WorldWideScience

Sample records for gamma receptor promotes

  1. GQ-16, a Novel Peroxisome Proliferator-activated Receptor gamma (PPAR gamma) Ligand, Promotes Insulin Sensitization without Weight Gain

    NARCIS (Netherlands)

    Amato, Angelica A.; Rajagopalan, Senapathy; Lin, Jean Z.; Carvalho, Bruno M.; Figueira, Ana C. M.; Lu, Jenny; Ayers, Stephen D.; Mottin, Melina; Silveira, Rodrigo L.; Telles de Souza, Paulo; Mourao, Rosa H. V.; Saad, Mario J. A.; Togashi, Marie; Simeoni, Luiz A.; Abdalla, Dulcineia S. P.; Skaf, Munir S.; Polikparpov, Igor; Lima, Maria C. A.; Galdino, Suely L.; Brennan, Richard G.; Baxter, John D.; Pitta, Ivan R.; Webb, Paul; Phillips, Kevin J.; Neves, Francisco A. R.

    2012-01-01

    The recent discovery that peroxisome proliferator-activated receptor gamma (PPAR gamma) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report

  2. Novel variants in the putative peroxisome proliferator-activated receptor {gamma} promoter and relationships with obesity in men

    DEFF Research Database (Denmark)

    Larsen, Thomas M; Larsen, Lesli H; Torekov, Signe K

    2005-01-01

    Yet unidentified variants within the peroxisome proliferator-activated receptor gamma (PPARgamma) 2 promoter may explain the inconsistent reports on associations between variants in the coding region and obesity or diabetes. Thus, we examined the putative PPARgamma2 promoter (-3371 to +43 bp......) for variants in 83 subjects with obesity or type 2 diabetes. We identified eight variants, seven of which were novel, including -792A>G, -816C>T, -882T>C, -1505G>A, -1881C>T, -1884T>A, -2604T>C, and -2953A>G. The variants -816C>T, -1505G>A, -1881C>T, and -2604T>C were in total linkage disequilibrium...... nonobese men with a BMI of 21.7+/-2.5 kg/m2, who were also reexamined after approximately 29 years. The prevalence of the identified variants was not significantly different between the two groups, and the variants did not affect changes in BMI over time. In conclusion, the identified novel variants...

  3. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng; Chen, Yi; Ji, Ning; Lin, Yunfeng; Yuan, Quan; Ye, Ling; Chen, Qianming, E-mail: qmchen@scu.edu.cn

    2015-02-27

    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.

  4. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    Science.gov (United States)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  5. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1

    DEFF Research Database (Denmark)

    Argetsinger, L S; Hsu, G W; Myers, M G

    1995-01-01

    The identification of JAK2 as a growth hormone (GH) receptor-associated, GH-activated tyrosine kinase has established tyrosyl phosphorylation as a signaling mechanism for GH. In the present study, GH is shown to stimulate tyrosyl phosphorylation of insulin receptor substrate 1 (IRS-1), the princi...... characterized insulin-like metabolic effects of GH observed in a variety of cell types....

  6. Epidermis-type lipoxygenase 3 regulates adipocyte differentiation and peroxisome proliferator-activated receptor gamma activity

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Jørgensen, Claus; Petersen, Rasmus K

    2010-01-01

    The nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) is essential for adipogenesis. Although several fatty acids and their derivatives are known to bind and activate PPAR gamma, the nature of the endogenous ligand(s) promoting the early stages of adipocyte differenti...

  7. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien

    2006-01-01

    Positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of RNA polymerase II, facilitating transcriptional elongation. In addition to its participation in general transcription, P-TEFb is recruited to specific promoters by some transcription factors such as c-Myc...

  8. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation

    DEFF Research Database (Denmark)

    Fontaine, Coralie; Dubois, Guillaume; Duguay, Yannick

    2003-01-01

    Rev-Erbalpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-Erbalpha mRNA is induced during adipocyte differentiation of 3T3-L1 cells, and its expression is abundant in rat adipose tissue. Peroxisome proliferator-activated receptor gam...

  9. Fc receptor gamma subunit polymorphisms and systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Al-Ansari, Aliya; Ollier, W.E.; Gonzalez-Gay, Miguel A.; Gul, Ahmet; Inanac, Murat; Ordi, Jose; Teh, Lee-Suan; Hajeer, Ali H.

    2004-01-01

    To investigate the possible association between Fc receptor gamma polymorphisms and systemic lupus erythematosus (SLE). We have investigated the full FcR gamma gene for polymorphisms using polymerase chain reaction (PCR)-single strand confirmational polymorphisms and DNA sequencing .The polymorphisms identified were genotype using PCR-restriction fragment length polymorphism. Systemic lupus erythematosus cases and controls were available from 3 ethnic groups: Turkish, Spanish and Caucasian. The study was conducted in the year 2001 at the Arthritis Research Campaign, Epidemiology Unit, Manchester University Medical School, Manchester, United Kingdom. Five single nucleotide polymorphisms were identified, 2 in the promoter, one in intron 4 and, 2 in the 3'UTR. Four of the 5 single nucleotide polymorphisms (SNPs) were relatively common and investigated in the 3 populations. Allele and genotype frequencies of all 4 investigated SNPs were not statistically different cases and controls. fc receptor gamma gene does not appear to contribute to SLE susceptibility. The identified polymorphisms may be useful in investigating other diseases where receptors containing the FcR gamma subunit contribute to the pathology. (author)

  10. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong (Pitt); (Xiamen)

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  11. Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-gamma.

    Science.gov (United States)

    Handschuh, Karen; Guibourdenche, Jean; Tsatsaris, Vassilis; Guesnon, Mickaël; Laurendeau, Ingrid; Evain-Brion, Danièle; Fournier, Thierry

    2007-10-01

    A critical step in the establishment of human pregnancy is the invasion of the uterus wall by extravillous cytotrophoblasts (EVCTs) during the first trimester. It is well established that human chorionic gonadotropin hormone (hCG) is secreted by the endocrine syncytiotrophoblast (ST) into the maternal compartment. We recently reported that invasive EVCTs also produce hCG, suggesting an autocrine role in the modulation of trophoblast invasion. Here we analyzed the role of hCG secreted in vitro by primary cultures of invasive EVCT and noninvasive ST. We first demonstrated that LH/CG receptor was present in EVCTs in situ and in vitro as well as in an EVCT cell line (HIPEC65). We next showed that hCG secreted by EVCTs stimulated progesterone secretion by MA10 cells in a concentration-dependent manner. Incubation of HIPEC65 with EVCT supernatants induced a 10-fold increase in cell invasion, whereas ST supernatants had no effect. This stimulating effect was strongly decreased when hCG was depleted from EVCT supernatants containing a large amount of the hyperglycosylated form of hCG, which is almost undetectable in ST supernatants. Finally, we investigated the regulation of hCG expression by peroxisome proliferator-activated receptor (PPAR)-gamma, a nuclear receptor shown to inhibit trophoblast invasion. Activation of PPARgamma decreased alpha- and beta-subunit transcript levels and total hCG secretion in primary EVCTs. Our results offer the first evidence that hCG secreted by the invasive trophoblast, likely the hyperglycosylated form of hCG, but not by the syncytiotrophoblast, promotes trophoblast invasion and may be a PPARgamma target gene in trophoblast invasion process.

  12. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  13. FC-Gamma Receptor-Targeted Immunization for Breast Cancer

    National Research Council Canada - National Science Library

    Weiner, Louis

    2001-01-01

    ... to protection against such tumors. This hypothesis of Fc-gamma receptor-targeted immunization is being tested through the construction of fusion proteins containing a fragment of the extracellular domain of the HER2/neu antigen...

  14. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma.

    Science.gov (United States)

    Yang, Xuexian O; Pappu, Bhanu P; Nurieva, Roza; Akimzhanov, Askar; Kang, Hong Soon; Chung, Yeonseok; Ma, Li; Shah, Bhavin; Panopoulos, Athanasia D; Schluns, Kimberly S; Watowich, Stephanie S; Tian, Qiang; Jetten, Anton M; Dong, Chen

    2008-01-01

    T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.

  15. A third human retinoic acid receptor, hRAR-. gamma

    Energy Technology Data Exchange (ETDEWEB)

    Krust, A.; Kastner, Ph.; Petkovich, M.; Zelent, A.; Chambon, P. (Laboratoire de Genetique Moleculaire des Eucaryotes du Centre National de la Recherche Scientifique, Strasbourg (France))

    1989-07-01

    Retinoic acid receptors (RARs) are retinoic acid (RA)-inducible enhancer factors belonging to the superfamily of steroid/thyroid nuclear receptors. The authors have previously characterized two human RAR (hRAR-{alpha} and hRAR-{beta}) cDNAs and have recently cloned their murine cognates (mRAR-{alpha} and mRAR-{beta}) together with a third RAR (mRAR-{gamma}) whose RNA was detected predominantly in skin, a well-known target for RA. mRAR-{gamma} cDNA was used here to clone its human counterpart (hRAR-{gamma}) from a T47D breast cancer cell cDNA library. Using a transient transfection assay in HeLa cells and a reporter gene harboring a synthetic RA responsive element, they demonstrate that hRAR-{gamma} cDNA indeed encodes a RA-inducible transcriptional trans-activator. Interestingly, comparisons of the amino acid sequences of all six human and mouse RARs indicate that the interspecies conservation of a given member of the RAR subfamily (either {alpha}, {beta}, or {gamma}) is much higher than the conservation of all three receptors within a given species. These observations indicate that RAR-{alpha}, -{beta}, and -{gamma} may perform specific functions. They show also that hRAR-{gamma} RNA is the predominant RAR RNA species in human skin, which suggests that hRAR-{gamma} mediates some of the retinoid effects in this tissue.

  16. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  17. The peroxisome proliferators-ativated receptor gamma (PPARG ...

    African Journals Online (AJOL)

    Peroxisome proliferators-activated receptor gamma (PPARG) is an important regulator in the regulation of adipose differentiation and development. The mutations of the PPARG in human had been shown to be associated with type II diabetes, fat distribution and body weight. The functional importance of the PPARG makes ...

  18. Role of CD3 gamma in T cell receptor assembly

    DEFF Research Database (Denmark)

    Dietrich, J; Neisig, A; Hou, X

    1996-01-01

    The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC......), transmembrane (TM), and cytoplasmic (CY) domain of CD3 gamma in assembly and cell surface expression of the complete TCR in human T cells. A computer model indicated that the EC domain of CD3 gamma folds as an Ig domain. Based on this model and on alignment studies, two potential interaction sites were....... In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta...

  19. A novel member of the interferon receptor family complements functionality of the murine interferon gamma receptor in human cells.

    Science.gov (United States)

    Hemmi, S; Böhni, R; Stark, G; Di Marco, F; Aguet, M

    1994-03-11

    Expression of the human interferon gamma receptor (IFN-gamma R) in mouse cells is not sufficient to confer biological responsiveness to human IFN-gamma and vice versa. An additional species-specific component is required for signal transduction. We identified this cofactor by expression cloning in simian COS cells stably transfected with the nonfunctional murine IFN-gamma R and a IFN-gamma-inducible reporter construct encoding the human Tac antigen (interleukin-2 receptor alpha chain, CD25). A cDNA clone was obtained that, upon stable transfection, rendered human HEp-2 cells expressing the murine IFN-gamma R fully responsive to murine IFN-gamma. This cDNA encodes a novel 332 amino acid type I transmembrane protein that belongs to the IFN receptor family and that we designate IFN-gamma R beta chain.

  20. Crystal structure of human interferon-gamma receptor 2 reveals the structural basis for receptor specificity

    Czech Academy of Sciences Publication Activity Database

    Mikulecký, Pavel; Zahradník, Jiří; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-01-01

    Roč. 72, č. 9 (2016), s. 1017-1025 ISSN 2059-7983 R&D Projects: GA ČR(CZ) GA16-20507S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : interferon-gamma receptor 2 * fibronectin type III domain * class 2 cytokine receptors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.114, year: 2016

  1. Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance

    OpenAIRE

    Brenachot, Xavier; Ramadori, Giorgio; Ioris, Rafael M.; Veyrat-Durebex, Christelle; Altirriba, Jordi; Aras, Ebru; Ljubicic, Sanda; Kohno, Daisuke; Fabbiano, Salvatore; Clement, Sophie; Goossens, Nicolas; Trajkovski, Mirko; Harroch, Sheila; Negro, Francesco; Coppari, Roberto

    2017-01-01

    Obesity-induced inflammation engenders insulin resistance and type 2 diabetes mellitus (T2DM) but the inflammatory effectors linking obesity to insulin resistance are incompletely understood. Here, we show that hepatic expression of Protein Tyrosine Phosphatase Receptor Gamma (PTPR-γ) is stimulated by inflammation in obese/T2DM mice and positively correlates with indices of inflammation and insulin resistance in humans. NF-κB binds to the promoter of Ptprg and is required for inflammation-ind...

  2. The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene.

    Science.gov (United States)

    Barbier, Olivier; Villeneuve, Lyne; Bocher, Virginie; Fontaine, Coralie; Torra, Ines Pineda; Duhem, Christian; Kosykh, Vladimir; Fruchart, Jean-Charles; Guillemette, Chantal; Staels, Bart

    2003-04-18

    Peroxisome proliferator-activated receptor (PPAR) alpha and gamma are ligand-activated transcription factors belonging to the nuclear receptor family. PPAR alpha mediates the hypolipidemic action of the fibrates, whereas PPAR gamma is a receptor for the antidiabetic glitazones. In the present study, the UDP-glucuronosyltransferase (UGT) 1A9 enzyme is identified as a PPAR alpha and PPAR gamma target gene. UGTs catalyze the glucuronidation reaction, which is a major pathway in the catabolism and elimination of numerous endo- and xenobiotics. Among the UGT1A family enzymes, UGT1A9 metabolizes endogenous compounds, including catecholestrogens, and xenobiotics, such as fibrates and to a lesser extent troglitazone. Treatment of human hepatocytes and macrophages and murine adipocytes with activators of PPAR alpha or PPAR gamma resulted in an enhanced UGT1A9 expression and activity. In addition, disruption of the PPAR alpha gene in mice completely abolished the PPAR alpha agonist-induced UGT1A9 mRNA and activity levels. A PPAR response element was identified in the promoter of UGT1A9 at positions -719 to -706 bp by transient transfection and electromobility shift assays. Considering the role of UGT1A9 in catecholestrogen metabolism, PPAR alpha and PPAR gamma activation may contribute to the protection against genotoxic catecholestrogens by stimulating their inactivation in glucuronide derivatives. Furthermore, since UGT1A9 is involved in the catabolism of fibrates, these results suggest that PPAR alpha and PPAR gamma may control the intracellular level of active fibrates.

  3. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma.

    Science.gov (United States)

    Herzig, Stephan; Hedrick, Susan; Morantte, Ianessa; Koo, Seung-Hoi; Galimi, Francesco; Montminy, Marc

    2003-11-13

    Fasting triggers a series of hormonal cues that promote energy balance by inducing glucose output and lipid breakdown in the liver. In response to pancreatic glucagon and adrenal cortisol, the cAMP-responsive transcription factor CREB activates gluconeogenic and fatty acid oxidation programmes by stimulating expression of the nuclear hormone receptor coactivator PGC-1 (refs 2-5). In parallel, fasting also suppresses lipid storage and synthesis (lipogenic) pathways, but the underlying mechanism is unknown. Here we show that mice deficient in CREB activity have a fatty liver phenotype and display elevated expression of the nuclear hormone receptor PPAR-gamma, a key regulator of lipogenic genes. CREB inhibits hepatic PPAR-gamma expression in the fasted state by stimulating the expression of the Hairy Enhancer of Split (HES-1) gene, a transcriptional repressor that is shown here to be a mediator of fasting lipid metabolism in vivo. The coordinate induction of PGC-1 and repression of PPAR-gamma by CREB during fasting provides a molecular rationale for the antagonism between insulin and counter-regulatory hormones, and indicates a potential role for CREB antagonists as therapeutic agents in enhancing insulin sensitivity in the liver.

  4. T-cell receptor gamma delta bearing cells in normal human skin

    NARCIS (Netherlands)

    Bos, J. D.; Teunissen, M. B.; Cairo, I.; Krieg, S. R.; Kapsenberg, M. L.; Das, P. K.; Borst, J.

    1990-01-01

    T-cell antigen receptors (TCR) are divided into common alpha beta and less common gamma delta types. In the murine skin, TCR gamma delta+ cells have been reported to form the great majority of epidermal T lymphocytes. We have examined the relative contribution of TCR alpha beta+ and TCR gamma delta+

  5. 24-Methylenecycloartanyl ferulate, a major compound of γ-oryzanol, promotes parvin-beta expression through an interaction with peroxisome proliferator-activated receptor-gamma 2 in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Woong; Lim, Eun Joung; Jang, Hwan Hee [Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Department Administration, Wanju-gun, Jeollabuk-do 565-851 (Korea, Republic of); Cui, XueLei [Research Institute of Medical Science, KonKuk University, School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kang, Da Rae [Department of Infection & Immunology, School of Medicine, KonKuk University 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Sung Hyen; Kim, Haeng Ran; Choe, Jeong Sook [Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Department Administration, Wanju-gun, Jeollabuk-do 565-851 (Korea, Republic of); Yang, Young Mok [Department of Pathology, School of Medicine and Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Jung Bong, E-mail: jungbkim@korea.kr [Department of Agro-Food Resources, National Academy of Agricultural Science, Rural Department Administration, Wanju-gun, Jeollabuk-do 565-851 (Korea, Republic of); Park, Jong Hwan, E-mail: nihpark@yahoo.com [Research Institute of Medical Science, KonKuk University, School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-12-25

    Parvin-β is an adaptor protein that binds to integrin-linked kinase (ILK) and is significantly downregulated in breast tumors and breast cancer cell lines. We treated the breast cancer cell line MCF7 with 24-methylenecycloartanyl ferulate (24-MCF), a γ-oryzanol compound. We observed upregulation of parvin-β (GenBank Accession No. (AF237769)) and peroxisome proliferator-activated receptor (PPAR)-γ2 (GenBank Accession No. (NM-015869)). Among γ-oryzanol compounds, only treatment with 24-MCF led to the formation of reverse transcription-PCR products of parvin-β (650 and 500 bp) and PPAR-γ2 (580 bp) in MCF7 cells, but not in T47D, SK-BR-3, or MDA-MB-231 cells. 24-MCF treatment increased the mRNA and protein levels of parvin-β in MCF7 cells in a dose-dependent manner. We hypothesized that there is a correlation between parvin-β expression and induction of PPAR-γ2. This hypothesis was investigated by using a promoter-reporter assay, chromatin immunoprecipitation, and an electrophoretic mobility shift assay. 24-MCF treatment induced binding of PPAR-γ2 to a peroxisome proliferator response element-like cis-element (ACTAGGACAAAGGACA) in the parvin-β promoter in MCF7 cells in a dose-dependent manner. 24-MCF treatment significantly decreased anchorage-independent growth and inhibited cell movement in comparison to control treatment with dimethyl sulfoxide. 24-MCF treatment reduced the levels of GTP-bound Rac1 and Cdc42. Evaluation of Akt1 inhibition by 24-MCF revealed that the half maximal effective concentration was 33.3 μM. Docking evaluations revealed that 24-MCF binds to the ATP-binding site of Akt1(PDB ID: (3OCB)) and the compound binding energy is -8.870 kcal/mol. Taken together, our results indicate that 24-MCF treatment increases parvin-β expression, which may inhibit ILK downstream signaling. - Highlights: • Treatment with 24-MCF increases gene expression of parvin-β and PPAR-ϒ2 in MCF7 cells. • PPAR-ϒ2 interacts with the parvin-β gene via

  6. 24-Methylenecycloartanyl ferulate, a major compound of γ-oryzanol, promotes parvin-beta expression through an interaction with peroxisome proliferator-activated receptor-gamma 2 in human breast cancer cells

    International Nuclear Information System (INIS)

    Kim, Heon Woong; Lim, Eun Joung; Jang, Hwan Hee; Cui, XueLei; Kang, Da Rae; Lee, Sung Hyen; Kim, Haeng Ran; Choe, Jeong Sook; Yang, Young Mok; Kim, Jung Bong; Park, Jong Hwan

    2015-01-01

    Parvin-β is an adaptor protein that binds to integrin-linked kinase (ILK) and is significantly downregulated in breast tumors and breast cancer cell lines. We treated the breast cancer cell line MCF7 with 24-methylenecycloartanyl ferulate (24-MCF), a γ-oryzanol compound. We observed upregulation of parvin-β (GenBank Accession No. (AF237769)) and peroxisome proliferator-activated receptor (PPAR)-γ2 (GenBank Accession No. (NM_015869)). Among γ-oryzanol compounds, only treatment with 24-MCF led to the formation of reverse transcription-PCR products of parvin-β (650 and 500 bp) and PPAR-γ2 (580 bp) in MCF7 cells, but not in T47D, SK-BR-3, or MDA-MB-231 cells. 24-MCF treatment increased the mRNA and protein levels of parvin-β in MCF7 cells in a dose-dependent manner. We hypothesized that there is a correlation between parvin-β expression and induction of PPAR-γ2. This hypothesis was investigated by using a promoter-reporter assay, chromatin immunoprecipitation, and an electrophoretic mobility shift assay. 24-MCF treatment induced binding of PPAR-γ2 to a peroxisome proliferator response element-like cis-element (ACTAGGACAAAGGACA) in the parvin-β promoter in MCF7 cells in a dose-dependent manner. 24-MCF treatment significantly decreased anchorage-independent growth and inhibited cell movement in comparison to control treatment with dimethyl sulfoxide. 24-MCF treatment reduced the levels of GTP-bound Rac1 and Cdc42. Evaluation of Akt1 inhibition by 24-MCF revealed that the half maximal effective concentration was 33.3 μM. Docking evaluations revealed that 24-MCF binds to the ATP-binding site of Akt1(PDB ID: (3OCB)) and the compound binding energy is -8.870 kcal/mol. Taken together, our results indicate that 24-MCF treatment increases parvin-β expression, which may inhibit ILK downstream signaling. - Highlights: • Treatment with 24-MCF increases gene expression of parvin-β and PPAR-ϒ2 in MCF7 cells. • PPAR-ϒ2 interacts with the parvin-β gene via

  7. Histamine induces KCNQ channel-dependent gamma oscillations in rat hippocampus via activation of the H1 receptor.

    Science.gov (United States)

    Andersson, Richard; Galter, Dagmar; Papadia, Daniela; Fisahn, André

    2017-05-15

    Histamine is an aminergic neurotransmitter, which regulates wakefulness, arousal and attention in the central nervous system. Histamine receptors have been the target of efforts to develop pro-cognitive drugs to treat disorders such as Alzheimer's disease and schizophrenia. Cognitive functions including attention are closely associated with gamma oscillations, a rhythmical electrical activity pattern in the 30-80 Hz range, which depends on the synchronized activity of excitatory pyramidal cells and inhibitory fast-spiking interneurons. We set out to explore whether histamine has a role in promoting gamma oscillations in the hippocampus. Using in-situ hybridization we demonstrate that histamine receptor subtypes 1, 2 and 3 are expressed in stratum pyramidale of area CA3 in rats. We show that both pyramidal cells and fast-spiking interneurons depolarize and increase action potential firing in response to histamine in vitro. The activation of histamine receptors generates dose-dependent, transient gamma oscillations in area CA3 of the hippocampus - the locus of the gamma rhythm generator. We also demonstrate that this histamine effect is independent of muscarinic receptors. Using specific antagonists we provide evidence that histamine gamma rhythmogenesis specifically depends on the H1 receptor. Histamine also depolarized both pyramidal cells and fast-spiking interneurons and increased membrane resistance in pyramidal cells. The increased membrane resistance is potentially mediated by the inhibition of potassium channels because application of the KCNQ channel opener ICA110381 abolished the oscillations. Taken together our data demonstrate a novel and physiological mechanism for generating gamma oscillations in hippocampus and suggest a role for KCNQ channels in this cognition-relevant brain activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. IFN-gamma increases the hGH gene promoter activity in rat GH3 cells.

    Science.gov (United States)

    Gong, Feng-Ying; Deng, Jie-Ying; Shi, Yi-Fan

    2003-01-01

    To study the effect(s) of interferon gamma (IFN-gamma) on the activity of human growth hormone (hGH) gene promoter in rat pituitary GH3 cells and the molecular mechanism underlying the effect(s). Cell transfection and luciferase reporter gene were used. IFN-gamma (10(2) and 10(3) U/ml) increased the activity of hGH in GH3 cells. The addition of the mitogen-activated protein kinase inhibitor PD98059 (40 micromol/l) to the cells blocked the stimulatory effect of IFN-gamma. Neither overexpression of Pit-1 nor inhibiting Pit-1 expression affected IFN-gamma induction of hGH promoter activity. To identify the DNA sequence that mediated the effect of IFN-gamma, four deletion constructs of hGH gene promoter were created. The stimulatory effect of IFN-gamma was abolished following deletion of the -250 to -132 fragment. IFN-gamma increases the activity of hGH gene promoter in rat pituitary GH3 cells. This stimulatory effect of IFN-gamma appears to require the intracellular mitogen-activated protein kinase-dependent signaling pathway. The effect of IFN-gamma requires the promoter sequence that spans the -250 to -132 fragment of the gene, but is unrelated to Pit-1 protein. Copyright 2003 S. Karger AG, Basel

  9. Treatment with anti-interferon-gamma monoclonal antibodies modifies experimental autoimmune encephalomyelitis in interferon-gamma receptor knockout mice

    DEFF Research Database (Denmark)

    Espejo, C; Penkowa, M; Sáez-Torres, I

    2001-01-01

    antibodies (mAb) on day 8 postimmunization. Clinical scoring and both histological and immunohistochemical studies were undertaken for all groups. We hereby show that treatment with anti-IFN-gamma mAb worsened the disease course of 129Sv wild-type mice. However, it decreased the mean daily score in IFN......-gamma R(-/-) 129Sv and the incidence of the disease down to 50% in C57Bl/6x129Sv IFN-gamma R(-/-) mice. Moreover, after anti-IFN-gamma mAb treatment, oxidative stress levels, metallothionein I and II antioxidant protein expression, and apoptoticneuronal death were increased in wild-type mice while......(-/-)) mouse types: C57Bl/6x129Sv, with a disruption of the IFN-gamma receptor cytoplasmic domain, and 129Sv, homozygous for a disrupted IFN-gamma receptor gene. Mice were immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. A subgroup of mice was treated with anti-IFN-gamma monoclonal...

  10. Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors.

    Science.gov (United States)

    Betterton, Ruth T; Broad, Lisa M; Tsaneva-Atanasova, Krasimira; Mellor, Jack R

    2017-06-01

    Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and suppresses both excitatory and inhibitory synaptic transmission, but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad-spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarisation, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose-dependent manner by acting primarily through muscarinic M1 receptors. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Molecular determinants of desensitization and assembly of the chimeric GABA(A) receptor subunits (alpha1/gamma2) and (gamma2/alpha1) in combinations with beta2 and gamma2

    DEFF Research Database (Denmark)

    Elster, L; Kristiansen, U; Pickering, D S

    2001-01-01

    , as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important...... in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2...

  12. T cell receptor zeta allows stable expression of receptors containing the CD3gamma leucine-based receptor-sorting motif

    DEFF Research Database (Denmark)

    Dietrich, J; Geisler, C

    1998-01-01

    The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently of phosph......The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently...... to mask the CD3gamma leucine-based motif. By studying CD4/CD3gamma and CD16/CD3gamma chimeras, we found that CD16/CD3gamma chimeras associated with TCRzeta. The CD16/CD3gamma-TCRzeta complexes were stably expressed at the cell surface and had a low spontaneous internalization rate, indicating...... that the leucine-based motif in these complexes was inactive. In contrast, the CD4/CD3gamma chimeras did not associate with TCRzeta, and the leucine-based motif in these chimeras was constitutively active resulting in a high spontaneous internalization rate and low expression of the chimeras at the cell surface...

  13. Interferon-Gamma Promotes Infection of Astrocytes by Trypanosoma cruzi

    Science.gov (United States)

    Silva, Rafael Rodrigues; Mariante, Rafael M.; Silva, Andrea Alice; dos Santos, Ana Luiza Barbosa; Roffê, Ester; Santiago, Helton; Gazzinelli, Ricardo Tostes; Lannes-Vieira, Joseli

    2015-01-01

    The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD. PMID:25695249

  14. Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Rafael Rodrigues Silva

    Full Text Available The inflammatory cytokine interferon-gamma (IFNγ is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD. IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO. Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.

  15. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  16. Molecular determinants of desensitization and assembly of the chimeric GABA(A) receptor subunits (alpha1/gamma2) and (gamma2/alpha1) in combinations with beta2 and gamma2

    DEFF Research Database (Denmark)

    Elster, L; Kristiansen, U; Pickering, D S

    2001-01-01

    Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gam...... receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA....

  17. Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction.

    Science.gov (United States)

    Hou, Jingying; Wang, Lingyun; Hou, Jinghui; Guo, Tianzhu; Xing, Yue; Zheng, Shaoxin; Zhou, Changqing; Huang, Hui; Long, Huibao; Zhong, Tingting; Wu, Quanhua; Wang, Jingfeng; Wang, Tong

    2015-12-01

    In this study, we hypothesized that activation of PPAR-γ enhanced MSCs survival and their therapeutic efficacy via upregulating the expression of Cx43. MI was induced in 50 male Sprague-Dawley rats. The rats were randomized into five groups: MI group and four intervention groups, including the MSCs group, combined therapy group (MSCs+ pioglitazone), pioglitazone group and PBS group. Two weeks later, 5 × 10(6) MSCs labeled with PKH26 in PBS were injected into the infarct anterior ventricular free wall in the MSCs and combined therapy groups, and PBS alone was injected into the infarct anterior ventricular free wall in the PBS group. Pioglitazone (3 mg/kg/day) was given to the combined therapy and pioglitazone groups by oral gavage at the same time for another 2 weeks. Myocardial function and relevant signaling molecules involved were all examined thereafter. Heart function was enhanced after MSCs treatment for 2 weeks post MI. A significant improvement of heart function was observed in the combined therapy group in contrast to the other three intervention groups. Compared with the MSCs group, there was a higher level of PPAR-γ in the combined therapy group; Cx43 was remarkably increased in different regions of the left ventricle; TGF-β1 was decreased in the infarct zone and border zone. To the downstream signaling molecules, mothers against Smad proteins including Smad2 and Smad3 presented a synchronized alteration with TGF-β1; no differences of the expressions of ERK1/2 and p38 could be discovered in the left ventricular cardiac tissue. MSCs transplantation combined with pioglitazone administration improved cardiac function more effectively after MI. Activation of PPAR-γ could promote MSCs to express Cx43. Inhibition of TGF-β1/Smads signaling pathway might be involved in the process.

  18. Preassembly and ligand-induced restructuring of the chains of the IFN-gamma receptor complex: the roles of Jak kinases, Stat1 and the receptor chains.

    Science.gov (United States)

    Krause, Christopher D; Lavnikova, Natasha; Xie, Junxia; Mei, Erwen; Mirochnitchenko, Olga V; Jia, Yiwei; Hochstrasser, Robin M; Pestka, Sidney

    2006-01-01

    We previously demonstrated using noninvasive technologies that the interferon-gamma (IFN-gamma) receptor complex is preassembled (1). In this report we determined how the receptor complex is preassembled and how the ligand-mediated conformational changes occur. The interaction of Stat1 with IFN-gammaR1 results in a conformational change localized to IFN-gammaR1. Jak1 but not Jak2 is required for the two chains of the IFN-gamma receptor complex (IFN-gammaR1 and IFN-gammaR2) to interact; however, the presence of both Jak1 and Jak2 is required to see any ligand-dependant conformational change. Two IFN-gammaR2 chains interact through species-specific determinants in their extracellular domains. Finally, these determinants also participate in the interaction of IFN-gammaR2 with IFN-gammaR1. These results agree with a detailed model of the IFN-gamma receptor that requires the receptor chains to be pre-associated constitutively for the receptor to be active.

  19. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    Science.gov (United States)

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  20. Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis.

    Science.gov (United States)

    Lee, Eun-Young; Schultz, Kimberly L W; Griffin, Diane E

    2013-01-01

    Interferon (IFN)-gamma is an important component of the immune response to viral infections that can have a role both in controlling virus replication and inducing inflammatory damage. To determine the role of IFN-gamma in fatal alphavirus encephalitis, we have compared the responses of wild type C57BL/6 (WTB6) mice with mice deficient in either IFN-gamma (GKO) or the alpha-chain of the IFN-gamma receptor (GRKO) after intranasal infection with a neuroadapted strain of sindbis virus. Mortalities of GKO and GRKO mice were similar to WTB6 mice. Both GKO and GRKO mice had delayed virus clearance from the brain and spinal cord, more infiltrating perforin(+) cells and lower levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 mRNAs than WTB6 mice. However, inflammation was more intense in GRKO mice than WTB6 or GKO mice with more infiltrating CD3(+) T cells, greater expression of major histocompatibility complex-II and higher levels of interleukin-17A mRNA. Fibroblasts from GRKO embryos did not develop an antiviral response after treatment with IFN-gamma, but showed increases in TNF-alpha, IL-6, CXCL9 and CXCL10 mRNAs although these increases developed more slowly and were less intense than those of WTB6 fibroblasts. These data indicate that both GKO and GRKO mice fail to develop an IFN-gamma-mediated antiviral response, but differ in regulation of the inflammatory response to infection. Therefore, GKO and GRKO cannot be considered equivalent when assessing the role of IFN-gamma in CNS viral infections.

  1. Beryllium, an adjuvant that promotes gamma interferon production.

    Science.gov (United States)

    Lee, J Y; Atochina, O; King, B; Taylor, L; Elloso, M; Scott, P; Rossman, M D

    2000-07-01

    Beryllium is associated with a human pulmonary granulomatosis characterized by an accumulation of CD4(+) T cells in the lungs and a heightened specific lymphocyte proliferative response to beryllium (Be) with gamma interferon (IFN-gamma) release (i.e., a T helper 1 [Th1] response). While an animal model of Be sensitization is not currently available, Be has exhibited adjuvant effects in animals. The effects of Be on BALB/c mice immunized with soluble leishmanial antigens (SLA) were investigated to determine if Be had adjuvant activity for IFN-gamma production, an indicator of the Th1 response. In this strain of Leishmania-susceptible BALB/c mice, a Th2 response is normally observed after in vivo SLA sensitization and in vitro restimulation with SLA. If interleukin-12 (IL-12) is given during in vivo sensitization with SLA, markedly increased IFN-gamma production and decreased IL-4 production are detected. We show here that when beryllium sulfate (BeSO(4)) was added during in vivo sensitization of BALB/c mice with SLA and IL-12, significantly increased IFN-gamma production and decreased IL-4 production from lymph node and spleen cells were detected upon in vitro SLA restimulation. No specific responses were observed to Be alone. Lymph node and spleen cells from all mice proliferated strongly and comparably upon in vitro restimulation with SLA and with SLA plus Be; no differences were noted among groups of mice that received different immunization regimens. In vivo, when Be was added to SLA and IL-12 for sensitization of BALB/c mice, more effective control of Leishmania infection was achieved. This finding has implications for understanding not only the development of granulomatous reactions but also the potential for developing Be as a vaccine adjuvant.

  2. FC GAMMA RECEPTORS IN RESPIRATORY SYNCYTIAL VIRUS INFECTIONS: IMPLICATIONS FOR INNATE IMMUNITY

    Science.gov (United States)

    Jans, Jop; Vissers, Marloes; Heldens, Jacco G.M.; de Jonge, Marien I.; Levy, Ofer; Ferwerda, Gerben

    2014-01-01

    SUMMARY Respiratory syncytial virus infections are a major burden in infants less than 3 months of age. Newborns and infants express a distinct immune system that is largely dependent on innate immunity and passive immunity from maternal antibodies. Antibodies can regulate immune responses against viruses through interaction with Fc gamma receptors leading to enhancement or neutralization of viral infections. The mechanisms underlying the immunomodulatory effect of Fc gamma receptors on viral infections have yet to be elucidated in infants. Herein, we will discuss current knowledge of the effects of antibodies and Fc gamma receptors on infant innate immunity to RSV. A better understanding of the pathogenesis of RSV infections in young infants may provide insight into novel therapeutic strategies like vaccination. PMID:24227634

  3. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  4. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  5. Whole-exome sequencing reveals a rare interferon gamma receptor 1 mutation associated with myasthenia gravis.

    Science.gov (United States)

    Qi, Guoyan; Liu, Peng; Gu, Shanshan; Yang, Hongxia; Dong, Huimin; Xue, Yinping

    2018-02-13

    Our study is aimed to explore the underlying genetic basis of myasthenia gravis. We collected a Chinese pedigree with myasthenia gravis, and whole-exome sequencing was performed on the two affected siblings and their parents. The candidate pathogenic gene was identified by bioinformatics filtering, which was further verified by Sanger sequencing. The homozygous mutation c.G40A (p.V14M) in interferon gamma receptor 1was identified. Moreover, the mutation was also detected in 3 cases of 44 sporadic myasthenia gravis patients. The p.V14M substitution in interferon gamma receptor 1 may affect the signal peptide function and the translocation on cell membrane, which could disrupt the binding of the ligand of interferon gamma and antibody production, contributing to myasthenia gravis susceptibility. We discovered that a rare variant c.G40A in interferon gamma receptor 1 potentially contributes to the myasthenia gravis pathogenesis. Further functional studies are needed to confirm the effect of the interferon gamma receptor 1 on the myasthenia gravis phenotype.

  6. gamma delta T lymphocytes and their V gamma 9 and V delta 2 receptor expression in peripheral blood mononuclear cells of active tuberculosis patients before and after treatment.

    Science.gov (United States)

    Saruwatari, N

    2000-01-01

    It has been reported that gamma delta T cells are activated by bacterial infection, and the cells act in an antibacterial manner. We investigated the immunologic role of gamma delta T cells and their receptors in tuberculosis (TB) patients. We examined gamma delta T cells which express receptors composed of V gamma 9 or V delta 2 chains before and after anti-TB chemotherapy, in vitro changes in T cell receptor expression due to stimulation, and the relationship between the proliferative capability of gamma delta T cells and the clinical data before treatment (10 TB patients and 9 healthy volunteers). The ratio of V gamma 9-positive cells to gamma delta T cells decreased significantly in the 10 TB patients before treatment (p delta 9-positive cells had a significantly increased erythrocyte sedimentation rate (p gamma 9- and V delta 2-positive gamma delta T cells (p gamma 9-positive cells together with their growth index might help to further elucidate the disease process in patients with pulmonary TB.

  7. T3 glycoprotein is functional although structurally distinct on human T-cell receptor gamma T lymphocytes.

    OpenAIRE

    Krangel, M S; Bierer, B E; Devlin, P; Clabby, M; Strominger, J L; McLean, J; Brenner, M B

    1987-01-01

    The T-cell receptor (TCR) gamma gene product occurs in association with T3 (CD3) polypeptides on the surface of human T lymphocytes. TCR gamma lymphocytes express arrays of T3 polypeptides distinct from those typically observed on TCR alpha beta lymphocytes. This report demonstrates that identical T3 gamma, delta, and epsilon polypeptides are synthesized by TCR gamma lymphocytes and TCR alpha beta lymphocytes. However, the processing of T3 delta oligosaccharides is distinct in the two cell ty...

  8. Novel primary thymic defect with T lymphocytes expressing gamma delta T cell receptor

    DEFF Research Database (Denmark)

    Geisler, C; Pallesen, G; Platz, P

    1989-01-01

    . Immunoprecipitation and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that most of the gamma delta T cell receptors existed as disulphide-linked heterodimers. Proliferative responses to mitogens were severely reduced, but specific antibody responses after vaccination could be detected...

  9. Evaluation of High-Throughput Genomic Assays for the Fc Gamma Receptor Locus

    NARCIS (Netherlands)

    Hargreaves, Chantal E.; Iriyama, Chisako; Rose-Zerilli, Matthew J. J.; Nagelkerke, Sietse Q.; Hussain, Khiyam; Ganderton, Rosalind; Lee, Charlotte; Machado, Lee R.; Hollox, Edward J.; Parker, Helen; Latham, Kate V.; Kuijpers, Taco W.; Potter, Kathleen N.; Coupland, Sarah E.; Davies, Andrew; Stackpole, Michael; Oates, Melanie; Pettitt, Andrew R.; Glennie, Martin J.; Cragg, Mark S.; Strefford, Jonathan C.

    2015-01-01

    Cancer immunotherapy has been revolutionised by the use monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcγRs). The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy

  10. Novel mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infections

    DEFF Research Database (Denmark)

    Storgaard, M; Varming, K; Herlin, Troels

    2006-01-01

    In 1981 we presented a patient with Mycobacterium intracellulare osteomyelitis and depressed monocyte cytotoxicity. It is now demonstrated that the molecular defect was a never-before-described nucleotide deletion at position 794 (794delT) in the interferon-gamma-receptor alpha-1 gene. The genetic...

  11. The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Mosbacher, Johannes; Elg, Susanne

    2002-01-01

    The actions of the anticonvulsant gabapentin [1-(aminomethyl)cyclohexaneacetic acid, Neurontin] have been somewhat enigmatic until recently, when it was claimed to be a gamma-aminobutyric acid-B (GABA(B)) receptor agonist acting exclusively at a heterodimeric complex containing the GABA(B(1a)) sp...

  12. Identification of a novel human glucagon receptor promoter: regulation by cAMP and PGC-1alpha

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Dichmann, Darwin Sorento; Abrahamsen, Niels

    2007-01-01

    the promoter regions of the human glucagon receptor gene. Primer extension studies yielded multiple products in both liver and pancreas, corresponding to transcription start sites situated at -166 and -477 relative to the start of translation, indicating two putative promoters. Both transcription start sites...... between 1051 and 1016 base pairs upstream of the transcription start site, which contains several putative cAMP responsive elements. Expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), known to be upregulated in the liver by fasting, was found to abolish the c......AMP-dependent downregulation of glucagon receptor mRNA expression in vitro, whereas overexpression of PGC-1beta had no effect....

  13. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  14. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    Science.gov (United States)

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  15. Ligand-independent activation of the glucocorticoid receptor by ursodeoxycholic acid: Repression of IFN-{gamma}-induced MHC class II gene expression via a glucocorticoid receptor-dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hirotoshi; Makino, Yuichi; Miura, Takanori [Asahikawa Medical College (Japan)] [and others

    1996-02-15

    The therapeutic effectiveness of ursodeoxycholic acid (UDCA) for various autoimmune liver diseases strongly indicates that UDCA possesses immunomodulatory activities. Experimental evidence also supports this notion, since, for example, UDCA has been shown to suppress secretion of IL-2, IL-4, and IFN-{gamma} from activated T lymphocytes, and Ig production from B lymphocytes. To investigate the mechanical background of UDCA-mediated immunomodulation, we asked whether UDCA interacts with the intracellular signal transduction pathway, especially whether it is involved in immunosuppressive glucocorticoid hormone action. For this purpose, we used a cloned Chinese hamster ovary cell line, CHOpMTGR, in which glucocorticoid receptor cDNA was stably integrated. In immunocytochemical analysis, we found that treatment with UDCA promoted the nuclear translocation of the glucocorticoid receptor in a ligand-independent fashion, which was further confirmed by immunoprecipitation assays. Moreover, the translocated glucocorticoid receptor demonstrated sequence-specific DNA binding activity. Transient transfection experiments revealed that treatment of the cells with UDCA marginally enhanced glucocorticoid-responsive gene expression. We also showed that UDCA suppressed IFN-{gamma}-mediated induction of MHC class II gene expression via the glucocorticoid receptor-mediated pathway. Together, UDCA-dependent promotion of translocation of the glucocorticoid receptor may be associated with, at least in part, its immunomodulatory action through glucocorticoid receptor-mediated gene regulation. 68 refs., 8 figs.

  16. Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.

    Science.gov (United States)

    Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L

    2000-05-31

    cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.

  17. Activation of the Torpedo nicotinic acetylcholine receptor. The contribution of residues alphaArg55 and gammaGlu93.

    Science.gov (United States)

    Kapur, Ankur; Davies, Martin; Dryden, William F; Dunn, Susan M J

    2006-03-01

    The Torpedo nicotinic acetylcholine receptor is a heteropentamer (alpha2betagammadelta) in which structurally homologous subunits assemble to form a central ion pore. Viewed from the synaptic cleft, the likely arrangement of these subunits is alpha-gamma-alpha-delta-beta lying in an anticlockwise orientation. High affinity binding sites for agonists and competitive antagonists have been localized to the alpha-gamma and alpha-delta subunit interfaces. We investigated the involvement of amino acids lying at an adjacent interface (gamma-alpha) in receptor properties. Recombinant Torpedo receptors, expressed in Xenopus oocytes, were used to investigate the consequences of mutating alphaArg55 and gammaGlu93, residues that are conserved in most species of the peripheral nicotinic receptors. Based on homology modeling, these residues are predicted to lie in close proximity to one another and it has been suggested that they may form a salt bridge in the receptor's three-dimensional structure (Sine et al. 2002 J Biol Chem277, 29 210-29 223). Although substitution of alphaR55 by phenylalanine or tryptophan resulted in approximately a six-fold increase in the EC50 value for acetylcholine activation, the charge reversal mutation (alphaR55E) had no significant effect. In contrast, the replacement of gammaE93 by an arginine conferred an eight-fold increase in the potency for acetylcholine-induced receptor activation. In the receptor carrying the double mutations, alphaR55E-gammaE93R or alphaR55F-gammaE93R, the potency for acetylcholine activation was partially restored to that of the wild-type. The results suggest that, although individually these residues influence receptor activation, direct interactions between them are unlikely to play a major role in the stabilization of different conformational states of the receptor.

  18. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  19. Thermal analysis evaluation of mechanical properties changes promoted by gamma radiation on surgical polymeric textiles

    International Nuclear Information System (INIS)

    Ferreira, L.M.; Casimiro, M.H.; Oliveira, C.; Cabeco Silva, M.E.; Marques Abreu, M.J.; Coelho, A.

    2002-01-01

    The large number of surgical operations with post-operative infection problems and the appearing of new infectious diseases, contribute to the development of new materials in order to answer the needs of health care services. This development must take into account the modifications promoted by sterilisation methods in materials, namely by gamma radiation. The differential scanning calorimetry (DSC) and thermogravimetry (TGA) techniques show that a nonwoven and a laminate textiles maintain a good molecular cohesion, do not showing high levels of degradation, for gamma radiation dose values lower than 100 kGy in nonwoven and 200 kGy in laminate materials. The tensile strength and the elongation decrease slowly for the nonwoven textile and decrease faster for the laminate textile for 25 and 80 kGy absorbed dose. This paper shows that the DSC and TGA techniques can be helpful for the prevision of mechanical changes occurred in the materials as a consequence of the gamma irradiation

  20. Potential effects of curcumin on peroxisome proliferator-activated receptor-gamma in vitro and in vivo

    Science.gov (United States)

    Natural peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are found in food and may be important for health through their anti-inflammatory properties. Curcumin (Cur) is a bright yellow spice, derived from the rhizome of Curcuma longa Linn. It has been shown to have many biologi...

  1. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone.

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    Full Text Available The hypocretin (orexin system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1 and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867 and HCRTR2 (EMPA antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM and non-REM (NR sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg, almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4-6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking "drive".

  2. The altered promoter methylation of oxytocin receptor gene in autism.

    Science.gov (United States)

    Elagoz Yuksel, Mine; Yuceturk, Betul; Karatas, Omer Faruk; Ozen, Mustafa; Dogangun, Burak

    Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.

  3. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    Energy Technology Data Exchange (ETDEWEB)

    Mitterberger, Maria C. [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Kim, Geumsoo [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Rostek, Ursula [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Levine, Rodney L. [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Zwerschke, Werner, E-mail: werner.zwerschke@oeaw.ac.at [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria)

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.

  4. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands

    Science.gov (United States)

    Lewis, Stephanie N.; Garcia, Zulma; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2015-05-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40 %) when compared to docking with a single structure model (marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development.

  5. Increased renin production in mice with deletion of peroxisome proliferator-activated receptor-gamma in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Desch, Michael; Schreiber, Andrea; Schweda, Frank

    2010-01-01

    We recently found that endogenous (free fatty acids) and pharmacological (thiazolidinediones) agonists of nuclear receptor Peroxisome proliferator-activated receptor (PPAR)gamma stimulate renin transcription. In addition, the renin gene was identified as a direct target of PPARgamma. The mouse re...

  6. Application of gamma-aminobutyric acid type A-benzodiazepine receptor imaging for study of neuropsychiatric disorders

    International Nuclear Information System (INIS)

    Bao Weiqi; Qiu Chun; Guan Yihui

    2012-01-01

    Gamma-aminobutyric acid type A-benzodiazepine receptors are heterogeneous polypeptide pentamers widely spread in the central nervous system on the neuron membrane. Different subunit combinations educe various neuro-inhibitory pharmacological effects such as sedative, hypnosis, anticonvulsion and anxiolysis. PET can be utilized to study the binding of the receptors in vivo. PET radioligands of gamma-aminobutyric acid type A-benzodiazepine receptors can be classified into 3 types: antagonists,agonists and reverse agonists, of which antagonist radiotracer 11 C-flumazenil is the most commonly applied in epilepsy, anxiety disorders, depression, vegetative state,addiction and other neuro-psychiatric disorders. (authors)

  7. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Bouhlel, Mohamed Amine [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Brozek, John [Genfit, Loos (France); Derudas, Bruno [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Zawadzki, Christophe; Jude, Brigitte [Inserm ERI-9 and Equipe d' Accueil 2693, IFR114, Universite de Lille, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); Inserm U545, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.

  8. Selective androgen receptor modulators as function promoting therapies.

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  9. Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction

    DEFF Research Database (Denmark)

    Popescu, Bogdan O; Cedazo-Minguez, Angel; Benedikz, Eirikur

    2004-01-01

    causing an exon 9 deletion in PS1 results in enhanced basal phospholipase C (PLC) activity (Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T., and Cowburn, R. F. (2002) J. Biol. Chem. 277, 36646-36655). To further elucidate the mechanisms by which PS1 interferes with PLC-calcium signaling...... by the PLC inhibitor neomycin, the ryanodine receptor antagonist dantrolene, the general aspartyl protease inhibitor pepstatin A, and the specific gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. The cells expressing either PS1 D257A or PS1 D385N had attenuated...... or PS1 D385N dominant negative cells. Our findings suggest that PS1 can regulate PLC activity and that this function is gamma-secretase activity-dependent....

  10. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation.

    Science.gov (United States)

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-10-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30-80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease.In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin(5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations.Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3.Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders.

  11. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  12. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology.

    Science.gov (United States)

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects.

  13. Characterization of the gamma-aminobutyric acid receptor system in human brain gliomas

    International Nuclear Information System (INIS)

    Frattola, L.; Ferrarese, C.; Canal, N.; Gaini, S.M.; Galluso, R.; Piolti, R.; Trabucchi, M.

    1985-01-01

    The properties of [ 3 H]-gamma-aminobutyric acid [( 3 H]GABA) binding were studied in biopsied specimens from normal human brain and from 18 cases of human brain gliomas, made up of 6 astrocytomas, 6 glioblastomas, 3 oligodendrogliomas, and 3 medulloblastomas. In fresh membranes obtained from normal gray and white matter one population of Na+-dependent GABA receptors was observed, while in the frozen Triton X-100-treated membranes two distinct populations of Na+-independent binding sites were detected. Specific GABA binding sites in brain gliomas were shown only in frozen Triton X-100-treated membranes. As in normal tissue, these receptors are Na+-independent and bind [ 3 H]GABA with two distinct affinity components. The biochemical profiles of [ 3 H]GABA binding to membranes obtained from different tumors of glial origin are quite similar and cannot be related to the degree of malignancy of the neoplasia

  14. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma

    DEFF Research Database (Denmark)

    van Beekum, Olivier; Brenkman, Arjan B; Grøntved, Lars

    2008-01-01

    The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set...... in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip...... of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact...

  15. Gamma delta T cell receptor analysis supports a role for HSP 70 selection of lymphocytes in multiple sclerosis lesions.

    OpenAIRE

    Battistini, L.; Salvetti, M.; Ristori, G.; Falcone, M.; Raine, C. S.; Brosnan, C. F.

    1995-01-01

    BACKGROUND: Interactions between gamma delta T cells and heat shock proteins (HSP) have been proposed as contributing factors in a number of diseases of possible autoimmune etiology but definitive evidence to support this hypothesis has been lacking. In multiple sclerosis (MS), a chronic inflammatory neurologic disease, HSP and gamma delta T cells are known to colocalize in brain lesions. Analysis of T cell receptor (TCR) gene usage in these lesions has detected evidence of clonality within b...

  16. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy

    Science.gov (United States)

    Tscheschner, Henrike; Gao, Erhe; Schumacher, Sarah M.; Yuan, Ancai; Backs, Johannes; Most, Patrick; Wieland, Thomas; Koch, Walter J.; Katus, Hugo A.; Raake, Philip W.

    2017-01-01

    The increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms. In mice we observed increased GRK2 mRNA and protein levels following transverse aortic constriction (TAC). Conditional GRK2 knockout mice showed attenuated hypertrophic response with preserved ventricular geometry 6 weeks after TAC operation compared to wild-type animals. In isolated neonatal rat ventricular cardiac myocytes stimulation with angiotensin II and phenylephrine enhanced GRK2 expression leading to enhanced signaling via protein kinase B (PKB or Akt), consecutively inhibiting glycogen synthase kinase 3 beta (GSK3β), such promoting nuclear accumulation and activation of nuclear factor of activated T-cells (NFAT). Cardiac myocyte hypertrophy induced by in vitro GRK2 overexpression increased the cytosolic interaction of GRK2 and phosphoinositide 3-kinase γ (PI3Kγ). Moreover, inhibition of PI3Kγ as well as GRK2 knock down prevented Akt activation resulting in halted NFAT activity and reduced cardiac myocyte hypertrophy. Our data show that enhanced GRK2 expression triggers cardiac hypertrophy by GRK2-PI3Kγ mediated Akt phosphorylation and subsequent inactivation of GSK3β, resulting in enhanced NFAT activity. PMID:28759639

  17. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2010-01-01

    Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5α-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis. PMID:19357508

  18. Impaired virus control and severe CD8+ T-cell-mediated immunopathology in chimeric mice deficient in gamma interferon receptor expression on both parenchymal and hematopoietic cells

    DEFF Research Database (Denmark)

    Henrichsen, Pernille; Bartholdy, Christina; Christensen, Jan Pravsgaard

    2005-01-01

    virus completely lack the ability to control the infection and develop severe wasting disease. Further, the study shows that IFN-gamma receptor expression on parenchymal cells in the viscera is more important for virus control than IFN-gamma receptor expression on bone marrow-derived cells.......Bone marrow chimeras were used to determine the cellular target(s) for the antiviral activity of gamma interferon (IFN-gamma). By transfusing such mice with high numbers of naive virus-specific CD8(+) T cells, a system was created in which the majority of virus-specific CD8(+) T cells would...... be capable of responding to IFN-gamma, but expression of the relevant receptor on non-T cells could be experimentally controlled. Only when the IFN-gamma receptor is absent on both radioresistant parenchymal and bone marrow-derived cells will chimeric mice challenged with a highly invasive, noncytolytic...

  19. Potentiation of gamma aminobutyric acid receptors (GABAAR by Ethanol: How are inhibitory receptors affected?

    Directory of Open Access Journals (Sweden)

    Benjamin eFörstera

    2016-05-01

    Full Text Available In recent years there has been an increase in the understanding of ethanol actions on the type A -aminobutyric acid chloride channel (GABAAR, a member of the pentameric ligand gated ion channels (pLGICs. However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR, another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.

  20. O-GlcNAcylation of Orphan Nuclear Receptor Estrogen-Related Receptor γ Promotes Hepatic Gluconeogenesis.

    Science.gov (United States)

    Misra, Jagannath; Kim, Don-Kyu; Jung, Yoon Seok; Kim, Han Byeol; Kim, Yong-Hoon; Yoo, Eun-Kyung; Kim, Byung Gyu; Kim, Sunghoon; Lee, In-Kyu; Harris, Robert A; Kim, Jeong-Sun; Lee, Chul-Ho; Cho, Jin Won; Choi, Hueng-Sik

    2016-10-01

    Estrogen-related receptor γ (ERRγ) is a major positive regulator of hepatic gluconeogenesis. Its transcriptional activity is suppressed by phosphorylation signaled by insulin in the fed state, but whether posttranslational modification alters its gluconeogenic activity in the fasted state is not known. Metabolically active hepatocytes direct a small amount of glucose into the hexosamine biosynthetic pathway, leading to protein O-GlcNAcylation. In this study, we demonstrate that ERRγ is O-GlcNAcylated by O-GlcNAc transferase in the fasted state. This stabilizes the protein by inhibiting proteasome-mediated protein degradation, increasing ERRγ recruitment to gluconeogenic gene promoters. Mass spectrometry identifies two serine residues (S317, S319) present in the ERRγ ligand-binding domain that are O-GlcNAcylated. Mutation of these residues destabilizes ERRγ protein and blocks the ability of ERRγ to induce gluconeogenesis in vivo. The impact of this pathway on gluconeogenesis in vivo was confirmed by the observation that decreasing the amount of O-GlcNAcylated ERRγ by overexpressing the deglycosylating enzyme O-GlcNAcase decreases ERRγ-dependent glucose production in fasted mice. We conclude that O-GlcNAcylation of ERRγ serves as a major signal to promote hepatic gluconeogenesis. © 2016 by the American Diabetes Association.

  1. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  2. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-¿)

    NARCIS (Netherlands)

    Beekmann, K.; Rubió, L.; Haan, de L.H.J.; Actis Goretta, L.; Burg, van der B.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2015-01-01

    The consumption of dietary flavonoids has been associated with a variety of health benefits, including effects mediated by the activation of peroxisome proliferator-activated receptor-gamma (PPAR-¿). Flavonoids are extensively metabolized during and after uptake and there is little known on the

  3. Peroxisome proliferator-activated receptor-gamma (PPARgamma) Pro12Ala polymorphism and risk for pediatric obesity

    NARCIS (Netherlands)

    Dedoussis, George V; Vidra, Nikoleta; Butler, Johannah; Papoutsakis, Constantina; Yannakoulia, Mary; Hirschhorn, Joel N; Lyon, Helen N; Vidra, Nikoletta

    BACKGROUND: Variation in the peroxisome-proliferator-activated receptor gamma (PPARgamma) gene has been reported to alter the risk for adiposity in adults. METHODS: We investigated the gender related association between the Pro12Ala variant (rs1801282) in obesity and insulin resistance traits in 794

  4. Association of variation in Fc gamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples

    NARCIS (Netherlands)

    McKinney, Cushla; Fanciulli, Manuela; Merriman, Marilyn E.; Phipps-Green, Amanda; Alizadeh, Behrooz Z.; Koeleman, Bobby P. C.; Dalbeth, Nicola; Gow, Peter J.; Harrison, Andrew A.; Highton, John; Jones, Peter B.; Stamp, Lisa K.; Steer, Sophia; Barrera, Pilar; Coenen, Marieke J. H.; Franke, Barbara; van Riel, Piet L. C. M.; Vyse, Tim J.; Aitman, Tim J.; Radstake, Timothy R. D. J.; Merriman, Tony R.

    2010-01-01

    Objective There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fc gamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  5. Polyyne hybrid compounds from Notopterygium incisum with peroxisome proliferator-activated receptor gamma agonistic effects.

    Science.gov (United States)

    Liu, Xin; Kunert, Olaf; Blunder, Martina; Fakhrudin, Nanang; Noha, Stefan M; Malainer, Clemens; Schinkovitz, Andreas; Heiss, Elke H; Atanasov, Atanas G; Kollroser, Manfred; Schuster, Daniela; Dirsch, Verena M; Bauer, Rudolf

    2014-11-26

    In the search for peroxisome proliferator-activated receptor gamma (PPARγ) active constituents from the roots and rhizomes of Notopterygium incisum, 11 new polyacetylene derivatives (1-11) were isolated. Their structures were elucidated by NMR and HRESIMS as new polyyne hybrid molecules of falcarindiol with sesquiterpenoid or phenylpropanoid moieties, named notoethers A-H (1-8) and notoincisols A-C (9-11), respectively. Notoincisol B (10) and notoincisol C (11) represent two new carbon skeletons. When tested for PPARγ activation in a luciferase reporter assay with HEK-293 cells, notoethers A-C (1-3), notoincisol A (9), and notoincisol B (10) showed promising agonistic activity (EC50 values of 1.7 to 2.3 μM). In addition, notoincisol A (9) exhibited inhibitory activity on NO production of stimulated RAW 264.7 macrophages.

  6. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression.

    Science.gov (United States)

    Toyota, Yosuke; Nomura, Sayaka; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru

    2017-06-15

    Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC 50 : 14μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. RAR-Related Orphan Receptor Gamma (ROR-γ) Mediates Epithelial-Mesenchymal Transition Of Hepatocytes During Hepatic Fibrosis.

    Science.gov (United States)

    Kim, Sung Min; Choi, Jung Eun; Hur, Wonhee; Kim, Jung-Hee; Hong, Sung Woo; Lee, Eun Byul; Lee, Joon Ho; Li, Tian Zhu; Sung, Pil Soo; Yoon, Seung Kew

    2017-08-01

    The epithelial-mesenchymal transition (EMT) is involved in many different types of cellular behavior, including liver fibrosis. In this report, we studied a novel function of RAR-related orphan receptor gamma (ROR-γ) in hepatocyte EMT during liver fibrosis. To induce EMT in vitro, primary hepatocytes and FL83B cells were treated with TGF-β1. Expression of ROR-γ was analyzed by Western blot in the fibrotic mouse livers and human livers with cirrhosis. To verify the role of ROR-γ in hepatocyte EMT, we silenced ROR-γ in FL83B cells using a lentiviral short hairpin RNA (shRNA) vector. The therapeutic effect of ROR-γ silencing was investigated in a mouse model of TAA-induced fibrosis by hydrodynamic injection of plasmids. ROR-γ expression was elevated in hepatocyte cells treated with TGF-β1, and ROR-γ protein levels were elevated in the fibrotic mouse livers and human livers with cirrhosis. Knockdown of ROR-γ resulted in the attenuation of TGF-β1-induced EMT in hepatocytes. Strikingly, ROR-γ bound to ROR-specific DNA response elements (ROREs) in the promoter region of TGF-β type I receptor (Tgfbr1) and Smad2, resulting in the downregulation of Tgfbr1 and Smad2 after silencing of ROR-γ. Therapeutic delivery of shRNA against ROR-γ attenuated hepatocyte EMT and ameliorated liver fibrosis in a mouse model of TAA-induced liver fibrosis. Overall, our results suggest that ROR-γ regulates TGF-β-induced EMT in hepatocytes during liver fibrosis. We suggest that ROR-γ may become a potential therapeutic target in treating liver fibrosis. J. Cell. Biochem. 118: 2026-2036, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.

  8. RAR‐Related Orphan Receptor Gamma (ROR‐γ) Mediates Epithelial‐Mesenchymal Transition Of Hepatocytes During Hepatic Fibrosis

    Science.gov (United States)

    Kim, Sung Min; Choi, Jung Eun; Hur, Wonhee; Kim, Jung‐Hee; Hong, Sung Woo; Lee, Eun Byul; Lee, Joon Ho; Li, Tian Zhu; Sung, Pil Soo

    2017-01-01

    ABSTRACT The epithelial‐mesenchymal transition (EMT) is involved in many different types of cellular behavior, including liver fibrosis. In this report, we studied a novel function of RAR‐related orphan receptor gamma (ROR‐γ) in hepatocyte EMT during liver fibrosis. To induce EMT in vitro, primary hepatocytes and FL83B cells were treated with TGF‐β1. Expression of ROR‐γ was analyzed by Western blot in the fibrotic mouse livers and human livers with cirrhosis. To verify the role of ROR‐γ in hepatocyte EMT, we silenced ROR‐γ in FL83B cells using a lentiviral short hairpin RNA (shRNA) vector. The therapeutic effect of ROR‐γ silencing was investigated in a mouse model of TAA‐induced fibrosis by hydrodynamic injection of plasmids. ROR‐γ expression was elevated in hepatocyte cells treated with TGF‐β1, and ROR‐γ protein levels were elevated in the fibrotic mouse livers and human livers with cirrhosis. Knockdown of ROR‐γ resulted in the attenuation of TGF‐β1‐induced EMT in hepatocytes. Strikingly, ROR‐γ bound to ROR‐specific DNA response elements (ROREs) in the promoter region of TGF‐β type I receptor (Tgfbr1) and Smad2, resulting in the downregulation of Tgfbr1 and Smad2 after silencing of ROR‐γ. Therapeutic delivery of shRNA against ROR‐γ attenuated hepatocyte EMT and ameliorated liver fibrosis in a mouse model of TAA‐induced liver fibrosis. Overall, our results suggest that ROR‐γ regulates TGF‐β‐induced EMT in hepatocytes during liver fibrosis. We suggest that ROR‐γ may become a potential therapeutic target in treating liver fibrosis. J. Cell. Biochem. 118: 2026–2036, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc. PMID:27791279

  9. Identification of Fc Gamma Receptor Glycoforms That Produce Differential Binding Kinetics for Rituximab.

    Science.gov (United States)

    Hayes, Jerrard M; Frostell, Asa; Karlsson, Robert; Müller, Steffen; Martín, Silvia Míllan; Pauers, Martin; Reuss, Franziska; Cosgrave, Eoin F; Anneren, Cecilia; Davey, Gavin P; Rudd, Pauline M

    2017-10-01

    Fc gamma receptors (FcγR) bind the Fc region of antibodies and therefore play a prominent role in antibody-dependent cell-based immune responses such as ADCC, CDC and ADCP. The immune effector cell activity is directly linked to a productive molecular engagement of FcγRs where both the protein and glycan moiety of antibody and receptor can affect the interaction and in the present study we focus on the role of the FcγR glycans in this interaction. We provide a complete description of the glycan composition of Chinese hamster ovary (CHO) expressed human Fcγ receptors RI (CD64), RIIa Arg131/His131 (CD32a), RIIb (CD32b) and RIIIa Phe158/Val158 (CD16a) and analyze the role of the glycans in the binding mechanism with IgG. The interactions of the monoclonal antibody rituximab with each FcγR were characterized and we discuss the CHO-FcγRIIIa Phe158/Val158 and CHO-FcγRI interactions and compare them to the equivalent interactions with human (HEK293) and murine (NS0) produced receptors. Our results reveal clear differences in the binding profiles of rituximab, which we attribute in each case to the differences in host cell-dependent FcγR glycosylation. The glycan profiles of CHO expressed FcγRI and FcγRIIIa Phe158/Val158 were compared with the glycan profiles of the receptors expressed in NS0 and HEK293 cells and we show that the glycan type and abundance differs significantly between the receptors and that these glycan differences lead to the observed differences in the respective FcγR binding patterns with rituximab. Oligomannose structures are prevalent on FcγRI from each source and likely contribute to the high affinity rituximab interaction through a stabilization effect. On FcγRI and FcγRIIIa large and sialylated glycans have a negative impact on rituximab binding, likely through destabilization of the interaction. In conclusion, the data show that the IgG1-FcγR binding kinetics differ depending on the glycosylation of the FcγR and further support a

  10. Gamma-polyglutamic acid (gamma-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface.

    Science.gov (United States)

    Liu, Jun; He, Dan; Li, Xiu-zhen; Gao, Shengfeng; Wu, Huijun; Liu, Wenzhe; Gao, Xuewen; Zhou, Ting

    2010-08-15

    Bacillus amyloliquefaciens C06, an effective biological agent in controlling brown rot of stone fruit caused by Monilinia fructicola, was also found to produce extra-cellular mucilage and form mucoid colonies on semi-solid surfaces. This study aimed to characterize the extra-cellular mucilage produced by B. amyloliquefaciens C06 using transposon mutagenesis and biochemical and physical analyses. The mucilage production in B. amyloliquefaciens C06 was demonstrated to be associated with ywsC gene expression and characterized to be of high molecular weight, consisted of only glutamic acid and linked with non-peptide bonds, thus identified as gamma-polyglutamic acid (gamma-PGA). Compared with wild type B. amyloliquefaciens C06, its mutants deficient in producing gamma-PGA, e.g. M106 and C06DeltaywsC showed less efficiency in biofilm formation, surface adhesion and swarming ability. It was also demonstrated that gamma-PGA was not essential for C06 to form colony on semi-solid surfaces, but was able to improve its colony structure. In vivo evaluation showed that disruption of gamma-PGA production in C06DeltaywsC impaired its efficiency of colonizing apple surfaces. Copyright 2010 Elsevier B.V. All rights reserved.

  11. The changes in drug binding activity of GABA receptor and animal neural-behavior after gamma irradiation

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Zhao Naikun; Xue Hong; Wang Zihui

    2004-01-01

    Objective: The purpose of this study was to investigate the effect of irradiation on gamma-aminobutyric-acid receptor (GABA-R) as well as behavioral changes after brain 60 Co γ-irradiation. Methods: The mice were irradiated with gamma rays (20 Gy; 10 Gy and 5 Gy) . The drug binding activity of GABA receptor in brain receptor was measured by fluorescence anisotropy (FA) and equilibrium dissociation constants. The behavioral changes were observed by the locomotor activity test, elevated plus-maze test and hole-board test at 1, 10, 24 and 48 hr after irradiation. Results: 1. The drug binding activity of the GABA receptor was decreased and the equilibrium dissociation constant (K d ) was significantly increased compared with the negative control group 2 hr after irradiation, and a spike value appeared at 24 hr. It showed that the irradiation might damage or decrease the binding activity and the bio-activity of GABA receptor. 2. The animal experiment confirmed that the irradiated animal model showed neural-behavioral changes of anxiety or depression. 3. The decreased binding activity of GABA receptor and changes in behavior of irradiated animal were dependent on radiation intensity. 4. The changes of behavior was similar to the blocked GABA receptor group. It suggests the relationship of radiation and GABA receptor. Conclusion: These results suggest that GABA receptor may be involved in radiation injury. The functional changes of GABA receptor may be an induction factor of behavioral disorder. The article also discussed the effect of anxiety and results obtained from the point of view of GABA receptor system involvement in the changes observed after irradiation. (authors)

  12. Receptor protein tyrosine phosphatase alpha enhances rheumatoid synovial fibroblast signaling and promotes arthritis in mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Aleman Muench, German R; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    2016-01-01

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the joint extracellular matrix. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to RA FLS anomalous behavior. The receptor

  13. Functional response of white rats isolated heart to the stimulation of adrenergic receptors after gamma-irradiation in low doses

    International Nuclear Information System (INIS)

    Antonenko, A.N.; Lobanok, L.M.

    1999-01-01

    It was investigated the effects of acute gamma-irradiation on bio mechanical activity of rats heart isolated by Langendorf's method in early and delayed terms after exposure to gamma-rays. Intra ventricle pressure and the rate of its growth, volumetric rate of coronal flow, frequency of heart contraction were registered. Stimulation of alpha-adrenergic receptors was conducted by means of specific agonist mesatone and stimulation of beta-adrenergic receptors was made by means of isoprenaline. The study has shown that acute irradiation of rats caused the decrease of both contractile ability and relaxation of myocardium in a 10 days after exposure. In delayed period bio mechanical activity of isolated heart was restored. Functional response of heart to the stimulation of alpha- and beta-adrenergic receptors was decreased in all terms of investigation

  14. Transcription of human resistin gene involves an interaction of Sp1 with peroxisome proliferator-activating receptor gamma (PPARgamma.

    Directory of Open Access Journals (Sweden)

    Anil K Singh

    2010-03-01

    Full Text Available Resistin is a cysteine rich protein, mainly expressed and secreted by circulating human mononuclear cells. While several factors responsible for transcription of mouse resistin gene have been identified, not much is known about the factors responsible for the differential expression of human resistin.We show that the minimal promoter of human resistin lies within approximately 80 bp sequence upstream of the transcriptional start site (-240 whereas binding sites for cRel, CCAAT enhancer binding protein alpha (C/EBP-alpha, activating transcription factor 2 (ATF-2 and activator protein 1 (AP-1 transcription factors, important for induced expression, are present within sequences up to -619. Specificity Protein 1(Sp1 binding site (-276 to -295 is also present and an interaction of Sp1 with peroxisome proliferator activating receptor gamma (PPARgamma is necessary for constitutive expression in U937 cells. Indeed co-immunoprecipitation assay demonstrated a direct physical interaction of Sp1 with PPARgamma in whole cell extracts of U937 cells. Phorbol myristate acetate (PMA upregulated the expression of resistin mRNA in U937 cells by increasing the recruitment of Sp1, ATF-2 and PPARgamma on the resistin gene promoter. Furthermore, PMA stimulation of U937 cells resulted in the disruption of Sp1 and PPARgamma interaction. Chromatin immunoprecipitation (ChIP assay confirmed the recruitment of transcription factors phospho ATF-2, Sp1, Sp3, PPARgamma, chromatin modifier histone deacetylase 1 (HDAC1 and the acetylated form of histone H3 but not cRel, C/EBP-alpha and phospho c-Jun during resistin gene transcription.Our findings suggest a complex interplay of Sp1 and PPARgamma along with other transcription factors that drives the expression of resistin in human monocytic U937 cells.

  15. Crosstalk between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and the vitamin D receptor (VDR) in human breast cancer cells: PPAR{gamma} binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} mediated transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R. [Cancer Biology Division, IIT Research Institute, 10 West 35th Street, Chicago, IL 60616 (United States); Knethen, Andreas von [Institute of Biochemistry, Johann Wolfgang Goethe University, Frankfurt (Germany); Choubey, Divaker [Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267 (United States); Mehta, Rajendra G., E-mail: rmehta@iitri.org [Cancer Biology Division, IIT Research Institute, 10 West 35th Street, Chicago, IL 60616 (United States)

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding

  16. Dopamine receptor D4 promoter hypermethylation increases the risk of drug addiction

    OpenAIRE

    Ji, Huihui; Xu, Xuting; Liu, Guili; Liu, Huifen; Wang, Qinwen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Hu, Haochang; Xu, Lei; Zhou, Wenhua; Duan, Shiwei

    2017-01-01

    Heroin and methylamphetamine (METH) are two addictive drugs that cause serious problems for society. Dopamine receptor D4 (DRD4), a key receptor in the dopaminergic system, may facilitate the development of drug addiction. The aim of the present study was to investigate the association between the promoter methylation level of DRD4 gene and drug addiction. Bisulfite pyrosequencing technology was used to measure the methylation levels of DRD4 promoter in 60 drug addicts and 52 matched controls...

  17. Correlation of Peroxisome Proliferator-Activated Receptor-gamma (PPAR-gamma) and Retinoid X Receptor-alpha (RXR-alpha) expression with clinical risk factors in patients with advanced carotid atherosclerosis.

    Science.gov (United States)

    Giaginis, Constantinos; Klonaris, Christos; Katsargyris, Athanassios; Kouraklis, Gregorios; Spiliopoulou, Chara; Theocharis, Stamatios

    2011-07-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its nuclear partners, the Retinoid X Receptors (RXRs), have been recognized as crucial players in the pathogenesis of atherosclerosis. The present study aimed to assess the clinical significance of PPAR-gamma and RXR-alpha expression in different cellular populations localized within advanced carotid atherosclerosis lesions. PPAR-gamma and RXR-alpha expression was assessed by immunohistochemistry in 134 carotid atherosclerotic plaques obtained from an equal number of patients that underwent endarterectomy procedure for vascular repair, and was correlated with patients' medical history, risk factors and medication intake. Increased incidence of low PPAR-gamma expression in both macrophages and smooth muscle cells was noted in patients presenting coronary artery disease (p=0.032 and p=0.046, respectively). PPAR-gamma expression in smooth muscle cells was borderline down-regulated in symptomatic compared to asymptomatic patients (p=0.061), reaching statistical significance when analyzing groups of patients with specific cerebrovascular events; amaurosis fugax (p=0.008), amaurosis fugax/stroke (p=0.020) or amaurosis fugax/transient ischemic attack patients (p=0.028) compared to asymptomatic patients. Low RXR-alpha expression in macrophages was more frequently observed in hypertensive (p=0.048) and hyperlipidemic patients (p=0.049). Increased incidence of low RXR-alpha expression in smooth muscle cells was also noted in patients presenting advanced carotid stenosis grade (p=0.015). PPAR-gamma and RXR-alpha expression down-regulation in macrophages and smooth muscle cells was associated with a more pronounced disease progression in patients with advanced carotid atherosclerotic lesions.

  18. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin...

  19. Predicting the toxic potential of drugs and chemicals in silico: a model for the peroxisome proliferator-activated receptor gamma (PPAR gamma).

    Science.gov (United States)

    Vedani, Angelo; Descloux, Anne-Vérène; Spreafico, Morena; Ernst, Beat

    2007-08-30

    Poor pharmacokinetics, side effects and compound toxicity are frequent causes of late-stage failures in drug development. A safe in silico identification of adverse effects triggered by drugs and chemicals would therefore be highly desirable as it not only bears economical potential but also spawns a variety of ecological benefits: sustainable resource management, reduction of animal models and possibly less risky clinical trials as in silico studies are typically based on human proteins. In the recent past, our laboratory has developed a 6D-QSAR concept and validated a series of "virtual test kits" based on the aryl hydrocarbon, estrogen, androgen, thyroid, and glucocorticoid receptor as well as on the enzyme cytochrome P450 3A4. The test kits were trained using a representative selection of 610 substances and validated with 188 compounds different therefrom. These models were subsequently compiled into a database for the virtual screening of drugs and environmental chemicals. In this account, we report the validation of a model for the peroxisome proliferator-activated receptor gamma (PPAR gamma). Its receptor surrogate is based on the experimental structure of the protein and 95 tyrosine-based compounds. The simulation reached a cross-validated r(2)=0.832 (75 training ligands) and yielded a predictive r(2)=0.723 (20 test compounds). The model was challenged by a series of scramble tests as well as with the prediction of a few structurally different compounds.

  20. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  1. The axonal guidance receptor neogenin promotes acute inflammation.

    Directory of Open Access Journals (Sweden)

    Klemens König

    Full Text Available Neuronal guidance proteins (NGP were originally described in the context of axonal growth and migration. Yet recent work has demonstrated that NGPs also serve as guidance cues for immune competent cells. A crucial target receptor for NGPs during embryonic development is the neogenin receptor, however its role during acute inflammation is unknown. We report here that neogenin is abundantly expressed outside the nervous system and that animals with endogenous repression of neogenin (Neo1(-/- demonstrate attenuated changes of acute inflammation. Studies using functional inhibition of neogenin resulted in a significant attenuation of inflammatory peritonitis. In studies employing bone marrow chimeric animals we found the hematopoietic presence of Neo1(-/- to be responsible for the attenuated inflammatory response. Taken together our studies suggest that the guidance receptor neogenin holds crucial importance for the propagation of an acute inflammatory response and further define mechanisms shared between the nervous and the immune system.

  2. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin

    OpenAIRE

    Jingru Meng; Xue Ma; Ning Wang; Min Jia; Long Bi; Yunying Wang; Mingkai Li; Huinan Zhang; Xiaoyan Xue; Zheng Hou; Ying Zhou; Zhibin Yu; Gonghao He; Xiaoxing Luo

    2016-01-01

    Summary Glucagon-like peptide 1 (GLP-1) plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4) promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These function...

  3. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.

    Science.gov (United States)

    Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D

    2017-03-20

    Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation of High-Throughput Genomic Assays for the Fc Gamma Receptor Locus.

    Directory of Open Access Journals (Sweden)

    Chantal E Hargreaves

    Full Text Available Cancer immunotherapy has been revolutionised by the use monoclonal antibodies (mAb that function through their interaction with Fc gamma receptors (FcγRs. The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs and copy number variation (CNV that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcγR locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcγR locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcγR genetics in predicting response to antibody therapeutics.

  5. Differential transcription directed by discrete gamma interferon promoter elements in naive and memory (effector) CD4 T cells and CD8 T cells.

    Science.gov (United States)

    Aune, T M; Penix, L A; Rincón, M R; Flavell, R A

    1997-01-01

    Acquisition of the ability to produce gamma interferon (IFN-gamma) is a fundamental property of memory T cells and enables one subset (T helper 1 [TH1]) to deliver its effector functions. To examine regulation of IFN-gamma gene expression in a model system which recapitulates TH1 differentiation, we prepared reporter transgenic mice which express the luciferase gene under the control of proximal and distal regulatory elements (prox.IFN gamma and dist.IFN gamma) from the IFN-gamma promoter. Memory T cells, but not naive T cells, secreted IFN-gamma and expressed both prox.IFN gamma and dist.IFN gamma transcriptional activities. Naive T cells required priming to become producers of IFN-gamma and to direct transcription by these elements. While both CD4+ and CD8+ T cells produced IFN-gamma, only CD4+ T cells expressed prox.IFN gamma transcriptional activity. Induction of transcriptional activity was inhibited by known antagonists of effector T-cell populations. Cyclosporin A inhibited transcriptional activity directed by both elements in effector T cells. Elevated cyclic AMP inhibited transcriptional activity directed by prox.IFN gamma in primed CD4+ T cells but enhanced transcriptional activity directed by dist.IFN gamma in primed CD8+ T cells. Taken together, these data show that prox.IFN gamma and dist.IFN gamma transcriptional activities mirror IFN-gamma gene expression in naive and memory CD4+ T cells but suggest that differences exist in regulation of IFN-gamma gene expression in CD4+ and CD8+ T-cell subsets.

  6. Functional genomics analysis of big data identifies novel peroxisome proliferator–activated receptor gamma target single nucleotide polymorphisms showing association with cardiometabolic outcomes

    Science.gov (United States)

    Background Cardiovascular disease and type 2 diabetes mellitus represent overlapping diseases where a large portion of the variation attributable to genetics remains unexplained. An important player in their pathogenesis is peroxisome proliferator–activated receptor gamma (PPARgamma) that is involve...

  7. Serotonin Transporter (5-HTT) and gamma-Aminobutyric Acid Receptor Subunit beta3 (GABRB3) Gene Polymorphisms are not Associated with Autism in the IMGSA Families

    DEFF Research Database (Denmark)

    Maestrini, E.; Lai, C.; Marlow, A.

    1999-01-01

    on the collection of families grom the International Molecular Genetic Study of Autism (IMGSA) Consortium, using the transmission disequilibrium test. Two polymorphisms in the 5-HTT gene (a functional insertion-deletion polymorphism in the promoter and a variable nubmer tandem repeat in the second intron) were...... examined in 90 families comprising 174 affected individuals. Furthermore, seven microsatellite markers spanning the 15q11-q13 region were studied in 94 families with 182 affected individuals. No significant evidence of association or linkage was found at any of the markers tested, indicating that the 5-HTT......Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study...

  8. Mesotocin and nonapeptide receptors promote estrildid flocking behavior.

    Science.gov (United States)

    Goodson, James L; Schrock, Sara E; Klatt, James D; Kabelik, David; Kingsbury, Marcy A

    2009-08-14

    Proximate neural mechanisms that influence preferences for groups of a given size are almost wholly unknown. In the highly gregarious zebra finch (Estrildidae: Taeniopygia guttata), blockade of nonapeptide receptors by an oxytocin (OT) antagonist significantly reduced time spent with large groups and familiar social partners independent of time spent in social contact. Opposing effects were produced by central infusions of mesotocin (MT, avian homolog of OT). Most drug effects appeared to be female-specific. Across five estrildid finch species, species-typical group size correlates with nonapeptide receptor distributions in the lateral septum, and sociality in female zebra finches was reduced by OT antagonist infusions into the septum but not a control area. We propose that titration of sociality by MT represents a phylogenetically deep framework for the evolution of OT's female-specific roles in pair bonding and maternal functions.

  9. Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations.

    Science.gov (United States)

    Musacchia, Gabriella; Ortiz-Mantilla, Silvia; Choudhury, Naseem; Realpe-Bonilla, Teresa; Roesler, Cynthia; Benasich, April A

    2017-08-01

    Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx), over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx) or maturation alone (Naïve Control, NC). Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD) elicited greater Theta-band (4-6Hz) activity in Right Auditory Cortex (RAC), as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV) elicited larger responses in Left Auditory Cortex (LAC). PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33-37Hz) activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. PASSIVE-AVOIDANCE TRAINING INDUCES ENHANCED LEVELS OF IMMUNOREACTIVITY FOR MUSCARINIC ACETYLCHOLINE-RECEPTOR AND COEXPRESSED PKC-GAMMA AND MAP-2 IN RAT CORTICAL-NEURONS

    NARCIS (Netherlands)

    VANDERZEE, EA; DOUMA, BRK; BOHUS, B; LUITEN, PGM

    1994-01-01

    Changes in neocortical immunoreactivity (ir) for muscarinic acetylcholine receptors (mAChRs), protein kinase C gamma (PKC gamma), microtubule-associated protein 2 (MAP-2), and the calcium-binding protein parvalbumin (PARV) induced by the performance of a one-trial passive shock avoidance (PSA) task

  11. Elevated interferon gamma expression in the central nervous system of tumour necrosis factor receptor 1-deficient mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Wheeler, Rachel D; Zehntner, Simone P; Kelly, Lisa M

    2006-01-01

    Inflammation in the central nervous system (CNS) can be studied in experimental autoimmune encephalomyelitis (EAE). The proinflammatory cytokines interferon-gamma (IFN-gamma) and tumour necrosis factor (TNF) are implicated in EAE pathogenesis. Signals through the type 1 TNF receptor (TNFR1...

  12. Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters

    DEFF Research Database (Denmark)

    Ahmed, Shaaima; Valen, Eivind; Sandelin, Albin Gustav

    2009-01-01

    Recent studies have shown that activated aryl hydrocarbon receptor (AHR) induced the recruitment of estrogen receptor- (ER ) to AHR-regulated genes and that AHR is recruited to ER -regulated genes. However, these findings were limited to a small number of well-characterized AHR- or ER -responsive...

  13. IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen.

    Science.gov (United States)

    Beatty, G L; Paterson, Y

    2000-11-15

    Although IFN-gamma has been generally thought to enhance antitumor immune responses, we found that IFN-gamma can promote tumor escape in the CT26 colon carcinoma by down-regulating the protein expression of an endogenous tumor Ag. gp70, the env product of the endogenous ecotropic murine leukemia virus, has been reported to be the immunodominant Ag of CT26. We show that IFN-gamma down-regulates intracellular and surface levels of gp70 protein resulting in a reduced lysis by CTL, which is restored by pulsing IFN-gamma-treated CT26 with the L(d)-restricted immunodominant AH1 epitope derived from gp70. To investigate the role of CT26 sensitivity to IFN-gamma in vivo, we constructed two variants of CT26, CT26.mugR and CT26.IFN, that are unresponsive to IFN-gamma or express IFN-gamma, respectively. We demonstrate using these variants that tumor responsiveness to IFN-gamma promotes a reduction in tumor immunogenicity in vivo that is correlated with an increased tumor incidence in immune mice. Analysis of the tumors from mice challenged with CT26 or CT26.mugR revealed infiltration of CD8 T cells secreting IFN-gamma. We conclude that IFN-gamma secreted by tumor-infiltrating T cells promotes tumor escape through the down-regulation of the endogenous tumor Ag gp70. These findings have impact on the design of effective antitumor vaccine strategies.

  14. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  15. Topical Rosiglitazone Treatment Improves Ulcerative Colitis by Restoring Peroxisome Proliferator-Activated Receptor-gamma Activity

    DEFF Research Database (Denmark)

    Pedersen, G.; Brynskov, Jørn

    2010-01-01

    for 14 days. RESULTS: PPAR gamma expression was fourfold reduced in epithelial cells from inflamed compared with uninflamed mucosa and controls. Adipophillin levels were decreased in parallel. Rosiglitazone induced a concentration-dependent increase in adipophillin levels and restored PPAR gamma activity...... in epithelial cells from inflamed mucosa in vitro. Rosiglitazone enema treatment was well tolerated and reduced the Mayo ulcerative colitis score from 8.9 to 4.3 (P ... gamma activation in vivo. CONCLUSIONS: Roziglitasone enemas improve impaired PPAR gamma activity in inflamed colonic epithelium and have beneficial clinical effect in patients with active distal ulcerative colitis. These findings raise interest in further studies of PPAR gamma ligands that exhibit...

  16. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin

    Directory of Open Access Journals (Sweden)

    Jingru Meng

    2016-04-01

    Full Text Available Glucagon-like peptide 1 (GLP-1 plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4 promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These functions were accompanied by an increase in osteoblast number and serum bone formation markers, while the adipocyte number was decreased. Furthermore, GLP-1 receptor was detected in bone marrow stromal cells (BMSCs, but not in osteoblast. Activation of GLP-1 receptor by Ex-4 promoted the osteogenic differentiation and inhibited BMSC adipogenic differentiation through regulating PKA/β-catenin and PKA/PI3K/AKT/GSK3β signaling. These findings reveal that GLP-1 receptor regulates BMSC osteogenic differentiation and provide a molecular basis for therapeutic potential of GLP-1 against osteoporosis.

  17. Functional co-localization of monocytic aminopeptidase N/CD13 with the Fc gamma receptors CD32 and CD64

    DEFF Research Database (Denmark)

    Riemann, Dagmar; Tcherkes, Anatolij; Hansen, Gert H

    2005-01-01

    , but not with the myeloid marker CD33 representing a member of the sialoadhesin family. Our results imply a novel functional role of CD13 and Fc gamma receptors as members of a multimeric receptor complex. Further studies have to be done to elucidate common signaling pathways of these molecules....

  18. Aldosterone-mineralocorticoid receptor promotes urine prostasin through glomerular barrier injury and not tissue abundance

    DEFF Research Database (Denmark)

    Stolzenburg Oxlund, Christina; Kurt, B.; Schwarzensteiner, I.

    2015-01-01

    Objective: Low salt intake or infusion with the mineralocorticoid hormone aldosterone increases the abundance of proteolytically activated gamma ENaC in rat kidney. Prostasin is a serine proteinase GPI-anchored to the apical membrane of renal principal cells. It was hypothesized that the aldoster......Objective: Low salt intake or infusion with the mineralocorticoid hormone aldosterone increases the abundance of proteolytically activated gamma ENaC in rat kidney. Prostasin is a serine proteinase GPI-anchored to the apical membrane of renal principal cells. It was hypothesized...... that the aldosterone- mineralocorticoid receptor (MR) pathway maintains prostasin abundance in human kidney. Design and method: Urine and plasma prostasin was measured by ELISA in urine and plasma from a cohort of type-2 diabetes patients (n = 112) with treatment resistant hypertension before and after intervention...

  19. Peroxisome proliferator-activated receptor-gamma as a potential therapeutic target in the treatment of preeclampsia.

    LENUS (Irish Health Repository)

    McCarthy, Fergus P

    2012-01-31

    Preeclampsia is a multisystemic disorder of pregnancy characterized by hypertension, proteinuria, and maternal endothelial dysfunction. It is a major cause of maternal and perinatal morbidity and mortality and is thought to be attributable, in part, to inadequate trophoblast invasion. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a ligand-activated transcription factor expressed in trophoblasts, and the vasculature of which activation has been shown to improve endothelium-dependent vasodilatation in hypertensive conditions. We investigated the effects of the administration of a PPAR-gamma agonist using the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. The selective PPAR-gamma agonist, rosiglitazone, was administered to pregnant rats that had undergone RUPP surgery. To investigate whether any observed beneficial effects of PPAR-gamma activation were mediated by the antioxidant enzyme, heme oxygenase 1, rosiglitazone was administered in combination with the heme oxygenase 1 inhibitor tin-protoporphyrin IX. RUPP rats were characterized by hypertension, endothelial dysfunction, and elevated microalbumin:creatinine ratios. Rosiglitazone administration ameliorated hypertension, improved vascular function, and reduced the elevated microalbumin:creatinine ratio in RUPP rats. With the exception of microalbumin:creatinine ratio, these beneficial effects were abrogated in the presence of the heme oxygenase 1 inhibitor. Administration of a PPAR-gamma agonist prevented the development of several of the pathophysiological characteristics associated with the RUPP model of preeclampsia, via a heme oxygenase 1-dependent pathway. The findings from this study provide further insight into the underlying etiology of preeclampsia and a potential therapeutic target for the treatment of preeclampsia.

  20. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    Science.gov (United States)

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma.

  1. Activation of peroxisome proliferator-activated receptor-alpha and -gamma in auricular tissue from heart failure patients.

    Science.gov (United States)

    Gómez-Garre, Dulcenombre; Herraíz, Marta; González-Rubio, Ma Luisa; Bernal, Rosa; Aragoncillo, Paloma; Carbonell, Amparo; Rufilanchas, Juan José; Fernández-Cruz, Arturo

    2006-03-01

    Peroxisome proliferator-activated receptors (PPARs), key transcriptional regulators of lipid and energy metabolism in cardiomyocytes, have recently been proposed to modulate cardiovascular pathophysiological responses in experimental models. However, there is little information about the functional activity of PPARs in human heart failure. To investigate PPAR-alpha and -gamma expression and activity, and the association with ET-1 production and fibrosis, in cardiac biopsies from patients with end-stage heart failure due to ischemic cardiomyopathy (ICM) in comparison and from non-failing donor hearts. All samples were obtained during cardiac transplantation. Morphological analysis (by Masson trichrome and image analysis) did not detect fibrosis in the left atrium from non-failing donors (NFLA) or from ICM patients (FLA). However, left ventricles from failing hearts (FLV) contained a greater number of fibrotic areas (NFLA: 3.21+/-1.15, FLA: 1.63+/-0.83, FLV: 14.5+/-3.45%; n = 9, PPPAP-gamma mRNA (by RT-PCR) and protein (by Western blot) levels were higher in the ventricles from failing hearts compared with the atrium from failing and non-failing hearts. Electrophoretic mobility shift assays showed that PPAR-alpha and PPAP-gamma were not activated in the ventricles (NFLA: 1.00+/-0.11, FLA: 1.89+/-0.24, FLV: 0.95+/-0.07; n = 9, PPPAP-gamma are selectively activated in the atria from ICM patients and might be functionally important in the maintenance of atrial morphology.

  2. B1 but not B2 bradykinin receptor agonists promote DU145 prostate ...

    African Journals Online (AJOL)

    Stimulation of G protein-coupled bradykinin receptors (BR), B1R and. B2R, mediate the effects of bradykinin (BK), which include promotion of cell growth, proliferation and. Corresponding author: Naidoo S. Discipline of Pharmaceutical Sciences,. School of Health Sciences, Nelson R. Mandela School of Medicine campus,.

  3. Immunomodulator CD200 promotes neurotrophic activity by interacting with and activating the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Pankratova, Stanislava; Björnsdóttir, Halla; Christensen, Claus

    2016-01-01

    in the suppression of microglia activation. We for the first time demonstrated that CD200 can interact with and transduce signaling through activation of the fibroblast growth factor receptor (FGFR), thereby inducing neuritogenesis and promoting neuronal survival in primary neurons. CD200-induced FGFR...

  4. Multiple promoters drive tissue-specific expression of the human M2 muscarinic acetylcholine receptor gene

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Alena; Bruce, A. W.; Doležal, Vladimír; Tuček, Stanislav; Buckley, N. J.

    2004-01-01

    Roč. 91, č. 1 (2004), s. 88-98 ISSN 0022-3042 R&D Projects: GA AV ČR IAA5011306 Institutional research plan: CEZ:AV0Z5011922 Keywords : M2 muscarinic receptor * neuron-restrictive silence factor * promoter Subject RIV: ED - Physiology Impact factor: 4.824, year: 2004

  5. Association analysis of peroxisome proliferator-activated receptors gamma gene polymorphisms with asprin hypersensitivity in asthmatics.

    Science.gov (United States)

    Oh, Sun-Hee; Park, Se-Min; Park, Jong-Sook; Jang, An-Soo; Lee, Yong-Mok; Uh, Soo-Taek; Kim, Young Hoon; Choi, In-Seon; Kim, Mi-Kyeong; Park, Byeong Lae; Shin, Hyoung-Doo; Park, Choon-Sik

    2009-10-01

    Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors activated by ligands of the nuclear hormone receptor superfamily. The activation of PPARgamma regulates inflammation by downregulating the production of Th2 type cytokines and eosinophil function. In addition, a range of natural substances, including arachidonate pathway metabolites such as 15-hydroxyeicosatetranoic acid (15-HETE), strongly promote PPARG expression. Therefore, genetic variants of the PPARG gene may be associated with the development of aspirin-intolerant asthma (AIA). We investigated the relationship between single nucleotide polymorphism (SNP) of the PPARG gene and AIA. Based on the results of an oral aspirin challenge, asthmatics (n=403) were categorized into two groups: those with a decrease in FEV(1) of 15% or greater (AIA) or less than 15% (aspirin-tolerant asthma, ATA). We genotyped two single nucleotide polymorphisms in the PPARG gene from Korean asthmatics and normal controls (n=449): +34C>G (Pro12Ala) and +82466C>T (His449His). Logistic regression analysis showed that +82466C>T and haplotype 1 (CC) were associated with the development of aspirin hypersensitivity in asthmatics (P=0.04). The frequency of the rare allele of +82466C>T was significantly higher in AIA patients than in ATA patients in the recessive model [P=0.04, OR=3.97 (1.08-14.53)]. In addition, the frequency of PPARG haplotype 1 was significantly lower in AIA patients than in ATA patients in the dominant model (OR=0.25, P=0.04). The +82466C>T polymorphism and haplotype 1 of the PPARG gene may be linked to increased risk for aspirin hypersensitivity in asthma.

  6. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisomes proliferate-activated receptor {gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunjung; Shin, Soyoung; Lee, Jeeyoung; Lee, So Jung; Kim, Jinkyoung; Yoon, Doyoung; Kim, Yangmee [Konkuk Univ., Seoul (Korea, Republic of); Woo, Eunrhan [Chosun Univ., Gwangju (Korea, Republic of)

    2012-07-15

    Human peroxisomes proliferate-activated receptor gamma (hPPAR{gamma}) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. Previously, we verified that amentoflavone is an activator of hPPAR{gamma} and probed the molecular basis of its action. In this study, we investigated the mechanism of action of amentoflavone in cancer cells and demonstrated that amentoflavone showed strong cytotoxicity against MCF-7 and HeLa cancer cell lines. We showed that hPPAR{gamma} expression in MCF-7 and HeLa cells is specifically stimulated by amentoflavone, and suggested that amentoflavone-induced cytotoxic activities are mediated by activation of hPPAR{gamma} in these two cancer cell lines. Moreover, amentoflavone increased PTEN levels in these two cancer cell lines, indicating that the cytotoxic activities of amentoflavone are mediated by increasing of PTEN expression levels due to hPPAR{gamma} activation.

  7. Identification of alpha beta and gamma delta T cell receptor-positive cells

    DEFF Research Database (Denmark)

    Geisler, C; Larsen, J K; Plesner, T

    1988-01-01

    distribution and function of these different T cells. In immunofluorescence studies gamma delta TCR+ cells have been identified as CD3+WT-31- or CD3+CD4-CD8- cells. However, this may not be the optimal procedure because gamma delta TCR+ cells are weakly WT-31+, and some are CD8+. The aim of this study...... was to evaluate a panel of monoclonal antibodies (MoAb) directed against different chains of the TCR-T3 complex for a more precise identification of alpha beta+ and gamma delta TCR+ cells in flow cytometric studies. We found that the MoAb anti-Ti-gamma A and delta-TCS-1, recognizing the TCR-gamma and the TCR...

  8. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    Full Text Available BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl-N-methyl-(3E-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice

  9. Novel time-dependent vascular actions of Δ9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma

    International Nuclear Information System (INIS)

    O'Sullivan, Saoirse E.; Tarling, Elizabeth J.; Bennett, Andrew J.; Kendall, David A.; Randall, Michael D.

    2005-01-01

    Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, Δ 9 -tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPARγ). In vitro, THC (10 μM) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPARγ agonist rosiglitazone and was inhibited by the PPARγ antagonist GW9662 (1 μM), but not the cannabinoid CB 1 receptor antagonist AM251 (1 μM). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPARγ, transiently expressed in combination with retinoid X receptor α and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 μM). In vitro incubation with THC (1 or 10 μM, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPARγ ligands. The present results provide strong evidence that THC is a PPARγ ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors

  10. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

    Science.gov (United States)

    Sirois, Cherilyn M.; Jin, Tengchuan; Miller, Allison L.; Bertheloot, Damien; Nakamura, Hirotaka; Horvath, Gabor L.; Mian, Abubakar; Jiang, Jiansheng; Schrum, Jacob; Bossaller, Lukas; Pelka, Karin; Garbi, Natalio; Brewah, Yambasu; Tian, Jane; Chang, ChewShun; Chowdhury, Partha S.; Sims, Gary P.; Kolbeck, Roland; Coyle, Anthony J.; Humbles, Alison A.

    2013-01-01

    Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE–DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo. PMID:24081950

  11. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately...... for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner...

  12. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Backstrom, T; Lauritsen, JP

    1998-01-01

    mediated by the serine/threonine protein phosphatase-2A, but independent on microtubules or actin polymerization. Furthermore, in contrast to ligand-mediated TCR sorting, recycling of the TCR was independent of the tyrosine phosphatase CD45 and the Src tyrosine kinases p56(Lck) and p59(Fyn). Studies......The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...

  13. Perinatal HIV-1 transmission: Fc gamma receptor variability associates with maternal infectiousness and infant susceptibility.

    Science.gov (United States)

    Lassaunière, Ria; Musekiwa, Alfred; Gray, Glenda E; Kuhn, Louise; Tiemessen, Caroline T

    2016-06-10

    Accumulating data suggest that immune effector functions mediated through the Fc portion of HIV-1-specific immunoglobulin G (IgG) are a key component of HIV-1 protective immunity, affecting both disease progression and HIV-1 acquisition. Through studying Fc gamma receptor (FcγR) variants known to alter IgG Fc-mediated immune responses, we indirectly assessed the role of FcγR-mediated effector functions in modulating perinatal HIV-1 transmission risk. In this study, genotypic data from 79 HIV-1 infected mothers and 78 HIV-1 infected infants (transmitting cases) were compared to 234 HIV-1 infected mothers and 235 HIV-1 exposed-uninfected infants (non-transmitting controls). Associations, unadjusted and adjusted for multiple comparisons, were assessed for overall transmission and according to mode of transmission-intrapartum (n = 31), in utero (n = 20), in utero-enriched (n = 48). The maternal FcγRIIIa-158V allele that confers enhanced antibody binding affinity and antibody-dependent cellular cytotoxicity capacity significantly associated with reduced HIV-1 transmission [odds ratio (OR) 0.47, 95 % confidence interval (CI) 0.28-0.79, P = 0.004; PBonf > 0.05]. In particular, the FcγRIIIa-158V allele was underrepresented in the in utero transmitting group (P = 0.048; PBonf > 0.05) and in utero-enriched transmitting groups (P = 0.0001; PBonf transmission (OR 1.87, 95 % CI 1.08-3.21, P = 0.025; PBonf > 0.05) and acquisition (OR 1.91, 95 % CI 1.11-3.30, P = 0.020; PBonf > 0.05), respectively. Conversely, the infant FcγRIIIb-HNA1a|1a genotype was significantly protective of perinatal HIV-1 acquisition (OR 0.42, 95 % CI 0.18-0.96, P = 0.040; PBonf > 0.05). The findings of this study suggest a potential role for FcγR-mediated effector functions in perinatal HIV-1 transmission. However, future studies are required to validate the findings of this study, in particular associations that did not retain significance after adjustment for

  14. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-01-01

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα + ) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  15. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  16. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-{gamma}-dependent activity

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Yasuda, Osamu [Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Kumamoto (Japan); Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Ogawa, Hisao [Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Kim-Mitsuyama, Shokei, E-mail: kimmitsu@gpo.kumamoto-u.ac.jp [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan)

    2011-07-08

    Highlights: {yields} Telmisartan, an angiotensin receptor blocker, acts as a partial PPAR{gamma} agonist. {yields} The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NF{kappa}B activation and TNF {alpha}. {yields} PPAR{gamma} activity of telmisartan was involved in the normalization of vascular PPAR{gamma} downregulation in diabetic mice. {yields} We provided the first evidence indicating that PPAR{gamma} activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPAR{gamma} agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPAR{gamma} activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPAR{gamma} antagonist), and losartan with no PPAR{gamma} activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NF{kappa}B) activation and tumor necrosis factor {alpha}. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPAR{gamma} activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of

  17. Rosiglitazone inhibits HMC-1 cell migration and adhesion through a peroxisome proliferator-activated receptor gamma-dependent mechanism.

    Science.gov (United States)

    Zhang, Guqin; Yang, Jiong; Li, Ping; Cao, Jie; Nie, Hanxiang

    2014-02-01

    Mast cells play an important role in a variety of inflammatory diseases, particularly asthma and atopy. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the large nuclear hormone receptor transcription factor superfamily, and has been recently implicated in the anti-inflammatory response. To investigate a possible role for PPARγ in human mast cells, we studied the effects of a PPARγ ligand, rosiglitazone (RG), on stem cell factor (SCF)-induced migration and fibronectin-induced adhesion in human mast cell-1(HMC-1) cells. It was found that HMC-1 cells expressed PPARγ mRNA. RG inhibited SCF-induced HMC-1 cell migration and fibronectin-induced HMC-1 cell adhesion, the selective PPARγ antagonist GW9662 prevented the inhibitory effect of RG on HMC-1 cells. In conclusion, RG inhibits the migration and adhesion of HMC-1 cells by a PPARγ-dependent mechanism.

  18. Activation of dopamine receptors in the nucleus accumbens promotes sucrose-reinforced cued approach behavior

    Directory of Open Access Journals (Sweden)

    Saleem M. Nicola

    2016-07-01

    Full Text Available Dopamine receptor activation in the nucleus accumbens (NAc promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.

  19. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    Energy Technology Data Exchange (ETDEWEB)

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.; Russell, L.B.; Rinchik, E.M. [Oak Ridge National Lab., TN (United States)

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  20. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  1. Phenotypic screening of hepatocyte nuclear factor (HNF) 4-gamma receptor knockout mice.

    Science.gov (United States)

    Gerdin, Anna Karin; Surve, Vikas V; Jönsson, Marie; Bjursell, Mikael; Björkman, Maria; Edenro, Anne; Schuelke, Meint; Saad, Alaa; Bjurström, Sivert; Lundgren, Elisabeth Jensen; Snaith, Michael; Fransson-Steen, Ronny; Törnell, Jan; Berg, Anna-Lena; Bohlooly-Y, Mohammad

    2006-10-20

    Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-gamma. HNF4-gamma is expressed in the kidneys, gut, pancreas, and testis. The first level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-gamma(+/+)), the HNF4-gamma knockout (HNF4-gamma(-/-)) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-gamma(-/-) mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test.

  2. Ferristatin II promotes degradation of transferrin receptor-1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Shaina L Byrne

    Full Text Available Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611 acts by down-regulating transferrin receptor-1 (TfR1 via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679, acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug's activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal (59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.

  3. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    Energy Technology Data Exchange (ETDEWEB)

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan; Bigge, Christopher F.; Chen, Jing; Davis, Jo Ann; Dudley, Danette A.; Edmunds, Jeremy J.; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J.; Jalaie, Mehran; Ohren, Jeffrey F.; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P.; Stoner, Chad (Pfizer)

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partial PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  4. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    International Nuclear Information System (INIS)

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-01-01

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance

  5. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  6. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  7. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di-leucine...

  8. Seminal Plasma Proteins as Androgen Receptor Coregulators Promote Prostate Cancer Growth

    Science.gov (United States)

    2014-10-01

    the presence of zinc was found to induce androgen-mediated PSA expression in AR-positive prostate cancer cells. Reportable Outcomes Ishiguro ...prostatectomy. Hum Pathol 43: 6 1991–2000, 2012. Appendix Ishiguro H, Izumi K, Zheng Y, Kashiwagi E, Kawahara T, Miyamoto H: Semenogelin I promotes...PROSTATE CANCER CELL GROWTH VIA FUNCTIONING AS AN ANDROGEN RECEPTOR COACTIVATOR AND PROTECTING AGAINST ZINC CYTOTOXICITY Hitoshi Ishiguro *, Baltimore

  9. Galanin and its receptor system promote the repair of injured sciatic nerves in diabetic rats

    Directory of Open Access Journals (Sweden)

    Xiao-feng Xu

    2016-01-01

    Full Text Available Various studies have reported that galanin can promote axonal regeneration of dorsal root ganglion neurons in vitro and inhibit neuropathic pain. However, little is known about its effects on diabetic peripheral neuropathy, and in vivo experimental data are lacking. We hypothesized that repeated applications of exogenous galanin over an extended time frame may also repair nerve damage in diabetic peripheral neuropathy, and relieve pain in vivo. We found that neuropathic pain occurred in streptozotocin-induced diabetic rats and was more severe after sciatic nerve pinch injury at 14 and 28 days than in diabetic sham-operated rats. Treatment with exogenous galanin alleviated the neuropathic pain and promoted sciatic nerve regeneration more effectively in diabetic rats than in non-diabetic rats after sciatic nerve pinch injury. This was accompanied by changes in the levels of endogenous galanin, and its receptors galanin receptor 1 and galanin receptor 2 in the dorsal root ganglia and the spinal dorsal horn when compared with nerve pinch normal rats. Our results show that application of exogenous galanin daily for 28 days can promote the regeneration of injured sciatic nerves, and alleviate neuropathic pain in diabetic rats.

  10. Characterization of promoter sequence of toll-like receptor genes in Vechur cattle

    Directory of Open Access Journals (Sweden)

    R. Lakshmi

    2016-06-01

    Full Text Available Aim: To analyze the promoter sequence of toll-like receptor (TLR genes in Vechur cattle, an indigenous breed of Kerala with the sequence of Bos taurus and access the differences that could be attributed to innate immune responses against bovine mastitis. Materials and Methods: Blood samples were collected from Jugular vein of Vechur cattle, maintained at Vechur cattle conservation center of Kerala Veterinary and Animal Sciences University, using an acid-citrate-dextrose anticoagulant. The genomic DNA was extracted, and polymerase chain reaction was carried out to amplify the promoter region of TLRs. The amplified product of TLR2, 4, and 9 promoter regions was sequenced by Sanger enzymatic DNA sequencing technique. Results: The sequence of promoter region of TLR2 of Vechur cattle with the B. taurus sequence present in GenBank showed 98% similarity and revealed variants for four sequence motifs. The sequence of the promoter region of TLR4 of Vechur cattle revealed 99% similarity with that of B. taurus sequence but not reveals significant variant in motifregions. However, two heterozygous loci were observed from the chromatogram. Promoter sequence of TLR9 gene also showed 99% similarity to B. taurus sequence and revealed variants for four sequence motifs. Conclusion: The results of this study indicate that significant variation in the promoter of TLR2 and 9 genes in Vechur cattle breed and may potentially link the influence the innate immunity response against mastitis diseases.

  11. Tyrosine agonists reverse the molecular defects associated with dominant-negative mutations in human peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Agostini, Maura; Gurnell, Mark; Savage, David B; Wood, Emily M; Smith, Aaron G; Rajanayagam, Odelia; Garnes, Keith T; Levinson, Sidney H; Xu, H Eric; Schwabe, John W R; Willson, Timothy M; O'Rahilly, Stephen; Chatterjee, V Krishna

    2004-04-01

    Loss-of-function mutations in the ligand-binding domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) are associated with a novel syndrome characterized by partial lipodystrophy and severe insulin resistance. Here we have further characterized the properties of natural dominant-negative PPARgamma mutants (P467L, V290M) and evaluated the efficacy of putative natural ligands and synthetic thiazolidinedione (TZD) or tyrosine-based (TA) receptor agonists in rescuing mutant receptor function. A range of natural ligands failed to activate the PPARgamma mutants and their transcriptional responses to TZDs (e.g. pioglitazone, rosiglitazone) were markedly attenuated, whereas TAs (e.g. farglitazar) corrected defects in ligand binding and coactivator recruitment by the PPARgamma mutants, restoring transcriptional function comparable with wild-type receptor. Transcriptional silencing via recruitment of corepressor contributes to dominant-negative inhibition of wild type by the P467L and V290M mutants and the introduction of an artificial mutation (L318A) disrupting corepressor interaction abrogated their dominant-negative activity. More complete ligand-dependent corepressor release and reversal of dominant-negative inhibition was achieved with TA than TZD agonists. Modeling suggests a structural basis for these observations: both mutations destabilize helix 12 to favor receptor-corepressor interaction; conversely, farglitazar makes more extensive contacts than rosiglitazone within the ligand-binding pocket, to stabilize helix 12, facilitating corepressor release and transcriptional activation. Farglitazar was a more potent inducer of PPARgamma target gene (aP2) expression in peripheral blood mononuclear cells with the P467L mutation. Having shown that rosiglitazone is of variable and limited efficacy in these subjects, we suggest that TAs may represent a more rational therapeutic approach.

  12. Polymorphisms in an interferon-gamma receptor-1 gene marker and susceptibility to periodontitis

    NARCIS (Netherlands)

    Fraser, DA; Loos, BG; Boman, U; van Winkelhoff, AJ; van der Velden, U; Schenck, K; Dembic, Z

    2003-01-01

    Chronic marginal periodontitis is an inflammatory condition in which the supporting tissues of the teeth are destroyed. Interferon (IFN)-gamma is a cytokine that plays a pivotal role in the defense against infection, and mutations in the gene coding for the ligand binding chain (alpha, RI) of the

  13. Phagocytosis via Complement or Fc-Gamma Receptors Is Compromised in Monocytes from Type 2 Diabetes Patients with Chronic Hyperglycemia

    Science.gov (United States)

    Restrepo, Blanca I.; Twahirwa, Marcel; Rahbar, Mohammad H.; Schlesinger, Larry S.

    2014-01-01

    Type 2 diabetes patients (DM2) have a higher risk of tuberculosis (TB) that may be attributed to functional defects in their mononuclear phagocytes given the critical role of these cells in Mycobacterium tuberculosis containment. Our previous findings suggest that monocytes from DM2 have reduced association with serum-opsonized M. tuberculosis. To determine if this alteration is due to defects in phagocytosis via complement or Fc-gamma receptors (FcγRs), in this study we evaluated the uptake of sheep red blood cells coated with IgG or complement, respectively, by monocytes from individuals with and without DM2. We found that chronic hyperglycemia was significantly associated with reduced phagocytosis via either receptor by univariable and multivariable analyses. This defect was independent of host serum opsonins and flow cytometry data indicated this was not attributed to reduced expression of these phagocytic receptors on DM2 monocytes. The positive correlation between both pathways (R = 0.64; p = 0.003) indicate that monocytes from individuals with chronic hyperglycemia have a defect in the two predominant phagocytic pathways of these cells. Given that phagocytosis is linked to activation of effector mechanisms for bacterial killing, it is likely that this defect is one factor contributing to the higher susceptibility of DM2 patients to pathogens like M. tuberculosis. PMID:24671137

  14. Analysis of subcomponents of the gamma-aminobutyric acid/benzodiazepine receptor macromolecular complex in mammalian central nervous system

    International Nuclear Information System (INIS)

    McCabe, R.T.

    1987-01-01

    Since the presence of endogenous gamma-aminobutyric acid (GABA) may affect benzodiazepine binding to tissue sections in autoradiographic studies, a protocol designed to check for this influence has been investigated. [ 3 H]Flunitrazepam (1 nM) was used to label benzodiazepine receptors for autoradiographic localization. Bicuculline was added to the incubation medium of an additional set of tissue sections to antagonize any potential effect of endogenous GABA. Binding in these sections was compared to that occurring in another set in which excess GABA was added to create further GABA enhancement. Binding was also compared to adjacent sections which were treated similarly but also preincubated in distilled-deionized water to burst the cells by osmotic shock and eliminate endogenous GABA, thereby preventing any effect on benzodiazepine binding. The results indicated that endogenous GABA is indeed present in the slide-mounted tissue sections and is affecting benzodiazepine receptor binding differentially in various regions of the brain depending on the density of GABAergic innervation. Scatchard analysis of saturation data demonstrated that the alteration in BZ binding due to GABA was a result of a change in the affinity rather than number of receptors present

  15. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    International Nuclear Information System (INIS)

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-01-01

    Highlights: ► Rosiglitazone attenuated postincisional pain. ► Rosiglitazone alters macrophage polarization to F4/80 + CD206 + M2 macrophages at the incisional sites. ► Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor γ (PPAR)γ signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPARγ agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPARγ signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPARγ signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor κB (NFκB) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80 + iNOS + M1 macrophages was decreased whereas numbers of F4/80 + CD206 + M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas M1-macrophage-related molecules such as integrin αX, IL-1β, MIP2α and leptin were decreased at rosiglitazone-treated incisional sites

  16. Partial Agonism of Taurine at Gamma-Containing Native and Recombinant GABAA Receptors

    Science.gov (United States)

    Kletke, Olaf; Gisselmann, Guenter; May, Andrea; Hatt, Hanns; A. Sergeeva, Olga

    2013-01-01

    Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α1/2β1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ1/2 subunit reduced taurine efficacy to 60–90% of GABA. The mutation γ2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ2 subunit carrying the δ subunit motif around F77 (MTVFLH). At α1/2β1γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine’s partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions. PMID:23637894

  17. Partial agonism of taurine at gamma-containing native and recombinant GABAA receptors.

    Directory of Open Access Journals (Sweden)

    Olaf Kletke

    Full Text Available Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN which controls arousal. At binary α(1/2β(1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ(1/2 subunit reduced taurine efficacy to 60-90% of GABA. The mutation γ(2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ(2 subunit carrying the δ subunit motif around F77 (MTVFLH. At α(1/2β(1γ2(MTVFLH receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine's partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (pathophysiological conditions.

  18. Multiple phosphorylation events control chicken ovalbumin upstream promoter transcription factor I orphan nuclear receptor activity.

    Science.gov (United States)

    Gay, Frédérique; Baráth, Peter; Desbois-Le Péron, Christine; Métivier, Raphaël; Le Guével, Rémy; Birse, Darcy; Salbert, Gilles

    2002-06-01

    Chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) is an orphan member of the nuclear hormone receptor superfamily that comprises key regulators of many biological functions, such as embryonic development, metabolism, homeostasis, and reproduction. Although COUP-TFI can both actively silence gene transcription and antagonize the functions of various other nuclear receptors, the COUP-TFI orphan receptor also acts as a transcriptional activator in certain contexts. Moreover, COUP-TFI has recently been shown to serve as an accessory factor for some ligand-bound nuclear receptors, suggesting that it may modulate, both negatively and positively, a wide range of hormonal responses. In the absence of any identified cognate ligand, the mechanisms involved in the regulation of COUP-TFI activity remain unclear. The elucidation of several putative phosphorylation sites for MAPKs, PKC, and casein kinase II within the sequence of this orphan receptor led us to investigate phosphorylation events regulating the various COUP-TFI functions. After showing that COUP-TFI is phosphorylated in vivo, we provide evidence that in vivo inhibition of either MAPK or PKC signaling pathway leads to a specific and pronounced decrease in COUP-TFI-dependent transcriptional activation of the vitronectin gene promoter. Focusing on the molecular mechanisms underlying the MAPK- and PKC-mediated regulation of COUP-TFI activity, we show that COUP-TFI can be directly targeted by PKC and MAPK. These phosphorylation events differentially modulate COUP-TFI functions: PKC-mediated phosphorylation enhances COUP-TFI affinity for DNA and MAPK-mediated phosphorylation positively regulates the transactivation function of COUP-TFI, possibly through enhancing specific coactivator recruitment. These data provide evidence that COUP-TFI is likely to integrate distinct signaling pathways and raise the possibility that multiple extracellular signals influence biological processes controlled by COUP-TFI.

  19. CD36 and Platelet-Activating Factor Receptor Promote House Dust Mite Allergy Development.

    Science.gov (United States)

    Patel, Preeyam S; Kearney, John F

    2017-08-01

    Over 89% of asthmatic children in underdeveloped countries demonstrate sensitivity to house dust mites (HDMs). The allergic response to HDMs is partially mediated by epithelial cell-derived cytokines that activate group 2 innate lymphoid cells, induce migration and activation of dendritic cells, and promote effector differentiation of HDM-specific TH2 cells. However, the contribution of innate receptor engagement on epithelial or dendritic cells by HDMs that ultimately mediates said innate and adaptive allergic responses is poorly understood. We and other investigators have demonstrated that HDMs express phosphorylcholine (PC) moieties. The major PC receptors involved in immune responses include CD36 and platelet-activating factor receptor (PAFR). Because CD36 and PAFR are expressed by epithelial cells and dendritic cells, and expression of these receptors is higher in human asthmatics, we determined whether engagement of CD36 or PAFR on epithelial or dendritic cells contributes to HDM allergy development. Testing bone marrow chimeric mice revealed that CD36 engagement on radioresistant cells and PAFR engagement on radioresistant and radiosensitive cells in the lung promote allergic responses to HDMs. Additionally, passive anti-PC IgM Abs administered intratracheally with HDMs decreased allergen uptake by epithelial cells and APCs in the lungs of C57BL/6 mice but not CD36 -/- or PAFR -/- mice. These results show that CD36 and PAFR are important mediators of HDM allergy development and that inhibiting HDM engagement with PC receptors in the lung protects against allergic airway disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor gamma2 subunit.

    Science.gov (United States)

    Kittler, Josef T; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R; McAinsh, Kristina; Arancibia-Carcamo, I Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J

    2008-03-04

    The regulation of the number of gamma2-subunit-containing GABA(A) receptors (GABA(A)Rs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface gamma2-subunit-containing GABA(A)Rs is regulated. Here, we identify a gamma2-subunit-specific Yxxvarphi-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for gamma2-subunit tyrosine phosphorylation. Blocking GABA(A)R-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxvarphi motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that gamma2-subunit-containing heteromeric GABA(A)Rs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABA(A)R surface levels and synaptic inhibition.

  1. GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1988-01-01

    The ability of the GABA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) to promote formation of low affinity GABA receptors on cerebellar granule cells was tested using primary cultures of these neurons. Granule cells were exposed to THIP (150 microM) for 6 hr after......, respectively, 4, 7, 10 and 14 days in culture. It was found that THIP treatment of 4- and 7-day-old cultures led to formation of low affinity GABA receptors, whereas such receptors could not be detected after THIP treatment in the older cultures (10 and 14 days) in spite of the fact that these cultured granule...... cells expressed a high density of high affinity GABA receptors. It is concluded that the ability of THIP to promote formation of low affinity GABA receptors on cerebellar granule cells is restricted to an early developmental period....

  2. P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway.

    Science.gov (United States)

    Fang, Jingqin; Chen, Xiao; Zhang, Letian; Chen, Jinhua; Liang, Yi; Li, Xue; Xiang, Jianbo; Wang, Lili; Guo, Guangkuo; Zhang, Bo; Zhang, Weiguo

    2013-06-01

    P2X7 receptor (P2X7R) has been shown to mediate an anticancer effect via apoptosis in different types of cancer. However, whether P2X7R exerts a promoting or suppressive effect on brain glioma is still a controversial issue and its underlying mechanism remains unknown. We showed here that P2X7R suppression exerted a pro-growth effect on glioma through directly promoting cells proliferation and pro-angiogenesis, which was associated with epidermal growth factor receptor (EGFR) signaling. The P2X7R was markedly downregulated by cells exposure to the P2X7R antagonist, brilliant blue G (BBG), moreover, the cells proliferation was enhanced in a dose-dependent manner and the expression of EGFR or p-EGFR protein was significantly upregulated. By constructing C6 cells with reduced expression of P2X7R using shRNA, we also demonstrated strong upregulation in cells proliferation and EGFR/p-EGFR expression. However, this effect of BBG was reversed in the presence of gefitinib or suramin. Magnetic resonance imaging and computed tomography perfusion showed that the BBG or P2X7R shRNA promoted the tumor growth by about 40% and 50%, respectively, and significantly increased angiogenesis. Nissl and Ki-67 staining also confirmed that BBG or P2X7R shRNA notably increased the tumor growth. More importantly, either BBG or P2X7R shRNA could markedly upregulated the expression of EGFR, p-EGFR, HIF-1α and VEGF in glioma cells. In conclusion, P2X7R suppression exerts a promoting effect on glioma growth, which is likely to be related to upregulated EGFR, HIF-1α and VEGF expression. These findings provide important clues to the molecular basis of anticancer effect of targeting purinergic receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Peroxisome proliferator-activated receptor gamma activation promotes infiltration of alternatively activated macrophages into adipose tissue.

    NARCIS (Netherlands)

    Stienstra, R.; Duval, C.; Keshtkar, S.; Laak, J. ter; Kersten, S.; Muller, M.

    2008-01-01

    Obesity is associated with infiltration of macrophages into adipose tissue. Adipose macrophages may contribute to an elevated inflammatory status by secreting a variety of proinflammatory mediators, including tumor necrosis factor alpha and interleukin-6 (IL-6). Recent data suggest that during

  4. Comparative investigations of T cell receptor gamma gene rearrangements in frozen and formalin-fixed paraffin wax-embedded tissues by capillary electrophoresis

    DEFF Research Database (Denmark)

    Christensen, M; Funder, A D; Bendix, K

    2006-01-01

    AIM: To compare clonal T cell receptor gamma (TCRgamma) gene rearrangements in frozen and formalin-fixed paraffin wax-embedded (FFPE) tissue, using capillary electrophoresis for use in diagnostics, as T cell lymphomas may be difficult to diagnose by conventional methods. METHODS: The DNA for PCR...

  5. Distribution function approach to the study of the kinetics of IgM antibody binding to Fc gamma RIIIb (CD16b) receptors on neutrophils by flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Orlova, Darya Yu; Borisov, V.; Kozhevnikov, V.S.; Maltsev, V.P.; Chernyshev, A.V.

    2011-01-01

    Roč. 290, DEC2011 (2011), s. 1-6 ISSN 0022-5193 Institutional support: RVO:68081707 Keywords : Mathematical model * Neutrophils * Fc gamma RIIIb or CD16b receptors Subject RIV: BO - Biophysics Impact factor: 2.208, year: 2011

  6. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-{gamma} ligand, rosiglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Yuta; Inoue, Jun [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Ueno, Yoshiyuki, E-mail: yueno@mail.tains.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan); Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai 980-8574 (Japan)

    2010-05-28

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.

  7. A mutation in the IL-2 receptor gamma chain gene associated with X-linked severe combined immunodeficiency accompanying opisthotonus.

    Science.gov (United States)

    Kashiwagi, Yasuyo; Kawashima, Hisashi; Kato, Naoki; Takekuma, Kouji; Hoshika, Akinori; Kumaki, Satoru

    2009-05-01

    Severe combined immunodeficiency (SCID) is an inherited disease with profoundly defective T cells, B cells, and NK cells. X-linked severe combined immunodeficiency (X-SCID) is its most common form. In this report, we describe a 4-month old male with X-SCID who also showed opisthotonic posturing. Opisthotonus represents abnormal motor posturing and is defined as the posturing, in which the neck and back are arched posteriorly. The patient was referred to our hospital with liver dysfunction, respiratory distress, anal abscess, poor feeding and wasting; the patient appeared to suffer from severe and persistent infections. In fact, circulating T cells were not detectable, despite that the number of B cells was maintained in the normal ranges. Diagnosis of X-SCID was established by DNA analysis of the interleukin (IL)-2 receptor gamma chain gene; namely, we detected the novel mutation within exon 2 (221 C-->A), which leads to the substitution of tyrosine codon for stop codon (Y69stop). Computed tomography of the brain revealed mild atrophy, but no hemorrhage and no malformation. There were no pathological findings in the cerebrospinal fluid. Thus, the cause of opisthotonic posturing remains unknown. The patient died due to severe infection at the age of 7 months. It remains to be investigated to clarify the relationship between the mutation and clinical manifestations. In conclusion, we have identified the novel mutation in the IL-2 receptor gamma chain gene, which is associated with X-SCID. Furthermore, this is the first report that describes the patient with X-SCID accompanying opisthotonus.

  8. The high-affinity human IgG receptor Fc gamma receptor I (FcγRI) is not associated with vascular leakage of dengue.

    Science.gov (United States)

    Mohamad Zamberi, Zaiharina; Zakaria, Zuraihan; Abdul Aziz, Abu Thalhah; Heng, Benedict Sim Lim; Zaid, Masliza; Chong, Christopher Lee Kwok; Noor, Fadzilah Mohd; Abu Bakar, Sazaly; Boon Peng, Hoh

    2015-01-08

    Dengue is a major public health problem in many tropical and sub-tropical countries. Vascular leakage and shock are identified as the major causes of deaths in patients with severe dengue. Studies have suggested the potential role of Fc gamma receptors I (FcγRI) in the pathogenesis of dengue. We hypothesized that the circulating level of Fcγ receptor I could potentially be used as an indicator in assisting early diagnosis of severe dengue. A selected cohort of 66 dengue patients including 42 dengue with signs of vascular leakage, and 24 dengue without signs of vascular leakage were identified and were afterwards referred to as 'cases' and 'controls' respectively. Thirty seven normal healthy controls were also recruited in this study. The circulating level of FcγRI was quantified from the serum using enzyme-link immunosorbent assay (ELISA). The levels of FcγRI in both groups of patients with and without vascular leakage were found to be significantly higher than the normal healthy controls (P dengue. However, further studies are necessary to delineate the role of FcγRI in antibody-dependent enhancement (ADE) mechanism.

  9. Peroxisome proliferator-activated receptor gamma and retinoid X receptor transcription factors are released from activated human platelets and shed in microparticles.

    Science.gov (United States)

    Ray, Denise M; Spinelli, Sherry L; Pollock, Stephen J; Murant, Thomas I; O'Brien, Jamie J; Blumberg, Neil; Francis, Charles W; Taubman, Mark B; Phipps, Richard P

    2008-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands are important regulators of lipid metabolism, inflammation, and diabetes. We previously demonstrated that anucleate human platelets express the transcription factor PPARgamma and that PPARgamma ligands blunt platelet activation. To further understand the nature of PPARgamma in platelets, we determined the platelet PPARgamma isoform(s) and investigated the fate of PPARgamma following platelet activation. Our studies demonstrated that human platelets contain only the PPARgamma1 isoform and after activation with thrombin, TRAP, ADP or collagen PPARgamma is released from internal stores. PPARgamma release was blocked by a cytoskeleton inhibitor, Latrunculin A. Platelet-released PPARgamma was complexed with the retinoid X receptor (RXR) and retained its ability to bind DNA. Interestingly, the released PPARgamma and RXR were microparticle associated and the released PPARgamma/RXR complex retained DNA-binding ability. Additionally, a monocytic cell line, THP-1, is capable of internalizing PMPs. Further investigation following treatment of these cells with the PPARgamma agonist, rosiglitazone and PMPs revealed a possible transcellular mechanism to attenuate THP-1 activation. These new findings are the first to demonstrate transcription factor release from platelets, revealing the complex spectrum of proteins expressed and expelled from platelets, and suggests that platelet PPARgamma has an undiscovered role in human biology.

  10. MGMT promoter methylation status as a prognostic factor for the outcome of gamma knife radiosurgery for recurrent glioblastoma.

    Science.gov (United States)

    Kim, Byung Sup; Kong, Doo-Sik; Seol, Ho Jun; Nam, Do-Hyun; Lee, Jung-Il

    2017-07-01

    We conducted this study to determine whether the methylation status of the O 6 -methylguanine-DNA methyltransferase (MGMT) promoter was a prognostic marker for positive outcomes of gamma knife radiosurgery (GKS) for recurrent glioblastoma (GBM). We retrospectively examined 61 patients, who underwent GKS for local recurrent GBM between 2004 and 2015; in all patients, the methylation status of the MGMT promoter was identified via methylation-specific quantitative real-time polymerase chain reaction. All patients underwent surgical resection and were diagnosed histopathologically with GBM. Prognostic factors associated with progression-free survival (PFS) and overall survival (OS) were identified in univariate and multivariate analyses. Twenty-five (41%) had a methylated MGMT promoter, and 36 (59%) had an unmethylated MGMT promoter. The median age at GKS was 58 years. The median tumor volume at GKS was 7.0 cm 3 , and the median marginal dose was 16 Gy. The median follow-up period after GKS was 7.5 months. The median PFS time after GKS was 8.9 months (95% CI 4.3-13.5 months) in the methylated and 4.6 months (95% CI 3.7-5.5 months) in the unmethylated group (P = 0.016). The median OS time after GKS was 14.0 months (95% CI 9.3-18.7 months) in the methylated group and 9.0 months (95% CI 6.5-11.5 months) in the unmethylated group (P = 0.026). Methylation of the MGMT promoter correlated with better PFS and OS after GKS for recurrent GBM. Prospective comparative studies are required to determine whether MGMT methylation directly affects the efficiency of GKS.

  11. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Mohd Hafez Mohd, E-mail: m.hafez@usim.edu.my; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman [Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan (Malaysia); Yasir, Muhamad Samudi [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2016-01-22

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  12. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    Science.gov (United States)

    Isa, Mohd Hafez Mohd; Yasir, Muhamad Samudi; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman

    2016-01-01

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  13. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    International Nuclear Information System (INIS)

    Isa, Mohd Hafez Mohd; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman; Yasir, Muhamad Samudi

    2016-01-01

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically

  14. Dopamine receptor D4 promoter hypermethylation increases the risk of drug addiction.

    Science.gov (United States)

    Ji, Huihui; Xu, Xuting; Liu, Guili; Liu, Huifen; Wang, Qinwen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Hu, Haochang; Xu, Lei; Zhou, Wenhua; Duan, Shiwei

    2018-02-01

    Heroin and methylamphetamine (METH) are two addictive drugs that cause serious problems for society. Dopamine receptor D4 (DRD4), a key receptor in the dopaminergic system, may facilitate the development of drug addiction. The aim of the present study was to investigate the association between the promoter methylation level of DRD4 gene and drug addiction. Bisulfite pyrosequencing technology was used to measure the methylation levels of DRD4 promoter in 60 drug addicts and 52 matched controls. Significantly higher levels of DRD4 CpG1 and CpG4 methylation were detected in METH and heroin drug addicts compared with controls (Paddicts exhibited significantly higher DRD4 CpG1, CpG2 and CpG4 methylation levels compared with sex-matched controls (Paddicts, a positive correlation was observed between depression-dejection and DRD4 CpG5 methylation (r=0.537, P=0.039) whereas there was a negative correlation between drug usage frequency and CpG1 methylation (r=-0.632, P=0.011). In METH addicts, methylation levels were not significantly associated with depression-dejection and drug usage frequency. In addition, luciferase assays demonstrated that the target sequence of the DRD4 promoter upregulates gene expression. The results of the present study suggest that DNA methylation of DRD4 may be responsible for the pathophysiology of drug addiction.

  15. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  16. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    Science.gov (United States)

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  17. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuqin [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China); Sun, Tao [Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002 (China); Wang, Xiaodong, E-mail: xdwang666@hotmail.com [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China)

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  18. Energy-sensing Factors Coactivator Peroxisome Proliferator-activated Receptor gamma Coactivator 1-alpha (PGC-1 alpha) and AMP-activated Protein Kinase Control Expression of Inflammatory Mediators in Liver INDUCTION OF INTERLEUKIN 1 RECEPTOR ANTAGONIST

    NARCIS (Netherlands)

    Buler, M.; Aatsinki, S.M.; Skoumal, R.; Komka, Z.; Toth, M.; Kerkela, R.; Georgiadi, A.; Kersten, A.H.; Hakkola, J.

    2012-01-01

    Obesity and insulin resistance are associated with chronic, low grade inflammation. Moreover, regulation of energy metabolism and immunity are highly integrated. We hypothesized that energy-sensitive coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha) and

  19. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Stisova, Viktorie [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic); Goffinont, Stephane; Spotheim-Maurizot, Melanie [Centre de Biophysique Moleculaire CNRS, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Davidkova, Marie, E-mail: davidkova@ujf.cas.c [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic)

    2010-08-15

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERalpha, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with gamma rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  20. Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ze-Min Huang1,#, Jun Wu2,#, Zheng-Cai Jia1, Yi Tian1, Jun Tang3, Yan Tang1, Ying Wang2, Yu-Zhang Wu1,* & Bing Ni1,*

    2012-06-01

    Full Text Available The retinoid-related orphan nuclear receptor gamma (RORγplays critical roles in regulation of development, immunity andmetabolism. As transcription factor usually forms a proteincomplex to function, thus capturing and dissecting of theRORγ protein complex will be helpful for exploring themechanisms underlying those functions. After construction ofthe recombinant tandem affinity purification (TAP plasmid,pMSCVpuro RORγ-CTAP(SG, the nuclear localization ofRORγ-CTAP(SG fusion protein was verified. Followingisolation of RORγ protein complex by TAP strategy, sevencandidate interacting proteins were identified. Finally, the heatshock protein 90 (HSP90 and receptor-interacting protein 140(RIP140 were confirmed to interplay with RORγ byco-immunoprecipitation. Interference of HSP90 or/and RIP140genes resulted in dramatically decreased expression ofCYP2C8 gene, the RORγ target gene. Data from this studydemonstrate that HSP90 and RIP140 proteins interact withRORγ protein in a complex format and function asco-activators in the RORγ-mediated regulatory processes ofHepG2 cells.

  1. The Shh receptor Boc promotes progression of early medulloblastoma to advanced tumors.

    Science.gov (United States)

    Mille, Frédéric; Tamayo-Orrego, Lukas; Lévesque, Martin; Remke, Marc; Korshunov, Andrey; Cardin, Julie; Bouchard, Nicolas; Izzi, Luisa; Kool, Marcel; Northcott, Paul A; Taylor, Michael D; Pfister, Stefan M; Charron, Frédéric

    2014-10-13

    During cerebellar development, Sonic hedgehog (Shh) signaling drives the proliferation of granule cell precursors (GCPs). Aberrant activation of Shh signaling causes overproliferation of GCPs, leading to medulloblastoma. Although the Shh-binding protein Boc associates with the Shh receptor Ptch1 to mediate Shh signaling, whether Boc plays a role in medulloblastoma is unknown. Here, we show that BOC is upregulated in medulloblastomas and induces GCP proliferation. Conversely, Boc inactivation reduces proliferation and progression of early medulloblastomas to advanced tumors. Mechanistically, we find that Boc, through elevated Shh signaling, promotes high levels of DNA damage, an effect mediated by CyclinD1. High DNA damage in the presence of Boc increases the incidence of Ptch1 loss of heterozygosity, an important event in the progression from early to advanced medulloblastoma. Together, our results indicate that DNA damage promoted by Boc leads to the demise of its own coreceptor, Ptch1, and consequently medulloblastoma progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A human CD4+ T-cell line expresses functional CD64 (Fc gamma RI), CD32 (Fc gamma RII), and CD16 (Fc gamma RIII) receptors but these do not enhance the infectivity of HIV-1-IgG complexes.

    Science.gov (United States)

    McLain, L; Dimmock, N J

    1997-01-01

    T cells do not generally express Fc receptors (FcRs). However, we report here that C8166 cells, a human CD4+ T lymphoblastoid cell line, widely used in research into the human immunodeficiency virus type 1 (HIV-1), expressed CD64 (Fc gamma RI), CD32 (Fc gamma RII), and CD16 (Fc gamma RIII) on the plasma membrane as shown by immunostaining with specific monoclonal antibody fragments. Another human CD4+ T lymphoblastoid cell line. H9, expressed none of these FcRs. C8166 cells bound monomeric normal rat serum IgG in a dose-dependent manner, and when saturated bound heat-complexed immunoglobulin G (IgG) also dose dependently. These observations are consistent with the presence on the C8166 T-cell line of both high- and low-affinity Fc gamma Rs. Fc gamma Rs are putative receptors for virus-IgG complexes, but in this study did not enhance infectivity of HIV-1 complexed with a human neutralizing mAb or three rat neutralizing mAbs. Virus complexed with a non-neutralizing mouse mAb was unable to infect cells using Fc gamma Rs as receptors after CD4 was blocked with a specific anti-CD4 mAb.

  3. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    -dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......We have previously shown that porcine aortic endothelial cells expressing the Y934F platelet-derived growth factor (PDGF) beta-receptor mutant respond to PDGF-BB in a chemotaxis assay at about 100-fold lower concentration than do wild-type PDGF beta-receptor-expressing cells (Hansen, K., Johnell, M......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  4. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V.

    Science.gov (United States)

    Schmees, C; Villaseñor, R; Zheng, W; Ma, H; Zerial, M; Heldin, C-H; Hellberg, C

    2012-07-01

    Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. H-RasG12V transformation and PDGFRβ activation were synergistic in stimulating phosphatidylinositol (PI) 3-kinase activity, leading to receptor macropinocytosis. PDGFRβ macropinocytosis was both necessary and sufficient for enhanced receptor activation. Blocking macropinocytosis by inhibition of PI 3-kinase prevented the increase in receptor activity in transformed cells. Conversely, increasing macropinocytosis by Rabankyrin-5 overexpression was sufficient to enhance PDGFRβ activation in nontransformed cells. Simultaneous stimulation with PDGF-BB and epidermal growth factor promoted macropinocytosis of both receptors and increased their activation in nontransformed cells. We propose that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling as a result of increased receptor macropinocytosis.

  5. Porphyromonas gulae Activates Unprimed and Gamma Interferon-Primed Macrophages via the Pattern Recognition Receptors Toll-Like Receptor 2 (TLR2), TLR4, and NOD2.

    Science.gov (United States)

    Holden, James A; O'Brien-Simpson, Neil M; Lenzo, Jason C; Orth, Rebecca K H; Mansell, Ashley; Reynolds, Eric C

    2017-09-01

    Porphyromonas gulae is an anaerobic, Gram-negative coccobacillus that has been associated with periodontal disease in companion animals. The aims of this study were to analyze the ligation of pattern recognition receptors by P. gulae and the subsequent activation of macrophages. Exposure of HEK cells transfected with Toll-like receptors (TLRs) or NOD-like receptors to P. gulae resulted in the ligation of TLR2, TLR4, and NOD2. The effects of this engagement of receptors were investigated by measuring the synthesis of nitric oxide (NO), CD86 expression, and inflammatory cytokine production by wild-type, TLR2 -/- , and TLR4 -/- macrophages. The addition of P. gulae to unprimed and gamma interferon (IFN-γ)-primed (M1 phenotype) macrophages significantly increased the surface expression of CD86, but only M1 macrophages produced nitric oxide. P. gulae- induced expression of CD86 on unprimed macrophages was dependent on both TLR2 and TLR4, but CD86 expression and NO production in M1 macrophages were only TLR2 dependent. P. gulae induced an increase in secretion of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p70, IL-13, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1α (MIP-1α) by M1 macrophages compared to that by unprimed controls. Among these cytokines, secretion of IL-6 and TNF-α by M1 macrophages was dependent on either TLR2 or TLR4. Our data indicate that TLR2 and TLR4 are important for P. gulae activation of unprimed macrophages and that activation and effector functions induced in M1 macrophages by P. gulae are mainly dependent on TLR2. In conclusion, P. gulae induces a strong TLR2-dependent inflammatory M1 macrophage response which may be important in establishing the chronic inflammation associated with periodontal disease in companion animals. Copyright © 2017 American Society for Microbiology.

  6. Porphyromonas gulae Activates Unprimed and Gamma Interferon-Primed Macrophages via the Pattern Recognition Receptors Toll-Like Receptor 2 (TLR2), TLR4, and NOD2

    Science.gov (United States)

    Holden, James A.; O'Brien-Simpson, Neil M.; Lenzo, Jason C.; Orth, Rebecca K. H.; Mansell, Ashley

    2017-01-01

    ABSTRACT Porphyromonas gulae is an anaerobic, Gram-negative coccobacillus that has been associated with periodontal disease in companion animals. The aims of this study were to analyze the ligation of pattern recognition receptors by P. gulae and the subsequent activation of macrophages. Exposure of HEK cells transfected with Toll-like receptors (TLRs) or NOD-like receptors to P. gulae resulted in the ligation of TLR2, TLR4, and NOD2. The effects of this engagement of receptors were investigated by measuring the synthesis of nitric oxide (NO), CD86 expression, and inflammatory cytokine production by wild-type, TLR2−/−, and TLR4−/− macrophages. The addition of P. gulae to unprimed and gamma interferon (IFN-γ)-primed (M1 phenotype) macrophages significantly increased the surface expression of CD86, but only M1 macrophages produced nitric oxide. P. gulae-induced expression of CD86 on unprimed macrophages was dependent on both TLR2 and TLR4, but CD86 expression and NO production in M1 macrophages were only TLR2 dependent. P. gulae induced an increase in secretion of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p70, IL-13, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1α (MIP-1α) by M1 macrophages compared to that by unprimed controls. Among these cytokines, secretion of IL-6 and TNF-α by M1 macrophages was dependent on either TLR2 or TLR4. Our data indicate that TLR2 and TLR4 are important for P. gulae activation of unprimed macrophages and that activation and effector functions induced in M1 macrophages by P. gulae are mainly dependent on TLR2. In conclusion, P. gulae induces a strong TLR2-dependent inflammatory M1 macrophage response which may be important in establishing the chronic inflammation associated with periodontal disease in companion animals. PMID:28630066

  7. Structure of the gene for human β2-adrenergic receptor: expression and promoter characterization

    International Nuclear Information System (INIS)

    Emorine, L.J.; Marullo, S.; Delavier-Klutchko, C.; Kaveri, S.V.; Durieu-Trautmann, O.; Strosberg, A.D.

    1987-01-01

    The genomic gene coding for the human β 2 -adrenergic receptor (β 2 AR) from A431 epidermoid cells has been isolated. Transfection of the gene into eukaryotic cells restores a fully active receptor/GTP-binding protein/adenylate cyclase complex with β 2 AR properties. Southern blot analyses with β 2 AR-specific probes show that a single β 2 AR gene is common to various human tissues and that its flanking sequences are highly conserved among humans and between man and rabbit, mouse, and hamster. Functional significance of these regions is supported by the presence of a promoter region (including mRNA cap sites, two TATA boxes, a CAAT box, and three G + C-rich regions that resemble binding sites for transcription factor Sp1) 200-300 base pairs 5' to the translation initiation codon. In the 3' flanking region, sequences homologous to glucocorticoid-response elements might be responsible for the increased expression of the β 2 AR gene observed after treatment of the transfected cells with hydrocortisone. In addition, 5' to the promoter region, an open reading frame encodes a 251-residue polypeptide that displays striking homologies with protein kinases and other nucleotide-binding proteins

  8. Benzoxazinones as Human Peroxisome Proliferator Activated Receptor Gamma (PPARγ) Agonists: A Docking Study Using Glide.

    Science.gov (United States)

    Das, N; Dhanawat, M; Shrivastava, S K

    2011-03-01

    The purpose of the present study is to undertake a docking study of some benzoxazinone derivatives on human peroxisome proliferator activated receptor co-crystallized with an alpha-aryloxyphenylacetic acid agonist using Glide 4.5. The QikProp program was used to obtain the absorption, distribution, metabolism and excretion properties of the analogues. The intermolecular hydrogen bonding interaction of the best-fit ligands were found to be associated with Tyr473, Ser289, Hie 449, Hip 323, Ser 342 and Gly 284 amino acid residue at the receptor active site. Among all the observed interaction with similar binding pattern, the presence of methyl carboxypentyl side chain (Lig. No. 21) showed additional interaction with Ser 342 and the affinity was increased by carboxyl oxygen (as hydrogen bond acceptor) with a best Glide score of -14.54 as compared to the co-crystallized aryloxyphenyl acetic acid which achieved a glide score of -12.50.

  9. Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food.

    Science.gov (United States)

    Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L; Matsui, Aya; Mechling, Anna E; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; von Elverfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A; Maldonado, Rafael; Kieffer, Brigitte L

    2017-05-01

    Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism

    LENUS (Irish Health Repository)

    Tansey, Katherine E

    2011-03-31

    Abstract Background Arginine vasopressin (AVP) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (AVPR1A) is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at AVPR1A has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5\\'-flanking region of AVPR1A in variable gene expression and social behaviour. Methods We examined four tagging single nucleotide polymorphisms (SNPs) (rs3803107, rs1042615, rs3741865, rs11174815) and three microsatellites (RS3, RS1 and AVR) at the AVPR1A gene for association in an autism cohort from Ireland. Two 5\\'-flanking region polymorphisms in the human AVPR1A, RS3 and RS1, were also tested for their effect on relative promoter activity. Results The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (P = 0.036 and P = 0.008, respectively). Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y. Conclusions These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased AVPR1A transcription, which may proffer increased susceptibility to the autism phenotype.

  11. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.

  12. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia-neuron interaction.

    Science.gov (United States)

    Sonekatsu, Mayumi; Taniguchi, Wataru; Yamanaka, Manabu; Nishio, Naoko; Tsutsui, Shunji; Yamada, Hiroshi; Yoshida, Munehito; Nakatsuka, Terumasa

    2016-01-01

    Glia-neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-β-S, to the pipette solution. In a GDP-β-S-containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons via microglial

  13. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction

    Science.gov (United States)

    Sonekatsu, Mayumi; Yamanaka, Manabu; Nishio, Naoko; Tsutsui, Shunji; Yamada, Hiroshi; Yoshida, Munehito; Nakatsuka, Terumasa

    2016-01-01

    Background Glia–neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. Results IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-β-S, to the pipette solution. In a GDP-β-S–containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. Conclusion Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia

  14. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review.

    Science.gov (United States)

    Wang, Limei; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Blunder, Martina; Liu, Xin; Malainer, Clemens; Blazevic, Tina; Schwaiger, Stefan; Rollinger, Judith M; Heiss, Elke H; Schuster, Daniela; Kopp, Brigitte; Bauer, Rudolf; Stuppner, Hermann; Dirsch, Verena M; Atanasov, Atanas G

    2014-11-01

    Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma.

    Science.gov (United States)

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2008-06-17

    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

  16. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils

    2000-01-01

    Binding of GH to GH receptor (GHR) rapidly and transiently activates multiple signal transduction pathways that contribute to the growth-promoting and metabolic effects of GH. While the events that initiate GH signal transduction, such as activation of the Janus tyrosine kinase JAK2, are beginnin...

  17. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    Science.gov (United States)

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  18. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone

    International Nuclear Information System (INIS)

    Koenig, R.J.; Brent, G.A.; Warne, R.L.; Larsen, P.R.; Moore, D.D.

    1987-01-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. The authors have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. They show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor

  19. Gamma-aminobutyric acid receptor genes and nicotine dependence: evidence for association from a case-control study.

    Science.gov (United States)

    Agrawal, Arpana; Pergadia, Michele L; Saccone, Scott F; Hinrichs, Anthony L; Lessov-Schlaggar, Christina N; Saccone, Nancy L; Neuman, Rosalind J; Breslau, Naomi; Johnson, Eric; Hatsukami, Dorothy; Montgomery, Grant W; Heath, Andrew C; Martin, Nicholas G; Goate, Alison M; Rice, John P; Bierut, Laura J; Madden, Pamela A F

    2008-06-01

    The gamma-aminobutyric acid receptor A (GABRA) gene clusters on chromosomes 4 and 5 have been examined previously for their association with alcohol and drug dependence phenotypes. Compelling evidence suggests that GABRA2 is associated with alcohol and drug dependence. However, no study has investigated whether genes in the GABA(A) gene clusters are associated with nicotine dependence, an important phenotype with a high correlation to persistent smoking, the single most preventable cause of mortality world-wide. Using data on 1050 nicotine-dependent cases and 879 non-dependent smoking controls, we used logistic regression to examine the association between single nucleotide polymorphisms (SNPs) in 13 genes in the GABA(A) receptor system as well as GABBR2 (a GABA(B) gene). We found evidence for association between four SNPs in GABRA4, two SNPs in GABRA2 and one SNP in GABRE with nicotine dependence. These included a synonymous polymorphism in GABRA2 (rs279858), lying in a highly conserved region, which has been shown previously to be associated with alcohol and drug dependence. A non-synonymous polymorphism (rs16859834/rs2229940) in GABRA4, also highly conserved, was associated at P-value of 0.03. Significant haplotypes associated with nicotine dependence were found for GABRA2. No evidence for epistatic interactions were noted. Our study did not find evidence for an association between GABBR2 gene and nicotine dependence. Given the potential role of compounds that enhance GABAergic neurotransmission in smoking cessation research, these findings have enormous potential for informing the wider field of addiction research.

  20. Polyacetylenes from Notopterygium incisum–New Selective Partial Agonists of Peroxisome Proliferator-Activated Receptor-Gamma

    Science.gov (United States)

    Liu, Xin; Noha, Stefan M.; Malainer, Clemens; Kramer, Matthias P.; Cocic, Amina; Kunert, Olaf; Schinkovitz, Andreas; Heiss, Elke H.; Schuster, Daniela

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM) in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM). Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements. PMID:23630612

  1. Polyacetylenes from Notopterygium incisum--new selective partial agonists of peroxisome proliferator-activated receptor-gamma.

    Science.gov (United States)

    Atanasov, Atanas G; Blunder, Martina; Fakhrudin, Nanang; Liu, Xin; Noha, Stefan M; Malainer, Clemens; Kramer, Matthias P; Cocic, Amina; Kunert, Olaf; Schinkovitz, Andreas; Heiss, Elke H; Schuster, Daniela; Dirsch, Verena M; Bauer, Rudolf

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM) in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM). Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements.

  2. Polyacetylenes from Notopterygium incisum--new selective partial agonists of peroxisome proliferator-activated receptor-gamma.

    Directory of Open Access Journals (Sweden)

    Atanas G Atanasov

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM. Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements.

  3. Specific Activation of the Alternative Cardiac Promoter ofCacna1cby the Mineralocorticoid Receptor.

    Science.gov (United States)

    Mesquita, Thassio R; Auguste, Gaelle; Falcón, Debora; Ruiz-Hurtado, Gema; Salazar-Enciso, Rogelio; Sabourin, Jessica; Lefebvre, Florence; Viengchareun, Say; Kobeissy, Hussein; Lechêne, Patrick; Nicolas, Valerie; Fernández-Celis, Amaya; Gomez, Susana; Lauton-Santos, Sandra; Morel, Eric; Rueda, Angelica; López-Andrés, Natalia; Gomez, Ana M; Lombes, Marc; Benitah, Jean-Pierre

    2018-02-21

    Rationale: The mineralocorticoid receptor (MR) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR are due to the regulation of L-type Ca v 1.2 Ca 2+ channel expression, which is generated by tissue-specific alternative promoters as a long 'cardiac' (Ca v 1.2-LNT) or a short 'vascular' (Ca v 1.2-SNT) N-terminal transcripts. Objective: To analyze the molecular mechanisms by which aldosterone, through MR, modulates Ca v 1.2 expression and function in a tissue-specific manner. Methods and Results: In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner Ca v 1.2-LNT expression at both mRNA and protein levels, correlating with enhanced concentration-, time- and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the 'cardiac' P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the Ca v 1.2-SNT is normally the major isoform, we found that MR signaling activates 'cardiac' Ca v 1.2-LNT expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone-salt rodent models, showing notably a positive correlation between blood pressure and 'cardiac' P1-promoter activity in aorta. This new vascular Ca v 1.2-LNT molecular signature reduced sensitivity to the Ca 2+ channel blocker, nifedipine, in aldosterone-treated vessels. Conclusions: Our results reveal that

  4. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1994-01-01

    -regulation of the TCR. Furthermore, analysis of a series of CD3 gamma truncation mutants indicated that in addition to S126 phosphorylation a motif C-terminal of S126 was required for TCR down-regulation. Point mutation analyses confirmed this observation and demonstrated that a membrane-proximal di-leucine motif (L131......, indicating that the TCR was down-regulated by endocytosis via clathrin coated pits. Based on the present results and previously published observations on intracellular receptor sorting, a general model for intracellular sorting of receptors containing di-leucine- or tyrosine-based motifs is proposed....

  5. Atypical disease after Bordetella pertussis respiratory infection of mice with targeted disruptions of interferon-gamma receptor or immunoglobulin mu chain genes.

    Science.gov (United States)

    Mahon, B P; Sheahan, B J; Griffin, F; Murphy, G; Mills, K H

    1997-12-01

    Using a murine respiratory challenge model we have previously demonstrated a role for Th1 cells in natural immunity against Bordetella pertussis, but could not rule out a role for antibody. Here we have demonstrated that B. pertussis respiratory infection of mice with targeted disruptions of the genes for the IFN-gamma receptor resulted in an atypical disseminated disease which was lethal in a proportion of animals, and was characterized by pyogranulomatous inflammation and postnecrotic scarring in the livers, mesenteric lymph nodes and kidneys. Viable virulent bacteria were detected in the blood and livers of diseased animals. An examination of the course of infection in the lung of IFN-gamma receptor-deficient, IL-4-deficient and wild-type mice demonstrated that lack of functional IFN-gamma or IL-4, cytokines that are considered to play major roles in regulating the development of Th1 and Th2 cells, respectively, did not affect the kinetics of bacterial elimination from the lung. In contrast, B cell-deficient mice developed a persistent infection and failed to clear the bacteria after aerosol inoculation. These findings demonstrate an absolute requirement for B cells or their products in the resolution of a primary infection with B. pertussis, but also define a critical role for IFN-gamma in containing bacteria to the mucosal site of infection.

  6. Rapid single-step methods for detection of two immune defence gene polymorphisms: the myeloperoxidase (MPO) G-129A and the Fc gamma receptor 2A (FCGR2A) H/R131

    DEFF Research Database (Denmark)

    Mølle, Ingolf; Melsvik, Dorte; Østergaard, Mette

    2007-01-01

    . formalin-fixed paraffin-embedded tissue specimens. Here we describe two new single-step methods for rapid and sensitive analysis of: 1. The G-129A myeloperoxidase (MPO) promoter polymorphism, which affects the amount of myeloperoxidase in neutrophils. 2. The Fc gamma receptor 2A (FCGR2A)-H/R131......Polymorphisms of immune defence genes may act as disease modifiers and are studied by many researchers. A conclusive analysis of the impact of genetic variations typically requires a large number of sample specimens, and in retrospective studies this may include samples of reduced quality, e.g...... polymorphism, which is critical to the binding of IgG2 immune complexes to phagocytes. Udgivelsesdato: 2007-Jul-31...

  7. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes

    DEFF Research Database (Denmark)

    Petrovic, Natasa; Walden, Tomas B; Shabalina, Irina G

    2009-01-01

    The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classic white adipose tissue depots under certain...... physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis...... associated with classic brown adipocytes (Zic1, Lhx8, Meox2, and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells...

  8. The pentapeptide RM-131 promotes food intake and adiposity in wildtype mice but not in mice lacking the ghrelin receptor

    Directory of Open Access Journals (Sweden)

    Katrin eFischer

    2015-01-01

    Full Text Available The gastrointestinal peptide hormone ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (GHSR, a.k.a. ghrelin receptor, GHR. Currently, ghrelin is the only circulating peripheral hormone with the ability to promote a positive energy balance by stimulating food intake while decreasing energy expenditure and body fat utilization, as defined in rodents. Based on these and additional, beneficial effects on metabolism, the endogenous ghrelin system is considered an attractive target to treat diverse pathological conditions including those associated with eating/wasting disorders and cachexia. As the pharmacological potential of ghrelin is hampered by its relatively short half-life, ghrelin analogs with enhanced pharmacokinetics offer the potential to sustainably improve metabolism. One of these ghrelin analogs is the pentapeptide RM-131, which promotes food intake and adiposity with higher potency as compared to native ghrelin in rodents. Whereas the effect of RM-131 on energy metabolism is solidly confirmed in rodents, it remains elusive whether RM-131 exerts its effect solely via the ghrelin receptor. Accordingly, we assessed the receptor specificity of RM-131 to promote food intake and adiposity in mice lacking the GHR. Our data show that in wildtype mice RM-131 potently promotes weight gain and adiposity through stimulation of food intake. However, RM-131 fails to affect food intake and body weight in mice lacking the GHR, underlining that the anabolic effects of RM-131 are mediated via the ghrelin receptor in mice.

  9. Involvement of promoter methylation in the regulation of Pregnane X receptor in colon cancer cells

    International Nuclear Information System (INIS)

    Habano, Wataru; Gamo, Toshie; Terashima, Jun; Sugai, Tamotsu; Otsuka, Koki; Wakabayashi, Go; Ozawa, Shogo

    2011-01-01

    Pregnane X receptor (PXR) is a key transcription factor that regulates drug metabolizing enzymes such as cytochrome P450 (CYP) 3A4, and plays important roles in intestinal first-pass metabolism. Although there is a large inter-individual heterogeneity with intestinal CYP3A4 expression and activity, the mechanism driving these differences is not sufficiently explained by genetic variability of PXR or CYP3A4. We examined whether epigenetic mechanisms are involved in the regulation of PXR/CYP3A4 pathways in colon cancer cells. mRNA levels of PXR, CYP3A4 and vitamin D receptor (VDR) were evaluated by quantitative real-time PCR on 6 colon cancer cell lines (Caco-2, HT29, HCT116, SW48, LS180, and LoVo). DNA methylation status was also examined by bisulfite sequencing of the 6 cell lines and 18 colorectal cancer tissue samples. DNA methylation was reversed by the treatment of these cell lines with 5-aza-2'-deoxycytidine (5-aza-dC). The 6 colon cancer cell lines were classified into two groups (high or low expression cells) based on the basal level of PXR/CYP3A4 mRNA. DNA methylation of the CpG-rich sequence of the PXR promoter was more densely detected in the low expression cells (Caco-2, HT29, HCT116, and SW48) than in the high expression cells (LS180 and LoVo). This methylation was reversed by treatment with 5-aza-dC, in association with re-expression of PXR and CYP3A4 mRNA, but not VDR mRNA. Therefore, PXR transcription was silenced by promoter methylation in the low expression cells, which most likely led to downregulation of CYP3A4 transactivation. Moreover, a lower level of PXR promoter methylation was observed in colorectal cancer tissues compared with adjacent normal mucosa, suggesting upregulation of the PXR/CYP3A4 mRNAs during carcinogenesis. PXR promoter methylation is involved in the regulation of intestinal PXR and CYP3A4 mRNA expression and might be associated with the inter-individual variability of the drug responses of colon cancer cells

  10. L-type Ca2+ channel blockers promote Ca2+ accumulation when dopamine receptors are activated in striatal neurons.

    Science.gov (United States)

    Eaton, Molly E; Macías, Wendy; Youngs, Rachael M; Rajadhyaksha, Anjali; Dudman, Joshua T; Konradi, Christine

    2004-11-24

    Dopamine (DA) receptor-mediated signal transduction and gene expression play a central role in many brain disorders from schizophrenia to Parkinson's disease to addiction. While trying to evaluate the role of L-type Ca2+ channels in dopamine D1 receptor-mediated phosphorylation of the transcription factor cyclic AMP response element-binding protein (CREB), we found that activation of dopamine D1 receptors alters the properties of L-type Ca2+ channel inhibitors and turns them into facilitators of Ca2+ influx. In D1 receptor-stimulated neurons, L-type Ca2+ channel blockers promote cytosolic Ca2+ accumulation. This leads to the activation of a molecular signal transduction pathway and CREB phosphorylation. In the absence of dopamine receptor stimulation, L-type Ca2+ channel blockers inhibit CREB phosphorylation. The effect of dopamine on L-type Ca2+ channel blockers is dependent on protein kinase A (PKA), suggesting that protein phosphorylation plays a role in this phenomenon. Because of the adverse effect of activated dopamine receptors on L-type Ca2+ channel blocker action, the role of L-type Ca2+ channels in the dopamine D1 receptor signal transduction pathway cannot be assessed with pharmacological tools. However, with antisense technology, we demonstrate that L-type Ca2+ channels contribute to D1 receptor-mediated CREB phosphorylation. We conclude that the D1 receptor signal transduction pathway depends on L-type Ca2+ channels to mediate CREB phosphorylation.

  11. A complicated pregnancy in a patient with lipodystrophic diabetes attributable to a peroxisome proliferator-activated receptor gamma (PPARG) mutation.

    Science.gov (United States)

    Madhra, M; Noh, R M; Zammitt, N N; Patrick, A W; Love, C D B

    2012-10-01

    We describe an unplanned pregnancy in a 19-year-old with lipodystrophic diabetes caused by a mutation in the peroxisome proliferator-activated receptor gamma (PPARG) gene. The pregnancy was complicated by poor compliance with treatment, severe hypertriglyceridaemia and pancreatitis. The patient presented at 6 weeks' gestation with an HbA(1c) of 140 mmol/mol (15%), cholesterol 8.1 mmol/l and triglycerides 20.1 mmol/l. She wished to continue the pregnancy so lipid-lowering therapy was discontinued. She was severely insulin resistant and poorly compliant with diet and medication. A continuous subcutaneous insulin infusion was required for efficient delivery of large doses of basal insulin, alongside injected mealtime boluses, (up to 300 units insulin per day). At 17 weeks' gestation she developed acute pancreatitis secondary to hypertriglyceridaemia (triglycerides > 100 mmol/l) and required plasmapheresis. Lipid-lowering therapy was reinstated in the third trimester and plasmapheresis was required repeatedly to maintain triglycerides pancreatitis in pregnancy reviewed. There are few documented cases of pregnancy in women with PPARG mutations. The notable features of this case include the consequences of non-concordance with treatment, the use of continuous subcutaneous insulin infusion to treat insulin-resistant diabetes and the need for repeated plasmapheresis during pregnancy to avert pancreatitis. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  12. Identification of rare noncoding sequence variants in gamma-aminobutyric acid A receptor, alpha 4 subunit in autism spectrum disorder.

    Science.gov (United States)

    Griswold, Anthony J; Van Booven, Derek; Cuccaro, Michael L; Haines, Jonathan L; Gilbert, John R; Pericak-Vance, Margaret A

    2018-01-01

    Alterations of the gamma-aminobutyric acid (GABA) signaling system has been strongly linked to the pathophysiology of autism spectrum disorder (ASD). Genetic associations of common variants in GABA receptor subunits, in particular GABRA4 on chromosome 4p12, with ASD have been replicated by several studies. Moreover, molecular investigations have identified altered transcriptional and translational levels of this gene and protein in brains of ASD individuals. Since the genotyped common variants are likely not the functional variants contributing to the molecular consequences or underlying ASD phenotype, this study aims to examine rare sequence variants in GABRA4, including those outside the protein coding regions of the gene. We comprehensively re-sequenced the entire protein coding and noncoding portions of the gene and putative regulatory sequences in 82 ASD individuals and 55 developmentally typical pediatric controls, all homozygous for the most significant previously associated ASD risk allele (G/G at rs1912960). We identified only a single common, coding variant, and no association of any single marker or set of variants with ASD. Functional annotation of noncoding variants identified several rare variants in putative regulatory sites. Finally, a rare variant unique to ASD cases, in an evolutionary conserved site of the 3'UTR, shows a trend toward decreasing gene expression. Hence, GABRA4 rare variants in noncoding DNA may be variants of modest physiological effects in ASD etiology.

  13. Food does not affect the pharmacokinetics of tesaglitazar, a novel dual peroxisome proliferator-activated receptor alpha/gamma agonist.

    Science.gov (United States)

    Samuelsson, S; Johansson, S; Halldórsdóttir, S; Stenhoff, H; Ohman, K P

    2006-09-01

    Tesaglitazar is a dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist in development to treat lipid and glucose abnormalities associated with type 2 diabetes. This study evaluated the effects of food on tesaglitazar pharmacokinetics. In an open, randomized, 2-way crossover study, 20 healthy men received tesaglitazar 1 mg during fasting and after a high-fat, high-calorie breakfast. Blood samples were taken to assess pharmacokinetic variables. Systemic exposure to tesaglitazar was unaffected by food intake. Estimated ratios were 0.99 (90% confidence interval [CI], 0.94-1.04) for fed/fasted area under plasma concentration-time curve and 0.82 (90% CI, 0.78-0.86) for fed/fasted maximum plasma concentration (C(max)). Mean C(max) was approximately 18% lower (0.41 [95% CI, 0.38-0.43] versus 0.50 [95% CI, 0.47-0.53] mumol/L), and median time to C(max) was increased (2.00 vs 0.75 h) in fed versus fasted state. The median difference of t(max) was 1.25 h (P = .0001, signed-rank test). Tesaglitazar was well tolerated. Tesaglitazar pharmacokinetics is unaffected by food intake, allowing once-daily administration of tesaglitazar with or without food in clinical practice.

  14. Suppression of cardiac myocyte hypertrophy by conjugated linoleic acid: role of peroxisome proliferator-activated receptors alpha and gamma.

    Science.gov (United States)

    Alibin, Caroline P; Kopilas, Melanie A; Anderson, Hope D I

    2008-04-18

    Conjugated linoleic acid (CLA) refers to a naturally occurring mixture of positional and geometric isomers of linoleic acid. Evidence suggests that CLA is a dietary constituent and nutraceutical with anti-cancer, insulin-sensitizing, immunomodulatory, weight-partitioning, and cardioprotective properties. The aim of this study was to evaluate the effects of intervention with CLA on cardiac hypertrophy. In vitro, CLA prevented indicators of cardiomyocyte hypertrophy elicited by endothelin-1, including cell size augmentation, protein synthesis, and fetal gene activation. Similar anti-hypertrophic effects of CLA were observed in hypertrophy induced by angiotensin II, fibroblast growth factor, and mechanical strain. CLA may inhibit hypertrophy through activation of peroxisome proliferator-activated receptors (PPARs). CLA stimulated PPAR activity in cardiomyocytes, and the anti-hypertrophic effects of CLA were blocked by genetic and pharmacological inhibitors of PPAR isoforms alpha and gamma. CLA may disrupt hypertrophic signaling by stimulating diacylglycerol kinase zeta, which decreases availability of diacylglycerol and thereby inhibits the protein kinase Cepsilon pathway. In vivo, dietary CLA supplementation significantly reduced blood pressure and cardiac hypertrophy in spontaneously hypertensive heart failure rats. These data suggest that dietary supplementation with CLA may be a viable strategy to prevent pathological cardiac hypertrophy, a major risk factor for heart failure.

  15. Recombinant human growth-regulated oncogene-alpha induces T lymphocyte chemotaxis. A process regulated via IL-8 receptors by IFN-gamma, TNF-alpha, IL-4, IL-10, and IL-13

    DEFF Research Database (Denmark)

    Jinquan, T; Frydenberg, Jane; Mukaida, N

    1995-01-01

    receptors on the cells. This process can be augmented by IFN-gamma and TNF-alpha, and inhibited by IL-4, IL-10, and IL-13. In addition, we also document that on T lymphocytes there exist IL-8 receptors that can be up-regulated by IFN-gamma, TNF-alpha, and IL-2. Our results demonstrate that rhGRO-alpha gene...

  16. Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Wu

    Full Text Available Neuroblastoma (NB is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN copy number were analyzed using tissue oligonucleotide microarrays. Ingenuity Pathway Analysis was subsequently performed to identify the potential genes involved in MYCN regulation pathways. Aryl hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, was found to be inversely correlated with MYCN expression in NB tissues. This correlation was confirmed in a further 14 human NB samples. Moreover, AHR expression in NB tumors was found to correlate highly with histological grade of differentiation. In vitro studies revealed that AHR overexpression in NB cells induced spontaneous cell differentiation. In addition, it was found that ectopic expression of AHR suppressed MYCN promoter activity resulting in downregulation of MYCN expression. The suppression effect of AHR on the transcription of MYCN was compensated for by E2F1 overexpression, indicating that E2F1 is involved in the AHR-regulating MYCN pathway. Furthermore, AHR shRNA promotes the expression of E2F1 and MYCN in NB cells. These findings suggest that AHR is one of the upstream regulators of MYCN. Through the modulation of E2F1, AHR regulates MYCN gene expression, which may in turn affect NB differentiation.

  17. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S. [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Department of Microbiology and Immunology, East Carolina University (United States)

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.

  18. TRAIL/DR5 signaling promotes macrophage foam cell formation by modulating scavenger receptor expression.

    Directory of Open Access Journals (Sweden)

    Fang Fang Liu

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L has been shown to have protective effects against atherosclerosis. However, whether TRAIL has any effects on expression of macrophage scavenger receptors and lipid uptake has not yet been studied. Macrophage lines RAW264.7 and THP-1, and mouse primary peritoneal macrophages, were cultured in vitro and treated with recombinant human TRAIL. Real-time PCR and western blot were performed to measure mRNA and protein expressions. Foam cell formation was assessed by internalization of acetylated and oxidized low-density lipoproteins (LDL. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. We found that TRAIL treatment increased expression of scavenger receptor (SR-AI and SR-BI in a time- and dose-dependent manner, and this effect was accompanied by increased foam cell formation. These effects of TRAIL were abolished by a TRAIL neutralizing antibody or in DR5 receptor-deficient macrophages. The increased LDL uptake by TRAIL was blocked by SR-AI gene silencing or the SR-AI inhibitor poly(I:C, while SR-BI blockade with BLT-1 had no effect. TRAIL-induced SR-AI expression was blocked by the inhibitor of p38 mitogen-activated protein kinase, but not by inhibitors of ERK1/2 or JNK. TRAIL also induced apoptosis in macrophages. In contrast to macrophages, TRAIL showed little effects on SR expression or apoptosis in vascular smooth muscle cells. In conclusion, our results demonstrate that TRAIL promotes macrophage lipid uptake via SR-AI upregulation through activation of the p38 pathway.

  19. SPARC and GluA1-Containing AMPA Receptors Promote Neuronal Health Following CNS Injury

    Directory of Open Access Journals (Sweden)

    Emma V. Jones

    2018-02-01

    Full Text Available The proper formation and maintenance of functional synapses in the central nervous system (CNS requires communication between neurons and astrocytes and the ability of astrocytes to release neuromodulatory molecules. Previously, we described a novel role for the astrocyte-secreted matricellular protein SPARC (Secreted Protein, Acidic and Rich in Cysteine in regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs and plasticity at developing synapses. SPARC is highly expressed by astrocytes and microglia during CNS development but its level is reduced in adulthood. Interestingly, SPARC has been shown to be upregulated in CNS injury and disease. However, the role of SPARC upregulation in these contexts is not fully understood. In this study, we investigated the effect of chronic SPARC administration on glutamate receptors on mature hippocampal neuron cultures and following CNS injury. We found that SPARC treatment increased the number of GluA1-containing AMPARs at synapses and enhanced synaptic function. Furthermore, we determined that the increase in synaptic strength induced by SPARC could be inhibited by Philanthotoxin-433, a blocker of homomeric GluA1-containing AMPARs. We then investigated the effect of SPARC treatment on neuronal health in an injury context where SPARC expression is upregulated. We found that SPARC levels are increased in astrocytes and microglia following middle cerebral artery occlusion (MCAO in vivo and oxygen-glucose deprivation (OGD in vitro. Remarkably, chronic pre-treatment with SPARC prevented OGD-induced loss of synaptic GluA1. Furthermore, SPARC treatment reduced neuronal death through Philanthotoxin-433 sensitive GluA1 receptors. Taken together, this study suggests a novel role for SPARC and GluA1 in promoting neuronal health and recovery following CNS damage.

  20. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  1. Histamine-HisCl1 Receptor Axis Regulates Wake-Promoting Signals in Drosophila melanogaster

    Science.gov (United States)

    Oh, Yangkyun; Jang, Donghoon; Sonn, Jun Young; Choe, Joonho

    2013-01-01

    Histamine and its two receptors, histamine-gated chloride channel subunit 1 (HisCl1) and ora transientless (Ort), are known to control photoreception and temperature sensing in Drosophila. However, histamine signaling in the context of neural circuitry for sleep-wake behaviors has not yet been examined in detail. Here, we obtained mutant flies with compromised or enhanced histamine signaling and tested their baseline sleep. Hypomorphic mutations in histidine decarboxylase (HDC), an enzyme catalyzing the conversion from histidine to histamine, caused an increase in sleep duration. Interestingly, hisCl1 mutants but not ort mutants showed long-sleep phenotypes similar to those in hdc mutants. Increased sleep duration in hisCl1 mutants was rescued by overexpressing hisCl1 in circadian pacemaker neurons expressing a neuropeptide pigment dispersing factor (PDF). Consistently, RNA interference (RNAi)-mediated depletion of hisCl1 in PDF neurons was sufficient to mimic hisCl1 mutant phenotypes, suggesting that PDF neurons are crucial for sleep regulation by the histamine-HisCl1 signaling. Finally, either hisCl1 mutation or genetic ablation of PDF neurons dampened wake-promoting effects of elevated histamine signaling via direct histamine administration. Taken together, these data clearly demonstrate that the histamine-HisCl1 receptor axis can activate and maintain the wake state in Drosophila and that wake-activating signals may travel via the PDF neurons. PMID:23844178

  2. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer.

    Science.gov (United States)

    Mishra, Sweta; Tai, Qin; Gu, Xiang; Schmitz, James; Poullard, Ashley; Fajardo, Roberto J; Mahalingam, Devalingam; Chen, Xiaodong; Zhu, Xueqiong; Sun, Lu-Zhe

    2015-12-29

    The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERß) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer.

  3. Hypothalamic peroxisome proliferator-activated receptor gamma regulates ghrelin production and food intake.

    Science.gov (United States)

    Li, Qingjie; Yu, Quan; Lin, Li; Zhang, Heng; Peng, Miao; Jing, Chunxia; Xu, Geyang

    2018-04-09

    Peroxisome proliferator-activated receptor-γ (PPARγ) regulates fatty acid storage, glucose metabolism, and food intake. Ghrelin, a gastric hormone, provides a hunger signal to the central nervous system to stimulate appetite. However, the effects of PPARγ on ghrelin production are still unclear. In the present study, the effects of PPARγ on ghrelin production were examined in lean- or high-fat diet-induced obese (DIO) C57BL/6J mice and mHypoE-42 cells, a hypothalamic cell line. 3rd intracerebroventricular injection of adenoviral-directed overexpression of PPARγ (Ad-PPARγ) reduced hypothalamic and plasma ghrelin, food intake in both lean C57BL/6J mice and diet-induced obese mice. These changes were associated with a significant increase in mechanistic target of rapamycin complex 1 (mTORC1) activity. Overexpression of PPARγ enhanced mTORC1 signaling and suppressed ghrelin production in cultured mHypoE-42 cells. Our results suggest that hypothalamic PPARγ plays a vital role in ghrelin production and food intake in mice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages

    Directory of Open Access Journals (Sweden)

    Concha Nieto

    2018-01-01

    Full Text Available GM-CSF promotes the functional maturation of lung alveolar macrophages (A-MØ, whose differentiation is dependent on the peroxisome proliferator-activated receptor gamma (PPARγ transcription factor. In fact, blockade of GM-CSF-initiated signaling or deletion of the PPARγ-encoding gene PPARG leads to functionally defective A-MØ and the onset of pulmonary alveolar proteinosis. In vitro, macrophages generated in the presence of GM-CSF display potent proinflammatory, immunogenic and tumor growth-limiting activities. Since GM-CSF upregulates PPARγ expression, we hypothesized that PPARγ might contribute to the gene signature and functional profile of human GM-CSF-conditioned macrophages. To verify this hypothesis, PPARγ expression and activity was assessed in human monocyte-derived macrophages generated in the presence of GM-CSF [proinflammatory GM-CSF-conditioned human monocyte-derived macrophages (GM-MØ] or M-CSF (anti-inflammatory M-MØ, as well as in ex vivo isolated human A-MØ. GM-MØ showed higher PPARγ expression than M-MØ, and the expression of PPARγ in GM-MØ was found to largely depend on activin A. Ligand-induced activation of PPARγ also resulted in distinct transcriptional and functional outcomes in GM-MØ and M-MØ. Moreover, and in the absence of exogenous activating ligands, PPARγ knockdown significantly altered the GM-MØ transcriptome, causing a global upregulation of proinflammatory genes and significantly modulating the expression of genes involved in cell proliferation and migration. Similar effects were observed in ex vivo isolated human A-MØ, where PPARγ silencing led to enhanced expression of genes coding for growth factors and chemokines and downregulation of cell surface pathogen receptors. Therefore, PPARγ shapes the transcriptome of GM-CSF-dependent human macrophages (in vitro derived GM-MØ and ex vivo isolated A-MØ in the absence of exogenous activating ligands, and its expression is primarily regulated by

  5. Variants in the dopamine-4-receptor gene promoter are not associated with sensation seeking in skiers.

    Science.gov (United States)

    Thomson, Cynthia J; Rajala, Amelia K; Carlson, Scott R; Rupert, Jim L

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (-1106T/C, -906T/C, -809G/A, -291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population.

  6. Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/β receptor-deficient mice.

    Science.gov (United States)

    Prestwood, Tyler R; Morar, Malika M; Zellweger, Raphaël M; Miller, Robyn; May, Monica M; Yauch, Lauren E; Lada, Steven M; Shresta, Sujan

    2012-12-01

    We previously reported that mice lacking alpha/beta and gamma interferon receptors (IFN-α/βR and -γR) uniformly exhibit paralysis following infection with the dengue virus (DENV) clinical isolate PL046, while only a subset of mice lacking the IFN-γR alone and virtually no mice lacking the IFN-α/βR alone develop paralysis. Here, using a mouse-passaged variant of PL046, strain S221, we show that in the absence of the IFN-α/βR, signaling through the IFN-γR confers approximately 140-fold greater resistance against systemic vascular leakage-associated dengue disease and virtually complete protection from dengue-induced paralysis. Viral replication in the spleen was assessed by immunohistochemistry and flow cytometry, which revealed a reduction in the number of infected cells due to IFN-γR signaling by 2 days after infection, coincident with elevated levels of IFN-γ in the spleen and serum. By 4 days after infection, IFN-γR signaling was found to restrict DENV replication systemically. Clearance of DENV, on the other hand, occurred in the absence of IFN-γR, except in the central nervous system (CNS) (brain and spinal cord), where clearance relied on IFN-γ from CD8(+) T cells. These results demonstrate the roles of IFN-γR signaling in protection from initial systemic and subsequent CNS disease following DENV infection and demonstrate the importance of CD8(+) T cells in preventing DENV-induced CNS disease.

  7. Peroxisome Proliferator-Activated Receptor Gamma Polymorphisms and Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Jean Dallongeville

    2009-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs in the peroxisome proliferator-activated receptor γ (PPARG gene have been associated with cardiovascular risk factors, particularly obesity and diabetes. We assessed the relationship between 4 PPARG SNPs (C-681G, C-689T, Pro12Ala, and C1431T and coronary heart disease (CHD in the PRIME (249 cases/494 controls, only men and ADVANCE (1,076 cases/805 controls, men or women studies. In PRIME, homozygote individuals for the minor allele of the PPARG C-689T, Pro12Ala, and C1431T SNPs tended to have a higher risk of CHD than homozygote individuals for the frequent allele (adjusted OR [95% CI] = 3.43 [0.96–12.27], P=.058, 3.41 [0.95–12.22], P=.060 and 5.10 [0.99–26.37], P=.050, resp.. No such association could be detected in ADVANCE. Haplotype distributions were similar in cases and control in both studies. A meta-analysis on the Pro12Ala SNP, based on our data and 11 other published association studies (6,898 CHD cases/11,287 controls, revealed that there was no evidence for a significant association under the dominant model (OR=0.99 [0.92–1.07], P=.82. However, there was a borderline association under the recessive model (OR=1.29 [0.99–1.67], P=.06 that became significant when considering men only (OR=1.73 [1.20–2.48], P=.003. In conclusion, the PPARG Ala12Ala genotype might be associated with a higher CHD risk in men but further confirmation studies are needed.

  8. Regulation of peroxisome proliferator-activated receptor gamma on milk fat synthesis in dairy cow mammary epithelial cells.

    Science.gov (United States)

    Liu, Lili; Lin, Ye; Liu, Lixin; Wang, Lina; Bian, Yanjie; Gao, Xuejun; Li, Qingzhang

    2016-12-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) participates in lipogenesis in rats, goats, and humans. However, the exact mechanism of PPARγ regulation on milk fat synthesis in dairy cow mammary epithelial cells (DCMECs) remains largely unexplored. The aim of this study was to investigate the role of PPARγ regarding milk fat synthesis in DCMECs and to ascertain whether milk fat precursor acetic acid and palmitic acid could interact with PPARγ signaling to regulate milk fat synthesis. For this study, we examined the effects of PPARγ overexpression and gene silencing on cell growth, triacylglycerol synthesis, and the messenger RNA (mRNA) and protein expression levels of genes involved in milk fat synthesis in DCMECs. In addition, we investigated the influences of acetic acid and palmitic acid on the mRNA and protein levels of milk lipogenic genes and triacylglycerol synthesis in DCMECs transfected with PPARγ small interfering RNA (siRNA) and PPARγ expression vector. The results showed that when PPARγ was silenced, cell viability, proliferation, and triacylglycerol secretion were obviously reduced. Gene silencing of PPARγ significantly downregulated the expression levels of milk fat synthesis-related genes in DCMECs. PPARγ overexpression improved cell viability, proliferation, and triacylglycerol secretion. The expression levels of milk lipogenic genes were significantly increased when PPARγ was overexpressed. Acetic acid and palmitic acid could markedly improve triacylglycerol synthesis and upregulate the expression levels of PPARγ and other lipogenic genes in DCMECs. These results suggest that PPARγ is a positive regulator of milk fat synthesis in DCMECs and that acetic acid and palmitic acid could partly regulate milk fat synthesis in DCMECs via PPARγ signaling.

  9. Peroxisome proliferator-activated receptor-gamma agonists suppress tissue factor overexpression in rat balloon injury model with paclitaxel infusion.

    Directory of Open Access Journals (Sweden)

    Jun-Bean Park

    Full Text Available The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-γ agonist on the expression of tissue factor (TF, a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-γ agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK, which was blocked by the PPAR-γ agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1, was a pivotal target of the PPAR-γ agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-γ agonist in all cell types. This PPAR-γ agonist did not impair TF pathway inhibitor (TFPI in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group with continuous paclitaxel infusion, the PPAR-γ agonist attenuated TF expression by 70±5% (n = 4; P<0.0001 in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-γ agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted.

  10. Delta Subunit-Containing Gamma-Aminobutyric Acid A Receptor Disinhibits Lateral Amygdala and Facilitates Fear Expression in Mice.

    Science.gov (United States)

    Liu, Zhi-Peng; He, Qing-Hai; Pan, Han-Qing; Xu, Xiao-Bin; Chen, Wen-Bing; He, Ye; Zhou, Jin; Zhang, Wen-Hua; Zhang, Jun-Yu; Ying, Xiao-Ping; Han, Ren-Wen; Li, Bao-Ming; Gao, Tian-Ming; Pan, Bing-Xing

    2017-06-15

    Maintaining gamma-aminobutyric acidergic (GABAergic) inhibition in the amygdala within a physiological range is critical for the appropriate expression of emotions such as fear and anxiety. The synaptic GABA type A receptor (GABA A R) is generally known to mediate the primary component of amygdala inhibition and prevent inappropriate expression of fear. However, little is known about the contribution of the extrasynaptic GABA A R to amygdala inhibition and fear. By using mice expressing green fluorescent protein in interneurons (INs) and lacking the δ subunit-containing GABA A R (GABA A (δ)R), which is exclusively situated in the extrasynaptic membrane, we systematically investigated the role of GABA A (δ)R in regulating inhibition in the lateral amygdala (LA) and fear learning using the combined approaches of immunohistochemistry, electrophysiology, and behavior. In sharp contrast to the established role of synaptic GABA A R in mediating LA inhibition, we found that either pharmacological or physiological recruitment of GABA A (δ)R resulted in the weakening of GABAergic transmission onto projection neurons in LA while leaving the glutamatergic transmission unaltered, suggesting disinhibition by GABA A (δ)R. The disinhibition arose from IN-specific expression of GABA A (δ)R with its activation decreasing the input resistance of local INs and suppressing their activation. Genetic deletion of GABA A (δ)R attenuated its role in suppressing LA INs and disinhibiting LA. Importantly, the GABA A (δ)R facilitated long-term potentiation in sensory afferents to LA and permitted the expression of learned fear. Our findings suggest that GABA A (δ)R serves as a brake rather than a mediator of GABAergic inhibition in LA. The disinhibition by GABA A (δ)R may help to prevent excessive suppression of amygdala activity and thus ensure the expression of emotion. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Directory of Open Access Journals (Sweden)

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  12. Fluorine-18 labeling and biodistribution studies on peroxisome proliferator-activated receptor-{gamma} ligands: potential positron emission tomography imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Chul [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Dence, Carmen S. [Division of Radiological Sciences, Washington University School of Medicine, St. Louis, MO 63110 (United States); Zhou Haibing; Parent, Ephraim E. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Welch, Michael J. [Division of Radiological Sciences, Washington University School of Medicine, St. Louis, MO 63110 (United States); Katzenellenbogen, John A. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States)], E-mail: jkatzene@uiuc.edu

    2009-02-15

    Introduction: Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) is an important regulator of lipid metabolism; it controls the differentiation of preadipocytes and is also found at high levels in small metastatic tumors. In this report, we describe the radiochemical synthesis and evaluation of two {sup 18}F-labeled analogs of the potent and selective PPAR{gamma} agonist farglitazar. Materials and methods: The isomeric aromatic fluorine-substituted target compounds [(2S)-(2-benzoylphenylamino)-3-(4-(2-[2-(4-[{sup 18}F]fluorophenyl) -5-methyloxazol-4-yl]ethoxy)-phenyl)propionic acid ([{sup 18}F]-1) and (2S)-[2-(4-fluorobenzoyl)phenylamino] -3-(4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxy]-phenyl)propionic acid ([{sup 18}F]-2)] were prepared in fluorine-18-labeled form, respectively, by radiofluorination of an iodonium salt precursor or by Ullmann-type condensation with 2-iodo-4'-[{sup 18}F]fluorobenzophenone after nucleophilic aromatic substitution with [{sup 18}F]fluoride ion. Each compound was obtained in high specific activity and good radiochemical yield. Results and Discussion: {sup 18}F-1 and {sup 18}F-2 have high and selective PPAR{gamma} binding affinities comparable to that of the parent molecule farglitazar, and they were found to have good metabolic stability. Tissue biodistribution studies of {sup 18}F-1 and {sup 18}F-2 were conducted, but PPAR{gamma}-mediated uptake of both agents was minimal. Conclusion: This study completes our first look at an important class of PPAR{gamma} ligands as potential positron emission tomography (PET) imaging agents for breast cancer and vascular disease. Although {sup 18}F-1 and {sup 18}F-2 have high affinities for PPAR{gamma} and good metabolic stability, their poor target-tissue distribution properties, which likely reflect their high lipophilicity combined with the low titer of PPAR{gamma} in target tissues, indicate that they have limited potential as PPAR{gamma} PET imaging agents.

  13. Differential regulation of serotonin-1A receptor-stimulated [35S]GTP gamma S binding in the dorsal raphe nucleus by citalopram and escitalopram.

    Science.gov (United States)

    Rossi, Dania V; Burke, Teresa F; Hensler, Julie G

    2008-03-31

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTP gamma S binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10 microM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G proteins, whereas citalopram treatment did not. The binding of [3H]8-OH-DPAT to the coupled, high affinity agonist state of the receptor was not altered by either treatment. Interestingly, escitalopram administration resulted in greater occupancy of serotonin transporter sites as measured by the inhibition of [3H]cyanoimipramine binding. As the binding and action of escitalopram is limited by the inactive enantiomer R-citalopram present in racemic citalopram, we propose that the regulation of 5-HT1A receptor function in the dorsal raphe nucleus at the level of receptor-G protein interaction may be a result of greater inhibition of the serotonin transporter by escitalopram.

  14. Epidermal Growth Factor Receptor activation promotes ADA3 acetylation through the AKT-p300 pathway.

    Science.gov (United States)

    Srivastava, Shashank; Mohibi, Shakur; Mirza, Sameer; Band, Hamid; Band, Vimla

    2017-08-18

    The ADA3 (Alteration/Deficiency in Activation 3) protein is an essential adaptor component of several Lysine Acetyltransferase (KAT) complexes involved in chromatin modifications. Previously, we and others have demonstrated a crucial role of ADA3 in cell cycle progression and in maintenance of genomic stability. Recently, we have shown that acetylation of ADA3 is key to its role in cell cycle progression. Here, we demonstrate that AKT activation downstream of Epidermal Growth Factor Receptor (EGFR) family proteins stimulation leads to phosphorylation of p300, which in turn promotes the acetylation of ADA3. Inhibition of upstream receptor tyrosine kinases (RTKs), HER1 (EGFR)/HER2 by lapatinib and the accompanying reduction of phospho-AKT levels led to a decrease in p300 phosphorylation and ADA3 protein levels. The p300/PCAF inhibitor garcinol also destabilized the ADA3 protein in a proteasome-dependent manner and an ADA3 mutant with K→R mutations exhibited a marked increase in half-life, consistent with opposite role of acetylation and ubiquitination of ADA3 on shared lysine residues. ADA3 knockdown led to cell cycle inhibitory effects, as well as apoptosis similar to those induced by lapatinib treatment of HER2+ breast cancer cells, as seen by accumulation of CDK inhibitor p27, reduction in mitotic marker pH3(S10), and a decrease in the S-phase marker PCNA, as well as the appearance of cleaved PARP. Taken together our results reveal a novel RTK-AKT-p300-ADA3 signaling pathway involved in growth factor-induced cell cycle progression.

  15. Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index.

    Science.gov (United States)

    Schäcke, Heike; Rehwinkel, Hartmut; Asadullah, Khusru; Cato, Andrew C B

    2006-08-01

    Glucocorticoids are highly effective in the therapy of inflammatory and autoimmune disorders. Their beneficial action is restricted because of their adverse effects upon prolonged usage. Topical glucocorticoids that act locally have been developed to significantly reduce systemic side effects. Nonetheless, undesirable cutaneous effects such as skin atrophy persist from the use of topical glucocorticoids. There is therefore a high medical need for drugs as effective as glucocorticoids but with a reduced side-effect profile. Glucocorticoids function by binding to and activating the glucocorticoid receptor that positively or negatively regulates the expression of specific genes. Several experiments suggest that the negative regulation of gene expression by the glucocorticoid receptor accounts for its anti-inflammatory action. This occurs through direct or indirect binding of the receptor to transcription factors such as activator protein-1, nuclear factor-kappaB or interferon regulatory factor-3 that are already bound to their regulatory sites. The positive action of the receptor occurs through homodimer binding of the receptor to discrete nucleotide sequences and this possibly contributes to some of the adverse effects of the hormone. Glucocorticoid receptor ligands that promote the negative regulatory action of the receptor with reduced positive regulatory function should therefore show improved therapeutic potential. A complete separation of the positive from the negative regulatory activities of the receptor has so far not been possible because of the interdependent nature of the two regulatory processes. Nevertheless, considerable improvement in the therapeutic action of glucocorticoid receptor ligands is being achieved through the use of key molecular targets for screening novel glucocorticoid receptor ligands.

  16. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    Science.gov (United States)

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  17. 5-HT2A receptor-mediated excitation on cerebellar fastigial nucleus neurons and promotion of motor behaviors in rats.

    Science.gov (United States)

    Zhang, Chang-Zheng; Zhuang, Qian-Xing; He, Ye-Cheng; Li, Guang-Ying; Zhu, Jing-Ning; Wang, Jian-Jun

    2014-07-01

    It has long been known that serotonergic afferent inputs are the third largest afferent population in the cerebellum after mossy fibers and climbing fibers. However, the role of serotonergic inputs in cerebellar-mediated motor behaviors is still largely unknown. Here, we show that only 5-HT2A receptors among the 5-HT2 receptor subfamily are expressed and localized in the rat cerebellar fastigial nucleus (FN), one of the ultimate outputs of the spinocerebellum precisely regulating trunk and limb movements. Remarkably, selective activation of 5-HT2A receptors evokes a postsynaptic excitatory effect on FN neurons in a concentration-dependent manner in vitro, which is in accord with the 5-HT-elicited excitation on the same tested neurons. Furthermore, selective 5-HT2A receptor antagonist M100907 concentration-dependently blocks the excitatory effects of 5-HT and TCB-2, a 5-HT2A receptor agonist, on FN neurons. Consequently, microinjection of 5-HT into bilateral FNs significantly promotes rat motor performances on accelerating rota-rod and balance beam and narrows stride width rather than stride length in locomotion gait. All these motor behavioral effects are highly consistent with those of selective activation of 5-HT2A receptors in FNs, and blockage of the component of 5-HT2A receptor-mediated endogenous serotonergic inputs in FNs markedly attenuates these motor performances. All these results demonstrate that postsynaptic 5-HT2A receptors greatly contribute to the 5-HT-mediated excitatory effect on cerebellar FN neurons and promotion of the FN-related motor behaviors, suggesting that serotonergic afferent inputs may actively participate in cerebellar motor control through their direct modulation on the final output of the spinocerebellum.

  18. Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements.

    Science.gov (United States)

    Fleming, Joann G W; Spencer, Thomas E; Safe, Stephen H; Bazer, Fuller W

    2006-02-01

    Establishment of pregnancy in ruminants results from paracrine signaling by interferon tau (IFNT) from the conceptus to uterine endometrial luminal epithelia (LE) that prevents release of luteolytic prostaglandin F(2alpha) pulses. In cyclic and pregnant ewes, progesterone down-regulates progesterone receptor (PGR) gene expression in LE. In cyclic ewes, loss of PGR allows for increases in estrogen receptor alpha (ESR1) and then oxytocin receptor (OXTR) gene expression followed by oxytocin-induced prostaglandin F(2alpha) pulses. In pregnant ewes, IFNT inhibits transcription of the ESR1 gene, which presumably inhibits OXTR gene transcription. Alternatively, IFNT may directly inhibit OXTR gene transcription. The 5' promoter/enhancer region of the ovine OXTR gene was cloned and found to contain predicted binding sites for activator protein 1, SP1, and PGR, but not for ESR1. Deletion analysis showed that the basal promoter activity was dependent on the region from -144 to -4 bp that contained only SP1 sites. IFNT did not affect activity of the OXTR promoter. In cells transfected with ESR1, E2, and ICI 182,780 increased promoter activity due to GC-rich SP1 binding sites at positions -104 and -64. Mutation analyses showed that the proximal SP1 sites mediated ESR1 action as well as basal activity of the promoter. In response to progesterone, progesterone receptor B also increased OXTR promoter activity. SP1 protein was constitutively expressed and abundant in the LE of the ovine uterus. These results support the hypothesis that the antiluteolytic effects of IFNT are mediated by direct inhibition or silencing of ESR1 gene transcription, thereby precluding ESR1/SP1 from stimulating OXTR gene transcription.

  19. Promoter methylation of glucocorticoid receptor gene is associated with subclinical atherosclerosis: A monozygotic twin study.

    Science.gov (United States)

    Zhao, Jinying; An, Qiang; Goldberg, Jack; Quyyumi, Arshed A; Vaccarino, Viola

    2015-09-01

    Endothelial dysfunction assessed by brachial artery flow-mediated dilation (FMD) is a marker of early atherosclerosis. Glucocorticoid receptor gene (NR3C1) regulates many biological processes, including stress response, behavioral, cardiometabolic and immunologic functions. Genetic variants in NR3C1 have been associated with atherosclerosis and related risk factors. This study investigated the association of NR3C1 promoter methylation with FMD, independent of genetic and family-level environmental factors. We studied 84 middle-aged, male-male monozygotic twin pairs recruited from the Vietnam Era Twin Registry. Brachial artery FMD was measured by ultrasound. DNA methylation levels at 22 CpG residues in the NR3C1 exon 1F promoter region were quantified by bisulfite pyrosequencing in genomic DNA isolated from peripheral blood leukocytes. Co-twin control analyses were conducted to examine the association of methylation variation with FMD, adjusting for smoking, physical activity, body mass index, lipids, blood pressure, fasting glucose, and depressive symptoms. Multiple testing was corrected using the false discovery rate. Mean methylation level across the 22 studied CpG sites was 2.02%. Methylation alterations at 12 out of the 22 CpG residues were significantly associated with FMD. On average, a 1% increase in the intra-pair difference in mean DNA methylation was associated with 2.83% increase in the intra-pair difference in FMD (95% CI: 1.46-4.20; P atherosclerosis, independent of genetic, early family environmental and other risk factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

    Science.gov (United States)

    Bitter, Andreas; Rümmele, Petra; Klein, Kathrin; Kandel, Benjamin A; Rieger, Jessica K; Nüssler, Andreas K; Zanger, Ulrich M; Trauner, Michael; Schwab, Matthias; Burk, Oliver

    2015-11-01

    In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis.

  1. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.

    Directory of Open Access Journals (Sweden)

    Steven Kregel

    Full Text Available Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR, has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5 expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways.

  2. CISH promoter polymorphism effects on T cell cytokine receptor signaling and type 1 diabetes susceptibility.

    Science.gov (United States)

    Seyfarth, Julia; Ahlert, Heinz; Rosenbauer, Joachim; Baechle, Christina; Roden, Michael; Holl, Reinhard W; Mayatepek, Ertan; Meissner, Thomas; Jacobsen, Marc

    2018-02-06

    Impaired regulatory T cell immunity plays a central role in the development of type 1 diabetes (T1D). Interleukin-2 receptor (IL-2R) signaling is essential for regulatory T cells (T REG ), and cytokine-inducible SH2-containing protein (CIS) regulates IL-2R signaling as a feedback inhibitor. Previous studies identified association of CISH promoter region single nucleotide polymorphisms (SNPs) with susceptibility to infectious diseases. Here we analyzed allele frequencies of three CISH SNPs (i.e., rs809451, rs414171, rs2239751) in a study of T1D patients (n = 260, onset age  10 years). Minor allele frequencies were compared to a control cohort of the 1000 Genomes Project. Assigned haplotypes were determined for effects on T1D manifestation and severity. Finally, the CISH haplotype influence on cytokine signaling and function was explored in T cells from healthy donors. We detected similar minor allele frequencies between T1D patients and the control cohort. T1D onset age, residual serum C-peptide level, and insulin requirement were comparable between different haplotypes. Only minor differences between the haplotypes were found for in vitro cytokine (i.e., IL-2, IL-7)-induced CIS mRNA expression. STAT5 phosphorylation was induced by IL-2 or IL-7, but no differences were found between the haplotypes. T REG purified from healthy donors with the two most common haplotypes showed similar capacity to inhibit heterologous effector T cells. This study provides no evidence for an association of CISH promoter SNPs with susceptibility to T1D or severity of disease. In contrast to previous studies, no influence of different haplotypes on CIS mRNA expression or T cell-mediated functions was found.

  3. Thromboxane A(2 receptor stimulation promotes closure of the rat ductus arteriosus through enhancing neointima formation.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yokota

    Full Text Available Ductus arteriosus (DA closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.

  4. [Synthesis and bioactivity of the folate receptor targeted gamma-cyclodextrin-folate inclusion-coated CdSe/ZnS quantum dots].

    Science.gov (United States)

    Zhao, Mei-Xia; Li, Yang; Wang, Chao-Jie

    2013-04-01

    The gamma-cyclodextrin-folate (gamma-CD/FA) inclusion-coated CdSe/ZnS quantum dots (QDs) with folate-receptor (FR) targeted were synthesized by simple and convenient sonochemical method. The products were studied using Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), utraviolet-visible spectrometry (UV-vis), fluorescence spectrum and transmission electron micrographs (TEM). The results showed that the gamma-CD/FA-coated CdSe/ZnS QDs not only have good monodispersity and smaller size, but also have good optical performance, such as higher quantum yield (QY) and a long fluorescence lifetime. The cytotoxicity experiments showed that the gamma-CD/FA-coated CdSe/ZnS QDs have lower cytotoxicity and could more effectively enter cancer cells with FR over-expression. The QDs with 4-5 nm in diameter were relatively easy to enter the cell and to be removed through kidneys, so it is more suitable for biomedical applications for bioprobes and bioimaging.

  5. IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system

    DEFF Research Database (Denmark)

    Millward, Jason M; Caruso, Maria; Campbell, Iain L

    2007-01-01

    for the chemokines CXCL10 and CCL5, to levels comparable to those seen during experimental autoimmune encephalomyelitis. Other chemokines (CXCL2, CCL2, CCL3) were not induced. Mice lacking the IFN-gammaR showed no response, and a control viral vector did not induce chemokine expression. Chemokine expression...... was predominantly localized to meningeal and ependymal cells, and was also seen in astrocytes and microglia. IFN-gamma-induced chemokine expression did not lead to inflammation. However, when pertussis toxin was given i.p. to mice infected with the IFN-gamma vector, there was a dramatic increase in the number of T...

  6. IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system

    DEFF Research Database (Denmark)

    Millward, Jason M; Caruso, Maria; Campbell, Iain L

    2007-01-01

    was predominantly localized to meningeal and ependymal cells, and was also seen in astrocytes and microglia. IFN-gamma-induced chemokine expression did not lead to inflammation. However, when pertussis toxin was given i.p. to mice infected with the IFN-gamma vector, there was a dramatic increase in the number of T...... lymphocytes detected in the CNS by flow cytometry. This increase in blood-derived immune cells in the CNS did not occur with pertussis toxin alone, and did not manifest as histologically detectable inflammatory pathology. These results show that IFN-gamma induces a characteristic glial chemokine response...

  7. Zebrafish GDNF and its co-receptor GFRα1 activate the human RET receptor and promote the survival of dopaminergic neurons in vitro.

    Directory of Open Access Journals (Sweden)

    Tuulia Saarenpää

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF is a ligand that activates, through co-receptor GDNF family receptor alpha-1 (GFRα1 and receptor tyrosine kinase "RET", several signaling pathways crucial in the development and sustainment of multiple neuronal populations. We decided to study whether non-mammalian orthologs of these three proteins have conserved their function: can they activate the human counterparts? Using the baculovirus expression system, we expressed and purified Danio rerio RET, and its binding partners GFRα1 and GDNF, and Drosophila melanogaster RET and two isoforms of co-receptor GDNF receptor-like. Our results report high-level insect cell expression of post-translationally modified and dimerized zebrafish RET and its binding partners. We also found that zebrafish GFRα1 and GDNF are comparably active as mammalian cell-produced ones. We also report the first measurements of the affinity of the complex to RET in solution: at least for zebrafish, the Kd for GFRα1-GDNF binding RET is 5.9 μM. Surprisingly, we also found that zebrafish GDNF as well as zebrafish GFRα1 robustly activated human RET signaling and promoted the survival of cultured mouse dopaminergic neurons with comparable efficiency to mammalian GDNF, unlike E. coli-produced human proteins. These results contradict previous studies suggesting that mammalian GFRα1 and GDNF cannot bind and activate non-mammalian RET and vice versa.

  8. Characterization of T cell receptor assembly and expression in a Ti gamma delta-positive cell line

    DEFF Research Database (Denmark)

    Kuhlmann, J; Caspar-Bauguil, S; Geisler, C

    1993-01-01

    - variants of the T cell Lyon were induced and found to produce all of the Ti/CD3 components, with the exception of Ti-delta. Biochemical analysis indicated that: (1) Ti-gamma/CD3 gamma, delta, epsilon complexes were formed in the endoplasmic reticulum in the absence of Ti-delta; (2) the CD3-zeta chain did...

  9. Activated scavenger receptor A promotes glial internalization of aβ.

    Science.gov (United States)

    Zhang, He; Su, Ya-jing; Zhou, Wei-wei; Wang, Shao-wei; Xu, Peng-xin; Yu, Xiao-lin; Liu, Rui-tian

    2014-01-01

    Beta-amyloid (Aβ) aggregates have a pivotal role in pathological processing of Alzheimer's disease (AD). The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain. They may effectively clear the toxic accumulation of Aβ at the initial stage of AD, however, their functions are attenuated because of glial overactivation. In this study, we first showed that heptapeptide XD4 activates the class A scavenger receptor (SR-A) on the glia by increasing the binding of Aβ to SR-A, thereby promoting glial phagocytosis of Aβ oligomer in microglia and astrocytes and triggering intracellular mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, XD4 enhances the internalization of Aβ monomers to microglia and astrocytes through macropinocytosis or SR-A-mediated phagocytosis. Furthermore, XD4 significantly inhibits Aβ oligomer-induced cytotoxicity to glial cells and decreases the production of proinflammatory cytokines, such as TNF-α and IL-1β, in vitro and in vivo. Our findings may provide a novel strategy for AD treatment by activating SR-A.

  10. Activated scavenger receptor A promotes glial internalization of aβ.

    Directory of Open Access Journals (Sweden)

    He Zhang

    Full Text Available Beta-amyloid (Aβ aggregates have a pivotal role in pathological processing of Alzheimer's disease (AD. The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain. They may effectively clear the toxic accumulation of Aβ at the initial stage of AD, however, their functions are attenuated because of glial overactivation. In this study, we first showed that heptapeptide XD4 activates the class A scavenger receptor (SR-A on the glia by increasing the binding of Aβ to SR-A, thereby promoting glial phagocytosis of Aβ oligomer in microglia and astrocytes and triggering intracellular mitogen-activated protein kinase (MAPK signaling cascades. Moreover, XD4 enhances the internalization of Aβ monomers to microglia and astrocytes through macropinocytosis or SR-A-mediated phagocytosis. Furthermore, XD4 significantly inhibits Aβ oligomer-induced cytotoxicity to glial cells and decreases the production of proinflammatory cytokines, such as TNF-α and IL-1β, in vitro and in vivo. Our findings may provide a novel strategy for AD treatment by activating SR-A.

  11. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  12. Toll-like receptor 4 promotes fibrosis in bleomycin-induced lung injury in mice.

    Science.gov (United States)

    Li, X X; Jiang, D Y; Huang, X X; Guo, S L; Yuan, W; Dai, H P

    2015-12-21

    The specific role of Toll-like receptor 4 (TLR4) in bleomycin-induced lung fibrosis of mice, a model of human idiopathic pulmonary fibrosis, has not been characterized. We injected bleomycin intratracheally into TLR4 knockout (TLR4(-/-)) and wild-type (WT) mice. Twenty-one days after injection, mice were sacrificed and their lungs were harvested for pathological, hydroxyproline, mRNA expression, and collagen I analyses. Body weight changes and mortality were observed. Light microscopy showed that lung fibrosis was minimal in TLR4(-/-) compared to that in WT mice on day 21 after bleomycin instillation. The Ashcroft score was significantly lower in TLR4(-/-) than in WT mice (3.667 ± 0.730 vs 4.945 ± 0.880, P bleomycin injection (0.281 ± 0.022 vs 0.371 ± 0.047, P bleomycin-treated TLR4(-/-) mice expressed significantly lower type I collagen mRNA levels (mesenchymal marker; 11.069 ± 2.627 vs 4.589 ± 1.440, P Bleomycin-treated TLR4(-/-) mice had a significantly lower mortality rate on day 21 than WT mice (33 vs 75%, P 0.05). Thus, bleomycin-induced pulmonary fibrosis is TLR4-dependent and TLR4 promoted fibrosis in bleomycin-challenged mice.

  13. Dmp1 Promoter-Driven Diphtheria Toxin Receptor Transgene Expression Directs Unforeseen Effects in Multiple Tissues

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Jazzar

    2016-12-01

    Full Text Available Mice harbouring a dentin matrix protein 1 (Dmp1 promoter-driven human diphtheria toxin (DT receptor (HDTR transgene (Tg have recently been used to attain targeted ablation of osteocytes by diphtheria toxin (DT treatment in order to define osteocyte function. Use of these Tg mice has asserted mechano- and novel paracrine regulatory osteocyte functions. To explore osteocyte roles fully, we sought to confirm the selectivity of DT effects in these transgenic mice. However, our findings revealed incomplete DT-induced osteocyte ablation, prevalent HDTR misexpression, as well as more prominent histopathological DT-induced changes in multiple organs in Tg than in wild-type (WT littermate mice. Mechanistic evidence for DT action, via prominent regulation of phosphorylation status of elongation factor-2 (EF-2, was also found in many non-skeletal tissues in Tg mice; indicative of direct “off-target” DT action. Finally, very rapid deterioration in health and welfare status in response to DT treatment was observed in these Tg when compared to WT control mice. Together, these data lead us to conclude that alternative models for osteocyte ablation should be sought and caution be exercised when drawing conclusions from experiments using these Tg mice alone.

  14. The Pentapeptide RM-131 Promotes Food Intake and Adiposity in Wildtype Mice but Not in Mice Lacking the Ghrelin Receptor

    DEFF Research Database (Denmark)

    Fischer, Katrin; Finan, Brian; Clemmensen, Christoffer

    2014-01-01

    decreasing energy expenditure and body fat utilization, as defined in rodents. Based on these and additional, beneficial effects on metabolism, the endogenous ghrelin system is considered an attractive target to treat diverse pathological conditions including those associated with eating/wasting disorders......The gastrointestinal peptide hormone ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (a.k.a. ghrelin receptor, GHR). Currently, ghrelin is the only circulating peripheral hormone with the ability to promote a positive energy balance by stimulating food intake while...

  15. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  16. Contributions to the study of the role of IFN gamma and its receptor on the physiopathology of disorders involving the immune system

    International Nuclear Information System (INIS)

    Bello, Iraldo; Lopez, Pedro; Torres, Yeny; Bermudez, Cimara

    2007-01-01

    Interferon gamma (IFNγ) is a Th1-type cytokine. The study of the IFNγ system and its receptor is essential for increasing the efficacy of this drug for clinical settings. Here we describe the role of IFNγ and its receptor on the physiopathology of disorders involving the immune system. Several molecular forms of IFNGR1, from 84 to 13kDa, and soluble receptor (60-67 kDa) with the capacity to bind IFNγ arising from proteolytic processing events are shown. These forms bind IFNγ. A new type of interaction between the IFNα and IFNγ receptors that depends on the presence of IFNα is also described. There are high levels of soluble IFNGR1 in the plasma of rheumatoid arthritis (RA) patients. The role of IFNγ as a negative modulator for CCR-4, a chemokine receptor up-regulated significantly in juvenile rheumatoid arthritis (JRA) patients, is described. A recombinant anti-IL-2-IFNγ antagonist was developed. This molecule inhibits the biological actions of IL-2 and IFNγ, turning this protein into a Th1 antagonist (AnTh1) potentially useful for the treatment of autoimmune disorders. (Author)

  17. Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth

    Science.gov (United States)

    2016-12-01

    that SgI did not interact with other steroid hormone receptors, including estrogen receptors and glucocorticoid receptor, and did not significantly...estrogen receptor-β, or glucocorticoid receptor. Figure 6. Co-precipitation of AR and SgI. Cell lysates from 293T transfected with pSG5-AR and pSG5-SgI...results suggest that SgI may require not only zinc, as in the case of its physi- ological action [12-16], but also AR to function as a modulator of

  18. Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR beta/delta, but not PPAR gamma, modulate the expression of genes involved in cardiac lipid metabolism

    NARCIS (Netherlands)

    Gilde, AJ; van der Lee, KAJM; Willemsen, PHM; Chinetti, G; van der Leij, FR; van der Vusse, GJ; Staels, B; van Bilsen, M

    2003-01-01

    Long-chain fatty acids ( FA) coordinately induce the expression of a panel of genes involved in cellular FA metabolism in cardiac muscle cells, thereby promoting their own metabolism. These effects are likely to be mediated by peroxisome proliferator-activated receptors (PPARs). Whereas the

  19. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation.

    Science.gov (United States)

    Lecka-Czernik, Beata; Moerman, Elena J; Grant, David F; Lehmann, Jürgen M; Manolagas, Stavros C; Jilka, Robert L

    2002-06-01

    PPAR gamma is activated by diverse ligands and regulates the differentiation of many cell types. Based on evidence that activation of PPAR gamma 2 by rosiglitazone stimulates adipogenesis and inhibits osteoblastogenesis in U-33/gamma 2 cells, a model mesenchymal progenitor of adipocytes and osteoblasts, we postulated that the increase in marrow fat and the decrease in osteoblast number that occur during aging are due to increased PPAR gamma 2 activation. Here, we show that the naturally occurring PPAR gamma ligands 9,10-dihydroxyoctadecenoic acid, and 15-deoxy-Delta(12,14)-PGJ(2), also stimulate adipocytes and inhibit osteoblast differentiation of U-33/gamma 2 cells. Strikingly, 9,10-epoxyoctadecenoic acid and the thiazolidine acetamide ligand GW0072 [(+/-)-(2S,5S)-4-(4-(4-carboxyphenyl)butyl)-2-heptyl-4-oxo-5-thaizolidineN,N-dibenzyl-acetamide] prevent osteoblast differentiation, but do not stimulate adipogenesis, whereas 9-hydroxyoctadecadienoic acid stimulates adipogenesis but does not affect osteoblast differentiation. The divergent effects of PPAR gamma 2 ligands on osteoblast and adipocyte differentiation were confirmed in primary murine bone marrow cultures using rosiglitazone and GW0072. These findings indicate that the proadipogenic and antiosteoblastogenic effects of PPAR gamma 2 are mediated by distinct regulatory pathways that can be differentially modulated depending on the nature of the ligand, and they support the idea that increased fatty acid oxidation during aging may inhibit osteoblast differentiation. Moreover, there may be selective PPAR gamma 2 modulators that block the adverse effects of fatty acid oxidation products while retaining beneficial activities such as insulin sensitization.

  20. Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor alpha increases cyclooxygenase-2 expression, PGE2 release and interferon-gamma-induced CD40 in murine microglia.

    Science.gov (United States)

    Lin, Hsiao-Wen; Jain, Mohit Raja; Li, Hong; Levison, Steven W

    2009-03-06

    Ciliary neurotrophic factor (CNTF) has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF), which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related to IL-6, which can stimulate immune functions of microglia, we hypothesized that CNTF might exert similar effects. We performed 2-D and 1-D proteomic experiments with western blotting and flow cytometry to examine effects of CNTF on primary microglia derived from neonatal mouse brains. We show that murine microglia express CNTF receptor alpha (CNTFRalpha), which can be induced by interferon-gamma (IFNgamma). Whereas IL-6 activated STAT-3 and ERK phosphorylation, CNTF did not activate these pathways, nor did CNTF increase p38 MAP kinase phosphorylation. Using 2-D western blot analysis, we demonstrate that CNTF induced the dephosphorylation of a set of proteins and phosphorylation of a different set. Two proteins that were phosphorylated upon CNTF treatment were the LYN substrate-1 and beta-tubulin 5. CNTF weakly stimulated microglia, whereas a stronger response was obtained by adding exogenous soluble CNTFRalpha (sCNTFRalpha) as has been observed for IL-6. When used in combination, CNTF and sCNTFRalpha collaborated with IFNgamma to increase microglial surface expression of CD40 and this effect was quite pronounced when the microglia were differentiated towards dendritic-like cells. CNTF/sCNTFRalpha complex, however, failed to increase MHC class II expression beyond that induced by IFNgamma. The combination of CNTF and sCNTFRalpha, but not CNTF alone, enhanced microglial Cox-2 protein expression and PGE2 secretion (although CNTF was 30 times less potent than LPS). Surprisingly, Cox-2 production was

  1. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Brigid M O'Flaherty

    Full Text Available Idiopathic pulmonary fibrosis (IPF, one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68 infection of interferon gamma receptor deficient (IFNγR-/- mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice.

  2. Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation

    Science.gov (United States)

    Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien

    2013-01-01

    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933

  3. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1.

    Science.gov (United States)

    Xu, Fen; Lin, Beisi; Zheng, Xiaobin; Chen, Zonglan; Cao, Huanyi; Xu, Haixia; Liang, Hua; Weng, Jianping

    2016-05-01

    Accumulating evidence has revealed the significant role of glucagon-like peptide-1 (GLP-1) in weight loss. Sirtuin 1 (SIRT1) plays a vital role in the regulation of lipid metabolism. Here, we investigated the contribution of lipolytic and oxidative changes in white adipose tissue (WAT) to the weight-lowering effect induced by the GLP-1 receptor (GLP-1R) agonist exenatide (exendin-4) in mice. We also looked at the role of SIRT1 in this process. C57BL/6J mice and Sirt1 (+/-) mice were treated with exenatide (24 nmol/kg) or an NaCl solution (154 mmol/l) control i.p. for 8 weeks while receiving a high-fat diet (HFD) after a 12 week HFD challenge. Systemic phenotypic evaluations were carried out during and after the intervention. A lentivirus-mediated short hairpin (sh)RNA vector of the Sirt1 gene was transfected into differentiated 3T3-L1 adipocytes. An in vitro model system used adipocytes induced from Sirt1-null mouse embryonic fibroblasts (MEFs). Exenatide reduced fat mass and enhanced the lipolytic and oxidative capacity of WAT in diet-induced obese C57BL/6J mice. However, these effects were significantly impaired in Sirt1 (+/-) mice compared with wild-type controls. In vitro, exendin-4 increased lipolysis and fatty acid oxidation by upregulating SIRT1 expression and activity in differentiated 3T3-L1 adipocytes. Conversely, RNA interference (i)-induced knockdown of SIRT1 attenuated the lipolytic and oxidative responses to exendin-4 in differentiated 3T3-L1 adipocytes. Again, these responses were entirely abolished in Sirt1-null MEFs after induction into adipocytes. These data highlight that a GLP-1R agonist promotes brown remodelling of WAT in a SIRT1-dependent manner; this might be one of the mechanisms underlying its effect on weight loss.

  4. DNA Methyltransferase 3B Gene Promoter and Interleukin-1 Receptor Antagonist Polymorphisms in Childhood Immune Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Margarita Pesmatzoglou

    2012-01-01

    Full Text Available Primary immune thrombocytopenia (ITP is one of the most common blood diseases as well as the commonest acquired bleeding disorder in childhood. Although the etiology of ITP is unclear, in the pathogenesis of the disease, both environmental and genetic factors including polymorphisms of TNF-a, IL-10, and IL-4 genes have been suggested to be involved. In this study, we investigated the rs2424913 single-nucleotide polymorphism (SNP (C46359T in DNA methyltransferase 3B (DNMT3B gene promoter and the VNTR polymorphism of IL-1 receptor antagonist (IL-1 Ra intron-2 in 32 children (17 boys with the diagnosis of ITP and 64 healthy individuals. No significant differences were found in the genotype distribution of DNMT3B polymorphism between the children with ITP and the control group, whereas the frequency of allele T appeared significantly increased in children with ITP (P = 0.03, OR = 2, 95% CI: 1.06–3.94. In case of IL-1 Ra polymorphism, children with ITP had a significantly higher frequency of genotype I/II, compared to control group (P = 0.043, OR = 2.60, 95% CI: 1.02–6.50. Moreover, genotype I/I as well as allele I was overrepresented in the control group, suggesting that allele I may have a decreased risk for development of ITP. Our findings suggest that rs2424913 DNMT3B SNP as well as IL-1 Ra VNTR polymorphism may contribute to the susceptibility to ITP.

  5. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E−/− Mice

    Science.gov (United States)

    Kadiri, James J.; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-01-01

    Objective— The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Approach and Results— Apoe−/− (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1re/e) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe−/− Mc1re/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe−/− controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe−/− Mc1re/e mice showed a defect in bile acid metabolism that aggravated high-fat diet–induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6Chigh monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6Chigh monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. Conclusions— The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. PMID:29284608

  6. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/-Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  7. A case of relapsing encephalitis positive for gamma aminobutyric acid (GABA)A receptor antibody associated with Type B3 thymoma.

    Science.gov (United States)

    Kitano, Takaya; Kinoshita, Makoto; Shimazu, Kohki; Fushimi, Hiroaki; Omori, Kenichi; Hazama, Takanori

    2016-11-29

    A 87-year-old female presented with subacute progression of cognitive decline. Fluid-attenuated inversion recovery images of brain MRI showed multifocal high-intensity lesions. Thoracic CT image revealed the presence of thymoma, and serum autoantibody screening showed positivity for anti-gamma aminobutyric acid (GABA) A receptor antibody. Histopathological analysis confirmed type B3 thymoma after thymectomy. The patient received both plasmapheresis and intravenous methylprednisolone therapy, and showed remarkable amelioration of clinical symptoms and MRI abnormal high intensity. However, after 2 month from the clinical recovery, the patient showed recurrence of brain lesions and intravenous methylprednisolone monotherapy was performed. Continuation of oral steroid therapy was required to maintain the quienscent state of inflammation within the central nervous system. Anti-GABA A receptor antibody is a recently discovered novel autoantibody associated with autoimmue encephalitis. Due to the limited number of literature reported, clinical course and therapeutic response of GABA A receptor antibody encephalitis remains elusive. Here we reported a rare case of GABA A receptor antibody encephalitis with type B3 thymoma. Clinical, radiological and therapeutic courses described in our report highlight the importance of immunotherapy for treatment of the disease.

  8. Fc Gamma Receptor 3B (FCGR3Bc.233C>A-rs5030738) Polymorphism Modifies the Protective Effect of Malaria Specific Antibodies in Ghanaian Children

    DEFF Research Database (Denmark)

    Adu, Bright; Jepsen, Micha Phill Grønholm; Gerds, Thomas A

    2014-01-01

    Immunoglobulin G (IgG) cross-linking with Fc gamma receptor IIIB (FcγRIIIB) triggers neutrophil degranulation, releasing reactive oxygen species with high levels associated with protection against malaria. The FCGR3B-c.233C>A polymorphism thought to influence the interaction between IgG and FcγRI...... compared with 233CC children. This genotype related effect modification may significantly influence malaria sero-epidemiological and vaccine trial studies.......Immunoglobulin G (IgG) cross-linking with Fc gamma receptor IIIB (FcγRIIIB) triggers neutrophil degranulation, releasing reactive oxygen species with high levels associated with protection against malaria. The FCGR3B-c.233C>A polymorphism thought to influence the interaction between IgG and Fcγ......RIIIB was recently associated with malaria. We studied the statistical interaction between glutamate rich protein antibodies and FCGR3B-c.233C>A genotypes on risk of malaria in a cohort of Ghanaian children. The absolute risk of malaria decreased more rapidly with increasing antibody levels for 233AA/AC individuals...

  9. Tesaglitazar, a dual peroxisome proliferator-activated receptor alpha/gamma agonist, improves apolipoprotein levels in non-diabetic subjects with insulin resistance

    DEFF Research Database (Denmark)

    Schuster, H.; Fagerberg, B.; Edwards, S.

    2008-01-01

    Aim: To determine the effects of the peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist tesaglitazar on serum levels of apolipoprotein (apo) A-I, apoB, and apoCIII in non-diabetic insulin-resistant subjects. Methods: This randomized, double-blind, multicentre, placebo-controlle......Aim: To determine the effects of the peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist tesaglitazar on serum levels of apolipoprotein (apo) A-I, apoB, and apoCIII in non-diabetic insulin-resistant subjects. Methods: This randomized, double-blind, multicentre, placebo...... associated with insulin resistance. (C) 2007 Elsevier Ireland Ltd. All rights reserved Udgivelsesdato: 2008/3......-controlled trial examined the effect of tesaglitazar (0.1, 0.25, 0.5, and 1 mg) once daily for 12 weeks on apolipoprotein levels in 390 abdominally obese subjects with hypertriglyceridaemia. Results: Tesaglitazar dose-dependently increased serum concentrations of apoA-I (p

  10. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  11. Gamma delta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice

    Science.gov (United States)

    Gamma delta T cells are resident in adipose tissue and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5-10 week high milk fat diet. The high milk fat diet resulted in significant in...

  12. Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients.

    Science.gov (United States)

    Pathiraja, Thushangi N; Shetty, Priya B; Jelinek, Jaroslav; He, Rong; Hartmaier, Ryan; Margossian, Astrid L; Hilsenbeck, Susan G; Issa, Jean-Pierre J; Oesterreich, Steffi

    2011-06-15

    ERα and PR levels are critical determinants for breast cancer prognosis and response to endocrine therapy. Although PR is known to be silenced by methylation of its promoter, few studies have correlated methylation with PR levels and outcome in breast cancer. There is only one previous small study comparing methylation of the two PR isoforms, PRA and PRB, which are expressed from different promoters, and finally, there is no prior knowledge of associations between isoform-specific methylation and outcome. We conducted a cohort-based study to test for associations between PRA and PRB methylation, expression, and clinical outcome in tamoxifen-treated patients (n = 500), and in patients who underwent surgery only (n = 500). Methylation and PR levels were measured by bisulfite pyrosequencing and ligand-binding assay, respectively. Low PR levels were significantly associated with worse outcome in all patients. PRA and PRB promoters were methylated in 9.6% and 14.1% of the breast tumors, respectively. The majority (74%) of PR-negative tumors were not methylated despite the significant inverse correlation of methylation and PR levels. PRA methylation was significantly associated with PRB methylation, although a subset of tumors had PRA only (3.9%) or PRB only (8.3%) methylated. Methylation of PRA, but not PRB was significantly associated with worse outcome in the tamoxifen-treated group. Mechanisms other than promoter methylation may be more dominant for loss of PR. Isoform-specific methylation events suggest independent regulation of PRA and PRB. Finally, this article shows for the first time that PRA methylation plays a unique role in tamoxifen-resistant breast cancer. ©2011 AACR.

  13. Progesterone receptor isoform-specific promoter methylation — Association of PRA promoter methylation with worse outcome in breast cancer patients

    Science.gov (United States)

    Pathiraja, Thushangi N; Shetty, Priya B; Jelinek, Jaroslav; He, Rong; Hartmaier, Ryan; Margossian, Astrid L; Hilsenbeck, Susan G; Issa, Jean-Pierre J; Oesterreich, Steffi

    2011-01-01

    Purpose ERα and PR levels are critical determinants for breast cancer prognosis and response to endocrine therapy. Although PR is known to be silenced by methylation of its promoter, few studies have correlated methylation with PR levels and outcome in breast cancer. There is only one previous small study comparing methylation of the two PR isoforms, PRA and PRB, which are expressed from different promoters, and finally, there is no prior knowledge of associations between isoform-specific methylation and outcome. Experimental Design We conducted a cohort-based study to test for associations between PRA and PRB methylation, expression, and clinical outcome in tamoxifen-treated patients (n=500), and in patients who underwent surgery only (n=500). Methylation and PR levels were measured by bisulfite pyrosequencing and ligand binding assay, respectively. Results Low PR levels were significantly associated with worse outcome in all patients. PRA and PRB promoters were methylated in 9.6% and 14.1% of the breast tumors, respectively. The majority (74%) of PR-negative tumors were not methylated despite the significant inverse correlation of methylation and PR levels. PRA methylation was significantly associated with PRB methylation, although a subset of tumors had PRA only (3.9%) or PRB only (8.3%) methylated. Methylation of PRA, but not PRB was significantly associated with worse outcome in the tamoxifen treated group. Conclusions Mechanisms other than promoter methylation may be more dominant for loss of PR. Isoform-specific methylation events suggest independent regulation of PRA and PRB. Finally, this study shows for the first time that PRA methylation plays a unique role in tamoxifen-resistant breast cancer. PMID:21459801

  14. Lectin-like oxidized low-density lipoprotein receptor-1 promotes endothelial dysfunction in LDL receptor knockout background.

    Science.gov (United States)

    Hofmann, Anja; Brunssen, Coy; Poitz, David M; Langbein, Heike; Strasser, Ruth H; Henle, Thomas; Ravens, Ursula; Morawietz, Henning

    2017-11-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for oxidized LDL in endothelial cells. LOX-1 is highly expressed in atherosclerotic plaques. The impact of LOX-1 on development of endothelial dysfunction in large vessels in absence or presence of atherosclerosis-prone conditions has not been studied to date. Mice with endothelial cell-specific LOX-1 overexpression (bLOX-1tg) were analyzed. Wild-type (WT) mice served as controls. In addition, bLOX-1tg mice were crossed with LDL receptor knockout (Ldlr -/- ) mice. All mice were fed a western-type diet (WD) or control diet (CD) for 20 weeks. Afterwards, endothelial function was analyzed ex vivo in thoracic aortas using a Mulvany myograph. WD induced hypertriglyceridemia (bLOX-1tg: 1.6-fold; WT: 1.4-fold) and hypercholesterolemia (P LDL-cholesterol (∼9-fold) compared to WT and bLOX-1tg mice on WD. Endothelial function in response to WD was impaired in bLOX-1tg/Ldlr -/- mice (Eff max : 56.7 ± 23.0%) compared to WT (Eff max : 88.2 ± 15.8%, P < 0.001), bLOX-1tg (Eff max : 76.7 ± 12.9%, P < 0.05) and Ldlr -/- mice (Eff max : 70.1 ± 13.1%, P < 0.05). No differences between WT, bLOX-1tg and Ldlr -/- mice were detectable when comparing all genotypes. Endothelial LOX-1 overexpression in an atherosclerosis-prone background impairs endothelial function, proving its importance in the development of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice

    NARCIS (Netherlands)

    Massafra, Vittoria; Milona, Alexandra; Vos, Harmjan R; Ramos, Rúben J J; Gerrits, Johan; Willemsen, Ellen C L; Ramos Pittol, José M; Ijssennagger, Noortje; Houweling, Martin; Prinsen, Hubertus C M T; Verhoeven-Duif, Nanda M; Burgering, Boudewijn M T; van Mil, Saskia W C

    2017-01-01

    BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice

  16. 3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters

    DEFF Research Database (Denmark)

    Pansoy, Andrea; Ahmed, Shaimaa; Valen, Eivind

    2010-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin immunopreci...

  17. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation

    DEFF Research Database (Denmark)

    Chhabra, Y.; Wong, H. Y.; Nikolajsen, Louise Fletcher

    2018-01-01

    binding to the GHR is impaired by a threonine substitution at Pro 495. This results in decreased internalisation and degradation of the receptor evident in TIRF microscopy and by measurement of mature (surface) receptor expression. Mutational analysis showed that the residue at position 495 impairs SOCS2...

  18. A new agonist of the erythropoietin receptor, Epobis, induces neurite outgrowth and promotes neuronal survival

    DEFF Research Database (Denmark)

    Pankratova, Stanislava; Gu, Bing; Kiryushko, Darya

    2012-01-01

    Apart from its hematopoietic activity, erythropoietin (EPO) is also known as a tissue-protective cytokine. In the brain, EPO and its receptor are up-regulated in response to insult and exert pro-survival effects. EPO binds to its receptor (EPOR) via high- and low-affinity binding sites (Sites 1 a...

  19. The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis

    DEFF Research Database (Denmark)

    Svensson, Emma; Olsen, Louise Cathrine Braun; Mörck, Catarina

    2011-01-01

    Adiponectin is an adipokine with insulin-sensitising actions in vertebrates. Its receptors, AdipoR1 and AdipoR2, are PAQR-type proteins with 7-transmembrane domains and topologies reversed that of GPCR's, i.e. their C-termini are extracellular. We identified three adiponectin receptor homologs...... when combined with the paqr-1 mutation. paqr-2 mutants are also synthetic lethal with mutations in nhr-49, sbp-1 and fat-6, which are C. elegans homologs of nuclear hormone receptors, SREBP and FAT-6 (a Δ9 desaturase), respectively. Like paqr-2, paqr-1 is also synthetic lethal with sbp-1. Mutations...... in aak-2, the C. elegans homolog of AMPK, or nhr-80, another nuclear hormone receptor gene, suppress the growth phenotype of paqr-2 mutants, probably because they restore the balance between energy expenditure and storage. We conclude that paqr-1 and paqr-2 are receptors that regulate fatty acid...

  20. Hematopoietic androgen receptor deficiency promotes visceral fat deposition in male mice without impairing glucose homeostasis.

    Science.gov (United States)

    Rubinow, K B; Wang, S; den Hartigh, L J; Subramanian, S; Morton, G J; Buaas, F W; Lamont, D; Gray, N; Braun, R E; Page, S T

    2015-07-01

    Androgen deficiency in men increases body fat, but the mechanisms by which testosterone suppresses fat deposition have not been elucidated fully. Adipose tissue macrophages express the androgen receptor (AR) and regulate adipose tissue remodeling. Thus, testosterone signaling in macrophages could alter the paracrine function of these cells and thereby contribute to the metabolic effects of androgens in men. A metabolic phenotyping study was performed to determine whether the loss of AR signaling in hematopoietic cells results in greater fat accumulation in male mice. C57BL/6J male mice (ages 12-14 weeks) underwent bone marrow transplant from either wild-type (WT) or AR knockout (ARKO) donors (n = 11-13 per group). Mice were fed a high-fat diet (60% fat) for 16 weeks. At baseline, 8 and 16 weeks, glucose and insulin tolerance tests were performed, and body composition was analyzed with fat-water imaging by MRI. No differences in body weight were observed between mice transplanted with WT bone marrow [WT(WTbm)] or ARKO bone marrow [WT(ARKObm)] prior to initiation of the high-fat diet. After 8 weeks of high-fat feeding, WT(ARKObm) mice exhibited significantly more visceral and total fat mass than WT(WTbm) animals. Despite this, no differences between groups were observed in glucose tolerance, insulin sensitivity, or plasma concentrations of insulin, glucose, leptin, or cholesterol, although WT(ARKObm) mice had higher plasma levels of adiponectin. Resultant data indicate that AR signaling in hematopoietic cells influences body fat distribution in male mice, and the absence of hematopoietic AR plays a permissive role in visceral fat accumulation. These findings demonstrate a metabolic role for AR signaling in marrow-derived cells and suggest a novel mechanism by which androgen deficiency in men might promote increased adiposity. The relative contributions of AR signaling in macrophages and other marrow-derived cells require further investigation. © 2015 American

  1. Development of gamma emitting receptor-binding radiotracers for imaging the brain and pancreas. Progress report, February 1983-September 1984

    International Nuclear Information System (INIS)

    Reba, R.C.

    1984-01-01

    The possibility of measuring the change in receptor concentration as a function of disease by external imaging was investigated. The structure-binding-relationship which provides optimal localization of radiolabelled antagonist of the muscarinic acetylcholine receptors in the brain was studied. These relationships were also studied with respect to localization in the pancreas

  2. Failure to synthesize the CD3-gamma chain. Consequences for T cell antigen receptor assembly, processing, and expression

    DEFF Research Database (Denmark)

    Geisler, C

    1992-01-01

    , intracellular processing, and expression of the TCR, mutants of the T cell line Jurkat were isolated. One variant, JGN, was found to produce all the Ti/CD3 components with the exception of CD3-gamma. The results indicate that: 1) the tetrameric form (Ti alpha beta-CD3 delta epsilon) of the Ti/CD3 complex...

  3. The class I scavenger receptor CD163 promotes internalization of ADAMTS13 by macrophages.

    Science.gov (United States)

    Verbij, Fabian C; Sorvillo, Nicoletta; Kaijen, Paul H P; Hrdinova, Johana; Peyron, Ivan; Fijnheer, Rob; Ten Brinke, Anja; Meijer, Alexander B; van Alphen, Floris P J; van den Berg, Timo K; Graversen, Jonas J H; Moestrup, Soren K; Voorberg, Jan

    2017-01-24

    Internalization of ADAMTS13 by macrophages may contribute to its clearance from the circulation. Here we investigated endocytic mechanisms that contribute to the uptake of ADAMTS13 by macrophages. Human monocyte-derived macrophages were used to monitor the uptake of fluorescently labeled recombinant ADAMTS13 by flow cytometry. Internalization of ADAMTS13 was blocked upon addition of the cell-permeable dynamin inhibitor dynasore. Partial blocking of ADAMTS13 uptake was observed by using mannan; however, uptake was not affected by an antibody that blocked binding to the macrophage mannose receptor CD206, which suggests that other endocytic receptors contribute to the internalization of ADAMTS13 by macrophages. A pull-down with ADAMTS13 and subsequent mass spectrometric analysis identified the class I scavenger receptor CD163 as a candidate receptor for ADAMTS13. Blocking experiments with monoclonal anti-CD163 antibody EDHu-1 resulted in decreased ADAMTS13 internalization by macrophages. Pronounced inhibition of ADAMTS13 uptake by EDHu-1 was observed in CD163 high-expressing macrophages. In agreement with these findings, CD163-expressing Chinese hamster ovary cells were capable of rapidly internalizing ADAMTS13. Surface plasmon resonance revealed binding of ADAMTS13 to scavenger receptor cysteine-rich domains 1-9 and 1-5 of CD163. Taken together, our data identify CD163 as a major endocytic receptor for ADAMTS13 on macrophages.

  4. Environmental Endocrine Disruptors Promote Adipogenesis in the 3T3-L1 Cell Line through Glucocorticoid Receptor Activation

    Science.gov (United States)

    Sargis, Robert M.; Johnson, Daniel N.; Choudhury, Rashikh A.; Brady, Matthew J.

    2014-01-01

    The burgeoning obesity and diabetes epidemics threaten health worldwide, yet the molecular mechanisms underlying these phenomena are incompletely understood. Recently, attention has focused on the potential contributions of environmental pollutants that act as endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases. Because glucocorticoid signaling is central to adipocyte differentiation, the ability of EDCs to stimulate the glucocorticoid receptor (GR) and drive adipogenesis was assessed in the 3T3-L1 cell line. Various EDCs were screened for glucocorticoid-like activity using a luciferase reporter construct, and four (bisphenol A (BPA), dicyclohexyl phthalate (DCHP), endrin, and tolylfluanid (TF)) were shown to significantly stimulate GR without significant activation of the peroxisome proliferator-activated receptor-γ. 3T3-L1 preadipocytes were then treated with EDCs and a weak differentiation cocktail containing dehydrocorticosterone (DHC) in place of the synthetic dexamethasone. The capacity of these compounds to promote adipogenesis was assessed by quantitative oil red O staining and immunoblotting for adipocyte-specific proteins. The four EDCs increased lipid accumulation in the differentiating adipocytes and also upregulated the expression of adipocytic proteins. Interestingly, proadipogenic effects were observed at picomolar concentrations for several of the EDCs. Because there was no detectable adipogenesis when the preadipocytes were treated with compounds alone, the EDCs are likely promoting adipocyte differentiation by synergizing with agents present in the differentiation cocktail. Thus, EDCs are able to promote adipogenesis through the activation of the GR, further implicating these compounds in the rising rates of obesity and diabetes. PMID:19927138

  5. The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens.

    Science.gov (United States)

    Wilson, Rhonda H; Maruoka, Shuichiro; Whitehead, Gregory S; Foley, Julie F; Flake, Gordon P; Sever, Michelle L; Zeldin, Darryl C; Kraft, Monica; Garantziotis, Stavros; Nakano, Hideki; Cook, Donald N

    2012-11-01

    Allergic asthma is a complex disease characterized by eosinophilic pulmonary inflammation, mucus production and reversible airway obstruction. Exposure to indoor allergens is a risk factor for asthma, but this disease is also associated with high household levels of total and particularly Gram-negative bacteria. The ability of bacterial products to act as adjuvants suggests they might promote asthma by priming allergic sensitization to inhaled allergens. In support of this idea, house dust extracts (HDEs) can activate antigen-presenting dendritic cells (DCs) in vitro and promote allergic sensitization to inhaled innocuous proteins in vivo. It is unknown which microbial products provide most of the adjuvant activity in HDEs. A screen for adjuvant activity of microbial products revealed that the bacterial protein flagellin (FLA) stimulated strong allergic airway responses to an innocuous inhaled protein, ovalbumin (OVA). Moreover, Toll-like receptor 5 (TLR5), the mammalian receptor for FLA, was required for priming strong allergic responses to natural indoor allergens present in HDEs. In addition, individuals with asthma have higher serum levels of FLA-specific antibodies as compared to nonasthmatic individuals. Together, these findings suggest that household FLA promotes the development of allergic asthma by TLR5-dependent priming of allergic responses to indoor allergens.

  6. The peroxisome proliferator activated receptor gamma (PPARgamma) ligand rosiglitazone modulates bronchoalveolar lavage levels of leptin, adiponectin, and inflammatory cytokines in lean and obese mice.

    Science.gov (United States)

    Holguin, Fernando; Rojas, Mauricio; Hart, C Michael

    2007-12-01

    Obese mice that lack leptin receptor (db (-) /db (-)) have been shown to have innate bronchial hyperresponsiveness (BHR). It has been proposed that the obesity-mediated BHR may involve a combination of increased leptin and reduced systemic adiponectin levels. The aim of this study was to determine if obesity modifies the airway concentration of leptin and adiponectin and whether treatment with a synthetic peroxisome proliferator-activated receptor gamma (PPARgamma) ligand can reduce airway leptin and increase airway adiponectin. In this study, obese, leptin receptor-deficient (db (-) /db (-)), or lean (db ( + ) /db (-)) mice were treated with rosiglitazone (3 mg/kg/day) or vehicle by gavage daily for 1 week. Bronchioalveolar lavage (BAL) was subsequently performed to determine levels of leptin, adiponectin, and inflammatory cytokines. Treatment with rosiglitazone increased BAL adiponectin levels in lean (p = 0.04) and to a lesser extent in obese mice (p = 0.07). Rosiglitazone treatment lowered leptin levels in lean mice, but increased leptin levels in BAL fluid of obese mice (p < 0.01). The BAL levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) were lower in the lean rosiglitazone-treated group compared with the obese vehicle-treated group and lower in the obese rosiglitazone-treated group compared with the obese vehicle-treated group. These results demonstrate that obesity is associated with alterations in adipokine and cytokine levels in the airways that can be modulated by treatment with roziglitazone.

  7. Signaling of ghrelin and its functional receptor, the growth hormone secretagogue receptor, promote tumor growth in glioblastomas.

    Science.gov (United States)

    Okada, Yousuke; Sugita, Yasuo; Ohshima, Koichi; Morioka, Motohiro; Komaki, Satoru; Miyoshi, Junko; Abe, Hideyuki

    2016-12-01

    Ghrelin is a 28-amino-acid peptide that is the endogenous ligand for the pituitary growth hormone secretagogue receptor (GHS-R). Ghrelin is mainly produced from the stomach, but it is also expressed by various other tissues, including the CNS under normal conditions. Physiologically, ghrelin regulates appetite, gut motility, and GH release from the anterior pituitary, as well as cardiovascular and immune systems. Recent studies also indicate that ghrelin and GHS-R may play an important autocrine/paracrine role in neoplastic conditions. In order to clarify the role of ghrelin/GHS-R in gliomas, the present study assessed the expression of ghrelin and its functional receptor, GHS-R1a, in 39 glioblastomas (GBs), 13 anaplastic astrocytomas (AAs) and 11 diffuse astrocytomas (DAs) using immunohistochemical analyses. Immunohistochemical staining was evaluated as follows: no staining; 1+, 0-10% positive cells; 2+, 10-50% positive cells; 3+, >50% positive cells. Ghrelin expression was detected in 52 of 63 cases of which 38, 13 and one were scored as 3+, 2+ and 1+, respectively. GHS-R1a expression was detected in 45 of 63 cases of which 29, 15 and one were scored as 3+, 2+ and 1+, respectively. Ghrelin immunoreactivity was observed in 38 of 39 GBs, 12 of 13 AAs and two of 11 DAs. GHS-R1a immunoreactivity was observed in 39 of 39 GBs, five of 13 AAs, and one of 11 DAs. AAs and GBs showed moderate or strong immunostaining of ghrelin/GHS-R1a in the tumor cells and in proliferating microvessels. Patients were classified into lower to moderate-score, and high-score ghrelin/GHS-R categories according to the principal component and cluster analyses. Multivariate analysis of overall survival indicated that there was a significant difference (P = 0.0001) in the survival rate between these two groups. The combined results indicated that expression of the ghrelin/GHS-R1a axis increases the growth of AAs and GBs through an autocrine/paracrine mechanism. © 2016 Japanese Society of

  8. Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Francescopaolo Di Cello

    Full Text Available Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA. Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+ breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer.

  9. P2X1 stimulation promotes thrombin receptor-mediated platelet aggregation.

    Science.gov (United States)

    Erhardt, J A; Toomey, J R; Douglas, S A; Johns, D G

    2006-04-01

    P2X1 receptors are ATP-gated channel demonstrated to be involved in multiple platelet responses, although in vitro analysis has been complicated by the effects of rapid desensitization. To further investigate potential roles of P2X1 receptors in platelet activation, the current study employed methods which maximally preserved P2X1 functionality. In preliminary in vivo studies, P2X1-deficiency reduced thrombus formation following the laser-induced, but not FeCl3-induced injury. Given the multiple potential mechanisms involved in thrombus formation in vivo, including tissue-factor/thrombin generation pathways, subsequent studies were designed to investigate the effects of P2X1 inhibition or stimulation on platelet activation in vitro; specifically, the interaction of P2X1 with thrombin receptor stimulation. Aggregation initiated by low/threshold levels of a protease-activated receptor (PAR)4 agonist was reduced in P2X1-deficient murine platelets, and inhibition of P2X1 in wild-type platelets similarly reduced PAR4-mediated aggregation. In human platelets, aggregation to low/threshold stimulation of PAR1 was inhibited with the P2X1 antagonist MRS2159. In addition, P2X1 stimulation primed human platelet responses, such that subsequent sub-threshold PAR1 responses were converted into significant aggregation. Selective ADP receptor inhibitors attenuated P2X1-mediated priming, suggesting that the synergy between P2X1 and sub-threshold PAR1 stimulation was in part because of enhanced granular release of ADP. Overall, the present study defines a novel interaction between platelet P2X1 and thrombin receptors, with P2X1 functioning to amplify aggregation responses at low levels of thrombin receptor stimulation.

  10. Hemin inhibits internalization of transferrin by reticulocytes and promotes phosphorylation of the membrane transferrin receptor

    International Nuclear Information System (INIS)

    Cox, T.M.; O'Donnell, M.W.; Aisen, P.; London, I.M.

    1985-01-01

    Addition of hemin to reticulocytes inhibits incorporation of iron from transferrin. Heme also regulates protein synthesis in immature erythroid cells through its effects on phosphorylation of the initiation factor eIF-2. The authors have examined its effects on endocytosis of iron-transferrin and phosphorylation of the transferrin receptor. Hemin reduced iron transport but increased cell-associated transferrin. During uptake of 125 I-labeled transferrin in the steady state, the use of a washing technique to dissociate bound transferrin on the cell membrane showed that radioligand accumulated on the surface of hemin-treated cells. Receptor phosphorylation was investigated by immunoprecipitation of reticulocyte extracts after metabolic labeling with [ 32 P]P/sub i/. In the absence of ligand, phosphorylated receptor was chiefly localized on cell stroma. Exposure to transferrin increased cytosolic phosphorylated receptor from 15-30% to approximately 50% of the total, an effect overcome by hemin treatment. The findings suggest a possible relationship of phosphorylation to endocytosis of the transferrin receptor in reticulocytes

  11. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, L; Martinussen, J; Møllegaard, N E

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt...

  12. Peroxisome proliferator-activated receptor gamma agonism reduces the insulin-stimulated increase in circulating interleukin-6 in growth hormone (GH) replaced GH-deficient adults

    DEFF Research Database (Denmark)

    Krag, Morten B; Rasmussen, Lars M; Hansen, Troels K

    2008-01-01

    SUMMARY Context: Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists modify cardiovascular risk factors and inflammatory markers in patients with type 2 diabetes. Growth hormone (GH) treatment in GH-deficient (GHD) patients may cause insulin resistance and exerts ambiguous effects...... on inflammatory markers. Objective: To investigate circulating markers of inflammation and endothelial function in GH replaced GHD patients before and after 12 weeks administration of either pioglitazone 30 mg/day (N=10) or placebo (N=10) in a randomized double-blind parallel design. Methods: Circulating levels...... abrogated this insulin-stimulated increment in IL-6 levels compared to placebo (P = 0.01). Furthermore PPARgamma agonist treatment significantly lowered basal IL-4 levels (PGH replaced patients, 2) This increase in IL-6...

  13. Comparative investigations of T cell receptor gamma gene rearrangements in frozen and formalin-fixed paraffin wax-embedded tissues by capillary electrophoresis

    DEFF Research Database (Denmark)

    Christensen, M; Funder, A D; Bendix, K

    2006-01-01

    AIM: To compare clonal T cell receptor gamma (TCRgamma) gene rearrangements in frozen and formalin-fixed paraffin wax-embedded (FFPE) tissue, using capillary electrophoresis for use in diagnostics, as T cell lymphomas may be difficult to diagnose by conventional methods.METHODS: The DNA for PCR...... was extracted from frozen and FFPE tissue, cell lines and blood. PCR primers Vgamma1-8, Vgamma9, Vgamma10 or Vgamma11 (5' end labelled) combined with a mixture of JgammaP1/JgammaP/JgammaP2/Jgamma2 (unlabelled) were used. Monoclonal cases were sequenced and clonality, reproducibility, sensitivity and specificity......% for patient specimens and the specificity 100%. The junctional region between the Vgamma and Jgamma segments was specific for each patient.CONCLUSIONS: Capillary electrophoresis of PCR products from frozen and FFPE tissue is suitable for detecting clonal TCRgamma gene rearrangements. It is important, however...

  14. Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Rau, Oliver; Wurglics, Mario; Paulke, Alexander; Zitzkowski, Jessica; Meindl, Nadine; Bock, Andreas; Dingermann, Theodor; Abdel-Tawab, Mona; Schubert-Zsilavecz, Manfred

    2006-08-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand activated transcription factor, belonging to the metazoan family of nuclear hormone receptors. Activation of PPARgamma increases the transcription of enzymes involved in primary metabolism, leading to lower blood levels of fatty acids and glucose. Hence, PPARgamma represents the major target for the glitazone type of drugs currently being used clinically for the treatment of type 2 diabetes. Furthermore, activators of PPARgamma show beneficial anti-inflammatory and anti-tumour effects. Utilizing a fusion receptor of the yeast Gal4-DNA binding domain joined to the hinge region and ligand binding domain of the human PPARgamma in combination with a Gal4-driven luciferase reporter gene, cotransfected into Cos7 cells, we tested sage and rosemary extracts prepared with 80 % aqueous ethanol for possible PPARgamma activation. This revealed that both extracts are capable of selectively activating Gal4-PPARgamma fusion receptor, in a concentration-dependent manner, with EC (50) values of 22.8 +/- 8.4 mg/L and 33.7 +/- 7.3 mg/L for rosemary and sage, respectively. Subsequent analysis of the characteristic constituents revealed the phenolic diterpene compounds carnosol, present in both herbs, and carnosic acid to be active principles of these extracts, showing EC (50) values of 41.2 +/- 5.9 microM and 19.6 +/- 2.0 microM, respectively. Thus it can be concluded that the glucose lowering effect reported recently for rosemary may be attributed to PPARgamma activation. Moreover, our observations may also explain the anti-inflammatory and antiproliferative effects of both compounds published previously.

  15. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  16. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    Science.gov (United States)

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.

  17. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    Directory of Open Access Journals (Sweden)

    Mabel Parimala

    2015-01-01

    Full Text Available Nymphaea nouchali Burm. f. (Family - Nymphaeaceae is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.

  18. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils

    2000-01-01

    Binding of GH to GH receptor (GHR) rapidly and transiently activates multiple signal transduction pathways that contribute to the growth-promoting and metabolic effects of GH. While the events that initiate GH signal transduction, such as activation of the Janus tyrosine kinase JAK2, are beginning...... to be understood, the signaling events that terminate GH signaling, such as dephosphorylation of tyrosyl-phosphorylated signaling molecules, are poorly understood. In this report, we examine the role of the SH2 (Src homology-2) domain-containing protein tyrosine phosphatase SHP-2 in GH signaling. We demonstrate...... that the SH2 domains of SHP-2 bind directly to tyrosyl phosphorylated GHR from GH-treated cells. Tyrosine-to-phenylalanine mutation of tyrosine 595 of rat GHR greatly diminishes association of the SH2 domains of SHP-2 with GHR, and tyrosine-to-phenylalanine mutation of tyrosine 487 partially reduces...

  19. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, HongYi; Kantekure, Kanchan

    2011-01-01

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression v...

  20. Enhanced AMPA receptor function promotes cerebellar long-term depression rather than potentiation

    NARCIS (Netherlands)

    B.J. van Beugen (Boeke); X. Qiao (Xin); D.H. Simmons (Dana H.); C.I. de Zeeuw (Chris); C.R.W. Hansel (Christian)

    2014-01-01

    textabstractAmpakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of

  1. Enhanced AMPA Receptor Function Promotes Cerebellar Long-Term Depression Rather than Potentiation

    Science.gov (United States)

    van Beugen, Boeke J.; Qiao, Xin; Simmons, Dana H.; De Zeeuw, Chris I.; Hansel, Christian

    2014-01-01

    Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory postsynaptic currents (EPSCs) at cerebellar…

  2. Enhanced AMPA receptor function promotes cerebellar long-term depression rather than potentiation

    NARCIS (Netherlands)

    van Beugen, Boeke J; Qiao, Xin; Simmons, Dana H; De Zeeuw, Chris I; Hansel, Christian

    2014-01-01

    Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory

  3. B1 but not B2 bradykinin receptor agonists promote DU145 prostate ...

    African Journals Online (AJOL)

    Background: The kallikrein-kinin system (KKS) is an endogenous pathway involved in angiogenesis and tumourigenesis, both vital for cancer growth and progression. Objectives: To investigate the effect of two bradykinin receptor (B1R and B2R) agonists on growth and motility of prostate tumour (DU145) and ...

  4. D1-D2 Dopamine Receptor Synergy Promotes Calcium Signaling via Multiple Mechanisms

    Science.gov (United States)

    Chun, Lani S.; Free, R. Benjamin; Doyle, Trevor B.; Huang, Xi-Ping; Rankin, Michele L.

    2013-01-01

    The D1 dopamine receptor (D1R) has been proposed to form a hetero-oligomer with the D2 dopamine receptor (D2R), which in turn results in a complex that couples to phospholipase C–mediated intracellular calcium release. We have sought to elucidate the pharmacology and mechanism of action of this putative signaling pathway. Dopamine dose-response curves assaying intracellular calcium mobilization in cells heterologously expressing the D1 and D2 subtypes, either alone or in combination, and using subtype selective ligands revealed that concurrent stimulation is required for coupling. Surprisingly, characterization of a putative D1-D2 heteromer-selective ligand, 6-chloro-2,3,4,5-tetrahydro-3-methyl-1-(3-methylphenyl)-1H-3-benzazepine-7,8-diol (SKF83959), found no stimulation of calcium release, but it did find a broad range of cross-reactivity with other G protein–coupled receptors. In contrast, SKF83959 appeared to be an antagonist of calcium mobilization. Overexpression of Gqα with the D1 and D2 dopamine receptors enhanced the dopamine-stimulated calcium response. However, this was also observed in cells expressing Gqα with only the D1R. Inactivation of Gi or Gs with pertussis or cholera toxin, respectively, largely, but not entirely, reduced the calcium response in D1R and D2R cotransfected cells. Moreover, sequestration of Gβγ subunits through overexpression of G protein receptor kinase 2 mutants either completely or largely eliminated dopamine-stimulated calcium mobilization. Our data suggest that the mechanism of D1R/D2R–mediated calcium signaling involves more than receptor-mediated Gq protein activation, may largely involve downstream signaling pathways, and may not be completely heteromer-specific. In addition, SKF83959 may not exhibit selective activation of D1-D2 heteromers, and its significant cross-reactivity to other receptors warrants careful interpretation of its use in vivo. PMID:23680635

  5. Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells.

    Science.gov (United States)

    Glatzel, Andrea; Wesch, Daniela; Schiemann, Florian; Brandt, Ernst; Janssen, Ottmar; Kabelitz, Dieter

    2002-05-15

    Gammadelta T lymphocytes play an important role in the immune defense against infection, based on the unique reactivity of human Vdelta2Vgamma9 gammadelta T cells toward bacterial phosphoantigens. Chemokines and their corresponding receptors orchestrate numerous cellular reactions, including leukocyte migration, activation, and degranulation. In this study we investigated the expression of various receptors for inflammatory and homeostatic chemokines on peripheral blood gammadelta T cells and compared their expression patterns with those on alphabeta T cells. Although several of the analyzed receptors (including CCR6, CCR7, CXCR4, and CXCR5) were not differentially expressed on gammadelta vs alphabeta T cells, gammadelta T cells expressed strongly increased levels of the RANTES/macrophage inflammatory protein-1alpha/-1beta receptor CCR5 and also enhanced levels of CCR1-3 and CXCR1-3. CCR5 expression was restricted to Vdelta2 gammadelta T cells, while the minor subset of Vdelta1 gammadelta T cells preferentially expressed CXCR1. Stimulation with heat-killed extracts of Mycobacterium tuberculosis down-modulated cell surface expression of CCR5 on gammadelta T cells in a macrophage-dependent manner, while synthetic phosphoantigen isopentenyl pyrophosphate and CCR5 ligands directly triggered CCR5 down-modulation on gammadelta T cells. The functionality of chemokine receptors CCR5 and CXCR3 on gammadelta T cells was demonstrated by Ca(2+) mobilization and chemotactic response to the respective chemokines. Our results identify high level expression of CCR5 as a characteristic and selective feature of circulating Vdelta2 gammadelta T cells, which is in line with their suspected function as Th1 effector T cells.

  6. Orexin receptor antagonists differ from standard sleep drugs by promoting sleep at doses that do not disrupt cognition.

    Science.gov (United States)

    Uslaner, Jason M; Tye, Spencer J; Eddins, Donnie M; Wang, Xiaohai; Fox, Steven V; Savitz, Alan T; Binns, Jacquelyn; Cannon, Christopher E; Garson, Susan L; Yao, Lihang; Hodgson, Robert; Stevens, Joanne; Bowlby, Mark R; Tannenbaum, Pamela L; Brunner, Joseph; Mcdonald, Terrence P; Gotter, Anthony L; Kuduk, Scott D; Coleman, Paul J; Winrow, Christopher J; Renger, John J

    2013-04-03

    Current treatments for insomnia, such as zolpidem (Ambien) and eszopiclone (Lunesta), are γ-aminobutyric acid type A (GABAA)-positive allosteric modulators that carry a number of side effects including the potential to disrupt cognition. In an effort to develop better tolerated medicines, we have identified dual orexin 1 and 2 receptor antagonists (DORAs), which promote sleep in preclinical animal models and humans. We compare the effects of orally administered eszopiclone, zolpidem, and diazepam to the dual orexin receptor antagonist DORA-22 on sleep and the novel object recognition test in rat, and on sleep and two cognition tests (delayed match to sample and serial choice reaction time) in the rhesus monkey. Each compound's minimal dose that promoted sleep versus the minimal dose that exerted deficits in these cognitive tests was determined, and a therapeutic margin was established. We found that DORA-22 has a wider therapeutic margin for sleep versus cognitive impairment in rat and rhesus monkey compared to the other compounds tested. These data were further supported with the demonstration of a wider therapeutic margin for DORA-22 compared to the other compounds on sleep versus the expression of hippocampal activity-regulated cytoskeletal-associated protein (Arc), an immediate-early gene product involved in synaptic plasticity. These findings suggest that DORAs might provide an effective treatment for insomnia with a greater therapeutic margin for sleep versus cognitive disturbances compared to the GABAA-positive allosteric modulators currently in use.

  7. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.

    Science.gov (United States)

    Ignatieva, Elena V; Levitsky, Victor G; Yudin, Nikolay S; Moshkin, Mikhail P; Kolchanov, Nikolay A

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  8. A Bacterial Receptor PcrK Senses the Plant Hormone Cytokinin to Promote Adaptation to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fang-Fang Wang

    2017-12-01

    Full Text Available Summary: Recognition of the host plant is a prerequisite for infection by pathogenic bacteria. However, how bacterial cells sense plant-derived stimuli, especially chemicals that function in regulating plant development, remains completely unknown. Here, we have identified a membrane-bound histidine kinase of the phytopathogenic bacterium Xanthomonas campestris, PcrK, as a bacterial receptor that specifically detects the plant cytokinin 2-isopentenyladenine (2iP. 2iP binds to the extracytoplasmic region of PcrK to decrease its autokinase activity. Through a four-step phosphorelay, 2iP stimulation decreased the phosphorylation level of PcrR, the cognate response regulator of PcrK, to activate the phosphodiesterase activity of PcrR in degrading the second messenger 3′,5′-cyclic diguanylic acid. 2iP perception by the PcrK-PcrR remarkably improves bacterial tolerance to oxidative stress by regulating the transcription of 56 genes, including the virulence-associated TonB-dependent receptor gene ctrA. Our results reveal an evolutionarily conserved, inter-kingdom signaling by which phytopathogenic bacteria intercept a plant hormone signal to promote adaptation to oxidative stress. : How pathogenic bacteria use receptors to recognize the signals of the host plant is unknown. Wang et al. have identified a bacterial receptor histidine kinase that specifically senses the plant hormone cytokinin. Through a four-step phosphorelay, cytokinin perception triggers degradation of a second messenger, c-di-GMP, to activate the bacterial response to oxidative stress. Keywords: histidine kinase, ligand, cytokinin, autokinase activity, phosphorelay, response regulator, two-component signal transduction system, Xanthomonas campestris pv. campestris, virulence, oxidative stress

  9. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity.

    Science.gov (United States)

    Meadows, A; Lee, J H; Wu, C-S; Wei, Q; Pradhan, G; Yafi, M; Lu, H-C; Sun, Y

    2016-03-01

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical cannabinoid receptor, and its pharmacology and functions are distinct from CB1. GPR55 regulates neuropathic pain, gut, bone, immune functions and motor coordination. GPR55 is expressed in various brain regions and peripheral tissues. However, the roles of GPR55 in energy and glucose homeostasis are unknown. Here we have investigated the roles of GPR55 in energy balance and insulin sensitivity using GPR55-null mice (GPR55(-/-)). Body composition of the mice was measured by EchoMRI. Food intake, feeding behavior, energy expenditure and physical activity of GPR55(-/-) mice were determined by indirect calorimetry. Muscle function was assessed by forced treadmill running test. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Adipose inflammation was assessed by flow cytometry analysis of adipose tissue macrophages. The expression of inflammatory markers in adipose tissues and orexigenic/anorexigenic peptides in the hypothalamus was also analyzed by real-time PCR. GPR55(-/-) mice had normal total energy intake and feeding pattern (i.e., no changes in meal size, meal number or feeding frequency). Intriguingly, whereas adult GPR55(-/-) mice only showed a modest increase in overall body weight, they exhibited significantly increased fat mass and insulin resistance. The spontaneous locomotor activity of GPR55(-/-) mice was dramatically decreased, whereas resting metabolic rate and non-shivering thermogenesis were unchanged. Moreover, GPR55(-/-) mice exhibited significantly decreased voluntary physical activity, showing reduced running distance on the running wheels, whereas muscle function appeared to be normal. GPR55 has an important role in energy

  10. Hematopoietic androgen receptor deficiency promotes visceral fat deposition in male mice without impairing glucose homeostasis

    OpenAIRE

    Rubinow, K. B.; Wang, S.; den Hartigh, L. J.; Subramanian, S.; Morton, G. J.; Buaas, F. W.; Lamont, D.; Gray, N.; Braun, R. E.; Page, S. T.

    2015-01-01

    Androgen deficiency in men increases body fat, but the mechanisms by which testosterone suppresses fat deposition have not been elucidated fully. Adipose tissue macrophages express the androgen receptor (AR) and regulate adipose tissue remodeling. Thus, testosterone signaling in macrophages could alter the paracrine function of these cells and thereby contribute to the metabolic effects of androgens in men. A metabolic phenotyping study was performed to determine whether the loss of AR signal...

  11. Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte Chemotactic Protein-1 Production

    OpenAIRE

    Li, Jing Jing; Tay, Hock L.; Plank, Maximilian; Essilfie, Ama-Tawiah; Hansbro, Philip M.; Foster, Paul S.; Yang, Ming

    2013-01-01

    BACKGROUND: Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs), however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ) and lipopolysaccharide (LPS) drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activat...

  12. Perivascular Adipose Tissue Angiotensin II Type 1 Receptor Promotes Vascular Inflammation and Aneurysm Formation.

    Science.gov (United States)

    Sakaue, Tomoki; Suzuki, Jun; Hamaguchi, Mika; Suehiro, Chika; Tanino, Akiko; Nagao, Tomoaki; Uetani, Teruyoshi; Aono, Jun; Nakaoka, Hirotomo; Kurata, Mie; Sakaue, Tomohisa; Okura, Takafumi; Yasugi, Takumi; Izutani, Hironori; Higaki, Jitsuo; Ikeda, Shuntaro

    2017-10-01

    Perivascular adipose tissue exhibits characteristics of active local inflammation, which contributes to the development of atherosclerotic disease as a complication of obesity/metabolic syndrome. However, the precise role of perivascular adipose tissue in the progression of abdominal aortic aneurysm remains unclear. To test the hypothesis that genetic deletion of angiotensin II type 1a (AT 1a ) receptor in perivascular visceral adipose tissue (VAT) can attenuate aortic aneurysm formation in apolipoprotein E-deficient (ApoE -/- ) mice, we performed adipose tissue transplantation experiments by using an angiotensin II-induced aneurysm murine model, in which we transplanted VAT from ApoE -/- or ApoE -/- AT 1a -/- donor mice onto the abdominal aorta of ApoE -/- recipient mice. Compared with ApoE -/- VAT transplantation, ApoE -/- AT 1a -/- VAT transplantation markedly attenuated aortic aneurysm formation, macrophage infiltration, and gelatinolytic activity in the abdominal aorta. AT 1a receptor activation led to the polarization of macrophages in perivascular VAT toward the proinflammatory phenotype. Moreover, osteopontin expression and gelatinolytic activity were considerably lower in ApoE -/- AT 1a -/- perivascular VAT than in ApoE -/- perivascular VAT, and angiotensin II-induced osteopontin secretion from adipocytes was eliminated after deletion of AT 1a receptor in adipocytes. Notably, induction of macrophage migration by conditioned medium from angiotensin II-stimulated wild-type adipocytes was suppressed by treatment with an osteopontin-neutralizing antibody, and ApoE -/- OPN -/- VAT transplantation more potently attenuated aortic aneurysm formation than ApoE -/- VAT transplantation. Our findings indicate a previously unrecognized effect of AT 1a receptor in perivascular VAT on the pathogenesis of abdominal aortic aneurysm. © 2017 American Heart Association, Inc.

  13. TGF-α/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Mei Teh, Bing, E-mail: bing.teh@earscience.org.au [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA (Australia); Redmond, Sharon L. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Shen, Yi [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head and Neck, Ningbo Lihuili Hospital (Ningbo Medical Centre), Ningbo, Zhejiang (China); Atlas, Marcus D. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA (Australia); Marano, Robert J.; Dilley, Rodney J. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia)

    2013-04-01

    Tympanic membrane perforations are common and represent a management challenge to clinicians. Current treatments for chronic perforations involve a graft surgery and require general anaesthesia, including associated costs and morbidities. Bioactive molecules (e.g. growth factors, cytokines) play an important role in promoting TM wound healing following perforation and the use of growth factors as a topical treatment for tympanic membrane perforations has been suggested as an alternative to surgery. However, the choice of bioactive molecules best suited to promote wound healing has yet to be identified. We investigated the effects of hyaluronic acid, vitronectin, TGF-α, IL-24 and their combinations on migration, proliferation and adhesion of cultured human tympanic membrane-derived keratinocytes (hTM), in addition to their possible mechanisms of action. We found that TGF-α, TGF-α/HA and TGF-α/IL-24 promoted wound healing by significantly increasing both migration and proliferation. TGF-α and/or HA treated cells showed comparable cell–cell adhesion whilst maintaining an epithelial cell phenotype. With the use of receptor binding inhibitors for ErbB1 (AG1478) and CD44 (BRIC235), we revealed that the activation of ErbB1 is required for TGF-α/HA-mediated migration and proliferation. These results suggest factors that may be incorporated into a tissue-engineered membrane or directly as topical treatment for tympanic membrane perforations and hence reduce the need for a surgery. - Highlights: ► TGF-α, TGF-α/HA and TGF-α/IL-24 improved hTM keratinocyte migration and proliferation. ► TGF-α and/or HA maintained epithelial cell phenotype. ► TGF-α/HA-mediated migration and proliferation requires activation of ErbB1 receptor.

  14. IB-MECA, an Adenosine A(3) Receptor Agonist, Does Not Influence Survival of Lethally gamma-Irradiated Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2012-01-01

    Roč. 61, č. 6 (2012), s. 649-654 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/08/0158; GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Mouse * IB-MECA * Adenosine A(3) receptor agonist Subject RIV: BO - Biophysics Impact factor: 1.531, year: 2012

  15. Fc-gamma-receptors on lymphocytes from normal donors and patients with lymphoproliferative diseases - influence of incubation conditions

    NARCIS (Netherlands)

    Smit, J. W.; van der Giessen, M; Halie, M. R.

    1983-01-01

    The antibody-coated human erythrocyte and the antibody-coated ox eryth-rocyte rosette assays (EAHu and EAOx) were compared to detect Fc γ receptors on human peripheral blood lymphocytes. Two incubation conditions were examined: 1 h at room temperature and overnight at 4°C. In healthy persons, in

  16. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression.

    Science.gov (United States)

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2018-01-01

    Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator

  17. Uncoupling the D1-N-methyl-D-aspartate (NMDA) receptor complex promotes NMDA-dependent long-term potentiation and working memory.

    Science.gov (United States)

    Nai, Qiang; Li, Shupeng; Wang, Szu-Han; Liu, Jing; Lee, Frank J S; Frankland, Paul W; Liu, Fang

    2010-02-01

    Although dopamine D1 receptors are involved in working memory, how D1 receptors contribute to this process remains unclear. Numerous studies have shown that D1 receptors have extensive functional interaction with N-methyl-D-aspartate (NMDA) receptor. Our group previously demonstrated that D1 receptors were able to regulate NMDA receptor functions through direct protein-protein interactions involving the carboxyl terminals of D1 receptors and NMDA receptor NR1a and NR2A subunits respectively. In this study, we explored the effects of the D1-NR1 interaction on NMDA receptor-dependent long-term potentiation (LTP) and working memory by using the TAT-conjugated interfering peptide (TAT-D1-t2). Miniature excitatory postsynaptic currents are recorded in rat hippocampal primary cultures. Coimmunoprecipitation and calcium/calmodulin-dependent protein kinase II (CaMKII) activity are measured in hippocampal slices and hippocampal neurons under the specified experimental conditions, respectively. Working memory was assessed using a delayed match-to-place protocol in the Morris Water Maze following administration of the TAT-D1-t2 peptide. Electrophysiology experiments showed that activation of D1 receptor upregulates NMDA receptor-mediated LTP in a CaMKII-dependent manner. Furthermore, D1 receptor agonist stimulation promotes the NR1-CaMKII coupling and enhances the CaMKII activity; and the D1 receptor-mediated effects can be blocked by the application of the TAT-D1-t2 peptide. Interestingly, animals injected with TAT-D1-t2 peptide exhibited significantly impaired working memory. Our study showed a critical role of NMDA-D1 direct protein-protein interaction in NMDA receptor-mediated LTP and working memory and implicated the involvement of CaMKII in this process. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite outgrowth in PC12 neuronal cells via non-G protein-coupled receptor (GPCR) signaling.

    Science.gov (United States)

    Kasubuchi, Mayu; Watanabe, Keita; Hirano, Kanako; Inoue, Daisuke; Li, Xuan; Terasawa, Kazuya; Konishi, Morichika; Itoh, Nobuyuki; Kimura, Ikuo

    2017-07-12

    Recently, sex steroid membrane receptors garnered world-wide attention because they may be related to sex hormone-mediated unknown rapid non-genomic action that cannot be currently explained by their genomic action via nuclear receptors. Progesterone affects cell proliferation and survival via non-genomic effects. In this process, membrane progesterone receptors (mPRα, mPRβ, mPRγ, mPRδ, and mPRε) were identified as putative G protein-coupled receptors (GPCRs) for progesterone. However, the structure, intracellular signaling, and physiological functions of these progesterone receptors are still unclear. Here, we identify a molecular mechanism by which progesterone promotes neurite outgrowth through mPRβ (Paqr8) activation. Mouse mPRβ mRNA was specifically expressed in the central nervous system. It has an incomplete GPCR topology, presenting 6 transmembrane domains and did not exhibit typical GPCR signaling. Progesterone-dependent neurite outgrowth was exhibited by the promotion of ERK phosphorylation via mPRβ, but not via other progesterone receptors such as progesterone membrane receptor 1 (PGRMC-1) and nuclear progesterone receptor in nerve growth factor-induced neuronal PC12 cells. These findings provide new insights of regarding the non-genomic action of progesterone in the central nervous system.

  19. alpha7 nicotinic receptor gene promoter polymorphisms in inbred mice affect expression in a cell type-specific fashion.

    Science.gov (United States)

    Mexal, Sharon; Jenkins, Paul M; Lautner, Meeghan A; Iacob, Eli; Crouch, Eric L; Stitzel, Jerry A

    2007-05-04

    Inbred mouse strains display significant differences in their levels of brain alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) expression, as measured by binding of the alpha7-selective antagonist alpha-bungarotoxin. Variations in alpha-bungarotoxin binding have been shown to correlate with an animal's sensitivity to nicotine-induced seizures and sensory gating. In two inbred mouse strains, C3H/2Ibg (C3H) and DBA/2Ibg (DBA/2), the inter-strain binding differences are linked to a restriction length polymorphism in the alpha7 nAChR gene, Chrna7. Despite this finding, the molecular mechanism(s) through which genetic variability in Chrna7 may contribute to alpha7 nAChR expression differences remains unknown. However, studies of the human alpha7 nAChR gene (CHRNA7) previously have demonstrated that CHRNA7 promoter polymorphisms are associated with differences in promoter activity as well as differences in sensory processing. In the present study, a 947-base pair region of the Chrna7 promoter was cloned from both the C3H and DBA/2 inbred mouse strains in an attempt to identify polymorphisms that may underlie alpha7 nAChR differential expression. Sequence analysis of these fragments identified 14 single nucleotide polymorphisms (SNPs). A combination of two of these SNPs affects promoter activity in an in vitro luciferase reporter assay. These results suggest a mechanism through which the Chrna7 promoter genotype may influence interstrain variations in alpha7 nAChR expression.

  20. Biodistribution of an anti-interleukin 2 receptor monoclonal antibody in rat recipients of a heart allograft, and its use as a rejection marker in gamma scintigraphy

    International Nuclear Information System (INIS)

    Thedrez, P.; Paineau, J.; Jacques, Y.; Chatal, J.F.; Pelegrin, A.; Bouchaud, C.; Soulillou, J.P.

    1989-01-01

    Anti-interleukin-2 receptor monoclonal antibodies have been shown to prevent allograft rejection. This paper reports on the biodistribution of a mouse MoAb directed at the 55 Kd alpha chain of rat interleukin-2 receptor (IL2-R) during allograft rejection. Only a low percentage (approximately 1%) of intact 125I-labeled MoAb was detected in the rejected graft, and irrelevant control IgG1 was found at a similar level. This suggests that most of the injected intact MoAb bound to graft tissue via its monomorphic Fc segment. In contrast, OX39 F(ab')2 fragments showed a preferential localization in the rejected allograft and did not bind to the LEW-to-LEW syngeneic heart graft. Irrelevant F(ab')2 did not concentrate in the allogeneic graft. Accordingly, F(ab')2 fragments from OX39 or irrelevant MoAb were used for gamma-scintigraphy on allograft recipients together with biodistribution studies. Results show that scintigraphy was able to detect allograft accumulation of 131I OX39 F(ab')2, whereas no imaging was obtained when OX39 F(ab')2 was used in the syngeneic combination or when irrelevant 131-IgG1 F(ab')2 was given to allograft recipients. This method, applied to the clinical situation, could be of interest for detection of early graft rejection episodes by immunoscintigraphy using reagents specific for activation determinants on lymphocyte membranes, such as anti-interleukin-2 receptor MoAb

  1. Gamma-aminobutyric acid (GABA) and pentobarbital induce different conformational rearrangements in the GABA A receptor alpha1 and beta2 pre-M1 regions.

    Science.gov (United States)

    Mercado, Jose; Czajkowski, Cynthia

    2008-05-30

    Gamma-aminobutyric acid (GABA) binding to GABA(A) receptors (GABA(A)Rs) triggers conformational movements in the alpha(1) and beta(2) pre-M1 regions that are associated with channel gating. At high concentrations, the barbiturate pentobarbital opens GABA(A)R channels with similar conductances as GABA, suggesting that their open state structures are alike. Little, however, is known about the structural rearrangements induced by barbiturates. Here, we examined whether pentobarbital activation triggers movements in the GABA(A)R pre-M1 regions. Alpha(1)beta(2) GABA(A)Rs containing cysteine substitutions in the pre-M1 alpha(1) (K219C, K221C) and beta(2) (K213C, K215C) subunits were expressed in Xenopus oocytes and analyzed using two-electrode voltage clamp. The cysteine substitutions had little to no effect on GABA and pentobarbital EC(50) values. Tethering chemically diverse thiol-reactive methanethiosulfonate reagents onto alpha(1)K219C and alpha(1)K221C affected GABA- and pentobarbital-activated currents differently, suggesting that the pre-M1 structural elements important for GABA and pentobarbital current activation are distinct. Moreover, pentobarbital altered the rates of cysteine modification by methanethiosulfonate reagents differently than GABA. For alpha(1)K221Cbeta(2) receptors, pentobarbital decreased the rate of cysteine modification whereas GABA had no effect. For alpha(1)beta(2)K215C receptors, pentobarbital had no effect whereas GABA increased the modification rate. The competitive GABA antagonist SR-95531 and a low, non-activating concentration of pentobarbital did not alter their modification rates, suggesting that the GABA- and pentobarbital-mediated changes in rates reflect gating movements. Overall, the data indicate that the pre-M1 region is involved in both GABA- and pentobarbital-mediated gating transitions. Pentobarbital, however, triggers different movements in this region than GABA, suggesting their activation mechanisms differ.

  2. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2.

    Science.gov (United States)

    Zheng, Leon; Kelly, Caleb J; Battista, Kayla D; Schaefer, Rachel; Lanis, Jordi M; Alexeev, Erica E; Wang, Ruth X; Onyiah, Joseph C; Kominsky, Douglas J; Colgan, Sean P

    2017-10-15

    Commensal interactions between the enteric microbiota and distal intestine play important roles in regulating human health. Short-chain fatty acids (SCFAs), such as butyrate, produced through anaerobic microbial metabolism represent a major energy source for the host colonic epithelium and enhance epithelial barrier function through unclear mechanisms. Separate studies revealed that the epithelial anti-inflammatory IL-10 receptor α subunit (IL-10RA) is also important for barrier formation. Based on these findings, we examined if SCFAs promote epithelial barrier through IL-10RA-dependent mechanisms. Using human intestinal epithelial cells (IECs), we discovered that SCFAs, particularly butyrate, enhanced IEC barrier formation, induced IL-10RA mRNA, IL-10RA protein, and transactivation through activated Stat3 and HDAC inhibition. Loss and gain of IL-10RA expression directly correlates with IEC barrier formation and butyrate represses permeability-promoting claudin-2 tight-junction protein expression through an IL-10RA-dependent mechanism. Our findings provide a novel mechanism by which microbial-derived butyrate promotes barrier through IL-10RA-dependent repression of claudin-2. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Proinflammatory tachykinins that signal through the neurokinin 1 receptor promote survival of dendritic cells and potent cellular immunity

    Science.gov (United States)

    Janelsins, Brian M.; Mathers, Alicia R.; Tkacheva, Olga A.; Erdos, Geza; Shufesky, William J.; Morelli, Adrian E.

    2009-01-01

    Dendritic cells (DCs) are the preferred targets for immunotherapy protocols focused on stimulation of cellular immune responses. However, regardless of initial promising results, ex vivo generated DCs do not always promote immune-stimulatory responses. The outcome of DC-dependent immunity is regulated by proinflammatory cytokines and neuropeptides. Proinflammatory neuropeptides of the tachykinin family, including substance P (SP) and hemokinin-1 (HK-1), bind the neurokinin 1 receptor (NK1R) and promote stimulatory immune responses. Nevertheless, the ability of pro-inflammatory tachykinins to affect the immune functions of DCs remains elusive. In the present work, we demonstrate that mouse bone marrow–derived DCs (BMDCs) generated in the presence of granulocyte macrophage–colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), express functional NK1R. Signaling via NK1R with SP, HK-1, or the synthetic agonist [Sar9Met(O2)11]-SP rescues DCs from apoptosis induced by deprivation of GM-CSF and IL-4. Mechanistic analysis demonstrates that NK1R agonistic binding promotes DC survival via PI3K-Akt signaling cascade. In adoptive transfer experiments, NK1R-signaled BMDCs loaded with Ag exhibit increased longevity in draining lymph nodes, resulting in enhanced and prolonged effector cellular immunity. Our results contribute to the understanding of the interactions between the immune and nervous systems that control DC function and present a novel approach for ex vivo–generation of potent immune-stimulatory DCs. PMID:18987361

  4. G Protein-coupled Receptor Kinase 2 (GRK2 Promotes Breast Tumorigenesis Through a HDAC6-Pin1 Axis

    Directory of Open Access Journals (Sweden)

    Laura Nogués

    2016-11-01

    Full Text Available In addition to oncogenic drivers, signaling nodes can critically modulate cancer-related cellular networks to strength tumor hallmarks. We identify G-protein-coupled receptor kinase 2 (GRK2 as a relevant player in breast cancer. GRK2 is up-regulated in breast cancer cell lines, in spontaneous tumors in mice, and in a proportion of invasive ductal carcinoma patients. Increased GRK2 functionality promotes the phosphorylation and activation of the Histone Deacetylase 6 (HDAC6 leading to de-acetylation of the Prolyl Isomerase Pin1, a central modulator of tumor progression, thereby enhancing its stability and functional interaction with key mitotic regulators. Interestingly, a correlation between GRK2 expression and Pin1 levels and de-acetylation status is detected in breast cancer patients. Activation of the HDAC6-Pin1 axis underlies the positive effects of GRK2 on promoting growth factor signaling, cellular proliferation and anchorage-independent growth in both luminal and basal breast cancer cells. Enhanced GRK2 levels promote tumor growth in mice, whereas GRK2 down-modulation sensitizes cells to therapeutic drugs and abrogates tumor formation. Our data suggest that GRK2 acts as an important onco-modulator by strengthening the functionality of key players in breast tumorigenesis such as HDAC6 and Pin1.

  5. Interleukin 6 Present in Inflammatory Ascites from Advanced Epithelial Ovarian Cancer Patients Promotes Tumor Necrosis Factor Receptor 2-Expressing Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Nirmala Chandralega Kampan

    2017-11-01

    Full Text Available BackgroundEpithelial ovarian cancer (EOC remains a highly lethal gynecological malignancy. Ascites, an accumulation of peritoneal fluid present in one-third of patients at presentation, is linked to poor prognosis. High levels of regulatory T cells (Tregs in ascites are correlated with tumor progression and reduced survival. Malignant ascites harbors high levels of Tregs expressing the tumor necrosis factor receptor 2 (TNFR2, as well as pro-inflammatory factors such as interleukin 6 (IL-6 and tumor necrosis factor (TNF. IL-6 is also associated with poor prognosis. Herein, we study the effect of IL-6 and TNF present in ascites on the modulation of TNFR2 expression on T cells, and specifically Tregs.MethodsAscites and respective peripheral blood sera were collected from 18 patients with advanced EOC and soluble biomarkers, including IL-6, sTNFR2, IL-10, TGF-β, and TNF, were quantified using multiplexed bead-based immunoassay. Peripheral blood mononuclear cells (PBMC from healthy donors were incubated with cell-free ascites for 48 h (or media as a negative control. In some experiments, IL-6 or TNF within the ascites were neutralized by using monoclonal antibodies. The phenotype of TNFR2+ Tregs and TNFR2− Tregs were characterized post incubation in ascites. In some experiments, cell sorted Tregs were utilized instead of PBMC.ResultsHigh levels of immunosuppressive (sTNFR2, IL-10, and TGF-β and pro-inflammatory cytokines (IL-6 and TNF were present in malignant ascites. TNFR2 expression on all T cell subsets was higher in post culture in ascites and highest on CD4+CD25hiFoxP3+ Tregs, resulting in an increased TNFR2+ Treg/effector T cell ratio. Furthermore, TNFR2+ Tregs conditioned in ascites expressed higher levels of the functional immunosuppressive molecules programmed cell death ligand-1, CTLA-4, and GARP. Functionally, TNFR2+ Treg frequency was inversely correlated with interferon-gamma (IFN-γ production by effector T cells, and was

  6. Interleukin 6 Present in Inflammatory Ascites from Advanced Epithelial Ovarian Cancer Patients Promotes Tumor Necrosis Factor Receptor 2-Expressing Regulatory T Cells.

    Science.gov (United States)

    Kampan, Nirmala Chandralega; Madondo, Mutsa Tatenda; McNally, Orla M; Stephens, Andrew N; Quinn, Michael A; Plebanski, Magdalena

    2017-01-01

    Epithelial ovarian cancer (EOC) remains a highly lethal gynecological malignancy. Ascites, an accumulation of peritoneal fluid present in one-third of patients at presentation, is linked to poor prognosis. High levels of regulatory T cells (Tregs) in ascites are correlated with tumor progression and reduced survival. Malignant ascites harbors high levels of Tregs expressing the tumor necrosis factor receptor 2 (TNFR2), as well as pro-inflammatory factors such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). IL-6 is also associated with poor prognosis. Herein, we study the effect of IL-6 and TNF present in ascites on the modulation of TNFR2 expression on T cells, and specifically Tregs. Ascites and respective peripheral blood sera were collected from 18 patients with advanced EOC and soluble biomarkers, including IL-6, sTNFR2, IL-10, TGF-β, and TNF, were quantified using multiplexed bead-based immunoassay. Peripheral blood mononuclear cells (PBMC) from healthy donors were incubated with cell-free ascites for 48 h (or media as a negative control). In some experiments, IL-6 or TNF within the ascites were neutralized by using monoclonal antibodies. The phenotype of TNFR2 + Tregs and TNFR2 - Tregs were characterized post incubation in ascites. In some experiments, cell sorted Tregs were utilized instead of PBMC. High levels of immunosuppressive (sTNFR2, IL-10, and TGF-β) and pro-inflammatory cytokines (IL-6 and TNF) were present in malignant ascites. TNFR2 expression on all T cell subsets was higher in post culture in ascites and highest on CD4 + CD25 hi FoxP3 + Tregs, resulting in an increased TNFR2 + Treg/effector T cell ratio. Furthermore, TNFR2 + Tregs conditioned in ascites expressed higher levels of the functional immunosuppressive molecules programmed cell death ligand-1, CTLA-4, and GARP. Functionally, TNFR2 + Treg frequency was inversely correlated with interferon-gamma (IFN-γ) production by effector T cells, and was uniquely able to suppress TNFR2

  7. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    International Nuclear Information System (INIS)

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-01-01

    Research highlights: → Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ. → GW9662 treatment alone increased RAGE mRNA levels in tubular cells. → Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-β gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.

  8. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor.

    Science.gov (United States)

    Lu, Qian; Wang, Chong; Pan, Rong; Gao, Xinghua; Wei, Zhifeng; Xia, Yufeng; Dai, Yue

    2013-05-01

    Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration-dependently enhance bFGF-induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1-receptor antagonist), SB203580 (selective p38 mitogen-activated protein kinase (MAPK) inhibitor) and L-NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2-receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF-incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF-κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF-induced angiogenesis, and this action was linked to VEGF production through H1-receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. Copyright © 2012 Wiley Periodicals, Inc.

  9. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Tobias Müller

    2017-08-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF.

  10. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    Czech Academy of Sciences Publication Activity Database

    Štísová, Viktorie; Goffinont, S.; Maurizot, M. S.; Davídková, Marie

    2010-01-01

    Roč. 79, č. 8 (2010), s. 880-889 ISSN 0969-806X R&D Projects: GA MŠk 1P05OC085; GA MŠk OC09012 Institutional research plan: CEZ:AV0Z10480505 Keywords : DNA-protein complex * estrogen response element * estrogen receptor * ionizing radiation Subject RIV: BO - Biophysics Impact factor: 1.132, year: 2010

  11. Gamma gamma technology group

    Indian Academy of Sciences (India)

    The gamma gamma community are concerned that in the rush to prepare for the e+e− machine, allowance is not being made for a future upgrade of the photon linear collider. References. [1] ECFA/DESY Photon Collider Working Group: B Badelek et al, TESLA Technical. Design Report, Part VI, Chapter 1: Photon collider at ...

  12. Activation of the HSV-TK promoter in control reporter vector pBLCAT5 by liganded nuclear retinoid receptor RXRα

    Directory of Open Access Journals (Sweden)

    Nikčević Gordana

    2006-01-01

    Full Text Available Widely used reporter vector systems for studying the putative regulatory DNA elements usually contain basal promoters from pathogenic mammalian viruses. It is a common assumption that reliable results can be achieved only if the viral promoter activity is unaffected by transacting factors or any experimental treatment. Here we report that liganded nuclear retinoid receptor RXRa stimulates the HSV-TK promoter in control reporter vector pBLCAT5. Thus, TK driven reporter vectors should be employed only after thorough testing of the regulation of this promoter under experimental stimuli for a particular research purpose in order to avoid unreliable interpretation of the assay results.

  13. Cefminox, a Dual Agonist of Prostacyclin Receptor and Peroxisome Proliferator-Activated Receptor-Gamma Identified by Virtual Screening, Has Therapeutic Efficacy against Hypoxia-Induced Pulmonary Hypertension in Rats

    Directory of Open Access Journals (Sweden)

    Jingwen Xia

    2018-02-01

    Full Text Available Prostacyclin receptor (IP and peroxisome proliferator-activated receptor-gamma (PPARγ are both potential targets for treatment of pulmonary arterial hypertension (PAH. Expression of IP and PPARγ decreases in PAH, suggesting that screening of dual agonists of IP and PPARγ might be an efficient method for drug discovery. Virtual screening (VS of potential IP–PPARγ dual-targeting agonists was performed in the ZINC database. Ten of the identified compounds were further screened, and cefminox was found to dramatically inhibit growth of PASMCs with no obvious cytotoxicity. Growth inhibition by cefminox was partially reversed by both the IP antagonist RO113842 and the PPARγ antagonist GW9662. Investigation of the underlying mechanisms of action demonstrated that cefminox inhibits the protein kinase B (Akt/mammalian target of rapamycin (mTOR signaling pathway through up-regulation of the expression of phosphatase and tensin homolog (PTEN, which is inhibited by GW9662, and enhances cyclic adenosine monophosphate (cAMP production in PASMCs (which is inhibited by RO113842. In a rat model of hypoxia-induced pulmonary hypertension, cefminox displayed therapeutic efficacy not inferior to that of the prostacyclin analog iloprost or the PPARγ agonist rosiglitazone. Our results identified cefminox as a dual agonist of IP and PPARγ that significantly inhibits PASMC proliferation by up-regulation of PTEN and cAMP, suggesting that it has potential for treatment of PAH.

  14. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4

    Science.gov (United States)

    Tadie, Jean-Marc; Bae, Hong-Beom; Jiang, Shaoning; Park, Dae Won; Bell, Celeste P.; Yang, Huan; Pittet, Jean-Francois; Tracey, Kevin; Thannickal, Victor J.; Abraham, Edward

    2013-01-01

    Although neutrophil extracellular traps (NETs) form to prevent dissemination of pathogenic microorganisms, excessive release of DNA and DNA-associated proteins can also perpetuate sterile inflammation. In this study, we found that the danger-associated molecular pattern protein high-mobility group box 1 (HMGB1) can induce NET formation. NET formation was found after exposure of wild-type and receptor for advanced glycation end products-deficient neutrophil to HMGB1, whereas deficiency of Toll-like receptor (TLR)4 diminished the ability of neutrophils to produce NETs. Incubation of neutrophils with HMGB1 significantly increased the amount of DNA and histone 3 released as well as intracellular histone 3 citrullination, a signaling event that precedes chromatin decondensation. In vivo, neutrophils isolated from bronchoalveolar lavages of mice exposed to LPS and HMGB1 showed consistently greater ability to produce NETs compared with pulmonary neutrophils from mice that received LPS alone. In contrast, mice treated with LPS and neutralizing antibody to HMGB1 had decreased amounts of the inflammatory cytokines TNF-α and macrophage inflammatory protein 2, as well as of free DNA and histone 3 in bronchoalveolar lavage fluids. Airway neutrophils from LPS-exposed mice that had been treated with anti-HMGB1 antibodies showed decreased citrullination of histone 3. These results demonstrate that interactions between HMGB1 and TLR4 enhance the formation of NETs and provide a novel mechanism through which HMGB1 may contribute to the severity of neutrophil-associated inflammatory conditions. PMID:23316068

  15. Toll-Like Receptor 9 Promotes Cardiac Inflammation and Heart Failure during Polymicrobial Sepsis

    Directory of Open Access Journals (Sweden)

    Ralph Lohner

    2013-01-01

    Full Text Available Background. Aim was to elucidate the role of toll-like receptor 9 (TLR9 in cardiac inflammation and septic heart failure in a murine model of polymicrobial sepsis. Methods. Sepsis was induced via colon ascendens stent peritonitis (CASP in C57BL/6 wild-type (WT and TLR9-deficient (TLR9-D mice. Bacterial load in the peritoneal cavity and cardiac expression of inflammatory mediators were determined at 6, 12, 18, 24, and 36 h. Eighteen hours after CASP cardiac function was monitored in vivo. Sarcomere length of isolated cardiomyocytes was measured at 0.5 to 10 Hz after incubation with heat-inactivated bacteria. Results. CASP led to continuous release of bacteria into the peritoneal cavity, an increase of cytokines, and differential regulation of receptors of innate immunity in the heart. Eighteen hours after CASP WT mice developed septic heart failure characterised by reduction of end-systolic pressure, stroke volume, cardiac output, and parameters of contractility. This coincided with reduced cardiomyocyte sarcomere shortening. TLR9 deficiency resulted in significant reduction of cardiac inflammation and a sustained heart function. This was consistent with reduced mortality in TLR9-D compared to WT mice. Conclusions. In polymicrobial sepsis TLR9 signalling is pivotal to cardiac inflammation and septic heart failure.

  16. Endogenous activation of adenosine A1 receptors promotes post-ischemic electrocortical burst suppression

    DEFF Research Database (Denmark)

    Ilie, A; Ciocan, D; Constantinescu, A O

    2009-01-01

    and 5-min GCI and bi-exponential after 10-min GCI. The BS recovery was progressively delayed with the duration of ischemia. Administration of the A1R antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 1.25 mg/kg i.p.) accelerated the post-ischemic BS recovery for all GCI durations. Following the 10......-min GCI the effect of DPCPX was only apparent on the initial fast decay of the BS ratio. These data suggest that endogenous adenosine release promotes BS patterns during reperfusion following transient cerebral ischemia. Furthermore, the endogenous A1R activation may be the primary underlying cause...... of post-ischemic BS patterns following brief ischemic episodes. It is likely that synaptic depression by post-ischemic A1R activation functionally disrupts the connectivity within the cortical networks to an extent that promotes BS patterns....

  17. Nucleus Accumbens Shell and mPFC but not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking

    Directory of Open Access Journals (Sweden)

    Kelly Lei

    2016-08-01

    Full Text Available Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc and anterior insular cortex (aINS in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results strongly suggest that OX1Rs within the mNAsh, but not the aINS, play a

  18. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking.

    Science.gov (United States)

    Lei, Kelly; Wegner, Scott A; Yu, Ji Hwan; Mototake, Arisa; Hu, Bing; Hopf, Frederic W

    2016-01-01

    Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs) promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc) and anterior insular cortex (aINS) in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh) significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results suggest that OX1Rs within the mNAsh and mPFC, but not the aINS, play a central role in

  19. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    Science.gov (United States)

    Gotoh, Saki; Negishi, Masahiko

    2015-09-22

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes.

  20. Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression.

    Science.gov (United States)

    Rodriguez, M; Siwko, S; Zeng, L; Li, J; Yi, Z; Liu, M

    2016-03-03

    Among frequent events in prostate cancer are loss of the tumor-suppressor phosphatase and tensin homologue (PTEN) and overexpression of prostate-specific G-protein-coupled receptor (PSGR), but the potential tumorigenic synergy between these lesions is unknown. Here, we report a new mouse model (PSGR-Pten(Δ/Δ)) combining prostate-specific loss of Pten with probasin promoter-driven PSGR overexpression. By 12 months PSGR-Pten(Δ/Δ) mice developed invasive prostate tumors featuring Akt activation and extensive inflammatory cell infiltration. PSGR-Pten(Δ/Δ) tumors exhibited E-cadherin loss and increased stromal androgen receptor (AR) expression. PSGR overexpression increased LNCaP proliferation, whereas PSGR short hairpin RNA knockdown inhibited proliferation and migration. In conclusion, we demonstrate that PSGR overexpression synergizes with loss of PTEN to accelerate prostate cancer development, and present a novel bigenic mouse model that mimics the human condition, where both PSGR overexpression and loss of PTEN occur concordantly in the majority of advanced prostate cancers, yielding an environment more relevant to studying human prostate cancer.

  1. Deletion of Macrophage Vitamin D Receptor Promotes Insulin Resistance and Monocyte Cholesterol Transport to Accelerate Atherosclerosis in Mice

    Directory of Open Access Journals (Sweden)

    Jisu Oh

    2015-03-01

    Full Text Available Intense effort has been devoted to understanding predisposition to chronic systemic inflammation because it contributes to cardiometabolic disease. We demonstrate that deletion of the macrophage vitamin D receptor (VDR in mice (KODMAC is sufficient to induce insulin resistance by promoting M2 macrophage accumulation in the liver as well as increasing cytokine secretion and hepatic glucose production. Moreover, VDR deletion increases atherosclerosis by enabling lipid-laden M2 monocytes to adhere, migrate, and carry cholesterol into the atherosclerotic plaque and by increasing macrophage cholesterol uptake and esterification. Increased foam cell formation results from lack of VDR-SERCA2b interaction, causing SERCA dysfunction, activation of ER stress-CaMKII-JNKp-PPARγ signaling, and induction of the scavenger receptors CD36 and SR-A1. Bone marrow transplant of VDR-expressing cells into KODMAC mice improved insulin sensitivity, suppressed atherosclerosis, and decreased foam cell formation. The immunomodulatory effects of vitamin D in macrophages are thus critical in diet-induced insulin resistance and atherosclerosis in mice.

  2. Engagement of Platelet Toll-Like Receptor 9 by Novel Endogenous Ligands Promotes Platelet Hyper-Reactivity and Thrombosis

    Science.gov (United States)

    Panigrahi, Soumya; Ma, Yi; Hong, Li; Gao, Detao; West, Xiaoxia Z.; Salomon, Robert G.; Byzova, Tatiana V.; Podrez, Eugene A.

    2012-01-01

    Rationale A prothrombotic state and increased platelet reactivity are common in pathophysiological conditions associated with oxidative stress and infections. Such conditions are associated with an appearance of altered-self ligands in circulation that can be recognized by Toll-like receptors (TLR). Platelets express a number of TLR, including TLR9, however, the role of TLR in platelet function and thrombosis is poorly understood. Objective To investigate the biological activities of carboxy(alkylpyrrole) protein adducts (CAPs), an altered self-ligand generated in oxidative stress, on platelet function and thrombosis. Methods and Results In this study we show that CAPs represent novel unconventional ligands for TLR9. Furthermore, using human and murine platelets, we demonstrate that CAPs promote platelet activation, granule secretion, and aggregation in vitro and thrombosis in vivo via the TLR9/MyD88 pathway. Platelet activation by TLR9 ligands induces IRAK1 and AKT phosphorylation, and is Src kinase dependent. Physiological platelet agonists act synergistically with TLR9 ligands by inducing TLR9 expression on the platelet surface. Conclusions Our study demonstrates that platelet TLR9 is a functional platelet receptor that links oxidative stress, innate immunity, and thrombosis. PMID:23071157

  3. Calcium Promotes Human Gastric Cancer via a Novel Coupling of Calcium-Sensing Receptor and TRPV4 Channel.

    Science.gov (United States)

    Xie, Rui; Xu, Jingyu; Xiao, Yufeng; Wu, Jilin; Wan, Hanxing; Tang, Bo; Liu, Jingjing; Fan, Yahan; Wang, Suming; Wu, Yuyun; Dong, Tobias Xiao; Zhu, Michael X; Carethers, John M; Dong, Hui; Yang, Shiming

    2017-12-01

    Although dietary calcium intake has long been recommended for disease prevention, the influence of calcium in development of cancer in the upper gastrointestinal tract has not been explored. Here, we assess the roles of calcium and calcium-sensing receptor (CaSR) in gastric cancer development. CaSR expression was enhanced in gastric cancer specimens, which positively correlated with serum calcium concentrations, tumor progression, poor survival, and male gender in gastric cancer patients. CaSR and transient receptor potential cation channel subfamily V member 4 (TRPV4) were colocalized in gastric cancer cells, and CaSR activation evoked TRPV4-mediated Ca 2+ entry. Both CaSR and TRPV4 were involved in Ca 2+ -induced proliferation, migration, and invasion of gastric cancer cells through a Ca 2+ /AKT/β-catenin relay, which occurred only in gastric cancer cells or normal cells overexpressing CaSR. Tumor growth and metastasis of gastric cancer depended on CaSR in nude mice. Overall, our findings indicate that calcium may enhance expression and function of CaSR to potentially promote gastric cancer, and that targeting the novel CaSR/TRPV4/Ca 2+ pathway might serve as preventive or therapeutic strategies for gastric cancer. Cancer Res; 77(23); 6499-512. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells

    Science.gov (United States)

    Xiang, Yi; Yao, Xiaohong; Chen, Keqiang; Wang, Xiafei; Zhou, Jiamin; Gong, Wanghua; Yoshimura, Teizo; Huang, Jiaqiang; Wang, Rongquan; Wu, Yuzhang; Shi, Guochao; Bian, Xiuwu; Wang, Jiming

    2016-01-01

    The G-protein coupled chemoattractant receptor formylpeptide receptor-2 (FPR2 in human, Fpr2 in mice) is expressed by mouse colon epithelial cells and plays a critical role in mediating mucosal homeostasis and inflammatory responses. However, the biological role of FPR2 in human colon is unclear. Our investigation revealed that a considerable number of human colon cancer cell lines expressed FPR2 and its ligands promoted cell migration and proliferation. Human colon cancer cell lines expressing high levels of FPR2 also formed more rapidly growing tumors in immunocompromised mice as compared with cell lines expressing lower levels of FPR2. Knocking down of FPR2 from colon cancer cell lines highly expressing FPR2 reduced their tumorigenicity. Clinically, FPR2 is more highly expressed in progressive colon cancer, associated with poorer patient prognosis. These results suggest that FPR2 can be high-jacked by colon cancer cells for their growth advantage, thus becoming a potential target for therapeutic development. PMID:27904774

  5. Elevated chemokine CC-motif receptor-like 2 (CCRL2) promotes cell migration and invasion in glioblastoma.

    Science.gov (United States)

    Yin, Fengqiong; Xu, Zhenhua; Wang, Zifeng; Yao, Hong; Shen, Zan; Yu, Fang; Tang, Yiping; Fu, Dengli; Lin, Sheng; Lu, Gang; Kung, Hsiang-Fu; Poon, Wai Sang; Huang, Yunchao; Lin, Marie Chia-Mi

    2012-12-14

    Chemokine CC-motif receptor-like 2 (CCRL2) is a 7-transmembrane G protein-coupled receptor which plays a key role in lung dendritic cell trafficking to peripheral lymph nodes. The function and expression of CCRL2 in cancer is not understood at present. Here we report that CCRL2 expression level is elevated in human glioma patient samples and cell lines. The magnitude of increase is positively associated with increasing tumor grade, with the highest level observed in grade IV glioblastoma. By gain-of-function and loss-of-function studies, we further showed that CCRL2 did not regulate the growth of human glioblatoma U87 and U373 cells. Importantly, we demonstrated that over-expression of CCRL2 significantly enhanced the migration rate and invasiveness of the glioblastoma cells. Taken together, these results suggest for the first time that elevated CCRL2 in glioma promotes cell migration and invasion. The potential roles of CCRL2 as a novel therapeutic target and biomarker warrant further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth.

    Science.gov (United States)

    Catalano, Rob D; Wilson, Martin R; Boddy, Sheila C; McKinlay, Andrew T M; Sales, Kurt J; Jabbour, Henry N

    2011-05-12

    The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E(2). PTGS2 expression and PGE(2) biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE(2) regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1-4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE(2) and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE(2) and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells.

  7. Angiotensin II promotes development of the renal microcirculation through AT1 receptors

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Marcussen, Niels; Pedersen, Michael

    2010-01-01

    Pharmacologic or genetic deletion of components of the renin-angiotensin system leads to postnatal kidney injury, but the roles of these components in kidney development are unknown. To test the hypothesis that angiotensin II supports angiogenesis during postnatal kidney development, we quantified...... CD31(+) postglomerular microvessels, performed quantitative PCR analysis of vascular growth factor expression, and measured renal blood flow by magnetic resonance. Treating rats with the angiotensin II type 1 receptor antagonist candesartan for 2 weeks after birth reduced the total length, volume......, and surface area of capillaries in both the cortex and the medulla and inhibited the organization of vasa recta bundles. In addition, angiotensin II type 1 antagonism inhibited the transcription of angiogenic growth factors vascular endothelial growth factor, angiopoietin-1, angiopoietin-2...

  8. Acetylcholine promotes binding of α-conotoxin MII at α3 β2 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Sambasivarao, Somisetti V; Roberts, Jessica; Bharadwaj, Vivek S; Slingsby, Jason G; Rohleder, Conrad; Mallory, Chris; Groome, James R; McDougal, Owen M; Maupin, C Mark

    2014-02-10

    α-Conotoxin MII (α-CTxMII) is a 16-residue peptide with the sequence GCCSNPVCHLEHSNLC, containing Cys2-Cys8 and Cys3-Cys16 disulfide bonds. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel-ligand interactions on ligand-binding affinity, homology models of the heteropentameric α3β2-nAChR were constructed. The models were created in MODELLER with the aid of experimentally characterized structures of the Torpedo marmorata-nAChR (Tm-nAChR, PDB ID: 2BG9) and the Aplysia californica-acetylcholine binding protein (Ac-AChBP, PDB ID: 2BR8) as templates for the α3- and β2-subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α-CTxMII. The nAChR homology models described here bind ACh with binding energies commensurate with those of previously reported systems, and identify critical interactions that facilitate both ACh and α-CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2-nAChR for α-CTxMII with ACh bound to the receptor, and this was confirmed through two-electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α-CTxMIIs on nAChRs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Directory of Open Access Journals (Sweden)

    Chen Chuang

    2012-10-01

    Full Text Available Abstract Background WC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ γδ T cells. We have previously identified partial or complete genomic sequences for thirteen different WC1 genes through annotation of the bovine genome Btau_3.1 build. We also identified two WC1 cDNA sequences from other cattle that did not correspond to sequences in the Btau_3.1 build. Their absence in the Btau_3.1 build may have reflected gaps in the genome assembly or polymorphisms among animals. Since the response of γδ T cells to bacterial challenge is determined by WC1 gene expression, it was critical to understand whether individual cattle or breeds differ in the number of WC1 genes or display polymorphisms. Results Real-time quantitative PCR using DNA from the animal whose genome was sequenced (“Dominette” and sixteen other animals representing ten breeds of cattle, showed that the number of genes coding for WC1 co-receptors is thirteen. The complete coding sequences of those thirteen WC1 genes is presented, including the correction of an error in the WC1-2 gene due to mis-assembly in the Btau_3.1 build. All other cDNA sequences were found to agree with the previous annotation of complete or partial WC1 genes. PCR amplification and sequencing of the most variable N-terminal SRCR domain (domain 1 which has the SRCR “a” pattern of each of the thirteen WC1 genes showed that the sequences are highly conserved among individuals and breeds. Of 160 sequences of domain 1 from three breeds of cattle, no additional sequences beyond the thirteen described WC1 genes were found. Analysis of the complete WC1 cDNA sequences indicated that the thirteen WC1 genes code for three distinct WC1 molecular forms. Conclusion The bovine WC1 multi-gene family is composed of thirteen genes coding for three structural forms whose

  10. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    Science.gov (United States)

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  11. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  12. Expression of Toll-Like Receptor 2 in Glomerular Endothelial Cells and Promotion of Diabetic Nephropathy by Porphyromonas gingivalis Lipopolysaccharide

    Science.gov (United States)

    Hatakeyama, Yuji; Ishikawa, Hiroyuki; Tsuruga, Eichi

    2014-01-01

    The toll-like receptor (TLR) has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS) which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium. The TLR2 mRNA was detected in diabetic mouse glomeruli by in situ hybridization and in real-time PCR of the renal cortex, the TLR2 mRNA amounts were larger in diabetic mice than in non-diabetic mice. All diabetic mice subjected to repeated LPS administrations died within the survival period of all of the diabetic mice not administered LPS and of all of the non-diabetic LPS-administered mice. The LPS administration promoted the production of urinary protein, the accumulation of type I collagen in the glomeruli, and the increases in IL-6, TNF-α, and TGF-β in the renal cortex of the glomeruli of the diabetic mice. It is thought that blood TLR ligands like Porphyromonas gingivalis LPS induce the glomerular endothelium to produce cytokines which aid glomerulosclerosis. Periodontitis may promote diabetic nephropathy. PMID:24835775

  13. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    International Nuclear Information System (INIS)

    Astrand, Carolina; Belikov, Sergey; Wrange, Orjan

    2009-01-01

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  14. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    Energy Technology Data Exchange (ETDEWEB)

    Astrand, Carolina, E-mail: ca340@cam.ac.uk [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Belikov, Sergey, E-mail: Sergey.Belikov@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Wrange, Orjan, E-mail: Orjan.Wrange@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2009-09-10

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  15. The receptor guanylyl cyclase type D (GC-D) ligand uroguanylin promotes the acquisition of food preferences in mice.

    Science.gov (United States)

    Arakawa, Hiroyuki; Kelliher, Kevin R; Zufall, Frank; Munger, Steven D

    2013-06-01

    Rodents rely on olfactory stimuli to communicate information between conspecifics that is critical for health and survival. For example, rodents that detect a food odor simultaneously with the social odor carbon disulfide (CS(2)) will acquire a preference for that food. Disruption of the chemosensory transduction cascade in CS(2-)sensitive olfactory sensory neurons (OSNs) that express the receptor guanylyl cyclase type D (GC-D; GC-D+ OSNs) will prevent mice from acquiring these preferences. GC-D+ OSNs also respond to the natriuretic peptide uroguanylin, which is excreted into urine and feces. We analyzed if uroguanylin could also act as a social stimulus to promote the acquisition of food preferences. We found that feces of mice that had eaten odored food, but not unodored food, promoted a strong preference for that food in mice exposed to the feces. Olfactory exploration of uroguanylin presented with a food odor similarly produced a preference that was absent when mice were exposed to the food odor alone. Finally, the acquisition of this preference was dependent on GC-D+ OSNs, as mice lacking GC-D (Gucy2d(-)(/-) mice) showed no preference for the demonstrated food. Together with our previous findings, these results demonstrate that the diverse activators of GC-D+ OSNs elicit a common behavioral result and suggest that this specialized olfactory subsystem acts as a labeled line for a type of associative olfactory learning.

  16. Characterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny.

    Directory of Open Access Journals (Sweden)

    Dorcas J Orengo

    Full Text Available The insulin/TOR signal transduction pathway plays a critical role in determining such important traits as body and organ size, metabolic homeostasis and life span. Although this pathway is highly conserved across the animal kingdom, the affected traits can exhibit important differences even between closely related species. Evolutionary studies of regulatory regions require the reliable identification of transcription factor binding sites. Here we have focused on the Insulin Receptor (InR expression from its P2 promoter in the Drosophila genus, which in D. melanogaster is up-regulated by hypophosphorylated Drosophila FOXO (dFOXO. We have finely characterized this transcription factor binding sites in vitro along the 1.3 kb region upstream of the InR P2 promoter in five Drosophila species. Moreover, we have tested the effect of mutations in the characterized dFOXO sites of D. melanogaster in transgenic flies. The number of experimentally established binding sites varies across the 1.3 kb region of any particular species, and their distribution also differs among species. In D. melanogaster, InR expression from P2 is differentially affected by dFOXO binding sites at the proximal and distal halves of the species 1.3 kb fragment. The observed uneven distribution of binding sites across this fragment might underlie their differential contribution to regulate InR transcription.

  17. Promoter methylation of protease-activated receptor (PAR2) is associated with severe clinical phenotypes of ulcerative colitis (UC).

    Science.gov (United States)

    Tahara, Tomomitsu; Shibata, Tomoyuki; Nakamura, Masakatsu; Yamashita, Hiromi; Yoshioka, Daisuke; Okubo, Masaaki; Maruyama, Naoko; Kamano, Toshiaki; Kamiya, Yoshio; Fujita, Hiroshi; Nakagawa, Yoshihito; Nagasaka, Mitsuo; Iwata, Masami; Takahama, Kazuya; Watanabe, Makoto; Nakano, Hiroshi; Hirata, Ichiro; Arisawa, Tomiyasu

    2009-06-01

    Tryptase acting at protease-activated receptor 2 (PAR2) contributes to the pathogenesis of Inflammatory bowel diseases (IBDs). DNA methylation has been shown to be an important mechanism in gene silencing. We attempted to clarify the relationship between the promoter methylation of PAR2 and ulcerative colitis (UC). 84 UC patients enrolled in the study. UC patients were classified by disease behavior, severity and extent of disease. For rectal inflammatory mucosal specimens from all the patients, and normal terminal ileum from 23 patients, promoter methylation of PAR2 gene was quantified by digital densitographic analysis following to methylation-specific polymerase chain reaction (MSP). The mean methylation levels of the PAR2 gene in all 84 subjects was 38.4 +/- 19.6%. Although mean methylation levels in rectal inflammatory mucosa, and paired normal terminal ileum did not vary, methylation levels of PAR2 gene was significantly higher in total colitis than rectal colitis (total colitis vs. rectal colitis; 42.9 +/- 19.6% vs. 34.5 +/- 18.9%, P = 0.046). The higher methylation levels were also associated with Steroid-dependent (P = 0.002) and refractory (P = 0.007) UC. Our data suggest that PAR2 methylation status in rectal mucosa correlates with more severe disease phenotypes of UC.

  18. Effects of gamma rays, ultraviolet radiation, sunlight, microwaves and electromagnetic fields on gene expression mediated by human immunodeficiency virus promoter

    International Nuclear Information System (INIS)

    Libertin, C.R.; Woloschak, G.E.; Panozzo, J.; Groh, K.R.; Chang-Liu, Chin-Mei; Schreck, S.

    1994-01-01

    Previous work by our group and others has shown the modulation of human immunodeficiency virus (HIV) promoter or long terminal repeat (LTR) after exposure to neutrons and ultraviolet radiations. Using HeLa cells stably transfected with a construct containing the chloramphenicol acetyl transferase (CAT) gene, the transcription of which is mediated by the HIV-LTR, we designed experiments to examine the effects of exposure to different types of radiation (such as γ rays, ultraviolet and sunlight irradiations, electromagnetic fields and microwaves) in HIV-LTR-driven expression of CAT. These results demonstrated ultraviolet-light-induced transcription from the HIV promoter, as has been shown by others. Exposure to other DNA-damaging agents such as γ rays and sunlight (with limited exposures) had no significant effect on transcription mediated by HIV-LTR, suggesting that induction of HIV is not mediated by just any type of DNA damage but rather may require specific types of DNA damage. Microwaves did not cause cell killing when cells in culture were exposed in high volumes of medium, and the same cells showed no changes in expression. When microwave exposure was carried out in low volumes of medium (so that excessive heat was generated) induction of HIV-LTR transcription (as assayed by CAT activity) was evident. Electromagnetic field exposures had no effect on expression of HIV-LTR. These results demonstrate that not all types of radiation and not all DNA-damaging agents are capable of inducing HIV. We hypothesize that induction of HIV transcription may be mediated by several different signals exposure to radiation. 22 refs., 8 figs

  19. Combination of ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers.

    Science.gov (United States)

    Yokoyama, Yoshihito; Xin, Bing; Shigeto, Tatsuhiko; Mizunuma, Hideki

    2011-08-01

    We have recently reported that peroxisome proliferator-activated receptor gamma (PPARγ) ligands produce antitumor effects against human ovarian cancer in conjunction with reduction in angiogenesis and induction of apoptosis via regulating prostaglandin (PG) E(2) level. In this study, we investigated the effects of combination of ciglitazone, a PPARγ ligand, and cisplatin, a cytotoxic anti-cancer drug, on growth of ovarian cancer. Tumor growth and survival were examined in female nu/nu mice xenografted with subcutaneous OVCAR-3 tumors or with intraperitoneal DISS tumors and treated with cisplatin alone (5 mg/kg intraperitoneally once on day 1), ciglitazone alone (15 mg/kg intraperitoneally once a week), or the combination. Ciglitazone alone, cisplatin alone, or their combination significantly suppressed the growth of OVCAR-3 tumors xenotransplated subcutaneously and prolonged the survival of mice with malignant ascites derived from DISS cells as compared with the control. Furthermore, the combination produced a significantly greater antitumor effect than cisplatin or ciglitazone alone and also significantly prolonged the survival time as compared with cisplatin or ciglitazone alone. The combination significantly decreased PGE(2) concentration in serum as well as in ascites, reduced vascular endothelial growth factor as well as microvessel density, and induced apoptosis in solid OVCAR-3 tumor as compared with cisplatin or ciglitazone alone. The combination remarkably decreased the expression of cyclooxygenase-2 (COX-2), microsomal PG E synthase (mPGES), and PG receptor 3 (EP3) in tumors. In vitro experiment showed that ciglitazone enhances the cytotoxicity of cisplatin against ovarian cancer cells. In conclusion, the combination inhibited the growth of ovarian cancer in conjunction with reduction in angiogenesis and induction of apoptosis resulting from suppression of PGE(2) activation through decreasing the expression of COX-2, mPGES, and EP3. The inhibitory

  20. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians

    DEFF Research Database (Denmark)

    Muller, Yunhua Li; Bogardus, Clifton; Pedersen, Oluf

    2003-01-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) is a transcriptional coactivator of peroxisome proliferator-activated receptor gamma and alpha, which play important roles in adipogenesis and lipid metabolism. A single nucleotide polymorphism within the coding region...... of the PGC-1 gene predicts a glycine to serine substitution at amino acid 482 and has been associated with type 2 diabetes in a Danish population. In this study, we examined whether this Gly482Ser polymorphism is associated with type 2 diabetes or obesity, or metabolic predictors of these diseases, in Pima...... Indians. There was no association of the Gly482Ser polymorphism with either type 2 diabetes or BMI (n = 984). However, among nondiabetic Pima Indians (n = 183-201), those with the Gly/Gly genotype had a lower mean insulin secretory response to intravenous and oral glucose and a lower mean rate of lipid...

  1. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Dumas, Sébastien J; Bru-Mercier, Gilles; Courboulin, Audrey; Quatredeniers, Marceau; Rücker-Martin, Catherine; Antigny, Fabrice; Nakhleh, Morad K; Ranchoux, Benoit; Gouadon, Elodie; Vinhas, Maria-Candida; Vocelle, Matthieu; Raymond, Nicolas; Dorfmüller, Peter; Fadel, Elie; Perros, Frédéric; Humbert, Marc; Cohen-Kaminsky, Sylvia

    2018-02-14

    Background -Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-D-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. Methods -We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of PAH patients and controls, through mass spectrometry imaging, western blotting and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays, and analyzed NMDAR regulation/phosphorylation through western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell (hPASMC) proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension (PH), both in smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and in the monocrotaline rat model of PH using NMDAR blockers. Results -We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation, in the pulmonary arteries of human PAH patients. K v channel inhibition and ETAR activation amplified calcium-dependent glutamate release from hPASMCs, and ETAR and PDGFR activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The PDGF-BB-induced proliferation of hPASMCs involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between

  2. Peroxisome proliferator-activated receptor gamma regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81)

    DEFF Research Database (Denmark)

    Jeninga, Ellen H; Bugge, Anne Skovsø; Nielsen, Ronni

    2009-01-01

    target genes that may contribute to the reduction of circulating free fatty acids after TZD treatment have been identified, the relevant PPARgamma target genes that may exert the anti-lipolytic effect of TZDs are unknown. Here we identified the anti-lipolytic human G-protein-coupled receptor 81 (GPR81......), GPR109A, and the (human-specific) GPR109B genes as well as the mouse Gpr81 and Gpr109A genes as novel TZD-induced genes in mature adipocytes. GPR81/Gpr81 is a direct PPARgamma target gene, because mRNA expression of GPR81/Gpr81 (and GPR109A/Gpr109A) increased in mature human and murine adipocytes...... as well as in vivo in epididymal fat pads of mice upon rosiglitazone stimulation, whereas small interfering RNA-mediated knockdown of PPARgamma in differentiated 3T3-L1 adipocytes showed a significant decrease in Gpr81 protein expression. In addition, chromatin immunoprecipitation sequencing analysis...

  3. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival.

    Science.gov (United States)

    Rice, Dennis S; Calandria, Jorgelina M; Gordon, William C; Jun, Bokkyoo; Zhou, Yongdong; Gelfman, Claire M; Li, Songhua; Jin, Minghao; Knott, Eric J; Chang, Bo; Abuin, Alex; Issa, Tawfik; Potter, David; Platt, Kenneth A; Bazan, Nicolas G

    2015-03-04

    The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells' functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1(-/-) mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1(-/-) mice. RPE-rich eyecup cultures from AdipoR1(-/-) reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity.

  4. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  5. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer.

    Science.gov (United States)

    Murtaugh, Maureen A; Sweeney, Carol; Ma, Khe-Ni; Potter, John D; Caan, Bette J; Wolff, Roger K; Slattery, Martha L

    2006-01-01

    Modifiable risk factors in colorectal cancer etiology and their interactions with genetic susceptibility are of particular interest. Functional vitamin D receptor (VDR) gene polymorphisms may influence carcinogenesis through modification of cell growth, protection from oxidative stress, cell-cell matrix effects, or insulin and insulin-like growth factor pathways. We investigated interactions between foods (dairy products, red and processed meat, and whole and refined grains) and dietary patterns (sucrose-to-fiber ratio and glycemic index) associated with insulin resistance with the FokI polymorphism of the VDR gene and colon and rectal cancer risk. Data (diet, anthropometrics, and lifestyle) and DNA came from case-control studies of colon (1,698 cases and 1,861 controls) and rectal cancer (752 cases and 960 controls) in northern California, Utah, and the Twin Cities metropolitan area, Minnesota (colon cancer study only). Unconditional logistic regression models were adjusted for smoking, race, sex, age, body mass index, physical activity, energy intake, dietary fiber, and calcium. The lowest colon cancer risk was observed with the Ff/ff FokI genotypes and a low sucrose-to-fiber ratio. Rectal cancer risk decreased with greater consumption of dairy products and increased with red or processed meat consumption and the FF genotype. Modifiable dietary risk factors may be differentially important among individuals by VDR genotype and may act through the insulin pathway to affect colon cancer risk and through fat, calcium, or other means to influence rectal cancer risk.

  6. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA.

    Science.gov (United States)

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-12-08

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.

  7. Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate.

    Science.gov (United States)

    Kostarnoy, Alexey V; Gancheva, Petya G; Lepenies, Bernd; Tukhvatulin, Amir I; Dzharullaeva, Alina S; Polyakov, Nikita B; Grumov, Daniil A; Egorova, Daria A; Kulibin, Andrey Y; Bobrov, Maxim A; Malolina, Ekaterina A; Zykin, Pavel A; Soloviev, Andrey I; Riabenko, Evgeniy; Maltseva, Diana V; Sakharov, Dmitry A; Tonevitsky, Alexander G; Verkhovskaya, Lyudmila V; Logunov, Denis Y; Naroditsky, Boris S; Gintsburg, Alexander L

    2017-03-28

    Sterile (noninfected) inflammation underlies the pathogenesis of many widespread diseases, such as allergies and autoimmune diseases. The evolutionarily conserved innate immune system is considered to play a key role in tissue injury recognition and the subsequent development of sterile inflammation; however, the underlying molecular mechanisms are not yet completely understood. Here, we show that cholesterol sulfate, a molecule present in relatively high concentrations in the epithelial layer of barrier tissues, is selectively recognized by Mincle (Clec4e), a C-type lectin receptor of the innate immune system that is strongly up-regulated in response to skin damage. Mincle activation by cholesterol sulfate causes the secretion of a range of proinflammatory mediators, and s.c. injection of cholesterol sulfate results in a Mincle-mediated induction of a severe local inflammatory response. In addition, our study reveals a role of Mincle as a driving component in the pathogenesis of allergic skin inflammation. In a well-established model of allergic contact dermatitis, the absence of Mincle leads to a significant suppression of the magnitude of the skin inflammatory response as assessed by changes in ear thickness, myeloid cell infiltration, and cytokine and chemokine secretion. Taken together, our results provide a deeper understanding of the fundamental mechanisms underlying sterile inflammation.

  8. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    Science.gov (United States)

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  9. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    Directory of Open Access Journals (Sweden)

    Mi Kyung Park

    Full Text Available Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25 in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  10. Acanthamoeba Protease Activity Promotes Allergic Airway Inflammation via Protease-Activated Receptor 2

    Science.gov (United States)

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES) proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25) in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF) inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease. PMID:24658532

  11. Apoptosis Induction by Targeting Interferon Gamma Receptor 2 (IFNgammaR2) in Prostate Cancer: Ligand (IFNgamma) Independent Novel Function of IFNgammaR2 as a Bax Inhibitor

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-12-1-0331 TITLE: Apoptosis Induction by Targeting Interferon Gamma Receptor 2 (IFNgammaR2) in Prostate Cancer: Ligand...DATE October 2016 2. REPORT TYPE Final report 3. DATES COVERED 1 Aug 2012 - 31 Jul 2016 4. TITLE AND SUBTITLE Apoptosis Induction by Targeting...IFNγR2 has previously unknown function as an inhibitor of Bax. Bax is a key mediator of apoptosis . We found that IFNγR2 is overexpressed in prostate

  12. Role of peroxisome proliferator-activated receptor alpha and gamma in antiangiogenic effect of pomegranate peel extract

    Directory of Open Access Journals (Sweden)

    Nasim Dana

    2016-01-01

    Full Text Available Objective(s: Herbal medicines are promising cancer preventive candidates. It has been shown that Punica granatum L. could inhibit angiogenesis and tumor invasion. In this study, we investigated whether the anti-angiogenic effect of pomegranate peel extract (PPE is partly attributable to Peroxisome proliferator-activated receptors (PPARs activation in the Human Umbilical Vein Endothelial Cells (HUVECs. Materials and Methods: Ethanol extract from PPE was prepared. HUVECs were treated in four groups (with PPE (10 μg/ml alone, PPE with or without PPARγ (T0070907 and α (GW6471 antagonists, and control group. The possible effect of PPARs on angiogenic regulation was checked by Matrigel assay. The mRNA expression levels of vascular endothelial growth factor (VEGF was detected by Quantitative reverse transcription-polymerase chain reaction (QRT-PCR.  Results: PPE significantly inhibited both tube formation (size, length, and junction of tubes and VEGF mRNA expression (P

  13. Retinoic acid receptor gamma impacts cellular adhesion, Alpha5Beta1 integrin expression and proliferation in K562 cells.

    Science.gov (United States)

    Kelley, Melissa D; Phomakay, Raynin; Lee, Madison; Niedzwiedz, Victoria; Mayo, Rachel

    2017-01-01

    The interplay between cellular adhesion and proliferation is complex; however, integrins, particularly the α5β1 subset, play a pivotal role in orchestrating critical cellular signals that culminate in cellular adhesion and growth. Retinoids modify the expression of a variety of adhesive/proliferative signaling proteins including α5β1 integrins; however, the role of specific retinoic acid receptors involved in these processes has not been elucidated. In this study, the effect of all-trans-retinoic acid receptor (RAR) agonists on K562 cellular adhesion, proliferation, and α5β1 integrin cell surface expression was investigated. RARγ agonist exposure increased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin and FN-120 in a time- and concentration dependent manner, while RARα or RARβ agonist treatment had no effect on cellular adhesion. Due to the novel RARγ- dependent cellular adhesion response exhibited by K562 cells, we examined α5 and β1 integrin subunit expression when K562 cells were exposed to retinoid agonists or vehicle for 24, 48, 72 or 96 hours. Our data demonstrates no differences in K562 cell surface expression of the α5 integrin subunit when cells were exposed to RARα, RARβ, or RARγ agonists for all time points tested. In contrast, RARγ agonist exposure resulted in an increase in cell surface β1 integrin subunit expression within 48 hours that was sustained at 72 and 96 hours. Finally, we demonstrate that while exposure to RARα or RARβ agonists have no effect on K562 cellular proliferation, the RARγ agonist significantly dampens K562 cellular proliferation levels in a time- and concentration- dependent manner. Our study is the first to report that treatment with a RARγ specific agonist augments cellular adhesion to α5β1 integrin substrates, increases cell surface levels of the β1 integrin subunit, and dampens cellular proliferation in a time and concentration dependent manner in a human

  14. Promising link between selenium and peroxisome proliferator activated receptor gamma in the treatment protocols of obesity as well as depression.

    Science.gov (United States)

    Donma, M M; Donma, O

    2016-04-01

    Considerable interest has been given to the significance of peroxisome proliferator activated receptors (PPARs) in macronutrient metabolism, however, there is not sufficient data concerning the interactions between PPARs and micronutrients. Investigations performed on PPARγ and one of the essential micronutrients selenium (Se) have shown that both parameters may lead to alterations in obesity-related or mood disorders. Therefore, it is plausible to consider PPARγ and Se together as a powerful combination during the treatment of two associated diseases; obesity and depression. PPARγ has been shown to be involved in the antidepressant-like activity. It is also an important parameter to be considered in obesity as the master regulator of adipogenesis. The mechanism of action of PPARγ is initiated by ligand binding which induces a conformational change in the receptor. Se is capable of alleviating inflammatory signaling pathways. Obesity is associated with chronic low-grade inflammation. Depression is also defined as an inflammatory disorder. Inflammatory mediators such as tumor necrosis factor-alpha (TNFα) participate in the progression of depression. They are also obesity-associated parameters. Due to TNFα induced depressive-like behaviors and the positive association between this proinflammatory cytokine and obesity, TNFα-activated signaling pathways and those inhibiting them have recently gained importance as potential targets and therapeutic tools, respectively. More studies are necessary to develop compounds with therapeutic nature against depressive disorders and obesity. PPARγ is an important signaling pathway that occurs at the crossroads of depression and obesity. Se, aside from its anti-inflammatory, anticarcinogenic and antioxidative nature, affects also the way of PPARγ action. Se supplementation or fortification as well as the development of the partial agonists of PPARγ in which lipophilic Se compounds are used as ligand followed by

  15. N-Ethylmaleimide Dissociates α7 ACh Receptor from a Complex with NSF and Promotes Its Delivery to the Presynaptic Membrane.

    Science.gov (United States)

    Nishizaki, Tomoyuki

    2016-08-01

    N-Ethylmaleimide (NEM)-sensitive factor (NSF) associates with soluble NSF attachment protein (SNAP), that binds to SNAP receptors (SNAREs) including syntaxin, SNAP25, and synaptobrevin. The complex of NSF/SNAP/SNAREs plays a critical role in the regulation of vesicular traffic. The present study investigated NEM-regulated α7 ACh receptor translocation. NSF associated with β-SNAP and the SNAREs syntaxin 1 and synaptobrevin 2 in the rat hippocampus. NSF also associated with the α7 ACh receptor subunit, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, and the γ-aminobutyric acid A (GABAA) receptor γ2 subunit. NEM, an inhibitor of NSF, significantly dissociated the α7 ACh receptor subunit from a complex with NSF and increased cell surface localization of the receptor subunit, but such effect was not obtained with the GluA1, GluA2 or γ2 subunits. NEM, alternatively, dissociated synaptobrevin 2 from an assembly of NSF/β-SNAP/syntaxin 1/synaptobrevin 2. NEM significantly increased the rate of nicotine-triggered AMPA receptor-mediated miniature excitatory postsynaptic currents, without affecting the amplitude, in rat hippocampal slices. The results of the present study indicate that NEM releases the α7 ACh receptor subunit and synaptobrevin 2 from an assembly of α7 ACh receptor subunit/NSF/β-SNAP/syntaxin 1/synaptobrevin 2, thereby promoting delivery of the α7 ACh receptor subunit to presynaptic membrane.

  16. Vav1 transduces T cell receptor signals to the activation of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent pathways.

    Science.gov (United States)

    Reynolds, Lucinda F; Smyth, Lesley A; Norton, Trisha; Freshney, Norman; Downward, Julian; Kioussis, Dimitris; Tybulewicz, Victor L J

    2002-05-06

    Vav1 is a signal transducing protein required for T cell receptor (TCR) signals that drive positive and negative selection in the thymus. Furthermore, Vav1-deficient thymocytes show greatly reduced TCR-induced intracellular calcium flux. Using a novel genetic system which allows the study of signaling in highly enriched populations of CD4(+)CD8(+) double positive thymocytes, we have studied the mechanism by which Vav1 regulates TCR-induced calcium flux. We show that in Vav1-deficient double positive thymocytes, phosphorylation, and activation of phospholipase C-gamma1 (PLCgamma1) is defective. Furthermore, we demonstrate that Vav1 regulates PLCgamma1 phosphorylation by at least two distinct pathways. First, in the absence of Vav1 the Tec-family kinases Itk and Tec are no longer activated, most likely as a result of a defect in phosphoinositide 3-kinase (PI3K) activation. Second, Vav1-deficient thymocytes show defective assembly of a signaling complex containing PLCgamma1 and the adaptor molecule Src homology 2 domain-containing leukocyte phosphoprotein 76. We show that this latter function is independent of PI3K.

  17. The Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARG in Adipogenesis: Applying Knowledge from the Fish Aquaculture Industry to Biomedical Research

    Directory of Open Access Journals (Sweden)

    Rebecca Wafer

    2017-05-01

    Full Text Available The tropical freshwater zebrafish has recently emerged as a valuable model organism for the study of adipose tissue biology and obesity-related disease. The strengths of the zebrafish model system are its wealth of genetic mutants, transgenic tools, and amenability to high-resolution imaging of cell dynamics within live animals. However, zebrafish adipose research is at a nascent stage and many gaps exist in our understanding of zebrafish adipose physiology and metabolism. By contrast, adipose research within other, closely related, teleost species has a rich and extensive history, owing to the economic importance of these fish as a food source. Here, we compare and contrast knowledge on peroxisome proliferator-activated receptor gamma (PPARG-mediated adipogenesis derived from both biomedical and aquaculture literatures. We first concentrate on the biomedical literature to (i briefly review PPARG-mediated adipogenesis in mammals, before (ii reviewing Pparg-mediated adipogenesis in zebrafish. Finally, we (iii mine the aquaculture literature to compare and contrast Pparg-mediated adipogenesis in aquaculturally relevant teleosts. Our goal is to highlight evolutionary similarities and differences in adipose biology that will inform our understanding of the role of adipose tissue in obesity and related disease.

  18. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain

    Directory of Open Access Journals (Sweden)

    Cui Yan Lu

    2017-01-01

    Full Text Available Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD. Gamma-aminobutyric acid (GABA deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5 in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.

  19. Fc gamma receptor IIIb polymorphism and systemic lupus erythematosus: association with disease susceptibility and identification of a novel FCGR3B*01 variant.

    Science.gov (United States)

    Santos, V C; Grecco, M; Pereira, K M C; Terzian, C C N; Andrade, L E C; Silva, N P

    2016-10-01

    The objective of this study was to evaluate the association between Fc gamma receptor IIIb polymorphism and susceptibility to systemic lupus erythematosus and clinical traits of the disease. Genomic DNA was obtained from 303 consecutive systemic lupus erythematosus patients and 300 healthy blood donors from the southeastern region of Brazil. The polymorphic region of the FCGR3B gene was sequenced and the alleles FCGR3B*01, FCGR3B*02 and FCGR3B*03 were analyzed. The FCGR3B*01 allele was more frequent in systemic lupus erythematosus patients (43.1%) while the FCGR3B*02 allele prevailed among controls (63.7%) (P = 0.001). The FCGR3B*03 allele was found equally in both groups. The FCGR3B*01/*01 (20.7%) and FCGR3B*01/*02 (41.1%) genotypes were more frequent among systemic lupus erythematosus patients (P = 0.028 and P = 0.012, respectively) while the FCGR3B*02/*02 genotype was more frequent in controls (45.5%) (P lupus erythematosus was associated with the FCGR3B*01 allele, as well as with the FCGR3B*01/*01 and FCGR3B*01/*02 genotypes. No association was found between FCGR3B genotypes and clinical manifestations, disease severity or the presence of autoantibodies. © The Author(s) 2016.

  20. Effects of germinated brown rice and its bioactive compounds on the expression of the peroxisome proliferator-activated receptor gamma gene.

    Science.gov (United States)

    Imam, Mustapha Umar; Ismail, Maznah; Ithnin, Hairuszah; Tubesha, Zaki; Omar, Abdul Rahman

    2013-02-06

    Dysregulated metabolism is implicated in obesity and other disease conditions like type 2 diabetes mellitus and cardiovascular diseases, which are linked to abnormalities of peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ has been the focus of much research aimed at managing these diseases. Also, germinated brown rice (GBR) is known to possess antidiabetic, antiobesity and hypocholesterolemic effects. We hypothesized that GBR bioactive compounds may mediate some of the improvements in metabolic indices through PPARγ modulation. Cultured HEP-G2 cells were treated with 50 ppm and 100 ppm of extracts from GBR (GABA, ASG and oryzanol) after determination of cell viabilities using MTT assays. Results showed that all extracts upregulated the expression of the PPARγ. However, combination of all three extracts showed downregulation of the gene, suggesting that, in combination, the effects of these bioactives differ from their individual effects likely mediated through competitive inhibition of the gene. Upregulation of the gene may have therapeutic potential in diabetes mellitus and cardiovascular diseases, while its downregulation likely contributes to GBR's antiobesity effects. These potentials are worth studying further.

  1. Effects of Germinated Brown Rice and Its Bioactive Compounds on the Expression of the Peroxisome Proliferator-Activated Receptor Gamma Gene

    Directory of Open Access Journals (Sweden)

    Zaki Tubesha

    2013-02-01

    Full Text Available Dysregulated metabolism is implicated in obesity and other disease conditions like type 2 diabetes mellitus and cardiovascular diseases, which are linked to abnormalities of peroxisome proliferator-activated receptor gamma (PPARγ. PPARγ has been the focus of much research aimed at managing these diseases. Also, germinated brown rice (GBR is known to possess antidiabetic, antiobesity and hypocholesterolemic effects. We hypothesized that GBR bioactive compounds may mediate some of the improvements in metabolic indices through PPARγ modulation. Cultured HEP-G2 cells were treated with 50 ppm and 100 ppm of extracts from GBR (GABA, ASG and oryzanol after determination of cell viabilities using MTT assays. Results showed that all extracts upregulated the expression of the PPARγ. However, combination of all three extracts showed downregulation of the gene, suggesting that, in combination, the effects of these bioactives differ from their individual effects likely mediated through competitive inhibition of the gene. Upregulation of the gene may have therapeutic potential in diabetes mellitus and cardiovascular diseases, while its downregulation likely contributes to GBR’s antiobesity effects. These potentials are worth studying further.

  2. Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, peroxisome proliferator-activated receptor gamma agonists and cyclooxygenase-2 inhibitors

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Guerrero

    2013-09-01

    Full Text Available Live attenuated vaccines have recently been introduced for preventing rotavirus disease in children. However, alternative strategies for prevention and treatment of rotavirus infection are needed mainly in developing countries where low vaccine coverage occurs. In the present work, N-acetylcysteine (NAC, ascorbic acid (AA, some nonsteroidal anti-inflammatory drugs (NSAIDs and peroxisome proliferator-activated receptor gamma (PPARγ agonists were tested for their ability to interfere with rotavirus ECwt infectivity as detected by the percentage of viral antigen-positive cells of small intestinal villi isolated from ECwt-infected ICR mice. Administration of 6 mg NAC/kg every 8 h for three days following the first diarrhoeal episode reduced viral infectivity by about 90%. Administration of AA, ibuprofen, diclofenac, pioglitazone or rosiglitazone decreased viral infectivity by about 55%, 90%, 35%, 32% and 25%, respectively. ECwt infection of mice increased expression of cyclooxygenase-2, ERp57, Hsc70, NF-κB, Hsp70, protein disulphide isomerase (PDI and PPARγ in intestinal villus cells. NAC treatment of ECwt-infected mice reduced Hsc70 and PDI expression to levels similar to those observed in villi from uninfected control mice. The present results suggest that the drugs tested in the present work could be assayed in preventing or treating rotaviral diarrhoea in children and young animals.

  3. Detection of clonal T-cell receptor beta and gamma chain gene rearrangement by polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Fan, Hongxin; Robetorye, Ryan S

    2013-01-01

    Although established diagnostic criteria exist for mature T-cell neoplasms, a definitive diagnosis of a T-cell lymphoproliferative disorder cannot always be obtained using more conventional techniques such as flow cytometric immunophenotyping, conventional cytogenetics, fluorescence in situ hybridization, or immunohistochemistry. However, because T-cell malignancies contain identically rearranged T-cell receptor gamma (TCRG) and/or beta (TCRB) genes, the polymerase chain reaction (PCR) can be a fast, convenient, and dependable option to identify clonal T-cell processes. This chapter describes the use of PCR and capillary electrophoresis to identify clonal TCRB and TCRG gene rearrangements (TCRB and TCRG PCR) using a commercially available method employing multiple multiplex PCR tubes that was originally developed as the result of a large European BIOMED-2 collaborative study (Invivoscribe Technologies). The core protocol for the TCRB assay involves the use of three separate multiplex master mix tubes. Tubes A and B target the framework regions within the variable and joining regions of the TCRB gene, and Tube C targets the diversity and joining regions of the TCRB gene. The core protocol for the TCRG assay utilizes two multiplex master mix tubes (Tubes A and B) that target the variable and joining regions of the TCRG gene. Use of the five BIOMED-2 TCRB and TCRG PCR multiplex tubes in parallel can detect approximately 94% of clonal TCR gene rearrangements.

  4. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha increased apoptosis of human endometrial cancer HEC-1A cells

    Directory of Open Access Journals (Sweden)

    Yang H

    2016-08-01

    Full Text Available Hui Yang, Rui Yang, Hao Liu, Zhongqian Ren, Cuicui Wang, Da Li, Xiaoxin Ma Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China Background: Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α coactivates multiple transcription factors and regulates several metabolic processes. In this study, we focused on the roles of PGC-1α in the apoptosis of endometrial cancer HEC-1A cells. Materials and methods: PGC-1α expression in the HEC-1A cells was detected with real-time polymerase chain reaction and Western blot. Small interfering RNA directed against PGC-1α was designed and synthesized, and RNA interference technology was used to knock down PGC-1α mRNA and protein expression. Cell apoptosis, cell cycle, and mitochondrial membrane potential were then analyzed using flow cytometry. The expression of apoptotic proteins, Bcl-2 and Bax, was detected with Western blot. Results: The specific downregulation of PGC-1α expression in the HEC-1A cells increased their apoptosis through the mitochondrial apoptotic pathway by reducing the expression of Bcl-2 and increasing the expression of Bax. Conclusion: These results suggest that PGC-1α influences the apoptosis of HEC-1A cells and also provides a molecular basis for further investigation of the apoptotic mechanism in human endometrial cancer. Keywords: endometrial cancer, PGC-1α, apoptosis, Bcl-2, Bax

  5. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat

    NARCIS (Netherlands)

    Cao, Y.; Shumsky, J. S.; Sabol, M. A.; Kushner, R. A.; Strittmatter, S.; Hamers, F. P. T.; Lee, D. H. S.; Rabacchi, S. A.; Murray, M.

    2008-01-01

    Objective. The myelin protein Nogo inhibits axon regeneration by binding to its receptor (NgR) on axons. Intrathecal delivery of an NgR antagonist (NEP1-40) promotes growth of injured corticospinal axons and recovery of motor function following a dorsal hemisection. The authors used a similar design

  6. Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter

    Science.gov (United States)

    Abad, Lucille V.; Aurigue, Fernando B.; Relleve, Lorna S.; Montefalcon, Djowel Recto V.; Lopez, Girlie Eunice P.

    2016-01-01

    Radiation degraded κ-carrageenan (1% solution at absorbed doses of 20 kGy and 30 kGy) were tested for its plant growth promoter (PGP) effect on pechay plants under hydroponics condition. Results revealed that higher PGP effects were found in κ-carrageenan irradiated at an absorbed dose of 30 kGy. Mw of irradiated κ-carrageenan as measured by GPC were determined to be 7362 Da and 6762 Da for 20 kGy and 30 kGy, respectively. Fractionation of the irradiated κ-carrageenan (30 kGy) was done to separate different Mw fractions using Mw cut-off filters of 1 kDa, 3 kDa, and 5 kDa. The PGP effect of the different retentates showed that biological activity in plants followed the order of 5 kDa>3 kDa>1 kDa using hydroponics condition but the reverse was observed in the order of 1 kDa>3 kDa>5 kDa when absorbed in plants by foliar spraying. GPC chromatogram indicated at least three (3) low molecular weight (LMW) fragments from radiation modified κ-carrageenan solution with an Mw<2000 Da. A fragment has also been identified with an Mw of as low as 160 Da which was produced under acidic (un-neutralized) condition. This may be attributed to the formation of 5-hydroxymethylfurfural (5-HMF).

  7. The promotion of nephropathy byPorphyromonas gingivalislipopolysaccharide via toll-like receptors.

    Science.gov (United States)

    Kajiwara, Koichiro; Takata, Shunsuke; To, Thao T; Takara, Kenyo; Hatakeyama, Yuji; Tamaoki, Sachio; Darveau, Richard Peters; Ishikawa, Hiroyuki; Sawa, Yoshihiko

    2017-01-01

    Recently, we reported that toll-like receptor (TLR)2 and TLR4 localized on the glomerular endothelium in the glomeruli of streptozotocin (STZ)-induced type 1 diabetic mice and high fat diet feed-induced type 2 diabetic mice, and that periodontal pathogen Porphyromonas gingivalis LPS (Pg-LPS) administration lowered the survival rate of diabetic mice. The present study aims to examine the effect of TLR4 blocking on the suppression of Pg-LPS-induced diabetic nephropathy. The survival rate and morphological/biochemical features for streptozotocin-induced diabetic mice with Pg-LPS and TLR4 blocker eritoran administration were investigated by reporter gene assay, urine and blood analysis, immunohistochemistry, and real time-PCR. All of the diabetic mice administered Pg-LPS were euthanized within the survival period of almost all of the diabetic mice. The blood urea nitrogen and creatinine, expression of TLR2 and TGF-b, and type 1 collagen accumulation, in the diabetic mice increased significantly with the Pg-LPS administration. In spite of the limited TLR4 activation with Pg-LPS, the TLR4 blocker eritoran decreased blood urea nitrogen and creatinine, and raised the survival rate of the Pg-LPS-administered diabetic mice slightly. The high expression levels of TLR2, TGF-b, and type 1 collagen in Pg-LPS-administered diabetic mice decreased with eritoran. Nuclear STAT3 which enhances TLR2 expression was detected in the TLR2-expressing glomeruli of diabetic mice. The TLR2 and STAT3 gene expression increased by the Pg-LPS administration but decreased with eritoran. These may suggest that Pg-LPS-induced diabetic nephropathy is mainly dependent on TLR2 signaling on glomerular endothelial cells, and that TLR4 blocker eritoran may play a role to slow the progress of diabetic nephropathy.

  8. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-05-29

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Kinin B1 Receptor Promotes Neurogenic Hypertension Through Activation of Centrally Mediated Mechanisms.

    Science.gov (United States)

    Sriramula, Srinivas; Lazartigues, Eric

    2017-12-01

    Hypertension is associated with increased activity of the kallikrein-kinin system. Kinin B1 receptor (B1R) activation leads to vasoconstriction and inflammation. Despite evidence supporting a role for the B1R in blood pressure regulation, the mechanisms by which B1R could alter autonomic function and participate in the pathogenesis of hypertension remain unidentified. We sought to explore whether B1R-mediated inflammation contributes to hypertension and investigate the molecular mechanisms involved. In this study, we tested the hypothesis that activation of B1R in the brain is involved in the pathogenesis of hypertension, using the deoxycorticosterone acetate-salt model of neurogenic hypertension in wild-type and B1R knockout mice. Deoxycorticosterone acetate-salt treatment in wild-type mice led to significant increases in B1R mRNA and protein levels and bradykinin levels, enhanced gene expression of carboxypeptidase N supporting an increase in the B1R ligand, associated with enhanced blood pressure, inflammation, sympathoexcitation, autonomic dysfunction, and impaired baroreflex sensitivity, whereas these changes were blunted or prevented in B1R knockout mice. B1R stimulation was further shown to involve activation of the ASK1-JNK-ERK1/2 and NF-κB pathways in the brain. To dismiss potential developmental alterations in knockout mice, we further used B1R blockade selectively in the brain of wild-type mice. Supporting the central origin of this mechanism, intracerebroventricular infusion of a specific B1R antagonist, attenuated the deoxycorticosterone acetate-salt-induced increase in blood pressure in wild-type mice. Our data provide the first evidence of a central role for B1R-mediated inflammatory pathways in the pathogenesis of deoxycorticosterone acetate-salt hypertension and offer novel insights into possible B1R-targeted therapies for the treatment of neurogenic hypertension. © 2017 American Heart Association, Inc.

  10. ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor.

    Science.gov (United States)

    Holdbrooks, Andrew T; Britain, Colleen M; Bellis, Susan L

    2018-02-02

    Activation of the tumor necrosis factor receptor 1 (TNFR1) death receptor by TNF induces either cell survival or cell death. However, the mechanisms mediating these distinct outcomes remain poorly understood. In this study, we report that the ST6Gal-I sialyltransferase, an enzyme up-regulated in numerous cancers, sialylates TNFR1 and thereby protects tumor cells from TNF-induced apoptosis. Using pancreatic and ovarian cancer cells with ST6Gal-I knockdown or overexpression, we determined that α2-6 sialylation of TNFR1 had no effect on early TNF-induced signaling events, including the rapid activation of NF-κB, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and Akt (occurring within 15 min). However, upon extended TNF treatment (6-24 h), cells with high ST6Gal-I levels exhibited resistance to TNF-induced apoptosis, as indicated by morphological evidence of cell death and decreased activation of caspases 8 and 3. Correspondingly, at these later time points, high ST6Gal-I expressers displayed sustained activation of the survival molecules Akt and NF-κB. Additionally, extended TNF treatment resulted in the selective enrichment of clonal variants with high ST6Gal-I expression, further substantiating a role for ST6Gal-I in cell survival. Given that TNFR1 internalization is known to be essential for apoptosis induction, whereas survival signaling is initiated by TNFR1 at the plasma membrane, we examined TNFR1 localization. The α2-6 sialylation of TNFR1 was found to inhibit TNF-induced TNFR1 internalization. Thus, by restraining TNFR1 at the cell surface via sialylation, ST6Gal-I acts as a functional switch to divert signaling toward survival. These collective findings point to a novel glycosylation-dependent mechanism that regulates the cellular response to TNF and may promote cancer cell survival within TNF-rich tumor microenvironments. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. [Metabotropic glutamate receptor 8 activation promotes the apoptosis of lung carcinoma A549 cells in vitro].

    Science.gov (United States)

    Li, Tian-Jiao; Huang, Yan-Hong; Chen, Xi; Zhou, Zhou; Luo, Si-Wei; Feng, Dan-Dan; Han, Jian-Zhong; Luo, Zi-Qiang

    2015-10-25

    This study aims to detect the expression of metabotropic glutamate receptors (mGluRs) in lung carcinoma A549 cells, and to investigate the effects of mGluR8 and mGluR4 activation on the growth of A549 cells in vitro. The mRNA expression levels of the 8 subtypes of mGluRs in A549 cells were determined by real-time PCR. Immunohistochemistry was used to analyze the protein expression of mGluR4 and mGluR8 in A549 cells and lung tissue sections obtained from lung adenocarcinoma patients. To observe the effects of mGluR8 and mGluR4 activation on the growth of A549 cells, the cultured cells were treated with (S)-3,4-DCPG (an agonist of mGluR8) and VU0155041 (an agonist of mGluR4), respectively, and then the cell viability was analyzed by CCK-8 kit, the percentage of DNA synthesis was detected by EdU incorporation, and the apoptosis of the cells was measured by hoechst 33258 staining and flow cytometry. The results showed that there were low expressions of mGluR1, mGluR5, mGluR6, mGluR7 mRNA, no expression of mGluR2 and mGluR3 mRNA, and high expressions of mGluR8 and mGluR4 mRNA in A549 cells. Accordingly, there were also mGluR4 and mGluR8 protein expressions in the A549 cells and the lung adenocarcinoma tissue sections. VU0155041 had no effect on the growth of A549 cells, but (S)-3,4-DCPG significantly decreased the cells' growth in a dose-dependent manner and increased the apoptosis of the cells. The results revealed a role of mGluR8 in the growth and apoptosis of A549 cells and suggested a potential target for clinical treatment of lung cancer.

  12. Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production.

    Directory of Open Access Journals (Sweden)

    Jing Jing Li

    Full Text Available BACKGROUND: Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs, however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ and lipopolysaccharide (LPS drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activation of macrophages by these molecules results in the selective expression of a number of ORs. In this study, we validated the expression of these ORs in mouse airway and pulmonary macrophages in response to IFN-γ and LPS (γ/LPS stimulation, and further explored the effect of odorant stimulation on macrophage function. METHODOLOGY/PRINCIPAL FINDINGS: OR expression in airway and pulmonary macrophages in response to IFN-γ, LPS or γ/LPS treatments was assessed by microarray and validated by q-PCR. OR expression (e.g. OR622 on macrophages was confirmed by visualization in immunofluoresence assays. Functional responses to odorants were assessed by quantifying inflammatory cytokine and chemokine expression using q-PCR and cell migration was assessed by a modified Boyden chamber migration assay. Our results demonstrate that eight ORs are expressed at basal levels in both airway and pulmonary macrophages, and that γ/LPS stimulation cooperatively increased this expression. Pulmonary macrophages exposed to the combined treatment of γ/LPS+octanal (an odorant exhibited a 3-fold increase in MCP-1 protein production, compared to cells treated with γ/LPS alone. Supernatants from γ/LPS+octanal exposed macrophages also increased macrophage migration in vitro. CONCLUSIONS/SIGNIFICANCE: Eight different ORs are expressed at basal levels in pulmonary macrophages and expression is upregulated by the synergistic action of γ/LPS. Octanal stimulation further increased MCP-1

  13. The β-glucan fromLentinus edodessuppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers.

    Science.gov (United States)

    Xu, Hui; Zou, Siwei; Xu, Xiaojuan

    2017-10-17

    Breast cancer is now the most common cancer in worldwide women, and novel interventions are needed to overcome the resistance occurring in the estrogen-targeted endocrine therapy. Herein, we demonstrate that the β-glucan from Lentinus edodes (LNT) exhibited a profound inhibition ratio of ∼53% against estrogen receptor positive (ER+) MCF-7 tumor growth in nude mice similar to the positive control of cisplatin. Immunohistochemistry images showed that LNT evidently suppressed cell proliferation and promoted apoptosis in MCF-7 tumor tissues. The Western blotting analysis indicated that LNT up-regulated the tumor suppressor p53, phosphorylated extracellular signal-regulated kinase1/2 (p-ERK1/2), cleaved-Caspase 3 and poly [ADP (ribose)] polymerase 1 (PARP 1) protein levels, and reduced the expression of mouse double minute 2 (MDM2), telomerase reverse transcriptase (TERT), nuclear factor-kappa B (NF-κB) p65, B-cell lymphoma-2 (Bcl-2), estrogen receptor α (ERα), etc. in tumor tissues. Moreover, LNT significantly suppressed phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) protein levels. It was thus proposed that LNT inhibited MCF-7 tumor growth through suppressing cell proliferation and enhancing apoptosis possibly via multiple pathways such as PI3K/Akt/mTOR, NF-κB-, ERK-, ERα-, caspase- and p53-dependent pathways. Interestingly, the cell viability assay, siRNA transfection, Western blotting and flow cytometric analysis suggested that LNT targeted p53/ERα to only suppress cell proliferation via cell cycle arrest at G2/M phase without apoptosis in vitro . The big difference between in vivo and in vitro data suggested that the immune responses triggered by the polysaccharide should mainly contribute to the apoptotic effect in vivo . Overall, this work provides a novel strategy to treat ER+ breast cancers by using a naturally occurring β-glucan from mushrooms.

  14. p130Cas substrate domain signaling promotes migration, invasion, and survival of estrogen receptor-negative breast cancer cells

    Directory of Open Access Journals (Sweden)

    Anna C Cunningham-Edmondson

    2009-12-01

    Full Text Available Anna C Cunningham-Edmondson1,2, Steven K Hanks11Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; 2Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, USAAbstract: Elevated Src tyrosine kinase activity is commonly observed in breast cancer and likely contributes to neoplasia and malignancy. p130Cas (“Crk-associated substrate” is a major Src substrate found at the sites where integrins mediate cell adhesion to the extracellular matrix. Src phosphorylates multiple tyrosines in the p130Cas “substrate domain” (SD and this signaling event has been implicated in the promotion of cell motility, primarily from studies on fibroblasts. In breast cancer, studies on p130Cas have focused on its role in conferring antiestrogen resistance to cells that express the estrogen receptor (ER+. However, little is known regarding the role of p130Cas in the more aggressive estrogen receptor negative (ER- breast cancers for which there is a need for development of effective targeted therapies. We found high levels of p130Cas SD tyrosine phosphorylation to be a common characteristic of ER- breast cancer cell lines, with particularly high levels observed for the BT-549 cell line. Using RNA interference to knock down p130Cas expression in BT-549 cells, combined with rescue by WT p130Cas versus a signaling-deficient control, we provide evidence that p130Cas SD tyrosine phosphorylation is an important signaling event in the migration, invasion, proliferation, and survival of this ER- breast cancer cell line.Keywords: adhesion, BCAR1, integrins, Src, FAK, tyrosine phosphorylation

  15. Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth.

    Directory of Open Access Journals (Sweden)

    Rob D Catalano

    Full Text Available The prostaglandin endoperoxide synthase (PTGS pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG E(2. PTGS2 expression and PGE(2 biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE(2 regulate endometrial tumour growth is unknown. Here we investigated (a the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3 and PGE receptors (PTGER1-4 in endometrial adenocarcinomas compared with normal endometrium and (b the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE(2 and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE(2 and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells.

  16. Effect of polymorphism in the peroxisome proliferator-activated receptor gamma gene on litter size of pigs.

    Science.gov (United States)

    Wang, Guiying; Kong, Lujun; Hu, Peng; Fu, Jinlian; Wang, Aiguo

    2011-03-01

    The association of polymorphisms in peroxisome proliferator-activated receptor γ (PPARγ) gene with litter size was studied in Large White and Landrace pig. Three SNP loci (P1, P2 and P7) on PPARγ(2) gene were determined by PCR-SSCP and the results showed that there were A → G mutations at 220 and 324 bp in 5'-regulator region and at 147 bp in exon 6, respectively. Allele frequencies were analysed in two breeds. Information on 2341 litter records from 564 sows was used to analyse the trait total number born (TNB) and number born alive (NBA). In Large White, TNB and NBA of genotype BB for P2 locus were the lowest, and the TNB and NBA of third and following parities and all parities were 0.74 and 0.51 piglets per litter less (P NBA of the first parity of genotype BB for P1 locus were 2.0 piglets per litter higher than AA (P NBA of genotype BB were 0.66 and 0.97 piglets per litter (P NBA of the second parity of genotype AA were obviously higher than those of AB (P NBA of each parity of genotype AA were both about 2 piglets per litter more than those of BB (P < 0.05). The results indicated that PPARγ gene was significantly associated with litter size in pigs.

  17. Estrogen receptor {alpha} gene promoter 0/B usage in the rat sexually dimorphic nucleus of the preoptic area.

    Science.gov (United States)

    Hamada, Tomohiro; Sakuma, Yasuo

    2010-04-01

    The volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) is two to four times larger in male rats than in females; however, the mechanism for the establishment of sexual dimorphism and the function of this nucleus is almost unknown. Perinatal estrogen can cause sexual dimorphism via the estrogen receptor alpha (ERalpha). Recently, transgenic rats were generated that express enhanced green fluorescent protein (EGFP) under the control of the ERalpha gene promoter 0/B to tag ERalpha-positive neurons in the brain. In the present study, we examined whether this EGFP expression could be a marker for the SDN-POA in adults. EGFP-labeled cells were distributed in the core of the SDN-POA (0/B-SDN) of male and female transgenic rats, in accordance with the Nissl staining and immunoreactivity for the SDN marker, calbindin. They were also immunoreactive for ERalpha. The core was bigger in volume and contained more 0/B-SDN neurons in males than in females. The EGFP-tagged cells were packed more densely in the female core than that in males. Subcutaneous injection of 100 mug 17beta-estradiol to females on the day of birth, or orchidectomy of male neonates, reversed the sexually dimorphic phenotype of the volume of the 0/B-SDN, despite not affecting the cell number. We suggest that this EGFP expression in the SDN-POA could be a useful marker to clarify the sexual differentiation and function of the SDN-POA. Moreover, the ERalpha gene promoter 0/B plays a key role in the organization of the sexual differentiation of the SDN-POA.

  18. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor.

    Science.gov (United States)

    Joeckel, Elke; Haber, Tobias; Prawitt, Dirk; Junker, Kerstin; Hampel, Christian; Thüroff, Joachim W; Roos, Frederik C; Brenner, Walburgis

    2014-02-28

    The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.

  19. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  20. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yunliang; Wu, Congshan [Department of Gastroenterology, Lianyungang Ganyu People’s Hospital, Ganyu, Jiangsu (China); Ma, Jianxia, E-mail: yz_mjx@163.com [Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai (China); Yang, Yu [Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai (China); Man, Xiaohua; Wu, Hongyu; Li, Shude [Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai (China)

    2016-10-01

    Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGF was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.

  1. A variant on promoter of the cannabinoid receptor 1 gene (CNR1) moderates the effect of valence on working memory.

    Science.gov (United States)

    Fairfield, Beth; Mammarella, Nicola; Franzago, Marica; Di Domenico, Alberto; Stuppia, Liborio; Gatta, Valentina

    2018-02-01

    Cannabinoid receptor 1 gene (CNR1) variants have been related to affective information processing and, in particular, to stress release. Here, we aimed to examine whether the endocannabinoid system via CNR1 signaling modulates affective working memory, the memory system that transiently maintains and manipulates emotionally charged material. We focused on rs2180619 (A > G) polymorphism and examined genotype data collected from 231 healthy females. Analyses showed how a general positivity bias in working memory (i.e., better memory for positive words) emerged as task strings lengthened only in carriers of the major allele (AA/AG). Differently, GG carriers showed better memory for affective items in general (i.e., positive and negative words). These findings are some of the first to directly highlight the role of variant on promoter of the CNR1 gene in affective working memory and to evidence a differentiation among CNR1 genotypes in terms of larger difficulties in disengaging from negative stimuli in GG carriers.

  2. Serotonin receptor 1A promoter polymorphism, rs6295, modulates human anxiety levels via altering parasympathetic nervous activity.

    Science.gov (United States)

    Huang, J-H; Chang, H-A; Fang, W-H; Ho, P-S; Liu, Y-P; Wan, F-J; Tzeng, N-S; Shyu, J-F; Chang, C-C

    2018-03-01

    The G-allele of the -1019C/G (rs6295) promoter polymorphism of the serotonin receptor 1A (HTR1A) gene has been implicated in anxiety; however, the underlying neurophysiological processes are still not fully understood. Recent evidence indicates that low parasympathetic (vagal) tone is predictive of anxiety. We thus conducted a structural equation model (SEM) to examine whether the HTR1A rs6295 variant can affect anxiety by altering parasympathetic nervous activity. A sample of 1141 drug-free healthy Han Chinese was recruited for HTR1A genotyping. Autonomic nervous function was assessed by short-term spectral analysis of heart rate variability (HRV). Anxiety and stress levels were evaluated by the Beck Anxiety Inventory (BAI) and the Perceived Stress Scale (PSS) respectively. The number of the HTR1A G allele was inversely correlated with high-frequency power (HF), a parasympathetic index of HRV. The HF index was negatively associated with BAI scores. Furthermore, the good-fitting SEM, adjusting for confounding variables (e.g., age and PSS levels), revealed a significant pathway linking rs6295 variant to BAI scores via HF index modulation. These results are the first to show that HTR1A -1019C/G polymorphism influences anxiety levels by modulating parasympathetic tone, providing a neurophysiological insight into the role of HTR1A in human anxiety. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Attenuated atherosclerotic lesions in apoe-fc gamma-chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of regulatory T cells

    Science.gov (United States)

    Though the presence of antioxidized low-density lipoprotein IgG is well documented in clinical and animal studies, the role for Fc gamma Rs to the progression of atherosclerosis has not been studied in detail. In the current study, we investigated the role for activating Fc gamma R in the progressio...

  4. Third-stage Gnathostoma spinigerum larva excretory secretory antigens modulate function of Fc gamma receptor I-mediated monocytes in peripheral blood mononuclear cell culture.

    Science.gov (United States)

    Benjathummarak, Surachet; Kumsiri, Ratchanok; Nuamtanong, Supaporn; Kalambaheti, Thareerat; Waikagul, Jitra; Viseshakul, Nareerat; Maneerat, Yaowapa

    2016-01-01

    Third (infective)-stage Gnathostoma spinigerum larvae (L3) mainly cause human gnathostomiasis. G. spinigerum L3 migrate throughout the subcutaneous tissues, vital organs, and central nervous system and can cause various pathogenesis including sudden death. Interestingly, G. spinigerum L3 can survive and evade host cellular immunity for months or years. The effects of G. spinigerum excretory-secretory (ES) products involved in larval migration and immune-evasive strategies are unknown. Monocytes are innate immune cells that act as phagocytic and antigen-presenting cells and also play roles against helminthic infections via a complex interplay between other immune cells. Fc gamma receptor I (FcγRI) is a high-affinity receptor that is particularly expressed on monocytes, macrophages, and dendritic cells. The cross-linking of FcγRI and antigen-antibody complex initiates signal transduction cascades in phagocytosis, cytokine production, and antibody-dependent cell-mediated cytotoxicity (ADCC). This study investigated whether ES antigen (ESA) from G. spinigerum L3 affects monocyte functions. Cultures of normal peripheral blood mononuclear cells (PBMC) separated from healthy buffy coats were used as a human immune cell model. ESA was prepared from G. spinigerum L3 culture. Using Real-Time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the effect of ESA to down-regulate FcγRI mRNA expression in monocytes during 90 min of observation was not well delineated. Flow cytometry analysis revealed a significant phenotypic-decreased FcγRI expression on the monocyte surface at 12 hours (h) of cultivation with the ESA (p = 0.033). Significantly reduced monocyte-mediated phagocytosis capacity was consistently observed after 12 h of ESA pretreatment (p = 0.001). Our results suggest that G. spinigerum ESA modulates monocyte function via depletion of FcγRI expression. This study provides preliminary information for future in-depth studies to

  5. Low pH inactivation for xenotropic gamma retrovirus in recombinant human TNF-α receptor immunoglobulin G and mechanism of inactivation.

    Science.gov (United States)

    Ma, Rong; Cui, Xiaolan

    2014-01-01

    CHO-derived recombinant proteins for human therapeutic are used commonly. There are noninfectious endogenous retroviruses in CHO cells. Validation study for inactivation process is required. Murine xenotropic gamma retrovirus (X-MulV) is a model virus in validation study. In our previous study, optimum conditions for X-MulV inactivation were sifted. In this study, we performed a further research on low pH inactivation for evaluation of X-MulV clearance in manufacturing of recombinant human TNF-α receptor immunoglobulin G fusion proteins (rhTNF-α) for injection. Cell-based infectivity assay was used for the evaluation of X-MulV clearance. RhTNF-α were spiked with X-MulV and were inactivated at pH 3.60 ∼ 3.90, 25 ± 2 °C, and 0 ∼ 240 min, respectively. Samples incubated at the conditions for 15 ∼ 180 min were not inactivated effectively. For 4 h incubation, log10 reductions were achieved 5.0 log10. Biological activity of rhTNF-α incubated at pH 3.60, 25 °C for 4 h, which was assayed on murine L929 fibroblasts cells, was not affected by low pH. Env gene of X-MulV, which was detected by conventional PCR method for the first time, was not detected after incubation at pH 3.60, and it may be the mechanism of low pH inactivation. Copyright © 2013. Published by Elsevier Ltd.

  6. Gene knockout of the alpha6 subunit of the gamma-aminobutyric acid type A receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics.

    Science.gov (United States)

    Homanics, G E; Ferguson, C; Quinlan, J J; Daggett, J; Snyder, K; Lagenaur, C; Mi, Z P; Wang, X H; Grayson, D R; Firestone, L L

    1997-04-01

    The alpha6 subunit of the gamma-aminobutyric acid type A receptor (GABA(A)-R) has been implicated in mediating the intoxicating effects of ethanol and the motor ataxic effects of general anesthetics. To test this hypothesis, we used gene targeting in embryonic stem cells to create mice lacking a functional alpha6 gene. Homozygous mice are viable and fertile and have grossly normal cerebellar cytoarchitecture. Northern blot and reverse transcriptase-polymerase chain reaction analyses demonstrated that the targeting event disrupted production of functional alpha6 mRNA. Autoradiography of histological sections of adult brains demonstrated that diazepam-insensitive binding of [3H]Ro15-4513 to the cerebellar granule cell layer of wild-type mice was completely absent in homozygous mice. Cerebellar GABA(A)-R density was unchanged in the mutant mice; however, the apparent affinity for muscimol was markedly reduced. Sleep time response to injection of ethanol after pretreatment with vehicle or Ro15-4513 did not differ between genotypes. Sleep time response to injection of pentobarbital and loss of righting reflex and response to tail clamp stimulus in mice anesthetized with volatile anesthetics also did not differ between genotypes. Thus, the alpha6 subunit of the GABA(A)-R is not required for normal development, viability, and fertility and does not seem to be a critical or unique component of the neuronal pathway mediating the hypnotic effect of ethanol and its antagonism by Ro15-4513 in mice. Similarly, the alpha6 subunit does not seem to be involved in the behavioral responses to general anesthetics or pentobarbital.

  7. Tryptophan Substitutions at Lipid-exposed Positions of the Gamma M3 Transmembrane Domain Increase the Macroscopic Ionic Current Response of the Torpedo californica Nicotinic Acetylcholine Receptor

    Science.gov (United States)

    Cruz-Martín, A.; Mercado, J.L.; Rojas, L.V.; McNamee, M.G.; Lasalde-Dominicci, J.A.

    2015-01-01

    Our previous amino-acid substitutions at the postulated lipid-exposed transmembrane segment M4 of the Torpedo californica acetylcholine receptor (AChR) focused on the alpha subunit. In this study we have extended the mutagenesis analysis using single tryptophan replacements in seven positions (I288, M291, F292, S294, L296, M299 and N300) near the center of the third transmembrane domain of the gamma subunit (γM3). All the tryptophan substitution mutants were expressed in Xenopus laevis oocytes following mRNA injections at levels close to wild type. The functional response of these mutants was evaluated using macroscopic current analysis in voltage-clamped oocytes. For all the substitutions the concentration for half-maximal activation, EC50, is similar to wild type using acetylcholine. For F292W, L296W and M299W the normalized macroscopic responses are 2- to 3-fold higher than for wild type. Previous photolabeling studies demonstrated that these three positions were in contact with membrane lipids. Each of these M3 mutations was co-injected with the previously characterized αC418W mutant to examine possible synergistic effects of single lipid-exposed mutations on two different subunits. For the γM3/αM4 double mutants, the EC50s were similar to those measured for the αC418W mutant alone. Tryptophan substitutions at positions that presumably face the interior of the protein (S294 and M291) or neighboring helices (I288) did not cause significant inhibition of channel function or surface expression of AChRs. PMID:11547353

  8. Cysteine deprivation prevents induction of peroxisome proliferator-activated receptor gamma-2 and adipose differentiation of 3T3-L1 cells.

    Science.gov (United States)

    Haj-Yasein, Nadia Nabil; Berg, Ole; Jernerén, Fredrik; Refsum, Helga; Nebb, Hilde I; Dalen, Knut Tomas

    2017-06-01

    Plasma cysteine is strongly associated with body fat mass in human cohorts and diets low in cysteine prevents fat accumulation in mice. It is unclear if plasma cysteine affects fat development or if fat accumulation raises plasma cysteine. To determine if cysteine affects adipogenesis, we differentiated 3T3-L1 preadipocytes in medium with reduced cysteine. Cells incubated in media with 10-20μM cysteine exhibited reduced capacity to differentiate into triacylglycerol-storing mature adipocytes compared with cells incubated with 50μM cysteine. Low cysteine severely reduced expression of peroxisome proliferator-activated receptor gamma2 (Pparγ2) and its target genes perlipin1 (Plin1) and fatty acid binding protein-4 (Fabp4). Expression of stearoyl-CoA desaturase-1 (Scd1), known to be repressed with cysteine depletion, was also reduced with low cysteine. Medium depletion of the essential amino acids leucine, valine, and isoleucine had only a modest effect on adipocyte specific gene expression and differentiation. Stimulation with the PPARγ agonist BRL-49653 or addition of a hydrogen sulfide donor enhanced differentiation of 3T3-L1 cells cultured in low cysteine. This demonstrates that the ability to induce PPARγ expression is preserved when cells are cultured in low cysteine. It therefore appears that cysteine depletion inhibits adipogenesis by specifically affecting molecular pathways required for induction of PPARγ expression, rather than through a general reduction of global protein synthesis. In conclusion, we show that low extracellular cysteine reduces adipocyte differentiation by interfering with PPARγ2 and PPARγ target gene expression. Our results provide further evidence for the hypothesis that plasma cysteine is a casual determinant for body fat mass. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model

    Science.gov (United States)

    Uchiyama, Masaaki; Masuda, Yukinari; Nagasaka, Shinya; Fukuda, Yuh; Takahashi, Hiroshi

    2013-01-01

    Purpose We clarified the effects of an ophthalmic solution of a peroxisome proliferator-activated receptor gamma (PPARγ) agonist on corneal inflammation and wound healing after alkali burn injury in rats. Methods After alkali exposure, either an ophthalmic solution with 0.1% pioglitazone hydrochloride (the PPARγ group) or vehicle (the vehicle group) was topically applied to the cornea until day 14. Histological, immunohistochemical, and real-time reverse transcription polymerase chain reaction analysis were performed. Results After alkali injury, PPARγ expression increased, with the infiltration of many inflammatory cells. The infiltration of neutrophils and macrophages started from the corneal limbus within 6 h, and developed in the corneal center by day 7, with associated neovascularization. The accumulation of α-smooth muscle actin-positive myofibroblasts and the deposition of type III collagen were noted on day 14. The histological changes were suppressed significantly by treatment with the ophthalmic solution of the PPARγ agonist. In addition, the number of infiltrating M2 macrophages in the cornea was increased by PPARγ agonist treatment. In real-time reverse transcription polymerase chain reaction analysis, the messenger ribonucleic acid expression levels of interleukin-1β (IL-1β), IL-6, IL-8, monocyte chemoattractant protein-1, tumor necrosis factor-α, transforming growth factor beta 1, and vascular endothelial growth factor-A were decreased in the PPARγ group compared to the vehicle group in the early periods of corneal inflammation. Conclusions The ophthalmic solution of the PPARγ agonist inhibited inflammation, decreased the fibrotic reaction, and prevented neovascularization in the cornea from the early phase after alkali burn injury. The ophthalmic solution of the PPARγ agonist may provide a new treatment strategy with useful clinical applications for corneal inflammation and wound healing. PMID:24194635

  10. Wake-promoting effects of ONO-4127Na, a prostaglandin DP1 receptor antagonist, in hypocretin/orexin deficient narcoleptic mice.

    Science.gov (United States)

    Sagawa, Yohei; Sato, Masatoshi; Sakai, Noriaki; Chikahisa, Sachiko; Chiba, Shintaro; Maruyama, Takashi; Yamamoto, Junki; Nishino, Seiji

    2016-11-01

    Prostaglandin (PG)D2 is an endogenous sleep substance, and a series of animal studies reported that PGD2 or PGD2 receptor (DP1) agonists promote sleep, while DP1 antagonists promote wakefulness. This suggests the possibility of use of PG DP1 antagonists as wake-promoting compounds. We therefore evaluated the wake-promoting effects of ONO-4127Na, a DP1 antagonist, in a mouse model of narcolepsy (i.e., orexin/ataxin-3 transgenic mice) and compared those to effects of modafinil. ONO-4127Na perfused in the basal forebrain (BF) area potently promoted wakefulness in both wild type and narcoleptic mice, and the wake-promoting effects of ONO-4127Na at 2.93 × 10(-4) M roughly corresponded to those of modafinil at 100 mg/kg (p.o.). The wake promoting effects of ONO-4127Na was observed both during light and dark periods, and much larger effects were seen during the light period when mice slept most of the time. ONO-4127Na, when perfused in the hypothalamic area, had no effects on sleep. We further demonstrated that wake-promoting effects of ONO-4127Na were abolished in DP1 KO mice, confirming that the wake-promoting effect of ONO-4127Na is mediated by blockade of the PG DP1 receptors located in the BF area. ONO-4127Na reduced DREM, an EEG/EMG assessment of behavioral cataplexy in narcoleptic mice, suggesting that ONO-4127Na is likely to have anticataplectic effects. DP1 antagonists may be a new class of compounds for the treatment of narcolepsy-cataplexy, and further studies are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Study of a new PPARgamma2 promoter polymorphism and haplotype analysis in a French population

    NARCIS (Netherlands)

    Meirhaeghe, Aline; Tanck, Michael W. T.; Fajas, Lluis; Janot, Caroline; Helbecque, Nicole; Cottel, Dominique; Auwerx, Johan; Amouyel, Philippe; Dallongeville, Jean

    2005-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma) plays a role in adipocyte differentiation and insulin sensitization. We identified and characterized a new C/T substitution at position -689 (-689C>T) in the P2 promoter of PPARgamma in a putative GATA binding site. By electrophoretic

  12. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  13. PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells.

    Science.gov (United States)

    Nandi, Pinki; Girish, Gannareddy V; Majumder, Mousumi; Xin, Xiping; Tutunea-Fatan, Elena; Lala, Peeyush K

    2017-01-05

    Lymphatic metastasis, facilitated by lymphangiogenesis is a common occurrence in breast cancer, the molecular mechanisms remaining incompletely understood. We had earlier shown that cyclooxygenase (COX)-2 expression by human or murine breast cancer cells promoted lymphangiogenesis and lymphatic metastasis by upregulating VEGF-C/D production by tumor cells or tumor-associated macrophages primarily due to activation of the prostaglandin receptor EP4 by endogenous PGE2. It is not clear whether tumor or host-derived PGE2 has any direct effect on lymphangiogenesis, and if so, whether EP4 receptors on lymphatic endothelial cells (LEC) play any role. Here, we address these questions employing in vitro studies with a COX-2-expressing and VEGF-C/D-producing murine breast cancer cell line C3L5 and a rat mesenteric (RM) LEC line and in vivo studies in nude mice. RMLEC responded to PGE2, an EP4 agonist PGE1OH, or C3L5 cell-conditioned media (C3L5-CM) by increased proliferation, migration and accelerated tube formation on growth factor reduced Matrigel. Native tube formation by RMLEC on Matrigel was abrogated in the presence of a selective COX-2 inhibitor or an EP4 antagonist. Addition of PGE2 or EP4 agonist, or C3L5-CM individually in the presence of COX-2 inhibitor, or EP4 antagonist, restored tube formation, reinforcing the role of EP4 on RMLEC in tubulogenesis. These results were partially duplicated with a human dermal LEC (HMVEC-dLyAd) and a COX-2 expressing human breast cancer cell line MDA-MB-231. Knocking down EP4 with shRNA in RMLEC abrogated their tube forming capacity on Matrigel in the absence or presence of PGE2, EP4 agonist, or C3L5-CM. RMLEC tubulogenesis following EP4 activation by agonist treatment was dependent on PI3K/Akt and Erk signaling pathways and VEGFR-3 stimulation. Finally in a directed in vivo lymphangiogenesis assay (DIVLA) we demonstrated the lymphangiogenic as well as angiogenic capacity of PGE2 and EP4 agonist in vivo. These results demonstrate

  14. Testicular orphan nuclear receptor 4-associated protein 16 promotes non-small cell lung carcinoma by activating estrogen receptor β and blocking testicular orphan nuclear receptor 2.

    Science.gov (United States)

    Fang, Fang; Zheng, Qingfeng; Zhang, Jianzhi; Dong, Bin; Zhu, Sainan; Huang, Xiaoyun; Wang, Yang; Zhao, Bingtian; Li, Shaolei; Xiong, Hongchao; Chen, Jinfeng; Wu, Nan; Song, Sonya Wei; Chang, Chawnshang; Yang, Yue

    2013-01-01

    The possible involvement of estrogen receptors (ERs) and testicular orphan nuclear receptors (TRs) in human non-small cell lung carcinoma (NSCLC) has been suggested, but their precise roles and their relationship remain largely unknown. This study aimed to investigate whether TR4-associated protein 16 (TRA16) regulates the ERβ and TR2 pathways and could be a potential target in NSCLC. We used tissue microarrays including NSCLC tissues (n=154) and negative controls (n=14) to examine the expression of TRA16 and ERβ, and in vitro reporter gene assays, the mammalian two-hybrid method and immunoprecipitation in Cos-1 cells to investigate the relationships among TRA16, ERβ and TR2. We found that TRA16 was highly expressed in approximately 90% of the NSCLC tissues examined. TRA16 overexpression was significantly associated with TNM stage, tumor size, lymph node metastasis, tumor thrombus in vein, tumor differentiation and prognosis of NSCLC patients, in which TRA16 was shown to be an independent prognostic factor. Introduction of TRA16 into Cos-1 cells enhanced cell proliferation. Co-expression of TRA16 and ERβ in Cos-1 cells using different reporter gene systems and mammalian two-hybrid approaches revealed that TRA16 enhanced ERβ-mediated transcriptional activity. By adopting similar approaches, and immunoprecipitation and immunocytofluorescence assays, we found that TRA16 also interacted with TR2, and blocked the TR2 inhibitory effect on ERβ. Our findings demonstrate that TRA16 could be a promising diagnostic and prognostic biomarker in NSCLC, and promotes cancer cell growth through activation of the ERβ pathway by interacting with ERβ and TR2.

  15. Retinoic Acid Receptor β Stimulates Hepatic Induction of Fibroblast Growth Factor 21 to Promote Fatty Acid Oxidation and Control Whole-body Energy Homeostasis in Mice*

    Science.gov (United States)

    Li, Yu; Wong, Kimberly; Walsh, Kenneth; Gao, Bin; Zang, Mengwei

    2013-01-01

    Activation of retinoic acid receptor (RAR) with all-trans-retinoic acid (RA) ameliorates glucose intolerance and insulin resistance in obese mice. The recently discovered fibroblast growth factor 21 (FGF21) is a hepatocyte-derived hormone that restores glucose and lipid homeostasis in obesity-induced diabetes. However, whether hepatic RAR is linked to FGF21 in the control of lipid metabolism and energy homeostasis remains elusive. Here we identify FGF21 as a direct target gene of RARβ. The gene transcription of Fgf21 is increased by the RAR agonist RA and by overexpression of RARα and RARβ, but it is unaffected by RARγ in HepG2 cells. Promoter deletion analysis characterizes a putative RA-responsive element (RARE) primarily located in the 5′-flanking region of the Fgf21 gene. Disruption of the RARE sequence abolishes RA responsiveness. In vivo adenoviral overexpression of RARβ in the liver enhances production and secretion of FGF21, which in turn promotes hepatic fatty acid oxidation and ketogenesis and ultimately leads to increased energy expenditure in mice. The metabolic effects of RA or RARβ are mimicked by FGF21 overexpression and largely abolished by FGF21 knockdown. Moreover, hepatic RARβ is bound to the putative RAREs of the Fgf21 promoter in a fasting-inducible manner in vivo, which contributes to FGF21 induction and the metabolic adaptation to prolonged fasting. In addition to other nuclear receptors, such as peroxisome proliferator-activated receptor α and retinoic acid receptor-related receptor α, RAR may act as a novel component to induce hepatic FGF21 in the regulation of lipid metabolism. The hepatic RAR-FGF21 pathway may represent a potential drug target for treating metabolic disorders. PMID:23430257

  16. Identification of bicyclic hexafluoroisopropyl alcohol sulfonamides as retinoic acid receptor-related orphan receptor gamma (RORγ/RORc) inverse agonists. Employing structure-based drug design to improve pregnane X receptor (PXR) selectivity.

    Science.gov (United States)

    Gong, Hua; Weinstein, David S; Lu, Zhonghui; Duan, James J-W; Stachura, Sylwia; Haque, Lauren; Karmakar, Ananta; Hemagiri, Hemalatha; Raut, Dhanya Kumar; Gupta, Arun Kumar; Khan, Javed; Camac, Dan; Sack, John S; Pudzianowski, Andrew; Wu, Dauh-Rurng; Yarde, Melissa; Shen, Ding-Ren; Borowski, Virna; Xie, Jenny H; Sun, Huadong; D'Arienzo, Celia; Dabros, Marta; Galella, Michael A; Wang, Faye; Weigelt, Carolyn A; Zhao, Qihong; Foster, William; Somerville, John E; Salter-Cid, Luisa M; Barrish, Joel C; Carter, Percy H; Dhar, T G Murali

    2018-01-15

    We disclose the optimization of a high throughput screening hit to yield benzothiazine and tetrahydroquinoline sulfonamides as potent RORγt inverse agonists. However, a majority of these compounds showed potent activity against pregnane X receptor (PXR) and modest activity against liver X receptor α (LXRα). Structure-based drug design (SBDD) led to the identification of benzothiazine and tetrahydroquinoline sulfonamide analogs which completely dialed out LXRα activity and were less potent at PXR. Pharmacodynamic (PD) data for compound 35 in an IL-23 induced IL-17 mouse model is discussed along with the implications of a high Y max in the PXR assay for long term preclinical pharmacokinetic (PK) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. DNA methylation at the neonatal state and at the time of diagnosis. Preliminary support for an association with the estrogen receptor 1, gamma-aminobutyric acid B receptor 1, and myelin oligodendrocyte glycoprotein in female adolescent patients with OCD

    Directory of Open Access Journals (Sweden)

    Judith Becker Nissen

    2016-03-01

    Full Text Available Obsessive-compulsive disorder (OCD is a neuropsychiatric disorder. Non-genetic factors and their interaction with genes have attracted increasing attention. Epigenetics is regarded an important interface between environmental signals and activation/repression of genomic responses. Epigenetic mechanisms have not previously been examined in OCD in children and adolescents.The aim of the present study was to examine the DNA methylation profile of selected genes in blood spots from neonates later diagnosed with OCD and in the same children/adolescents at the time of diagnosis compared with age- and sex matched controls. Furthermore, we wanted to characterize the association of the differential methylation profiles with the severity of OCD and treatment outcome.Dried and new blood spot samples were obtained from 21 female children/adolescents with verified OCD and 12 female controls. The differential methylation was analyzed using a linear model and the correlation with the severity of OCD and treatment outcome was analyzed using the Pearson correlation. We evaluated selected Illumina Infinium HumanMethylation450 BeadChip probes within and up to 100,000 bp up- and downstream of 14 genes previously associated with OCD (SLC1A1, SLC25A12, GABBR1, GAD1, DLGAP1, MOG, BDNF, OLIG2, NTRK2 and 3, ESR1, SL6A4, TPH2 and COMT.The study found no significantly differential methylation. However, preliminary support for a difference was found for the gamma-aminobutyric acid (GABA B receptor 1 (cg10234998, cg17099072 in blood samples at birth and for the estrogen receptor 1 (ESR1 (cg10939667, the myelin oligodendrocyte glycoprotein (MOG (cg16650906, and the brain-derived neurotrophic factor (BDNF (cg14080521 in blood samples at the time of diagnosis.Preliminary support for an association was observed between the methylation profiles of GABBR1 and MOG and baseline severity, treatment effect, and responder status; and between the methylation profile of ESR1 and

  18. DNA Methylation at the Neonatal State and at the Time of Diagnosis: Preliminary Support for an Association with the Estrogen Receptor 1, Gamma-Aminobutyric Acid B Receptor 1, and Myelin Oligodendrocyte Glycoprotein in Female Adolescent Patients with OCD.

    Science.gov (United States)

    Nissen, Judith Becker; Hansen, Christine Søholm; Starnawska, Anna; Mattheisen, Manuel; Børglum, Anders Dupont; Buttenschøn, Henriette Nørmølle; Hollegaard, Mads

    2016-01-01

    Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Non-genetic factors and their interaction with genes have attracted increasing attention. Epigenetics is regarded an important interface between environmental signals and activation/repression of genomic responses. Epigenetic mechanisms have not previously been examined in OCD in children and adolescents. The aim of the present study was to examine the DNA methylation profile of selected genes in blood spots from neonates later diagnosed with OCD and in the same children/adolescents at the time of diagnosis compared with age- and sex-matched controls. Furthermore, we wanted to characterize the association of the differential methylation profiles with the severity of OCD and treatment outcome. Dried and new blood spot samples were obtained from 21 female children/adolescents with verified OCD and 12 female controls. The differential methylation was analyzed using a linear model and the correlation with the severity of OCD and treatment outcome was analyzed using the Pearson correlation. We evaluated selected Illumina Infinium HumanMethylation450 BeadChip probes within and up to 100,000 bp up- and downstream of 14 genes previously associated with OCD (SLC1A1, SLC25A12, GABBR1, GAD1, DLGAP1, MOG, BDNF, OLIG2, NTRK2 and 3, ESR1, SL6A4, TPH2, and COMT). The study found no significantly differential methylation. However, preliminary support for a difference was found for the gamma-aminobutyric acid (GABA) B receptor 1 (cg10234998, cg17099072) in blood samples at birth and for the estrogen receptor 1 (ESR1) (cg10939667), the myelin oligodendrocyte glycoprotein (MOG) (cg16650906), and the brain-derived neurotrophic factor (BDNF) (cg14080521) in blood samples at the time of diagnosis. Preliminary support for an association was observed between the methylation profiles of GABBR1 and MOG and baseline severity, treatment effect, and responder status; and between the methylation profile of ESR1 and baseline

  19. Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice.

    Science.gov (United States)

    Seong, Kyung-Joo; Kim, Hyeong-Jun; Cai, Bangrong; Kook, Min-Suk; Jung, Ji-Yeon; Kim, Won-Jae

    2018-03-01

    The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

  20. Activation of type 1 cannabinoid receptor (CB1R promotes neurogenesis in murine subventricular zone cell cultures.

    Directory of Open Access Journals (Sweden)

    Sara Xapelli

    Full Text Available The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive, neurons and astrocytes. Stimulation of the CB1R by (R-(+-Methanandamide (R-m-AEA increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation, at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca(2+]i in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.

  1. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yanhong Gao

    Full Text Available Osteogenic differentiation from mesenchymal progenitor cells (MPCs are initiated and regulated by a cascade of signaling events. Either Wnt/β-catenin or estrogen signaling pathway has been shown to play an important role in regulating skeletal development and maintaining adult tissue homeostasis. Here, we investigate the potential crosstalk and synergy of these two signaling pathways in regulating osteogenic differentiation of MPCs. We find that the activation of estrogen receptor (ER signaling by estradiol (E2 or exogenously expressed ERα in MPCs synergistically enhances Wnt3A-induced early and late osteogenic markers, as well as matrix mineralization. The E2 or ERα-mediated synergy can be effectively blocked by ERα antagonist tamoxifen. E2 stimulation can enhance endochondral ossification of Wnt3A-transduced mouse fetal limb explants. Furthermore, exogenously expressed ERα significantly enhances the maturity and mineralization of Wnt3A-induced subcutaneous and intramuscular ectopic bone formation. Mechanistically, we demonstrate that E2 does not exert any detectable effect on β-catenin/Tcf reporter activity. However, ERα expression is up-regulated within the first 48h in AdWnt3A-transduced MPCs, whereas ERβ expression is significantly inhibited within 24h. Moreover, the key enzyme for the biosynthesis of estrogens aromatase is modulated by Wnt3A in a biphasic manner, up-regulated at 24h but reduced after 48h. Our results demonstrate that, while ER signaling acts synergistically with Wnt3A in promoting osteogenic differentiation, Wnt3A may crosstalk with ER signaling by up-regulating ERα expression and down-regulating ERβ expression in MPCs. Thus, the signaling crosstalk and synergy between these two pathways should be further explored as a potential therapeutic approach to combating bone and skeletal disorders, such as fracture healing and osteoporosis.

  2. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V

    OpenAIRE

    Schmees, C.; Villaseñor, R.; Zheng, W.; Ma, H.; Zerial, M.; Heldin, C.-H.; Hellberg, C.

    2012-01-01

    Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independe...

  3. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    ., Siegbahn, A. , Rorsman, C., Engström, U., Wernstedt, C., Heldin, C.-H., and Rönnstrand, L. (1996) EMBO J. 15, 5299-5313). Here we show that the increased chemotaxis correlates with increased activation of phospholipase C-gamma1 (PLC-gamma1), measured as inositol-1,4, 5-trisphosphate release. By two......-dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  4. P2Y2 receptor promotes the migration and invasion of breast cancer cells via EMT-related genes Snail and E-cadherin.

    Science.gov (United States)

    Qiu, Ying; Liu, Yan; Li, Wei-Hua; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2018-01-01

    Adenosine 5'-triphosphate (ATP) is one of the most abundant biochemical constituents within the tumor microenvironment and is postulated to play critical roles in the progression of a number of types of tumors via interaction with the P2Y2 receptor. In the present study, we demonstrated that the P2Y2 receptor was highly expressed in MCF7 and Hs578T breast cancer cells. Downregulation of the P2Y2 receptor by small interfering RNA (siRNA) significantly attenuated ATP- or UTP-driven migration and invasion of the breast cancer cells as well as expression of EMT-related genes Snail and E-cadherin. Consistent with the observations in vitro, the P2Y2 receptor was found to be abundantly expressed at the invasive edge of the tumor, in infiltrating tumor cells in breast adipose tissues and/or the cancer embolus in the lymphatic sinuses compared with the tumor core areas. Furthermore, high Snail expression and weak or negative expression of E-cadherin were observed at the invasive edge of tumors. Taken together, these data indicate that the P2Y2 receptor promoted cell migration and invasion in breast cancer cells via EMT-related genes Snail and E-cadherin.

  5. Polimorfismos del receptor Fc gamma en patología cutánea inmunomediada: Papel en la patogenia del penfigoide ampolloso y en la respuesta a tratamiento biológico en la psoriasis

    OpenAIRE

    Guilabert Vidal, Antonio

    2012-01-01

    Los receptores Fc-gamma (Fc-gR) median muchas de las funciones inmunes de la IgG. Están presentes en numerosas células del sistema inmune y su activación (tras la unión al fragmento Fc de la IgG) permite el desarrollo de funciones tales como la fagocitosis, la citotoxicidad dependiente de anticuerpos y la liberación de enzimas proteolíticas. Existen polimorfismos genéticos que modifican la afinidad de los Fc-gR y por tanto su capacidad funcional. Estos polimorfismos se han relacionado con en...

  6. H2O2-Activated Mitochondrial Phospholipase iPLA2 gamma Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic beta-Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin; Ježek, Petr

    2015-01-01

    Roč. 23, č. 12 (2015), s. 958-972 ISSN 1523-0864 R&D Projects: GA ČR(CZ) GPP303/11/P320; GA ČR(CZ) GA13-02033S; GA ČR(CZ) GA13-06666S; GA ČR GA15-02051S Institutional support: RVO:67985823 Keywords : mitochondrial phospholipase iPLA2 gamma * uncoupling protein UCP2 * G-protein coupled receptor - 40 * glucose-stimulated insulin secretion * pancreatic beta cells Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 7.093, year: 2015

  7. Investigation of Toll-Like Receptor-2 (2258G/A and Interferon Gamma (+874T/A Gene Polymorphisms among Infertile Women with Female Genital Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Venkanna Bhanothu

    Full Text Available Toll-like receptor 2 (TLR2 and interferon-gamma (IFN-γ coordinate with a diverse array of cellular programs through the transcriptional regulation of immunologically relevant genes and play an important role in immune system, reproductive physiology and basic pathology. Alterations in the functions of TLR2 2258G (guanine/ A, IFN-γ (+874T/A and signalling molecules that result from polymorphisms are often associated with susceptibility or resistance, which may, in turn, establish the innate host response to various infectious diseases. Presently, we proposed to investigate the risk of common single nucleotide polymorphism (SNP of TLR2 and IFN-γ genes, for their effect on infertility in women with female genital tuberculosis (FGTB and healthy women as controls.Genotyping of TLR2 and IFN-γ gene polymorphisms was performed by amplification refractory mutation system multi-gene/multi-primer polymerase chain reaction followed by restriction fragment length polymorphism in 175 FGTB patients and 100 healthy control women (HCW. The TLR2 polymorphism [adenine (A allele] was observed in 57.7 and 58.0% of FGTB patients and HCW, respectively. The IFN-γ (+874T/A polymorphism (A allele was significant in 74.3 and 71.0% of FGTB patients and HCW, respectively, while the odds ratios for the AA and TA genotypes for predisposition of FGTB were found to be 0.304 and 1.650 in HCW, respectively. The SNP of TLR2 was not associated with FGTB but the SNP of IFN-γ was found to be associated with mycobacteria infections and to induce infertility.At present, we hypothesize that infertile women with FGTB and HCW without tuberculosis (TB have identical frequency of TLR variants, which may be adequate in the production of IFN-γ in response to Mycobacterium tuberculosis infections. Thus, the study appears to be the first of its kind reporting a mutation in the IFN-γ gene [+874 T (thymine to A] responsible for susceptibility to TB infections and further inducing

  8. Oleylphosphocholine (OlPC) arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice.

    Science.gov (United States)

    Sonzogni-Desautels, Karine; Renteria, Axel E; Camargo, Fabio V; Di Lenardo, Thomas Z; Mikhail, Alexandre; Arrowood, Michael J; Fortin, Anny; Ndao, Momar

    2015-01-01

    Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC), an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells) showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 μM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients.

  9. Oleylphosphocholine (OlPC arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice

    Directory of Open Access Journals (Sweden)

    Karine eSonzogni-Desautels

    2015-09-01

    Full Text Available Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC, an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 µM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 mg/kg/day and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients.

  10. Diffractive Photon Production in $\\gamma p$ and $\\gamma \\gamma$ Interactions

    CERN Document Server

    Evanson, N G

    1999-01-01

    We study the diffractive production of photons in gamma-p and gamma-gamma collisions. We specifically compute the rates for gamma*-p -> gamma-X and for gamma*-gamma* -> gamma-gamma, where X denotes the proton dissociation. We focus on the rates at large momentum transfers, -t >> Lambda^2, where we are most confident in the use of QCD perturbation theory. However, our calculations do allow us to study the -t -> 0 behaviour of the gamma*-gamma*-> gamma-gamma process in the region where the incoming photons are sufficiently virtual.

  11. Promoter hypermethylation of the retinoic acid receptor beta2 gene is frequent in acute myeloid leukaemia and associated with the presence of CBFβ-MYH11 fusion transcripts

    DEFF Research Database (Denmark)

    Rethmeier, Anita; Aggerholm, Anni; Olesen, Lene Hyldahl

    2006-01-01

    Silencing of the putative tumour suppressor gene retinoic acid receptor beta2 (RARbeta2) caused by aberrant promoter hypermethylation has been identified in several solid tumours. In order to evaluate the extent of RARbeta2 hypermethylation and transcription in acute myeloid leukaemia (AML...... was unmethylated in 10/10 bone marrow and 7/7 blood samples from healthy individuals, the gene was hypermethylated in 43% of the AML patients. The RARbeta2 degree of promoter methylation differed between and within individuals, and the mRNA transcription levels of the gene varied inter-individually by a factor...... of 4000. A significant inverse correlation between promoter hypermethylation and gene expression could be established (t-test, P = 0.019). Comparison of methylation data with a series of other molecular alterations in the same patient materials revealed a correlation between hypermethylation...

  12. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  13. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Toyoda, Maki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Kato, Kohsuke [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Yoshikawa, Hiroyuki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan)

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  14. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice

    Directory of Open Access Journals (Sweden)

    Matthew McMillin

    2017-07-01

    Full Text Available Hepatic encephalopathy (HE is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA, can activate sphingosine-1-phosphate receptor 2 (S1PR2, which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid

  15. Potentiation of amygdala AMPA receptor activity selectively promotes escalated alcohol self-administration in a CaMKII-dependent manner.

    Science.gov (United States)

    Cannady, Reginald; Fisher, Kristen R; Graham, Caitlin; Crayle, Jesse; Besheer, Joyce; Hodge, Clyde W

    2017-05-01

    Growing evidence indicates that drugs of abuse gain control over the individual by usurping glutamate-linked mechanisms of neuroplasticity in reward-related brain regions. Accordingly, we have shown that glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activity in the amygdala is required for the positive reinforcing effects of alcohol, which underlie the initial stages of addiction. It is unknown, however, if enhanced AMPAR activity in the amygdala facilitates alcohol self-administration, which is a kernel premise of glutamate hypotheses of addiction. Here, we show that low-dose alcohol (0.6 g/kg/30 minutes) self-administration increases phosphorylation (activation) of AMPAR subtype GluA1 S831 (pGluA1 S831) in the central amygdala (CeA), basolateral amygdala and nucleus accumbens core (AcbC) of selectively bred alcohol-preferring P-rats as compared with behavior-matched (non-drug) sucrose controls. The functional role of enhanced AMPAR activity was assessed via site-specific infusion of the AMPAR positive modulator, aniracetam, in the CeA and AcbC prior to alcohol self-administration. Intra-CeA aniracetam increased alcohol-reinforced but not sucrose-reinforced responding and was ineffective following intra-AcbC infusion. Because GluA1 S831 is a Ca2+/calmodulin-dependent protein kinase II (CaMKII) substrate, we sought to determine if AMPAR regulation of enhanced alcohol self-administration is dependent on CaMKII activity. Intra-CeA infusion of the cell-permeable CaMKII peptide inhibitor myristolated autocamtide-2-related inhibitory peptide (m-AIP) dose-dependently reduced alcohol self-administration. A subthreshold dose of m-AIP also blocked the aniracetam-induced escalation of alcohol self-administration, demonstrating that AMPAR-mediated potentiation of alcohol reinforcement requires CaMKII activity in the amygdala. Enhanced activity of plasticity-linked AMPAR-CaMKII signaling in the amygdala may promote escalated alcohol use

  16. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  17. L-type Ca2+ channel blockers promote Ca2+ accumulation when dopamine receptors are activated in striatal neurons

    OpenAIRE

    Eaton, Molly E.; Macías, Wendy; Youngs, Rachael M.; Rajadhyaksha, Anjali; Dudman, Joshua T.; Konradi, Christine

    2004-01-01

    Dopamine (DA) receptor-mediated signal transduction and gene expression play a central role in many brain disorders from schizophrenia to Parkinson’s disease to addiction. While trying to evaluate the role of L-type Ca2+ channels in dopamine D1 receptor-mediated phosphorylation of the transcription factor cyclic AMP response element-binding protein (CREB), we found that activation of dopamine D1 receptors alters the properties of L-type Ca2+ channel inhibitors and turns them into facilitators...

  18. Changes in lymphocyte glucocorticoid and beta-adrenergic receptors in veal calves treated with clenbuterol and steroid hormones for growth-promoting purposes.

    Science.gov (United States)

    Odore, R; Badino, P; Pagliasso, S; Nebbia, C; Cuniberti, B; Barbero, R; Re, G

    2006-04-01

    In order to identify possible peripheral markers of illegal treatments with growth-promoting agents in veal calves, beta-adrenergic receptor (beta-AR) and glucocorticoid receptor (GR) concentrations were measured in lymphocytes of 12 male Friesian crossbred calves (six controls and six treated). The animals received a cocktail of anabolic and re-partitioning agents [17beta-oestradiol: 3 x 10 mg intramuscular (i.m.) doses at 17-day intervals; dexamethasone sodium phosphate: 4 mg/day for 6 days and 5 mg/day for six further days dissolved in milk; and clenbuterol: 20 microg/kg/day dissolved in milk for the last 40 days before slaughter]. Blood samples were collected by venipuncture at different time points and lymphocytes were isolated by density gradient centrifugation. Lymphocyte beta-AR and GR levels were measured by binding assays. Treatment with re-partitioning agents caused a significant down-regulation of lymphocyte beta-ARs 19 days after the beginning of clenbuterol administration and at day 55 (after dexamethasone withdrawal, just before slaughter). This phenomenon was partially reversed at day 50, after dexamethasone administration, at which time a significant decrease in GR concentrations also occurred. For both types of receptors, no significant changes in the dissociation constant values were observed at any time point. Lymphocytes express measurable concentrations of beta-ARs and GRs and the measurement of receptor levels highlights the fluctuation of receptor expression due to the dynamic interaction of the drugs used in combination. Lymphocyte receptor determination could therefore be included in a battery of biological assays to detect illegal treatments with anabolic agents in veal calves in the light of a multivariate approach.

  19. Genomic and expression analyses of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) loci reveal a similar basic public γδ repertoire in dolphin and human.

    Science.gov (United States)

    Linguiti, Giovanna; Antonacci, Rachele; Tasco, Gianluca; Grande, Francesco; Casadio, Rita; Massari, Serafina; Castelli, Vito; Consiglio, Arianna; Lefranc, Marie-Paule; Ciccarese, Salvatrice

    2016-08-15

    The bottlenose dolphin (Tursiops truncatus) is a mammal that belongs to the Cetartiodactyla and have lived in marine ecosystems for nearly 60 millions years. Despite its popularity, our knowledge about its adaptive immunity and evolution is very limited. Furthermore, nothing is known about the genomics and evolution of dolphin antigen receptor immunity. Here we report a evolutionary and expression study of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) genes. We have identified in silico the TRG and TRA/TRD genes and analyzed the relevant mature transcripts in blood and in skin from four subjects. The dolphin TRG locus is the smallest and simplest of all mammalian loci as yet studied. It shows a genomic organization comprising two variable (V1 and V2), three joining (J1, J2 and J3) and a single constant (C), genes. Despite the fragmented nature of the genome assemblies, we deduced the TRA/TRD locus organization, with the recent TRDV1 subgroup genes duplications, as it is expected in artiodactyls. Expression analysis from blood of a subject allowed us to assign unambiguously eight TRAV genes to those annotated in the genomic sequence and to twelve new genes, belonging to five different subgroups. All transcripts were productive and no relevant biases towards TRAV-J rearrangements are observed. Blood and skin from four unrelated subjects expression data provide evidence for an unusual ratio of productive/unproductive transcripts which arise from the TRG V-J gene rearrangement and for a "public" gamma delta TR repertoire. The productive cDNA sequences, shared both in the same and in different individuals, include biases of the TRGV1 and TRGJ2 genes. The high frequency of TRGV1-J2/TRDV1- D1-J4 productive rearrangements in dolphins may represent an interesting oligo-clonal population comparable to that found in human with the TRGV9- JP/TRDV2-D-J T cells and in primates. Although the features of the TRG and TRA/TRD loci organization reflect

  20. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Thangavelu, Pulari U; Lin, Cheng-Yu; Vaidyanathan, Srividya; Nguyen, Thu H M; Dray, Eloise; Duijf, Pascal H G

    2017-09-22

    During cell division, chromosome segregation is facilitated by the mitotic checkpoint, or spindle assembly checkpoint (SAC), which ensures correct kinetochore-microtubule attachments and prevents premature sister-chromatid separation. It is well established that misexpression of SAC components on the outer kinetochores promotes chromosome instability (CIN) and tumorigenesis. Here, we study the expression of CENP-I, a key component of the HIKM complex at the inner kinetochores, in breast cancer, including ductal, lobular, medullary and male breast carcinomas. CENPI mRNA and protein levels are significantly elevated in estrogen receptor-positive (ER+) but not in estrogen receptor-negative (ER-) breast carcinoma. Well-established prognostic tests indicate that CENPI overexpression constitutes a powerful independent marker for poor patient prognosis and survival in ER+ breast cancer. We further demonstrate that CENPI is an E2F target gene. Consistently, it is overexpressed in RB1 -deficient breast cancers. However, CENP-I overexpression is not purely due to cell cycle-associated expression. In ER+ breast cancer cells, CENP-I overexpression promotes CIN, especially chromosome gains. In addition, in ER+ breast carcinomas the degree of CENPI overexpression is proportional to the level of aneuploidy and CENPI overexpression is one of the strongest markers for CIN identified to date. Our results indicate that overexpression of the inner kinetochore protein CENP-I promotes CIN and forecasts poor prognosis for ER+ breast cancer patients. These observations provide novel mechanistic insights and have important implications for breast cancer diagnostics and potentially therapeutic targeting.

  1. Constitutively active erythropoietin receptor expression in breast cancer cells promotes cellular proliferation and migration through a MAP-kinase dependent pathway

    International Nuclear Information System (INIS)

    Fu Ping; Jiang Xiaohong; Arcasoy, Murat O.

    2009-01-01

    The role of erythropoietin receptor (EpoR) expression in tumor cells and the potential of EpoR-mediated signaling to contribute to cellular proliferation and invasiveness require further characterization. To determine whether EpoR expression and activation in tumor cells modulates intracellular signal transduction to promote cellular proliferation and migration, we employed a novel experimental model using human breast cancer cells engineered to stably express a constitutively active EpoR-R129C variant. EpoR-R129C expression resulted in increased cellular proliferation and migration of breast cancer cells and these effects were associated with significantly increased Epo-induced phosphorylation of ERK1/2, AKT and c-Jun-NH2-kinase (SAPK/JNK) proteins. Expression of the constitutively active EpoR-R129C receptor promoted the proliferation and migration of breast cancer cells via activation of ERK- and SAPK/JNK-dependent signaling pathways, respectively. These findings suggest that EpoR over-expression and activation in breast cancer cells has the potential to contribute to tumor progression by promoting the proliferation and invasiveness of the neoplastic cells.

  2. Germline transcription and switch recombination of a transgene containing the entire H chain constant region locus: effect of a mutation in a STAT6 binding site in the gamma 1 promoter.

    Science.gov (United States)

    Dunnick, Wesley A; Shi, Jian; Graves, Kevin A; Collins, John T

    2004-11-01

    The switch (S) in H chain class is preceded by germline transcription and then mediated by a DNA recombination event. One of the impediments toward understanding the mechanism is the lack of a system in which a recombinant DNA molecule undergoes cytokine-regulated class S recombination. To study class S recombination, we used transgenic mice with a 230-kb bacterial artificial chromosome that included a rearranged VDJ gene and the entire murine H chain constant region locus. We found that both germline transcription and S recombination to the transgenic gamma1 H chain gene were regulated by IL-4 like that of the endogenous genes. In mice with two or more copies of the H chain locus transgene, both germline transcripts and S recombination took place at levels comparable to those from the endogenous loci. We also prepared a version of the transgene with a 4-bp mutation in a STAT6 binding site in the gamma1 promoter region. On the average, this mutation reduced germline transcription by 80%, but did not change the amount of S recombination in vitro. Among both the wild-type and mutant transgenes, we found no significant correlation between the amount of germline transcripts and the amount of S recombination. We infer that the physiologic level of germline transcription of the gamma1 gene is in excess over the amount required for efficient S recombination.

  3. Mapping of the {alpha}{sub 4} subunit gene (GABRA4) to human chromosome 4 defines an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 1} gene cluster: Further evidence that modern GABA{sub a} receptor gene clusters are derived from an ancestral cluster

    Energy Technology Data Exchange (ETDEWEB)

    McLean, P.J.; Farb, D.H.; Russek, S.J. [Boston Univ. School of Medicine, MA (United States)] [and others

    1995-04-10

    We demonstrated previously that an {alpha}{sub 1}-{beta}{sub 2}-{gamma}{sub 2} gene cluster of the {gamma}-aminobutyric acid (GABA{sub A}) receptor is located on human chromosome 5q34-q35 and that an ancestral {alpha}-{beta}-{gamma} gene cluster probably spawned clusters on chromosomes 4, 5, and 15. Here, we report that the {alpha}{sub 4} gene (GABRA4) maps to human chromosome 4p14-q12, defining a cluster comprising the {alpha}{sub 2}, {alpha}{sub 4}, {beta}{sub 1}, and {gamma}{sub 1} genes. The existence of an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 2} cluster on chromosome 4 and an {alpha}{sub 1}-{alpha}{sub 6}-{beta}{sub 2}-{gamma}{sub 2} cluster on chromosome 5 provides further evidence that the number of ancestral GABA{sub A} receptor subunit genes has been expanded by duplication within an ancestral gene cluster. Moreover, if duplication of the {alpha} gene occurred before duplication of the ancestral gene cluster, then a heretofore undiscovered subtype of a subunit should be located on human chromosome 15q11-q13 within an {alpha}{sub 5}-{alpha}{sub x}-{beta}{sub 3}-{gamma}{sub 3} gene cluster at the locus for Angelman and Prader-Willi syndromes. 34 refs., 6 figs., 1 tab.

  4. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    International Nuclear Information System (INIS)

    Yao, Jingjing; Xu, Chen; Fang, Ziyu; Li, Yaoming; Liu, Houqi; Wang, Yue; Xu, Chuanliang; Sun, Yinghao

    2016-01-01

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  5. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingjing [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Xu, Chen [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003 (China); Fang, Ziyu; Li, Yaoming [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Liu, Houqi; Wang, Yue [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Translational Medicine Center, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Xu, Chuanliang [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Sun, Yinghao, E-mail: sunyh@medmail.com.cn [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China)

    2016-05-20

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  6. A novel intronic splice site deletion of the IL-2 receptor common gamma chain results in expression of a dysfunctional protein and T-cell-positive X-linked Severe combined immunodeficiency.

    Science.gov (United States)

    Gray, P E A; Logan, G J; Alexander, I E; Poulton, S; Roscioli, T; Ziegler, J

    2015-02-01

    X-linked severe combined immunodeficiency is caused by mutations in the IL-2 receptor common gamma chain and classically presents in the first 6 months of life with predisposition to bacterial, viral and fungal infections. In most instances, affected individuals are lymphopenic with near complete absence of T cells and NK cells. We report a boy who presented at 12 months of age with Pneumocystis jiroveci pneumonia and a family history consistent with X-linked recessive inheritance. He had a normal lymphocyte count including the presence of T cells and a broad T-cell-receptor diversity, as well as normal surface expression of the common gamma chain (CD132) protein. He however had profound hypogammaglobulinaemia, and IL-2-induced STAT5 phosphorylation was absent. Sequencing of IL-2RG demonstrated a 12-base pair intronic deletion close to the canonical splice site of exon 5, which resulted in a variety of truncated IL2RG mRNA species. A review of the literature identified 4 other patients with T-cell-positive X-SCID, with the current patient being the first associated with an mRNA splicing defect. This case raises the question of how a dysfunctional protein incapable of mediating STAT5 phosphorylation might nonetheless support T-cell development. Possible explanations are that STAT5-mediated signal transduction may be less relevant to IL7-receptor-mediated T-cell development than are other IL7R-induced intracellular transduction pathways or that a low level of STAT5 phosphorylation, undetectable in the laboratory, may be sufficient to support some T-cell development. © 2014 John Wiley & Sons Ltd.

  7. Masking of the CD3 gamma di-leucine-based motif by zeta is required for efficient T-cell receptor expression

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter H; Bonefeld, Charlotte Menné; von Essen, Marina

    2004-01-01

    containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced...... TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine...

  8. Plasticity of gamma delta T cells: impact on the anti-tumor response

    Directory of Open Access Journals (Sweden)

    Virginie eLafont

    2014-12-01

    Full Text Available The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of gamma and delta chains (gamma delta T cells are of particular interest. gamma delta T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary and prostate cancer directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating gamma delta T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that gamma delta T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating gamma deltaT cells could exert an immunosuppressive activity by negatively regulating DC maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to gamma delta T cells and promote their differentiation into gamma delta T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of gamma delta T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying gamma delta T cell expansion, differentiation and recruitment in the tumor microenvironment.

  9. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, Lotte; Martinussen, J; Møllegaard, N E

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt......R selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP...

  10. Acute alertness-promoting effects of a novel histamine subtype-3 receptor inverse agonist in healthy sleep-deprived male volunteers.

    Science.gov (United States)

    Iannone, R; Palcza, J; Renger, J J; Calder, N; Cerchio, K; Gottesdiener, K; Hargreaves, R; Dijk, D J; Boyle, J; Murphy, M G

    2010-12-01

    The alertness-promoting effect of MK-0249 (10 or 50 mg), a histamine subtype-3 receptor (HRH3) inverse agonist (IA), was evaluated in the stimulant reference sleep deprivation model (SRSDM) using a double-blind, double-dummy, placebo- and modafinil- (200 mg) controlled, four-period crossover design in 24 healthy young men. The two primary hypotheses were related to sleep latency (first appearance of one epoch of stage 2, 3, or 4 or REM sleep, as detected using polysomnography (PSG)) at 8:00 AM on day 2. Statistically significant increases in sleep latency were observed in association with the use of modafinil 200 mg (9.07 min; P Sleep latency was higher when averaged over all MWT time points (P modafinil and for both doses of MK-0249). The alertness-promoting effect with the use of MK-0249 in the SRSDM suggests that HRH3 IAs may be effective in disorders involving excessive somnolence.

  11. A novel intronic peroxisome proliferator-activated receptor gamma enhancer in the uncoupling protein (UCP) 3 gene as a regulator of both UCP2 and -3 expression in adipocytes

    DEFF Research Database (Denmark)

    Bugge, Anne Skovsø; Siersbaek, Majken; Madsen, Maria S

    2010-01-01

    homologues function to facilitate mitochondrial fatty acid oxidation. UCP2 and -3 expression is activated by the peroxisome proliferator-activated receptors (PPARs), but so far no PPAR response element has been reported in the vicinity of the Ucp2 and Ucp3 genes. Using genome-wide profiling of PPARgamma...... in the Ucp2 and Ucp3 loci is located in intron 1 of the Ucp3 gene and is the only site that facilitates PPARgamma transactivation of a heterologous promoter. This site furthermore transactivates the endogenous Ucp3 promoter, and using chromatin conformation capture we show that it loops out to specifically...

  12. High-resolution mapping of the [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster on chromosome 15q11-q13, and localization of breakpoints in two Angelman syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett, D.; Wagstaff, J.; Woolf, E. (Children' s Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States)); Glatt, K. (Children' s Hospital, Boston, MA (United States)); Kirkness, E.J. (National Inst. of Alcohol Abuse and Alcoholism, Rockville, MD (United States))Lalande, M. (Children' s Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States) Howard Hughes Medical Inst., Boston, MA (United States))

    1993-06-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptors are a family of ligand-gated chloride channels constituting the major inhibitory neurotransmitter receptors in the nervous system. In order to determine the genomic organization of the GABA[sub A] receptor [beta]3 subunit gene (GABRB3) and [alpha]5 subunit gene (GABRA5) in chromosome 15q11-q13, the authors have constructed a high-resolution physical map using the combined techniques of field-inversion gel electrophoresis and phage genomic library screening. This map, which covers nearly 1.0 Mb, shows that GABRB3 and GABRA5 are separated by less than 100 kb and are arranged in a head-to-head configuration. GABRB3 encompasses approximately 250 kb, while GABRA5 is contained within 70 kb. This difference in size is due in large part to an intron of 150 kb within GABRB3. The authors have also identified seven putative CpG islands within a 600-kb interval. Chromosomal rearrangement breakpoints -- in one Angelman syndrome (AS) patient with an unbalanced translocation and in another patient with a submicroscopic deletion -- are located within the large GABRB3 intron. These findings will facilitate chromosomal walking strategies for cloning the regions disrupted by the DNA rearrangements in these AS patients and will be valuable for mapping new genes to the AS chromosomal region. 64 refs., 6 figs., 2 tabs.

  13. Antigen-affinity controls pregerminal centser B cell selection by promoting Mcl-1 induction through BAFF receptor signaling

    NARCIS (Netherlands)

    Wensveen, Felix M.; Slinger, Erik; van Attekum, Martijn H. A.; Brink, Robert; Eldering, Eric

    2016-01-01

    Upon antigen encounter, the responsive B cell pool undergoes stringent selection which eliminates cells with low B cell receptor (BCR) affinity. Already before formation of the germinal center, activated B cells of low-affinity are negatively selected in a process that is molecularly not well

  14. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Science.gov (United States)

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.