma-ray spectrometry portable system

    International Nuclear Information System (INIS)

    Fernandes, Jaquiel S.; Appoloni, Carlos R.

    2008-01-01

    In order to optimize the use of a system for in situ gamma (γ)- and X-ray spectrometry composed of a 3x3x1 mm 3 Cadmium Telluride (CdTe) detector with respect to the detection of low-activity radioactive sources, a two level factorial planning was accomplished, involving three factors that could modify the system response. This planning was made with a 137 Cs punctual source, analyzing the X-ray energy line of 32 keV from 137m Ba. It was concluded that, for the system optimization, the best configuration for the involved parameters was to work with the detector at temperature of -22 o C, shaping time of 3 μs and rise time discrimination (RTD) with value 3

  16. Optimal Shape of a Gamma-ray Collimator: single vs double knife edge

    Science.gov (United States)

    Metz, Albert; Hogenbirk, Alfred

    2017-09-01

    Gamma-ray collimators in nuclear waste scanners are used for selecting a narrow vertical segment in activity measurements of waste vessels. The system that is used by NRG uses tapered slit collimators of both the single and double knife edge type. The properties of these collimators were investigated by means of Monte Carlo simulations. We found that single knife edge collimators are highly preferable for a conservative estimate of the activity of the waste vessels. These collimators show much less dependence on the angle of incidence of the radiation than double knife edge collimators. This conclusion also applies to cylindrical collimators of the single knife edge type, that are generally used in medical imaging spectroscopy.

  17. Optimized blind gamma-ray pulsar searches at fixed computing budget

    International Nuclear Information System (INIS)

    Pletsch, Holger J.; Clark, Colin J.

    2014-01-01

    The sensitivity of blind gamma-ray pulsar searches in multiple years worth of photon data, as from the Fermi LAT, is primarily limited by the finite computational resources available. Addressing this 'needle in a haystack' problem, here we present methods for optimizing blind searches to achieve the highest sensitivity at fixed computing cost. For both coherent and semicoherent methods, we consider their statistical properties and study their search sensitivity under computational constraints. The results validate a multistage strategy, where the first stage scans the entire parameter space using an efficient semicoherent method and promising candidates are then refined through a fully coherent analysis. We also find that for the first stage of a blind search incoherent harmonic summing of powers is not worthwhile at fixed computing cost for typical gamma-ray pulsars. Further enhancing sensitivity, we present efficiency-improved interpolation techniques for the semicoherent search stage. Via realistic simulations we demonstrate that overall these optimizations can significantly lower the minimum detectable pulsed fraction by almost 50% at the same computational expense.

  18. High-resolution gamma spectroscopy with whole-body and partial-body counters. Experience, recommendations. Report

    International Nuclear Information System (INIS)

    Sahre, P.

    1997-12-01

    The application of high-resolution gamma spectroscopy with whole-body and partial-body counters shows a steadily rising upward trend over the last few years. This induced the ''Arbeitskreis Inkorporationsueberwachung'' of the association ''Fachverband fuer Strahlenschutz e.V.'' to organise a meeting for joint elaboration of a guide on recommended applications of this measuring technique, based on a review of existing experience and results. A key item on the agenda of the meeting was the comparative evaluation of the Ge semiconductor detector and the NaI solid scintillation detector. (orig./CB) [de

  19. Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

    DEFF Research Database (Denmark)

    Eriksson, J.; Nocente, M.; Binda, F.

    2015-01-01

    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe......-ray spectroscopy based on a one-dimensional model and by a consistency check among the individual measurement techniques. A systematic difference is seen between the two lines of sight and is interpreted to originate from the sensitivity of the oblique detectors to the pitch-angle structure of the distribution...

  20. Nuclear structure studies on 178Hf by means of neutron induced gamma and electron spectroscopy

    International Nuclear Information System (INIS)

    Al Mamun Imtiazul Haque.

    1985-01-01

    By means of thermal and epithermal neutron captures the nucleus 178 Hf was studied. With high-resolution spectrometers the gamma transitions and conversion electrons were measured. By the found energies, intensities, and multipolarities the level scheme of 178 Hf could be essentially improved and extended. Totally 270 secondary (from 600 gamma lines) and 39 primary gamma transitions were used in order to establish the level scheme with 66 levels in 18 rotational bands. For this 92% of all gamma intensities were used. Several new rotational bands were established. By improved gamma energies the level scheme below 2 MeV for spins between 0 and 6 is well confirmed. Moreover by the resolution of several multiplets the decay structure of the levels could be explained. The thermal neutron capture state results from the primary gamma transitions to Q n =7626.34 (23) keV. Electrical monopole transitions from several states were studied in order to determine the X(E0/E2) values. (orig./HSI) [de

  1. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei; Cheng, Bin; Liu, Wei-Ting; Tsai, Meng-Lin; He, Jr-Hau; Chuvilin, Andrey

    2017-01-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  2. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  3. A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy

    International Nuclear Information System (INIS)

    White, Travis L.; Miller, William H.

    1999-01-01

    Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2 (Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation

  4. Observation of neutron standing waves at total reflection by precision gamma spectroscopy

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Gundorin, N.A.; Nikitenko, Yu.V.; Popov, Yu.P.; Cser, L.

    1998-01-01

    Total reflection of polarized neutrons from the layered structure glass/Fe (1000 A Angstrom)/Gd (50 A Angstrom) is investigated by registering neutrons and gamma-quanta from thermal neutron capture. The polarization ratio of gamma counts of neutron beams polarized in and opposite the direction of the magnetic field is measured. The polarization ratio is larger than unity for the neutron wavelengths λ 2.2 A Angstrom. Such behaviour of the wavelength dependence of the gamma-quanta polarization ratio points to the fact that over the surface of the Fe Layer a neutron standing wave caused by the interference of the incident neutron wave and the wave refracted from the magnetized Fe layer is formed

  5. Study of dynamic behavior of EDTA molecule in solution using perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Amaral, Antonio A.; Silva, Andreia dos S.; Carbonari, Arthur W.; Lapolli, Andre L.

    2009-01-01

    In this work, PAC spectroscopy has been used to obtain the hyperfine parameters in EDTA molecules in solutions with pH 4.3 and pH 10.5 both measured at 77 K and 295 K using 181 Hf( 181 Ta) as probe nuclei. Both dynamic and static interactions were measured in aqueous solution, crystallized and re-hydrated samples in order to examine the motion and structure of EDTA-molecules. The hyperfine parameters, quadrupole interaction frequency (ν Q ), asymmetry (η), and the dynamic interaction frequency (λ) were obtained. The outcomes show that the rotational correlation time (τ CR ) is larger than the half-life of the intermediate state of probe nuclei. For samples with pH 4.3 and pH 10.5, it was observed an increase in ν Q when the temperature decreases, as expected, and also a variation of η, which is an evidence of a change in the EDTA molecule structure. 181 Hf is bound only to a single molecule site when the pH was 4.3, differently from the results for pH 10.5 sample, which showed two fractions with different ν Q indicating the possibility of 181 Hf being bonded to two different sites of the molecule. Measurements of the dehydrated sample presented different results leading us to conclude that the preparation procedure can causes alterations in the chemical bounds. Concluding, these results showed a systematic behavior of the 181 Hf-EDTA, with the variation of pH from 4 to approximately 11, and they are important to the knowledge of the dynamic behavior of this molecule. (author)

  6. A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy

    Science.gov (United States)

    Veiga, Alejandro; Grunfeld, Christian

    2016-02-01

    The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.

  7. FTIR spectroscopy as an alternative tool for high gamma dose dosimetry using P(VDF-TrFE) fluorinated copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Adriana S.; Liz, Otavio S., E-mail: asm@cdtn.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Poly(vinylidene fluoride) [PVDF] is a semicrystalline homopolymer and some of its fluorinated copolymer has demonstrated to have sensitiveness to high doses of ionizing radiation. We have recently proposed a semicrystalline fluorinated PVDF copolymer, the poly(vinylidene-trifluorethylene) [P(VDF-TrFE], as a candidate for measuring larger dose ranges. In fact, in these copolymers the optical absorption peak at 274 nm has been used to measure gamma doses ranging from 1.0 to 100.0 kGy and the melting latent heat, collected by differential scanning calorimetry (DSC), have been used to measure gamma doses from 1.0 to 1,000.0 kGy. In this paper, the infrared stretching vibration of radio-induced in-chain unsaturations (CH=CF) in P(VDF-TrFE) copolymers has been considered as an alternative tool for high dose dosimetric purposes. FTIR spectroscopic data revealed two optical absorption bands at 1754 cm{sup -1} and 1854 cm{sup -1} whose intensities are unambiguously related to gamma delivered doses ranging from 100.0 kGy to 1,000.0 kGy. Fading was evaluated one month after irradiation. The results indicate that the sample dose evaluation should be performed in the first two hours after being exposed to the radiation beam. The radio-induced formation of unsaturations was also investigated by ultraviolet and visible spectroscopy, which has confirmed the gradual increase of conjugated C=C bonds with the absorbed dose. Our results indicate that quantitative analysis of FTIR absorption bands is a useful tool to perform a product end-point dosimetry in radiation processing facilities that use high gamma dose irradiation. (author)

  8. Parameter Estimations and Optimal Design of Simple Step-Stress Model for Gamma Dual Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Hamdy Mohamed Salem

    2018-03-01

    Full Text Available This paper considers life-testing experiments and how it is effected by stress factors: namely temperature, electricity loads, cycling rate and pressure. A major type of accelerated life tests is a step-stress model that allows the experimenter to increase stress levels more than normal use during the experiment to see the failure items. The test items are assumed to follow Gamma Dual Weibull distribution. Different methods for estimating the parameters are discussed. These include Maximum Likelihood Estimations and Confidence Interval Estimations which is based on asymptotic normality generate narrow intervals to the unknown distribution parameters with high probability. MathCAD (2001 program is used to illustrate the optimal time procedure through numerical examples.

  9. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2017-01-01

    Full Text Available Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  10. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Science.gov (United States)

    Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald

    2017-09-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  11. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    International Nuclear Information System (INIS)

    Kooyman, T.; Buiron, L.; Rimpault, G.

    2017-01-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing. (authors)

  12. Dust extinction in high-z galaxies with gamma-ray burst afterglow spectroscopy

    DEFF Research Database (Denmark)

    Elíasdóttir, Á.; Fynbo, J. P. U.; Hjorth, J.

    2009-01-01

    We report the clear detection of the 2175 Å dust absorption feature in the optical afterglow spectrum of the gamma-ray burst (GRB) GRB 070802 at a redshift of z = 2.45. This is the highest redshift for a detected 2175 Å dust bump to date, and it is the first clear detection of the 2175 Å bump...

  13. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    Science.gov (United States)

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  14. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Ullom, Joel N; Bennett, Douglas A

    2015-01-01

    We present a review of emerging x-ray and gamma-ray spectrometers based on arrays of superconducting transition-edge sensors (TESs). Special attention will be given to recent progress in TES applications and in understanding TES physics. (paper)

  15. Quantification of {sup 235} U and {sup 226} Ra in soil samples by means of Gamma spectroscopy; Cuantificacion de {sup 235} U y {sup 226} Ra en muestras de suelo por medio de espectrometria gamma

    Energy Technology Data Exchange (ETDEWEB)

    Quintero P, E.; Rojas M, V.P.; Montes M, F.R.; Gaso P, M.I.; Cervantes N, M.L. [Gerencia de Innovacion Tecnologica, A.P. 18-1027, C.P. 11801 Mexico D.F. (Mexico)

    2000-07-01

    In this work it is presented the Gamma Spectroscopy method which is realized in the Environmental Radiological Surveillance Laboratory using the option of deconvolution of a commercial software for the quantification of {sup 235} U and {sup 226} Ra; also is presented the method for the {sup 226} Ra correction activity. (Author)

  16. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation

    Directory of Open Access Journals (Sweden)

    Nora M. Elkenawy

    2017-03-01

    Full Text Available Prodigiosin is a red pigment produced by Serratia marcescens. Prodigiosin is regarded as a promising drug owing to its reported characteristics of possessing anti-microbial, anti-cancer, and immunosuppressive activity. A factorial design was applied to generate a set of 32 experimental combinations to study the optimal conditions for pigment production using crude glycerol obtained from local biodiesel facility as carbon source for the growth of Serratia marcescens. The maximum production (870 unit/cell was achieved at 22 °C, at pH 9 with the addition of 1% (w/v peptone and 109 cell/ml inoculum size after 6 days of incubation. Gamma radiation at dose 200 Gy was capable of doubling the production of the pigment using the optimized conditions and manipulating production temperature. Our results indicate that we have designed an economic medium supporting enhanced Serratia marcescens MN5 prodigiosin production giving an added value for crude glycerol obtained from biodiesel industry.

  17. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    Science.gov (United States)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  18. A wavelet filtering method for cumulative gamma spectroscopy used in wear measurements

    International Nuclear Information System (INIS)

    Bianchi, Davide; Lenauer, Claudia; Betz, Gerhard; Vernes, András

    2017-01-01

    Continuous ultra-mild wear quantification using radioactive isotopes involves measuring very low amounts of activity in limited time intervals. This results in gamma spectra with poor signal-to-noise ratio and hence very scattered wear data, especially during running-in, where wear is intrinsically low. Therefore, advanced filtering methods reducing the wear data scattering and making the calculation of the main peak area more accurate are mandatory. An energy-time dependent threshold for wavelet detail coefficients based on Poisson statistics and using a combined Barwell law for the estimation of the average photon counting rate is then introduced. In this manner, it was shown that the accuracy of running-in wear quantification is enhanced. - Highlights: • Time-dependent Poisson statistics. • Wavelet-based filtering of cumulative gamma spectra. • Improvement of low wear analysis.

  19. Advantages of GSO Scintillator in Imaging and Law Level Gamma-ray Spectroscopy

    CERN Document Server

    Sharaf, J

    2002-01-01

    The single GSO crystal is an excellent scintillation material featuring a high light yield and short decay time for gamma-ray detection. Its performance characteristics were investigated and directly compared to those of BGO. For this purpose, the two scintillators are cut into small crystals of approximately 4*4*10 mm sup 3 and mounted on a PMT. Energy resolution, detection efficiency and counting precision have been measured for various photon energies. In addition to this spectroscopic characterization, the imaging performance of GSO was studied using a scanning rig. The modulation transfer function was calculated and the spatial resolution evaluated by measurements of the detector's point spread function. It is shown that there exists some source intensity for which the two scintillators yield identical precision for identical count time. Below this intensity, the GSO is superior to the BGO detector. The presented properties of GSO suggest potential applications of this scintillator in gamma-ray spectrosc...

  20. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    International Nuclear Information System (INIS)

    Kosanke, K.L.; Koch, C.D.; Wilson, R.D.

    1980-01-01

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date

  1. STUDY CONCERNING THE POSSIBILITY OF GAMMA-SPECTROSCOPY METHOD TO DETERMINE THE TOTAL POTASSIUM IN SOILS

    Directory of Open Access Journals (Sweden)

    Tamara Leah

    2011-12-01

    Full Text Available It was proved the possibility of determination the total potassium in soils by gamma-spectroscopic method with subsequent calculation of total potassium content in according to value of 40K isotope (expressed in Becquerel, Bq, using the formula: К2О, % = С . А, where: C – conversion coefficient, A – activity of isotope 40K in soil, Bq/kg. Conversion coefficient for chernozems of Moldova – C=0,00337.

  2. Validation of gamma spectrometer in spectroscopy laboratory of education and training center BATAN

    International Nuclear Information System (INIS)

    Sugino; Tulisna; Anda Sanusi; Sugito

    2010-01-01

    Gamma spectrometer used to determine the type and activity of gamma emitting radionuclides, such as the measurement of environmental radioactivity and neutron activation analysis (NAA). In order to obtain precise and accurate qualitative and quantitative analysis, the gamma spectrometer should be validated. Validation of the gamma spectrometer was conducted on the confirmation of identity, differential linearity, performance, efficiency calibration, precision test, and accuracy test. Confirmation of identity conducted by energy calibration testing conducted and showed the largest energy deviation of 0.3 keV. Differential linearity testing showed the highest count difference of 6.9 %. Test Results for 1 year showed the lowest resolution of 1.82 keV, in accordance with the initial resolution of 1.8 keV. Value of lowest P/C is 59.8, according to the first P/C of 60. The lowest relative efficiency of 28.6 %, according to the initial efficiency of 30 %. Calibration curve shows that for more than 200 keV energy, the relationship of Ln Energy vs Ln Efficiency is a straight line with equation Ln(ε) = 7.211-0.8173 Ln(E), while for less than 100 keV energy the the equation Ln(ε) = -13.34+6.712Ln(E)+0.06894 Ln(E)"2, in accordance with the theory and references. Precision test conducted by chi square value of 10.6, according to probability of 5 % to 95 %. Testing the accuracy is shown from the results of comparative tests of measuring I-131 activity in 2009 with good results, the difference in the results of 2.35 % with the uncertainty of 6 %. (author)

  3. Determination of natural radioactive elements in Abo Zaabal, Egypt by means of gamma spectroscopy

    International Nuclear Information System (INIS)

    Morsy, Zeinab; Abd El-Wahab, Magda; El-Faramawy, Nabil

    2012-01-01

    Highlights: ► We examined the radioactivity of different type samples from Abo Zaabaal Lake. ► We evaluated the natural nuclide gamma-ray activities and their annual dose rates. ► We evaluated the concentrations of 226 Ra and its hazard indices. ► We assessed the absorbed dose in human. ► All results are within normal ranges. - Abstract: The natural nuclide gamma-ray activities and their respective annual effective dose rates, produced by 238 U, 232 Th, 40 K and 226 Ra, are determined for 10 different natural samples (soil–plant–water) from Abo Zaabaal Lake. This lake is located very close to the Egyptian reactors. The gamma spectra analysis indicates that the photo-gamma lines represent ten radioactive nuclides 234 Th, 239 Pu, 228 Ac, 226 Ra, 212 Pb, 214 Pb, 208 Tl, 212 Bi, 214 Bi and 40 K. These nuclides represent the daughters of the natural radioactive series 238 U and 232 Th with 40 K. The mean activity concentration of 238 U was found to be 6.57, 10.16 and 5.44 Bq kg −1 for (soil–plant–water); 8.46, 8.33 and 6.04 Bq kg −1 of 232 Th, and 136.3, 216.8 and 119.2 Bq kg −1 of 40 K respectively. The mean activity concentrations of 226 Ra were obtained which help to evaluate the radiation hazard indices as radium equivalent, internal and external hazard indices. In addition, to assess the radiation risk to a biosystem, the annual effective dose rate, the absorbed dose in human and the absorbed dose outdoor are also evaluated.

  4. BiI3 Crystals for High Energy Resolution Gamma-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nino, Juan C. [Univ. of Florida, Gainesville, FL (United States); Baciak, James [Univ. of Florida, Gainesville, FL (United States); Johns, Paul [Univ. of Florida, Gainesville, FL (United States); Sulekar, Soumitra [Univ. of Florida, Gainesville, FL (United States); Totten, James [Univ. of Florida, Gainesville, FL (United States); Nimmagadda, Jyothir [Univ. of Florida, Gainesville, FL (United States)

    2017-04-12

    BiI3 had been investigated for its unique properties as a layered compound semiconductor for many decades. However, despite the exceptional atomic, physical, and electronic properties of this material, good resolution gamma ray spectra had never been reported for BiI3. The shortcomings that previously prevented BiI3 from reaching success as a gamma ray sensor were, through this project, identified and suppressed to unlock the performance of this promising compound. Included in this work were studies on a number of methods which have, for the first time, enabled BiI3 to exhibit spectral performance rivaling many other candidate semiconductors for room temperature gamma ray sensors. New approaches to crystal growth were explored that allow BiI3 spectrometers to be fabricated with up to 2.2% spectral resolution at 662 keV. Fundamental studies on trap states, dopant incorporation, and polarization were performed to enhance performance of this compound. Additionally, advanced detection techniques were applied to display the capabilities of high quality BiI3 spectrometers. Overall, through this work, BiI3 has been revealed as a potentially transformative material for nuclear security and radiation detection sciences.

  5. Study of the Nuclear Structure of 39P Using Beta-Delayed Gamma Spectroscopy

    Science.gov (United States)

    Abromeit, Brittany; NSCL Experiment E14063 Team Team

    2016-03-01

    Investigation of nuclei with neutron and proton imbalance is at the forefront of nuclear physics research today. This is driven by the fact that the structure in these regimes may vary with that seen near the valley of stability. With eight neutrons more than the stable isotope of phosphorous, 39P is a neutron-rich exotic nucleus that has very limited information on it: previous studies of 39P produce only three known energy levels and gamma rays. The fragmentation of a 48Ca primary beam on a 564mg/cm2 thick Be target at the National Superconducting Cyclotron Laboratory (NSCL) was used to produce exotic 39Si. Using the NSCL Beta Counting System (BCS), consisting of a thick planner germanium double-sided strip detector (GeDSSD) and 16 High-purity germanium detectors in an array, SeGA, the beta-gamma coincidences from the decay of 39Si to 39P were analyzed. The resulting level scheme of 39P, including over 12 new gamma rays and energy states, confirmation of the previously measured half-life, and first-time logft values will be presented. This work was supported by the NSF under Grant No. 1401574.

  6. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb

    Directory of Open Access Journals (Sweden)

    Gurgi L.A.

    2017-01-01

    Full Text Available This short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4 μs. The multipolarity assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2[521] and π(3+/2 Nilsson orbitals.

  7. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    Science.gov (United States)

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Spectroscopy of {sup 189,187}Pb from gamma-FMA coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, R.V.F.; Davids, C.N.; Blumenthal, D. [and others

    1995-08-01

    The very neutron-deficient Pb isotopes are of much current interest because they exhibit shape coexistence between a spherical groundstate and a deformed prolate excited configuration located very low in excitation energy. Last year the nucleus {sup 186}Pb was studied at the FMA in an FMA-{gamma}-{gamma} coincidence experiment. The purpose of the present measurement was to delineate, for the first time, the groundstate and near groundstate excitations in the odd Pb isotopes {sup 189,187}Pb in order to identify the orbitals which have an important role in driving the nuclear shape. The experiment was performed only very recently at the FMA with 10 Compton-suppressed Ge detectors from the Argonne Notre Dame BGO Gamma-Ray facility. {sup 187}Pb was studied with the {sup 155}Gd({sup 36}Ar,4n) reaction at 179 MeV, while {sup 189}Pb was reached with the {sup 158}Gd({sup 36}Ar,5n) reaction at the same beam energy. The analysis just began. It can already be stated that transitions in both Pb isotopes were identified and that it should be possible to establish level schemes. The presence of possible isomeric states in {sup 189}Pb will be checked in a follow-up experiment planned in Canberra. A similar measurement on {sup 187}Pb appears very difficult because of the very small cross section involved.

  9. Scientific prospects for spectroscopy of the gamma-ray burst prompt emission with SVOM

    Science.gov (United States)

    Bernardini, M. G.; Xie, F.; Sizun, P.; Piron, F.; Dong, Y.; Atteia, J.-L.; Antier, S.; Daigne, F.; Godet, O.; Cordier, B.; Wei, J.

    2017-10-01

    SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4-150 keV), and a gamma-ray spectrometer (GRM; 15-5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.

  10. Photon Activation Analysis Of Light Elements Using 'Non-Gamma' Radiation Spectroscopy - The Instrumental Determination Of Phosphorus

    International Nuclear Information System (INIS)

    Segebade, Christian; Goerner, Wolf

    2011-01-01

    Unlike metal determinations the analysis of light elements (e.g., carbon, oxygen, phosphorus) is frequently problematic, in particular if analysed instrumentally. In photon activation analysis (PAA) the respective activation products do not emit gamma radiation in the most cases. Usually, annihilation quanta counting and subsequent decay curve analysis have been used for determinations of C, N, O, and F. However, radiochemical separation of the respective radioisotopes mostly is indispensable. For several reasons, some of the light elements cannot be analysed following this procedure, e.g. phosphorus. In this contribution the instrumental PAA of phosphorus in organic matrix by activation with bremsstrahlung of an electron linear accelerator and subsequent beta spectroscopy is described. The accuracy of the results was excellent as obtained by analysis of a BCR Reference Material.

  11. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  12. A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)

    2017-05-21

    We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.

  13. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    International Nuclear Information System (INIS)

    Zhang, Chunhua; Lu, Xiang; Tan, Yuanyuan; Wang, Yashun

    2015-01-01

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  14. High-resolution gamma spectroscopy with whole-body and partial-body counters. Experience, recommendations. Report; Hochaufloesende Gamma-Spektrometrie an Ganz- und Teilkoerperzaehlern. Erfahrungen, Empfehlungen. Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Sahre, P. [comp.

    1997-12-01

    The application of high-resolution gamma spectroscopy with whole-body and partial-body counters shows a steadily rising upward trend over the last few years. This induced the ``Arbeitskreis Inkorporationsueberwachung`` of the association ``Fachverband fuer Strahlenschutz e.V.`` to organise a meeting for joint elaboration of a guide on recommended applications of this measuring technique, based on a review of existing experience and results. A key item on the agenda of the meeting was the comparative evaluation of the Ge semiconductor detector and the NaI solid scintillation detector. (orig./CB) [Deutsch] Der Einsatz der hochaufloesenden Gammaspektroskopie in Ganz- und Teilkoerperzaehlern hat in den letzten Jahren stetig zugenommen. Der ``Arbeitskreis Inkorporationsueberwachung`` des Fachverbandes fuer Strahlenschutz e.V. hat darum bisherige Erfahrungen zusammengetragen und Empfehlungen fuer den Einsatz dieser Messtechnik erarbeitet. Der Schwerpunkt der Tagung lag beim Vergleich von Germaniumhalbleiter- mit Natriumjodid-Festszintillationsdetektoren.Tl-Detektoren eignen sich v.a. beim Vorhandensein bekannter und zeitlich konstanter Nuklidvektoren (Kernkraftwerke, Nuklearmedizin). Bei unbekanntem bzw. variablem Nuklidvektor (Stoerfall, Unfall, Forschung) sollen Ge-Detektoren benutzt werden (orig./ABI)

  15. A NIM (Nuclear Instrumentation Module) system conjugated with optional input for pHEMT amplifier for beta and gamma spectroscopy

    International Nuclear Information System (INIS)

    Konrad, Barbara; Lüdke, Everton

    2014-01-01

    This work presents a high speed NIM module (Nuclear Instrumentation Module) to detect radiation, gamma and muons, as part of a system for natural radiation monitoring and of extraterrestrial origin. The subsystem developed consists of a preamplifier and an integrated SCA (Single Channel Analyzer), including power supplies of ± 12 and ± 24V with derivations of +3.6 and ± 5V. The single channel analyzer board, consisting of discrete logic components, operating in window modes, normal and integral. The pulse shaping block is made up of two voltage comparators working at 120 MHz with a response time > 60 ns and a logic anticoincidence system. The preamplifier promotes a noise reduction and introduces the impedance matching between the output of anode / diode photomultiplier tubes (PMTs) and subsequent equipment, providing an input impedance of 1MΩ and output impedance of 40 to 140Ω. The shaper amplifier is non-inverting and has variable input capacitance of 1000 pF. The upper and lower thresholds of the SCA are adjustable from 0 to ± 10V, and the equipment is compatible with various types of detectors, like PMTs coupled to sodium iodide crystals. For use with liquid scintillators and photodiodes with crystals (CsI: Tl) is proposed to include a preamplifier circuit pHEMT (pseudomorphic High Electron Mobility Transistor) integrated. Yet, the system presents the possibility of applications for various purposes of gamma spectroscopy and automatic detection of events producing of beta particles

  16. Studies of. gamma. -ray irradiation effects on tris(. beta. -diketonato)iron(III) and cobalt(III) coordination compounds by means of Moessbauer spectroscopy and magnetic susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y.; Endo, K.; Sano, H. (Tokyo Metropolitan Univ. (Japan). Faculty of Science)

    1981-06-01

    Both absorption Moessbauer spectroscopy and magnetic susceptibility measurements on tris(..beta..-diketonato)iron(III) and cobalt(III) compounds indicate that ligands which have phenyl group as a substituent are more stable to ..gamma..-ray radiolysis, in accordance with previous results of emission Moessbauer spectroscopic studies of /sup 57/Co-labelled tris (..beta..-diketonato)cobalt(III) compounds.

  17. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  18. High-sensitivity gamma spectroscopy for extended sources. Application to activity measurements on the human body, on glass, and on soil

    International Nuclear Information System (INIS)

    Jouve, B.

    1962-01-01

    The measurement and location by gamma spectroscopy of human body internal contaminations at maximum permissible levels, and, in certain cases, at lower activities such as that due to 40 K was investigated. The characteristics of the high-sensitivity apparatus used are given, and several assemblies using large-volume NaI(Tl) scintillators are described. The relatively light shielding required for natural radioactivity permitted construction of mobile assembly. Conditions of use are described, and the results are given. All gamma emitting elements were measured in 15 min at levels lower than the tolerance dose. Gamma spectroscopy was also used to determine fission products in the earth and to study radioactive elements in the presence of other emitters. (author) [fr

  19. Assessment of pollutants in manzala lake using gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Abdel-Haleem, A.S.; Zaghloul, R.; El-Abbady, W.H.; Hassan, A.M.

    1996-01-01

    Multielemental analysis of water samples taken from the area of manzala lake in the east-north of river Nile delta of egypt, has been performed. Prompt gamma neutron activation analysis (PGNAA) technique is applied to determine the elemental concentrations. The samples have been irradiated by means of (PGNAA) facility using a Cf 252 isotopic neutron source with a total flux of 1.5 x 10 5 n cm 2 s -1 for 300 min irradiation time. The evaluation of Cd, Gd, Sm, Pb, Zn, Co and Hg as trace elements in these samples is reported. 1 fig., 2 tabs

  20. On-line gamma spectroscopy measuring station for cover gas monitoring at KNK II

    International Nuclear Information System (INIS)

    Hoffmann, G.; Letz, K.D.

    1980-02-01

    An automated Ge-γ-spectrometer was developed for cover gas monitoring at KNK II which, by the gamma spectra measured, is to allow the following statements to be made on fuel cladding failure: Type, size, variation with time and subsequent development of the failure. In this report the hardware and software will be explained. Besides, an instruction manual was written for the measuring station, which allows to operate it without detailed knowledge of the manuals for the individual hardware components. (orig.) 891 HP/orig. 892 MKO [de

  1. Gamma-ray spectroscopy applications in radiation control and environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Manushev, B [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Koleva, K [National Metrology Centre, Sofia (Bulgaria)

    1996-12-31

    A method for stabilization of gamma-ray spectrometers energy calibration is proposed. It is based on recalibration of the spectrum by numerical filtration. The possibility of efficiency auto-calibration is considered in the case when a reference source with appropriate shape is unavailable. The method is tested by estimation of the effective thickness of a lead plate (self-absorption). Potential applications include the evaluation of surface pollution infiltration depth as well as the development of pure beta sources (e.g. Sr-90) using the registration of their Bremsstrahlung. 6 refs.

  2. Progress in Investigation of WWER-440 Reactor Pressure Vessel Steel by Gamma and Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Hascik, J.; Slugen, V.; Lipka, J.; Hinca, R.; Toth, I.; Groene, R.; Uvacik, P.; Kupca, L.

    1998-01-01

    Gamma spectroscopic analyse and first experimental results of original irradiated reactor pressure vessel surveillance specimens are discussed in. In 1994, the new ''Extended Surveillance Specimen Program for nuclear Reactor Material Study'' was started in collaboration with the nuclear power plants (NPP) V-2 Bohunice (Slovakia). The first batch of MS samples (after 1 year, which is equivalent to 5 years of loading RPV-steel) was measured and interpreted using the new four components approach with the aim to observe microstructural changes due to thermal and neutron treatment resulting from operating conditions in NPP. The systematic changes in the relative areas of Moessbauer spectra components were observed. (author)

  3. The nuclear data ND-6700 system for gamma spectroscopy at Winfrith

    International Nuclear Information System (INIS)

    Horton, K.D.

    1985-11-01

    The ND-6700 is a computerised counting system for measuring and recording emissions from a wide range of radioactive sources. This system as used at Winfrith consists of a central dedicated minicomputer, two terminals, two printers, and four detectors with associated counting electronics. Samples may be counted and the resulting gamma-ray spectra stored in a data file for subsequent analysis using the system's software. This report describes the ND-6700 system in detail, and provides a series of instructions for its operation and documentation for user written software. (UK)

  4. Combined in-beam electron and gamma-ray spectroscopy of (184,186)Hg

    CERN Document Server

    Scheck, M; Rahkila, P; Butler, P A; Larsen, A C; Sandzelius, M; Scholey, C; Carrol, R J; Papadakis, P; Jakobsson, U; Grahn, T; Joss, D T; Watkins, H V; Juutinen, S; Bree, N; Cox, D; Huyse, M; Uusitalo, J; Leino, M; Ruotsalainen, P; Nieminen, P; Srebrny, J; Van Duppen, P; Herzan, A; Greenlees, P T; Julin, R; Herzberg, R D; Hauschild, K; Pakarinen, J; Page, R D; Peura, P; Gaffney, L P; Kowalczyk, M; Rinta-Antila, S; Saren, J; Lopez-Martens, A; Sorri, J; Ketelhut, S

    2011-01-01

    By exploiting the SAGE spectrometer a simultaneous measurement of conversion electrons and gamma rays emitted in the de-excitation of excited levels in the neutron-deficient nuclei (184,186)Hg was performed. The light Hg isotopes under investigation were produced using the 4n channels of the fusion-evaporation reactions of (40)Ar and (148,150)Sm. The measured K- and L-conversion electron ratios confirmed the stretched E2 nature of several transitions of the yrast bands in (184,186)Hg. Additional information on the E0 component of the 2(2)(+) -> 2(1)(+) transition in (186)Hg was obtained.

  5. Moessbauer spectroscopy at the 93.3 KeV gamma transition at Zn-67

    International Nuclear Information System (INIS)

    Forster, A.

    1981-01-01

    This work presents the result of a Moessbauer effect study at the zinc-67 isotope. The 93.3 KeV gamma transition has the highest energy resolution of all accessible Moessbauer transitions. Source and absorber we cooled down to 4.2 K. The aim of the examination was 1) development of a method for solid state physical measuring of Moessbauer-resonances with high resolution and 2) to test this method to study the hfs parameters for ZnO, ZnS, ZnSe, ZnTe and ZnF 2 . (KHF)

  6. Experimental setup for radon exposure and first diffusion studies using gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas, E-mail: a.maier@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Beek, Patrick van [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt (Germany); Hellmund, Johannes [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Durante, Marco [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Technical University Darmstadt, Hochschulstraße 6, 64289 Darmstadt (Germany); Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-11-01

    In order to measure the uptake and diffusion of {sup 222}Rn in biological material, an exposure chamber was constructed where cell cultures, biological tissues and mice can be exposed to {sup 222}Rn-activities similar to therapy conditions. After exposure, the material is transferred to a gamma spectrometer and the decay of {sup 214}Pb and {sup 214}Bi is analyzed. From the time kinetics of these decays the total amount of the initial {sup 222}Rn concentration can be calculated. In this paper the design and construction as well as first test measurements are reported.

  7. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  8. The PRESPEC liquid-hydrogen target for in-beam gamma spectroscopy of exotic nuclei at GSI

    International Nuclear Information System (INIS)

    Louchart, C.; Gheller, J.M.; Chesny, Ph.; Authelet, G.; Rousse, J.Y.; Obertelli, A.; Boutachkov, P.; Pietri, S.; Ameil, F.; Audirac, L.; Corsi, A.; Dombradi, Z.; Gerl, J.; Gillibert, A.; Korten, W.; Mailleret, C.; Merchan, E.; Nociforo, C.; Pietralla, N.; Ralet, D.

    2014-01-01

    We report on a new liquid hydrogen and deuterium target dedicated to in-beam γ spectroscopy experiments in inverse kinematics at relativistic incident energies at GSI/FAIR. Target thicknesses from 10 to 80 mm can be achieved for an effective diameter of 60 mm. The target-cell and entrance window are maded of 200μm thick Mylar. The design has the advantage of being free of absorbing material at forward angles and 90°, allowing the detection of photons in a wide angular range. A commissioning experiment with a 54 Cr beam at 130 MeV/nucleon has been performed at GSI, using the Rare Isotopes INvestigation at GSI (RISING) detectors. The target has been shown to behave as expected and is ready for experiments at fragmentation Radioactive-Ion Beam Facilities. -- Highlights: • We report on a new liquid hydrogen target for gamma spectroscopy experiments at FAIR. • A commissioning experiment has been performed at GSI, using the RISING detectors. • The target behaves as expected and is ready for experiments

  9. Studies of natural radioactivity in cement products using gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Ibrahim, N.; Periasamy, V.

    2000-01-01

    Evidence from our earlier study on several types of building materials has shown that cement contains a substantial amount of natural occurring radioactive materials. There are many brands of cement products available in Malaysia. Although the basic ingredients of cement are similar across brand, their proportion varies. In this study we have selected twelve brands of cement products which are analysed for natural radioactivity (U,Th,K) using gamma ray spectrometry. The gamma energies of interest are 583.1 keV, 609.3 keV and 1460 keV for nuclides 208 Tl, 214 Bi and 40 K respectively. Our findings show a relatively high activity of 40 K for all cement brands, ranging from 33 Bq/kg to as high as 3010 Bq/kg. Uranium activity ranges from 9Bq/kg to 672 Bq/kg while thorium activity was found range from 6Bq/kg to 94 Bq/kg. The radium equivalent activity is calculated for all brands and the values obtained range between 24 Bq/kg to 879 Bq/kg. Eight out of twelve products possess radium equivalent greater than 370 Bq/kg, a threshold limit for radiation dose equivalent to 1.5 mSv per annum. (author)

  10. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  11. 238U And 232Th Concentration In Rock Samples using Alpha Autoradiography and Gamma Spectroscopy Techniques

    International Nuclear Information System (INIS)

    Hafez, A.F.; El-Farrash, A.H.; Yousef, H.A.

    2009-01-01

    The activity concentrations of uranium and thorium were measured for some rock samples selected from Dahab region in the south tip of Sinai. In order to detect any harmful radiation that would affect on the tourists and is becoming economic resource because Dahab have open fields of tourism in Egypt. The activity concentration of uranium and thorium in rocks samples was measured using two techniques. The first is .-autoradiography technique with LR-115 and CR-39 detectors and the second is gamma spectroscopic technique with NaI(Tl) detector. It was found that the average activity concentrations of uranium and thorium using .-autoradiography technique ranged from 6.41-49.31 Bqkg-1, 4.86- 40.87 Bqkg-1 respectively and by gamma detector are ranged from 6.70- 49.50 Bqkg-1, 4.47- 42.33 Bqkg-1 respectively. From the obtained data we can conclude that there is no radioactive healthy hazard for human and living beings in the area under investigation. It was found that there are no big differences between the calculated thorium to uranium ratios in both techniques

  12. Parameter optimization for reproducible cardiac 1 H-MR spectroscopy at 3 Tesla.

    Science.gov (United States)

    de Heer, Paul; Bizino, Maurice B; Lamb, Hildo J; Webb, Andrew G

    2016-11-01

    To optimize data acquisition parameters in cardiac proton MR spectroscopy, and to evaluate the intra- and intersession variability in myocardial triglyceride content. Data acquisition parameters at 3 Tesla (T) were optimized and reproducibility measured using, in total, 49 healthy subjects. The signal-to-noise-ratio (SNR) and the variance in metabolite amplitude between averages were measured for: (i) global versus local power optimization; (ii) static magnetic field (B 0 ) shimming performed during free-breathing or within breathholds; (iii) post R-wave peak measurement times between 50 and 900 ms; (iv) without respiratory compensation, with breathholds and with navigator triggering; and (v) frequency selective excitation, Chemical Shift Selective (CHESS) and Multiply Optimized Insensitive Suppression Train (MOIST) water suppression techniques. Using the optimized parameters intra- and intersession myocardial triglyceride content reproducibility was measured. Two cardiac proton spectra were acquired with the same parameters and compared (intrasession reproducibility) after which the subject was removed from the scanner and placed back in the scanner and a third spectrum was acquired which was compared with the first measurement (intersession reproducibility). Local power optimization increased SNR on average by 22% compared with global power optimization (P = 0.0002). The average linewidth was not significantly different for pencil beam B 0 shimming using free-breathing or breathholds (19.1 Hz versus 17.5 Hz; P = 0.15). The highest signal stability occurred at a cardiac trigger delay around 240 ms. The mean amplitude variation was significantly lower for breathholds versus free-breathing (P = 0.03) and for navigator triggering versus free-breathing (P = 0.03) as well as for navigator triggering versus breathhold (P = 0.02). The mean residual water signal using CHESS (1.1%, P = 0.01) or MOIST (0.7%, P = 0.01) water suppression was significantly lower than using

  13. Optimization of the operational conditions of a multichannel analyzer gamma spectrometer

    International Nuclear Information System (INIS)

    Mosse, H.

    1974-01-01

    For the optimization of the operational conditions of a multichannel analyser gamma spectrometer, with two 3'' x 3'' NaI (Tl) crystals in opposition, several parameters were studied, which are responsable for the best counting efficiency, in each type of sample to be analysed. Thus, electronic conditions, shielding, sample holding, resolution, geometry (or the sample positioning between the detectors), were investigated. Self-absorption, sample density and the effects of the shape of the containers were also tested. For solid samples, (usually ashed), the best container was found to be a plastic cylinder, with the sample pressed inside. For liquid samples, plastic cylindric flasks were also found to be the best ones. Environmental samples were measured with internal standards for 137 Cs and 40 K. Results were compared with those obtained by physical (atomic adsorption for K) and radiochemical methods (Cs precipitation by amonium phosphomolibdate). Results show good agreement with the spectrometric analysis. For comparison with environmental samples, standards were prepared, in such a way that they could simulated their physical caracteristics. The minimum detectable activity was determined for 137 Cs. Results show values of 0.01 pCi/g for the 1 Kg samples, and 0.004 pCi/g for the 300g ones. By the measurement of 40 K, we found this value to be 0.02 mgK/g, in both cases. (author) [pt

  14. Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Farahmand, M.; Boston, A.J.; Grint, A.N.; Nolan, P.J.; Joyce, M.J.; Mackin, R.O.; D'Mellow, B.; Aspinall, M.; Peyton, A.J.; Silfhout, R. van

    2007-01-01

    In recent years the detection and identification of hazardous materials has become increasingly important. This work discusses research and development of a technique which is capable of detecting and imaging hidden explosives. It is proposed to utilise neutron interrogation of the substances under investigation facilitating the detection of emitted gamma radiation and scattered neutrons. Pulsed fast neutron techniques are attractive because they can be used to determine the concentrations of the light elements (hydrogen, carbon, nitrogen, and oxygen) which can be the primary components of explosive materials. Using segmented High Purity Ge (HPGe) detectors and digital pulse processing [R.J. Cooper, G. Turk, A.J. Boston, H.C. Boston, J.R. Cresswell, A.R. Mather, P.J. Nolan, C.J. Hall, I. Lazarus, J. Simpson, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 7th International Conference on Position Sensitive Detectors, Nuclear Instruments and Methods A, in press; I. Lazarus, D.E. Appelbe, A. J. Boston, P.J. Coleman-Smith, J.R. Cresswell, M. Descovich, S.A.A. Gros, M. Lauer, J. Norman, C.J. Pearson, V.F.E. Pucknell, J.A. Sampson, G. Turk, J.J. Valiente-Dobon, IEEE Trans. Nucl. Sci., 51 (2004) 1353; R.J. Cooper, A.J. Boston, H.C. Boston, J.R. Cresswell, A.N. Grint, A.R. Mather, P.J. Nolan, D.P. Scraggs, G. Turk, C.J. Hall, I. Lazarus, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 11th International Symposium on Radiation Measurements and Application, 2006. ] the scatter path of incident photons can be reconstructed to determine the origin of the gamma-rays without the need for mechanical collimation by applying the Compton camera principle [V. Schonfelder, A. Hirner, K. Schneider, Nucl. Instr. and Meth. 107 (1973) 385; R.W. Todd, J.M. Nightingale, D.B. Everett, Nature 251 (1974) 132. ]. In addition, it is proposed to utilise the scattered neutrons which recoil from the materials being assayed, detecting them with a fast

  15. Prompt gamma-ray spectroscopy and its use for the elemental chemical analysis

    International Nuclear Information System (INIS)

    Deconninck, G.; Demortier, G.; Bodart, F.

    The elemental chemical analysis by nuclear techniques has been widely developed since a quarter of century. In this review the analysis by irradiation of the the sample (solid or liquid) of a majority of chemical elements by means of the charged particles and the detection during this irradiation of the gamma photons characteristic of the element are considered. After a brief account of the physical phenomena peculiar to the prompt detection of photons in comparison with the activation methods where a delayed activity is measured, a brief description of the experimental equipment for this kind of analysis is given. A comprehensive critical survey of the recent applications to the analysis of metals, semiconductors and electric insulating substances is presented. The necessary informations for the choice of the nuclear reaction to use for a specific analysis are contained in a set of tables. (AF)

  16. Nuclear structure and shapes from prompt gamma ray spectroscopy of fission products

    International Nuclear Information System (INIS)

    Ahmad, I.; Morss, L.R.; Durell, J.L.

    1996-01-01

    Many nuclear shape phenomena are predicted to occur in neutron-rich nuclei. The best source for the production of these nuclides is the spontaneous fission which produces practically hundreds of nuclides with yields of greater than 0.1 % per decay. Measurements of coincident gamma rays with large Ge arrays have recently been made to obtain information on nuclear structures and shapes of these neutron- rich nuclei. Among the important results that have been obtained from such measurements are octupole correlations in Ba isotopes, triaxial shapes in Ru nuclei, two-phonon vibrations in 106 Mo and level lifetimes and quadrupole moments in Nd isotopes and A=100 nuclei. These data have been used to test theoretical models

  17. Natural radioactivity investigation in Dam sediments of northeast Algeria using gamma spectroscopy

    Directory of Open Access Journals (Sweden)

    Benrachi Fatima

    2017-01-01

    Full Text Available Current research paper intends to estimate the natural radioactivity levels in sediments samples collected from Beni Haroun Dam in the northeast Algeria, using high resolution HPGe detector. The mean activity concentrations values measured for the radionuclides 232Th, 226Ra and 40K are 18.9 ± 1.9, 37.3 ± 2.7 and 149.9 ± 5.5 Bq/kg, respectively. The 137Cs anthropogenic radionuclide has been observed with maximum activity concentration value of 0.8 ± 0.4 Bq/kg, which is considered an insignificant amount. In order to assess the radiological threat of gamma radiations emitted by these radionuclides on the health of the population, absorbed dose rate, annual effective dose equivalent and radiation hazard indices were had been calculated. The obtained values are compared with the world wide average ones.

  18. Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, T. E-mail: tosiyuki@smail.tohtech.ac.jp; Hitomi, K.; Shoji, T.; Hiratate, Y

    2004-06-01

    Recently, pixellated semiconductor detectors exhibit high-energy resolution, which have been studied actively and fabricated from CdTe, CZT and HgI{sub 2}. Thallium bromide (TlBr) is a compound semiconductor characterized with its high atomic numbers (Tl=81, Br=35) and high density (7.56 g/cm{sup 3}). Thus, TlBr exhibits higher photon stopping power than other semiconductor materials used for radiation detector fabrication such as CdTe, CZT and HgI{sub 2}. The wide band gap of TlBr (2.68 eV) permits the detectors low-noise operation at around room temperature. Our studies made an effort to fabricate pixellated TlBr detectors had sufficient detection efficiency and good charge collection efficiency. In this study, pixellated TlBr detectors were fabricated from the crystals purified by the multipass zone-refining method and grown by the horizontal traveling molten zone (TMZ) method. The TlBr detector has a continuous cathode over one crystal surface and 3x3 pixellated anodes (0.57x0.57 mm{sup 2} each) surrounded by a guard ring on the opposite surface. The electrodes were realized by vacuum evaporation of palladium through a shadow mask. Typical thickness of the detector was 2 mm. Spectrometric performance of the TlBr detectors was tested by irradiating them with {sup 241}Am (59.5 keV), {sup 57}Co (122 keV) and {sup 137}Cs (662 keV) gamma-ray sources at temperature of -20 deg. C. Energy resolutions (FWHM) were measured to be 4.0, 6.0 and 9.7 keV for 59.5, 122 and 662 keV gamma-rays, respectively.

  19. Optimized endoscopic autofluorescence spectroscopy for the identification of premalignant lesions in Barrett's oesophagus.

    Science.gov (United States)

    Holz, Jasmin A; Boerwinkel, David F; Meijer, Sybren L; Visser, Mike; van Leeuwen, Ton G; Aalders, Maurice C G; Bergman, Jacques J G H M

    2013-12-01

    Fluorescence spectroscopy has the potential to detect early cellular changes in Barrett's oesophagus before these become visible. As the technique is based on varying concentrations of intrinsic fluorophores, each with its own optimal excitation wavelength, it is important to assess the optimal excitation wavelength(s) for identification of premalignant lesions in patients with Barrett's oesophagus. The endoscopic spectroscopy system used contained five (ultra)violet light sources (λexc=369-416 nm) to generate autofluorescence during routine endoscopic surveillance. Autofluorescence spectroscopy was followed by a biopsy for histological assessment and spectra correlation. Three intensity ratios (r1, r2, r3) were calculated by dividing the area, A, under the spectral curve of selected emission wavelength ranges for each spectrum generated by each excitation wavelength λexc as follows (Equation is included in full-text article.). Double intensity ratios were calculated using two excitation wavelengths. Fifty-eight tissue areas from 22 patients were used for autofluorescence spectra analysis. Excitation with 395, 405 or 410 nm showed a significant (P≤0.0006) differentiation between intestinal metaplasia and grouped high-grade dysplasia/early carcinoma for intensity ratios r2 and r3. A sensitivity of 80.0% and specificity of 89.5% with an area under the ROC curve of 0.85 was achieved using 395 nm excitation and intensity ratio r3. Double excitation showed no additional value over single excitation. The combination of 395 nm excitation and intensity ratio r3 showed optimal conditions to discriminate nondysplastic from early neoplasia in Barrett's oesophagus.

  20. Application of Inverse Gamma Transport to Material Thickness Identification with SGRD Code

    Directory of Open Access Journals (Sweden)

    Humbert Philippe

    2017-01-01

    Full Text Available SGRD (Spectroscopy, Gamma rays, Rapid, Deterministic code is used to infer the dimensions of a one dimensional model of a shielded gamma ray source. The method is based on the simulation of the uncollided leakage current of discrete gamma lines that are produced by nuclear decay. Experimentally, the unscattered gamma lines leakage current is obtained by processing high precision gamma spectroscopy measurements. The material thicknesses are computed with SGRD using a fast ray-tracing algorithm embedded in a non-linear multidimensional iterative optimization procedure that minimizes the error metric between calculated and measured signatures. For verification, numerical results on a test problem are presented.

  1. Overview of in-beam gamma-ray spectroscopy at the RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Doornenbal, Pieter [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2016-07-07

    At the Radioactive Isotope Beam Factory stable primary beams are accelerated up to 345 MeV/u and incident on a primary target to produce cocktail secondary beams with the fragment separator BigRIPS ranging from the lightest nuclei up to the lead region. For in-beam γ-ray spectroscopy, the secondary beams impinge on a reaction target at energies between 100 and 300 MeV/u. Reaction residues are identified with the ZeroDegree spectrometer and γ-rays detected with the NaI(Tl) based DALI2 array. This conference paper outlines the experimental setup and presents recent exemplary results.

  2. In vivo19F MR imaging and spectroscopy for the BNCT optimization

    International Nuclear Information System (INIS)

    Porcari, P.; Capuani, S.; D'Amore, E.; Lecce, M.; La Bella, A.; Fasano, F.; Migneco, L.M.; Campanella, R.; Maraviglia, B.; Pastore, F.S.

    2009-01-01

    The aim of this study was to evaluate in vivo the boron biodistribution and pharmacokinetics of 4-borono-2-fluorophenylalanine ( 19 F-BPA) using 19 F MR Imaging ( 19 F MRI) and Spectroscopy ( 19 F MRS). The correlation between the results obtained by both techniques, 19 F MRI on rat brain and 19 F MRS on blood samples, showed the maximum 19 F-BPA uptake in C6 glioma model at 2.5 h after infusion determining the optimal irradiation time. Moreover, the effect of L-DOPA as potential enhancer of 19 F-BPA tumour intake was assessed using 19 F MRI.

  3. An Optimized Design of Single-Channel Beta-Gamma Coincidence Phoswich Detector by Geant4 Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2011-01-01

    Full Text Available An optimized single-channel phoswich well detector design has been proposed and assessed in order to improve beta-gamma coincidence measurement sensitivity of xenon radioisotopes. This newly designed phoswich well detector consists of a plastic beta counting cell (BC404 embedded in a CsI(Tl crystal coupled to a photomultiplier tube. The BC404 is configured in a cylindrical pipe shape to minimise light collection deterioration. The CsI(Tl crystal consists of a rectangular part and a semicylindrical scintillation part as a light reflector to increase light gathering. Compared with a PhosWatch detector, the final optimized detector geometry showed 15% improvement in the energy resolution of a 131mXe 129.4 keV conversion electron peak. The predicted beta-gamma coincidence efficiencies of xenon radioisotopes have also been improved accordingly.

  4. Identification of a Typical CSTR Using Optimal Focused Time Lagged Recurrent Neural Network Model with Gamma Memory Filter

    OpenAIRE

    Naikwad, S. N.; Dudul, S. V.

    2009-01-01

    A focused time lagged recurrent neural network (FTLR NN) with gamma memory filter is designed to learn the subtle complex dynamics of a typical CSTR process. Continuous stirred tank reactor exhibits complex nonlinear operations where reaction is exothermic. It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available. As CSTR process includes tempora...

  5. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.

    Science.gov (United States)

    Yan, Xiunan; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Xiaoyun; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2017-05-02

    Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.

  6. Application of a gamma spectroscopy system to the measurement of neutron cross sections necessary to the development of nuclear energy

    International Nuclear Information System (INIS)

    Deruelle, O.

    2002-09-01

    This work concerns the development of nuclear energy and nuclear waste management in particular. Two parts of this study can be distinguished. In the first part (theoretical), a thorium-plutonium fuel based on MOX and dedicated for PWR was investigated in order to transmute plutonium in a potentially low waste fuel cycle. It was shown that this type of fuel is not regenerative but could be used for a transition to the industrial thorium fuel cycle without building new reactors. Thanks to moderated neutron spectra and high loaded actinide mass in the core, U-233 is quickly created (∼300 kg/y) for a loss of about ∼1200 kg of fissile plutonium. In the second part (experimental), we have developed and built a new reaction chamber to measure neutron cross sections of actinides by alpha-gamma spectroscopy. This experimental device (in principle transportable) was commissioned in the high flux reactor of ILL Grenoble. Neutron flux was measured by gamma spectroscopy of irradiated Al and Co samples and was found to be of the order of 6,0. 10 14 n.cm -2 .s -1 (4%). By the irradiation of 11μg of Am-243 and Pu-242, corresponding capture cross sections were measured in the thermal neutron flux at 50 deg C. These are the results: 243 Am(n,γ) 244fond. Am = 4,72±1,42b; 243 Am(n,γ) 244total Am = 74,8±3,25b; 242 Pu (n,γ) 243 Pu = 22,7±1,09b. Uncertainties of the measurements are mostly due to the determination of the neutron flux, efficiency of the electronics and ambiguities related to the definition of the area under α-γ spectra. Although our measured cross sections deviate (by 10-30%) from the corresponding values widely used in evaluated data libraries such as ENDF, JEF and JENDL, in this work we have demonstrated the feasibility and principle of our experimental method. Furthermore, the value for the 243-americium capture cross-section is in very good agreement with the last two measurements done in 1975 and 1997. These facts allowed us to think of new experiments

  7. Optimizing Transition Edge Sensors for High-Resolution X-ray Spectroscopy

    International Nuclear Information System (INIS)

    Saab, Tarek; Bandler, Simon R.; Boyce, Kevin; Chervenak, James A.; Figueroa-Feliciano, Enectali; Iyomoto, Naoko; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.

    2006-01-01

    Transition Edge Sensors (TES) have found applications as astronomical detectors ranging from the microwave to the gamma ray energy bands. Each energy band, however, imposes a different set of requirements on the TES such as energy and timing resolution, focal plane coverage, and the mechanisms by which the signal is coupled to the detector. This paper focuses on the development of TESs optimized for the 0.1-10 keV energy range at the NASA Goddard Space Flight Center. Such detectors are suitable candidates for some of the upcoming X-ray observatories such as NeXT and Constellation-X. Ongoing efforts at producing, characterizing, and modeling such devices, as well as the latest results, are discussed

  8. Beta-gamma spectroscopy for double beta decays and Lepton number conservation

    International Nuclear Information System (INIS)

    Ejiri, H.; Takahashi, N.; Shibata, T.; Nagai, Y.; Okada, K.; Kamikubota, N.; Watanabe, T.

    1984-01-01

    In this paper neutrino-less double β decays (Oν ββ) of /sup 76/Ge were studied by means of the newly developed ELEGANTS (Electron gamma-ray neutrino spectrometer). It consists of a 171 cc pure Ge detector surrounded bu a big 4π-NaI detector, and active and inactive filters. Measurement of both the electron signal from the Ge detector and γ-ray signals from the 4π-NaI detector made it possible to select the true double decay events from background events due to the other radio-active isotopes and cosmic rays. The ELEGANTS showed the highest sensitivity for detecting the neutrino-less double β decay. The preliminary data obtained so far give a lower limit of the half life T/sub 1/2/≥2.2 10/sup 22/y for the O/sup +/→O/sup +/ Oν ββ decay and T/sub 1/2/ ≥1.5.10/sup 22/y for the O/sup +/→2/sup +/ Oν ββ decay of /sup 76/Ge

  9. SUPER-SABRE: an RSX-11M system for generalized gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Salmon, L.; Davies, M.M.

    1984-01-01

    A system is described which provides generalized multi-user services for gamma-ray spectrometry with an existing laboratory computer. Purpose-built hardware is not employed. The current implementation is on a PDP11 computer under RSX-11M using commercial CAMAC units. The design, however, is not limited to specific hardware. Up to fourteen operators may use eight detectors or access an archive of many thousand spectra. An interactive command language is supplemented by a command file interpreter. A user may control data acquisition, manipulate, examine or analyze spectra. There is complete flexibility and independence in the use of terminals and other devices. SUPER-SABRE demonstrates particular features of computer-user interface design and provides test-bed facilities for analytical procedures within its software. It is capable of extension and modification to accommodate appropriate developments in computer technology. The current system is successfully employed in the measurement of environmental radioactivity, for radiation protection plant control and for neutron activation analysis

  10. A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy

    Science.gov (United States)

    Das, S.; Samanta, S.; Banik, R.; Bhattacharjee, R.; Basu, K.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Bhattacharya, S.; Imran, S.; Mukherjee, G.; Bhattacharyya, S.; Goswami, A.; Palit, R.; Tan, H.

    2018-06-01

    The development of a digitizer based pulse processing and data acquisition system for γ-ray spectroscopy with large detector arrays is presented. The system is based on 250 MHz 12-bit digitizers, and is triggered by a user chosen multiplicity of Compton suppressed detectors. The logic for trigger generation is similar to the one practised for analog (NIM/CAMAC) pulse processing electronics, while retaining the fast processing merits of the digitizer system. Codes for reduction of data acquired from the system have also been developed. The system has been tested with offline studies using radioactive sources as well as in the in-beam experiments with an array of Compton suppressed Clover detectors. The results obtained therefrom validate its use in spectroscopic efforts for nuclear structure investigations.

  11. Gamma-Irradiated seafoods: identification and dosimetry by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1989-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the production of free radicals induced by 60Co γ-rays in shrimp exoskeleton, mussel shells, and fish bones. The EPR spectrum for irradiated shrimp shell was dose dependent and appeared to be derived from more than one radical. The major component of the radiation-induced spectrum resulted from radical formation in chitin, assigned by comparison with irradiated N-acetyl-D-glucosamine. Other measurements include the total yield of radicals formed as a function of dose and the longevity of the radiation-induced EPR signal. Similar measurements were made for mussel shells and fish bones, and the results are compared and discussed. It was concluded that irradiated shrimp (with shell attached) could definitely be identified by this technique; however, precise determination of absorbed dose was less straightforward. Positive identification of irradiated fish bones was also clearly distinguishable, and dosimetry by EPR appeared to be feasible. (author)

  12. Application of Fourier transform near-infrared spectroscopy to optimization of green tea steaming process conditions.

    Science.gov (United States)

    Ono, Daiki; Bamba, Takeshi; Oku, Yuichi; Yonetani, Tsutomu; Fukusaki, Eiichiro

    2011-09-01

    In this study, we constructed prediction models by metabolic fingerprinting of fresh green tea leaves using Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares (PLS) regression analysis to objectively optimize of the steaming process conditions in green tea manufacture. The steaming process is the most important step for manufacturing high quality green tea products. However, the parameter setting of the steamer is currently determined subjectively by the manufacturer. Therefore, a simple and robust system that can be used to objectively set the steaming process parameters is necessary. We focused on FT-NIR spectroscopy because of its simple operation, quick measurement, and low running costs. After removal of noise in the spectral data by principal component analysis (PCA), PLS regression analysis was performed using spectral information as independent variables, and the steaming parameters set by experienced manufacturers as dependent variables. The prediction models were successfully constructed with satisfactory accuracy. Moreover, the results of the demonstrated experiment suggested that the green tea steaming process parameters could be predicted on a larger manufacturing scale. This technique will contribute to improvement of the quality and productivity of green tea because it can objectively optimize the complicated green tea steaming process and will be suitable for practical use in green tea manufacture. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    Science.gov (United States)

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Design and construction of prompt-gamma spectroscopy facility applied to the boron determination; Diseno y construccion de una facilidad de espectrometria prompt-gamma aplicada a la determinacion de boro

    Energy Technology Data Exchange (ETDEWEB)

    Poblete, Victor; Henriquez, Carlos; Klein, Juan; Navarro, Gustavo [Comision Chilena de Energia Nuclear, Santiago (Chile). Centro de Estudios Nucleares La Reina, Comision Chis Nucleares La Reina, Comision Chi Reina

    1997-12-31

    A prompt-gamma spectroscopy facility was developed using the south tangential neutron beam of the RECH-1 research reactor for boron determination. The implementation of a thermal neutron beam was performed considering different aspects such as biological protection of working area and the beam collimation for a Ge detector, design and sample holder selection, standards and sample preparation. One ppm of Boron in different samples with counting-rate of 20 minutes and a good accuracy were determined. (author). 5 refs.

  15. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  16. Determination of porosity in supports for ceramic membranes of titanium dioxide by gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, Umberto C.C.S.; Oliveira, Elizabeth E.M.; Brandão, Luís E.B.; Carvalho, Paulo V.R., E-mail: ucsiciliano@gmail.com, E-mail: eemo@ien.gov.br, E-mail: brandao@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Membrane separation processes (MSP) have been widely used to fractionate, concentrate and purity solutions, such as: food industry, pharmaceutical, water desalination and for treatment of the radioactive liquid waste in the nuclear industry. The MSP are more economical than traditional methods because most of them are athermic. Increased membrane application has led to the expansion of the manufacturing technology knowledge base, resulting in membranes with high permeability, improved selectivity and long-term stability. The demand for high operating temperatures and chemical resistance have stimulated the development of inorganic structures, mainly porous ceramics. The materials most used to obtain ceramic membranes are oxides like Ab0{sub 3}, Si0{sub 2}, Zr0{sub 2} and Ti0{sub 2} or combination of these. Despite the favorable characteristics, ceramic membranes has not been applied extensively, mainly due to the difficulty of obtaining porous structures without cracks and with adequate pore size. The objective of this work is obtain a support of titanium oxide using potato starch as a pore former. The titanium oxide used is commercial, with average particle size of 0.13 μm. Three suspensions were prepared containing 0,5 and 10 % of the potato starch and the drying in spray dryer, obtaining a homogeneous and granulated powder, with flow ability suitable for compaction. The supports were uniaxial pressing with l.5 kgf.cm{sup -2} and sintering at temperatures of 1050, 1100 and 1150 °C for 1h in oven resistance. The results showed that the porosity obtained by gamma ray transmission method was approximately 50%. This value is within range for applications as membrane support. (author)

  17. High spin {gamma}-ray spectroscopy of {sup 121,122}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, H [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; [Department of Physics, SUNY at Stony Brook, NY (United States); Riley, M A; Hanna, F; Mullins, S M; Sharpey-Schafer, J F [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hughes, J R; Fossan, D B; Liang, Y; Ma, R; Xu, N [Department of Physics, SUNY at Stony Brook, NY (United States); Simpson, J; Bentley, M A [Daresbury Lab. (United Kingdom); Bengtsson, T [Lund Univ. (Sweden). Dept. of Mathematical Physics; Wyss, R [Institute for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-08-01

    High-spin states have been populated in {sup 121,122}Xe using the reactions {sup 108}Pd({sup 16}O,3n){sup 121}Xe at 65 MeV and {sup 96}Zr({sup 30}Si,4n/5n){sup 122}Xe/{sup 121}Xe at 135 MeV. Coincident {gamma} rays following the neutron evaporation were detected by six Compton-suppressed Ge detectors and the TESSA3 array respectively. The level structure of {sup 121}Xe and {sup 122}Xe has been extended up to 47/2 {Dirac_h} and 32 {Dirac_h} respectively. In {sup 121}Xe a coupled band was found feeding the 19/2{sup -} level. In {sup 122}Xe several decays are suggested to be a sequence of stretched E2 quadrupole transitions connecting states of positive parity. While in {sup 121}Xe this phenomenon was not observed, at high spin a phase transition from prolate collective rotation to oblate single particle excitation was detected in {sup 122}Xe. For the new, probably positive parity side band in{sup 122}Xe a four quasi-neutron or a two quasi-proton configuration of h{sub 11/2} quasi-nucleons might be considered. The positive parity high spin structure in {sup 122}Xe contains three I{sup {pi}} = 22{sup +} states of different character. This is predicted by TRS (total Routhian surface) calculations, which identify these states as two shapes with predominantly prolate collective characteristic and the third as an oblate single particle configuration. 12 refs., 3 figs.

  18. Assessment of the toxicity level of gamma-irradiated snake (Naja naja oxiana) venom by photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Vidyasagar, P.B.; Pal, Saumen

    1991-01-01

    Immunization is the only answer to the challenge of the diseases for which it is extremely difficult to institute timely and proper treatment following the inset. Various antigenic agents responsible for such diseases are used for the purpose of immunization to overcome this difficulty. To make safe use of the antigens it is required to reduce their toxicity level keeping the antigenicity intact and develop a suitable way to detect it. To ensure this, toxoids are produced from the toxic antigens by using different physical and chemical methods. Snake venoms are some important antigens which deserve more attention to be used for immunization because bites by poisonous snakes require instant treatment which is difficult to install. Toxoids used in the present study were produced by irradiating oxus cobra (Naja naja oxiana) venom under cobalt-60 gamma-ray source. The toxocity level of thus produced venom toxoid was assessed by photoacoustic (PA) spectroscopy. In support of the PA observations, optical absorption and fluorescence spectra of the venom in solution were also studied. Percentile change in PA signal intensity was taken as the parameter for toxocity level which was then correlated to the percentile residual toxocity of the venom obtained by direct method of injecting the venom in mice. Efforts were also made to find out the possible effects of the radiation on the venom. (author). 29 refs., 7 figs

  19. Impact of detector efficiency and energy resolution on gamma-ray background rejection in mobile spectroscopy and imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy J., E-mail: Timothy.Aucott@SRS.gov [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bandstra, Mark S. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Negut, Victor; Curtis, Joseph C. [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Meyer, Ross E.; Chivers, Daniel H. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Vetter, Kai [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States)

    2015-07-21

    The presence of gamma-ray background significantly reduces detection sensitivity when searching for radioactive sources in the field, and the systematic variability in the background will limit the size and energy resolution of systems that can be used effectively. An extensive survey of the background was performed using both sodium iodide and high-purity germanium. By using a bivariate negative binomial model for the measured counts, these measurements can be resampled to simulate the performance of a detector array of arbitrary size and resolution. The response of the system as it moved past a stationary source was modeled for spectroscopic and coded aperture imaging algorithms and used for source injection into the background. The performance of both techniques is shown for various sizes and resolutions, as well as the relative performance for sodium iodide and germanium. It was found that at smaller detector sizes or better energy resolution, spectroscopy has higher detection sensitivity than imaging, while imaging is better suited to larger or poorer resolution detectors.

  20. Application of high resolution NMR, ESR, and gamma-ray scintillation spectroscopy to the study of ligand binding in proteins

    International Nuclear Information System (INIS)

    Lancione, G.V.

    1982-01-01

    Electron spin resonance spectroscopy has been employed to study the nature of the ligand binding site of alpha-1-antitrypsin. Spectra of spin-labeled alpha-1-antitrypsin were recorded at pH's ranging from 2.4 to 12.5. This data demonstrates the tight binding of the spin-label to the protease, and the sensitivity of the bound spin-label to informational changes in the protease inhibitor. A molecular dipstick approach has also been applied to this system and has yielded information on the geometry of the cleft accommodating the spin-label. 160 Terbium(III) exchange experiments have been performed on the acetylcholine receptor protein isolated from Torpedo californica, employing a specially designed flow dialysis apparatus constructed in the laboratory. The apparatus is designed to allow continuous monitoring of 160 Tb(III) gamma-ray emission from the protein compartment of the flow dialysis cell. Nicotinic ligand-induced displacement of 160 Tb(III) from the nicotinic binding site of the receptor was monitored as a funtion of (1) the concentration of nicotinic ligand in the washout buffer, and (2) the nature of the nicotinic ligand in the buffer. Measured 160 Tb(III) exchange half-lives indicate (1) a direct relationship between 160 Tb(III) displacement and nicotinic ligand concentration in the wash-out buffer, and (2) an enhanced 160 Tb(III) displacement for nicotinic agents possessing quaternary ammonium functions

  1. PreSPEC - gamma-spectroscopy on the way towards NUSTAR

    International Nuclear Information System (INIS)

    Wollersheim, Hans-Jürgen

    2017-01-01

    In the next years the new international accelerator facility FAIR (Facility for Antiproton and Ion Research), one of the largest research projects worldwide, will be erected at GSI (Helmholtzzentrum für Schwerionenforschung). At FAIR an unprecedented variety of experiments will be carried out to allow new insights into the structure of matter and the evolution of the universe from Big Bang to the present. We will get information on the force acting between the nucleons inside the nucleus, with special emphasis on systems with exotic proton-to-neutron ratios: both proton-rich nuclei and neutron-rich nuclei. In extreme neutron-rich nuclei radical changes in their structure are expected with the possible disappearance of the classical shell gaps and magic numbers and the appearance of new ones. The nuclear structure community is heavily committed to the future NUSTAR (Nuclear Structure, Astrophysics and Reactions) program of in-flight (HISPEC) and decay (DESPEC) γ-ray spectroscopy of highly exotic nuclei produced from the SUPER-FRS (FRagment Separator)

  2. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients (R{sup 2}) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables (chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated. (author)

  3. In-beam alpha, electron, and gamma-ray spectroscopy of 215Fr

    International Nuclear Information System (INIS)

    Decman, D.J.; Grawe, H.; Kluge, H.; Maier, K.H.; Maj, A.; Menningen, M.; Roy, N.; Wiegner, W.

    1983-01-01

    The nucleus 215 Fr was studied using the 208 Pb( 11 B, 4n) and 204 Hg( 15 N, 4n) reactions. The measurements included α-γ, γ-γ, and e-e coincidence experiments as well as γ-ray and α-particle DPAD studies. The decay scheme gives levels up to a 3068 keV 39/2 - isomer with tsub(1/2)=(33 +- 5) ns as well as 3 shorter-lived isomers (tsub(1/2) approx.= 4 ns); g-factors have been measured for these isomers. The alpha-particle spectroscopy showed the existence of 4 longrange alphas which could be assigned to excited states in 215 Fr. tsub(1/2)( 215 Frsup(gs)) = (86+-5) ns has been remeasured. The negative parity states up to 1680 keV seem to be members of the π(h9/2) 5 9/2sup(ν)(g9/2) 2 configuration; a strong hindrance of M1 transitions is found. The higher lying states are compared with the DIPM model. (orig.)

  4. Estimation of the absorbed dose in gamma irradiated food containing bone by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    1997-01-01

    The use of electron spin resonance (ESR) spectroscopy to accurately evaluate the absorbed dose to radiationprocessed bones (and thus meats) is examined. The exposure of foodstuffs containing bone to a dose of ionizing radiation results in the formation of long lived free radicals which give rise to characteristics ESR signals. The yield of radicals was found to be proportional to absorbed dose. Additive re-irradiation of previously irradiated bone was used to estimate the absorbed dose in the irradiated chicken bone. Simple non-linear rational equation was found to fit to the data and yields good dose estimates for irradiated bone in the range of doses (1.0 - 5.0 kGy). Decay of the ESR signal intensity was monitored at different dose levels (2.0 and 7.0 kGy) up to 22 days. The absorbed dose in irradiated chicken (2.Om 3.0 and 6.0 kGy) was assessed at 2, 6 and 12 days after irradiation. Relatively good results were obtained when measurements were made within the following days (up to 12 days) after irradiation. The ability of the dose additive method to provide accurate dose assessments is tested here

  5. High spin gamma-ray coincidence spectroscopy with large detector arrays

    International Nuclear Information System (INIS)

    Bergstroem, M.H.

    1992-12-01

    In-beam γ-ray spectroscopy has been used to study rapidly rotating nuclei in the rare-earth region. The experiments were performed using the high-resolution multi detector arrays ESSA30 and TESSA3 at the Nuclear Structure Facility, Daresbury Laboratories in Great Britain and the NORDBALL at the Niels Bohr Tandem Accelerator at Risoe in Denmark. The studied nuclei were produced using heavy-ion induced fusion-evaporation reactions. New techniques for the analysis of γ-γ correlation spectra were developed. These involves viewing the two-dimensional γ-γ spectrum as well as projection in both energy axes, determination of centroids and volumes of peaks and full two-dimensional Gauss fits of an arbitrarily shaped area. The data acquisition system of the NORDBALL multi detector array is presented. In two of the studied nuclei ( 167 Lu and 163 Tm) the strongly shape driving πh 9/2 [541]1/2 - is studied. The shift to larger frequency of the neutron AB crossing in these decay sequences is not fully understood. The study of 171 Re revealed a second backbend of the [402]5/2 + band. The observed bandcrossings are interpreted using the CSM and three-band mixing calculations. The study of 171,172 W revealed five new bands and although these nuclei are expected to be stably deformed the small differences in the formation showed to be crucial in order to reproduce data well. (au)

  6. Optimal Wavelength Selection in Ultraviolet Spectroscopy for the Estimation of Toxin Reduction Ratio during Hemodialysis

    Directory of Open Access Journals (Sweden)

    Amir Ghanifar

    2016-06-01

    Full Text Available Introduction The concentration of substances, including urea, creatinine, and uric acid, can be used as an index to measure toxic uremic solutes in the blood during dialysis and interdialytic intervals. The on-line monitoring of toxin concentration allows for the clearance measurement of some low-molecular-weight solutes at any time during hemodialysis.The aim of this study was to determine the optimal wavelength for estimating the changes in urea, creatinine, and uric acid in dialysate, using ultraviolet (UV spectroscopy. Materials and Methods In this study, nine uremic patients were investigated, using on-line spectrophotometry. The on-line absorption measurements (UV radiation were performed with a spectrophotometer module, connected to the fluid outlet of the dialysis machine. Dialysate samples were obtained and analyzed, using standard biochemical methods. Optimal wavelengths for both creatinine and uric acid were selected by using a combination of genetic algorithms (GAs, i.e., GA-partial least squares (GA-PLS and interval partial least squares (iPLS. Results The Artifitial Neural Network (ANN sensitivity analysis determined the wavelengths of the UV band most suitable for estimating the concentration of creatinine and uric acid. The two optimal wavelengths were 242 and 252 nm for creatinine and 295 and 298 nm for uric acid. Conclusion It can be concluded that the reduction ratio of creatinine and uric acid (dialysis efficiency could be continuously monitored during hemodialysis by UV spectroscopy.Compared to the conventional method, which is particularly sensitive to the sampling technique and involves post-dialysis blood sampling, iterative measurements throughout the dialysis session can yield more reliable data.

  7. New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy

    Science.gov (United States)

    Kilbourne, Caroline

    We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.

  8. Investigation of hyperfine interactions in pure silicon and NTD silicon by means of perturbed angular {gamma}-{gamma} correlation spectroscopy; Investigacao de interacoes hiperfinas em silicio puro e silicio NTD pela tecnica de correlacao angular {gamma}-{gamma} perturbada

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, Moacir Ribeiro

    2007-07-01

    III the present work, a microscopic investigation of hyperfine interactions in single crystal silicon samples was carried out by means of Perturbed Angular {gamma} -{gamma} correlation technique (PAC), which is based in hyperfine interactions. In order to achieve these measurements, it was used {sup 111} In {yields} {sup 111}Cd radioactive probe nuclei, which decay through the well known {gamma} cascade 171-245 keV with an intermediate level of 245 keV ( I 5{sup +}/2, Q = 0.83b, T{sub 1/2} = 84.5 ns). The samples were prepared using different probe nuclei insertion methods, making possible to increase our understanding on the impact generated by each of these techniques in PAC measurements. Ion implantation, diffusion and evaporation were carefully investigated giving emphasis on its characteristics and particularities. Then, it was made a study about the concentration of intrinsic defects as function of severe annealing processes. Finally, a comparative analysis was made for all these probe nuclei insertion methods. This work also accomplished PAC measurements in single crystal silicon doped with phosphorus by means of Neutron Transmutation Doping (NTD) method, carried out in a research nuclear reactor. The extremely high doping uniformity allied to the nonexistence of previous measurements in these materials emphasize the importance of the results obtained. These results are then compared with literature results for samples doped by conventional methods presenting the respective conclusions. (author)

  9. FY12 Final Report for PL10-Mod Separations-PD12: Electrochemically Modulated Separation of Plutonium from Dilute and Concentrated Dissolver Solutions for Analysis by Gamma Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Sandra H.; Arrigo, Leah M.; Duckworth, Douglas C.; Cloutier, Janet M.; Breshears, Andrew T.; Schwantes, Jon M.

    2013-05-01

    Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned “on” and “off” depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 µg Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

  10. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  11. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy.

    Science.gov (United States)

    Gambarota, Giulio

    2017-07-15

    Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Optimal conditions for taking spectra of coffee beans plasma spectroscopy induced by laser (LIBS)

    International Nuclear Information System (INIS)

    Diaz Guerrero, A. M.; Flores Reyes; Ponce Cabrera, L. V.

    2016-01-01

    Coffee beans, arabica and robusta, from Mexico (Chiapas and Veracruz), Colombia, Kenya and Sumatra were analyzed by Laser-induced breakdown spectroscopy (LIBS). The time delay and pulse energy were varied in order to find the optimal conditions for taking spectra in coffee beans; finding that the increased visibility of the peaks and the lowest electronic background is observed with 1 s and 450 mJ. Spectra were taken in different regions of grain area to confirm its homogeneous composition. It was found that the intensity of the signal Ca is much higher than that of K in African coffee, lower in the coffee of America, and much lower in the coffee from Asia. (Author)

  13. Combined optimal-pathlengths method for near-infrared spectroscopy analysis

    International Nuclear Information System (INIS)

    Liu Rong; Xu Kexin; Lu Yanhui; Sun Huili

    2004-01-01

    Near-infrared (NIR) spectroscopy is a rapid, reagent-less and nondestructive analytical technique, which is being increasingly employed for quantitative application in chemistry, pharmaceutics and food industry, and for the optical analysis of biological tissue. The performance of NIR technology greatly depends on the abilities to control and acquire data from the instrument and to calibrate and analyse data. Optical pathlength is a key parameter of the NIR instrument, which has been thoroughly discussed in univariate quantitative analysis in the presence of photometric errors. Although multiple wavelengths can provide more chemical information, it is difficult to determine a single pathlength that is suitable for each wavelength region. A theoretical investigation of a selection procedure for multiple pathlengths, called the combined optimal-pathlengths (COP) method, is identified in this paper and an extensive comparison with the single pathlength method is also performed on simulated and experimental NIR spectral data sets. The results obtained show that the COP method can greatly improve the prediction accuracy in NIR spectroscopy quantitative analysis

  14. [Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer].

    Science.gov (United States)

    Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing

    2015-01-01

    In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.

  15. Parallel processing method for high-speed real time digital pulse processing for gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Fernandes, A.M.; Pereira, R.C.; Sousa, J.; Neto, A.; Carvalho, P.; Batista, A.J.N.; Carvalho, B.B.; Varandas, C.A.F.; Tardocchi, M.; Gorini, G.

    2010-01-01

    A new data acquisition (DAQ) system was developed to fulfil the requirements of the gamma-ray spectrometer (GRS) JET-EP2 (joint European Torus enhancement project 2), providing high-resolution spectroscopy at very high-count rate (up to few MHz). The system is based on the Advanced Telecommunications Computing Architecture TM (ATCA TM ) and includes a transient record (TR) module with 8 channels of 14 bits resolution at 400 MSamples/s (MSPS) sampling rate, 4 GB of local memory, and 2 field programmable gate array (FPGA) able to perform real time algorithms for data reduction and digital pulse processing. Although at 400 MSPS only fast programmable devices such as FPGAs can be used either for data processing and data transfer, FPGA resources also present speed limitation at some specific tasks, leading to an unavoidable data lost when demanding algorithms are applied. To overcome this problem and foreseeing an increase of the algorithm complexity, a new digital parallel filter was developed, aiming to perform real time pulse processing in the FPGAs of the TR module at the presented sampling rate. The filter is based on the conventional digital time-invariant trapezoidal shaper operating with parallelized data while performing pulse height analysis (PHA) and pile up rejection (PUR). The incoming sampled data is successively parallelized and fed into the processing algorithm block at one fourth of the sampling rate. The following data processing and data transfer is also performed at one fourth of the sampling rate. The algorithm based on data parallelization technique was implemented and tested at JET facilities, where a spectrum was obtained. Attending to the observed results, the PHA algorithm will be improved by implementing the pulse pile up discrimination.

  16. Optimization of measurement geometries used by the C.I.R. 'Gamma Spectrometry' working group

    International Nuclear Information System (INIS)

    Escarieux, M.

    1979-01-01

    The choice of measurement geometry is closely tied to the objective sought in gamma quantitative analysis which consists in identifying the radionuclides present in a sample and in determining the voluminal quantities. The too low efficiency of the detector and the levels of activity sought make it necessary to place the sample in contact with the casing of the detector and select a sample geometry suited to the measurement. In point of fact this choice is often determined by other criteria, availability of the container for example, and this leads the laboratories taking part in the 'Gamma Spectrometry' Working Group of the Comite d'Instrumentation de Radioprotection to adopt joint gamma measurement geometries [fr

  17. Optimization of radiolytic degradation of sulfadiazine by combining Fenton and gamma irradiation processes

    International Nuclear Information System (INIS)

    Rivas-Ortiz, Iram Barbaro; Cruz-Gonzalez, German; Manduca-Artiles, Michel; Jauregui-Haza, U.J.

    2017-01-01

    Gamma radiation (GR) is a promising technique, among known advanced oxidation processes, degrading water contaminants. Nevertheless, few authors report the degradation of sulfonamides by GR, and limited information exists concerning the use of GR in the case of sulfadiazine (SDZ). The objectives of this work are (1) evaluating GR as an alternative method for treating wastewater contaminated with SDZ and examinating the intensification of GR with oxidants (H 2 O 2 or Fenton reagent). GR was performed with a high-activity 60 Co source. The gamma radiation/Fenton process gave the best result, leading to total SDZ removal and high (74.13%) pollutant mineralization. (author)

  18. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shunchun, E-mail: epscyao@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei 230037 (China); Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lu, Jidong, E-mail: jdlu@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2015-08-01

    The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment. - Highlights: • Tapered tube was designed for beam-focusing the coal particle flow as well as enriching the particles in laser focus spot. • The characteristics of laser-induced plasma of coal particle flow were investigated carefully. • An appropriate diameter of coal particle flow was proven to benefit for improving the performance of LIBS measurement.

  19. Analytical optimization of active bandwidth and quality factor for TOCSY experiments in NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Coote, Paul, E-mail: paul-coote@hms.harvard.edu [Harvard Medical School (United States); Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Wagner, Gerhard; Arthanari, Haribabu, E-mail: hari@hms.harvard.edu [Harvard Medical School (United States)

    2016-09-15

    Active bandwidth and global quality factor are the two main metrics used to quantitatively compare the performance of TOCSY mixing sequences. Active bandwidth refers to the spectral region over which at least 50 % of the magnetization is transferred via a coupling. Global quality factor scores mixing sequences according to the worst-case transfer over a range of possible mixing times and chemical shifts. Both metrics reward high transfer efficiency away from the main diagonal of a two-dimensional spectrum. They can therefore be used to design mixing sequences that will function favorably in experiments. Here, we develop optimization methods tailored to these two metrics, including precise control of off-diagonal cross peak buildup rates. These methods produce square shaped transfer efficiency profiles, directly matching the desirable properties that the metrics are intended to measure. The optimization methods are analytical, rather than numerical. The two resultant shaped pulses have significantly higher active bandwidth and quality factor, respectively, than all other known sequences. They are therefore highly suitable for use in NMR spectroscopy. We include experimental verification of these improved waveforms on small molecule and protein samples.

  20. Criteria for assembly of in vivo measuring systems using high-resolution {gamma}-spectroscopy for evaluation of incorporated radionuclides; Kriterien zum Aufbau von In Vivo Messsystemen zur hochaufloesenden {gamma}-Spektrometrie inkorporierter Radionuklide

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, W. [GSF Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg (Germany). Inst. fuer Strahlenschutz

    1997-12-01

    The paper reviews the available, fundamental measuring methods relying on {gamma}-spectroscopy for their possible application in whole-body and partial-body counters for detection of manifold incorporation of radionuclides. Particular emphasis is placed on the response functions of various detectors, the assembly, the differentiated radioactivity distribution in the body, the various components of background activity and the corresponding suppression mechanisms, and possible ways of using the energy dependence for optimised detection of specific {gamma} energies in a given body region. Criteria and relations as well as their advantages and drawbacks are discussed. (orig./CB) [Deutsch] Diese Arbeit prueft die zur Verfuegung stehenden grundlegenden, {gamma}-spektroskopischen Messmethoden auf deren moegliche Anwendung im Spektrum der Ganz- und Teilkoerperzaehler zum Nachweis der mannigfach inkorporierten Radionuklide. Insbesondere wird eingegangen auf die Response Funktionen verschiedener Detektoren, die Anordnung, die differenzierte Aktivitaetsverteilung im Koerper, die verschiedenen Untergrundkomponenten und deren Unterdrueckungsmechanismen sowie die Beeinflussung durch die Energieabhaengigkeit zum optimalen Nachweis spezifischer {gamma}-Energien an einem bestimmten Ort am Koerper. Kriterien und Relationen sowie deren Vor- und Nachteile werden diskutiert. (orig.)

  1. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  2. Identification of a Typical CSTR Using Optimal Focused Time Lagged Recurrent Neural Network Model with Gamma Memory Filter

    Directory of Open Access Journals (Sweden)

    S. N. Naikwad

    2009-01-01

    Full Text Available A focused time lagged recurrent neural network (FTLR NN with gamma memory filter is designed to learn the subtle complex dynamics of a typical CSTR process. Continuous stirred tank reactor exhibits complex nonlinear operations where reaction is exothermic. It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available. As CSTR process includes temporal relationship in the input-output mappings, time lagged recurrent neural network is particularly used for identification purpose. The standard back propagation algorithm with momentum term has been proposed in this model. The various parameters like number of processing elements, number of hidden layers, training and testing percentage, learning rule and transfer function in hidden and output layer are investigated on the basis of performance measures like MSE, NMSE, and correlation coefficient on testing data set. Finally effects of different norms are tested along with variation in gamma memory filter. It is demonstrated that dynamic NN model has a remarkable system identification capability for the problems considered in this paper. Thus FTLR NN with gamma memory filter can be used to learn underlying highly nonlinear dynamics of the system, which is a major contribution of this paper.

  3. A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy

    Science.gov (United States)

    Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.

    2018-01-01

    A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.

  4. Inline UV-Vis spectroscopy to monitor and optimize cleaning-in-place (CIP) of whey filtration plants

    DEFF Research Database (Denmark)

    Berg, Thilo Heinz Alexander; Ottosen, Niels; van der Berg, Franciscus Winfried J.

    2017-01-01

    used for every day. We investigated the capability of inline UV-Vis spectroscopy to elucidate the dynamics of CIP of membrane filtration plants as a gateway to control and optimize the process. For this investigation aged membranes that had been used for industrial ultrafiltration of whey were...

  5. Optimization of a neural network model for signal-to-background prediction in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Dragovic, S.; Onjia, A. . E-mail address of corresponding author: sdragovic@inep.co.yu; Dragovic, S.)

    2005-01-01

    The artificial neural network (ANN) model was optimized for the prediction of signal-to-background (SBR) ratio as a function of the measurement time in gamma-ray spectrometry. The network parameters: learning rate (α), momentum (μ), number of epochs (E) and number of nodes in hidden layer (N) were optimized simultaneously employing variable-size simplex method. The most accurate model with the root mean square (RMS) error of 0.073 was obtained using ANN with online backpropagation randomized (OBPR) algorithm with α = 0.27, μ 0.36, E = 14800 and N = 9. Most of the predicted and experimental SBR values for the eight radionuclides ( 226 Ra, 214 Bi, 235 U, 40 K, 232 Th, 134 Cs, 137 Cs and 7 Be), studied in this work, reasonably agreed to within 15 %, which was satisfactory accuracy. (author)

  6. Study of 16O-induced deep inelastic nuclear reactions on 27Al, 48Ti, and 58Ni by spectroscopy of the gamma radiation from the reaction products

    International Nuclear Information System (INIS)

    Puchta, H.

    1980-01-01

    The present thesis deals with the spectroscopy of the gamma radiation from the reaction fragments after binary reactions in the systems 16 O + 27 Al, 48 Ti, and 58 Ni at incident energies from 90 to 100 MeV, i.e. far above the Coulomb threshold. ΔE-E telescopes, which were located at 35 0 to the beam direction, detected the projectile-like fragments and defined the reaction channel and the scattering plane. In coincidence to this the gamma quanta in a 120-cm 3 -Ge(Li)-diode and a 27 x 33-cm-NaI-spectrometer were observed. The gamma spectra are equal to those observed hitherto in fusion reactions except for the high energetic gamma lines from the ejectiles, which are raised from the gamma continuum of the heavy fragments. From the spectroscoped gamma radiation for the light as for the heavy fragments the excitation energy, the value of the fragment angular momentum, as well as the occupation of the magnetic sublevels could be determined. The hard projectile 16 O transfers the dissipated energy and the angular momentum transferred by the spin of the fragments nearly completely into the residue nucleus. The probability for the observation of a ground state transition in one of the heavy fragments extends to (0.85 +- 0.10) per carbon ejectile in the system 16 O + 48 Ti. The residue nucleus distribution corresponds to that expected by the statistical model from the decay of the compound-nucleus 52 Cr belonging to the ejectile 12 C, the excitation energy of which corresponds to the reaction Q-value. (orig./HSI) [de

  7. Optimization of radiation protection in gamma radiography facilities; Otimizacao do sistema de radioprotecao nas instalacoes radiograficas de gamagrafia

    Energy Technology Data Exchange (ETDEWEB)

    Antonio Filho, Joao

    1999-07-01

    To determine optimized dose limits for workers, a study of optimization of radiation protection was undertaken in gamma radiography facilities closed, using the Technique Multiple Attributes Utility Analysis. A total of 217 protection options, distributed in 34 irradiation scenarios for tree facility types ( fixed open, moveable and closed (bunker) were analyzed. In the determination of the optimized limit dose, the following attributes were considered; costs of the protection barriers, costs attributed to the biological detriment for different alpha (the reference value of unit collective dose), size of the isolation area, constrained limits dose of annual individual equivalent doses and collective dose. The variables studied in the evaluation included: effective work load, type and activity of the sources of radiation ({sup 192}Ir and {sup 60}Co), source-operator distance related to the characteristic of the length of the command cable and the guide tube, type and thickness of the materials used in the protection barriers (concrete, barite, ceramic, lead, steel alloy and tungsten). The optimal analytic solutions obtained in the optimization process that resulted in the indication of the optimized dose limit were determined by means of a sensitivity analysis and by direct and logic evaluations, thus, independent of the values of the monetary coefficient attributed to the biological detriment, of the annual interest rate applied to the protection cost and of the type of installation studied, it was concluded that the primary limit of annual equivalent dose for workers (now 50 mSv) can be easily reduced to an optimized annual dose limit of 5 mSv. (author)

  8. FaNGaS: a New Instrument for Fast Neutron Gamma Spectroscopy at FRM II Research Reactor at Garching

    Energy Technology Data Exchange (ETDEWEB)

    Randriamalala, T.; Rossbach, M.; Genreith, C. [Institute of Energy and Climate Research, IEK-6: Nuclear Waste and Reactor Safety Fuel Cycle, Forchungszentrum Juelich GmbH in der Helmholtz-Gemeinshaft, 52428 Juelich (Germany); Revay, Zs.; Kudejova, P.; Soellradl, S.; Wagner, F.M. [Heinz Maier-Leibnitz Zentrum - MLZ, Technische Universitaet Muenchen, Lichtenbergstrasse 1, 85748 Garching (Germany)

    2015-07-01

    For the identification and quantification of actinides in radioactive packages, the non-destructive method of Prompt-Gamma Activation Analysis (PGAA) is applied. To investigate the inelastic (n, n 'γ) scattering, a new instrumentation was installed at the FRM II research reactor. It is designed to exploit the 10{sup 8} cm{sup -2}s{sup -1} neutrons at an average neutron energy of 1.9 MeV delivered by the SR10 beam line. The outgoing prompt γ-rays are measured utilizing a 50% efficiency HPGe detector. Since the cross sections are expected to be low for such a process, two related factors had to be taken into account for the design of the instrumentation: the high beam intensity at the sample position and the high signal-to-background ratio seen by the detector. Eventual low energy neutrons due to the multiple scatterings through the beam line can be minimized using collimators in the beam tube. This has also an effect to a prior neutrons and photons background reduction of the experimental environment. A higher efficiency of the counting can be achieved by the lowering of background at the detector. In this case, a heavy shielding for both neutrons and photons, is designed around the detector while optimizing the sample-detector distance. Monte-Carlo simulation studies were conducted to effectively design the fast neutron beam collimators and the detector shield. A detailed description of the setup characterization and results from simulations and experimental measurements will be discussed through this contribution. (authors)

  9. Optimization of in situ prompt gamma-ray analysis using a HPGe-252Cf probe

    International Nuclear Information System (INIS)

    Chien Chung; Jiunnhsing Chao

    1991-01-01

    Application of in situ measurements by the neutron-induced prompt gamma-ray activation analysis (PGAA) technique to geochemical analysis and mineral survey have been investigated. An in situ survey of water pollutants by PGAA techniques was first proposed in the authors' previous study, where a 2.7-μg 252 Cf neutron source used in connection with a gamma-ray detecting system to determine water pollutants was described. In this paper the authors describe a modified detection probe designed and constructed to look for the optimum conditions of various-intensity 252 Cf neutron sources in measurement of some elements in lake water. Detecting efficiencies at high-energy regions and detection limits for elements commonly found in polluted lakes were evaluated and predicted to investigate the potential application of the probe for in situ measurements

  10. The efficiency calibration and development of environmental correction factors for an in situ high-resolution gamma spectroscopy well logging system

    International Nuclear Information System (INIS)

    Giles, J.R.

    1996-05-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. Absolute efficiency calibration of the GSLS was performed using simple cylindrical borehole geometry. The calibration source incorporated naturally occurring radioactive material (NORM) that emitted photons ranging from 186-keV to 2,614-keV. More complex borehole geometries were modeled using commercially available shielding software. A linear relationship was found between increasing source thickness and relative photon fluence rates at the detector. Examination of varying porosity and moisture content showed that as porosity increases, relative photon fluence rates increase linearly for all energies. Attenuation effects due to iron, water, PVC, and concrete cylindrical shields were found to agree with previous studies. Regression analyses produced energy-dependent equations for efficiency corrections applicable to spectral gamma-ray well logs collected under non-standard borehole conditions

  11. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Prochaska, J. X.; Werk, J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Perley, D.; Cao, Y. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Cardwell, A.; Turner, J. [Gemini South Observatory, AURA, Casilla 603, La Serena (Chile); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cobb, B. E., E-mail: acucchia@ucolick.org [The George Washington University, Washington, DC (United States)

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial

  12. Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy.

    Science.gov (United States)

    Negrete, Alejandro; Esteban, Geoffrey; Kotin, Robert M

    2007-09-01

    A well-characterized manufacturing process for the large-scale production of recombinant adeno-associated vectors (rAAV) for gene therapy applications is required to meet current and future demands for pre-clinical and clinical studies and potential commercialization. Economic considerations argue in favor of suspension culture-based production. Currently, the only feasible method for large-scale rAAV production utilizes baculovirus expression vectors and insect cells in suspension cultures. To maximize yields and achieve reproducibility between batches, online monitoring of various metabolic and physical parameters is useful for characterizing early stages of baculovirus-infected insect cells. In this study, rAAVs were produced at 40-l scale yielding ~1 x 10(15) particles. During the process, dielectric spectroscopy was performed by real time scanning in radio frequencies between 300 kHz and 10 MHz. The corresponding permittivity values were correlated with the rAAV production. Both infected and uninfected reached a maximum value; however, only infected cell cultures permittivity profile reached a second maximum value. This effect was correlated with the optimal harvest time for rAAV production. Analysis of rAAV indicated the harvesting time around 48 h post-infection (hpi), and 72 hpi produced similar quantities of biologically active rAAV. Thus, if operated continuously, the 24-h reduction in the production process of rAAV gives sufficient time for additional 18 runs a year corresponding to an extra production of ~2 x 10(16) particles. As part of large-scale optimization studies, this new finding will facilitate the bioprocessing scale-up of rAAV and other bioproducts.

  13. Summary report of the first research coordination meeting on development of a reference database for particle-induced gamma ray emission (PIGE) spectroscopy

    International Nuclear Information System (INIS)

    Abriola, D.; Pedro de Jesus, A.

    2011-07-01

    The First Research Coordination Meeting (RCM) of the IAEA Coordinated Research Project (CRP) on 'Development of a Reference Database for Particle-Induced Gamma-ray Emission (PIGE) Spectroscopy' was held at the IAEA, Vienna, from 16-20 May 2011. A summary of the participants' presentations is given as well as background information, objectives and recommendations concerning approach and methodology. The extension of the IBANDL database format to include PIGE data was discussed. The different tasks to achieve the CRP objectives were assigned to participants. A list of priority measurements was produced and the individual sets of measurements assigned to participants. (author)

  14. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    Science.gov (United States)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  15. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    DEFF Research Database (Denmark)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P

    2017-01-01

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate...... concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus...... glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. METHODS: Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia...

  16. Expression optimization and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Escherichia coli novablue.

    Science.gov (United States)

    Yao, Ya-Feng; Weng, Yih-Ming; Hu, Hui-Yu; Ku, Kuo-Lung; Lin, Long-Liu

    2006-09-01

    A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His(6)-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 degrees C and 9, respectively. The apparent K (m) and V (max) values for gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor in the transpeptidation reaction were 37.9 microM and 53.7 x 10(-3) mM min(-1), respectively. The synthesis of L -theanine was performed in a reaction mixture containing 10 mM L -Gln, 40 mM ethylamine, and 1.04 U His(6)-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.

  17. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co [Medical Physics Group, Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation of the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.

  18. Automated gamma knife radiosurgery treatment planning with image registration, data-mining, and Nelder-Mead simplex optimization

    International Nuclear Information System (INIS)

    Lee, Kuan J.; Barber, David C.; Walton, Lee

    2006-01-01

    Gamma knife treatments are usually planned manually, requiring much expertise and time. We describe a new, fully automatic method of treatment planning. The treatment volume to be planned is first compared with a database of past treatments to find volumes closely matching in size and shape. The treatment parameters of the closest matches are used as starting points for the new treatment plan. Further optimization is performed with the Nelder-Mead simplex method: the coordinates and weight of the isocenters are allowed to vary until a maximally conformal plan specific to the new treatment volume is found. The method was tested on a randomly selected set of 10 acoustic neuromas and 10 meningiomas. Typically, matching a new volume took under 30 seconds. The time for simplex optimization, on a 3 GHz Xeon processor, ranged from under a minute for small volumes ( 30 000 cubic mm,>20 isocenters). In 8/10 acoustic neuromas and 8/10 meningiomas, the automatic method found plans with conformation number equal or better than that of the manual plan. In 4/10 acoustic neuromas and 5/10 meningiomas, both overtreatment and undertreatment ratios were equal or better in automated plans. In conclusion, data-mining of past treatments can be used to derive starting parameters for treatment planning. These parameters can then be computer optimized to give good plans automatically

  19. Application of gamma radiation backscattering in determining density and Zsub(eff) of scattering material Monte Carlo optimization of configuration

    International Nuclear Information System (INIS)

    Cechak, T.

    1982-01-01

    Applying Gardner's method of double evaluation one detector should be positioned such that its response should be independent of the material density and the second detector should be positioned so as to maximize changes in response due to density changes. The experimental scanning for optimal energy is extremely time demanding. A program was written based on the Monte Carlo method which solves the problem of error magnitude in case the computation of gamma radiation backscattering neglects multiply scattered photons, the problem of how this error depends on the atomic number of the scattering material as well as the problem of whether the representation of individual scatterings in the spectrum of backscattered photons depends on the positioning of the detector. 42 detectors, 8 types of material and 10 different density values were considered. The computed dependences are given graphically. (M.D.)

  20. Optimal energy window setting depending on the energy resolution for radionuclides used in gamma camera imaging. Planar imaging evaluation

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Watanabe, Hiroyuki; Arao, Yuichi; Kawasaki, Masaaki; Takaki, Akihiro; Matsumoto, Masanori

    2007-01-01

    In this study, we examined whether the optimal energy window (EW) setting depending on an energy resolution of a gamma camera, which we previously proposed, is valid on planar scintigraphic imaging using Tl-201, Ga-67, Tc-99m, and I-123. Image acquisitions for line sources and paper sheet phantoms containing each radionuclide were performed in air and with scattering materials. For the six photopeaks excluding the Hg-201 characteristic x-rays' one, the conventional 20%-width energy window (EW20%) setting and the optimal energy window (optimal EW) setting (15%-width below 100 keV and 13%-width above 100 keV) were compared. For the Hg-201 characteristic x-rays' photopeak, the conventional on-peak EW20% setting was compared with the off-peak EW setting (73 keV-25%) and the wider off-peak EW setting (77 keV-29%). Image-count ratio (defined as the ratio of the image counts obtained with an EW and the total image counts obtained with the EW covered the whole photopeak for a line source in air), image quality, spatial resolutions (full width half maximum (FWHM) and full width tenth maximum (FWTM) values), count-profile curves, and defect-contrast values were compared between the conventional EW setting and the optimal EW setting. Except for the Hg-201 characteristic x-rays, the image-count ratios were 94-99% for the EW20% setting, but 78-89% for the optimal EW setting. However, the optimal EW setting reduced scatter fraction (defined as the scattered-to-primary counts ratio) effectively, as compared with the EW20% setting. Consequently, all the images with the optimal EW setting gave better image quality than ones with the EW20% setting. For the Hg-201 characteristic x-rays, the off-peak EW setting showed great improvement in image quality in comparison with the EW20% setting and the wider off-peak EW setting gave the best results. In conclusion, from our planar imaging study it was shown that although the optimal EW setting proposed by us gives less image-count ratio by

  1. Optimized high energy resolution in γ-ray spectroscopy with AGATA triple cluster detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Andreas

    2011-06-20

    The AGATA demonstrator consists of five AGATA Triple Cluster (ATC) detectors. Each triple cluster detector contains three asymmetric, 36-fold segmented, encapsulated high purity germanium detectors. The purpose of the demonstrator is to show the feasibility of position-dependent γ-ray detection by means of γ-ray tracking, which is based on pulse shape analysis. The thesis describes the first optimization procedure of the first triple cluster detectors. Here, a high signal quality is mandatory for the energy resolution and the pulse shape analysis. The signal quality was optimized and the energy resolution was improved through the modification of the electronic properties, of the grounding scheme of the detector in particular. The first part of the work was the successful installation of the first four triple cluster detectors at INFN (National Institute of Nuclear Physics) in Legnaro, Italy, in the demonstrator frame prior to the AGATA commissioning experiments and the first physics campaign. The four ATC detectors combine 444 high resolution spectroscopy channels. This number combined with a high density were achieved for the first time for in-beam γ-ray spectroscopy experiments. The high quality of the ATC detectors is characterized by the average energy resolutions achieved for the segments of each crystal in the range of 1.943 and 2.131 keV at a γ-ray energy of 1.33 MeV for the first 12 crystals. The crosstalk level between individual detectors in the ATC is negligible. The crosstalk within one crystal is at a level of 10{sup -3}. In the second part of the work new methods for enhanced energy resolution in highly segmented and position sensitive detectors were developed. The signal-to-noise ratio was improved through averaging of the core and the segment signals, which led to an improvement of the energy resolution of 21% for γ-energies of 60 keV to a FWHM of 870 eV. In combination with crosstalk correction, a clearly improved energy resolution was

  2. Optimization of post-run corrections for water stable isotope measurements by laser spectroscopy

    Science.gov (United States)

    van Geldern, Robert; Barth, Johannes A. C.

    2013-04-01

    Light stable isotope analyses of hydrogen and oxygen of water are used in numerous aquatic studies from various scientific fields. The advantage of using stable isotope ratios is that water molecules serve as ubiquitous and already present natural tracers. Traditionally, the samples were analyzed in the laboratory by isotope ratio mass spectrometry (IRMS). Within recent years these analyses have been revolutionized by the development of new isotope ratio laser spectroscopy (IRIS) systems that are said to be cheaper, more robust and mobile compared to IRMS. Although easier to operate, laser systems also need thorough calibration with international reference materials and raw data need correction for analytical effects. A major issue in systems that use liquid injection via a vaporizer module is the memory effect, i.e. the carry-over from the previous analyzed sample in a sequence. This study presents an optimized and simple post-run correction procedure for liquid water injection developed for a Picarro water analyzer. The Excel(TM) template will rely exclusively on standard features implemented in MS Office without the need to run macros, additional code written in Visual Basic for Applications (VBA) or to use a database-related software such as MS Access or SQL Server. These protocols will maximize precision, accuracy and sample throughput via an efficient memory correction. The number of injections per unknown sample can be reduced to 4 or less. This procedure meets the demands of faster throughput with reduced costs per analysis. Procedures were verified by an international proficiency test and traditional IRMS techniques. The template is available free for scientific use from the corresponding author or the journals web site (van Geldern and Barth, 2012). References van Geldern, R. and Barth, J.A.C. (2012) Limnol. Oceanogr. Methods 10:1024-1036 [doi: 10.4319/lom.2012.10.1024

  3. Optimal emission enhancement in orthogonal double-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Sanginés, R.; Contreras, V.; Sobral, H.; Robledo-Martinez, A.

    2015-01-01

    Orthogonal double-pulse (DP) laser-induced breakdown spectroscopy (LIBS) was performed using reheating and pre-ablative configurations. The ablation pulse power density was varied by two orders of magnitude and the DP experiments were carried out for a wide range of interpulse delays. For both DP-LIBS schemes, the signal enhancement was evaluated with respect to the corresponding single-pulse (SP) LIBS as a function of the interpulse delay. The reheating scheme shows a sharp maximum signal enhancement of up to 200-fold for low ablative power densities (0.4 GW cm −2 ); however, for power densities larger than 10 GW cm −2 this configuration did not improve the SP outcome. On the other hand, a more uniform signal enhancement of about 4–6 was obtained for the pre-ablative scheme nearly independently of the used ablative power density. In terms of the signal-to-noise ratio (SNR) the pre-ablative scheme shows a monotonic increment with the ablative power density. Whereas the reheating configuration reaches a maximum at 2.2 GW cm −2 , its enhancement effect collapses markedly for fluencies above 10 GW cm −2 . - Highlights: • Comparison of reheating and pre-ablative double-pulse LIBS was done using a wide range of ablation power densities. • Experimental parameters that could achieve optimal signal-to-noise ratio were investigated. • A reheating scheme is better for low-ablation power densities. • A pre-ablative configuration is better for high-ablation power densities

  4. Total absorption gamma-ray spectroscopy (TAGS): Current status of measurement programmes for decay heat calculations and other applications. Summary report of consultants' meeting

    International Nuclear Information System (INIS)

    Nichols, A.L.; Nordborg, C.

    2009-02-01

    A Consultants' Meeting on 'Total Absorption Gamma-ray Spectroscopy (TAGS)' was held on 27-28 January 2009 at the IAEA Headquarters, Vienna, Austria. All presentations, discussions and recommendations of this meeting are contained within this report. The purpose of the meeting was to report and discuss progress and plans to measure total gamma-ray spectra in order to derive mean beta and gamma decay data for decay heat calculations and other applications. This form of review had been recommended by contributors to Subgroup 25 of the OECD-NEA Working Party on International Evaluation Cooperation of the Nuclear Science Committee, for implementation in 2008/09. Hence, relevant specialists were invited to discuss their recently performed and planned TAGS studies, along with experimentalists proposing to assemble and operate such dedicated facilities. Knowledge and quantification of antineutrino spectra is believed to be a significant asset in the non-invasive monitoring of reactor operations and possible application in safeguards, as well as fundamental in the study of neutrino oscillations - these data needs were also debated in terms of appropriate TAGS measurements. A re-assessment of the current request list for TAGS studies is merited and was undertaken in the context of decay heat calculations, and agreement was reached to extend these requirements to the derivation of antineutrino spectra. (author)

  5. Potential radionuclide emissions from stacks on the Hanford site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J.M. [Westinghouse Hanford Company, Richland, WA (United States)

    1995-02-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, {open_quotes}National Emission Standards for Hazardous Air Pollutants{close_quotes}, stacks that have the potential to emit {ge} 1 {mu}Sv y{sup {minus}1} (0.1 mrem y{sup {minus}1}) to the maximally exposed individual are considered {open_quotes}major{close_quotes} and must meet the continuous monitoring requirements. After the method was tested and verified, the U.S. Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method, and 15 were assessed. (The method could not be applied at seven stacks because of excessive background radiation or because no gamma emitting particles appear in the emission stream.) The most significant result from this study was the redesignation of the T Plant main stack. The stack was assessed as being {open_quotes}minor{close_quotes}, and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements.

  6. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  7. Studies of Nuclear Fuel Performance Using On-site Gamma-ray Spectroscopy and In-pile Measurements

    International Nuclear Information System (INIS)

    Matsson, Ingvar

    2006-01-01

    Presently there is a clear trend of increasing demands on in-pile performance of nuclear fuel. Higher target burnups, part length rods and various fuel additives are some examples of this trend. Together with an increasing demand from the public for even safer nuclear power utilisation, this implies an increased focus on various experimental, preferably non-destructive, methods to characterise the fuel. This thesis focuses on the development and experimental evaluation of such methods. In its first part, the thesis presents a method based on gamma-ray spectroscopy with germanium detectors that have been used at various power reactors in Europe. The aim with these measurements is to provide information about the thermal power distribution within fuel assemblies in order to validate core physics production codes. The early closure of the Barsebaeck 1 BWR offered a unique opportunity to perform such validations before complete depletion of burnable absorbers in Gd-rods had taken place. To facilitate the measurements, a completely submersible measuring system, LOKET, was developed allowing for convenient in-pool measurements to be performed. In its second part, the thesis describes methods that utilise in-pile measurements. These methods have been used in the Halden test-reactor for determination of fission gas release, pellet-cladding interaction studies and fuel development studies. Apart from the power measurements, the LOKET device has been used for fission gas release (FGR) measurements on single fuel rods. The significant reduction in fission gas release in the modern fuel designs, in comparison with older designs, has been demonstrated in a series of experiments. A FGR database covering a wide range of burnup, power histories and fuel designs has been compiled and used for fuel performance analysis. The fission gas release has been measured on fuel rods with average burnups well above 60 MWd/kgU. The comparison between core physics calculations (PHOENIX-4/POLCA

  8. Using an optimal CC-PLSR-RBFNN model and NIR spectroscopy for the starch content determination in corn

    Science.gov (United States)

    Jiang, Hao; Lu, Jiangang

    2018-05-01

    Corn starch is an important material which has been traditionally used in the fields of food and chemical industry. In order to enhance the rapidness and reliability of the determination for starch content in corn, a methodology is proposed in this work, using an optimal CC-PLSR-RBFNN calibration model and near-infrared (NIR) spectroscopy. The proposed model was developed based on the optimal selection of crucial parameters and the combination of correlation coefficient method (CC), partial least squares regression (PLSR) and radial basis function neural network (RBFNN). To test the performance of the model, a standard NIR spectroscopy data set was introduced, containing spectral information and chemical reference measurements of 80 corn samples. For comparison, several other models based on the identical data set were also briefly discussed. In this process, the root mean square error of prediction (RMSEP) and coefficient of determination (Rp2) in the prediction set were used to make evaluations. As a result, the proposed model presented the best predictive performance with the smallest RMSEP (0.0497%) and the highest Rp2 (0.9968). Therefore, the proposed method combining NIR spectroscopy with the optimal CC-PLSR-RBFNN model can be helpful to determine starch content in corn.

  9. A study of Venus surface elemental composition from 14 MeV neutron induced gamma ray spectroscopy: Activation analysis

    International Nuclear Information System (INIS)

    Jun, I.; Kim, W.; Smith, M.; Mitrofanov, I.; Litvak, M.

    2011-01-01

    The surface elemental composition of Venus can be determined using an artificially pulsed 14 MeV neutron generator (PNG) combined with a gamma ray spectrometer (GRS). The 14 MeV neutrons will interact with the surface materials and generate gamma rays, characteristic of specific elements, whose energy spectrum will be measured by GRS. These characteristic gamma rays are produced mainly through 3 different neutron interaction mechanisms: capture, inelastic, and activation reactions. Each reaction type has a different neutron energy dependency and different time scale for gamma ray production and transport. Certain elements are more easily identified through one reaction type over the others. Thus, careful analysis of the gamma ray spectra during and after the neutron pulse provides a comprehensive understanding of the surface elemental composition. In this paper, we use a well-tested neutron/gamma transport code, called Monte Carlo N-Particles (MCNP), to investigate the measurement capability of a PNG-GRS detection system through the neutron activation reactions. An activation analysis was performed for a representative soil composition of Venus with a notional operational scenario of PNG and GRS. The analysis shows that the proposed instrument concept can identify most of the modeled surface elements at Venus with sufficient accuracy through the activation mode. Specifically, U, Th, K, Si can be measured to within 1%, Fe within 2%, Al within 10%, Ca within 5%, Mg with 15%, Mn with 20%, and Cl within 6%. Although modeled in the analysis, it is shown that the activation mode alone cannot distinguish the S and Ti peaks.

  10. Measurement of actinide concentration in solution samples from the NUCEF reprocessing facility by X-ray and low energy gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Howarth, P.J.A.; Uchiyama, Gunzo; Asakura, Toshihide; Sawada, Mutsumi; Hagiya, Hiromichi; Fujine, Sachio

    1999-01-01

    X-ray and low-energy gamma-ray spectroscopy has been used to measure actinide concentration within the backend nuclear fuel reprocessing research facility at NUCEF. Research on advanced reprocessing techniques at NUCEF is based on the PARC refinement of the PUREX process which aims to recover Am and Cm from the highly active waste stream and to control and partition Np and Tc. It is hoped that the PARC process will mitigate the environmental impact of the wastes and improve the economy of reprocessing. The main actinides for which assay is required are U, Pu, Np and Am and knowledge of these concentrations will enable the following to be determined: i.) evaluation of the distribution of actinides throughout the reprocessing facility ii.) verification of the simulated actinide distribution from chemical kinetic simulations of the PARC process and iii.) assurance of safety and control over migrant radioactive species. The research presented here shows that passive measurement of x-rays and low-energy gamma-rays from solution samples provides an accurate and non-destructive means for assaying the concentration. The measurement technique is based on the use of the characteristic low energy gamma-rays and internal conversion x-ray emission from actinides (11 keV to 22 keV). The x-ray emission is a few orders of magnitude more intense than the characteristic gamma-ray emission and can be easily detected from solutions. The experimental system described here can be used for solution monitoring to a minimum concentration of typically 10-6 M for Pu, 10-10 M for Am and 10-6 M for Np. (author)

  11. Gamma-ray energy absorption in absorbing homogeneous medium. Applications to Oceanography and Geophysics (Gamma-ray spectroscopy from 500 to 1500 keV)

    International Nuclear Information System (INIS)

    Lapicque, G.

    1980-01-01

    The aim of this study is to establish a general algebrical approach for the calculation, without any program, of the full energy peak efficiency of a detecting probe designed to measure the gamma activity of a radio-element in a (semi) infinite homogeneous absorbing medium such as the Sea. The radio-active source may be punctual or, most often, constitute an integral part of the medium. The proposed theory is valid for any purely absorptive process of particles moving along straight trajectories, diffusion effects being allowed for separately. The formulation assumes a spherical detector and calculations are made for models having the same volume as two standard phosphors (10 cm x8 cm and 5 cm x 4.5 cm) in the energy band 0.5 to 1.5 MeV. The parameters are the detector radius and, at energy E 0 , the absorption coefficients in the various media for gamma rays together with the 'peak/total' ratio in the detector. The fact that this latter factor, which varies with each trajectory, cannot be obtained with accuracy, constitutes the main limitation of the formulation. The comparison with experimental results obtained with a 10 cm x 8 cm phosphor at the C.F.R. (Centre des Faibles Radioactivites, Gif-sur-Yvette) and with various data indicates an error of about +-5% for a point source at contact and -30% for a homogeneously distributed source in an infinite medium. This latter value may be interpreted as a superiority of the spherical shape over the cylinder (used in practice), for detectors operating in infinite media. Calculations are made without allowing for the Compton effect, which is found to give an approximate correction of +5% in water for a band width of 10 keV in the MeV region. Finally, the shape of the detecting probe around the detector is shown to be indifferent in the assumption of a constant peak/total ratio [fr

  12. Optimization of culture conditions for gamma-aminobutyric acid production in fermented adzuki bean milk

    Directory of Open Access Journals (Sweden)

    Hung Yi Song

    2018-01-01

    Full Text Available γ-Aminobutyric acid (GABA, a nonprotein amino acid, is widely distributed in nature and fulfills several physiological functions. In this study, various lactic acid strains commonly used to produce fermented milk products were inoculated into adzuki bean milk for producing GABA. The high GABA producing strain was selected in further experiment to improve the GABA production utilizing culture medium optimization. The results demonstrated that adzuki bean milk inoculated with Lactobacillus rhamnosus GG increased GABA content from 0.05 mg/mL to 0.44 mg/mL after 36 hours of fermentation, which showed the greatest elevation in this study. Furthermore, the optimal cultural condition to adzuki bean milk inoculated with L. rhamnosus GG to improve the GABA content was performed using response surface methodology. The results showed that GABA content was dependent on the addition of galactose, monosodium glutamate, and pyridoxine with which the increasing ratios of GABA were 23–38%, 24–68%, and 8–36%, respectively. The optimal culture condition for GABA production of adzuki bean milk was found at the content of 1.44% galactose, 2.27% monosodium glutamate, and 0.20% pyridoxine. Under the optimal cultural condition, the amount of GABA produced in the fermented adzuki bean milk was 1.12 mg/mL, which was 22.4-fold higher than that of the unfermented adzuki bean milk (0.05 mg/100 mL. The results suggested that the optimized cultural condition of adzuki bean milk inoculated with L. rhamnosus GG can increase GABA content for consumers as a daily supplement as suggested.

  13. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2009-08-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

  14. EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility

    Czech Academy of Sciences Publication Activity Database

    Jentschel, M.; Blanc, A.; de France, G.; Koster, U.; Leoni, S.; Mutti, P.; Simpson, G. S.; Krtička, M.; Tomandl, Ivo; Valenta, S.

    2017-01-01

    Roč. 12, č. 11 (2017), č. článku P11003. ISSN 1748-0221 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * gamma detectors * spectrometers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  15. $\\beta$3$p$-spectroscopy and proton-$\\gamma$ width determination in the decay of $^{31}$Ar

    CERN Multimedia

    We propose to perform a detailed study of the $\\beta$-decay of the dripline nucleus $^{31}$Ar. This will allow a detailed study of the $\\beta$-delayed 3$p$-decay as well as provide important information on the resonances of $^{30}$S and $^{29}$P, in particular the ratio between the $p$- and $\\gamma$- partial widths relevant for astrophysics.

  16. Toxicity attenuation optimization of crotalic venom by gamma radiation and studies of its immunogenic properties

    International Nuclear Information System (INIS)

    Clissa, Patricia Bianca

    1997-01-01

    Literature data show that 2.0 kGy dose of gamma radiation, generated by 60 source, reduces the toxic activity of Crotalus durissus terrificus venom, without altering its immunogenic capacity. When crotoxin, main toxin from crotalic venom, was irradiated with the same dose, toxicity was also reduced and the immunogenicity was maintained. This fact was attributed to aggregates (compounds with high molecular weight generated during irradiation), that showed no toxicity but were able to induce the antibodies formation against native venom. Crotalus durissus terrificus venom was irradiated with 2.0, 3.0, 5.0 and 10.0 kGy doses and submitted to molecular exclusion chromatography, in order to find an efficient dose that produces large amounts of non toxic but still immunogenic aggregates. After being isolated, the products of irradiation were evaluated for the amount produced, molecular alteration, and toxic and immunogenic activities. These parameters were also analyzed for the whole venom irradiated. The results from different doses irradiated venom were compared with native one, and 2.0 kGy dose was confirmed to be the most efficient in the association of toxicity attenuation with maintenance of immunogenicity of the crotalic venom, while other doses, in spite of being efficient in the toxicity attenuation, they were not able to keep the immunogenicity property. So, the dose of 2.0 kGy could be used to immunize animals in order to improve anticrotalic sera production. (author)

  17. Optimization of culture media for enhancing gamma-linolenic acid production by Mucor hiemalis

    Directory of Open Access Journals (Sweden)

    Mina Mohammadi Nasr

    2016-03-01

    Full Text Available Introduction: g-linolenic acid is an essential fatty acid in human nutrition. In the present study, production of g-linolenic acid by Mucor hiemalis PTCC 5292 was evaluated in submerged fermentation. Materials and methods: The fermentation variables were chosen according to the fractional factorial design and further optimized via full factorial method. Four significant variables, glucose, peptone, ammonium nitrate and pH were selected for the optimization studies. The design consisted of total 16 runs consisting of runs at two levels for each factor with three replications of the center points. Results: The analysis of variance and three-dimensional response surface plot of effects indicated that variables were regarded to be significant for production of g-linolenic acid by Mucor hiemalis. Results indicated that fermentation at the optimum conditions (100 g/l glucose concentration; 1 g/l peptone; 1 g/l ammonium nitrate, and pH of 4.5 enhanced the g-linolenic acid production up to 709 mg/l. Discussion and conclusion: The results of this study indicated that higher g-linolenic acid yield can be achieved in a simple medium at high glucose and ammonium nitrate, low peptone concentrations and acidic pH by Mucor hiemalis PTCC 5292. This simple and low cost optimization condition of culture media can be applied for g-linolenic acid production at higher scale for pharmaceutical and nutritional industries. 

  18. Optimization of a conversion electron Moessbauer spectroscopy gas flow He/CH4 proportional counter

    International Nuclear Information System (INIS)

    Hanzel, D.; Griesbach, P.; Meisel, W.; Guetlich, P.

    1992-01-01

    A new detector for CEMS has been built and optimized with respect to the statistical quality of spectra obtained. The optimization has been performed by measuring Moessbauer and pulse height spectra at in- and off-resonance. Single channel analyzer settings were calculated by a new optimization routine. A comparison of different detector designs has been performed using the statistical utility rate of spectra obtained from a stainless steel foil. A procedure for determining optimal operating parameters for ICEMS gas flow proposed. (orig.)

  19. Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization

    KAUST Repository

    Alsulami, Qana; Banavoth, Murali; Alsinan, Yara; Parida, Manas R.; Aly, Shawkat Mohammede; Mohammed, Omar F.

    2016-01-01

    of these photophysical processes at device interfaces remains superficial, creating a major bottleneck that circumvents advancements and the optimization of these solar cells. Here, results from time-resolved laser spectroscopy and high-resolution electron microscopy

  20. Investigation of hyperfine interactions in DNA and antibody of different lineages of mice infected by T. cruzi by perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos

    2012-01-01

    In the present work perturbed angular correlation (PAC) spectroscopy was used to measured electric quadrupole interactions in DNA biomolecules of different mice lineages (A/J, C57BL/6, B6AF1, BXA1 e BXA2), samples of different isotypes of immunoglobulin G (IgG1, IgG2a e IgG2b) and active portions of complete and fragmented immunoglobulin responsible by the immune response. Electric quadrupole interactions were also measured in DNA nitrogenous bases (adenine, cytosine, guanine, thymine). PAC measurements were performed using 111 In → 111C d; 111mC d → 111 Cd; 111 Ag → 111 Cd; e 181 Hf → 181 Ta as probe nuclei, and carried out at room temperature and liquid nitrogen temperature, in order to investigate dynamic and static hyperfine interactions, respectively. The biomolecule samples were directly marked with the radioactive parent nuclei, whose atom link to a certain site in the biomolecules. The biological materials as well as the probe nuclei were chosen to investigate the possibility to use PAC spectroscopy to measure hyperfine parameters at nuclei from metallic elements bound to biomolecules (including the use of different probe nuclei produced in the decay of parent nuclei of four different metals) and also to study the behavior of different biomolecules by means of the measured hyperfine parameters. Results show differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depend on the type of biomolecule and the results also show that the probe nuclei atom bound to the molecule in some cases and in others do not. (author)

  1. Elemental analysis of water and soil environmental samples in Tabuk area by neutron capture gamma-ray spectroscopy techniques

    International Nuclear Information System (INIS)

    Al-Aseery, Sh.M.; Alamoudi, Z.; Hassan, A.M.

    2006-01-01

    The prompt and delayed gamma-rays due to neutron capture in the nuclei of the constituent elements of three soil samples and one drinking water sample have been measured. The 252 Cf and 226 Ra/Be isotopic neutron sources are used for neutron irradiation. Also, the hyper pure germanium detection system is used. The soil samples were from Astra, Tadco and El-Gammaz farms, while the water sample was taken from Tabuk city. In case of prompt gamma-ray analysis, a total of 16 elements were identified and the concentration percentage values by weight were calculated for: C, Na, Mg, Al, Si, S, Cl,, Ca, Ti, Cr, Mn, Fe, Co, Zn, Sr ad Pb elements. A comparative study between the results obtained in this work and the results obtained by ICP-MS and EDX-Ray techniques for the same samples is given

  2. Application of gamma-ray spectroscopy to the differentiation between mobile and deposited fission products in pipes

    International Nuclear Information System (INIS)

    Packer, T.W.; Armitage, B.H.

    1990-08-01

    A method has been developed to differentiate between material flowing in pipes and deposited on the pipe walls. This has been applied to a study of fission product release from irradiated fuel under severe accident conditions. A collimation arrangement has been examined which provides good discrimination between gamma- radiation arising from flowing gases/aerosols and from stationary deposits. A systematic examination has been made of gamma- radiation obtained from gases and deposits in pipes of different diameter for a number of collimator configurations. A system of calibration has been developed based on Monte-Carlo modelling which has been found to be in broad agreement with measured values. This knowledge has been applied to the data obtained in a real-time measurement undertaken on the FALCON reactor safety facility at AEA Technology, Winfrith

  3. Efficiency calibration and measurement of self-absorption correction of environmental gamma spectroscopy of soils samples using Marinelli beaker

    International Nuclear Information System (INIS)

    Abdi, M. R.; Mostajaboddavati, M.; Hassanzadeh, S.; Faghihian, H.; Rezaee, Kh.; Kamali, M.

    2006-01-01

    A nonlinear function in combination with the method of mixing activity calibrated is applied for fitting the experimental peak efficiency of HPGe spectrometers in 59-2614 keV energy range. The preparation of Marinelli beaker standards of mixed gamma and RG-set at secular equilibrium with its daughter radionuclides was studied. Standards were prepared by mixing of known amounts of 13B a, 241 Am, 152 Eu, 207 Bi, 24 Na, Al 2 O 3 powder and soil. The validity of these standards was checked by comparison with certified standard reference material RG-set and IAEA-Soil-6 Self-absorption was measured for the activity calculation of the gamma-ray lines about series of 238 U daughter, 232 Th series, 137 Cs and 40 K in soil samples. Self-absorption in the sample will depend on a number of factor including sample composition, density, sample size and gamma-ray energy. Seven Marinelli beaker standards were prepared in different degrees of compaction with bulk density ( ρ) of 1.000 to 1.600 g cm -3 . The detection efficiency versus density was obtained and the equation of self-absorption correction factors calculated for soil samples

  4. Development of a technique for the on line determination of uranium in solution by gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Singh, Sarabjit; Ramaswami, A.; Gill, Jatinder Singh

    2005-02-01

    A technique based on gamma ray spectrometry has been developed for the continuous monitoring of uranium in the solution form. Simulated container and support system was designed and fabricated for the development of an efficiency calibration curve and to find the detection limit for the estimation of uranium using 185.7 keV ( 235 U) gamma ray. The system was calibrated for its counting efficiency using HPGe detector system, in a standard source mount to detector geometry. The sensitivity of the detection system and counting time for low-level estimation of uranium has also been established. The detection limit of the monitor is ∼10 mg of uranium per litre of the solution. In order to correct for the density variation of the solution experiment was carried to study the variation of count rate of 185.7 ke V gamma ray of 235 U as a function of the density of the solution. This report gives the details of the development of a continuous monitor for the determination of uranium in the solution streams. (author)

  5. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  6. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence.

    Science.gov (United States)

    Bhattacharyya, Pallab K; Phillips, Micheal D; Stone, Lael A; Lowe, Mark J

    2011-04-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm(3) voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Copper doping of ZnO crystals by transmutation of {sup 64}Zn to {sup 65}Cu: An electron paramagnetic resonance and gamma spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Recker, M. C.; McClory, J. W., E-mail: John.McClory@afit.edu; Holston, M. S.; Golden, E. M.; Giles, N. C. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States); Halliburton, L. E. [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2014-06-28

    Transmutation of {sup 64}Zn to {sup 65}Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the {sup 65}Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of {sup 64}Zn nuclei to {sup 65}Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu{sup 2+} ions (where {sup 63}Cu and {sup 65}Cu hyperfine lines are easily resolved). A spectrum from isolated Cu{sup 2+} (3d{sup 9}) ions acquired after the neutron irradiation showed only hyperfine lines from {sup 65}Cu nuclei. The absence of {sup 63}Cu lines in this Cu{sup 2+} spectrum left no doubt that the observed {sup 65}Cu signals were due to transmuted {sup 65}Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu{sup +}-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu{sup +}-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  8. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    International Nuclear Information System (INIS)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-01-01

    Transmutation of 64 Zn to 65 Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65 Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64 Zn nuclei to 65 Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu 2+ ions (where 63 Cu and 65 Cu hyperfine lines are easily resolved). A spectrum from isolated Cu 2+ (3d 9 ) ions acquired after the neutron irradiation showed only hyperfine lines from 65 Cu nuclei. The absence of 63 Cu lines in this Cu 2+ spectrum left no doubt that the observed 65 Cu signals were due to transmuted 65 Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu + -H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu + -H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  9. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    Science.gov (United States)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-01

    Transmutation of 64Zn to 65Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64Zn nuclei to 65Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu2+ ions (where 63Cu and 65Cu hyperfine lines are easily resolved). A spectrum from isolated Cu2+ (3d9) ions acquired after the neutron irradiation showed only hyperfine lines from 65Cu nuclei. The absence of 63Cu lines in this Cu2+ spectrum left no doubt that the observed 65Cu signals were due to transmuted 65Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu+-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu+-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  10. Fully automated radiochemical preparation system for gamma-spectroscopy on fission products and the study of the intruder and vibrational levels in 83Se

    International Nuclear Information System (INIS)

    Lien, O.G. III.

    1983-10-01

    AUTOBATCH was developed to provide a usable source of short-lived neutron-rich nuclides through chemical preparation of the sample from fission products for detailed gamma-ray spectroscopy, which would complement the output of on-line isotope separators. With AUTOBATCH the gamma rays following the β - decay of 83 As were studied to determine the ground state spin and parity of 83 As to be 5/2 - ; the absolute intensity of the β - branch from 83 As to 83 Se/sup m/ to be 0.3%; the absolute intensity of the ground state β - branch from 83 Se/sup m/ to 83 Br to be 39%; the halflife of the 5/2 1 + level to be 3.2 ns; and the structure of 83 Se 49 . Results are used to show that the intruder structure which had been previously observed in the odd mass 49 In isotopes could be observed in the N = 49 isotones. The observed structure is discussed in terms of the unified model calculations of Heyde which has been used to describe the intruder structure in the indium nuclei. The intruder structure is most strongly developed, not at core mid-shell, 89 Zr 49 , but rather at core mid-sub-shell 83 Se. This difference is qualitatively understood to be due to the blocking of collectivity by the Z = 40 subshell closure which prevents the intruder structure from occurring in 87 Sr 49 and 89 Zr 49

  11. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    Directory of Open Access Journals (Sweden)

    Metzger Robert

    2017-01-01

    Full Text Available A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF (“Visual RobFit” which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  12. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    Science.gov (United States)

    Metzger, Robert; Riper, Kenneth Van; Lasche, George

    2017-09-01

    A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  13. A deep-level transient spectroscopy study of gamma-ray irradiation on the passivation properties of silicon nitride layer on silicon

    Science.gov (United States)

    Dong, Peng; Yu, Xuegong; Ma, Yao; Xie, Meng; Li, Yun; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian

    2017-08-01

    Plasma-enhanced chemical vapor deposited silicon nitride (SiNx) films are extensively used as passivation material in the solar cell industry. Such SiNx passivation layers are the most sensitive part to gamma-ray irradiation in solar cells. In this work, deep-level transient spectroscopy has been applied to analyse the influence of gamma-ray irradiation on the passivation properties of SiNx layer on silicon. It is shown that the effective carrier lifetime decreases with the irradiation dose. At the same time, the interface state density is significantly increased after irradiation, and its energy distribution is broadened and shifts deeper with respect to the conduction band edge, which makes the interface states becoming more efficient recombination centers for carriers. Besides, C-V characteristics show a progressive negative shift with increasing dose, indicating the generation of effective positive charges in SiNx films. Such positive charges are beneficial for shielding holes from the n-type silicon substrates, i. e. the field-effect passivation. However, based on the reduced carrier lifetime after irradiation, it can be inferred that the irradiation induced interface defects play a dominant role over the trapped positive charges, and therefore lead to the degradation of passivation properties of SiNx on silicon.

  14. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.

    Science.gov (United States)

    Chikhani, Madelen; Wuhrer, Richard; Green, Hayley

    2018-03-30

    Raman spectroscopy has recently been investigated for use in the calculation of postmortem interval from skeletal material. The fluorescence generated by samples, which affects the interpretation of Raman data, is a major limitation. This study compares the effectiveness of two sample preparation techniques, chemical bleaching and scraping, in the reduction of fluorescence from bone samples during testing with Raman spectroscopy. Visual assessment of Raman spectra obtained at 1064 nm excitation following the preparation protocols indicates an overall reduction in fluorescence. Results demonstrate that scraping is more effective at resolving fluorescence than chemical bleaching. The scraping of skeletonized remains prior to Raman analysis is a less destructive method and allows for the preservation of a bone sample in a state closest to its original form, which is beneficial in forensic investigations. It is recommended that bone scraping supersedes chemical bleaching as the preferred method for sample preparation prior to Raman spectroscopy. © 2018 American Academy of Forensic Sciences.

  15. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2015-01-01

    High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral shapes of Dopplerbroadened γ-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(α, nγ)12C...

  16. Optimization of conditions to achieve high content of gamma amino butyric acid in germinated black rice, and changes in bioactivities

    Directory of Open Access Journals (Sweden)

    Chaiyavat CHAIYASUT

    Full Text Available Abstract The present study estimated the optimum germination conditions to achieve high content of Gamma-amino butyric acid (GABA and other phytochemicals in Thai black rice cultivar Kum Payao (BR. The Box–Behnken design of response surface methodology was employed to optimize the germination conditions. The changes in the GABA, phytochemical content, impact of salt, and temperature stress variation on phytochemical content, and stability of GABA were studied. The results showed that 12 h of soaking at pH 7, followed by 36 h of germination was the optimum condition to achieve maximum GABA content (0.2029 mg/g of germinated BR (GBR. The temperature (8 and 30 °C, and salt (50-200 mM NaCl content affected the phytochemicals of GBR, especially GABA, and anthocyanins. Obviously, the antioxidant capability, and enzyme (α-amylase and α-glucosidase inhibiting nature of BR was significantly (P < 0.001 increased after germination. The storage of GBR at 4 °C significantly, preserved the GABA content (∼80% for 45 days. Primarily, the current study revealed the changes in phytochemical content, and bioactivity of Thai black rice cr. Kum Payao during germination. More studies should be carried out on pharmacological benefits of GABA-rich GBR.

  17. Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens)

    International Nuclear Information System (INIS)

    Robert, Charlotte; Montemont, Guillaume; Rebuffel, Veronique; Guerin, Lucie; Verger, Loick; Buvat, Irene

    2010-01-01

    A new gamma-camera architecture named HiSens is presented and evaluated. It consists of a parallel hole collimator, a pixelated CdZnTe (CZT) detector associated with specific electronics for 3D localization and dedicated reconstruction algorithms. To gain in efficiency, a high aperture collimator is used. The spatial resolution is preserved thanks to accurate 3D localization of the interactions inside the detector based on a fine sampling of the CZT detector and on the depth of interaction information. The performance of this architecture is characterized using Monte Carlo simulations in both planar and tomographic modes. Detective quantum efficiency (DQE) computations are then used to optimize the collimator aperture. In planar mode, the simulations show that the fine CZT detector pixelization increases the system sensitivity by 2 compared to a standard Anger camera without loss in spatial resolution. These results are then validated against experimental data. In SPECT, Monte Carlo simulations confirm the merits of the HiSens architecture observed in planar imaging.

  18. Prompt-gamma spectrometry for the optimization of reactor neutron beams in biomedical research

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Leonov, V.F.

    1988-01-01

    In order to select the optimal spectral composition and size for the reactor neutron beams applied to in vivo analysis and therapy in biomedical research it is necessary to determine the spatial slow-neutron flux distributions produced by the beam in the irradiated object and to calculate or measure the neutron dose equivalents of both the original spectrum and the moderated neutrons. In this study the maximum neutron dose equivalents are found by spectrometry of the prompt-γ emission from the interaction of neutrons with atomic nuclei in the irradiated object. Different spectral distributions were produced by using an unfiltered beam together with filters of quartz, cadmium, 10 B, iron, aluminum, and sulfur. The phantom used was a tank filled with an aqueous solution of urea. Cadmium-containing organs were simulated. For in vivo neutron-activation analysis of human tissues at a depth of 2-5 cm it was found advisable to use neutrons of 20-40 keV mean energy with a beam area of at least 45 cm 2

  19. Enrichment Meter Dataset from High-Resolution Gamma Spectroscopy Measurements of U3O8 Enrichment Standards and UF6 Cylinder Wall Equivalents

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shephard, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The Enrichment Meter Principle (EMP) is the basis for a commonly used standard test method for the non-destructive assay of 235U enrichment in bulk compounds [1]. The technique involves determining the net count rate in the direct 186 keV peak using medium or high energy gamma-ray spectrometry in a fixed geometry. With suitable correction for wall attenuation, compound type, rate loss (live time), and peaked background (if significant), the atom fraction of 235U may be obtained from the counting rate from a linear relationship through the origin. The widespread use of this method for field verification of enrichment [2,3] together with the fact that the response function rests on fundamental physics considerations (i.e., is not represented by a convenient but arbitrary form) makes it an interesting example of uncertainty quantification, one in which one can expect a valid measurement model can be applied. When applied using NaI(Tl) and region of interest analysis, the technique is susceptible to both interference error and bias [2-4]. When implemented using high-resolution gamma-ray spectroscopy, the spectrum interpretation is considerable simplified and more robust [5]. However, a practical challenge to studying the uncertainty budget of the EMP method (for example, to test linearity, extract wall corrections and so forth using modern methods) is the availability of quality experimental data that can be referenced and shared. To fill this gap, the research team undertook an experimental campaign [6]. A measurement campaign was conducted to produce high-resolution gamma spectroscopy enrichment meter data comparable to UF6 cylinder measurements. The purpose of this report is to provide both an introduction to and quality assurance (QA) of the raw data produced. This report is intended for the analyst or researcher who uses the raw data. Unfortunately, the raw data (i.e., the spectra files) are too voluminous to include in this report

  20. Optimal vision system design for characterization of apples using US/VIS/NIR spectroscopy data

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Clemmensen, Line Katrine Harder; Ersbøll, Bjarne Kjær

    2013-01-01

    Quality monitoring of the food items by spectroscopy provides information in a large number of wavelengths including highly correlated and redundant information. Although increasing the information, the increase in the number of wavelengths causes the vision set-up to be more complex and expensiv....... Furthermore, appropriate regression methods for different number of bands and spectrophotometer design are determined....

  1. Optical simulations for the S3 project - Super separator spectrometer - gamma-electron coincidence spectroscopy of a transfermium nucleus: the 251Md101

    International Nuclear Information System (INIS)

    Dechery, Fabien

    2012-01-01

    In analogy with the atomic closed shells giving rise to the stability and high ionisation energies of noble gases, nuclear physics also has its magic numbers of protons and neutrons which enhance nuclear structure stability. Knowledge of the structure of doubly-magic nuclei, both proton and neutron numbers, is crucial to parameterize theoretical models. The discovery of the next and ultimate magic numbers will provide a strong constraint on the many predictions. These two numbers are like the centre coordinates of an area of enhanced stability of the nuclear chart, well known as 'island of stability'. These superheavy nuclei only exist due to pure quantum shell effects. My thesis work deals with two distinct, but complementary, aspects of fundamental physics with the common goal of studying these extreme mass nuclei structure. The first part corresponds to the development of a next generation instrument for nuclear physics to allow synthesis and spectroscopy studies of superheavy nuclei: the Super Separator Spectrometer S 3 . This project will be installed at SPIRAL2 (GANIL) and has been approved by the French Research National Agency (ANR) within the EQUIPEX framework. It has been designed to take advantage of the high intensity heavy ion beam from the LINAC, giving access to a wide range of physical programs. The second part corresponds to the preparation, realisation and analysis of an experiment on 251-Mendelevium in which the very first prompt gamma-electron coincidence spectroscopy was performed for a transfermium nuclei. (author) [fr

  2. Gamma camera

    International Nuclear Information System (INIS)

    Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  3. Measurement of (n,xn) reaction cross-sections using prompt {gamma} spectroscopy at neutron beams with high instantaneous flux; Mesure de sections efficaces de reaction (n,xn) par spectroscopie {gamma} prompte aupres d'un faisceau a tres haut flux instantane

    Energy Technology Data Exchange (ETDEWEB)

    Lukic, S

    2004-10-15

    The work presented in this thesis is situated in the context of the GEDEON program of neutron cross-section measurements. This program is motivated by the perspectives recently opened by projects of nuclear waste treatment and energy production. There is an obvious lack of experimental data on (n,xn) reactions in the databases, especially in the case of very radioactive isotopes. An important technique to measure cross-sections of these reactions is the prompt {gamma}-ray spectroscopy at white pulsed neutron beams with very high instantaneous flux. In this work, inelastic scattering and (n,xn) reactions cross-section measurements were performed on a lead sample from threshold to 20 MeV by prompt {gamma}-ray spectroscopy at the white neutron beam generated by GELINA facility in Geel, Belgium. Digital methods were developed to treat HPGe CLOVER detector signals and separate {gamma}-rays induced by the fastest neutrons from those belonging to the flash. Partial cross-sections for the production of several transitions in natural lead were measured and analyzed using theoretical calculations in order to separate the contributions of different reactions leading to the same residual isotope. Total cross-sections of the reactions in question were estimated. The results were compared to the TALYSS code theoretical calculations, as well as to other experimental results. This experiment has served to validate the method and it opens the way to measure (n,xn) reactions cross-sections with high instantaneous neutron flux on actinides, particularly the U{sup 233}(n,2n) reaction which is important for the thorium cycle. (author)

  4. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  5. Coincidence detection of photons of 511 keV from positon annihilation on a conventional gamma camera: optimization and analysis of potentialities

    International Nuclear Information System (INIS)

    Brasse, David

    1999-01-01

    The feasibility of acquiring clinical oncology studies on a gamma camera designed for the imaging of low energy single photons was investigated. The first prototype used two Nal(Tl) detectors of 40 cm by 30 cm with a 3/8 inch height and the second prototype was equipped with two large Nal(Tl) detectors of 40 cm by 54 cm with a 4/8 inch height. The optimization of such devices was mainly an optimization of the count rates obtained for reconstruct an image as a function of the angular axial aperture of the projections, with and without axial collimators. This optimization was performed experimentally using an anthropomorphic whole body phantom and the noise equivalent count rate as the figure of merit. An original correction for the random coincidences was also designed in order to optimize the contrast recovery and the contrast to noise ratio of small tumors (16 mm and 19 mm diameter). Finally, the optimal dose of FDG that can be injected to the subjects for an acquisition of that machine was determined and data acquired on an ECAT HR+ were compared with those acquired on the gamma camera for five subjects. (author) [fr

  6. C-188 Co-60 sources installation and source rack loading optimization processes in a gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de S.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Since 2004, the Multipurpose Gamma Facility at the Nuclear and Energy Research Institute has been providing services on radiation processing for disinfection and sterilization of health care and disposable medical products as well to support research studies on modification of physical, chemical and biological properties of several materials. Recently, there was an increment in irradiation of the Cultural Heritages. This facility uses C-188 double-encapsulated radioactive Cobalt-60 sources known as pencils from manufactures outside of country. The activity of the cobalt sources decays into a stable nickel isotope with a half-life around 5.27 years, which means a loss of 12.3% annually. Then, additional pencils of Cobalt-60 are added periodically to the source rack to maintain the required capacity or installed activity of the facility. The manufacturer makes shipping of the radioactive sources inside a high density container type B(U) , by sea. This one involves many administrative, transport and radiation safety procedures. Once in the facility, the container is opened inside a deep pool water to remove the pencils. The required source geometry of the facility is obtained by loading these source pencils into predetermined diagram or positions in source modules and distributing these modules over the source rack of the facility. The dose variation can be reduced placing the higher activity source pencils near the periphery of the source rack. In this work are presented the procedures for perform the boiling leaching tests applied to the container, the Cobalt-60 sources installation, the loading processes and the source rack loading optimization. (author)

  7. Gamma spectrometry today

    International Nuclear Information System (INIS)

    Hemingway, J.

    1990-01-01

    This paper reviews the important advances in gamma spectroscopy made in recent years. Improvements in detectors and other components and the addition of on-line computer control systems is discussed. (UK)

  8. Optimization of statistical methods for HpGe gamma-ray spectrometer used in wide count rate ranges

    Energy Technology Data Exchange (ETDEWEB)

    Gervino, G., E-mail: gervino@to.infn.it [UNITO - Università di Torino, Dipartimento di Fisica, Turin (Italy); INFN - Istituto Nazionale di Fisica Nucleare, Sez. Torino, Turin (Italy); Mana, G. [INRIM - Istituto Nazionale di Ricerca Metrologica, Turin (Italy); Palmisano, C. [UNITO - Università di Torino, Dipartimento di Fisica, Turin (Italy); INRIM - Istituto Nazionale di Ricerca Metrologica, Turin (Italy)

    2016-07-11

    The need to perform γ-ray measurements with HpGe detectors is a common technique in many fields such as nuclear physics, radiochemistry, nuclear medicine and neutron activation analysis. The use of HpGe detectors is chosen in situations where isotope identification is needed because of their excellent resolution. Our challenge is to obtain the “best” spectroscopy data possible in every measurement situation. “Best” is a combination of statistical (number of counts) and spectral quality (peak, width and position) over a wide range of counting rates. In this framework, we applied Bayesian methods and the Ellipsoidal Nested Sampling (a multidimensional integration technique) to study the most likely distribution for the shape of HpGe spectra. In treating these experiments, the prior information suggests to model the likelihood function with a product of Poisson distributions. We present the efforts that have been done in order to optimize the statistical methods to HpGe detector outputs with the aim to evaluate to a better order of precision the detector efficiency, the absolute measured activity and the spectra background. Reaching a more precise knowledge of statistical and systematic uncertainties for the measured physical observables is the final goal of this research project.

  9. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Skands, Gustav Erik; Bertelsen, Christian Vinther

    2015-01-01

    This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested...... and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 mu m beads from 1 mu m as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes...... of the new electrode layout. Good agreement was observed between the model and the obtained experimental results....

  10. Determination of curie content and 134/137cesium ratios by gamma spectroscopy of high burnup plutonium-aluminum fuel assemblies

    International Nuclear Information System (INIS)

    Haggard, D.L.; Tanner, J.E.

    1997-06-01

    Nondestructive assay (NDA) gamma spectroscopy techniques were used to measure 134/137 Cs ratios on nine PuAl Mark 42 fuel assemblies. The purpose of the ratio measurement was to confirm theoretical burnup calculations. 134/137 Cs ratios were determined from the measured activity based on corrected net peak area counts for the 605 keV peak from 134 Cs and the 662 keV peak from 137 Cs/ 137m Ba. Assembly No. 2 134/137 Cs ratio measured on 4-15-92 was 0.19. The measured 134/137 Cs ratio was decay corrected to be 2.11 on 8-1-84 based on the half lives of 134 Cs and 137 Cs. The measured 134/137 Cs ratio range was 1.90--2.14 for all nine assemblies. These measured values compare to a theoretical ratio of 1.7 on 8-1-84 determined by burnup calculations. Total cesium curie content was also requested and determined using the NDA direct measurements. Gamma spectral data were measured on the nine sectioned Mark 42 fuel assemblies. Measured cesium curie content, decay corrected to 8-1-84, ranged from 18170--24480 curies of 134 Cs and 8620--11646 curies of 137 Cs. Theoretical cesium curie content of 8-1-84 was 15200 curies 134 Cs and 8973 curies 137 Cs. Direct assay cesium ratio is 12% to 26% higher than the predicted ratio of 1.7. The measured 134 Cs data indicate between 20%--61% more activity than that predicted by the burnup code, whereas the measured 137 Cs activity is between 4% less to 30% more than the predicted activity. This information may be used to address issues concerning criticality safety, storage, and shipping of this type of material

  11. Determination of curie content and {sup 134/137}cesium ratios by gamma spectroscopy of high burnup plutonium-aluminum fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, D.L.; Tanner, J.E.

    1997-06-01

    Nondestructive assay (NDA) gamma spectroscopy techniques were used to measure {sup 134/137}Cs ratios on nine PuAl Mark 42 fuel assemblies. The purpose of the ratio measurement was to confirm theoretical burnup calculations. {sup 134/137}Cs ratios were determined from the measured activity based on corrected net peak area counts for the 605 keV peak from {sup 134}Cs and the 662 keV peak from {sup 137}Cs/{sup 137m}Ba. Assembly No. 2 {sup 134/137}Cs ratio measured on 4-15-92 was 0.19. The measured {sup 134/137}Cs ratio was decay corrected to be 2.11 on 8-1-84 based on the half lives of {sup 134}Cs and {sup 137}Cs. The measured {sup 134/137}Cs ratio range was 1.90--2.14 for all nine assemblies. These measured values compare to a theoretical ratio of 1.7 on 8-1-84 determined by burnup calculations. Total cesium curie content was also requested and determined using the NDA direct measurements. Gamma spectral data were measured on the nine sectioned Mark 42 fuel assemblies. Measured cesium curie content, decay corrected to 8-1-84, ranged from 18170--24480 curies of {sup 134}Cs and 8620--11646 curies of {sup 137}Cs. Theoretical cesium curie content of 8-1-84 was 15200 curies {sup 134}Cs and 8973 curies {sup 137}Cs. Direct assay cesium ratio is 12% to 26% higher than the predicted ratio of 1.7. The measured {sup 134}Cs data indicate between 20%--61% more activity than that predicted by the burnup code, whereas the measured {sup 137}Cs activity is between 4% less to 30% more than the predicted activity. This information may be used to address issues concerning criticality safety, storage, and shipping of this type of material.

  12. On-line near-infrared spectroscopy optimizing and monitoring biotransformation process of γ-aminobutyric acid

    Directory of Open Access Journals (Sweden)

    Guoyu Ding

    2016-06-01

    Full Text Available Near-infrared spectroscopy (NIRS with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS regression can be used as a rapid analytical method to simultaneously quantify l-glutamic acid (l-Glu and γ-aminobutyric acid (GABA in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2, root mean square error of prediction (RMSEP and residual predictive deviation (RPD of the external validation for the l-Glu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, respectively. This NIRS model was then used to optimize the biotransformation process through a Box-Behnken experimental design. Under the optimal conditions without pH adjustment, 200 g/L l-Glu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD to GABA, reaching 99% conversion at the fifth hour. NIRS analysis provided timely information on the conversion from l-Glu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.

  13. Optimizing pulse-pileup detection for soft-x-ray spectroscopy

    International Nuclear Information System (INIS)

    Greenberger, A.J.

    1981-04-01

    The problem of optimizing detection of the pileup of randomly occurring exponential tail pulses in white noise is considered. An attempt is made to reduce the process to an algorithm that could practically be performed in real time. Quantitative estimates are made for the performance of such an optimum detector. The relation to a more general pattern recognition problem is mentioned

  14. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  15. High-precision gamma-ray spectroscopy of 61Cu, an emerging medical isotope used in positron emission tomography

    Science.gov (United States)

    Nelson, N.; Ellison, P.; Nickles, R.; McCutchan, E.; Sonzogni, A.; Smith, S.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.; Moran, K.

    2017-09-01

    61Cu (t1 / 2 = 3.339h) is an important medical isotope used in positron emission tomography (PET) tumor hypoxia imaging scans; however, its beta-plus decay and the subsequent gamma decay of 61Ni has not been studied in over 30 years. Therefore, high quality decay data of 61Cu is desired to determine the overall dose delivered to a patient. In this study, 61Cu was produced at the University of Wisconsin - Madison cyclotron and then assayed using the Gammasphere array at Argonne National Laboratory. Consisting of 70 Compton-suppressed high-purity germanium (HPGe) detectors, Gammasphere provides precise decay data that exceeds that of previous 61Cu studies. γ-ray singles and coincident data were recorded and then analyzed using Radware gf3m software. Through γ- γ coincidence techniques, new γ-ray transitions were identified and high precision determination of γ-ray intensities were made. These modifications and additions to the current decay scheme will be presented, and their impact on the resulting does estimates will be discussed. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internship Program (SULI).

  16. Measurement of cross-sections of yttrium (n,xn) threshold reactions by means of gamma spectroscopy

    CERN Document Server

    Chudoba, Petr; Wagner, V; Vrzalova, J; Svoboda, O; Majerle, M; Stefanik, M; Suchopar, M; Kugler, A; Bielewicz, M; Strugalska-Gola, E; Szuta, M; Hervas, D; Herman, T; Geier, B

    2014-01-01

    Neutron activation and gamma spectrometry are usable also f or the determination of cross-sections of different neutron reactions. We have studied the cross-sections of yttrium (n, x n) threshold reactions using quasi-monoenergetic neutron source based on the reaction on 7 Li target at Nuclear Physics Institute of ASCR in Rez. Yttrium (n, x n) threshold reactions are suitable candidates for fast neutron field measurement by activation detectors. Fast neutron field monitoring is necessary already today at a wide range of accelerator facilities and will gain on importance in future fast reactors of generation IV, accelerator transmutation systems or fusion reactors. The knowledge of the cross-sections is crucial for such purpose. Unfortunately, the cross-section is sufficiently known only for 89 Y(n,2n) 88 Y reaction. For higher orders of reactions there are almost no experimental data. Special attention was paid to t he 89 Y(n,3n) 87 Y reaction. The cross-sections of both 89 Y(n,2n) 88 Y and 89 Y(n,3n) 87 Y re...

  17. Calibration of a telescope for gamma spectroscopy using a new configuration of two Ge(Li) diodes

    International Nuclear Information System (INIS)

    Bui-Van, N.A.; Jardim, J.O.D.; Braga, J.; Jardim, M.V.A.; Martin, I.M.; Vedrenne, G.

    1983-01-01

    It was developed a telescope to measure gamma-rays in the energy interval 10-1500 KeV, using two Ge(Li) diodes of 40 cm 3 each, coaxially mounted in the same cryostat and an anticoincidence Nal(Tl) shielding system. This new configuration allows a much better signal to noise ratio due to the lower diode operating in anticoincidence with the upper one; besides that, one has a high energy resolution (ΔE 241 , Na 22 and Eu 152 are described. From the analysis of the data obtained in the sum coincidence mode, a minimum detectable flux at 511 KeV is estimated to be -3 fotons cm -2 s -1 , with a statistical significance of 3σ for 10 hours of observing time at 3 mb of residual atmosphere. This is about the minimum line flux emitted by the Galactic Center. The measurement of the flux at this line would confirm the time variability observed by Riegler and collaborators using data obtained through HEAO-3 satellite. (Author) [pt

  18. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    Science.gov (United States)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; Hunt, Alan W.; Ludewigt, Bernhard

    2018-01-01

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ∼6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2" (length) × 2" (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ∼3 Mcps. An experimental methodology was developed that uses the average current from the PMT's anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ∼3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.

  19. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Bastin, B.

    2007-10-01

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, 42 Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in 42 Si, combined with the observation of 38,40 Si and the spectroscopy of 41,43 P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  20. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings.

    Science.gov (United States)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    2017-03-15

    The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Neutron characteristic and spectroscopy logging methods and apparatus

    International Nuclear Information System (INIS)

    Antkiw, S.

    1977-01-01

    Earth formations surrounding a well bore are irradiated with pulses of fast neutrons, and gamma rays resulting from the ensuring thermal neutron capture interactions with nuclei of the formations are detected, from which measurements of the thermal neutron decay times characterizing the respective formations are derived. The gamma ray energy spectra of the respective formations are analyzed. Gating of the gamma ray detection periods is automatically controlled, both for the decay time and the spectroscopy functions, in accrdance with the measured values of the decay times. The duration and repetition rate of the neutron pulses are also controlled as a function of the measured decay times to provide an overall optimized decay time-spectroscopy operating cycle. spectroscopy outputs representative of formation lithology, salinity, porosity and shaliness are developed to supplement and improve decay time log interpretation

  2. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Casper Hyttel Clausen

    2014-12-01

    Full Text Available This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 μm beads from 1 μm as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes of the new electrode layout. Good agreement was observed between the model and the obtained experimental results.

  3. Optimization of impedance spectroscopy techniques for measuring cutaneous micropore formation after microneedle treatment in an elderly population.

    Science.gov (United States)

    Kelchen, Megan N; Holdren, Grant O; Farley, Matthew J; Zimmerman, M Bridget; Fairley, Janet A; Brogden, Nicole K

    2014-12-01

    The objective of this study was to optimize a reproducible impedance spectroscopy method in elderly subjects as a means to evaluate the effects of microneedles on aging skin. Human volunteers were treated with microneedles at six sites on the upper arm. Repeated impedance measurements were taken pre- and post-microneedle insertion. Two electrode types were evaluated (dry vs. gel), using either light or direct pressure to maintain contact between the electrode and skin surface. Transepidermal water loss (TEWL) was measured as a complementary technique. Five control subjects and nine elderly subjects completed the study. Microneedle insertion produced a significant decrease in impedance from baseline in all subjects (p micropore formation. This was supported by a complementary significant increase in TEWL (p micropore formation in elderly subjects, which will be essential for future studies describing microneedle-assisted transdermal delivery in aging populations.

  4. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  5. Optimization of the detector and associated electronics used for high-resolution liquid-scintillation alpha spectroscopy

    International Nuclear Information System (INIS)

    Thorngate, J.H.; Christian, D.J.

    1977-01-01

    The performance of various reflector geometries, light coupling liquids, photomultiplier tubes, preamplifiers and linear amplifiers were compared and the configuration found that optimized the combination of pulse-height resolution and pulse-shape discrimination. The best combination used a hemispherical reflector, filled with distilled water, coupled to an 8575 photomultiplier tube, the output of which was conditioned by a special integrating preamplifier and a double-delay-line linear amplifier. Careful choice of the scintillator, sample preparation procedures, and electronic apparatus can produce liquid-scintillation alpha spectroscopy with a pulse-height resolution of 300 keV, or less, and, by using pulse-shape discrimination, background levels as low as 0.01 counts/min. (author)

  6. Optimum method to determine radioactivity in large tracts of land. In-situ gamma spectroscopy or sampling followed by laboratory measurement

    International Nuclear Information System (INIS)

    Bronson, Frazier

    2008-01-01

    In the process of decommissioning contaminated facilities, and in the conduct of normal operations involving radioactive material, it is frequently required to show that large areas of land are not contaminated, or if contaminated that the amount is below an acceptable level. However, it is quite rare for the radioactivity in the soil to be uniformly distributed. Rather it is generally in a few isolated and probably unknown locations. One way to ascertain the status of the land concentration is to take soil samples for subsequent measurement in the laboratory. Another way is to use in-situ gamma spectroscopy. In both cases, the non-uniform distribution of radioactivity can greatly compromise the accuracy of the assay, and makes uncertainty estimates much more complicated than simple propagation of counting statistics. This paper examines the process of determining the best way to estimate the activity on the tract of land, and gives quantitative estimates of measurement uncertainty for various conditions of radioactivity. When the distribution of radioactivity in the soil is not homogeneous, the sampling uncertainty is likely to be larger than the in-situ measurement uncertainty. (author)

  7. The design and performance of a large-volume spherical CsI(Tl) scintillation counter for gamma-ray spectroscopy

    CERN Document Server

    Meng, L J; Chirkin, V M; Potapov, V N; Ivanov, O P; Ignatov, S M

    2002-01-01

    This paper presents details of the design and performance of a prototype large-volume scintillation detector used for gamma-ray spectroscopy. In this detector, a spherical CsI(Tl) scintillation crystal having a diameter of 5.7 cm was polished and packed in dry MgO powder. The scintillation light from the crystal was viewed using a single 1x1 cm sup 2 silicon PIN diode. A low-noise preamplifier was also integrated within the detector housing. The measured noise level was equivalent to approx 800 electrons (FWHM). Such a configuration provided a very good light collection efficiency, which resulted in an average of 20 electrons being generated per keV of energy deposited in the crystal. One of the key features of the detector design is that it minimises spatial variations in the light collection efficiency throughout the detector. Compared with a standard 3 in. NaI scintillation counter, this feature leads to a much-improved energy resolution, particularly for photon energies above 1 MeV. The results presented ...

  8. Burnup Measurement of Spent Fuel Assembly by CZT-based Gamma-ray Spectroscopy for Input Nuclear Material Accountancy of Pyroprocessing

    International Nuclear Information System (INIS)

    Seo, Hee; Oh, Jong-Myeong; Shin, Hee-Sung; Kim, Ho-Dong; Lee, Seung-Kyu; Park, Se-Hwan

    2013-06-01

    Input nuclear material accountancy is crucial for a pyroprocessing facility safeguards. Until a direct Pu measurement technique is established, an indirect method based on code calculations with burnup measurement and neutron counting for 244 Cm could be a practical option. Burnup can be determined by destructive analysis (DA) for final dispositive accuracy or by nondestructive assay (NDA) for near-real time accountancy. In the present study, an underwater burnup measurement system based on gamma-ray spectroscopy with the CZT detector was developed and tested on a spent fuel assembly. Burnup was determined according to the 134 Cs/ 137 Cs activity ratio with efficiency correction by Geant4 Monte Carlo simulations. The activity ratio as a function of burnup was obtained by ORIGEN calculations. The measured burnup error was 8.6%, which was within the measurement uncertainty. It is expected that the underwater burnup measurement system could fulfill an important role as a means of near-real time accountancy at a future pyroprocessing facility. (authors)

  9. Characterization and Identification of Gamma-Irradiated Kimchi Cabbage and Broccoli by Electron Spin Resonance Spectroscopy using Different Sample Pre-treatments

    International Nuclear Information System (INIS)

    Kwak, J.Y.; Ahn, J.J.; Kashif Akram; Kim, G.R.; Kwon, J.H.

    2012-01-01

    Electron spin resonance (ESR) spectroscopy of gamma-irradiated fresh broccoli and kimchi cabbage was conducted to identify their irradiation history. Different pretreatments, such as freeze-drying (FD), oven-drying (OD), alcoholic-drying (ALD), and water-washing and alcoholic-drying (WAD) were used to lower the moisture contents of the samples prior to ESR analysis. The non-irradiated samples exhibited a single central signal (g 0 = 2.0007) with clear effect of Mn 2+ , especially in kimchi cabbage. Upon irradiation, there was an increase in the intensity of the central signal, and two side peaks, mutually spaced at 6 mT, were also observed. These side peaks with g 1 (left) = 2.023 and g 2 (right) = 1.985 were attributed to radiation-induced cellulose radicals. Leaf and stem in broccoli, and root and stem in kimchi cabbage provided good ESR signal responses upon irradiation. The signal noise was reduced in case of ALD and WAD pretreatments, particularly due to Mn 2+ signals. The ALD treatment was found most feasible to detect the improved ESR spectra in the irradiated samples. (author)

  10. $\\gamma$ -spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li

    CERN Multimedia

    We propose an experiment with MINIBALL coupled to T-REX to investigate n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li. The nuclei of interest will be populated by transfer of a triton into $^{94}$Kr, forming the excited $^{97}$Rb nucleus, followed by the emission of an alpha particle, which will be detected in the Si telescopes of T-REX. The $^{97}$Rb product will evaporate 1 or 2 (with the highest probability) neutrons leading to $^{96}$Rb or $^{95}$Rb, respectively. The aim of the experiment is twofold: \\\\ i) to perform a $\\gamma$- spectroscopy study of $^{95,96}$Rb nuclei with N=58,59, the structure of which is of particular interest in investigating the transition towards stable deformation at N=60, \\\\ ii) to acquire experience in using incomplete fusion reactions with the weakly bound $^{7}$Li target, in order to perform, at a later stage with HIE-ISOLDE, similar measurements induced by n-rich radioactive beams of Sn and Hg, for which at least 5 MeV/nucleon are need...

  11. optimization of process parameters for lovastatin production under solid-state fermentation from ground corn cobs by gamma irradiated aspergillus tamarri isolate

    International Nuclear Information System (INIS)

    Mattar, Z.A.; Khalaf, M.A.; Meleigy, S.A.

    2010-01-01

    rapid screening method is demonstrated for isolating lovastatin overproducing strains of gamma irradiated aspergillus tamarri. the screening methodology, based on the activity of lovastatin against the yeast candida albicans. among 24 gamma irradiated isolates of a. tamarri, the isolate G-8 was selected as best producer for lovastatin. solid state fermentation (SSF)was evaluated to produce lovastatin by a. tamarri G-8 isolate using ground corn cobs as substrate. monofactorial experiments were adopted to optimize the fermentation conditions. various crucial parameters such as particle size, moisture content, ph, temperature, inoculum size and incubation time were derived. corn cobs of particle size 0.4 mm having moisture level of 60 % and ph 5 gave the highest yield of lovastatin (12.4 mg/gram dry substrate) when inoculated with a. tamarri G-8 at inoculum size 10 % and 28 degree C for 8 days.

  12. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2011-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ∼23 to ∼10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.

  13. Self-calibration and self-optimization in DSP-based high resolution spectroscopy systems

    International Nuclear Information System (INIS)

    Geraci, A.; Ripamonti, G.; Pullia, A.

    1996-01-01

    We propose a mathematical method to automatically evaluate the weights of the digital filters used for high resolution spectroscopy in a mixed analog-digital setup. The optimum filter weighting function WF is obtained from the noise autocorrelation; an ultra-accurate estimate of the singularities of the antialiasing, filter is derived from its experimental pulse response. From these data the procedure automatically computes the optimum WF and the digital filter weights. We show that the method provides a much better flatness of the flat top (to within 0.1% of the peak value); a more precise elimination of tails in the WF (to better than 0.1% of the peak value) and a much lower quantization noise (more than a factor 10) at the filter output than other possible methods. It was successfully tested in the generation of trapezoidal and optimum cusp-like WFs even in presence of non negligible 1/f noise. It is run in around one second with no additional hardware

  14. A novel baseline correction method using convex optimization framework in laser-induced breakdown spectroscopy quantitative analysis

    Science.gov (United States)

    Yi, Cancan; Lv, Yong; Xiao, Han; Ke, Ke; Yu, Xun

    2017-12-01

    For laser-induced breakdown spectroscopy (LIBS) quantitative analysis technique, baseline correction is an essential part for the LIBS data preprocessing. As the widely existing cases, the phenomenon of baseline drift is generated by the fluctuation of laser energy, inhomogeneity of sample surfaces and the background noise, which has aroused the interest of many researchers. Most of the prevalent algorithms usually need to preset some key parameters, such as the suitable spline function and the fitting order, thus do not have adaptability. Based on the characteristics of LIBS, such as the sparsity of spectral peaks and the low-pass filtered feature of baseline, a novel baseline correction and spectral data denoising method is studied in this paper. The improved technology utilizes convex optimization scheme to form a non-parametric baseline correction model. Meanwhile, asymmetric punish function is conducted to enhance signal-noise ratio (SNR) of the LIBS signal and improve reconstruction precision. Furthermore, an efficient iterative algorithm is applied to the optimization process, so as to ensure the convergence of this algorithm. To validate the proposed method, the concentration analysis of Chromium (Cr),Manganese (Mn) and Nickel (Ni) contained in 23 certified high alloy steel samples is assessed by using quantitative models with Partial Least Squares (PLS) and Support Vector Machine (SVM). Because there is no prior knowledge of sample composition and mathematical hypothesis, compared with other methods, the method proposed in this paper has better accuracy in quantitative analysis, and fully reflects its adaptive ability.

  15. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection

    Science.gov (United States)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2018-02-01

    Nitric oxide (NO) in exhaled breath has gained increasing interest in recent years mainly driven by the clinical need to monitor inflammatory status in respiratory disorders, such as asthma and other pulmonary conditions. Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable continuous-wave quantum cascade laser operating at 5.3 µm was employed for NO detection. The detection pressure was reduced in steps to improve the sensitivity, and the optimal pressure was determined to be 15 kPa based on the fitting residual analysis of measured absorption spectra. A detection limit (1σ, or one time of standard deviation) of 0.41 ppb was experimentally achieved for NO detection in human breath under the optimized condition in a total of 60 s acquisition time (2 s per data point). Diurnal measurement session was conducted for exhaled NO. The experimental results indicated that mid-infrared CRDS technique has great potential for various applications in health diagnosis.

  16. Classification and Processing Optimization of Barley Milk Production Using NIR Spectroscopy, Particle Size, and Total Dissolved Solids Analysis

    Directory of Open Access Journals (Sweden)

    Jasenka Gajdoš Kljusurić

    2015-01-01

    Full Text Available Barley is a grain whose consumption has a significant nutritional benefit for human health as a very good source of dietary fibre, minerals, vitamins, and phenolic and phytic acids. Nowadays, it is more and more often used in the production of plant milk, which is used to replace cow milk in the diet by an increasing number of consumers. The aim of the study was to classify barley milk and determine the optimal processing conditions in barley milk production based on NIR spectra, particle size, and total dissolved solids analysis. Standard recipe for barley milk was used without added additives. Barley grain was ground and mixed in a blender for 15, 30, 45, and 60 seconds. The samples were filtered and particle size of the grains was determined by laser diffraction particle sizing. The plant milk was also analysed using near infrared spectroscopy (NIRS, in the range from 904 to 1699 nm. Furthermore, conductivity of each sample was determined and microphotographs were taken in order to identify the structure of fat globules and particles in the barley milk. NIR spectra, particle size distribution, and conductivity results all point to 45 seconds as the optimal blending time, since further blending results in the saturation of the samples.

  17. Proof-of-the-Concept Study on Mathematically Optimized Magnetic Resonance Spectroscopy for Breast Cancer Diagnostics.

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2015-06-01

    Magnetic resonance (MR)-based modalities aid breast cancer detection without exposure to ionizing radiation. Magnetic resonance imaging is very sensitive but costly and insufficiently specific. Molecular imaging through magnetic resonance spectroscopy (MRS) can provide information about key metabolites. Here, the measured/encoded time signals cannot be interpreted directly, necessitating mathematics for mapping to the more manageable frequency domain. Conventional applications of MRS are hampered by data analysis via the fast Fourier transform (FFT) and postprocessing by fitting techniques. Most in vivo MRS studies on breast cancer rely upon estimations of total choline (tCHO). These have yielded only incremental improvements in diagnostic accuracy. In vitro studies reveal richer metabolic information for identifying breast cancer, particularly in closely overlapping components of tCHO. Among these are phosphocholine (PC), a marker of malignant transformation of the breast. The FFT cannot assess these congested spectral components. This can be done by the fast Padé transform (FPT), a high-resolution, quantification-equipped method, which we presently apply to noisy MRS time signals consistent with those encoded in breast cancer. The FPT unequivocally and robustly extracted the concentrations of all physical metabolites, including PC. In sharp contrast, the FFT produced a rough envelope spectrum with a few distorted peaks and key metabolites absent altogether. As such, the FFT has poor resolution for these typical MRS time signals from breast cancer. Hence, based on Fourier-estimated envelope spectra, tCHO estimates are unreliable. Using even truncated time signals, the FPT clearly distinguishes noise from true metabolites whose concentrations are accurately extracted. The high resolution of the FPT translates directly into shortened examination time of the patient. These capabilities strongly suggest that by applying the FPT to time signals encoded in vivo from

  18. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  19. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Directory of Open Access Journals (Sweden)

    Beatriz Temporal-Lara

    2016-11-01

    Full Text Available Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine for proper maturation of the compost. Adequate (near real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68, humification ratio (RPD = 2.23, total exchangeable carbon (RPD = 2.07 and total organic carbon (RPD = 1.66 with a modular and cost-effective visible and near infrared (VNIR spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  20. Selection and optimization of spectrometric amplifiers for gamma spectrometry: part II - linearity, live time correction factors and software

    International Nuclear Information System (INIS)

    Moraes, Marco Antonio Proenca Vieira de; Pugliesi, Reinaldo

    1996-01-01

    The objective of the present work was to establish simple criteria to choose the best combination of electronic modules to achieve an adequate high resolution gamma spectrometer. Linearity, live time correction factors and softwares of a gamma spectrometric system composed by a Hp Ge detector have been studied by using several kinds of spectrometric amplifiers: Canberra 2021, Canberra 2025, Ortec 673 and Tennelec 244 and the MCA cards Ortec and Nucleus. The results showed low values of integral non-linearity for all spectrometric amplifiers connected to the Ortec and Nucleus boards. The MCA card should be able to correct amplifier dead time for 17 kcps count rates. (author)

  1. Design, fabrication, and optimization of quantum cascade laser cavities and spectroscopy of the intersubband gain

    Science.gov (United States)

    Dirisu, Afusat Olayinka

    Quantum Cascade (QC) lasers are intersubband light sources operating in the wavelength range of ˜ 3 to 300 mum and are used in applications such as sensing (environmental, biological, and hazardous chemical), infrared countermeasures, and free-space infrared communications. The mid-infrared range (i.e. lambda ˜ 3-30 mum) is of particular importance in sensing because of the strong interaction of laser radiation with various chemical species, while in free space communications the atmospheric windows of 3-5 mum and 8-12 mum are highly desirable for low loss transmission. Some of the requirements of these applications include, (1) high output power for improved sensitivity; (2) high operating temperatures for compact and cost-effective systems; (3) wide tunability; (4) single mode operation for high selectivity. In the past, available mid-infrared sources, such as the lead-salt and solid-state lasers, were bulky, expensive, or emit low output power. In recent years, QC lasers have been explored as cost-effective and compact sources because of their potential to satisfy and exceed all the above requirements. Also, the ultrafast carrier lifetimes of intersubband transitions in QC lasers are promising for high bandwidth free-space infrared communication. This thesis was focused on the improvement of QC lasers through the design and optimization of the laser cavity and characterization of the laser gain medium. The optimization of the laser cavity included, (1) the design and fabrication of high reflection Bragg gratings and subwavelength antireflection gratings, by focused ion beam milling, to achieve tunable, single mode and high power QC lasers, and (2) modeling of slab-coupled optical waveguide QC lasers for high brightness output beams. The characterization of the QC laser gain medium was carried out using the single-pass transmission experiment, a sensitive measurement technique, for probing the intersubband transitions and the electron distribution of QC lasers

  2. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice

    NARCIS (Netherlands)

    Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.B.; Werf, van der W.; Duan, L.

    2014-01-01

    Germinated brown rice is a well-known functional food due to its high content of gamma-aminobutyric acid (GABA). This study was designed to test the difference of producing GABA in two domesticated rice genotypes (indica and japonica rice), and the effects of adding exogenous glutamic acid or

  3. Repeat Gamma-Knife Radiosurgery for Refractory or Recurrent Trigeminal Neuralgia with Consideration About the Optimal Second Dose.

    Science.gov (United States)

    Park, Seong-Cheol; Kwon, Do Hoon; Lee, Do Hee; Lee, Jung Kyo

    2016-02-01

    To investigate adequate radiation doses for repeat Gamma Knife radiosurgery (GKS) for trigeminal neuralgia in our series and meta-analysis. Fourteen patients treated by ipsilateral repeat GKS for trigeminal neuralgia were included. Median age of patients was 65 years (range, 28-78), the median target dose, 140-180). Patients were followed a median of 10.8 months (range, 1-151) after the second gamma-knife surgery. Brainstem dose analysis and vote-counting meta-analysis of 19 studies were performed. After the second gamma-knife radiosurgeries, pain was relieved effectively in 12 patients (86%; Barrow Neurological Institute Pain Intensity Score I-III). Post-gamma-knife radiosurgery trigeminal nerve deficits were mild in 5 patients. No serious anesthesia dolorosa was occurred. The second GKS radiation dose ≤ 60 Gy was significantly associated with worse pain control outcome (P = 0.018 in our series, permutation analysis of variance, and P = 0.009 in the meta-analysis, 2-tailed Fisher's exact test). Cumulative dose ≤ 140-150 Gy was significantly associated with poor pain control outcome (P = 0.033 in our series and P = 0.013 in the meta-analysis, 2-tailed Fisher's exact test). A cumulative brainstem edge dose >12 Gy tended to be associated with trigeminal nerve deficit (P = 0.077). Our study suggests that the second GKS dose is a potentially important factor. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Design optimization of the PANDA micro-vertex-detector for high performance spectroscopy in the charm quark sector

    Energy Technology Data Exchange (ETDEWEB)

    Wuerschig, Thomas

    2011-07-19

    The PANDA experiment is one of the key projects at the future FAIR facility, which is currently under construction at GSI Darmstadt. Measurements will be performed with antiprotons using a fixed-target setup. The main scope of PANDA is the study of the strong interaction in the charm quark sector. Therefore, high precision spectroscopy of hadronic systems in this energy domain is a prerequisite. The Micro-Vertex-Detector (MVD) as innermost part of the tracking system plays an important role to achieve this goal. At present, the PANDA project has exceeded the initial phase of conceptual design studies. Based on these results, an optimization of the individual detector subsystems, and thus also for the MVD, is necessary to continue the overall detector development towards its commissioning. Therefore, a comprehensive and realistic detector model must be developed, which on the one hand fulfils the physics requirements but on the other hand also includes feasible engineering solutions. This task is the main scope of the present work. The outcome of these studies will deliver important contributions to the technical design report for the PANDA MVD, which is the next step towards the final detector assembly. In the first part of this work, main physics aspects of the charm spectroscopy are highlighted and a complete review of the experimental status in this field is given. Afterwards, all relevant details of the PANDA experiment are summarized. The conceptual design and associated hardware developments for the MVD are discussed separately in the following chapters. They deliver basic input for the performed detector optimization, which is presented in the central part. Furthermore, this section describes the development of a comprehensive detector model for the MVD and its introduction into the physics simulation framework of PANDA. The final part contains a compilation of extended simulations with the developed detector model. This includes the determination of basic

  5. Design optimization of the PANDA micro-vertex-detector for high performance spectroscopy in the charm quark sector

    International Nuclear Information System (INIS)

    Wuerschig, Thomas

    2011-01-01

    The PANDA experiment is one of the key projects at the future FAIR facility, which is currently under construction at GSI Darmstadt. Measurements will be performed with antiprotons using a fixed-target setup. The main scope of PANDA is the study of the strong interaction in the charm quark sector. Therefore, high precision spectroscopy of hadronic systems in this energy domain is a prerequisite. The Micro-Vertex-Detector (MVD) as innermost part of the tracking system plays an important role to achieve this goal. At present, the PANDA project has exceeded the initial phase of conceptual design studies. Based on these results, an optimization of the individual detector subsystems, and thus also for the MVD, is necessary to continue the overall detector development towards its commissioning. Therefore, a comprehensive and realistic detector model must be developed, which on the one hand fulfils the physics requirements but on the other hand also includes feasible engineering solutions. This task is the main scope of the present work. The outcome of these studies will deliver important contributions to the technical design report for the PANDA MVD, which is the next step towards the final detector assembly. In the first part of this work, main physics aspects of the charm spectroscopy are highlighted and a complete review of the experimental status in this field is given. Afterwards, all relevant details of the PANDA experiment are summarized. The conceptual design and associated hardware developments for the MVD are discussed separately in the following chapters. They deliver basic input for the performed detector optimization, which is presented in the central part. Furthermore, this section describes the development of a comprehensive detector model for the MVD and its introduction into the physics simulation framework of PANDA. The final part contains a compilation of extended simulations with the developed detector model. This includes the determination of basic

  6. In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study.

    Science.gov (United States)

    Chiu, P W; Lui, Simon S Y; Hung, Karen S Y; Chan, Raymond C K; Chan, Queenie; Sham, P C; Cheung, Eric F C; Mak, Henry K F

    2018-03-01

    Gamma-aminobutyric acid (GABA) dysfunction and its consequent imbalance are implicated in the pathophysiology of schizophrenia. Reduced GABA production would lead to a disinhibition of glutamatergic neurons and subsequently cause a disruption of the modulation between GABAergic interneurons and glutamatergic neurons. In this study, levels of GABA, Glx (summation of glutamate and glutamine), and other metabolites in the anterior cingulate cortex were measured and compared between first-episode schizophrenia subjects and healthy controls (HC). Diagnostic potential of GABA and Glx as upstream biomarkers for schizophrenia was explored. Nineteen first-episode schizophrenia subjects and fourteen HC participated in this study. Severity of clinical symptoms of patients was measured with Positive and Negative Syndrome Scale (PANSS). Metabolites were measured using proton magnetic resonance spectroscopy, and quantified using internal water as reference. First-episode schizophrenia subjects revealed reduced GABA and myo-inositol (mI), and increased Glx and choline (Cho), compared to HC. No significant correlation was found between metabolite levels and PANSS scores. Receiver operator characteristics analyses showed Glx had higher sensitivity and specificity (84.2%, 92.9%) compared to GABA (73.7%, 64.3%) for differentiating schizophrenia patients from HC. Combined model of both GABA and Glx revealed the best sensitivity and specificity (89.5%, 100%). This study simultaneously showed reduction in GABA and elevation in Glx in first-episode schizophrenia subjects, and this might provide insights on explaining the disruption of modulation between GABAergic interneurons and glutamatergic neurons. Elevated Cho might indicate increased membrane turnover; whereas reduced mI might reflect dysfunction of the signal transduction pathway. In vivo Glx and GABA revealed their diagnostic potential for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Optimization of H.E.S.S. instrumental performances for the analysis of weak gamma-ray sources: Application to the study of HESS J1832-092

    International Nuclear Information System (INIS)

    Laffon, H.

    2012-01-01

    H.E.S.S. (High Energy Stereoscopic System) is an array of very-high energy gamma-ray telescopes located in Namibia. These telescopes take advantage of the atmospheric Cherenkov technique using stereoscopy, allowing to detect gamma-rays between 100 GeV and a few tens of TeV. The location of the H.E.S.S. telescopes in the Southern hemisphere allows to observe the central parts of our galaxy, the Milky Way. Tens of new gamma-ray sources were thereby discovered thanks to the galactic plane survey strategy. After ten years of fruitful observations with many detections, it is now necessary to improve the detector performance in order to detect new sources by increasing the sensitivity and improving the angular resolution. The aim of this thesis consists in the development of advanced analysis techniques allowing to make sharper analysis. An automatic tool to look for new sources and to improve the subtraction of the background noise is presented. It is optimized for the study of weak sources that needs a very rigorous analysis. A combined reconstruction method is built in order to improve the angular resolution without reducing the statistics, which is critical for weak sources. These advanced methods are applied to the analysis of a complex region of the galactic plane near the supernova remnant G22.7-0.2, leading to the detection of a new source, HESS J1832-092. Multi-wavelength counterparts are shown and several scenarios are considered to explain the origin of the gamma-ray signal of this astrophysical object. (author)

  8. Optimization of Gamma-Ray Counting and Spectrometry in Biomedical Tracer Studies; Optimisation du Comptage et de la Spectrometrie des Rayons Gamma dans des Etudes Biomedicales Faites a l'Aide de Traceurs; Optimizatsiya gamma-scheta i spektrometrii gamma-luchej v biomeditsinskikh issledovaniyakh s pomoshch'yu indikatorov; Optimizacion del Recuento y de la Espectrometry Gamma en los Estudios Biomedicos con Indicadores

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, V. P. [General Dynamics Corporation, San Diego, CA (United States)

    1965-10-15

    In biomedical tracer studies, especially in man and even more so in children and pregnant women, it is important to operate at the lowest possible level of administered radioisotope that is commensurate with the required precision and accuracy of the subsequent radioassay measurements. Similarly, with administered stable elements (as specified compounds) or enriched stable isotopes (again, in compound form), followed by radioactivation analysis of resulting samples, it is important from the toxicological standpoint to minimize the amounts of administered element. The problem of optimization of counting of one, two and three gamma-emitting radioisotopes, by Nal(Tl) scintillation counting, single-channel spectrometry and multichannel spectrometry, has been considered in some detail in these laboratories, with particular attention to single-, double-, or triple-tagging tracer studies with radioisotopes frequently used in biomedical studies: {sup 51}Cr, {sup 198}Au, {sup 75}Se, {sup 197}Hg, {sup 64}Cu, {sup 76}As, {sup 82}Br, {sup 59}Fe, {sup 60}Co, {sup 42}K, and {sup 24}Na. The same considerations apply to the widely-used thermal-neutron activation analysis determinations of the corresponding elements or enriched stable isotopes, so the results of these counting optimization calculations have a double usefulness. The calculations are based on a few reasonable assumptions made on practical biomedical considerations, namely: (1) small samples ({<=} 10 ml), (2) moderate counting periods (s 20 minutes), (3) modest allowable decay periods ({<=} 3 days) and (4) use of commercially available counting equipment and shielding. On this basis, the most sensitive methods of counting each of the aforementioned radioisotopes, and a number of pairs and trios of them, have been ascertained. The counting variables included in the considerations are: (1) type of Nal(Tl) crystal, i.e., solid or well-type, (2) size of Nal(Tl) crystal, up to a 5 in x 5 in size, (3) type of measuring

  9. High-sensitivity gamma spectroscopy for extended sources. Application to activity measurements on the human body, on glass, and on soil; Spectrographie gamma a grande sensibilite pour sources etendues. Application a la mesure de l'activite du corps humain, du verre et du sol

    Energy Technology Data Exchange (ETDEWEB)

    Jouve, B

    1962-07-01

    The measurement and location by gamma spectroscopy of human body internal contaminations at maximum permissible levels, and, in certain cases, at lower activities such as that due to {sup 40}K was investigated. The characteristics of the high-sensitivity apparatus used are given, and several assemblies using large-volume NaI(Tl) scintillators are described. The relatively light shielding required for natural radioactivity permitted construction of mobile assembly. Conditions of use are described, and the results are given. All gamma emitting elements were measured in 15 min at levels lower than the tolerance dose. Gamma spectroscopy was also used to determine fission products in the earth and to study radioactive elements in the presence of other emitters. (author) [French] La spectrographie gamma du corps humain permet la mesure et la localisation des contaminations internes au niveau des doses de tolerance et, dans certains cas, celle d'activites plus faibles comme la radioactivite naturelle due principalement au potassium 40. Les caracteristiques des appareils a grande sensibilite permettant ces mesures sont exposees et on decrit plusieurs realisations originales utilisant un scintillateur NaI(Tl) de grand volume. L'epaisseur du blindage a ete limitee a 5 cm de plomb, ainsi, pour une protection suffisante contre les rayonnements ambiants, les appareils sont relativement legers et l'une des realisations a pu etre installee dans un laboratoire mobile. Les conditions d'utilisation (mouvement propre, etalonnage) et les resultats obtenus sont donnes; tous les radioelements emetteurs gamma sont mesurables en 15 minutes a un niveau inferieur a la dose de tolerance. On presente enfin des applications a la spectrographie gamma d'echantillons volumineux (poudres ou liquides) et de tres faible activite: elles interessent des domaines tres varies comme, par exemple, la geophysique (etude des retombees radioactives) ou l'industrie chimique (dosage du potassium dans les

  10. High-sensitivity gamma spectroscopy for extended sources. Application to activity measurements on the human body, on glass, and on soil; Spectrographie gamma a grande sensibilite pour sources etendues. Application a la mesure de l'activite du corps humain, du verre et du sol

    Energy Technology Data Exchange (ETDEWEB)

    Jouve, B

    1962-07-01

    The measurement and location by gamma spectroscopy of human body internal contaminations at maximum permissible levels, and, in certain cases, at lower activities such as that due to {sup 40}K was investigated. The characteristics of the high-sensitivity apparatus used are given, and several assemblies using large-volume NaI(Tl) scintillators are described. The relatively light shielding required for natural radioactivity permitted construction of mobile assembly. Conditions of use are described, and the results are given. All gamma emitting elements were measured in 15 min at levels lower than the tolerance dose. Gamma spectroscopy was also used to determine fission products in the earth and to study radioactive elements in the presence of other emitters. (author) [French] La spectrographie gamma du corps humain permet la mesure et la localisation des contaminations internes au niveau des doses de tolerance et, dans certains cas, celle d'activites plus faibles comme la radioactivite naturelle due principalement au potassium 40. Les caracteristiques des appareils a grande sensibilite permettant ces mesures sont exposees et on decrit plusieurs realisations originales utilisant un scintillateur NaI(Tl) de grand volume. L'epaisseur du blindage a ete limitee a 5 cm de plomb, ainsi, pour une protection suffisante contre les rayonnements ambiants, les appareils sont relativement legers et l'une des realisations a pu etre installee dans un laboratoire mobile. Les conditions d'utilisation (mouvement propre, etalonnage) et les resultats obtenus sont donnes; tous les radioelements emetteurs gamma sont mesurables en 15 minutes a un niveau inferieur a la dose de tolerance. On presente enfin des applications a la spectrographie gamma d'echantillons volumineux (poudres ou liquides) et de tres faible activite: elles interessent des domaines tres varies comme, par exemple, la geophysique (etude des retombees radioactives) ou l'industrie chimique

  11. Characterization and optimization of an X-ray laser for the spectroscopy of Li-like heavy-ions

    International Nuclear Information System (INIS)

    Zielbauer, B.

    2007-01-01

    Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated. (orig.)

  12. Characterization and optimization of an X-ray laser for the spectroscopy of Li-like heavy-ions

    Energy Technology Data Exchange (ETDEWEB)

    Zielbauer, B.

    2007-10-24

    Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated. (orig.)

  13. Preparation, characterization and microstructural optimization of a thin {gamma}-alumina membrane on a porous stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Abedini, Sanam [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Street, Tehran (Iran, Islamic Republic of); Parvin, Nader, E-mail: naderparvin@yahoo.com [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Street, Tehran (Iran, Islamic Republic of); Ashtari, Parviz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer A mesoporous {gamma}-Al{sub 2}O{sub 3} membrane was synthesized on conventional {alpha}-Al{sub 2}O{sub 3} substrates. Black-Right-Pointing-Pointer {gamma}-Al{sub 2}O{sub 3} membrane was potential for CO{sub 2} separation at high pressure test conditions. Black-Right-Pointing-Pointer Thus, it was required to provide the membrane layer with more strength. Black-Right-Pointing-Pointer {alpha}-Alumina substrate was substituted with porous stainless steel. Black-Right-Pointing-Pointer A stainless steel supported {alpha}-Al{sub 2}O{sub 3} membrane with better properties was synthesized. - Abstract: In this work, a supported mesoporous (MEP) {gamma}-Al{sub 2}O{sub 3} membrane was synthesized on conventional {alpha}-Al{sub 2}O{sub 3} substrates by sol-gel dip coating process. In the following, the preparation of a novel metallic-ceramic composite membrane was studied, which incorporated desirable properties of both ceramic membrane and porous metallic substrate. For this purpose, mesoporous alumina membrane layer was developed on a porous 316L stainless steel substrate. The substrate was prepared by loose powder sintering and modified by soaking-rolling and fast drying method. The prepared membranes were characterized using scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and N{sub 2}-adsorption/desorption measurements (BET analyses). The results revealed that a defect-free {gamma}-alumina membrane with 2.1 nm average pore size can be produced. Permeation tests with N{sub 2} gas revealed that the stainless steel substrate had 40 times more permeability than conventionally used alumina support. Additionally, single gas permeation of {gamma}-alumina membrane for CO{sub 2} and N{sub 2} was compared. It was observed that CO{sub 2} could be separated from N{sub 2} by the MEP {gamma}-Al{sub 2}O{sub 3} membrane in high pressure permeation condition, where stainless steel

  14. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sihm Kvenangen, Karen

    2007-06-15

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation.

  15. Alternative Measuring Approaches in Gamma Scanning on Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Sihm Kvenangen, Karen

    2007-06-01

    In the future, the demand for energy is predicted to grow and more countries plan to utilize nuclear energy as their source of electric energy. This gives rise to many important issues connected to nuclear energy, such as finding methods that can verify that the spent nuclear fuel has been handled safely and used in ordinary power producing cycles as stated by the operators. Gamma ray spectroscopy is one method used for identification and verification of spent nuclear fuel. In the specific gamma ray spectroscopy method called gamma scanning the gamma radiation from the fission products Cs-137, Cs-134 and Eu-154 are measured in a spent fuel assembly. From the results, conclusions can be drawn about the fuels characteristics. This degree project examines the possibilities of using alternative measuring approaches when using the gamma scanning method. The focus is on examining how to increase the quality of the measured data. How to decrease the measuring time as compared with the present measuring strategy, has also been investigated. The main part of the study comprises computer simulations of gamma scanning measurements. The simulations have been validated with actual measurements on spent nuclear fuel at the central interim storage, Clab. The results show that concerning the quality of the measuring data the conventional strategy is preferable, but with other starting positions and with a more optimized equipment. When focusing on the time aspect, the helical measuring strategy can be an option, but this needs further investigation

  16. NMR scalar couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy

    Science.gov (United States)

    Pervushin, Konstantin; Ono, Akira; Fernández, César; Szyperski, Thomas; Kainosho, Masatsune; Wüthrich, Kurt

    1998-01-01

    This paper describes the NMR observation of 15N—15N and 1H—15N scalar couplings across the hydrogen bonds in Watson–Crick base pairs in a DNA duplex, hJNN and hJHN. These couplings represent new parameters of interest for both structural studies of DNA and theoretical investigations into the nature of the hydrogen bonds. Two dimensional [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) with a 15N-labeled 14-mer DNA duplex was used to measure hJNN, which is in the range 6–7 Hz, and the two-dimensional hJNN-correlation-[15N,1H]-TROSY experiment was used to correlate the chemical shifts of pairs of hydrogen bond-related 15N spins and to observe, for the first time, hJHN scalar couplings, with values in the range 2–3.6 Hz. TROSY-based studies of scalar couplings across hydrogen bonds should be applicable for large molecular sizes, including protein-bound nucleic acids. PMID:9826668

  17. Use of emission spectroscopy as a tool for optimization of plasma hearth operation for hazardous waste thermal treatment

    International Nuclear Information System (INIS)

    Monts, D.L.; Bauman, L.E.; Lengel, R.K.; Wang, W.; Lin, J.; Cook, R.L.; Shepard, W.S.

    1994-01-01

    Thermal processing of mixed wastes by plasma hearth vitrification requires optimization of and continuous monitoring of plasma hearth operation. A series of investigations utilizing emission spectroscopy has been initiated to characterize the plasma of a 96 kW plasma hearth in order to determine optimum conditions for monitoring and hence controlling plasma hearth performance. The plasma hearth test stand is based upon a 96 kW, transferred arc plasma torch. The torch is mounted in a vacuum vessel through an electrically operated XYZ Gimbal mount. The peak operating power depends on the gas used for the plasma. The operational limits for DC voltage are 180 V to 550 V; and the current is operated at a constant value, selectable in the range from 72 to 200 amps. The plasma arc length can be varied from 2.5 cm to 25 cm, and is dependent on the supply voltage and the process gas used. The arc current and voltage, gas pressure, cooling water flow, and cooling water temperature are monitored and stored by a PC-based data acquisition system. Five optical ports are available for making optical diagnostic measurements

  18. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    Science.gov (United States)

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  19. Determination of optimal geometry for cylindrical sources for gamma radiation measurements; Odredjivanje optimalne geometrije za mjerenje gama zracenja cilindrichnih izvora

    Energy Technology Data Exchange (ETDEWEB)

    Sinjeri, Lj; Kulisic, P [Elektra - Zagreb, Zagreb (Yugoslavia)

    1990-07-01

    Low radioactive sources were used for experimental determination of optimal dimensions for cylindrical source using coaxial Ge(Li) detector. Then, calculational procedure is used to find optimal dimensions of cylindrical source. The results from calculational procedure confirm with experimental results. In such way the verification of calculational procedure is done and it can be used for determination of optimal geometry for low radioactive cylindrical sources. (author)

  20. Continuum gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1981-06-01

    When angular momentum is added to a nucleus, it is, of course, carried by the individual nucleons, but two limiting types of behavior may be distinguished: (1) a small number of high-j particles align with the rotation axis and (2) the nucleus is deformed and rotates as a whole. At high spin all nuclei seem to show a compromise utilizing both motions. The excited nuclei left as products of (HI,xn) reactions have so many pathways down that none of the γ-ray transitions have enough intensity to be seen individually until the population gathers near the yrast line. This occurs usually between spin 20 to 40 h-bar. All our information on the higher states comes from their continuum spectra. With the new techniques that are developing, including the use of multiplicity filters, total-energy spectrometers, energy correlation studies, crystal balls, and observation of giant dipole resonances in the continuum spectra, there is hope to learn much about the nature of the high-spin states

  1. Experience gained in gamma spectroscopy

    International Nuclear Information System (INIS)

    Jeanmaire, L.

    1960-01-01

    There are two types of method which make it possible to estimate the internal contamination of individuals. On the one hand these are the indirect techniques based on measurements of the excreted products, on the other there are the direct techniques in which attempts are made to measure directly the radio-activity existing in the organism. We propose to give a few of the results obtained by the direct method using equipment built by the Commissariat a l'Energie Atomique. The apparatus consists of a γ spectrometer. It includes: 1) A crystal of sodium iodide 20 cm in diameter and 10 cm high. The large size of this crystal ensures a good sensitivity and makes it possible to carry out rapid measurements. 2) A 25 channel type SAE 25 selector which classifies the pulses according to their amplitude. It is therefore possible to distinguish between γ rays of varying energy. 3) A comparatively very light radiation protection, consisting of only 5 cm thickness of lead which diminishes the ambient γ ray intensity to a sufficient level for the majority of the measurements. A certain collimation is thus obtained which makes it possible to localise the source approximately and to reduce the undesirable effects of external contamination. (author) [fr

  2. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique; Etude de la structure des noyaux riches en neutrons autour de la fermeture de couches N=28 par spectroscopie gamma en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, B

    2007-10-15

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, {sup 42}Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in {sup 42}Si, combined with the observation of {sup 38,40}Si and the spectroscopy of {sup 41,43}P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  3. Development of a method for direct gamma-spectroscopy measurements of the gamma-radioactivity of natural waters. Part of a coordinated programme on radiological and environmental protection studies in the Danube river catchment area

    International Nuclear Information System (INIS)

    Manouchev, B.

    1983-04-01

    In the present paper the possibilities of the direct gamma spectrometry in natural waters are discussed. The methods of theoretical and experimental determination of the detector-system sensibility are suggested. Gamma-field spectra taken in natural basins in Bulgaria are given. It is recommended to use the suggested methods in the design of a system for a continuous automatic control of the natural waters radiation purity

  4. Radiological impact of a municipal solid waste landfill on soil and groundwater using 2-D resistivity tomography and gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Ehirim, C.N.; Itota, G.O.

    2011-01-01

    The radiological impacts of a municipal solid waste landfill on soil and groundwater in Port Harcourt municipality was investigated by integrating 2-D resistivity imaging and gamma-ray spectroscopy. The objective of the study is to determine the lateral and vertical limits of leachate contamination, and to estimate the radioactivity concentrations in soil and groundwater. Results show that the soil and ground water have been contaminated by landfill emissions and radioactive materials throughout the landfill area. The distribution of the contamination is uneven and spotty, both horizontally and vertically, and has penetrated to depths exceeding 31m into the ground water aquifer. The primary contaminants found in the site were leachate, landfill gases, and 40 K, 226 Ra, and 228 Ra radionuclides. The mean absorbed dose rates of 31.98nGy/hr, 10.51nGy/hr and 6.98nGy/hr, and mean dose rate equivalents of 0.28mSv/yr, 0.09mSv/yr and 0.06mSv/yr were obtained for the soil, leachate and water samples, respectively. The mean absorbed and equivalent dose rates in the soil and water samples are greater than their controls, suggesting that the landfill area is contaminated. These results are comparable to those reported for other waste sites in the area and lower than the maximum permitted limits for the general public of 1mSv/yr and 0.1mSv/yr for soil and water, respectively. These therefore, have no immediate radiological health burden on the inhabitants who depend on the soil and groundwater for their crops and potable water supply, except for the effects of disease causing micro-organism and non-methane volatile organic compounds (VOCs) from the leachate. However, with continuous consumption of crop products and intake of groundwater, increase in the activity concentration and dose rates of these radionuclides may occur over time, with adverse effects on humans.

  5. Brain Gamma-Aminobutyric Acid (GABA) Concentration of the Prefrontal Lobe in Unmedicated Patients with Obsessive-Compulsive Disorder: A Research of Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Zhang, Zongfeng; Fan, Qing; Bai, Yanle; Wang, Zhen; Zhang, Haiyin; Xiao, Zeping

    2016-10-25

    In recent years, a large number of neuroimaging studies found that the Cortico-Striato- Thalamo-Cortical circuit (CSTC), including the prefrontal lobe, a significant part of CSTC, has disturbance metabolically in patients with Obsessive-Compulsive Disorder (OCD). Explore the correlation between the neuro-metabolic features and clinical characteristics of OCD patients using magnetic resonance spectroscopy technology. 88 patients with OCD who were not received medication and outpatient treatment for 8 weeks and 76 health controls were enrolled, there was no significant difference in gender, age or education level between the two groups. SIEMENS 3.0T MRI scanner was used to measure the spectral wave of Orbito Frontal Cortex (OFC) and Anterior Cingulate Cortex (ACC) of participants, setting mega-press sequences. Meanwhile, the concentrations of gamma-aminobutyric acid (GABA), glutamine/glutamate complex (Glx) and N-Acetyl Aspartate (NAA) were measured relative to concentration of water, on the ACC and OFC of participants, for statistical analysis via LC model version 6.3 software. The concentration of metabolic substances of the OCD group compared to the healthy control group was analyzed using two sample t-test. The correlation between substance concentration and scores on the scales, including Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Hamilton Anxiety scale (HAMA) and Hamilton Depression scale (HAMD) was carried out using the Pearson correlation method. Compared with healthy controls, the GABA/W and NAA/W concentration in individuals with OCD are significantly decreased ( p =0.031, t =2.193, p =0.002, t =3.223). Also, the concentration of GABA/W had a trend of decrease in the ACC. The GABA/W of the OFC had a negative correlation with Y-BOCS-O, Y-BOCS-C and Y-BOCS-T scores ( p =0.037, r =0.221; p =0.007, r =0.283; p =0.014, r =0.259). These results support that GABA concentration in the OFC area of patients with OCD is significantly decreased and the

  6. Development and optimization of nuclear heating and gamma flux measurement techniques in experimental reactors: identification, mastery, treatment and reduction of uncertainties

    International Nuclear Information System (INIS)

    Amharrak, H.

    2012-01-01

    This thesis work focuses on the needs for qualification of neutron and photonics calculation schemes in the future Jules Horowitz technological Reactor (RJH) and Pressurized Water Reactors (PWR). It is necessary to establish reliable measurement results with well defined associated uncertainties, for qualification and/or validation. The objective of this thesis is to develop and to improve the nuclear heating measurement methods (especially gamma photons) in MINERVE and EOLE experimental reactors at CEA-Cadarache, using thermo-luminescent detectors (TLD), optically stimulated luminescence detectors (OSLD) and an ionization chamber. It is to identify, prioritize, treat and reduce the various sources of uncertainty and systematic bias associated with the measurement. In a previous study, where nuclear heating was estimated from an integrated radiation dose by TLD in MINERVE and EOLE reactors, it has been shown that dose calculation underestimated the experiment by 25% with a total uncertainty of 15% (2σ). This systematic bias observed has been largely attributed to a lack of nuclear data used to perform the calculations. Therefore, in this work a new series of experiments was set up in the MINERVE reactor to reduce the measurement uncertainties, and better understand the origins of the discrepancies with the modeling. These experiments were carried out in an aluminum or hafnium surrounding (in specifically designed boxes) using a new procedure and analysis methodology. In these experiments, the TLD are calibrated individually, the repeatability of the measurement is experimentally evaluated and the laws of TLD heat are optimized. These improvements are subsequently used for the measurement of nuclear heating in AMMON program (EOLE reactor), dedicated to the qualification of neutron and photonics calculation schemes in the RJH reactor. The measurements of the gamma emitted, with a delay (delayed gamma) after shutdown of the MINERVE reactor, were also carried out

  7. Induced mitotic gynogenesis in common carp (Cyprinus carpio L.), optimizing irradiation dose of X- and gamma-ray

    International Nuclear Information System (INIS)

    Yousefian, M.; Amirinia, C.; Bercsenyi, M.; Horvath, L.

    1997-01-01

    Mitotic gynogenesis was induced in common carp, Cyprinus carpio L., in hatchery and laboratory conditions, using 60Co gamma-ray and X-ray for inactivation of sperm DNA and a subsequent heat shock for inducing endomitosis. The parameter examined was the dose of irradiation in the range of 70-140 Krad. Carp spermatozoa irradiated by 70-100 Krad doses showed higher motility and fertilization ability than the ones irradiated by 110-140 Krad. Sperm treated with doses of 70-90 Krad showed the same fertility rate, but lower survival rate at embryo stage compared with 100 Krad. The shock temperature and duration applied in these experiments for restoration of diploidy level were 40 degrees C plus/minus 0.1 and 2 min., respectively. The highest frequency of mitotic gynogenetic larvae was achieved by 100 Krad 60Co gamma ray at 34 min. after fertilization, - up to 12.2 percent (at 23 degrees C incubating temperature)

  8. Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food.

    Science.gov (United States)

    Lim, Hee Seon; Cha, In-Tae; Roh, Seong Woon; Shin, Hae-Hun; Seo, Myung-Ji

    2017-03-28

    This study evaluated the effects of culture conditions, including carbon and nitrogen sources, L-monosodium glutamate (MSG), and initial pH, on gamma-aminobutyric acid (GABA) production by Lactobacillus brevis HYE1 isolated from kimchi, a Korean traditional fermented food. L. brevis HYE1 was screened by the production analysis of GABA and genetic analysis of the glutamate decarboxylase gene, resulting in 14.64 mM GABA after 48 h of cultivation in MRS medium containing 1% (w/v) MSG. In order to increase GABA production by L. brevis HYE1, the effects of carbon and nitrogen sources on GABA production were preliminarily investigated via one-factor-at-a-time optimization strategy. As the results, 2% maltose and 3% tryptone were determined to produce 17.93 mM GABA in modified MRS medium with 1% (w/v) MSG. In addition, the optimal MSG concentration and initial pH were determined to be 1% and 5.0, respectively, resulting in production of 18.97 mM GABA. Thereafter, response surface methodology (RSM) was applied to determine the optimal conditions of the above four factors. The results indicate that pH was the most significant factor for GABA production. The optimal culture conditions for maximum GABA production were also determined to be 2.14% (w/v) maltose, 4.01% (w/v) tryptone, 2.38% (w/v) MSG, and an initial pH of 4.74. In these conditions, GABA production by L. brevis HYE1 was predicted to be 21.44 mM using the RSM model. The experiment was performed under these optimized conditions, resulting in GABA production of 18.76 mM. These results show that the predicted and experimental values of GABA production are in good agreement.

  9. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    Science.gov (United States)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  10. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    NARCIS (Netherlands)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O.; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate

  11. Levels in /sup 179/W studied in the /sup 181/Ta(p, 3n) reaction by on-line electron and gamma ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, B J; Konijn, J [Instituut voor Kernphysisch Onderzoek, Amsterdam (Netherlands); Klank, B; Jett, J H; Ristinen, R A [Colorado Univ., Boulder (USA)

    1975-01-01

    Levels in /sup 179/W have been deduced from in-beam gamma and conversion electron studies of the /sup 181/Ta(p, 3n)/sup 179/W reaction. The gamma-ray spectrum was studied with Ge(Li) detectors and a crystal diffraction spectrometer; the conversion electrons were measured with solenoid Si(Li) spectrometer. The multipolarities of some 50 transitions could be determined. Coriolis mixing of the Nilsson orbits with N = 6 was calculated.

  12. Study on the optimization of the water Cherenkov detector array of the LHAASO project for surveying VHE gamma ray sources

    Science.gov (United States)

    Li, Hui-Cai; Chen, Ming-Jun; Jia, Huan-Yu; Gao, Bo; Wu, Han-Rong; Yao, Zhi-Guo; Yuo, Xiao-Hao; Zhou, Bin; Zhu, Feng-Rong

    2014-01-01

    It is prpopsed that a water Cherenkov detector array, LHAASO-WCDA, is to be built at Shangri-la, Yunnan Province, China. As one of the major components of the LHAASO project, the main purpose of it is to survey the northern sky for gamma ray sources in the energy range of 100 GeV-30 TeV. In order to design the water Cherenkov array efficiently to economize the budget, a Monte Carlo simulation is carried out. With the help of the simulation, the cost performance of different configurations of the array are obtained and compared with each other, serving as a guide for the more detailed design of the experiment in the next step.

  13. Study on the optimization of the water Cherenkov detector array of the LHAASO project for surveying VHE gamma ray sources

    International Nuclear Information System (INIS)

    Li Huicai; Chen Mingjun; Gao Bo; Wu Hanrong; Yao Zhiguo; Zhou Bin; Jia Huanyu; Zhu Fengrong; You Xiaohao

    2014-01-01

    It is proposed that a water Cherenkov detector array, LHAASO-WCDA, is to be built at Shangri-la, Yunnan Province, China. As one of the major components of the LHAASO project, the main purpose of it is to survey the northern sky for gamma ray sources in the energy range of 100 GeV-30 TeV. In order to design the water Cherenkov array efficiently to economize the budget, a Monte Carlo simulation is carried out. With the help of the simulation, the cost performance of different configurations of the array are obtained and compared with each other, serving as a guide for the more detailed design of the experiment in the next step. (authors)

  14. Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology.

    Science.gov (United States)

    Ferreira, Antonio; Daraktchieva, Zornitza; Beamish, David; Kirkwood, Charles; Lister, T Robert; Cave, Mark; Wragg, Joanna; Lee, Kathryn

    2018-01-01

    Predictive mapping of indoor radon potential often requires the use of additional datasets. A range of geological, geochemical and geophysical data may be considered, either individually or in combination. The present work is an evaluation of how much of the indoor radon variation in south west England can be explained by four different datasets: a) the geology (G), b) the airborne gamma-ray spectroscopy (AGR), c) the geochemistry of topsoil (TSG) and d) the geochemistry of stream sediments (SSG). The study area was chosen since it provides a large (197,464) indoor radon dataset in association with the above information. Geology provides information on the distribution of the materials that may contribute to radon release while the latter three items provide more direct observations on the distributions of the radionuclide elements uranium (U), thorium (Th) and potassium (K). In addition, (c) and (d) provide multi-element assessments of geochemistry which are also included in this study. The effectiveness of datasets for predicting the existing indoor radon data is assessed through the level (the higher the better) of explained variation (% of variance or ANOVA) obtained from the tested models. A multiple linear regression using a compositional data (CODA) approach is carried out to obtain the required measure of determination for each analysis. Results show that, amongst the four tested datasets, the soil geochemistry (TSG, i.e. including all the available 41 elements, 10 major - Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti - plus 31 trace) provides the highest explained variation of indoor radon (about 40%); more than double the value provided by U alone (ca. 15%), or the sub composition U, Th, K (ca. 16%) from the same TSG data. The remaining three datasets provide values ranging from about 27% to 32.5%. The enhanced prediction of the AGR model relative to the U, Th, K in soils suggests that the AGR signal captures more than just the U, Th and K content in the soil. The

  15. Optimization of process parameters for the inactivation of Lactobacillus sporogenes in tomato paste with ultrasound and {sup 60}Co-{gamma} irradiation using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ye Shengying [College of Food Science, South China Agricultural University, Wushan, Guangzhou, GD 510640 (China)], E-mail: yesy@scau.edu.cn; Qiu Yuanxin; Song Xianliang; Luo Shucan [College of Food Science, South China Agricultural University, Wushan, Guangzhou, GD 510640 (China)

    2009-03-15

    The processing parameters for ultrasound and {sup 60}Co-{gamma} irradiation were optimized for their ability to inactivate Lactobacillus sporogenes in tomato paste using a systematic experimental design based on response surface methodology. Ultrasonic power, ultrasonic processing time and irradiation dose were explored and a central composite rotation design was adopted as the experimental plan, and a least-squares regression model was obtained. The significant influential factors for the inactivation rate of L. sporogenes were obtained from the quadratic model and the t-test analyses for each process parameter. Confirmation of the experimental results indicated that the proposed model was reasonably accurate and could be used to describe the efficacy of the treatments for inactivating L. sporogenes within the limits of the factors studied. The optimized processing parameters were found to be an ultrasonic power of 120 W with a processing time of 25 min and an irradiation dose of 6.5 kGy. These were measured under the constraints of parameter limitation, based on the Monte Carlo searching method and the quadratic model of the response surface methodology, including the a/b value of the Hunter color scale of tomato paste. Nevertheless, the ultrasound treatment prior to irradiation for the inactivation of L. sporogenes in tomato paste was unsuitable for reducing the irradiation dose.

  16. Equipment and applications for gamma spectrometry

    International Nuclear Information System (INIS)

    Hemingway, J.D.

    1986-01-01

    In this article the theoretical aspects of gamma spectroscopy are discussed. Coaxial germanium detectors and planar detectors are described. Applications of gamma spectroscopy to the detection of the exposure of a population to naturally occuring radioactive gases and their daughter products; the accumulation of iodine isotopes in the thyroid and measuring the quantity of 239 Pu in the lungs are discussed. (UK)

  17. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  18. Spectroscopy of the {sup 29}Si(p,{gamma}) reaction for E{sub p}=1.00{endash}1.75 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vavrina, G.A.; Bybee, C.R.; Mitchell, G.E.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina 27695 (United States); Bilpuch, E.G.; Wallace, P.M.; Westerfeldt, C.R. [Duke University, Durham, North Carolina 27708 (United States); Shriner, J.F. , Jr. [Tennessee Technological University, Cookeville, Tennessee 38505 (United States)

    1997-03-01

    The {sup 29}Si(p,{gamma}) reaction has been studied in the range E{sub p}=1.00{endash}1.75 MeV. Three previously unknown states in {sup 30}P were identified, and one state previously assigned to {sup 30}P was identified as a state in {sup 14}N. Gamma-ray strengths were determined for the three new levels, and branching ratios were measured for 17 resonances. Revised J{sup {pi}};T assignments were made for nine of these states. {copyright} {ital 1997} {ital The American Physical Society}

  19. Optimization of mutant recovery from plants obtained from gamma-radiated seeds of winged bean (Psophocarpus tetragonolobus (L) DC)

    International Nuclear Information System (INIS)

    Klu, J. Y. P.; Harten, A. M. van

    2000-01-01

    Dry seeds of winged bean (Psophocarpus tetragonolobus (L.) DC) cvs UPS 122 and Kade 6/16 were treated with acute radiation doses of 150 Gy and 250 Gy at a dose rate of 737.32 Gy/hr from a Cobalt-60 gamma source for studies in optimisation of mutant selection in M 2 and M 3 populations. Mature dry pods were harvested at four different locations on each M 1 plant viz. 0.5, 1.0, 1.5 and 2.0 metres from the ground. M 2 seedlings were screened for different groups of chlorophyll deficiencies and their frequencies. Reduction in chlorophyll mutation frequency from the first formed seeds to the latest ones within the M 1 pods has been observed for both cultivars studied. The high degree of chimerism recorded in the M 2 seedlings present in the first-formed seeds in the M 1 pods provides a clear indication that these seeds constitute a zone from which seeds for the M 2 generation have to be harvested in order to give the highest probability for obtaining different types of mutants. On the other hand, significant differences in mutation frequency were not obtained in M 2 seedlings from pods harvested at the various positions on the M 1 plants. M 1 pods can be harvested at any height on the M 1 plants but is preferable to use the earliest mature ones to save time and labour. The zones identified on M 1 plants in this investigation coupled with the use of the 'spare' or 'remnant' seed selection method, should provide an improved method for mutation breeding in a viny legume like the winged bean. (au)

  20. A novel analytical method for pharmaceutical polymorphs by terahertz spectroscopy and the optimization of crystal form at the discovery stage.

    Science.gov (United States)

    Ikeda, Yukihiro; Ishihara, Yoko; Moriwaki, Toshiya; Kato, Eiji; Terada, Katsuhide

    2010-01-01

    A novel analytical method for the determination of pharmaceutical polymorphs was developed using terahertz spectroscopy. It was found out that each polymorph of a substance showed a specific terahertz absorption spectrum. In particular, analysis of the second derivative spectrum was enormously beneficial in the discrimination of closely related polymorphs that were difficult to discern by powder X-ray diffractometry. Crystal forms that were obtained by crystallization from various solvents and stored under various conditions were specifically characterized by the second derivative of each terahertz spectrum. Fractional polymorphic transformation for substances stored under stressed conditions was also identified by terahertz spectroscopy during solid-state stability test, but could not be detected by powder X-ray diffractometry. Since polymorphs could be characterized clearly by terahertz spectroscopy, further physicochemical studies could be conducted in a timely manner. The development form of compound examined was determined by the results of comprehensive physicochemical studies that included thermodynamic relationships, as well as chemical and physicochemical stability. In conclusion, terahertz spectroscopy, which has unique power in the elucidation of molecular interaction within a crystal lattice, can play more important role in physicochemical research. Terahertz spectroscopy has a great potential as a tool for polymorphic determination, particularly since the second derivative of the terahertz spectrum possesses high sensitivity for pharmaceutical polymorphs.

  1. Environmental monitoring (operational period) of the uranium enrichment facility Almirante Alvaro Alberto. Quadrimonthly report of gamma spectroscopy measurements: march to june 1988

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-02-01

    In this report we present the assessment of the environmental monitoring radiation levels during the operation period of the Uranium Enrichment Facility Almirante Alvaro Alberto from March to July 1988. The purpose was achieved by sampling and analyzing using gamma spectrometry, water and terrestrial and biological indicators. (author) [pt

  2. Application of a gamma spectroscopy system to the measurement of neutron cross sections necessary to the development of nuclear energy; Mise au point d'un systeme de spectroscopie pour mesurer des sections efficaces neutroniques applicables a un possible developpement du nucleaire comme source d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Deruelle, O

    2002-09-01

    This work concerns the development of nuclear energy and nuclear waste management in particular. Two parts of this study can be distinguished. In the first part (theoretical), a thorium-plutonium fuel based on MOX and dedicated for PWR was investigated in order to transmute plutonium in a potentially low waste fuel cycle. It was shown that this type of fuel is not regenerative but could be used for a transition to the industrial thorium fuel cycle without building new reactors. Thanks to moderated neutron spectra and high loaded actinide mass in the core, U-233 is quickly created ({approx}300 kg/y) for a loss of about {approx}1200 kg of fissile plutonium. In the second part (experimental), we have developed and built a new reaction chamber to measure neutron cross sections of actinides by alpha-gamma spectroscopy. This experimental device (in principle transportable) was commissioned in the high flux reactor of ILL Grenoble. Neutron flux was measured by gamma spectroscopy of irradiated Al and Co samples and was found to be of the order of 6,0. 10{sup 14} n.cm{sup -2}.s{sup -1} (4%). By the irradiation of 11{mu}g of Am-243 and Pu-242, corresponding capture cross sections were measured in the thermal neutron flux at 50 deg C. These are the results: {sup 243}Am(n,{gamma}) {sup 244fond.}Am = 4,72{+-}1,42b; {sup 243}Am(n,{gamma}) {sup 244total}Am = 74,8{+-}3,25b; {sup 242}Pu (n,{gamma}){sup 243}Pu = 22,7{+-}1,09b. Uncertainties of the measurements are mostly due to the determination of the neutron flux, efficiency of the electronics and ambiguities related to the definition of the area under {alpha}-{gamma} spectra. Although our measured cross sections deviate (by 10-30%) from the corresponding values widely used in evaluated data libraries such as ENDF, JEF and JENDL, in this work we have demonstrated the feasibility and principle of our experimental method. Furthermore, the value for the 243-americium capture cross-section is in very good agreement with the last two

  3. Application of a gamma spectroscopy system to the measurement of neutron cross sections necessary to the development of nuclear energy; Mise au point d'un systeme de spectroscopie pour mesurer des sections efficaces neutroniques applicables a un possible developpement du nucleaire comme source d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Deruelle, O

    2002-09-01

    This work concerns the development of nuclear energy and nuclear waste management in particular. Two parts of this study can be distinguished. In the first part (theoretical), a thorium-plutonium fuel based on MOX and dedicated for PWR was investigated in order to transmute plutonium in a potentially low waste fuel cycle. It was shown that this type of fuel is not regenerative but could be used for a transition to the industrial thorium fuel cycle without building new reactors. Thanks to moderated neutron spectra and high loaded actinide mass in the core, U-233 is quickly created ({approx}300 kg/y) for a loss of about {approx}1200 kg of fissile plutonium. In the second part (experimental), we have developed and built a new reaction chamber to measure neutron cross sections of actinides by alpha-gamma spectroscopy. This experimental device (in principle transportable) was commissioned in the high flux reactor of ILL Grenoble. Neutron flux was measured by gamma spectroscopy of irradiated Al and Co samples and was found to be of the order of 6,0. 10{sup 14} n.cm{sup -2}.s{sup -1} (4%). By the irradiation of 11{mu}g of Am-243 and Pu-242, corresponding capture cross sections were measured in the thermal neutron flux at 50 deg C. These are the results: {sup 243}Am(n,{gamma}) {sup 244fond.}Am = 4,72{+-}1,42b; {sup 243}Am(n,{gamma}) {sup 244total}Am = 74,8{+-}3,25b; {sup 242}Pu (n,{gamma}){sup 243}Pu = 22,7{+-}1,09b. Uncertainties of the measurements are mostly due to the determination of the neutron flux, efficiency of the electronics and ambiguities related to the definition of the area under {alpha}-{gamma} spectra. Although our measured cross sections deviate (by 10-30%) from the corresponding values widely used in evaluated data libraries such as ENDF, JEF and JENDL, in this work we have demonstrated the feasibility and principle of our experimental method. Furthermore, the value for the 243-americium capture cross-section is in very good agreement with the last two

  4. New analytical methods for materials characterization using the techniques of nuclear activation reactions induced by thermal neutrons and accelerated ion beams, coupled to gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Cincu, Emanuela

    1999-01-01

    data from nuclear activation reactions. In the theoretical part of the thesis (Chapter 2) an explanation for the 'critical' phenomena discussed in the CPAA literature was advanced. In Chapters 3-4, new analytical formulae were derived, based on new nuclear parameters (z 0 , z), which are similar to the known (k 0 , k) parameters for the NAA field. A new, absolute standardization method, without any reference standard was also described. Chapter 5 presents new, original applications for determining the energy of the accelerated ion beams and thickness of thin materials, while the Chapter 6 describes two practical methods for optimizing the experiments: the Unitary (CPAA-NAA) analytical method based on the new parameters (z 0 , z), and the Optographic Method based on the specific evolution of each radionuclide. A new concept of the software for processing the experimental data from nuclear activation was developed for CPAA and NAA, and a database of the specific nuclear data was constructed (Chapter 7) by using the 'Fox-Pro' operating system. The experimental CPAA setup (Chapter 8) was a newly constructed reaction vacuum chamber based on the author's design, which allowed an accurate control of the electrical charge transferred to the target and reproducibility of irradiation; the analysis of the gamma-ray spectra from both types of irradiation was carried out by a spectrometer with a high resolution HPGe detector. In conclusion (Chapter 9) this thesis is significant for the field of analysis by nuclear activation (CPAA, and NAA) due to the original contributions to the theoretical, methodological, experimental and specific software and calculation methods. (author)

  5. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    Science.gov (United States)

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  6. Optimization of localized 19F magnetic resonance spectroscopy for the detection of fluorinated drugs in the human liver.

    NARCIS (Netherlands)

    Klomp, D.W.J.; Laarhoven, H.W.M. van; Kentgens, A.P.M.; Heerschap, A.

    2003-01-01

    Fluorine MR spectroscopy ((19)F MRS) is an indispensable tool for assessing the pharmacokinetics of fluorinated drugs. Since the metabolism of 5-fluorouracil (5FU), a frequently used cytotoxic drug, is expected to be different in normal liver and in tumor tissue, spatial localization is required for

  7. Optimization of localized 19F magnetic resonance spectroscopy for the detection of fluorinated drugs in the human liver

    NARCIS (Netherlands)

    Klomp, Dennis W. J.; van Laarhoven, Hanneke W. M.; Kentgens, Arno P. M.; Heerschap, Arend

    2003-01-01

    Fluorine MR spectroscopy ((19)F MRS) is an indispensable tool for assessing the pharmacokinetics of fluorinated drugs. Since the metabolism of 5-fluorouracil (5FU), a frequently used cytotoxic drug, is expected to be different in normal liver and in tumor tissue, spatial localization is required for

  8. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients.

    Science.gov (United States)

    Hori, Daijiro; Hogue, Charles; Adachi, Hideo; Max, Laura; Price, Joel; Sciortino, Christopher; Zehr, Kenton; Conte, John; Cameron, Duke; Mandal, Kaushik

    2016-04-01

    Perioperative blood pressure management by targeting individualized optimal blood pressure, determined by cerebral blood flow autoregulation monitoring, may ensure sufficient renal perfusion. The purpose of this study was to evaluate changes in the optimal blood pressure for individual patients, determined during cardiopulmonary bypass (CPB) and during early postoperative period in intensive care unit (ICU). A secondary aim was to examine if excursions below optimal blood pressure in the ICU are associated with risk of cardiac surgery-associated acute kidney injury (CSA-AKI). One hundred and ten patients undergoing cardiac surgery had cerebral blood flow monitored with a novel technology using ultrasound tagged near infrared spectroscopy (UT-NIRS) during CPB and in the first 3 h after surgery in the ICU. The correlation flow index (CFx) was calculated as a moving, linear correlation coefficient between cerebral flow index measured using UT-NIRS and mean arterial pressure (MAP). Optimal blood pressure was defined as the MAP with the lowest CFx. Changes in optimal blood pressure in the perioperative period were observed and the association of blood pressure excursions (magnitude and duration) below the optimal blood pressure [area under the curve (AUC) blood pressure during early ICU stay and CPB was correlated (r = 0.46, P AUC blood pressure during CPB and in the ICU was correlated. Excursions below optimal blood pressure (AUC blood pressure management based on cerebral autoregulation monitoring during the perioperative period may help improve CSA-AKI-related outcomes. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  9. Mass spectroscopy investigation of the effect of gamma irradiation on the mean value of the number of ethoxy groups in the triton X-100

    International Nuclear Information System (INIS)

    Valdés Díaz, Gilmer; Rodríguez Calvo, Simón; Pérez Gramatges, Aurora; Fernández Lima, Francisco Alberto; Rapado Paneque, Manuel; Ponciano, Cassia Ribero R.; Frota da Silveira, Enio

    2007-01-01

    The effect of gamma radiation from a 60 Co source on the structure of a nonionic surfactant, namely TRITON X-100, was investigated. Three main regions can be distinguished in the behavior of the mean value of ethoxy groups with an increase in the absorbed dose. However just a slightly decrease on this mean value was obtained when the dose range from 0 to 70 kGy. (author)

  10. Optimization of interferon gamma ELISPOT assay to detect human cytomegalovirus specific T-cell responses in solid organ transplants.

    Science.gov (United States)

    Abate, Davide; Saldan, Alda; Forner, Gabriella; Tinto, Daniel; Bianchin, Alice; Palù, Giorgio

    2014-02-01

    Assessing the CMV specific CMI in transplant subjects represents a promising strategy to determine the risk of infection on individual basis. In this study 61 adult CMV IgG seropositive solid organ transplant recipients were examined in order to improve the efficacy of CMI detection. For this purpose, pair-wise comparisons were conducted comparing positive control stimuli PWM and PMA/iono and CMV stimuli, pp65 peptide pool and whole CMV particle. Rosette pre-depletion of blood was also investigated for detecting CD4+ or CD8+ T-cell responses using the IFN-g ELISPOT assay. In the time-points 30-180 days after transplantation, PMA/iono produced statistically significant higher responses compared to PWM, probably because PMA/iono activation pathway is independent from the effect of immunosuppressive drugs. The data showed that 11% of transplant patients displayed very low or undetectable responses to pp65 peptide pool antigen while having sustained high responses to whole CMV particle. In addition, in all the subjects analyzed, CMI responses to CMV particle produced a statistically significant higher number of spots compared to pp65 peptide pool antigen. Rosette pre-depletion of whole blood proved to be effective in detecting CD4+ or CD8+ T-cell responses similarly to flow cytometry. Taken together, the following recommendations are suggested to optimize the CMV-ELISPOT for transplantation settings: (1) use PMA/iono as positive control; (2) whole virus particle should be used to avoid peptide-related false negative responses; (3) a rosette pre-depletion step may be useful to detect CD4+ or CD8+ T-cell responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    Directory of Open Access Journals (Sweden)

    Yangkyu Park

    2016-01-01

    Full Text Available Purpose. To distinguish between normal (SV-HUC-1 and cancerous (TCCSUP human urothelial cell lines using microelectrical impedance spectroscopy (μEIS. Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p<0.001, was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p<0.001. Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF.

  12. [Construction of a recombinant Escherichia coli BL21/ pET-28a-lpgad and the optimization of transformation conditions for the efficient production of gamma-aminobutyric acid].

    Science.gov (United States)

    Tian, Lingzhi; Xu, Meijuan; Rao, Zhiming

    2012-01-01

    In order to enhance gamma-aminobutyric acid production from L-glutamate efficiently, we amplified the key enzyme glutamate decarboxylase (GAD) encoding gene lpgad from the strain Lactobacillus plantarum GB 01-21 which was obtained by way of multi-mutagenesis and overexpressed it in E. coli BL21. Then we purified GAD by Ni-NTA affinity chromatography and characterized the enzyme to optimize the conditions of the whole-cell transformation. The results showed that the recombinant E. coli BL21 (pET-28a-lpgad) produced 8.53 U/mg GAD, which was increased by 3.24 fold compared with the GAD activity in L. plantarum. The optimum pH and temperature of the enzyme were pH 4.8 and 37 degrees C, respectively. At the same time, we found that Ca2+ and Mg2+ could increase the activity significantly. Based on this, we investigated gamma-aminobutyric acid transformation in 5 L fermentor under the optimum transformation conditions. Accordingly, the yield of gamma-aminobutyric acid was 204.5 g/L at 24 h when the 600 g L-glutamate was added and the mole conversion rate had reached 97.92%. The production of gamma-aminobutyric acid was improved by 42.5% compared with that under the unoptimized transformation conditions. This paved a way for the gamma-aminobutyric acid construction of the industrial applications.

  13. A NIM (Nuclear Instrumentation Module) system conjugated with optional input for pHEMT amplifier for beta and gamma spectroscopy; Um sistema de modulos NIM conjugados com entrada opcional por amplificador pHEMT para espectroscopia beta e gama

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Barbara; Lüdke, Everton, E-mail: barbarakonradmev@gmail.com, E-mail: eludke@smail.ufsm.br [Universidade Federal de Santa Maria (LAE/UFSM), RS (Brazil). Lab. de Astrofisica e Eletronica

    2014-07-01

    This work presents a high speed NIM module (Nuclear Instrumentation Module) to detect radiation, gamma and muons, as part of a system for natural radiation monitoring and of extraterrestrial origin. The subsystem developed consists of a preamplifier and an integrated SCA (Single Channel Analyzer), including power supplies of ± 12 and ± 24V with derivations of +3.6 and ± 5V. The single channel analyzer board, consisting of discrete logic components, operating in window modes, normal and integral. The pulse shaping block is made up of two voltage comparators working at 120 MHz with a response time > 60 ns and a logic anticoincidence system. The preamplifier promotes a noise reduction and introduces the impedance matching between the output of anode / diode photomultiplier tubes (PMTs) and subsequent equipment, providing an input impedance of 1MΩ and output impedance of 40 to 140Ω. The shaper amplifier is non-inverting and has variable input capacitance of 1000 pF. The upper and lower thresholds of the SCA are adjustable from 0 to ± 10V, and the equipment is compatible with various types of detectors, like PMTs coupled to sodium iodide crystals. For use with liquid scintillators and photodiodes with crystals (CsI: Tl) is proposed to include a preamplifier circuit pHEMT (pseudomorphic High Electron Mobility Transistor) integrated. Yet, the system presents the possibility of applications for various purposes of gamma spectroscopy and automatic detection of events producing of beta particles.

  14. $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

    CERN Document Server

    Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M

    2012-01-01

    $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

  15. In-beam {gamma}-ray spectroscopy of two-step fragmentation reactions at relativistic energies. The case of {sup 36}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Doornenbal, P.

    2007-10-23

    A two-step fragmentation experiment has been performed at GSI with the RISING setup. It combines the fragment separator FRS, which allows for the production of radioactive heavy ions at relativistic energies, with a high resolution {gamma}-spectrometer. This combination offers unique possibilities for nuclear structure investigations like the test of shell model predictions far from stability. Within the present work the question if the N=14(16) shell stabilisation in Z=8 oxygen isotopes and the N=20 shell quenching in {sup 32}Mg are symmetric with respect to the isospin projection quantum number Tz has been addressed. New {gamma}-ray decays were found in the neutron deficient {sup 36}Ca and {sup 36}K by impinging a radioactive ion beam of {sup 37}Ca on a secondary {sup 9}Be target. The fragmentation products were selected with the calorimeter telescope CATE and the emitted {gamma}-rays were measured with Ge Cluster, MINIBALL, and BaF{sub 2} HECTOR detectors. For {sup 36}Ca the 2{sub 1}{sup +}{yields}0{sub g.s.}{sup +} transition energy was determined to be 3015(16) keV, which is the heaviest T=2 nucleus from which {gamma}-spectroscopic information has been obtained so far. A comparison between the experimental 2{sub 1}{sup +} energies of {sup 36}Ca and its mirror nucleus {sup 36}S yielded a mirror energy difference of {delta}E{sub M}=-276(16) keV. In order to understand the large {delta}E{sub M} value, the experimental single-particle energies from the A=17, T=1/2 mirror nuclei were taken and applied onto modified isospin symmetric USD interactions in shell model calculations. These calculations were in agreement with the experimental result and showed that the experimental single-particle energies may account empirically for the one body part of Thomas-Ehrman and/or Coulomb effects. A method to extract the lifetime of excited states in fragmentation reactions was investigated. Therefore, the dependence between the lifetime of an excited state and the average de

  16. Summary Report of the 3rd Research Coordination Meeting on Development of a Reference Database for Particle-Induced Gamma ray Emission (PIGE) Spectroscopy

    International Nuclear Information System (INIS)

    Dimitriou, P.; Pedro de Jesus, A.

    2014-05-01

    The Third Research Coordination Meeting (RCM) of the IAEA Coordinated Research Project (CRP) on “Development of a Reference Database for Particle-Induced Gamma-ray Emission (PIGE) Spectroscopy” was held at the IAEA, Vienna, from 7 to 11 April 2014. Participants reviewed the progress made since the previous RCM and agreed upon the work that remains to be done by the end of the CRP. The contents of the final Technical Document were discussed and individual chapters were assigned. The summaries of participants’ presentations as well as the technical discussions and the list of assigned tasks are included in this report. (author)

  17. Gamma ray energy tracking in GRETINA

    Science.gov (United States)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  18. High-precision gamma-ray spectroscopy of 82Rb and 72As, two important medical isotopes used in positron emission tomography

    Science.gov (United States)

    Nino, Michael; McCutchan, E.; Smith, S.; Sonzogni, A.; Muench, L.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.

    2015-10-01

    Both 82Rb and 72As are very important medical isotopes used in imaging procedures, yet their full decay schemes were last studied decades ago using low-sensitivity detection systems; high quality decay data is necessary to determine the total dose received by the patient, the background in imaging technologies, and shielding requirements in production facilities. To improve the decay data of these two isotopes, sources were produced at the Brookhaven Linac Isotope Producer (BLIP) and then the Gammasphere array, consisting of 89 Compton-suppressed HPGe detectors, at Argonne National Laboratory was used to analyze the gamma-ray emissions from the daughter nuclei 82 Kr and 72 Ge. Gamma-ray singles and coincidence information were recorded and analyzed using Radware Gf3m software. Significant revisions were made to the level schemes including the observation of many new transitions and levels as well as a reduction in uncertainty on measured γ-ray intensities and deduced β-feedings. The new decay schemes as well as their impact on dose calculations will be presented. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internships Program (SULI).

  19. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    Science.gov (United States)

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  20. Gamma Knife

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Gamma Knife Gamma Knife® is a radiation therapy that uses computerized ... If you're scheduled for radiation therapy using Gamma Knife®, a treatment team consisting of a radiation ...

  1. A New Optical Design for Imaging Spectroscopy

    Science.gov (United States)

    Thompson, K. L.

    2002-05-01

    We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.

  2. Gamma transitions in 127Te

    International Nuclear Information System (INIS)

    Batista, Wagner Fonseca; Zamboni, Cibele Bugno

    2009-01-01

    This study of the 127 Te β - decay was carried out by means of gamma spectroscopy measurements using high resolution Ge detector, in the region from 150 keV up to 1000 keV, aiming to get a better understanding of the 127 Te nuclear structure. Several gamma transitions were confirmed when compared with those published in the last compilation. These data resulting in lower uncertainty. (author)

  3. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).

    Science.gov (United States)

    Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic

    2017-02-01

    Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Gamma apparatuses for radiotherapy

    International Nuclear Information System (INIS)

    Sul'kin, A.G.

    1986-01-01

    Scientific and technical achievements in development and application of gamma therapeutic apparatuses for external and intracavity irradiations are generalized. Radiation-physical parameters of apparatuses providing usability of progressive methods in radiotherapy of onclogical patients are given. Optimization of main apparatus elements, ensurance of its operation reliability, reduction of errors of irradiation plan reproduction are considered. Attention is paid to radiation safety

  5. Investigation of hyperfine parameters of semiconductor oxides SnO2 and TiO2 pure and doped with 3d transition methods using spectroscopy of perturbed gamma-gamma angular correlation

    International Nuclear Information System (INIS)

    Schell, Juliana

    2015-01-01

    This study aimed the use of nuclear technique Perturbed γ-γ Angular Correlation Spectroscopy (PAC) to measure the hyperfine interactions in thin films and powder samples of SnO 2 and TiO 2 pure and doped with transition metals to obtain a systematic investigation of defects and magnetism from an atomic point of view with the main motivation the application in spintronics. The work also focused on the preparation and characterization of samples by conventional techniques such as X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and magnetization measurements. Pure samples of the films were measured by the systematic variation of thermal treatment and applied magnetic field. These measurements were performed in HISKP at the University of Bonn (Rheinische Friedrich-Wilhelms-Universität Bonn) using 111 In( 111 Cd) or 181 Hf ( 181 Ta); at IPEN, in turn, these measurements were performed after the diffusion of the same probe nuclei. Another part of PAC measurements were carried out using 111 mCd( 111 Cd) and 117 Cd ( 117 In) in Isotope Mass Separator On-Line (ISOLDE) at Centre Européen Recherche Nucléaire (CERN). The measurements were performed from 8 K to 1173 K. After comparing results from macroscopic techniques with those from PAC, it was concluded that there is a correlation between the defects, magnetism and the mobility of charge carriers in semiconductors studied here. A step forward in the search for semiconductors, whose magnetic ordering allows its use in electronics based on spin. Some results have been published, including results obtained at the University of Bonn for the sandwich doctorate period [1-7]. (author)

  6. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  7. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  8. Nuclear gamma resonance absorption (Moessbauer) spectroscopy as an archaeometric technique to assess chemical states of iron in a Tupiguarani ceramic artifact from Corinto, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Floresta, D.L.; Ardisson, J.D.; Fagundes, M.; Fabris, J.D.

    2013-01-01

    Archaeological ceramics of Tupiguarani Tradition are found in many parts throughout the Brazilian territory and have many similarities. Fragments of Tupiguarani pottery found in the archaeological site known as Beltrao, in the municipality of Corinto, state of Minas Gerais, were identified and collected by researchers of the LAEP/UFVJM, in Diamantina, also in Minas Gerais. A selected fragment of about 15 mm-thick, with a color gradation across the ceramic wall ranging from red, on one side, grayish in the middle and orange on the opposite side, was transversely cut and a series of subsamples of powdered materials were collected from different depths across the wall, in layer segments of ∼3 mm, from the orange side. These powdered subsamples were analyzed with X-ray fluorescence and diffraction spectroscopy and 57 Fe Moessbauer spectroscopy at room temperature (298 K) and at 80 K. According to the XRF results, the elementary composition does not clearly vary with the depth in the sample. The powder XRD analysis revealed the occurrence mainly of quartz and muscovite. Results of 57 Fe Moessbauer spectroscopy reveal that hematite is the magnetically ordered phase. An Fe 2+ component appears for the grayish subsample. According to these results, the red subsample seems to be the external part of the pottery, representing the side that had direct contact with fire used to burn the precursor clay in air for this primitive ceramics preparation. The grayish middle layer is probably due to burning clay mixed with some ashes containing residual carbon, under milder temperature than on the external . (author)

  9. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.

    Science.gov (United States)

    Kim, Byungsuk; Woo, Young-Ah

    2018-05-30

    In this study the authors developed a real-time Process Analytical Technology (PAT) of a coating process by applying in-line Raman spectroscopy to evaluate the coating weight gain, which is a quantitative analysis of the film coating layer. The wide area illumination (WAI) Raman probe was connected to the pan coater for real-time monitoring of changes in the weight gain of coating layers. Under the proposed in-line Raman scheme, a non-contact, non-destructive analysis was performed using WAI Raman probes with a spot size of 6 mm. The in-line Raman probe maintained a focal length of 250 mm, and a compressed air line was designed to protect the lens surface from spray droplets. The Design of Experiment (DOE) was applied to identify factors affecting the Raman spectra background of laser irradiation. The factors selected for DOE were the strength of compressed air connected to the probe, and the shielding of light by the transparent door connecting the probe to the pan coater. To develop a quantitative model, partial least squares (PLS) models as multivariate calibration were developed based on the three regions showing the specificity of TiO 2 individually or in combination. For the three single peaks (636 cm -1 , 512 cm -1 , 398 cm -1 ), least squares method (LSM) was applied to develop three univariate quantitative analysis models. One of best multivariate quantitative model having a factor of 1 gave the lowest RMSEP of 0.128, 0.129, and 0.125, respectively for prediction batches. When LSM was applied to the single peak at 636 cm -1 , the univariate quantitative model with an R 2 of 0.9863, slope of 0.5851, and y-intercept of 0.8066 had the lowest RMSEP of 0.138, 0.144, and 0.153, respectively for prediction batches. The in-line Raman spectroscopic method for the analysis of coating weight gain was verified by considering system suitability and parameters such as specificity, range, linearity, accuracy, and precision in accordance with ICH Q2 regarding

  10. Initial study of optimal single-voxel 1H-MR spectroscopy parameters on femoral bone marrow

    International Nuclear Information System (INIS)

    Gao Zhenhua; Meng Quanfei; Zhou Chunxiang; Lin Erjian; Deng Demao

    2007-01-01

    Objective: To choose proper proton magnetic resonance spectroscopy ( 1 H-MRS) parameters to fit for practical femoral marrow cavity and to produce short-timed, well-repeated and excellent 1 H-MRS images. Methods: The tentative study of 1 H-MRS on the normal femoral bone marrow in 26 volunteers was performed with a 1.5 T MR after the informed consent. The single-voxel spectroscopy and stimulated echo acquisition mode were used for 1 H-MRS collection. 1 H-MRS parameters for 12 volunteers were 128 acquisitions, 1 cm x 1 cm x 1 cm volume of interest (VOI) size and repeatedly 2-3 times within the same location. 1 H-MRS parameters for another 14 volunteers were different numbers of acquisition (128 and 256 times, respectively) and different VOl sizes (2 cm x2 cm x2 cm and 1 cm x 1 cm x 1 cm, respectively). Results: For 1 H-MRS with 1 cm x 1 cm x 1 cm size of VOI and 128 times of acquisition with the full width half max of water ≤8-12 Hz, the base-line was steady and the signal-noise ratio was high up to 11.31. 1 H-MRS was different in the different femoral locations showing the maximum peak sites at near 0.90 ppm( x 10 -6 ) or 1.65 ppm, but 1 H-MRS within the same location was always same or similar with different VOI sizes (1 cm x 1 cm x 1 cm or 2 cm x 2 cm x 2 cm) or different numbers of acquisition(128 or 256 times). 1 H-MRS acquisition time was not related with the size of VOI but with the numbers of acquisition. 128 and 256 times of acquisition cost 199 s and 391 s, respectively. Conclusion: With the technique of small size of VOI(1 cm x 1 cm x 1 cm) and decreased numbers of acquisition (128 times), it is propable to get well-repeated and excellent 1 H-MRS within less time. It is also more practical for clinics to achieve 1 H-MRS of the femoral marrow with the proper technique. (authors)

  11. Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization

    KAUST Repository

    Alsulami, Qana

    2016-04-10

    In organic donor-acceptor systems, ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) are key determinants of the overall performance of photovoltaic devices. However, a profound understanding of these photophysical processes at device interfaces remains superficial, creating a major bottleneck that circumvents advancements and the optimization of these solar cells. Here, results from time-resolved laser spectroscopy and high-resolution electron microscopy are examined to provide the fundamental information necessary to fabricate and optimize organic solar cell devices. In real time, CT and CS are monitored at the interface between three fullerene acceptors (FAs) (PC71BM, PC61BM, and IC60BA) and the PTB7-Th donor polymer. Femtosecond transient absorption (fs-TA) data demonstrates that photoinduced electron transfer from the PTB7-Th polymer to each FA occurs on the sub-picosecond time scale, leading to the formation of long-lived radical ions. It is also found that the power conversion efficiency improves from 2% in IC60BA-based solar cells to >9% in PC71BM-based devices, in support of our time-resolved results. The insights reported in this manuscript provide a clear understanding of the key variables involved at the device interface, paving the way for the exploitation of efficient CS and subsequently improving the photoconversion efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    Science.gov (United States)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  13. Attenuation corrections through energy spectra analysis of whole body and partial body measurements applying gamma spectroscopy; Schwaechungskorrektur bei gammaspektroskopischen Ganz- und Teilkoerpermessungen durch Analyse der Energiespektren

    Energy Technology Data Exchange (ETDEWEB)

    Schelper, L.F.; Lassmann, M.; Haenscheid, H.; Reiners, C. [Wuerzburg Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    1997-12-01

    The study was carried out within the framework of activities for testing means of direct determination of radioactivity levels in the human body due to incorporated, inhomogenously distributed radionuclides. A major task was to derive the average depth of activity distributions, particularly from photon radiation at energies below 500 keV, for the purpose of making suitable attenuation corrections. The paper presents two applicable methods which yield information on the mean depths of activity distributions, obtained through additional analyses of the energy spectra. The analyses are based on measuring the dependence of intensity of the Compton radiation on the length of pathways of the photons penetrating the soft tissue, or on measuring the energy-dependent absorption effects with photons. (orig./CB) [Deutsch] Im Rahmen der direkten Aktivitaetsbestimmung bei inhomogener Radionukliddeposition im menschlichen Koerper mittels Ganz- oder Teilkoerpermessanlagen im klinischen Bereich oder im Strahlenschutz sollte besonders bei Photonenstrahlung mit Energien von weniger als 500 keV eine Ermittlung der mittleren Tiefe der Aktivitaetsverteilung zur Schwaechungskorrektur erfolgen. Im klinischen Umfeld ist es haeufig moeglich, zur Tiefenkorrektur die mittlere Organtiefe und damit die schwaechende Gewebsschicht mittels Ultraschall zu bestimmen. Ergaenzend hierzu werden im Folgenden zwei Methoden vorgestellt, welche Aussagen ueber die mittlere Tiefe von Aktivitaetsverteilungen durch Gewinnung von Zusatzinformationen aus dem Energiespektrum im Rahmen von gamma-spektroskopischen Personenmessungen ermoeglichen. Dazu werden einerseits die Abhaengigkeit der Intensitaet der Comptonstrahlung von der Laenge der Wegstrecke von Photonen durch Weichgewebe und andererseits energieabhaengige Absorptionseffekte bei Photonen als Grundlage herangezogen. (orig.)

  14. Cu(I), Ag(I), Cd(II), and Pb(II) binding to biomolecules studied by perturbed angular correlation of $\\gamma$-rays (PAC) spectroscopy

    CERN Multimedia

    Metal ions display diverse functions in biological systems and are essential components in both protein and nucleic acid structure and function, and in control of biochemical reaction paths and signalling. Similarly, metal ions may be used to control structure and function of synthetic biomolecules, and thus be a tool in the design of molecules with a desired function. In this project we address a variety of questions concerning both the function of metal ions in natural systems, in synthetic biomolecules, and the toxic effect of some metal ions. All projects involve other experimental techniques such as NMR, EXAFS, UV-Vis, fluorescence, and CD spectroscopies providing complementary data, as well as interpretation of the experimental data by quantum mechanical calculations of spectroscopic properties. The isotopes to be employed in the proposal are the following: $^{111m}$Cd, $^{111}$Ag, $^{199m}$Hg, $^{204m}$Pb, $^{61}$Cu, $^{68m}$Cu

  15. Optimization of transversal relaxation of nitroxides for pulsed electron-electron double resonance spectroscopy in phospholipid membranes.

    Science.gov (United States)

    Dastvan, Reza; Bode, Bela E; Karuppiah, Muruga Poopathi Raja; Marko, Andriy; Lyubenova, Sevdalina; Schwalbe, Harald; Prisner, Thomas F

    2010-10-28

    Pulsed electron-electron double resonance (PELDOR) spectroscopy is increasingly applied to spin-labeled membrane proteins. However, after reconstitution into liposomes, spin labels often exhibit a much faster transversal relaxation (T(m)) than in detergent micelles, thus limiting application of the method in lipid bilayers. In this study, the main reasons for enhanced transversal relaxation in phospholipid membranes were investigated systematically by use of spin-labeled derivatives of stearic acid and phosphatidylcholine as well as spin-labeled derivatives of the channel-forming peptide gramicidin A under the conditions typically employed for PELDOR distance measurements. Our results clearly show that dephasing due to instantaneous diffusion that depends on dipolar interaction among electron spins is an important contributor to the fast echo decay in cases of high local concentrations of spin labels in membranes. The main difference between spin labels in detergent micelles and membranes is their local concentration. Consequently, avoiding spin clustering and suppressing instantaneous diffusion is the key step for maximizing PELDOR sensitivity in lipid membranes. Even though proton spin diffusion is an important relaxation mechanism, only in samples of low local concentrations does deuteration of acyl chains and buffer significantly prolong T(m). In these cases, values of up to 7 μs have been achieved. Furthermore, our study revealed that membrane composition and labeling position in the membrane can also affect T(m), either by promoting the segregation of spin-labeled species or by altering their exposure to matrix protons. Effects of other experimental parameters including temperature (<50 K), presence of oxygen, and cryoprotectant type are negligible under our experimental conditions.

  16. Optimization of polyphenols extraction using response surface methodology and application of near infrared spectroscopy to phenolic content analysis of pine bark

    International Nuclear Information System (INIS)

    Derkyi, Nana Sarfo Agyemang

    2010-04-01

    The utilization of pine bark for processing water resistant phenol-formaldehyde adhesive for plywood production encounters difficulties due to the very high reactivity of the formaldehyde condensable phenolics and other un-intended compounds (sugars) extracted into solution, as well as time consuming and costly chemical analysis. The potential of near infrared reflectance spectroscopy (NIRS) for rapidly and accurately determining the polyphenolic contents in Pinus caribaea bark extracts was assessed by means of multivariate calibration techniques. To optimize the polyphenol content, four different solvents (aqueous acetone, aqueous ethanol, aqueous NaOH and water) were used in the extractions. Batch experiments were performed at different solvent concentrations, time, temperature and liquid-solid ratio. Mathematical polynomial models were proposed to identify the effects of individual interactions of these variables on the extraction of polyphenols and optimum content using response surface methodology (RSM). The optimized conditions were used to extract polyphenols which were used in the formulation of resol resins for plywood manufacture. The first derivative spectra with PLS regression were found to provide the best prediction of the tannin content and stiasny number of pine bark with a SECV = 0.14 and 1.26 and r"2 = 0.97 and 0.95 respectively. The predicted values were thus highly correlated with costly measured values of tannin content and Stiasny number. The highest extraction model efficiency (78.98%) was observed for aqueous extraction when only tannin content was maximized in the numerical optimization process. This corresponded to optimum extraction conditions of 69°C extraction temperature, 126 min extraction time and 23:1 liquid-solid ratio. The RSM model that gave a high tannin content (18.85%) with a corresponding good quality resin (shear strength = 2.4 MPa, 10% delamination) was found for aqueous ethanol extraction when the objective function was

  17. Radon, radionuclides and the Cretaceous Folkestone Sands - gamma spectroscopy and geochemical analysis of silver sands and associated deposits in the SE of England.

    Science.gov (United States)

    Gillmore, Gavin; Al-Rafai, Yousef; Flowers, Alan

    2017-04-01

    cement holding the grains together (typical porosity being around 30%). Microscope analysis shows that this material contains mostly angular to sub-angular quartz grains, some with undulose extinction under cross-polarised light. This suggests a metamorphic origin for the quartz. There are also some relatively rare rock fragments present. These silver sands are a mixture of fine to medium grain sizes (0.10 to 0.5 mm) with small proportions of finer and coarser grades and are in the order of 30 - 36 metres thick at Reigate. These beds show lateral and vertical variability in their grain size, mineralogy and geochemical make up such as iron oxide content and are heavily faulted in places. In view of these radon results, in order to determine whether these levels are supported or unsupported, samples were collected and subjected to laboratory-based Gamma spectrometry. This indicated the presence of U235 (186keV) and Pb212 (238keV) in sands from these caves. We will shortly be in a position to also report in-situ gamma spectrometry and ICPMS analysis of samples taken from these beds.

  18. The optimal dosage of 60 co gamma irradiation for obtaining salt gland mutants of exo-recretohalophyte limonium bicolor (bunge) o. kuntze

    International Nuclear Information System (INIS)

    Yuan, F.; Chen, M.; Yang, J.; Wang, B.

    2015-01-01

    Limonium bicolor (Bunge) O. Kuntze is a typical exo-recretohalophyte with multi-cellular salt glands. It is often used to improve saline-alkali soil. Seeds of L. bicolor were treated with different doses of 60 Co gamma irradiation to determine the LD50 for 60 Co gamma irradiation; the goal was to produce a relatively high number of mutants in salt gland development and salt secretion with a relatively low level of mortality. 60 Co gamma irradiation did not greatly affect germination, but an increase in gamma dose prevented the development of true leaves and reduced the percentage of seedlings that emerged from soil. The LD50 for 60 Co gamma irradiation was 120 Gy. Two mutants (few and many) were obtained under the LD50 using the screening methods - differential interference contrast microscope and leaf discs excretion model. Compared with the wild type, few and many had mutation in salt gland development, and many showed lower salt secretion rate per single salt gland than WT. These mutants would provide insight into the molecular mechanisms of salt gland development and salt secretion and into the development of salt-tolerant crop plants. (author)

  19. In-line monitoring and optimization of powder flow in a simulated continuous process using transmission near infrared spectroscopy.

    Science.gov (United States)

    Alam, Md Anik; Shi, Zhenqi; Drennen, James K; Anderson, Carl A

    2017-06-30

    In-line monitoring of continuous powder flow is an integral part of the continuous manufacturing process of solid oral dosage forms in the pharmaceutical industry. Specifically, monitoring downstream from loss-in-weight (LIW) feeders and/or continuous mixers provides important data about the state of the process. Such measurements support control of the process and thereby enhance product quality. Near Infrared Spectroscopy (NIRS) is a potential PAT tool to monitor the homogeneity of a continuous powder flow stream in pharmaceutical manufacturing. However, the association of analytical results from NIR sampling of the powder stream and the homogeneity (content uniformity) of the resulting tablets provides several challenges; appropriate sampling strategies, adequately robust modeling techniques and poor sensitivities (for low dose APIs) are amongst them. Information from reflectance-based NIRS sampling is limited. The region of the powder bed that is interrogated is confined to the surface where the measurement is made. This potential bias in sampling may, in turn, limit the ability to predict the homogeneity of the finished dosage form. Further, changes to the processing parameters (e.g., rate of powder flow) often have a significant effect on the resulting data. Sample representation, interdependence between process parameters and their effects on powder flow behavior are critical factors for NIRS monitoring of continuous powder flow system. A transmission NIR method was developed as an alternative technique to monitor continuous powder flow and quantify API in the powder stream. Transmission NIRS was used to determine the thickness of the powder stream flowing from a loss-in-weight feeder. The thickness measurement of the powder stream provided an in-depth understanding about the effects of process parameters such as tube angles and powder flow rates on powder flow behaviors. This knowledge based approach helped to define an analytical design space that was

  20. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    International Nuclear Information System (INIS)

    Lazariev, A; Graveron-Demilly, D; Allouche, A-R; Aubert-Frécon, M; Fauvelle, F; Piotto, M; Elbayed, K; Namer, I-J; Van Ormondt, D

    2011-01-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1 H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed

  1. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    Science.gov (United States)

    Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.

    2011-11-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.

  2. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    Directory of Open Access Journals (Sweden)

    Y. W. Sun

    2013-08-01

    Full Text Available In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  3. $\\gamma$ and fast-timing spectroscopy of the doubly magic $^{132}$Sn and its one- and two-neutron particle/hole neighbours

    CERN Multimedia

    We propose to use fast-timing and spectroscopy to study five nuclei including the doubly magic $^{132}$Sn and its four neighbours: two-neutron hole $^{130}$Sn, one-neutron hole $^{131}$Sn, one-neutron particle $^{133}$Sn and two-neutron particle $^{134}$Sn. There is an increasing interest in these nuclei since they serve to test nuclear models using state-of-the-art interactions and many body approaches, and they provide information relevant to deduce single particle states. In addition properties of these nuclei are very important to model the astrophysical $\\textit{r-process}$. The present ISOLDE facility provides unique capabilities to study these Sn nuclei populated in the $\\beta$-decay of In isomers, produced from a UCx target unit equipped with neutron converter and ionized with RILIS, capable of selective isomer ionization. The increased production yields for $^{132}$In are estimated to be 200 larger than in the previous work done at OSIRIS. We will use the recently commissioned Isolde Decay Station (I...

  4. Dynamic gamma knife radiosurgery

    International Nuclear Information System (INIS)

    Luan Shuang; Swanson, Nathan; Chen Zhe; Ma Lijun

    2009-01-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C(TM) and Perfexion(TM) units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and

  5. Dynamic gamma knife radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Luan Shuang; Swanson, Nathan; Chen Zhe [Department of Computer Science, University of New Mexico, Albuquerque, NM 87131 (United States); Ma Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143 (United States)], E-mail: sluan@cs.unm.edu, E-mail: nate@cs.unm.edu, E-mail: zchen@cs.unm.edu, E-mail: lijunma@radonc.ucsf.edu

    2009-03-21

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C(TM) and Perfexion(TM) units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can

  6. A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203

    International Nuclear Information System (INIS)

    Watson, D.; French, J.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Castro Cerón, J. M.; Christensen, L.; O'Halloran, B.; Michałowski, M.; Gordon, K. D.; Covino, S.; Reinfrank, R. F.

    2011-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG 031203. It is one of the nearest GRB hosts at z = 0.1055, allowing both low- and high-resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS). Medium-resolution UV to K-band spectroscopy with the X-shooter spectrograph on the Very Large Telescope is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and submillimeter observations. These data allow us to construct a UV to radio spectral energy distribution with almost complete spectroscopic coverage from 0.3 to 35 μm of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionization fine structure line emission indicative of a hard radiation field in the galaxy—in particular the [S IV]/[S III] and [Ne III]/[Ne II] ratios—suggestive of strong ongoing star formation and a very young stellar population. The absence of any polycyclic aromatic hydrocarbon emission supports these conclusions, as does the probable hot peak dust temperature, making HG 031203 similar to the prototypical blue compact dwarf galaxy (BCD), II Zw 40. The selection of HG 031203 via the presence of a GRB suggests that it might be a useful analog of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogs of star formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z ∼ 7 and z ∼ 8 galaxies in this context. The nebular line emission is so strong in HG 031203 that at z ∼ 7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 μm fluxes without the need to invoke a 4000 Å break. Indeed, photometry of HG 031203 shows elevation of the broadband V

  7. Use of gamma ray spectroscopy measurements for assessment of the average effective dose from the analysis of 226Ra, 232Th and 40K in soil samples

    International Nuclear Information System (INIS)

    Mehra, Rohit; Singh, Surinder

    2008-01-01

    The activity concentrations of soil samples collected from different locations of Ludhiana and Patiala districts of Punjab were determined by using HPGe detector based on high-resolution gamma spectrometry system. The range of activity concentrations of 226 Ra, 232 Th and 40 K in the soil from the studied areas varies from 23.32 Bq kg -1 to 43.64 Bq kg -1 , 104.23 Bq kg -1 to 148.21 Bq kg -1 and 289.83 Bq kg -1 to 394.41 Bq kg -1 with overall mean values of 32 Bq kg -1 , 126 Bq kg -1 and 348 Bq kg -1 respectively. The absorbed dose rate calculated from activity concentration of 226 Ra, 232 Th and 40 K ranges between 10.75 and 20.12, 64.93 and 92.33, and 11.99 and 16.32 n Gy h -1 , respectively. The total absorbed dose in the study area ranges from 91.35 n Gy h -1 to 119.76 n Gy h -1 with an average value of 107.97 n Gy h -1 . The calculated values of external hazard index (H ex ) for the soil samples of the study area range from 0.55 to 0.72. Since these values are lower than unity, therefore, according to the Radiation Protection 112 (European Commission, 1999) report, soil from these regions is safe and can be used as a construction material without posing any significant radiological threat to population. The concentration of 232 Th in soil samples of Malwa region of Punjab are higher than the world figures reported in UNSCEAR (2000). However, the concentrations for 226 Ra is very much comparable and concentration of 40 K are lower than world figures. The results obtained have shown that the indoor and outdoor effective dose due to natural radioactivity of soil samples is lower than the average national and world recommended value of 1.0 mSv.Y -1 . These values reported for radium content in soils of study area are generally low as compared to the values reported for radium concentration in soils of Himachal Pradesh. (author)

  8. Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Lazic, Violeta; Jovicevic, Sonja; Fantoni, Roberta; Colao, Francesco

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) measurements were performed on bulk water solutions by applying a double-pulse excitation from a Q-Switched (QS) Nd:YAG laser emitting at 1064 nm. In order to optimize the LIBS signal, laser pulse energies were varied through changing of the QS trigger delays with respect to the flash-lamp trigger. We had noted that reduction of the first pulse energy from 92 mJ to 72 mJ drastically improves the signal, although the second pulse energy was also lowered from 214 mJ to 144 mJ. With lower pulse energies, limit of detection (LOD) for Mg in pure water was reduced for one order of magnitude (34 ppb instead of 210 ppb). In order to explain such a phenomenon, we studied the dynamics of the gas bubble generated after the first laser pulse through measurements of the HeNe laser light scattered on the bubble. The influence of laser energy on underwater bubble and plasma formation and corresponding plasma emission intensity were also studied by photographic technique. From the results obtained, we conclude that the optimal first pulse energy should be kept close to the plasma elongation threshold, in our case about 65 mJ, where the gas bubble has its maximum lateral expansion and the secondary plasma is still well-localized. The importance of a multi-pulse sequence on the LIBS signal was also analyzed, where the pulse sequence after the first QS aperture was produced by operating the laser close to the lasing threshold, with the consequent generation of relaxation oscillations. Low-energy multi-pulses might keep the bubble expansion large prior to the probing pulse, but preventing the formation of secondary weak plasmas in multiple sites, which reduces the LIBS signal. The short interval between the pre-pulses and the probing pulse is another reason for the observed LIBS signal enhancement

  9. Method using in vivo quantitative spectroscopy to guide design and optimization of low-cost, compact clinical imaging devices: emulation and evaluation of multispectral imaging systems

    Science.gov (United States)

    Saager, Rolf B.; Baldado, Melissa L.; Rowland, Rebecca A.; Kelly, Kristen M.; Durkin, Anthony J.

    2018-04-01

    With recent proliferation in compact and/or low-cost clinical multispectral imaging approaches and commercially available components, questions remain whether they adequately capture the requisite spectral content of their applications. We present a method to emulate the spectral range and resolution of a variety of multispectral imagers, based on in-vivo data acquired from spatial frequency domain spectroscopy (SFDS). This approach simulates spectral responses over 400 to 1100 nm. Comparing emulated data with full SFDS spectra of in-vivo tissue affords the opportunity to evaluate whether the sparse spectral content of these imagers can (1) account for all sources of optical contrast present (completeness) and (2) robustly separate and quantify sources of optical contrast (crosstalk). We validate the approach over a range of tissue-simulating phantoms, comparing the SFDS-based emulated spectra against measurements from an independently characterized multispectral imager. Emulated results match the imager across all phantoms (<3 % absorption, <1 % reduced scattering). In-vivo test cases (burn wounds and photoaging) illustrate how SFDS can be used to evaluate different multispectral imagers. This approach provides an in-vivo measurement method to evaluate the performance of multispectral imagers specific to their targeted clinical applications and can assist in the design and optimization of new spectral imaging devices.

  10. gamma-Glutamyl dipeptides in Petiveria alliacea.

    Science.gov (United States)

    Kubec, Roman; Musah, Rabi A

    2005-10-01

    Three gamma-glutamyl dipeptides have been isolated from Petiveria alliacea L. roots. These dipeptides include (S(C2)R(C7))-gamma-glutamyl-S-benzylcysteine together with two diastereomeric sulfoxides, namely (S(C2)R(C7)R(S))- and (S(C2)R(C7)R(S))-gamma-glutamyl-S-benzylcysteine S-oxides (gamma-glutamyl-petiveriins A and B, respectively). Their structures and absolute configurations have been determined by NMR, MALDI-HRMS, IR and CD spectroscopy, and confirmed by comparison with authentic compounds obtained by synthesis.

  11. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  12. Gamma astronomy

    International Nuclear Information System (INIS)

    Cesarsky, C.; Cesarsky, J.P.

    1986-01-01

    This article overviews the gamma astronomy research. Sources already observed, and what causes to give to them; the galactic radiation and its interpretation; techniques already used and current projects [fr

  13. Anthracene as a Non-hygroscopic Diluting Agent for Moessbauer Spectroscopy of Silicate Samples in Moisture-Uptake Studies

    International Nuclear Information System (INIS)

    Hoffman, E. J.; Bickraj, K.; Denalli, C.

    2004-01-01

    Anthracene gained no mass when held in a humid chamber and showed no gamma absorption and so appears to be suitable as a replacement for sugars for dilution of moisture-sensitive 57 Fe-Moessbauer spectroscopy samples. Applied to studies of moisture effects on a circumstellar silicate dust simulant, anthracene permitted preparation of sample series for experimental determination of optimal 57 Fe-Moessbauer areal density.

  14. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  15. Study of the N=28 shell closure by one neutron transfer reaction: astrophysical application and {beta}-{gamma} spectroscopy of neutron rich nuclei around N=32/34 and N=40; Etude de la fermeture de couche N=28 autour du noyau {sub 18}{sup 46}Ar{sub 28} par reaction de transfert d'un neutron: application a l'astrophysique et Spectroscopie {beta}-{gamma} de noyaux riches en neutrons de N=32/34 et N=40

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L

    2005-09-15

    The study of the N=28 shell closure has been presented as well as its astrophysical implications. Moreover the structure of neutron rich nuclei around N=32/34 and 40 was studied. The N=28 shell closure has been studied trough the one neutron transfer reaction on {sup 44,46}Ar nuclei. Excitation energies of states in {sup 45,47}Ar nuclei have been obtained, as well as their angular momenta and spectroscopic factors. These results were used to show that N=28 is still a good magic number in the argon isotopic chain. We interpreted the evolution of the spin-orbit partner gaps in terms of the tensor monopolar proton-neutron interaction. Thanks to this latter, we showed it is not necessary to summon up a reduction of the intensity of the spin-orbit force in order to explain this evolution in N=29 isotopes from calcium to argon chains. The neutron capture rates on {sup 44,46}Ar have been determined thanks to the results of the transfer reaction. Their influence on the nucleosynthesis of {sup 46,48}Ca was studied. We proposed stellar conditions to account for the abnormal isotopic ratio observed in the Allende meteorite concerning {sup 46,48}Ca isotopes. The beta decay and gamma spectroscopy of neutron rich nuclei in the scandium to cobalt region has been studied. We showed that beta decay process is dominated by the {nu}f{sub 5/2} {yields} {pi}f{sub 7/2} Gamow-Teller transition. Moreover, we demonstrated that the {nu}g{sub 9/2} hinders this process in the studied nuclei, and influences their structure, by implying the existence of isomers. Our results show that N=34 is not a magic number in the titanium chain and the superior ones. (author)

  16. Investigation of local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds using perturbed angular correlation gamma-gamma spectroscopy; Investigacao do magnetismo local em compostos intermetalicos do tipo RZn (R = Ce, Gd, Tb, Dy) e GdCu pela espectroscopia de correlacao angular gama-gama perturbada

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Brianna Bosch dos

    2010-07-01

    This work presents, from a microscopic point of view, a systematic study of the local magnetism in RZn (R = Ce, Gd, Tb, Dy) and GdCu intermetallic compounds through measurements of hyperfine interactions using the Perturbed Angular Correlation Gamma- Gamma Spectroscopy technique with {sup 111}In {yields} {sup 111}Cd and {sup 140}La {yields} {sup 140}Ce as probe nuclei. As the magnetism in these compounds originates from the 4f electrons of the rare-earth elements it is interesting to observe in a systematic study of RZn compounds the behavior of the magnetic hyperfine field with the variation of the number of 4f electrons in the R element. The use of probe nuclei {sup 140}La {yields} {sup 140}Ce is interesting because Ce{sup +3} ion posses one 4f electron which may contribute to the total hyperfine field, and the results showed anomalous behavior. The results for {sup 111}Cd probe showed that the temperature dependence of the magnetic hyperfine field follows the Brillouin function, and the magnetic hyperfine field decreases linearly with increase of the atomic number of rare earth when plotted as a function of the rare-earth J spin projection, showing that the main contribution to the magnetic hyperfine field in RZn compounds comes from the polarization of the conduction electrons. The results for the electric field gradient measured with {sup 111}Cd for all compounds showed a strong decrease with the atomic number of the rare-earth element. We have therefore assumed that the major contribution to the electric field gradient originates from the 4f electrons of the rare-earths. The measurements of the electric field gradient for GdCu with {sup 111}Cd, after temperature decreases and increases again showed that two different structures, CsCl-type cubic and FeB-type orthorhombic structures co-exist. Finally, it is the first time that measurements of hyperfine parameters have been carried out with theses two probe nuclei in the studied RZn. (author)

  17. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  18. Optimizing a method for detection of hepatitis A virus in shellfish and study the effect of gamma radiation on the viral genome

    International Nuclear Information System (INIS)

    Amri, Islem

    2008-01-01

    Our work was aimed at detecting the hepatitis A virus (HAV) in bivalve mollusc collected from five shellfish harvesting areas and from a coastal region in Tunisia using RT-Nested-PCR and studying the effect of gamma radiation on HAV genome. Two methods used to recover HAV from mollusc flesh and two methods of extraction of virus RNA were compared in order to determine the most sensitive method. Glycine extraction and extraction of virus RNA using proteinase K were more convenient and then used in this study for detection of HAV in shellfish. The results of molecular analyses: RT-Nested-PCR using primers targeted at the P1 region revealed that 28 % of the samples were positive for HAV. Doses of gamma irradiation ranging between 5 to 30 kGy were used to study the effect of this radiation on HAV genome after the contamination of mollusc flesh with suspension of HAV (derived from stool specimens). HAV specific genomic band was observed for doses between 5 to 20 kGy. We didn't detect HAV genome with doses 25 and 30 kGy. (Author)

  19. Gamma camera

    International Nuclear Information System (INIS)

    Berninger, W.H.

    1975-01-01

    The light pulse output of a scintillator, on which incident collimated gamma rays impinge, is detected by an array of photoelectric tubes each having a convexly curved photocathode disposed in close proximity to the scintillator. Electronic circuitry connected to outputs of the phototubes develops the scintillation event position coordinate electrical signals with goo