WorldWideScience

Sample records for gamma irradiator development

  1. Gemstone dedicated gamma irradiation development

    Energy Technology Data Exchange (ETDEWEB)

    Omi, Nelson M.; Rela, Paulo R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: nminoru@ipen.br; prela@ipen.br

    2007-07-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to its poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator constructed in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations, were performed. With the definitive optimized irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. This work presents some optimization parameters and the expected performance of the irradiator. (author)

  2. Gemstone dedicated gamma irradiation development

    International Nuclear Information System (INIS)

    Omi, Nelson M.; Rela, Paulo R.

    2007-01-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to its poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator constructed in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations, were performed. With the definitive optimized irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. This work presents some optimization parameters and the expected performance of the irradiator. (author)

  3. The Development of Gamma Irradiator Control System

    International Nuclear Information System (INIS)

    Mohd Zaid Hassan; Anwar Abdul Rahman; Azraf Azman; Mohd Rizal Mamat

    2015-01-01

    This paper presents the preliminary software development for the Gamma irradiator control system using commercial supervisory control and data acquisition (SCADA) software. The radiation dose analysis is the study of the relationship between the initial loading source activity (Curie) and concurrent activity in order to perform the irradiation process. The concurrent source activity calculation model is presented. The Human machine interface (HMI) has been developed by using Indusoft Web Studio to solve the mathematical calculation, task and process overview. (author)

  4. Gemstone enhancing dedicated gamma irradiator development

    International Nuclear Information System (INIS)

    Omi, Nelson Minoru

    2006-01-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to it's poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator raised in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations were performed. With the definitive irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. (author)

  5. Gamma irradiator

    International Nuclear Information System (INIS)

    Simonet, G.

    1986-09-01

    Fiability of devices set around reactors depends on material resistance under irradiation noticeably joints, insulators, which belongs to composition of technical, safety or physical incasurement devices. The irradiated fuel elements, during their desactivation in a pool, are an interesting gamma irradiation device to simulate damages created in a nuclear environment. The existing facility at Osiris allows to generate an homogeneous rate dose in an important volume. The control of the element distances to irradiation box allows to control this dose rate [fr

  6. New developments in design of gamma irradiation plants

    International Nuclear Information System (INIS)

    Vas, Ananth

    2014-01-01

    Symec Engineers (I) Pvt. Ltd is an ISO 9001:2008 certified company which is among the leading manufacturers of gamma irradiation plants in India and abroad. The company's long history of achievements begins from the building of India's first indigenous irradiation plant in 1990 to the successful commissioning of India's first and only batch irradiation plant in 2005, to the completion of India's largest irradiation plant of 5 million curies capacity in 2012. Symec has recently added two more feathers in its cap by commissioning a 3 Mci multi-purpose facility in Biyagama, Sri Lanka and another 100Kci batch type blood irradiation facility in Addis Ababa, Ethiopia for the IAEA. In all Symec has successfully completed 10 gamma irradiation plants in India and abroad, and is involved in three more projects in this sector. Based on the years of experience in the international and domestic market, Symec has evolved several interesting design features and developments in its plants. Some of these features are described below. (author)

  7. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Olive, M.; Blanco, R.; Rivera, R.; Cinos, C.; Ferrer, I.

    1995-01-01

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  8. Gamma Irradiation on Growth and Development of Amorphophallus muelleri Blume.

    Directory of Open Access Journals (Sweden)

    Edi Santosa

    2014-09-01

    Full Text Available ABSTRACT Iles-iles (Amorphophallus muelleri Blume produces apomictic seeds lead to low genetic variation. In order to induce genetic variation, germinated seeds were exposed to Gamma irradiation (Co-60 at doses of 10 to 100 Gy. Seed irradiation was conducted at Center for the Application of Isotope and Irradiation Technology -National Nuclear Energy Agency (CAIRT, Indonesia. Morphology and yield of M1 generation were observed. Results showed that irradiation at a dose of 10 Gy close to LD50 with survival rate 56%. Gamma irradiation at a dose of 10 Gy delayed seeds germination.  Germination rates gradually increased and reached maximum at 4 weeks after planting (WAP for control plants, and 14 WAP of irradiated plants. At 16 WAP, germination rate of 10 Gy irradiated plants was 56% and 84% for those of control plants. Irradiation induced chimera as indicated by short petiole, variegated and abnornal shape of leaflets. Some irradiated plants entered dormancy at 8-10 weeks later than control ones. Prolong vegetative periode lead the plants to produce heavier corms. This study revealed the possibility to induce variation of A. muelleri by using gamma irradition. Keywords: Amorphophallus muelleri, gamma irradiation (Co-60, morphological variation, mutation breeding

  9. Development of Irradiation Procedure for Gamma Irradiation Chamber Bio beam GM 8000

    International Nuclear Information System (INIS)

    Shuhaimi Shamsudin; Affrida Abu Hassan; Zaiton Ahmad; Abdul Rahim Harun; Ahmad Zainuri Mohd Dzomir

    2015-01-01

    Bio Beam GM 8000 gamma irradiation chamber obtained a conditional approval to operate on March 27, 2012, and later acquired a full approval on December 13, 2012. The objective for the procurement of this gamma chamber is to develop an acute irradiation facility for biological samples, including plants tissues, insects, pupae, microorganisms, as well as animal and human cells. To ensure a smooth and efficient operation, irradiation procedures were developed and improved over time. This paper discusses the operation and management of the Bio Beam GM 8000 facility, including irradiation procedures and sample preparation, application for services through online e-client system, consultancy, quality assurance and information dissemination to internal as well as external clients. In addition, this paper also discusses the potential, constraints and improvement measures taken to optimize the use of this facility in order to meet its objectives. (author)

  10. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator

    International Nuclear Information System (INIS)

    Calvo, Wilson Aparecido Parejo

    2005-01-01

    The Radiation Technology Center from Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Brazil, developed with a revolutionary design and national technology, a small size continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotate door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m 2 of floor area, the irradiator design is product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 P Bq (1 MCi). The performed quantification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process quantification. The initial load of the multipurpose irradiator was 3.4 P Bq (92.1 k Ci) with 13 cobalt-60 sources model C-188, supplied by MDS Nordion Ion Technologies - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The poly-methylmethacrylate (PMMA) dosimeters system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning to dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial gamma

  11. The Feasibility of Gamma Irradiation for Developing Malaria Vaccine

    International Nuclear Information System (INIS)

    Syaifudin, M.; Tetriana, D.; Darlina; Nurhayati, S.

    2011-01-01

    Malaria, a plasmodial disease, causes more than one million deaths per year and has a significant public health impact. Improved access to prompt treatment with effective antimalarial drugs need to be conducted for prevention of infection in high risk groups. However, the parasite as causal agent has exhibited a potential danger of wide-spread resistances. This warning has directed attention to the study of alternative methods of protection against the disease, among them is to do the immunization. A deeper understanding of the nature and regulation of protective immune mechanisms against this parasite will facilitate the development of much needed vaccines. Developing a malaria vaccine remains an enormous scientific, technical, and financial challenge. Currently a vaccine is not fully available. Among the practical applications of radiobiological techniques that may be of considerable interest for public health is the use of ionizing radiation in the preparation of vaccines. Convincing data were reported that sporozoites of Plasmodium berghei irradiated with X- or gamma-rays, provide an antigenic stimulus effective to induce a protective immune response in mice and rats against subsequent sporozoite infection. Irradiated parasites are better immunogens than killed ones and although non-infective they are still metabolically active, as shown by continued protein and nucleic acid synthesis. There is a substantial number of data from human studies demonstrating that sporozoites attenuated by radiation are potent inducer of protective immunity and that they are safe and do not give rise to the asexual erythrocytic infections that cause malaria. This vaccine is relatively inexpensive to produce, easy to store, and transportable without refrigeration. A long-term effort and commitment to providing resources must be maintained and increased to achieve the goal of a malaria vaccine candidate where ionizing radiation as a tool to prepare is seemingly feasible. (author)

  12. Gamma irradiation in developing consumer friendly lip balm

    International Nuclear Information System (INIS)

    Seri Chempaka Mohd Yusof; Foziah Ali

    2008-01-01

    Main base ingredients of lip balm such as petroleum jelly and coloring materials are harmful to customers. Side effects from impurities in petroleum jelly in the manufacturing process have been implicated at causing cancer and long term damage to health. Artificial colours have been found to cause cancer in animals and many people experienced allergic reactions i.e. skin irritation and contact dermatitis. Therefore 'friendly' lip balm was formulated by substituting the base ingredient, i.e. petroleum jelly, with vegetable fats and incorporated with anthocyanin pigments from Hibiscus sabdariffa L. (roselle) and Brassica oleracea var. capitata f. rubra (red cabbage) as natural colorants. Anthocyanins are considered secondary metabolites, allowed as food additives and act as powerful antioxidants. The herbal lip balm samples were gamma irradiated (2.5, 5.0 and 10 kGy) at Mintec SINAGAMA, Malaysian Nuclear Agency, Bangi. The samples were tested for microbiology quality i.e. total microbial count and presence of yeast and mold. The results showed that there were no microbial and yeast/mold colonies were detected in non-irradiated samples (control) and after irradiation. The essential oils from herbs and spices included in the herbal lip balms not only improve the taste and aroma but also had potential as natural preservatives due to their antibacterial properties. Gamma irradiation at dose 2.5 kGy was suitable as minimum dose to decontaminate the herbal lip balm without affecting the colour and texture. From market survey, friendly lip balm is considered as a safe and attractive product, with multifunctional uses i.e. to prevent chapped lips, freshen the breath, reduces mouth odour and contributes to improving general health quality. (Author)

  13. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    International Nuclear Information System (INIS)

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab

  14. Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae

    Energy Technology Data Exchange (ETDEWEB)

    Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.

    1985-03-01

    Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.

  15. Gemstone enhancing dedicated gamma irradiator development; Desenvolvimento de irradiador gama dedicado ao beneficiamento de pedras preciosas

    Energy Technology Data Exchange (ETDEWEB)

    Omi, Nelson Minoru

    2006-07-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to it's poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator raised in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations were performed. With the definitive irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. (author)

  16. Development of friendly herbal lip balm using gamma irradiation

    International Nuclear Information System (INIS)

    Seri Chempaka Mohd Yusof; Foziah Ali

    2010-01-01

    Development of herbal lip balm using natural bio resources namely plat pigments and essential oils was carried out with the main objective to replace chemical based ingredients that have been implicated at causing side effects and damages to health. Edible vegetable fats such as cocoa butter or shea butter in the range of 20-30 % could replace petroleum jelly as base ingredient. Side effects from impurities in petroleum jelly in the manufacturing process have been implicated at causing cancer and long term effects. Anthocyanin pigments, extracted from selected local plants, were used as natural coloring agent for lip balms. Pigment from Hibiscus sabdariffa L. (roselle) and Hylocereus polyrhizus (pittaya fruit) at 10-20 % could provide acceptable colours, act as secondary metabolite and seemed to be the most stable compared to other pigments from Hibiscus rosa sinensis, Brassica oleracea, Amaranthus gangeticus and Solanum lycopersicum. Honey (10-20 %) with its known benefits to health was added into the formulation to increase the intensity of the colour. Essential oils from spices and local herbs that added to the products for flavours and aroma have the potential as preservative due to its antibacterial properties. Irradiation at 2.5 kGy was sufficient to decontaminate the products without affecting the products physical characteristics. With this technology and incorporation of natural ingredients, friendly herbal lip balm is considered as a safe and attractive product, with multifunctional uses namely to prevent chapped lips, freshen the breath, reduces mouth odour and contributes to improving general quality. (author)

  17. EFFECT OF GAMMA IRRADIATION ON THE GROWTH AND DEVELOPMENT OF SAGO PALM (Metroxylon sagu Rottb. CALLI

    Directory of Open Access Journals (Sweden)

    Imron Riyadi

    2017-01-01

    Full Text Available The application of gamma irradiation on plant materials may increase the genetic variation of the offspring with useful traits. The experiment was conducted to determine the effect of irradiation dosage of gamma ray on growth and development of sago palm (Metroxylon sagu calli. Friable calli of sago palm derived from suspension culture were used as a material source. The primary calli were initiated from apical meristematic tissues of sago palm suckers of Alitir variety from Merauke, Papua. The treatments used were dosage of gamma ray irradiation at 0, 5, 10, 15, 20 and 25 Gy. The treated calli were then subcultured on modified Murashige and Skoog (MMS solid medium containing 3% sucrose and 0.1% activated charcoal and added with 1 mg l-1 2,4-D and 0.1 mg l-1 kinetin. The results showed that at all irradiation dosages, calli biomass increased significantly. The highest proliferation of calli biomass of 5.33 folds from the initial culture after 4 weeks was achieved at gamma irradiation of 25 Gy, whereas the lowest proliferation of calli biomass of 3.4 folds was achieved at control. The best development of embryogenic calli was obtained at 10 Gy that produced 100% somatic embryos, whereas the lowest somatic embryo formation at 0% was obtained at 0 and 25 Gy after one subculture. High response of somatic embryo induction to gamma irradiation at 10 Gy may increase production of somatic embryos. These results can be used in in vitro breeding of sago palm via mutagenesis to create new elite varieties.

  18. Gamma irradiation devices

    International Nuclear Information System (INIS)

    Foeldiak, Gabor; Stenger, Vilmos.

    1983-01-01

    The main parameters and the preparation procedures of the gamma radiation sources frequently applied for irradiation purposes are discussed. In addition to 60 Co and 137 Cs sources also the nuclear power plants offer further opportunities: spent fuel elements and products of certain (n,γ) reactions can serve as irradiation sources. Laboratory scale equipments, pilot plant facilities for batch or continuous operation, continuous industrial irradiators and special multipurpose, mobile and panorama type facilities are reviewed including those in Canada, USA, India, the Soviet Union, Hungary, UK, Japan and Australia. For irradiator design the source geometry dependence of the spatial distribution of dose rates can be calculated. (V.N.)

  19. Gamma irradiators for radiation processing

    International Nuclear Information System (INIS)

    2006-01-01

    Radiation technology is one of the most important fields which the IAEA supports and promotes, and has several programmes that facilitate its use in the developing Member States. In view of this mandate, this Booklet on 'Gamma Irradiators for Radiation Processing' is prepared which describes variety of gamma irradiators that can be used for radiation processing applications. It is intended to present description of general principles of design and operation of the gamma irradiators available currently for industrial use. It aims at providing information to industrial end users to familiarise them with the technology, with the hope that the information contained here would assist them in selecting the most optimum irradiator for their needs. Correct selection affects not only the ease of operation but also yields higher efficiency, and thus improved economy. The Booklet is also intended for promoting radiation processing in general to governments and general public

  20. Development of system for product tracking and data acquisition of data irradiation process in large gamma irradiators

    International Nuclear Information System (INIS)

    Soares, Jose R.; Rela, Paulo R.; Costa, Fabio E.

    2011-01-01

    The sterilization of medical care products using ionizing radiation is a consolidated technique. In Brazil there are in operation gamma irradiators with capacity between 0.37 PBq (10kCi) 185 PBq (5 MCi) using radioisotopes 60 Co as radiation source. The developed work provides an accurate control and data acquisition for the application of good manufacturing practices during all phases of an irradiation process, required by the standards of ANVISA, technical ISO and IAEA recommendations for the treatment of foods and medical products. All the steps involved in the irradiation treatment are mapped into process flow (work flow), where each agent (participant) has its systematized tasks. The automatic data process acquisition using wireless ZigBee technology, monitoring and control, are based on a set of tools (free software licenses) integrated by a network of efficient communication, including the use of Web resources. Using the Gamma Irradiator Multipurpose IPEN/CNEN-SP all the development was performed to be applied in irradiators' facilities operating in industrial scale. The system enables a complete traceability of the process, in real time, for any participant and also the storage of the corresponding records to be audited. (author)

  1. Development of system for product tracking and data acquisition of data irradiation process in large gamma irradiators

    International Nuclear Information System (INIS)

    Soares, Jose Roberto

    2010-01-01

    The sterilization of medical care products using ionizing radiation is a consolidated technique. In Brazil there are in operation gamma irradiators with capacity between 0.37 PBq (10kCi) 185 PBq (5 MCi) using radioisotopes 60 Co as radiation source. The developed work provides an accurate control and a data acquisition for the application of Good Manufacturing Practices during all phases of an irradiation process, required by the standards of ANVISA, ISO and IAEA technical recommendations for the treatment of foods and medical products. All the steps involved in the irradiation treatment are mapped into process flow (work flow), where each agent (participant) has its systematized tasks. The data acquisition process, monitoring and control, are based on a set of tools (free software licenses) integrated by a network of efficient communication, including the use of Web resources. Using the Gamma Irradiator Multipurpose IPEN/CNEN/USP all the development was performed to be applied in irradiators facilities operating in industrial scale. The system enables a complete traceability of the process, in real time, for any participant and also the storage of the corresponding records to be audited. (author)

  2. Sterilization by gamma irradiation

    International Nuclear Information System (INIS)

    Reyes Frias, L.

    1992-01-01

    Since 1980 the National Institute of Nuclear Research counts with an Industrial Gamma Irradiator, for the sterilization of raw materials and finished products. Through several means has been promoted the use of this technology as alternative to conventional methods of sterilization as well as steam treatment and ethylene oxide. As a result of the made promotion this irradiator has come to its saturation limit being the sterilization irradiation one of the main services that National Institute of Nuclear Research offers to producer enterprises of disposable materials of medical use also of raw materials for the elaboration of cosmetic products and pharmaceuticals as well as dehydrated foods. It is presented the trend to the sterilization service by irradiation showed by the compilation data in a survey made by potential customers. (Author)

  3. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    International Nuclear Information System (INIS)

    Rosario, F.; Casarin, S.A.; Agnelli, J.A.M.; Souza Junior, O.F. de

    2010-01-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  4. Studies on safety and efficacy of gamma-irradiated ginseng -Development of irradiation techniques for quality improvement of ginseng products-

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Han Ok; Byun, Myung Woo; Cho, Sung Kee; Kand, Il Joon; Yook, Hong Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    Gamma irradiation was applied to red ginseng powder for improving microbiological and physicochemical quality. Irradiation at 5-10 kGy was effective for sterilizing all contaminated microorganisms of red ginseng powder. At the dose levels, major physicochemical properties (saponin, amino acids, sugars, proximate composition, color, pH, acidity, hydrogen donating activity, fatty acids and minerals) were not changed by gamma irradiation upto 10 kGy. Based upon the results, it is concluded that gamma irradiation can effectively improve the microbiological quality of red ginseng powders without significant unfavorable changes. Therefore, it is suggested that irradiation technology is a viable alternative method to other sanitary process containing chemical fumigant and will be useful for the improvement of the quality of red ginseng powders and their products. 5 figs, 18 tabs, 92 refs. (Author).

  5. Effect of Gamma Irradiation and Its Convergent Treatments on Lily Leaf Blight Pathogen, Botrytis elliptica, and the Disease Development

    Directory of Open Access Journals (Sweden)

    Ji-Hoon Kim

    2014-06-01

    Full Text Available Gamma irradiation and its convergence with nano-silver particles and sodium dichloroisocyanurate (NaDCC were investigated to inhibit germination and mycelial growth of Botrytis elliptica, the pathogen of lily leaf blight. In addition, the same treatments were studied on the process of disease development with detached leaf of lily cv. Siberia. Spray inoculation, which is closer to natural infection than wound inoculation, can be a way to investigate infection ability of the treated pathogen. The irradiating dose required to reduce the population by 90%, D10, was 526 Gy irradiating with 0-2000 Gy gamma ray on the conidial suspension as well as the growing mycelia. Even at 2000 Gy, the mycelium was not killed but just delayed its growth at 1–2 days behind. Convergent treatment with 40 mg/l of NaDCC just before 200 Gy gamma irradiation was the best way to decrease the conidial germination about 1/1000 times. The control values of gamma irradiation were 23% and 19.5% at wound inoculation and spray inoculation, respectively. On wound-inoculation, the control value of NaDCC only was 89%, and that of NaDCC convergent with 200 Gy gamma irradiation was 32%. On sprayinoculation, the highest control value was NaDCC at 50%, and that of NaDCC convergent with gamma irradiation was 24%.

  6. Design, development and commercialization of ISOCAD (Integrated System of Computer Aided Dosimetry) for gamma irradiators

    International Nuclear Information System (INIS)

    Shrivastava, Amit; Srivastava, Navneet; Kohli, A.K.; Mishra, Vinay Kumar; Singh, Ramnik; Sinha, A.K.

    2014-01-01

    ISOMED facility is the indomitable architect of radiation sterilization era in the country providing the contract radiation processing services for the terminal sterilization of the healthcare products from the healthcare sector. ISOMED has acquired the international standards viz.ISO 9001, ISO 22000, ISO 13485, ISO 11137, OHSAS 18001, ISO 14001 that supplemented by European Union - GMP certification from MHRA - UK. One of the core focuses of these standards is the control of measuring and monitoring instruments with impeccable traceability features with respect to the quality critical processing data. The gamma radiation sterilisation process involves delivery of minimum 25 kGy of radiation dose to the healthcare products which is measured by internationally acclaimed Cerric Cerric Potentiometric Dose Measurement Systems (CCPDMs). As the current variant of this system had extensive involvement of manual interventions, a novel, bar code based computerized application package called ISOCAD, incorporating portable risk free snapping tool for the dosimeter ampules has been synergistically developed by BRIT/BARC for the Cerric Cerrous Potentiometric Dose Measurement System for Gamma Irradiators. ISOCAD has been successfully operating in ISOMED and the techno commercial viability has been convincingly demonstrated to the operators of the gamma irradiators from the country as well as abroad. ISOCAD is now available as one of the commercial product packages from BRIT. (author)

  7. Effect of gamma irradiation on the etching and optical properties of a newly developed nuclear track detector called (PNADAC) homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, P.C. [Radiochemistry Division, BARC, Trombay, Mumbai 400085 (India)], E-mail: pckalsi@barc.gov.in; Nadkarni, V.S. [Department of Chemistry, Goa University, Goa 403206 (India); Manchanda, V.K. [Radiochemistry Division, BARC, Trombay, Mumbai 400085 (India)

    2008-09-15

    In the present work, we have determined the bulk-etch rates of a newly developed track detector called poly-[N-allyloxycarbonyl diethanolamine-bis allylcarbonate] (PNADAC) homopolymer at different temperatures to deduce its activation energy. The energy of activation is found to be (1.02{+-}0.04) eV. This compares very well with the values of activation energy reported in the literature for the most commonly used nuclear track detectors. The effects of gamma irradiation on this new detector in the dose range of 4.7-14.5 Mrad have also been studied using UV-visible spectroscopic technique. The optical band gaps of the unirradiated and the gamma-irradiated detectors determined from the UV-visible spectra were found to decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation.

  8. Development of late blight resistance and heat tolerance through gamma irradiation of shoot cultures in potato

    International Nuclear Information System (INIS)

    Gosal, S.S.; Jitender Kaur, Adas; Minocha, J.L.

    2001-01-01

    In vitro shoot cultures of two potato varieties viz., Kufri jyoti and Kufri Chandramukhi were gamma irradiated at 20 Gy and 40 Gy. Micro tubers were induced in micro propagated M1V3 generation. For heat tolerance micro tubers were induced at elevated (28 C ) incubation temperature (optimum being 20 1C ) and were characterized by early sowing, chlorophyll persistence and harvest index. The number of micro tubers/plant was highly reduced at elevated temperature and the resulting tubers exhibited distorted shapes and growth of apical buds. Thus obtained micro tubers exhibited better germination (62.3%) even in early sowing at relatively higher temperature. The progenies from putative heat tolerant plants were grown in the field by sowing at higher temperature for four subsequent generations. Heat tolerant plants segregated in each generation but the frequency of heat tolerant plants increased in the advanced generation. For developing late blight resistance micro tubers produced from irradiated shoot cultures were sown in pots and resulting plants were screened using detached leaf method. The progenies of putative resistant plants grown in the field were artificially inoculated with sporangial inoculum of Phytophthora infection's. Field grown plants exhibited segregation with respect to disease reaction and about 56 per cent plants showed resistance. Segregation was reduced during following generation and the frequency of resistant plants was increased up to 72.3 per cent. Thus, repeated selections has helped in developing stable mutants in both the varieties

  9. Development of an irradiation system for a small size continuous run multipurpose gamma irradiator; Desenvolvimento do sistema de irradiacao em um irradiador multiproposito de cobalto-60 tipo compacto

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Wilson Aparecido Parejo

    2005-07-01

    The Radiation Technology Center from Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Brazil, developed with a revolutionary design and national technology, a small size continuous run and multipurpose industrial gamma irradiator, to be used as a demonstration facility for manufacturers and contract service companies, which need economical and logistical in-house irradiation system alternatives. Also, to be useful for supporting the local scientific community on development of products and process using gamma radiation, assisting the traditional and potential users on process validation, training and qualification of operators and radioprotection officers. The developed technology for this facility consists of continuous tote box transport system, comprising a single concrete vault, where the automated transport system of products inside and outside of the irradiator utilizes a rotate door, integrated with the shielding, avoiding the traditional maze configuration. Covering 76 m{sup 2} of floor area, the irradiator design is product overlap sources and the maximum capacity of cobalt-60 wet sources is 37 P Bq (1 MCi). The performed quantification program of this multipurpose irradiator was based on AAMI/ISO 11137 standard, which recommends the inclusion of the following elements: installation and process quantification. The initial load of the multipurpose irradiator was 3.4 P Bq (92.1 k Ci) with 13 cobalt-60 sources model C-188, supplied by MDS Nordion Ion Technologies - Canada. For irradiator dose optimization, the source distribution was done using the software Cadgamma developed by IPEN-CNEN/SP. The poly-methylmethacrylate (PMMA) dosimeters system, certified by the International Dose Assurance Service (IDAS) of the International Atomic Energy Agency (IAEA) was used for irradiator dose mapping. The economic analysis, performance concerning to dose uniformity and cobalt-60 utilization efficiency were calculated and compared with other commercial

  10. Dose Distribution of Gamma Irradiators

    International Nuclear Information System (INIS)

    Park, Seung Woo; Shin, Sang Hun; Son, Ki Hong; Lee, Chang Yeol; Kim, Kum Bae; Jung, Hai Jo; Ji, Young Hoon

    2010-01-01

    Gamma irradiator using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. The Gamma cell 3000 Elan (Nordion International, Kanata, Ontario, Canada) irradiator was installed in 2003 with Cs-137 and dose rate of 3.2 Gy/min. And the BioBeam 8000 (Gamma-Service Medical GmbH, Leipzig, Germany) irradiator was installed in 2008 with Cs-137 and dose rate of 3.5 Gy/min. Our purpose was to evaluate the practical dosimetric problems associated with inhomogeneous dose distribution within the irradiated volume in open air state using glass dosimeter and Gafchromic EBT film dosimeter for routine Gamma irradiator dosimetry applications at the KIRAMS and the measurements were compared with each other. In addition, an user guideline for useful utilization of the device based on practical dosimetry will be prepared. The measurement results of uniformity of delivered dose within the device showed variation more than 14% between middle point and the lowest position at central axis. Therefore, to maintain dose variation within 10%, the criteria of useful dose distribution, for research radiation effects, the irradiated specimen located at central axis of the container should be placed within 30 mm from top and bottom surface, respectively. In addition, for measurements using the film, the variations of dose distribution were more then 50% for the case of less than 10 second irradiation, mostly within 20% for the case of more than 20 second irradiation, respectively. Therefore, the irradiation experiments using the BioBeam 8000 irradiator are recommended to be used for specimen required at least more than 20 second irradiation time.

  11. Gamma irradiation of fruits

    International Nuclear Information System (INIS)

    Beyers, M.

    1983-08-01

    At a Joint FAO/IAEA/WHO Expert Committee on Food Irradiation (JECFI) meeting held in 1976, recommendations were made to rationalize the unnecessarily elaborate wholesomeness evaluation procedures for irradiated foodstuffs. Irradiation at the commercially recommended doses did not adversely affect the constituents of mangoes, papayas, litchis and strawberries at the edible-ripe stage. These favourable radiation-chemical results justified the development of a theoretical model mango which could be used for extrapolation of wholesomeness data from an individual fruit species to all others within the same diet class. Several mathematical models of varying orders of sophistication were evolved. In all of them, it was assumed that the radiant energy entering the system reacted solely with water. The extent of the reaction of the other components of the model fruit with the primary water radicals was then determined. No matter which mathematical treatment was employed, it was concluded that the only components which would undergo significant modification would be the sugars. In order to extrapolate these data from the mango to other fruits, mathematical models of three fruits containing less sugar than the mango, viz. the strawberry, tomato and lemon, were compiled. With these models, the conclusion was reached that the theoretical degradation spectra of these fruits were qualitatively similar to the degradation pattern of the model mango. Theory was again substantiated by the practical demonstration of the protective effect of the sugars in the tomato and lemon. The decrease in radiation damage was enhanced by the mutual protection of the components of the whole synthetic fruits with ultimate protection being afforded by the biological systems of the real fruits

  12. Studies on Development of Polymeric Materials Using Gamma Irradiation for Contact and Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Pranshu Chhabra

    2009-01-01

    Full Text Available For the development of materials for contact lenses and intraocular lenses, the selection criteria is based on the (i capacity to absorb and retain water, (ii hydrophilicity and hydrophobicity, (iii refractive index and (iv hardness besides the other essential properties. Various monomers are being studied to develop suitable materials for such applications. Selection of suitable monomers that can be converted into optical materials of desired characteristics is the most essential step. In the present paper, an attempt has been made to develop suitable optical polymers based on 2-hydroxy ethyl methacrylate (HEMA, N-vinyl pyrrolidone (NVP, methyl methacrylate (MMA, methacrylic acid (MAA, and styrene. Compositions were prepared in such a way that polymers of varying hydrophilicity or hydrophobicity could be obtained keeping HEMA as the base (main monomer. For polymerization, gamma irradiation (Co-60 as a source was used. The results of the study showed that: (i an increase in NVP and MAA content brought in an increase in hydrophilicity of polymerized HEMA (pHEMA, while the addition of styrene and MMA decreased hydrophilicity of polymerized HEMA (pHEMA, (ii polymers for contact lenses with water retention capacity as high as >50 wt.% and as low as <10 wt% with varying content of suitable comonomers can be designed, (iii polymeric materials for contact lenses can be made by using radiation processing such as Co-60 and (iv a dose of 40 kGy was found to be ideal for purpose.

  13. Effect of gamma irradiation on the total nitrogen and protein content in body during different stages of silkworm development

    International Nuclear Information System (INIS)

    Petkov, N.; Malinova, K.; Binkh, N.T.

    1996-01-01

    The aim was to determine the effect of gamma irradiation of eggs of silk moth in B 2 stage in doses of 1.00, 2.00 and 3.00 Gy on the changes of total nitrogen and protein content during different stages of Bombyx mori L. development. Highest levels of total nitrogen and protein were found in silk gland 14.032-14.355 mg%, followed by pupae - 7.448-8.092 and 46.550-48.906 mg%, moths after egg laying - 6.650-7.825 and 41.563-48.906 mg% and silkworm hemolymph - 6.920-6.980 and 43.250-43.625 mg%, respectively. The irradiation of eggs with 2.00 and 3,00 Gy gamma rays stimulated the increase of total nitrogen and protein content in silk gland by 6.66-7.3% compared to non-irradiated eggs of the same breed. 14 refs., 3 tabs. (author)

  14. Pollination with gamma-irradiated pollen and seed development in kiwifruit (Actinidia deliciosa var. deliciosa)

    International Nuclear Information System (INIS)

    Musial, K.

    1997-01-01

    Full text. The effects of pollen irradiation at 70 and 90 kr on seed set were studied in Actinidia deliciosa var. deliciosa. Pollination with irradiated pollen affected seed development and contents. Rising irradiation doses increased the percentages of empty seeds and decreased the percentages of seeds containing embryos with endosperm. Moreover, pollination with heavily irradiated pollen led to the formation of seeds containing the endosperm only. Embryo and endosperm size was also strongly influenced by irradiated pollen. The length of endosperms was reduced at all levels of pollen irradiation compared to the non-irradiated controls; the embryo development was conspicuously retarded. Cells in endosperm resulting from the treatments differed in the presence and number of starch grains. (author)

  15. Gamma irradiation service in Mexico

    International Nuclear Information System (INIS)

    Liceaga C, G.; Martinez A, L.; Mendez T, D.; Ortiz A, G.; Olvera G, R.

    1997-01-01

    In 1980 it was installed in Mexico, on the National Institute of Nuclear Research, an irradiator model J S-6500 of a canadian manufacture. Actually, this is the greatest plant in the Mexican Republic that offers a gamma irradiation process at commercial level to diverse industries. However, seeing that the demand for sterilize those products were not so much as the irradiation capacity it was opted by the incursion in other types of products. During 17 years had been irradiated a great variety of products grouped of the following form: dehydrated foods, disposable products for medical use, cosmetics, medicaments, various. Nowadays the capacity of the irradiator is saturated virtue of it is operated the 24 hours during the 365 days of the year and only its operation is suspended by the preventive and corrective maintenance. However, the fresh food market does not be attended since this irradiator was designed for doses greater than 10 kGy (1.0 Mrad)

  16. Gamma irradiation of cholestenone oximes

    International Nuclear Information System (INIS)

    Uenseren, Envare.

    1976-01-01

    Irradiation of cholest-4-en-3-one and cholest-5-en-3-one oximes with cobalt-60 gamma-rays in different solvents at different doses gave a mixture of products from which ketones corresponding to the starting oximes, Beckmann type rearrangement products, and some other radiolysis products have been isolated and identified

  17. Curcuma sparganifolia Improvement Through Gamma Irradiation

    International Nuclear Information System (INIS)

    Krasaechai, A.

    1990-01-01

    The studies of Curcuma sparganifolia improvement through irradiation using gamma rays from 40 Gy to inhibit sprouting of the rhizomes were conducted. Various effects of gamma rays on growth and development were observed in 11 parameters. Colour mutation of flowers and braces were not found except in 1 plant which showed deeper brats colour. Leaf chimera was observed but the characters for commercialization were not achieved

  18. Technical Development of Gamma Scanning for Irradiated Fuel Rod after Upgrade of System in Hot-cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, Hee Moon; Baik, Seung Je; Yoo, Byung Ok; Choo, Yong Sun

    2007-06-15

    Non-destructive test system was installed at hot-cell(M1) in IMEF(Irradiated Materials Examination Facility) more than 10 years ago for the diametric measurement and gamma scanning of fuel rod. But this system must be needed to be remodeled for the effective operations. In 2006, the system was upgraded for 3 months. The collimator bench can be movable with horizontal direction(x-direction) by motorized system for sectional gamma scanning and 3-dimensional tomography of fuel rod. So, gamma scanning for fuel rod can be detectable by x, y and rotation directions. It may be possible to obtain the radioactivities with radial and axial directions of pellet. This system is good for the series experiments with several positions. Operation of fuel bench and gamma detection program were linked each other by new program tools. It can control detection and bench moving automatically when gamma inspection of fuel rod is carried out with axial or radial positions. Some of electronic parts were added in PLC panel, and operating panel was re-designed for the remote control. To operate the fuel bench by computer, AD converter and some I/O cards were installed in computer. All of software were developed in Windows-XP system instead of DOS system. Control programs were made by visual-C language. After upgrade of system, DUPIC fuel which was irradiated in HANARO research reactor was detected by gamma scanning. The results were good and operation of gamma scanning showed reduced inspection time and easy control of data on series of detection with axial positions. With consideration of ECT(Eddy Current Test) installation, the computer program and hardware were set up as well. But ECT is not installed yet, so we have to check abnormal situation of program and hardware system. It is planned to install ECT in 2007.

  19. Effects of gamma irradiation on Dermestes peryvianus

    International Nuclear Information System (INIS)

    Onyembe, P.M.L.; Ghia, D.; Iluankoy'O, J.R.

    2004-01-01

    Significant losses of food each year are recorded both in developed countries than developing. Democratic Republic of Congo, Dermestes peryvianus is among the main spoilage of organic dried and smoked fish. Conservation methods such as drying, heat, smoking, canning, packaging ... are insufficient and do not meet the producers. Gamma rays are capable, at a dose of 30 Gy to prevent the emergence of nymphs peryvianus Dermestes larvae irradiated. At 50 Gy, they cause sterility in irradiated adult insects. A 300 grays, they are eliminated completely, within 20 days after irradiation.

  20. Evaluation of gamma irradiation effect and Pseudomonas ...

    African Journals Online (AJOL)

    Antagonistic effect of Pseudomonas fluorescens and influence of gamma irradiation on the development of Penicillium expansum, the causal agent of postharvest disease on apple fruit was studied. P. fluorescens was originally isolated from rhizosphere of the apple trees. Suspension of P. fluorescens and P. expansum ...

  1. Development of Bioactive Edible Coatings and Biodegradable Packaging Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Lacroix, M.; Salmieri, S.

    2010-01-01

    Gamma irradiation was used to cross-link milk proteins in order to enhance the physico-chemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. Fourier Transform Infrared analysis was used to characterize the conformation of proteins adopted after irradiation. The molecular weight of cross-linked proteins was measured by Size-Exclusion Chromatography. Furthermore, the effect of the addition of methylcellulose to the irradiated protein matrix on the rheological properties (puncture strength, puncture deformation and water vapor permeability) of films was also studied. Moreover, cross-linking of polysaccharides under paste-like state was investigated and the cross-linking degree of the gel products was determined by gel fraction measurements and solubility percentage. In order to prepare bioactive coatings, several antifungal compounds were evaluated as bioactive compounds in order to select one of them to prepare an antimicrobial solution to spray onto strawberries or to encapsulate them in film formulations composed of milk proteins and methylcellulose based films. In addition, the bioactive coatings containing the antifungals were used to increase the radiosensitivity under air of moulds and total flora in strawberries and the relative sensitivity of selected formulations was calculated from their D10 value. The film formulation selected was used as a bioactive edible coating in order to determine their efficiency to increase the shelf life of fresh strawberries and to preserve their quality during storage. (author)

  2. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests

    Science.gov (United States)

    Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y.

    2018-03-01

    It is important to have a shielding material that is not easily breaking in order to have a robust product that guarantee the radiation protection of the patients and radiation workers especially during the medical exposure. In this study, nano sized lead oxide (PbO) particles were used, for the first time, to obtain an elastomeric composite material in which lead oxide nanoparticles, after the surface modification with silane binding agent, was used as functional material for radiation shielding. In addition, the composite material including 1%, 5%, 10%, 15% and 20% weight percent nano sized lead oxide was irradiated with doses of 81, 100 and 120 kGy up to an irradiation period of 248 days in a gamma ray source with an initial dose rate of 21.1 Gy/h. Mechanical, thermal properties of the irradiated materials were investigated using DSC, DMA, TGA and tensile testing and modifications in thermal and mechanical properties of the nano lead oxide containing composite material via gamma irradiation were reported. Moreover, effect of bismuth-III oxide addition on radiation attenuation of the composite material was investigated. Nano lead oxide and bismuth-III oxide particles were mixed with different weight ratios. Attenuation tests have been conducted to determine lead equivalent values for the developed composite material. Lead equivalent thickness values from 0.07 to 0.65 (2-6 mm sample thickness) were obtained.

  3. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1997-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  4. Food irradiation: Gamma processing facilities

    International Nuclear Information System (INIS)

    Kunstadt, P.

    1997-01-01

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  5. Gamma irradiators for radiation sterilization

    International Nuclear Information System (INIS)

    Mehta, K.

    2008-01-01

    The radiation processing industry gained significant impetus with the advent of nuclear reactors, which have the capability to produce radioisotopes such as 60 Co. These gamma ray emitters became popular radiation sources for medical and industrial applications. Many gamma ray irradiators have been built, 200 of which are estimated to be currently in operation in Member States of the IAEA. In recent times, the use of electron accelerators as radiation source (and sometimes equipped with an X ray converter) is increasing. However, gamma irradiators are difficult to replace, especially for non-uniform and high density products. Currently, 60 Co is used almost solely as a gamma radiation source for industrial use now, mainly because of its easy production method and its non-solubility in water. Based on the total cumulative sale of 60 Co by all suppliers, it can be estimated that the installed capacity of cobalt is increasing at the rate of about 6% per year. It is interesting to note that the worldwide use of disposable medical devices is growing at approximately the same rate (5-6%), which seems to be driving the growth in cobalt sale

  6. Operating experience with gamma ray irradiators

    International Nuclear Information System (INIS)

    Fraser, F.M.; Ouwerkerk, T.

    1980-01-01

    The experience of Atomic Energy of Canada, Limited (AECL) with radioisotopes dates back to the mid-1940s when radium was marketed for medical purposes. Cobalt-60 came on the scene in 1949 and within a few years a thriving business in cancer teletherapy machines and research irradiators was developed. AECL's first full-scale cobalt-60 gamma ray sterilizer for medical products was installed in 1964. AECL now has over 50 plants and 30 million curies in service around the world. Sixteen years of design experience in cobalt-60 sources, radiation shielding, safety interlock systems, and source pass mechanisms have made gamma irradiators safe, reliable, and easy to operate. This proven technology is being applied in promising new fields such as sludge treatment and food preservation. Cesium-137 is expected to be extensively utilized as the gamma radiation source for these applications

  7. Effects of gamma irradiation on wheat quality

    International Nuclear Information System (INIS)

    Ozkaya, B.; Koksel, H.; Ozkaya, H.; Tutluer, H.

    1994-01-01

    Effect of gamma irradiation at the doses of 2.5,5.0,7.5,10.0 and 12.5 kGy on two bread wheat samples (Bezostaya and Gerek) with distinct physical and technological properties was investigated in this study.Irradiation at the levels used had no significant effect on the flour yields of both varieties.No apparent changes were observed in ash,protein and wet gluten contents of the irradiated samples and control.However,as the radiation level was increased the falling number and sedimentation values of the irradiated samples showed a steady decrease.Thiamine and riboflavin contents also decreased significantly with irradiation.Farinograph absorption increased with increasing radiation exposure.However, dough development time,stability and valorimeter values decreased as radiation levels increased.Maximum resistance to extension(Rm), resistance at constant deformation (R 5) and area(A) values of extensograms decreased in both varieties as radiation levels increased

  8. Development of a short duration upland rice mutant line through anther culture of gamma irradiated plants

    International Nuclear Information System (INIS)

    Kyin San Myint; Khine Oo Aung; Khin Soe

    2005-01-01

    This experiment was conducted in the field and at the tissue culture laboratory of the Plant Physiology Division, CARI, Yezin from 1994 to 1997. Upland rice, Yar-2 was used as the test variety. Dried seeds (14% moisture content) were treated with gamma rays at doses of 0, 300, 350, 400 and 450 Gy respectively. These seeds were planted separately according to the gamma-ray treatment they received. At booting stage, tillers were cut. Anthers from the top and middle portion of the panicle were taken. The pollen, at developmental stage in each anther, was examined using Acetocarmine dye. Pollens at the uninucleate to early binucleare stage were selected. Tillers having pollens at the above-mentioned stage were placed in a dark room at 25(±) 1 C and 16 hours photoperiod. When plantlets were obtained from these media, well-developed green plantlets were selected and planted in Yoshida solution to attain vigorous root growth. Diploid and haploid plants were formed from the anther culture method. At the heading stage, haploid plants were treated with colchicines to promote development into diploid plants. At maturity, plants produced from materials treated with different gamma doses were harvested separately. These homozygous lines were planted in the field and the characters were compared with their parents grown at the same time. The highest callus induction rate was found in materials treated with 450 Gy of gamma rays, but the lowest green plant regeneration rate was also observed at this dose. Among the forty-five homozygous lines obtained of the above materials, 7 lines, all from the 450 Gy gamma rays treated material, flowered earlier than the parents. One of the 7 early flowering lines, mutant line No 18, matured 19 days earlier but had the same yield as the parent. All other lines had a lower yield than the parent. Comparisons of yield and yield components of mutant line 18 and Yar-2 (parent) and comparison of quality characters are shown in tables

  9. Gamma Irradiation does not Cause Carcinogenesis of Irradiated Herbs

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch; Eamsiri, Jarurut; Pongpat, Suchada

    2009-07-01

    Full text: Microbial contamination of medicinal herbs can be effectively reduced by gamma irradiation. Since irradiation may cause carcinogenicity of the irradiated herbs, the objective of this research is to study the effect of gamma irradiation (10 and 25 kGy) from cobalt-60 on carcinogenicity. The herbs studied were Pueraria candollei Grah., Curcuma longa Linn. Zingiber montanum, Senna alexandrina P. Miller, Eurycoma Longifolia Jack, Gymnostema pentaphylum Makino, Ginkgo biloba, Houttuynia cordata T., Andrographis paniculata, Thunbergia laurifolia L., Garcinia atroviridis G., and Cinnamomum verum J.S.Presl. The results showed that gamma irradiation at the dose of 10 and 25 kGy did not cause carcinogenicity of the irradiated herbs

  10. Simulating 60 Co gamma irradiation systems

    International Nuclear Information System (INIS)

    Omi, Nelson M.; Rela, Paulo R.

    2000-01-01

    The use of Cadgamma, a software dedicated to simulate 60 Co gamma irradiation systems, can lead to an optimized process and simulating, in a few hours, many configurations setups for the irradiation elements. The software can also simulate changes in the path of the product and the influence of any steady body like the support of the product support and source shoulders. These simulations minimize the number of dose mapping tests in industrial applications and allow the study of unusual setups. Cadgamma was developed at IPEN to simulate it is multipurpose 60 Co irradiation system, under construction and planned to be operating by the second half of 2001. The software was used on project stage and will help to optimize the irradiation process for each product to be treated. (author)

  11. Dose mapping role in gamma irradiation industry

    International Nuclear Information System (INIS)

    Noriah Mod Ali; John Konsoh Sangau; Mazni Abd Latif

    2002-01-01

    In this studies, the role of dosimetry activity in gamma irradiator was discussed. Dose distribution in the irradiator, which is a main needs in irradiator or chamber commissioning. This distribution data were used to confirm the dosimetry parameters i.e. exposure time, maximum and minimum dose map/points, and dose distribution - in which were used as guidelines for optimum product irradiation. (Author)

  12. Gamma irradiation of radioprotectant drugs

    International Nuclear Information System (INIS)

    Dobbs, C.R.; Elhardt, C.E.; May, L.

    1980-01-01

    Levamisole [(S)-(-)-2,3,5,6-tetrahydro-6-phenyl-imidazo-(2, 1-b) thiazole], an immunomodulating drug and veterinary antihelminthic, is converted by tissues to a sulfhydryl derivative. The drug and its metabolite have mediating effects on lipid peroxidation in microsomal preparations. Because levamisole, as an inhibitor of lipid peroxidation, is a radioprotectant drug, it was of interest to study the response of the drug itself to ionizing radiation. Experiments were directed toward an examination of the effects of gamma radiation on aqueous solutions of levamisole. Chromatographic analysis (TLC) revealed two distinct groups of radiation products. Further separation and analysis of these groups by gas chromatography-mass spectrometry (GC-MS) demonstrated that each group of radiation products consists of several components, indicating that the gamma irradiation of non-deaerated solutions of levamisole gives rise to varying amounts of a multiproduct mixture, no constituent of which corresponds to the natural metabolite. Dose effect curves for the levamisole irradiation indicate that the drug is markedly resistant to molecular alteration under the experimental radiation conditions. (author)

  13. Gamma irradiation treatment of secondary sewage effluent

    International Nuclear Information System (INIS)

    Vajdic, A.H.

    The operation and monitoring of a pilot scale Co-60 gamma irradiation unit treating secondary sewage effluent is described. The disinfecting efficiency of the unit is compared to that of an experimental 'ideal' chlorination unit and to the plant chlorination process. A cost estimate for disinfection by gamma irradiation on a full plant scale is included. (author)

  14. Gamma scanning of the irradiated HANARO fuels

    International Nuclear Information System (INIS)

    Hong, Kwon Pyo; Lee, K. S.; Park, D. G.; Baik, S. Y.; Song, W. S.; Kim, T. Y.; Seo, C. K.

    1997-02-01

    To conform the burnup state of the fuels, we have transported the irradiated HANARO fuels from the reactor to IMEF (Irradiated Material Examination Facility), and executed gamma scanning for the fuels. By measuring the gamma-rays from the irradiated fuels we could see the features of the relative burnup distributions in the fuel bundles. All of 17 fuel bundles were taken in and out between HANARO and IMEF from March till August in 1996, and we carried out the related regulations. Longitudinal gamma scanning and angular gamma scanning are done for each fuel bundle without dismantlement of the bundles. (author). 5 tabs., 25 figs

  15. Effects of Gamma Irradiation and Leaves Extract of Barnoof Plant on Larval Development of Agrotis ipsilon (Hufngel)

    International Nuclear Information System (INIS)

    Mohamed, H.F.

    2006-01-01

    The effects of irradiating parental male full grown pupae agrotis ipsilon with the two sub sterile doses 100 and 150 Gray (Gy) followed by treated F1 4 th instar larvae with three concentrations of the barnoof plant leaves extract (0,15000 and 30000 ppm) or each of them alone were studied. the combined treatment of gamma irradiation and the barnoof plant extract to F1 larvae had a deleterious effects on average larval duration, average weight of last larval instar, total morality, pupation, adult emergence and survival when compared with the effect of gamma irradiation or plant leaves extract which of them alone. gamma irradiation increased the susceptibility of F 1 Larvae descendant from irradiated parental male pupae with 100 and 150 Gy to the barnoof plant leaves extract. A gradual increase in susceptibility was noticed as the dose of radiation increase. the efficiency of gamma irradiation and/or plant leaves extract to inhibit the 4 th instar larvae of A-. ipsilon was evaluated. the results showed highly toxic effect to the 4 th instar larvae at the two concentrations (15000 and 30000 ppm). on the other hand the dose 150 Gy combined with 30000 ppm of plant extract treatment (Acetone or petroleum ether solvents) had highly effect on the 4 th instar larvae as compared with the other treatments

  16. Production of modified starches by gamma irradiation

    International Nuclear Information System (INIS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-01-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch

  17. Production of modified starches by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il-Jun [Department of Food and Nutrition, Hallym University, Chunchon, Kangwon-Do (Korea, Republic of); Byun, Myung-Woo [Department of Food Irradiation, Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yook, Hong-Sun [Department of Food Irradiation, Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Bae, Chun-Ho [Samyang Genex R and D Center, Yusung-Gu, Taejon (Korea, Republic of); Lee, Hyun-Soo [Samyang Genex R and D Center, Yusung-Gu, Taejon (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University, Taegu (Korea, Republic of); Chung, Cha-Kwon [Department of Food and Nutrition, Hallym University, Chunchon, Kangwon-Do (Korea, Republic of)

    1999-04-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

  18. Development of food preservation and processing techniques by radiation - Studies on the safety and consumer acceptance of gamma irradiated meats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Jun; Lee, Young Jin; Lee, Young Sook; Kim, Ha Kyung [Hallym University, Chunchon (Korea)

    2000-04-01

    Gamma irradiation was applied to chickens for evaluation of their possible genotoxicity, acute toxicity, four-week oral toxicity and nutritional safety. The results were negative in the bacterial reversion assay with S. typhimurium TA98, TA100, TA1535, TA1537. Clastogenic effects of the irradiated samples tested were not shown in vivo mouse micronucleus assay and in chromosomal aberration tests with CHL cells. In an acute toxicity test, the maximal dose of 5,000 mg/kg did not change any toxic parameter examined in this study. In four-week oral toxicity study, appearance, behavior, mortality, food and water consumption of mouse of treated groups were not affected during the experimental periods(four-weeks). In urine analysis, in hematological examination as well as in serum biochemical experiment, no significant differences were found between the control and treatment groups. Although minor changes in some hematological and biochemical parameters were observed, they were in the normal range and were not dose dependent. In nutritional safety, the proximate composition of foods were not significantly changed by irradiation dose. No significant difference in the components of fatty acids were observed by gamma irradiation. In general, the amount of released free amino acid was not significantly changed by gamma irradiation. There was no difference in total amino acid content between non irradiated and irradiated samples. The SDS electrophoresis patterns of samples were not significantly different between nonirradiated and irradiated samples. The major mineral compositions of chicken were phosphorus, potassium, sodium, magnesium. The content of mineral was not significantly changed by gamma irradiation. 58 refs., 11 figs., 16 tabs. (Author)

  19. Gamma irradiation of onions and garlic

    International Nuclear Information System (INIS)

    Baraldi, D.

    1975-01-01

    Technological and economic feasibility of gamma irradiation of onions and garlic on an industrial scale are studied. Statistical data on production, consumption, exportation and losses during storage are analyzed. Traditional methods of food preservation are reviewed and gamma irradiation techniques are presented as an alternative to sprout inhibition. Requirements for the irradiation of onions and garlic on a commercial scale including a cost benefit analysis are discussed. Some conclusions are formulated on licensing and prospects

  20. Irradiation gamma on chitosan films

    International Nuclear Information System (INIS)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter

    2017-01-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  1. Irradiation gamma on chitosan films

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter, E-mail: lumilopes@hotmail.com, E-mail: drilavras@yahoo.com.br, E-mail: arthur@cena.usp.br [Universidade Federal do Tocantins (UFT), Palmas,TO (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Universidade Federal de Goias (UFGO), Goiania (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2017-11-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  2. Gamma irradiation: effect of dose and dose rate on development of mature codling moth larvae and adult eclosion

    Energy Technology Data Exchange (ETDEWEB)

    Burditt, A.K. Jr.; Toba, H.H. (Department of Agriculture, Yakima, WA (USA). Agricultural Research Lab.); Hungate, F.P. (Battelle Pacific Northwest Lab., Richland, WA (USA))

    1989-01-01

    Codling moth, Cydia pomonella (L.), larvae infest apples, pears and many other fruits and nuts. Mature, nondiapausing, cocooned larvae in fiberboard strips were exposed to {gamma}-irradiation at applied doses ranging from 0 to 98 Gy and dose rates from 0.77 to 204.4 Gy/min and subsequently held to permit further development, pupation and adult emergence. At or above an applied dose of 58 Gy, many of the adults that emerged were physically deformed and most were males. As the applied dose increased from 44 to 98 Gy, the percentage of normal adults decreased, the primary effect shifting from a higher percentage of abnormal adults, pupal mortality, to larval mortality. The effects were more pronounced at higher than at lower dose rates. Insect development apparently was not affected when larvae were irradiated at applied doses up to 31.7 Gy. Significantly more adults emerged when larvae were treated at low dose rates (1.0 Gy/min) than at higher dose rates (204 Gy/min). A rate of 52.2 Gy/min was more effective at preventing adult emergence than rates of 1, 4.4 or 201.5 Gy/min. (author).

  3. Tolerance of edible flowers to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H., E-mail: ackoike@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil)

    2011-07-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  4. Tolerance of edible flowers to gamma irradiation

    International Nuclear Information System (INIS)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H.

    2011-01-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  5. Effect of gamma irradiation on physico-chemical and sensorial characteristics of rice (Oryza sativa L.) and on the development of Sitophilus oryzae L

    International Nuclear Information System (INIS)

    Zanao, Cintia Fernanda Pedroso; Canniatti-Brazaca, Solange Guidolin; Sarmento, Silene Bruder Silveira; Arthur, Valter

    2009-01-01

    The objective of this research was to verify the viability of the gamma radiation as polished rice (Oryza sativa L.) conservation method. The samples were irradiated with doses of 0.5; 1.0; 3.0; and 5.0 kGy. Analysis of the grain breakage during the enriching process, longevity and reproduction of the Sitophilus oryzae L., centesimal composition, apparent amylose content, starch paste properties, color (instrumental), and the sensorial evaluation of raw and cooked rice were performed. It was verified that the irradiation did not change the percentage of grain breakage during the enrichment process, and it caused a negative effect on the development of insects. The irradiation did not change significantly the centesimal composition and the apparent amylase content. The Tukey test (p ≤ 0.05) was conducted to verify the differences between the treatments. Gamma irradiation affected the pasting properties of the rice flour. Pasting parameters as temperature, peak, final viscosity, and setback values showed decreasing values with irradiation doses. Differences were detected in the sensorial aspect among the samples, and the sample irradiated with the dose of 1.0 kGy presented greater averages. Regarding the instrumental color parameter, it was observed the difference in the values b * indicating that the rice changed the white color for yellowish with the increase in the irradiation dose. The irradiation dose of 1.0 kGy proved the best to meet the objectives of this study. (author)

  6. TRIGA out of core gamma irradiation facility

    International Nuclear Information System (INIS)

    Rant, J.; Pregl, G.

    1988-01-01

    A possibility to irradiate extended objects in a gamma field inside the shielding water tank and above the core of operating TRIGA Mark II Reactor has been investigated. The irradiation cask is shielded with Cd cover to filter out thermal neutrons. The dose rate of the gamma field strongly depends on the distance of the irradiation position above the core. At 25 cm above the core, the gamma dose rate is 2.2 Gy/s and epithermal neutron flux is ∼ 8.10 6 ncm -2 s -1 ∼ 3 as measured by TLD (CaF 2 : Mn) dosimeters and Au foils respectively. Tentative applications of the gamma irradiation facility are in the studies of radiation induced accelerated aging and within the Nuclear Power Plant Equipment Qualification Program (EQP). A complete characterization of the neutron spectrum and optimization of the 7 radiation field within the cask has still to be performed. (author)

  7. Structural investigation on gamma-irradiated polyacrylamide ...

    Indian Academy of Sciences (India)

    ,∗ ... Polyacrylamide hydrogels; small-angle neutron scattering; UV–visible spectra; gamma irradiation; inhomogeneities. ..... Rev. E 68, 31406 (2003). [15] M Kerker, Scattering of light and other electromagnetic radiation (Acadamic Press, New.

  8. Impact peculiarities of long-term gamma-irradiation with low-dose rate on the development of laboratory rats and their sperm production

    International Nuclear Information System (INIS)

    Klepko, A.V.; Motrina, O.A.; Vatlyitsova, O.S.; And Others

    2015-01-01

    The experiments were performed on laboratory white rats of 2.5 months in age. Animals were irradiated in gamma-field of 'Ethalon' device in a dose range 0.1-1.0 Gy. Testicles, epididymices, ventral prostate were retrieved from decapitated animal, each organ weight being determined for every exposure dose. Sperm quantities in testicles and epididymices were identified with aid of phase-contrast microscopy after tissue homogenization in saline containing Triton X-100 and NaN 3 . Kinetic characteristics of spermatozoa were analyzed by video recording at 37 C. The longterm gamma-irradiation with low dose rate was shown to cause no effect on the dynamics of animal weight and weight of epididymices changes. However the testes weight was noticed to diminish at doses 0.1, 0.3, 0.6 and 1.0 Gy, the latter dose being stimulative for the ventral prostate growth and weight accumulation. Total sperm quantities in testicles and epididymices along with daily sperm production declined in gamma-irradiated rats compared to control. However curvilinear and straight line spermatozoid velocity as well as the frequency of tail oscillations tended to increase. Long-term gamma-irradiation of the rat whole body with low dose rate just insignificantly affects the development of testes and ventral prostate. Apart from this, radiation effects showed up in sperm production slight suppression, from the on hand, and sperm velocity along with tail oscillations intensification, from the other hand

  9. Improving bambara groundnut productivity using gamma irradiation ...

    African Journals Online (AJOL)

    In recent times efforts are being made to improve the productivity of bambara groundnut. Studies were initiated (i) to characterise and evaluate landraces and to select superior ones for irradiation, (ii) to induce genetic variation through gamma irradiation and (iii) to use biotechnological approaches to shorten the generation ...

  10. Preservation of potatoes by gamma irradiation

    International Nuclear Information System (INIS)

    Nouani, A.; Boussaha, A.

    1987-01-01

    In Algeria, potatoes are a major food item in nutrition habits. Because of lack of cold storage facilities, losses can reach up to 40% of the total output of summer harvest. This paper describes the first experiments on the application of gamma irradiation for the preservation of local varieties of potatoes. Losses are strongly reduced by inhibition sprouting effect of irradiation and reduction of sugars content has no significant influence on the acceptability of irradiated potatoes

  11. Effect of gamma irradiation on scent gland development and pheromone production in Spodoptera Littoralis

    International Nuclear Information System (INIS)

    Hazaa, M.A.M.

    1995-01-01

    The cotton leaf worm, Spodoptera Littoralis (Boisd) is one of the important pests of cotton and many other crops in egypt. Several methods have been tried for its control. Among these, the sterile insect technique and the application of sex attractant pheromones appeared to be promissing in an integrated programme for the control of this and other serious insect pests. The high doses of gamma radiation required in such technique may affect some physiological and biological aspects of the insect as well; specially its reproductive potential. This effect may disturb the intraspecific communication between males and females by adversely affecting pheromone glands and hence pheromone production (Stimman et al., 1972; abdu et al., 1985 and El - Degwi, 1990). Insect sex pheromones are chemical substances secreted by either sex to attract the other sex and get them together for copulation. Trials to seek some of the factors that can prevent such communication in the cotton leaf worm may be of importance in its integrated control programme. This stimulated the present study to investigate the effect of gamma radiation doses on sex pheromone gland and pheromone production in this economically important insect pest.8 tabs., 14 figs., 92 refs

  12. Evaluation of dwarf mutant of cowpea (Vigna Unguiculata L. Walp.) developed through gamma irradiation for nitrogen fixation characters

    International Nuclear Information System (INIS)

    Anjana, G.; Thimmaiah, S.K.

    2002-01-01

    A dwarf mutant developed through gamma-irradiation and mutation breeding of its parent cowpea variety, namely KBC-1 has been characterized for nitrogen-fixation characters such as root nodule acetylene reduction activity (ARA) and legthemoglobin content at different days after sowing (DAS). Significant variations in these characters were noticed among the varieties and for interactions between the varieties and DAS. The ARA was nearly one-and-a half fold higher in the mutant at both 30 (12.69 μmoles)C 2 H 4 formed/h/g fr.wt. of nodules) and 50 DAS (6.74 μmoles) over its parent (9.20 and 4.46 μmoles at 30 and 50 DAS, respectively). Further, the ARA in the mutant decreased linearly with an increase in the DAS. The leghemoglobin (Lb) content was also higher in the mutant over the parent at all the DAS. However, it decreased linearly with an increase in the DAS in both the mutant and the parent. The highest leghemoglobin content was noticed at 30 DAS in both mutant (2.1 mg/g fr. wt. of nodules) and the parent (1.45 mg/g). Thus, the dwarf cowpea mutant was found to be associated with higher nitrogen-fixing ability which could be exploited in future breeding programmes. (author)

  13. Neutron and gamma irradiation damage to organic materials.

    Energy Technology Data Exchange (ETDEWEB)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  14. Effects of vanillin and gamma irradiation on the development of confused flour beetle, tribolium confusum (DUV.)

    International Nuclear Information System (INIS)

    Hassan, S.A.; Mohamed, S.A.

    2010-01-01

    The effect of the natural chemical compound food flavoring agent, vanillin on the tribolium confusum was examined. The effect of vanillin on tribolium confusum reared as 18-day old larvae decreased the percent adult emergence, it was 32 % and 51.4 % adults at the treatments 2 % and 4 % respectively. The sex ratio was in favour of female at control group (1:1.2 male:female). This ratio reversed at the treatments 2 %, 4 % vanillin was favour of males. When one day old larvae treated with 2 %, 8 % vanillin, the percent pupation was decrease from control group. It was 31.83, 45.0 %, as compared with 53.33 in control group, respectively. At highest treatment 8 %, sex ratio was in favour of males. The mean number of total progenies decrease significantly from control when larvae 18-day old treated with vanillin and stored for two or four months. While when larvae 1-day old treated with vanillin , the decrease in the number of total progenies was insignificant. When one day old adults irradiated at 20, 50 and 70 Gy and reared for two and four months. The mean number of progenies decrease significantly by increasing the radiation dose, when compared with control group

  15. Gamma-irradiated scrub typhus immunogens: development of cell-mediated immunity after vaccination of inbred mice

    International Nuclear Information System (INIS)

    Jerrells, T.R.; Palmer, B.A.; Osterman, J.V.

    1983-01-01

    Mice immunized with three injections of gamma-irradiated Karp strain of Rickettsia tsutsugamushi were evaluated for the presence of cell-mediated immunity by using delayed-type hypersensitivity, antigen-induced lymphocyte proliferation, and antigen-induced lymphokine production. These animals also were evaluated for levels of circulating antibody after immunization as well as for the presence of rickettsemia after intraperitoneal challenge with viable Karp rickettsiae. After immunization with irradiated Karp rickettsiae, a demonstrable cell-mediated immunity was present as evidenced by delayed-type hypersensitivity responsiveness, lymphocyte proliferation, and production of migration inhibition factor and interferon by immune spleen lymphocytes. Also, a reduction in circulating rickettsiae was seen in mice immunized with irradiated rickettsiae after challenge with 1,000 50% mouse lethal doses of viable, homologous rickettsiae. All responses except antibody titer and reduction of rickettsemia were similar to the responses noted in mice immunized with viable organisms. Antibody levels were lower in mice immunized with irradiated rickettsiae than in mice immunized with viable rickettsiae. Furthermore, mice that were immunized with viable rickettsiae demonstrated markedly lower levels of rickettsemia after intraperitoneal challenge compared with either mice immunized with irradiated rickettsiae or nonimmunized mice

  16. Gamma irradiation facility: Evaluation of operational modes

    International Nuclear Information System (INIS)

    Adesanmi, C.A.; Ali, M.S.; Shonowo, O.A.; Akueche, E.C.; Sadare, O.O.; Mustapha, T.K.; Yusuf, U.; Inyanda, A.K.

    2007-01-01

    The multipurpose Gamma Irradiation Facility (GIF) at the Nuclear Technology Centre (NTC), Sheda Science and Technology Complex (SHETSCO), Abuja, Nigeria is designed as a semi-commercial plant with facilities for research and development (R and D). The design takes into account the different needs of the various research applications which require a wide dose range, a variety of techniques, different product sizes, shapes, mass, volume, densities and types. Programmable doses are used for food irradiation (0.04 - 10 kGy), biological seed mutation breeding and sterile insect technique (STI) (0.01- 5 kGy) sterilization of medical, pharmaceutical and cosmetic products and packages (up to 25 kGy) and cross-linking of polymers (up to 100 kGy). The six different modes of operations (sample elevator, stationary, swiveling, 2-path inner lane and 2-path outer lane and 4-path line) were evaluated. The dose range, mass range and range of irradiation time practicable were established and advantages for radiation processing of food and industrial products were enumerated for the six modes of operations for the first time

  17. Gamma irradiation induced ultrastructural changes in Paracoccidioides brasiliensis yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Demicheli, Marina C.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: marinademicheli@yahoo.com.br; antero@cdtn.br; Goes, Alfredo Miranda [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia]. E-mail: goes@mono.icb.ufmg.br

    2007-07-01

    Paracoccidioides brasiliensis is a thermally dimorphic fungus agent of paracoccidioidomycosis, a deep-seated systemic infection of humans with high prevalence in Latin America. Up to the moment no vaccine has still been reported. Ionizing radiation can be used to attenuate pathogens for vaccine development and we have successfully attenuated yeast cells of P. brasiliensis by gamma irradiation. The aim of the present study was to examine at ultrastructural level the effects of gamma irradiation attenuation on the morphology of P. brasiliensis yeast cells. P. brasiliensis (strain Pb-18) cultures were irradiated with a dose of 6.5 kGy. The irradiated cells were examined by scanning and also transmission electron microscopy. When examined two hours after the irradiation by scanning electron microscopy the 6.5 kGy irradiated cells presented deep folds or were collapsed. These lesions were reversible since examined 48 hours after irradiation the yeast have recovered the usual morphology. The transmission electron microscopy showed that the irradiated cells plasma membrane and cell wall were intact and preserved. Remarkable changes were found in the nucleus that was frequently in a very electrodense form. A extensive DNA fragmentation was produced by the gamma irradiation treatment. (author)

  18. UTN's gamma irradiation facility: design and concept

    International Nuclear Information System (INIS)

    Mohamad Noor Mohamad Yunus

    1986-01-01

    UTN is building a multipurpose gamma irradiation facility which compromises of research and pilot scale irradiation cells in The Fifth Malaysia Plan. The paper high-lights the basic futures of the facility in terms of its design and selection including layout sketches. Plant performances and limitations are discussed. Plants safety is briefly highlighted in block diagrams. Lastly, a typical specification brief is tabled in appendix for reference purposes. (author)

  19. Improving smoked herring quality by gamma irradiation

    International Nuclear Information System (INIS)

    Zahran, D.A.; Abd El-Wahab, S.A.; Hendy, B.A.

    2009-01-01

    Smoked herring which is a highly purchasable product in Egypt, was exposed to different gamma irradiation doses (1.5,3.0 and 5.0 kGy) and stored at environmental temperature (12± 2 deg C) until spoilage of the control. Microbiological, chemical and sensory analyses were performed throughout storage to monitor the quality attributes. It is worthy to mention that irradiation reduced the population of bacteria and the effect was more pronounced at the highest dose used (5.0 kGy). At the same time 1.5 kGy completely eliminated staphylococcus aureus (coagulase + ve) and coliforms. By chemical analysis, there was significant decrease in average moisture content by different gamma irradiation doses and storage. Although the average thiobarbituric acid reactive substances (TBARS) increased slightly by γ-irradiation, this increase was highly significant by storage . At the same time there was a significant (p< 0.05)decrease in the average trimethylamine (TMA) value of all irradiated samples compared with unirradiated control, this value increased significantly by storage. interestingly, the average histamine value decreased significantly in all irradiated samples. The sensory analysis revealed a highly significant difference in the average acceptability scores between different irradiation doses used and also by storage. Therefore it could be concluded that the quality of smoked herring during storage at environmental temperature (12 ± 2 deg C) could be improved by using 5.0 kGy γ -irradiation

  20. Thermal transformations of gamma-irradiated polyacrylonitrile

    International Nuclear Information System (INIS)

    Andreeva, O.A.; Burkova, L.A.

    1995-01-01

    The thermal transformations proceeding in gamma-irradiated polyacrylonitrile were studied. It was found that irradiation results in decrease in the molecular mass of the polymer and transformation of a fraction of the nitrile groups into acid groups. The decrease in molecular mass affects the kinetics of the thermal reactions occurring in the polymer, whereas the appearance of the acidic groups in the course of irradiation does not affect the behavior of the polymer at high temperatures. This is due to the specific distribution of the radiation-induced acidic groups, which are clustered in the polymer. 7 refs., 5 figs

  1. Structural investigation on gamma-irradiated polyacrylamide ...

    Indian Academy of Sciences (India)

    Small-angle neutron scattering (SANS) and ultraviolet (UV)–visible spectroscopictechniques are used to investigate the microstructural changes in polyacrylamide (PAAm) hydrogels on gamma irradiation. SANS measurements have revealed the presence of inhomogeneities in nanometre scale and reduction of their size ...

  2. Structural investigation on gamma-irradiated polyacrylamide ...

    Indian Academy of Sciences (India)

    Abstract. Small-angle neutron scattering (SANS) and ultraviolet (UV)–visible spectroscopic techniques are used to investigate the microstructural changes in polyacrylamide (PAAm) hydro- gels on gamma irradiation. SANS measurements have revealed the presence of inhomogeneities in nanometre scale and reduction of ...

  3. Characterization of gamma irradiated plasticized carboxymethyl ...

    Indian Academy of Sciences (India)

    Polymer blends based on carboxymethylcellulose (CMC) and gum arabic (GA) were prepared by solution casting method. Glycerol was added to the polymer blend solution as a plasticizer with different ratios (2.5, 5, 10 and 20%). Then, the plasticized blends were exposed to gamma irradiation at different doses (5, 10 and ...

  4. Mobile gamma-irradiation robot

    International Nuclear Information System (INIS)

    Teply, J.; Vocilka, J.; Stetka, R.; Vins, J.; Krotil, J.; Franek, C.; Garba, A.

    1993-01-01

    A source container with 98 TBq of 137 Cs and shielding made from depleted uranium has the total weight of 264 kg, height of 0.370 and diameter 0.272 m is described. The container is joined to accessories allowing movement of the radiation beam. The dose rate at a distance of 0.4 m in the beam axis is 50 Gy/h. Various technical means are available for manipulation and transport. The irradiation process proceeds according to a precalculated program. Safety measures have been taken to secure the possible application of the irradiation plant for the radiopreservation of cultural objects. The licence from health physics authorities has been obtained. The first irradiation process performed is described. (author)

  5. Kraft cooking of gamma irradiated wood, (1)

    International Nuclear Information System (INIS)

    Inaba, Masamitsu; Meshitsuka, Gyosuke; Nakano, Junzo

    1979-01-01

    Studies have been made of kraft cooking of gamma irradiated wood. Beech (Fagus crenata Blume) wood meal suspended in aqueous alkaline alcohol was irradiated up to 1.5 KGy (0.15 Mrad) with gamma rays from a Co-60 source in the presence or absence of oxygen. The irradiated wood meals were washed thoroughly with fresh water, air dried and cooked under the ordinary cooking conditions. The results are summarized as follows: (1) Pre-irradiation in aqueous alkali have negligible effect on kraft cooking. (2) In the case of ethanol addition (50 g/l), pre-irradiation in vacuo shows acceleration of delignification and stabilization of carbohydrates during kraft cooking. Cooked yield gain by pre-irradiation was about 1.2% in all over the range of delignification from 80 to 90%. Aqueous ethanol without alkali also shows positive but smaller effect than that with alkali. (3) Propanol, iso-propanol and butanol show positive but smaller effects than ethanol. However, methanol does not show any positive effect. (4) Irradiation in the presence of oxygen does not show any attractive effect on kraft cooking. (author)

  6. Borosilicate glass for gamma irradiation fields

    Science.gov (United States)

    Baydogan, N.; Tugrul, A. B.

    2012-11-01

    Four different types of silicate glass specimens were irradiated with gamma radiation using a Co-60 radioisotope. Glass specimens, with four different chemical compositions, were exposed to neutron and mixed neutron/gamma doses in the central thimble and tangential beam tube of the nuclear research reactor. Optical variations were determined in accordance with standardisation concept. Changes in the direct solar absorbance (αe) of borosilicate glass were examined using the increase in gamma absorbed dose, and results were compared with the changes in the direct solar absorbance of the three different type silicate glass specimens. Solar absorption decreased due to decrease of penetration with absorbed dose. αe of borosilicate increased considerably when compared with other glass types. Changes in optical density were evaluated as an approach to create dose estimation. Mixed/thermal neutron irradiation on glass caused to increse αe.

  7. Quality Properties of Cakes Containing Gamma-Irradiated Egg White

    International Nuclear Information System (INIS)

    Lee, J.W.; Seo, J.H.; Ahn, H.J; Byun, M.W; Kim, Y.H.; Choi, J.M.; Yook, H.S.

    2003-01-01

    As a research on the practical approaches of gamma irradiation for the reduction of egg allergy, cakes including gamma-irradiated egg white were manufactured, and rheological characteristics and sensory qualities of the cakes were evaluated. Egg white was separated from whole egg and then gamma-irradiated with the absorbed dose of 10 or 20 kGy

  8. Effect of gamma irradiation on caprolactam migration from multilayer polyamide 6 films into food simulants: development and validation of a gas chromatographic method.

    Science.gov (United States)

    Félix, Juliana S; Monteiro, Magali; Manzoli, José E; Padula, Marisa

    2010-01-01

    A GC method to determine caprolactam in water, 15% ethanol, and olive oil food simulants was developed and validated. Linear ranges varied from 0.96 to 642.82 microg/mL for water, 0.64 to 800.32 microg/mL for 15% ethanol, and 1.06 to 1062.34 microg/g for olive oil, with correlation coefficients higher than 0.999. Method precision studies showed RSD values lower than 5.45%, while method accuracy studies showed recovery from 72 to 111% for all simulants. The effect of gamma irradiation on caprolactam migration from multilayer polyamide 6 (PA-6) films intended for cheese into water, 15% ethanol, olive oil, and 3% acetic acid simulants was also studied. For migration assay, non-irradiated and irradiated (12 kGy) films were placed in contact with the simulant and exposed at 40 degrees C for 10 days. The validated method was used to quantify caprolactam migration from multilayer PA-6 films into the simulants, which ranged from 1.03 to 7.59 mg/kg for non-irradiated films, and from 4.82 to 11.32 mg/kg for irradiated films. Irradiation caused almost no changes in caprolactam levels, with the exception of olive oil, which showed an increase in the caprolactam level. All multilayer PA-6 films were in accordance with the requirements of the legislation for caprolactam migration.

  9. Gamma irradiation of coumarin in aqueous solution

    International Nuclear Information System (INIS)

    Gopakumar, K.; Kini, U.R.; Ashawa, S.C.; Bhandari, N.S.; Krishnan, G.U.; Krishnan, D.

    1977-01-01

    Aqueous solutions of coumarin become fluorescent on gamma irradiation. The main fluorescent product formed, 7-hydroxy coumarin, shows a dependence on oxygen. The yield in the presence of oxygen is three times that in the nitrogen saturated condition. The effect of cysteine, dimethyl sulfoxide, thymine and sodium nitrite on the gamma response of coumarin suggests the involvement of hydroxyl radicals in the formation of the fluorescent product. The hydroxyl rate constant for coumarin was determined using isopropanol as the co-competitor. The G (-coumarin) in the aerated and nitrogen saturated conditions was also determined. (author)

  10. Evaluation of gamma irradiation of teas

    Energy Technology Data Exchange (ETDEWEB)

    Gerolis, Luanai G.L.; Lameiras, Fernando S.; Menezes, Maria A.B.C.; Leal, Alexandre S., E-mail: luanaigraz@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Krambrock, Klaus, E-mail: klaus@fisica.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica. Lab. de Ressonancia Paramagnetica Eletronica

    2013-07-01

    There is a growing interest in the determination of non-essential traces elements in agroindustrial products. The continuous ingestion and accumulation in the organism of such elements, that may be toxic, can cause hazards to the human health in the long term. Reliable analytical techniques are necessary to monitor such products, including teas. In this work, the neutron activation technique is being employed to determine the trace elements in teas, due to its high sensibility and the possibility to perform a multi-elementary analysis. The gamma irradiation of teas is also being studied, because the shelf life can be extended and no chemical product is added to the teas. There is a concern related to the formation of free radicals in the teas, which is being accessed with electronic paramagnetic resonance. The results of the gamma irradiation up to 20 kGy of Camelia sinensis, Ilex paraguariensis, and Matricaria recutita are presented. (author)

  11. Evaluation of gamma irradiation of teas

    International Nuclear Information System (INIS)

    Gerolis, Luanai G.L.; Lameiras, Fernando S.; Menezes, Maria A.B.C.; Leal, Alexandre S.; Krambrock, Klaus

    2013-01-01

    There is a growing interest in the determination of non-essential traces elements in agroindustrial products. The continuous ingestion and accumulation in the organism of such elements, that may be toxic, can cause hazards to the human health in the long term. Reliable analytical techniques are necessary to monitor such products, including teas. In this work, the neutron activation technique is being employed to determine the trace elements in teas, due to its high sensibility and the possibility to perform a multi-elementary analysis. The gamma irradiation of teas is also being studied, because the shelf life can be extended and no chemical product is added to the teas. There is a concern related to the formation of free radicals in the teas, which is being accessed with electronic paramagnetic resonance. The results of the gamma irradiation up to 20 kGy of Camelia sinensis, Ilex paraguariensis, and Matricaria recutita are presented. (author)

  12. Gamma spectrometrical examination of irradiated fuel

    International Nuclear Information System (INIS)

    Kristof, Edvard; Pregl, Gvido

    1988-01-01

    Gamma scanning is the only non-destructive technique for quantitative measuring of fission or activation products in spent fuel. The negligence of local variation of the linear attenuation coefficient of gamma rays in the irradiated fuel remains the main source of systematic error. To eliminate it we combine the (single) emission gamma ray scanning technique with a transmission measurement. Mathematical procedure joined with the experiment is particularly convenient for fuel elements of circular cross-section. In such a manner good results are obtainable even for relatively small number of measuring data. Accomplished routines enable to esteem the finite width of the collimation slit. The experiment has been partially automated. Trial measurements were carried out, and the measured data were successfully processed

  13. Gamma Irradiation Induced Degradation of Orange Peels

    Directory of Open Access Journals (Sweden)

    Jaime Saucedo Luna

    2012-08-01

    Full Text Available In this study, gamma irradiation induced degradation of orange peels (OP was investigated. The lignocellulosic biomass degradation was carried out at doses of 0 (control, 600, 1800 and 3500 kGy using a Co-60 gamma radiation source. The samples were tested for total and reducing sugars. The concentrations of total sugars ranged from 0.530 g∙g−1 in control sample to 0.382 g∙g−1 of dry weight in the sample which received the highest radiation dose. The reducing sugars content varying from 0.018 to 0.184 g∙g−1 of dry weight with the largest rise occurring in the sample irradiated at 3500 kGy. The concentrations of sucrose, glucose and fructose were determined. The changes generated in physico-chemical properties were determined by Fourier Transform Infrared Spectroscopy (FTIR and termogravimetric analysis (TG-DTG. The results show that OP was affected, but not significantly, which suggests that lignocellulose and sugars profiles were partially degraded after gamma irradiation.

  14. Effect of autoclave processing and gamma irradiation on apparent ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... control, untreated cottonseed meal diet; (2) autoclaved cottonseed meal diet; (3) cottonseed meal diet gamma irradiated at a dose of 15 kGy; (4) cottonseed meal diet gamma irradiated at a dose of 30 kGy;. (5) cottonseed meal diet gamma ..... Lin S, Akin AL (1990). Thermal denaturation of soy proteins as ...

  15. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Lambertin, D., E-mail: david.lambertin@cea.fr [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France); Boher, C. [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France); Dannoux-Papin, A. [CEA, DEN, DTCD/SPDE/LCFI, F-30207 Bagnols-sur-Cèze (France); Galliez, K.; Rooses, A.; Frizon, F. [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France)

    2013-11-15

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with {sup 60}Co sources up to 1000 kGy. Various Na-geopolymer with three H{sub 2}O/Na{sub 2}O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation.

  16. Conformational changes of myosin by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Yook, Hong-Sun; Lee, Kyong-Haeng; Kim, Jae-Hun; Kim, Woo-Jung; Byun, Myung-Woo E-mail: mwbyun@nanum.kaeri.re.kr

    2000-05-01

    Conformational and decompositional changes of bovine skeletal muscle myosin caused by gamma irradiation were studied for understanding the effects of irradiation treatment on myofibrillar proteins. Myosin solution and beef cuts were irradiated 0, 1, 3, 5 and 10 kGy. Competitive indirect enzyme linked immunosorbent assay (Ci-ELISA) showed that subunits of myosin were structurally modified with different patterns. Binding abilities of anti-myosin whole molecule and anti heavy meromyosin S-1 IgG, which were produced from rabbits, with irradiated myosin decreased in the same tendency depending upon the dose. Anti-light meromyosin IgG appeared to have the highest binding ability at 3 kGy. Irradiated beef cuts ({>=}5 kGy) could be identified by Ci-ELISA. Myosin solution became increasingly turbid with increasing dose. Hydrophobicity of myosin solution also increased by irradiation. Electrophoretic patterns showed that the myosin heavy chain disappeared and new bands were generated at higher molecular weight ranges. (author)

  17. Sprouting inhibition of rhizomes by gamma irradiation

    International Nuclear Information System (INIS)

    Hilmy, Nazly; Chosdu, Rahayu

    1985-01-01

    Sprouting inhibition by gamma irradiation to prolong the storage life of 4 species of rhizomes, namely curcuma domestica, kaemferia galanga, curcuma xanthoriza and curcuma aeruginosa, has been carried out. Two groups of samples were used, freshly harvested rhizomes and fresh rhizomes which have been stored for about two weeks. The samples were packed in a plastic net bag, each contained about 100 grams of rhizomes. Irradiation was carried out at room temperature at the doses of 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20 and 0.25 kGy. Post irradiation storage was done at room temperature with relative humidity ranging between 85 and 95%. The results showed that irradiation doses of 0.06 to 0.08 kGy was sufficient to inhibit sprouting of freshly harvested rhizomes and prolonged its storage life for 6 weeks, while in the other group sprouting still occured at the dose of 0.25 kGy. Irradiation dose up to 0.25 kGy did not cause significant effect on moisture and volatile oil contents, as well as volatile oil characteristics of the samples. About 50% of weight losses were found either in irradiated or unirradiated samples after being stored for 8 weeks. Odour and texture were evaluated organoleptically while mould growth and insect damage were observed visually. (author)

  18. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  19. Chronic gamma irradiation of ornamental and landscaping plants at gamma greenhouse

    International Nuclear Information System (INIS)

    Shuhaimi Shamsudin; Zaiton Ahmad; Affrida Abu Hassan

    2011-01-01

    Activities on chronic gamma irradiation of ornamental and landscaping plants have started since April 2010. Among plants which have been irradiated were landscaping plants such as hibiscus, canna, turnera, plumeria, amaryllis, and ornamental plants such as orchid, heliconia, cucurma and sanseviera, as well as vanilla. The main objectives at the initial stage were to develop database for optimum chronic irradiation dose and suitable experimental design for each species. The ultimate aim is to obtain new varieties of ornamental plants with flower and horticultural traits of commercial values and landscaping plants suitable for Malaysian landscape such as large and colourful flower, longer bloom period and frequent flowering. This paper discusses irradiation activities for ornamental plants in Gamma Greenhouse including preparation of samples, growing medium and screening plots, selection/determination of optimum dose and dose rate, collection of data and selection of mutants. (author)

  20. Biochemical effects of gamma irradiation on banana fruits

    International Nuclear Information System (INIS)

    El-Motaium, R.A.

    1980-01-01

    It is of important to study the extension of shelf-life at ambient temperature. This study would be of significant in the case of non- refrigerated transport, practices within the country and transhipment to distant countries. studies have therefore extended to assess the shelf-life of irradiated banana stored under-room temperature. Extension of shelf -life have been achieved by many methods, the most modern one is using gamma irradiation as a promising technology for developing nations. the aim of this investigation is to study the biochemical effects of gamma irradiation on G ros Michel m ature green banana fruits and also to determine the optimum dose level and the optimum storage conditions which resulted in, keeping the organoleptic qualities as it is and maximum extension in shelf-life

  1. Effect of gamma irradiation on Korean traditional multicolored paintwork

    International Nuclear Information System (INIS)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-01-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe 2 O 3 ), Jangdan (Minium; Pb 3 O 4 ), Whangyun (Crocoite; PbCrO 4 ), and Jidang (Rutile; TiO 2 ), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d’Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong. - Highlights: • Effects of gamma irradiation on the Dancheong were evaluated. • We confirmed that optical and structural properties of Dancheong were maintained. • Irradiation can contribute the

  2. Effectiveness of gamma ray irradiation and ethyl methane ...

    African Journals Online (AJOL)

    The experiment was conducted to study the effect of gamma-ray irradiation on the high concentration thidiazuron (TDZ) produced buds. In vitro buds were irradiated with different gamma-ray doses. Akihime cultivar ('Akihime') was irradiated with the doses of 0, 30, 80, 130, 180, and 230 Gy while 'DNKW001 accession' ...

  3. Certain physiological, biochemical and molecular aspects of kidney bean plants originating from gamma-irradiated seeds during seed germination and plant development

    International Nuclear Information System (INIS)

    Soliman, M.S.A.; Abd-ElHamid, A. M.

    2003-01-01

    Dry seeds of kidney bean (phaseolus vulgaris cv. Giza 6) were irradiated with different dosages of gamma rays (2.5-15.0 k.rad) and germinated under laboratory conditions or sown in soil. The produced seedlings and growing plants at different stages of development were analysed for some physiological and biochemical events. In addition, SDS-PAGE profile of the harvested seeds was investigated. Results obtained revealed that the germination potential of kidney bean seeds and growth criteria of the produced seedlings were mostly highly significantly increased due to irradiating the seeds with the relatively low dosages of gamma rays (2.5 and 5.0 K. rad). The contents of DNA, RNA, protein-N, total-N, poly-saccharides and total sugars were substantially increased. This was at the expense of amino-N, glucose and sucrose contents coupled with a reduced leakage of the soluble metabolites from the seedlings. The growth parameters and yield components of plants exhibited mostly high significant increases with concomitant marked increases in the contents of auxins (IAA), gibberellins (GA 3 )and cytokinins (BA). On the other hand, all the aforementioned indices underwent a reverse pattern of change as a consequence of irradiating the seeds with 10.0 and 15.0 K.rad. SDS-PAGE profile of proteins extracted from the seeds harvested from plants originated from the seeds irradiated with 2.5 or 150.0 K.rad exhibited a disappearance of one protein band(M.W: 69.83 kDa) or four ones (M.W:69.83, 61.14, 51.29 and 46.86 kDa), respectively. The total number of protein bands remained unchanged in case of 5.0 and 10.0 k.rad exposure. Moreover, the intensities of protein in the existed bands showed variable changes

  4. Lupine Alleviate Hyperglycemia in Streptozotocin Diabetic gamma- Irradiated Rats

    International Nuclear Information System (INIS)

    El-Sayed, S.M.

    2010-01-01

    This study was to examine the regulatory effect of lupine on the diabetic profile developed in Streptozotocin (STZ) induced diabetic albino rats. The effectiveness of lupine against diabetes in gamma irradiated rats was purposed in the present study. Rats were received lupine seeds powder suspension (1 g/kg body weight for 14 consecutive days) before whole body exposure to 8 Gy of gamma radiation and /or STZ (55 mg/kg body weight, single dose) injection. The results pointed out that radiation exposure sustained the diabetic profile in rats received STZ comparing with STZ diabetic not irradiated rats. The prolonged administration of lupine suspension before STZ induction of diabetic and/or irradiated rats reduced the changes in the level of blood glucose, insulin concentration, liver glycogen, and the activity of glucose-6-phosphatase associated with significant amelioration in blood antioxidant status (superoxide dismutase, SOD; catalase, CAT; glucose-6-phosphate dehydrogenase, G-6-PD activities and reduced glutathione concentration GSH). Also, the level of blood lipid peroxides (TBARS) were reduced greatly when compared with its matched value in diabetic and /or gamma irradiated rats. It could be postulated that lupine powder suspension might be attenuate the diabetic profile development throughout reducing oxidative damages and modulating the antioxidant status. In addition, lupine could be considered as one of a remarkable radio protective agent owing to its antioxidants property

  5. Effect of four Rearing Diets and Gamma irradiation on larval growth rate and the development of the confused flour beetle Tribolium Confusum (DUV)

    International Nuclear Information System (INIS)

    Ahmed, Z.A.; Hassan, M.M.N.

    2001-01-01

    The effects of rearing diet and gamma irradiation on the growth rate development of T. Confusum were investigated. The test larvae were fed on four different rearing diets. Three-day old eggs were irradiated by dosages 20, 40 and 60 Gy. There was a variation of the weight gain, feeding period, and growth rate of larvae according to the effect of rearing diet. when larvae were fed on wheat bran, the highest growth rate was recorded. There is an inverse relationship between the weight gain, the growth rate of larvae and the dosage dosage of gamma ray. The feeding period increased as the doses increased from 0.0 -60 Gy. The average number number of the total progeny depends on the type of the rearing diet. Samples of the diets were analyzed to determine protein % and carbohydrate % which were higher in flour extraction. The moisture %, total fiber %, ash content %, most minerals and vitamins were found in higher content as bran only used

  6. EPR investigation of some gamma-irradiated medicines

    International Nuclear Information System (INIS)

    Aleksieva, Katerina; Yordanov, Nicola

    2016-01-01

    The results of EPR studies on three medical tablets – Galanthamine, Cytisine and Tribulus terrestris before and after gamma-irradiation are reported. Before irradiation Galanthamine and Cytisine tablets are EPR silent, whereas Tribulus terrestris show a broad singlet line with g factor 2.2084±0.002. The same spectrum is recorded after irradiation. After gamma-sterilization, however, Galanthamine and Cytisine tablets exhibit a typical EPR spectrum due to gamma induced free radicals in lactose used as an excipient. These stable free radicals can be used for identification of radiation processing for a long time after it. Key words: medical tablets, gamma-irradiation, EPR

  7. Antioxidant activity potential of gamma irradiated carrageenan

    International Nuclear Information System (INIS)

    Abad, Lucille V.; Relleve, Lorna S.; Racadio, Charles Darwin T.; Aranilla, Charito T.; De la Rosa, Alumanda M.

    2013-01-01

    The antioxidant capacity of irradiated κ-, ι-, λ-carrageenans were investigated using the hydroxyl radical scavenging assay, reducing power assay and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing concentration and dose. The type of carrageenan had also an influence on its antioxidant activity which followed the order of lambda< iota< kappa. Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar. The antioxidant properties of these carrageenan oligomers were lower than that of ascorbic acid and galactose sugar. - Highlights: • The antioxidant capacity of gamma irradiated κ-, ι-, λ-carrageenans increased with increasing concentration and dose. • The type of carrageenan had an influence on its antioxidant activity which followed the order of lambda< iota< kappa. • Increase in oxidative property with radiation dose can be attributed mainly to the depolymerization of the carrageenans with corresponding increase in reducing sugar

  8. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.

    2011-09-22

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer

  9. A New Green-Kerneled Glutinous Rice Mutant Variety, 'Nogwonchalbyeo' Developed by Gamma Ray Irradiation

    International Nuclear Information System (INIS)

    Kang, S.Y.; Shin, I.C.; Kim, D.S.; Lee, G.J.; Kim, J.B.; Lee, D.Y.; Lee, S.Y.; Lee, D.J.

    2008-01-01

    We bred a new green-kerneled glutinous rice variety that can be cultivated in the whole area of Korea, because only one native green-kerneled glutinous rice cultivar, 'Saengdongchalbyeo', has been cultivated in the southern coastal area due to its late heading. The seeds of 'Saengdongchalbyeo' were irradiated with 200 Gy of gamma ray in 1995. A promising mutant variety, 'Nogwonchalbyeo' ('Wonnong 17') was selected through line selection and regional yield trials. In particular, the new variety revealed at the earlier mid of August compared to that of 'Saengdongchalbyeo', the early of September, and it was considerably tolerant to a field lodging due to its shortened culm length. Also, 'Nogwonchalbyeo' had a higher ripened grain ratio and 1,000 grain weight compared to the original variety. The brown grain yield of the new variety was about 5.40 MT/ha, which was 11.3% higher than that of the original variety, in the regional yield trials at 3 different fields during 2000~2001. The brown and milled grains of the new rice variety contained 20 to 65% higher amount of total amino acids, respectively than that of the original and two checks. For chlorophyll -a, -b and total chlorophyll, the new variety showed nearly two-fold higher than the checks, and for the carotenoid, it had 5.3 - 7.6 times higher amount. These results showed that the new variety can be cultivated as a special green-kerneled glutinous rice with high functional compounds

  10. Mechanical performance of gamma irradiated surgical sutures

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Rela, Paulo P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    Surgical sutures are medical devices made of natural or synthetic polymeric materials that, due to its end-use, have to be sterilized. Historically, the sterilization by heat or using ethylene oxide had presented so numerous drawbacks that today the non-pollutant radiation sterilization has become a well established sterilization process, that brings, environmental, technical, and economical advantages. The amount of irradiation doses required for sterilization of health care products is 25 kGy in most instances to achieve the necessary sterility assurance level. As high energy radiation produces modifications in the molecular structure of organic materials with changes in its mechanical properties, the aim of this work was to evaluate the mechanical behavior of surgical sutures under irradiation. Silk, polyamide and catgut sutures were gamma irradiated up to doses of 50 kGy in an industrial irradiation sterilization plant. Afterwards, these sutures were mechanical tested for tensile strength under knot following the specifications of the NBR13904 draft standard, using the CTRD-INSTRON at IPEN. The mechanical lab results show that sutures made of Silk and Polyamide do not present any change in their mechanical performance up to the dose of 50 kGy. On the other hand, Catgut present mechanical stability up to 30 kGy and afterwards, a slight decrease in its tensile strength was detected. (author)

  11. Dose rate modelled for the outdoors of a gamma irradiation

    International Nuclear Information System (INIS)

    Mangussi, J

    2012-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach's the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation as far as 200 m is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on graphics (author)

  12. Gamma-Irradiated Sterile Cornea for Use in Corneal Transplants in a Rabbit Model.

    Science.gov (United States)

    Yoshida, Junko; Heflin, Thomas; Zambrano, Andrea; Pan, Qing; Meng, Huan; Wang, Jiangxia; Stark, Walter J; Daoud, Yassine J

    2015-01-01

    Gamma irradiated corneas in which the donor keratocytes and endothelial cells are eliminated are effective as corneal lamellar and glaucoma patch grafts. In addition, gamma irradiation causes collagen cross inking, which stiffens collagen fibrils. This study evaluated gamma irradiated corneas for use in corneal transplantations in a rabbit model comparing graft clarity, corneal neovascularization, and edema. Penetrating keratoplasty was performed on rabbits using four types of corneal grafts: Fresh cornea with endothelium, gamma irradiated cornea, cryopreserved cornea, and fresh cornea without endothelium. Slit lamp examination was performed at postoperative week (POW) one, two, and four. Corneal clarity, edema, and vascularization were graded. Confocal microscopy and histopathological evaluation were performed. A P cornea with endothelium compared to the other three groups (P cornea scored better than the cryopreserved and fresh cornea without endothelium groups in clarity (0.9 vs. 1.5 and 2.6, respectively), and edema (0.6 vs. 0.8 and 2.0, respectively). The gamma irradiated corneas, cryopreserved corneas and the fresh corneas without endothelium, developed haze and edema after POW 2. Gamma irradiated cornea remained statistically significantly clearer than cryopreserved and fresh cornea without endothelium during the observation period (P cornea. Gamma irradiated corneas remained clearer and thinner than the cryopreserved cornea and fresh cornea without endothelium. However, this outcome is transient. Gamma irradiated corneas are useful for lamellar and patch grafts, but cannot be used for penetrating keratoplasty.

  13. Gamma irradiation: Effect of dose and dose rate on development of mature codling moth larvae and adult eclosion

    Science.gov (United States)

    Burditt, Arthur K.; Hungate, Frank P.; Toba, H. Harold

    Codling moth, Cydia pomonella (L.), larvae infest apples, pears and many other fruits and nuts. Mature, nondiapausing, cocooned larvae in fiberboard strips were exposed to γ-irradiation at applied doses ranging from 0 to 98 Gy and dose rates from 0.77 to 204.4 Gy/min and subsequently held to permit further development, pupation and adult emergence. At or above an applied dose of 58 Gy, many of the adults that emerged were physically deformed and most were males. As the applied dose increased from 44 to 98 Gy, the percentage of normal adults decreased, the primary effect shifting from a higher percentage of abnormal adults, pupal mortality, to larval mortility. The effects were more pronounced at higher than at lower dose rates. Insect development apparently was not affected when larvae were irradiated at applied doses up to 31.7 Gy. Significantly more adults emerged when larvae were treated at low dose rates (1.0 Gy/min) than at higher dose rates (204 Gy/min). A rate of 52.2 Gy/min was more effective at preventing adult emergence than rates of 1, 4.4 or 201.5 Gy/min.

  14. Gamma irradiation: effect of dose and dose rate on development of mature codling moth larvae and adult eclosion

    International Nuclear Information System (INIS)

    Burditt, A.K. Jr.; Toba, H.H.

    1989-01-01

    Codling moth, Cydia pomonella (L.), larvae infest apples, pears and many other fruits and nuts. Mature, nondiapausing, cocooned larvae in fiberboard strips were exposed to γ-irradiation at applied doses ranging from 0 to 98 Gy and dose rates from 0.77 to 204.4 Gy/min and subsequently held to permit further development, pupation and adult emergence. At or above an applied dose of 58 Gy, many of the adults that emerged were physically deformed and most were males. As the applied dose increased from 44 to 98 Gy, the percentage of normal adults decreased, the primary effect shifting from a higher percentage of abnormal adults, pupal mortality, to larval mortality. The effects were more pronounced at higher than at lower dose rates. Insect development apparently was not affected when larvae were irradiated at applied doses up to 31.7 Gy. Significantly more adults emerged when larvae were treated at low dose rates (1.0 Gy/min) than at higher dose rates (204 Gy/min). A rate of 52.2 Gy/min was more effective at preventing adult emergence than rates of 1, 4.4 or 201.5 Gy/min. (author)

  15. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  16. Degradation of corn starch under the influence of gamma irradiation

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10 5 rad to 1 x 10 6 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.) [de

  17. Study of the relation of the band at 3595 CM{sup -1} in FTIR spectrum of natural quartz with color development by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Helena Cristina M.; Lameiras, Fernando S., E-mail: helenacrisms@gmail.com, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Brazil is a major producer of gemological quartz as smoky quartz, morion, citrine, amethyst, and prasiolite. Due to its abundance, hardness, and color varieties, quartz is used in jewelry industry. However, very often quartz is found in nature colorless or with faint colors, which requires exposure to ionizing radiation for color enhancement or development. Not all quartz can develop color. Chromophore chemical elements must be present in suitable proportions for color development after irradiation and heating. Infrared spectrometry is used to separate the quartz that can develop colors from the ones that cannot. Bands in infrared spectrum can indicate the presence and relative contents of chromophore chemical elements, such as aluminum, iron, lithium, sodium, and hydrogen. Some samples of colorless quartz show a band at 3595 cm{sup -1} whose origin is yet not assigned. Samples of quartz with a prominent band at 3595 cm{sup -1} were exposed to gamma rays and heating to observe its behavior. From the statistical point of view, no modification was observed on the position and amplitude of this band after irradiation up 75 kGy and heating to 300-330 deg C. This study should be completed with samples of different origins and higher doses, as well as chemical analyses of trace chemical elements in the samples. (author)

  18. Gamma ray irradiation for sludge solubilization and biological nitrogen removal

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Myunjoo; Park, Chulhwan

    2011-01-01

    This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD 5 ) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal. - Research highlights: → This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewagesludge. → The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. → It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

  19. Effect of autoclave processing and gamma irradiation on apparent ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of autoclaving and different doses of gamma irradiation on the apparent ileal digestibility of amino acids of cottonseed meal in male broiler breeders. Samples were irradiated in a gamma cell at total doses of 15, 30 and 45 kGy. One package (control) was left at room ...

  20. Gamma-ray spectroscopy on irradiated fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, Luis Antonio Albiac [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear], e-mail: laaterre@ipen.br

    2009-07-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  1. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  2. Gamma ray irradiation for sludge solubilization and biological nitrogen removal

    Science.gov (United States)

    Kim, Tak-Hyun; Lee, Myunjoo; Park, Chulhwan

    2011-12-01

    This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD 5) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.

  3. Application of gamma irradiation for inhibition of food allergy

    Energy Technology Data Exchange (ETDEWEB)

    Byun, M.-W. E-mail: mwbyun@kaeri.re.kr; Lee, J.-W.; Yook, H.-S.; Jo, Cheorun; Kim, H.-Y

    2002-03-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk {beta}-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.

  4. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  5. Application of gamma irradiation for inhibition of food allergy

    International Nuclear Information System (INIS)

    Byun, M.-W.; Lee, J.-W.; Yook, H.-S.; Jo, Cheorun; Kim, H.-Y.

    2002-01-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods

  6. Comparative sensitivity of tribolium SPP to gamma irradiation throughout ontogeny

    International Nuclear Information System (INIS)

    Hasan, M.M.

    1995-01-01

    Storage losses from insect attack are often as great as those sustained by the growing crops. Moreover, losses in growing crops are frequently obvious, whereas losses in stored grain are likely to be insidious. Estimates of losses to the world's supply of stored grain from insect damage range from 5 to 10 percent of the world's production (Burkholder, 1990). In certain tropical and subtropical countries as well as Bangladesh, estimates are much higher (FAO, 1977). These problems encouraged the search for other means of control, including the use of physical measures. In this respect, two methods that show promise for controlling insects without leaving harmful chemical residues are the use of gamma radiation or microwave radiation (Cornwell, 1966; Hamid et al., 1968). Of the two, irradiation of insects has attracted wide attention in various fields from development to genetics, and through its possible application to insect pest eradication programmes (Knipling, 1955). However, the control of insects in foodstuffs by irradiation depends on acquiring the necessary basic radiobiological knowledge, on advances in irradiation, and on health and safety considerations. This research is into the possible use of gamma irradiation in controlling stored product pests as an alternative to other control methods. (author)

  7. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes

    International Nuclear Information System (INIS)

    Bergers, W.W.A.

    1980-01-01

    Potatoes were used to study the metabolic stress effects in irradiated vegetable products. The changes of the contents of specific target compounds (glycoalkaloids, phenolic acids and coumarins) in alcoholic extracts of gamma irradiated potatoes were studied for metabolic irradiation stress. Doses of up to 3 kGy were applied to potatoes of several varieties. (Auth.)

  8. Acute effect of gamma irradiation on the gastric mucosa

    International Nuclear Information System (INIS)

    Dubois, A.; Dorval, E.D.; Rogers, J.E.; O'Connell, L.; Durakovic, A.; Conklin, J.J.

    1984-01-01

    The effect of gamma irradiation on the gastric mucosa has been studied in a primate model by evaluating endoscopically the rate of healing of gastric biopsies. Six male rhesus monkeys were subjected to fiberoptic gastroscopies performed under general anesthesia before and after total body exposure to Cobalt-60 (800 rads). Gastric biopsies were taken 3 hours and 2, 7, and 9 days after irradiation and examined using light microscopy. Gastric biopsies were found to heal in 3 days before irradiation; in contrast, they were still present 7 and 9 days after the biopsies in irradiated animals. Microscopic examination of the biopsies taken outside of the ulcer craters did not demonstrate any significant changes of the gastric surface epithelial cells. These data demonstrate that a gastric ulcer develops at the site of each endoscopic biopsy in irradiated monkeys whereas complete healing is observed in non-irradiated animals. The cause of this observation is unclear but it could be due to radiation induced suppression of the mitotic activity and of the cell renewal of gastric surface epithelial cells

  9. Computer-controlled gamma-ray scanner for irradiated reactor fuel

    International Nuclear Information System (INIS)

    Mandler, J.W.; Coates, R.A.; Killian, E.W.

    1979-01-01

    Gamma-ray scanning of irradiated fuel is an important nondestructive technique used in the thermal fuels behavior program currently under way at the Idaho National Engineering Laboratory. This paper is concerned with the computer-controlled isotopic gamma-ray-scanning system developed for postirradiation examination of fuel and includes a brief discussion of some scan results obtained from fuel rods irradiated in the Power-Burst Facility to illustrate gamma-ray spectrometry for this application. Both burnup profiles and information concerning fission-product migration in irradiated fuel are routinely obtained with the computer-controlled system

  10. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    International Nuclear Information System (INIS)

    Irawan Sugoro; Sandra Hermanto

    2009-01-01

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  11. The development of exo-erythrocytic schizonts of Plasmodium berghei in vitro from gamma-irradiated and non-irradiated sporozoites: a study using confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Sinden, E.; Couchman, A.; Suhrbier, A.; Marsh, F.; Winger, L.; Ranawaka, G.

    1991-01-01

    Confocal scanning laser microscopy has been used to study the distribution of antigens expressed by the liver stages of Plasmodium berghei in cultured hepatoma cells. The 3-dimensional images obtained of intact parasites clearly show complex patterns of antigen expression not apparent when using conventional IFAT or immunoelectron microscopy. A liver-stage specific antigen (Pbl 1) was shown to be confined to the parasitophorous vacuole; the vacuole has extensive diverticulae extending into the host cell. Small parasites were detected for the first time in 'mature' cultures. These did not represent a distinct population, but the 'tail' of a broad continuum of parasite sizes. Irradiated sporozoites produce a transient population of slow-growing parasites which express a very limited range of antigens de novo in the invaded hepatoma cell. A comparison of the reactivity of normal EE parasites with anti-circumsporozoite antibody and with ant-Pbl 1 suggests that the former reagent may reliably be used to identify sporozoites invading host cells, but should not be used to determine the number of parasites that successfully undergo intrahepatic development. Anti-Pbl-1 indicates on 33% of invaded sporozoites identified by anti-CSP subsequently differentiate. (author)

  12. Effects of gamma irradiation on antioxidants of medicinal plants

    International Nuclear Information System (INIS)

    Jetawattana, Suwimol; Chaichantipyuth, Chaiyo

    2003-06-01

    The antioxidant effect of water extracts from irradiated medicinal plants on inhibition of lipid peroxidation in human plasma was examined. The results presented herein indicate that crude extracts from 29 kinds, 31 extracts, of medicinal plants, irradiated at 10 and 25 kilo gray. showed no significant change in inhibition of lipid peroxidation in plasma induced by gamma irradiation (p<0.05). It also found that extraction yields in some irradiated plants were increased

  13. Korean space food development: Ready-to-eat Kimchi, a traditional Korean fermented vegetable, sterilized with high-dose gamma irradiation

    Science.gov (United States)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Kim, Jae-Hun; Choi, Jong-Il; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. It was confirmed that the space food was sterilized by an irradiation at 25 kGy through incubation at 37 °C for 30 days. The hardness of the Space Kimchi (SK) was lower than the untreated Kimchi (CON), but higher than the irradiated Kimchi (IR). Also, this result was supported by the scanning electron microscopic observation. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. According to the Ames test, Kimchi sterilized with a high-dose irradiation exerted no mutagenic activity in the bacterial strains of Salmonella typhimurium. And, the SK was certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems.

  14. Effect of gamma irradiation on storability of strawberry (Fragaria sp)

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    1998-02-01

    Despite the increased production of strawberry in Syria, the storability and marketability of fruits were not well studied. The objectives of this study were to investigate the effect of gamma irradiation on storability of Senga sengana strawberry produced in Syria and the effect of gamma irradiation on fungal sp. i.e. Botrytis; Penicillium; Rhizopus. The fruits were treated with 1 , 2 and 3 KGy of gamma rays. Treated and untreated fruits were stored at 2 to 4 centigrade and 80 to 90 % relative humidity (RH). In order to investigate their marketability, the fruits where held at room temperature (25 to 30 centigrade). Weight loss, microbial decay, and total loss, juice production, pH, total soluble solids of the juice and organoleptic qualities were evaluated throughout the different storage and marketing periods. The results indicate that gamma irradiation decreased the microbial decay and increased the storability and marketability of fruits by 50 and 100% after using 2 and 3 kGy, respectively. D10 were 1.8 and 2.4 for Botrytis and Rhizopus respectively. One day after irradiation total soluble solids and its pH values were increased. Fourteen days later, irradiated fruits produced more juice with higher pH, but total soluble solids were less. Gamma irradiation did not have an effect on aroma and colour of fruits, whereas, 3 kGy of gamma irradiation had an adverse negative effect on taste. (author)

  15. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  16. Brain anomalies induced by gamma irradiation in prenatal period

    International Nuclear Information System (INIS)

    Schmidt, S.L.

    1992-01-01

    Gamma irradiation has been utilized in order to produce cortical and callosal abnormalities. We have also checked for the presence of the aberrant longitudinal bundle in the brains of mice born acallosal due to prenatal irradiation is also checked. Pregnant mice were exposed to gamma irradiation from a 6 0 Co source at 16, 17 and 19 days of gestational age (E 16, E 17 and E 19) with total doses of 2 Gy and 3 Gy. At 60 days postnatal the offspring of irradiated animals were intra cardiac perfused, the brains were removed from the cranio and cut into coronal or para sagittal sections. (author)

  17. Glucose metabolism in gamma-irradiated rice seeds

    International Nuclear Information System (INIS)

    Inoue, M.; Hasegawa, H.; Hori, S.

    1980-01-01

    Gamma-irradiation of 30 kR in rice seeds caused marked inhibition in seedling growth, and prevented the release of reduced sugar during the period of 25 to 76hr after soaking. The C 6 /C 1 ratio following irradiation continued to decrease up to the 76th hour of soaking; the control's ratio tended to increase with comparable soaking time. The percentage recovery of 14 C in carbon dioxide from glucose -1- 14 C was lower in irradiated than in control seeds. These results indicate that gamma-irradiation reduces the participation of the pentose phosphate pathway in glucose catabolism during an early period of germination. (author)

  18. Economics of gamma processing in cobalt-60 irradiation facilities

    International Nuclear Information System (INIS)

    Gay, H. G.; Kotler, J. G.

    1985-01-01

    Gamma processing by cobalt-60 is well established. However, since irradiation of food is relatively new from the commercial point of view, it is important to assess costs of gamma irradiation in the context of food processing. Five different types of AECL-RCC irradiation equipment are examined in terms of their throughputs, and capital and operating costs. Using these figures, costs of irradiation of nine types of food products are presented. In general, these represent about 2-10% of the wholesale cost of these products

  19. Degradation of epoxy coatings under gamma irradiation

    International Nuclear Information System (INIS)

    Djouani, F.; Zahra, Y.; Fayolle, B.; Kuntz, M.; Verdu, J.

    2013-01-01

    Epoxy networks based on Diglycidyl ether of bisphenol A (DGEBA) and cured with Jeffamine® (POPA) or polyamidoamine (PAA) were gamma irradiated at 25 °C in air. Dose rates of 50, 200 or 2000 Gy h −1 for doses up 100 kGy were used. Structural changes were monitored by IR spectrophotometry, DSC and sol–gel analysis. Both networks display some common features: for I≥200 Gy h −1 , reaction products grow proportionally to time and the rate is a decreasing function of dose rate. The simplest explanation is that peroxy radicals are the main precursors of these products (in the dose rate domain under study), through a unimolecular rearrangement of which an hypothetical mechanism is proposed. DGEBA–POPA are more reactive then DGEBA–PAA networks (according to IR criteria), that can be attributed to the high reactivity of tertiary CH bands in polyoxypropylene segments. The oxidation of these sites leads to methyl ketones. A simple kinetic model in which methyl ketones result from rearrangements of tertiary peroxyls and from tertiary alkoxyls was proposed. It leads to an expression of the radiochemical yield of methyl ketones (G(MK)) of the form G(MK)=a+bI −1/2 where a and b are parameters depending of elementary rate constants. Experimental G(MK) values are reasonably well fitted by this equation. In DGEBA–PAA networks, a wide variety of oxidation products, among which amides predominate, can be observed. In these networks, chain scissions predominate over crosslinking, whereas a slight predominance of crosslinking was observed, at least for the lowest dose rate, in DGEBA–POPA. - Highlights: ► The effects of irradiation at three distinct dose rates have been studied on two epoxy networks. ► DGEBA–polyamidoamine networks appear more stable than DGEBA–polyoxypropylene diamine ones. ► A simple kinetic model involving methyl ketones is proposed.

  20. Improvement of physical properties of soyabeans by gamma irradiation

    International Nuclear Information System (INIS)

    Byun, M.-W.; Kwon, J.-H.; Mori, Tomohiko

    1993-01-01

    Physical properties of gamma-irradiated soybeans were evaluated at different temperatures by determining water absorption pattern and cooking characteristics of the sample. Irradiation at 2.5-10 kGy caused the reduction of soaking time in soybeans by 2-5 hours and the increase of hydration capacity by 10-20%, respectively, compared to the non-irradiated control at 20 o C. The activation energy for water absorption was lower in irradiated soybeans than in the non-irradiated control. Irradiation at 2.5-10 kGy caused the reduction of cooking time in soybeans by 30-60% compared to the non-irradiated control and the cooking rate constant of irradiated samples was higher about 2 times than that of the non-irradiated control. The irradiation efficacy on physical quality improvement was also recognized in the stored soybeans for one year at room temperature. (author)

  1. Gamma-ray irradiation of ohmic MEMS switches

    Science.gov (United States)

    Maciel, John J.; Lampen, James L.; Taylor, Edward W.

    2012-10-01

    Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.

  2. Examination of irradiated fuel elements using gamma scanning technique

    International Nuclear Information System (INIS)

    Ichim, O.; Mincu, M.; Man, I.; Stanica, M.

    2016-01-01

    The purpose of this paper is to validate the gamma scanning technique used to calculate the activity of gamma fission products from CANDU/TRIGA irradiated fuel elements. After a short presentation of the equipments used and their characteristics, the paper describes the calibration technique for the devices and how computed tomography reconstruction is done. Following the previously mentioned steps is possible to obtain the axial and radial profiles and the computed tomography reconstruction for calibration sources and for the irradiated fuel elements. The results are used to validate the gamma scanning techniques as a non-destructive examination method. The gamma scanning techniques will be used to: identify the fission products in the irradiated CANDU/TRIGA fuel elements, construct the axial and radial distributions of fission products, get the distribution in cross section through computed tomography reconstruction, and determine the nuclei number and the fission products activity of the irradiated CANDU/TRIGA fuel elements. (authors)

  3. Gamma irradiation versus microbial contamination of Thai medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wannipa Phianphak

    2007-03-01

    Full Text Available Seventeen species of herbs established in Thai traditional remedies were microbially decontaminated by gamma-irradiation doses of 7.7 and 8.8 kGy. The herb samples were randomly collected four times from producers in Chiangmai during a 1-year period. These were tested, qualitatively and quantitatively, for total aerobic bacteria, Staphylococcus spp., Salmonella spp., coliform bacteria, and fungi before and after gamma treatment. No microorganisms were found after gamma treatment; and the color, aroma, and texture of the herbs remained normal. The applied dose of gamma irradiation was within the regulatory limits in Thailand (<10 kGy and the main export country (USA< 30 kGy. Gamma irradiation is an effective treatment for microbial decontamination of Thai export herbs.

  4. Studies on gamma irradiated rubber materials

    Science.gov (United States)

    Lungu, I. B.; Stelescu, M. D.; Cutrubinis, M.

    2018-01-01

    Due to the increase in use and production of polymer materials, there is a constant pressure of finding a solution to more environmental friendly composites. Beside the constant effort of recycling used materials, it seems more appropriate to manufacture and use biodegradable and renewable row materials. Natural polymers like starch, cellulose, lignin etc are ideal for preparing biodegradable composites. Some of the dynamic markets that use polymer materials are the food and pharmaceutical industries. Because of their desinfastation and sometimes sterility requirements, different treatment processes are applied, one of it being radiation treatment. The scope of this paper is to analyze the mechanical behaviour of rubber based materials irradiated with gamma rays at four medium doses, 30.1 kGy, 60.6 kGy, 91 kGy and 121.8 kGy. The objectives are the following: to identify the optimum radiation dose in order to obtain a good mechanical behaviour and to identify the mechanical behaviour of the material when adding different quantities of natural filler (20 phr, 60 phr and 100 phr).

  5. Application of gamma-irradiation to cereals and cereals products

    International Nuclear Information System (INIS)

    Wootton, M.

    1985-01-01

    Gamma-irradiation may be used on cereals and cereal products to control insect infestation and microbiological problems. Such problems include mould growth, mycotoxin production, pathogens, spore-forming organisms and total microbial load. Deleterious effects of gamma-irradiation arise only at relatively high dose levels with consequences on germination rate, wheat flour dough properties, and cake and noodle quality. Radiation-induced changes to starch have greater impact on behaviour of cereal products than such changes to other cereal components

  6. Gamma irradiation influence on physical properties of milk proteins

    International Nuclear Information System (INIS)

    Ciesla, K.; Salmieri, S.; Lacroix, M.; Le Tien, C.

    2004-01-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling

  7. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    International Nuclear Information System (INIS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-01-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  8. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yoo, Young-Choon [Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, International University of Korea, Jinju 660-759 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-{alpha} and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  9. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 µm (0⋅7874 and 1⋅5748 mil) with two different areas, 01 and.

  10. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 m (0.7874 and 1.5748 mil) with two different areas, 01 and 04 cm2.

  11. Gamma irradiation of Fabry-Perot interband cascade lasers

    Science.gov (United States)

    Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; Canedy, Chadwick L.; Kim, Chul Soo; Kim, Mijin; Merritt, Charles D.; Bewley, William W.; Vurgaftman, Igor; Meyer, Jerry R.

    2018-01-01

    The effects of gamma radiation on Fabry-Perot interband cascade lasers (ICLs) were investigated. Two ICLs were exposed to cobalt-60 gamma rays for a total dose of 500 krad(Si) each. The ICLs do not show any evidence of changes in performance, including output power, threshold current, slope efficiency, or spectral frequency. These results demonstrate that ICLs are insensitive to gamma irradiation up to exposure rates above those normally encountered within a shielded spacecraft.

  12. Effect of gamma irradiation on the protoscoleces of Echinococcus granulosus of sheep origin

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.P.; Dhar, D.N.

    1988-06-01

    In vitro and in vivo effects of varying levels of gamma irradiation on protoscoleces of Echinococcus granulosus of sheep origin were studied. Radiation doses of 100 Gy onwards caused a decrease in the viability of protoscoleces in vitro. However, infectivity of protoscoleces was not affected at radiation doses of 300 Gy in golden hamsters and 200 Gy in mice although number and size of cysts developing from infections with irradiated protoscoleces in these animals was small in comparison to cysts developing from infections with normal protoscoleces. Four hundred E. granulosus protoscoleces, normal or 100 Gy irradiated, proved fatal for mice. A significant progressive decline in worm establishment was observed in pups given an infection of E. granulosus protoscoleces exposed to increasing levels of gamma irradiation from 100 to 600 Gy. No worms established in pups infected with protoscoleces irradiated at 400 and 600 Gy, respectively. Worms developing from irradiated infections in pups were stunted and showed developmental abnormalities.

  13. Keeping the quality of cows' butter by gamma-irradiation

    International Nuclear Information System (INIS)

    Rady, A.H.; Badr, H.M.

    2003-01-01

    This investigation aims to study the use of gamma irradiation for keeping the quality of cows' butter. Fresh butter samples were exposed to gamma irradiation at doses of 0, 2.5 and 5 kGy followed by refrigerated storage and the effects of these treatments on the microbiological aspects and lipid characteristics of butter samples were studied. Moreover, fatty acid profiles and unsaponifiable matter constituents were determined by gas chromatographic analysis, while the stability of butter was determined by rancimat. The results indicated that gamma irradiation at 2.5 kGy dose reduced the counts of total bacteria, lipolytic bacteria, coliforms, molds and yeasts, however, these counts gradually increased during cold storage. Also irradiation at 5 kGy dose greatly reduced the total bacterial count which gradually increased upon storage, while completely eliminated the Other determined microorganisms. Irradiation treatments increased the acid value and peroxide value of butter, while the iodine number was not altered. Moreover, gas chromatographic analysis showed that gamma irradiation slightly increased the total volatile fatty acids, total saturated fatty acids and total hydrocarbons, while slightly decreased the total unsaturated fatty acids and total sterols. In addition, irradiation of butter decreased its stability as determined by rancimat and upon storage of both irradiated and non irradiated butter samples, the acid value gradually increased, while a flexuous changes in the peroxide value were observed. The present study proved that 2.5 and 5 kGy gamma irradiation doses could keep the quality of cows' butter and increased its shelf life at 4 +/- 1degreeC for 8 and 12 weeks as compared to 4 weeks for non irradiated butter (based on the visual appearance of mold growth on the surface of samples) without any effects on its sensory properties [es

  14. Manual on panoramic gamma irradiators (categories 2 and 4)

    International Nuclear Information System (INIS)

    1993-01-01

    In addition to a basic guide to the principles of production of ionizing radiation and to the methods of radiation protection and dosimetry, this document considers the procedures that should be employed when using panoramic gamma irradiators. Applications for such irradiators are described and radiation protection procedures discussed

  15. Effect of gamma irradiation on Hom Tong banana

    International Nuclear Information System (INIS)

    1971-01-01

    This report contains research on the use of gamma irradiation to retard the ripening and extend the shelf life of bananas. The major concerns were the effects that irradiation would have on the nutritional content, the organoleptic properties and the pigment of the fruit

  16. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-01-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs

  17. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  18. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-07-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs.

  19. Gamma Irradiation for the Inhibition of Shrimp (Penaeus aztecus) Allergy

    International Nuclear Information System (INIS)

    Kim Jae-Hun; Lee Ju-Woon

    2000-01-01

    Food irradiation technology was conducted to reduce shrimp allergy. The experiment was designated in 3 portions as follows; A, the irradiation of raw shrimp; B the irradiation of shrimp and then cooking; and C, cooking the shrimp and then irradiation. Gamma irradiation was done with doses of 1, 3, 5, 7, 10 kGy. A shrimp sarcoplasmic protein solution (SSPS) and a myofibrillar protein solution (SMPS) were prepared from A portion. Cooked shrimp protein solutions were also prepared from B and C portions. The binding abilities of the shrimp allergic patients' IgE and mouse monoclonal Ab 4.9.5 (mAb 4.9.5), produced to the shrimp heat-stable protein, to each sample solution were determined by ELISA. Binding abilities of patients' IgE and mAb 4.9.5 to irradiated shrimp fractions were dose-dependently reduced. The cooking treatment after irradiation was more effective than the irradiation treatment after cooking in the reduction of the binding abilities of IgE and IgG. SDS-PAGE was performed to compare irradiated shrimp proteins with non-irradiated shrimp proteins. SDS-PAGE showed that no bands were changed by gamma irradiation. The results indicated that food irradiation with an adequate dose can be reduce allergenicity of shrimp

  20. Gamma-ray irradiation of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Dugle, J.R.

    1983-01-01

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  1. Effect of gamma irradiation on rice and its food products

    International Nuclear Information System (INIS)

    Sung, W.-C.

    2005-01-01

    Two milled indica rice varieties were exposed to gamma radiation with doses ranging from 0 to 1.0 kGy. The effects of gamma irradiation on rice flour pasting properties and the qualities of its food product, rice curd, were compared to the effects of storage. A dose of 1 kGy can decrease the flour paste viscosity and tenderize the texture of the rice curd to similar levels as those obtained after 12 months of storage. It was thus shown that gamma irradiation could shorten the indica rice aging time and improve the processing stability and quality of rice products

  2. Nanodefect formation in LiF crystals under gamma irradiation

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Ibragimova, Eh.M.; Kalanov, M.U.; Muminov, M.I.

    2006-01-01

    One studied the spectra of absorption and of photoluminescence, microhardness and performed X-ray structure analysis of gamma-irradiated LiF crystals in a shutdown reactor and in 60 Co source when gamma-radiation dose rate was equal to 7.65 Gy/s. In addition to formation of point and combined radiation defects one detected the presence of the gamma-irradiation induced 28 nm size nanoparticles of LiOH phase in Li sublattice. Formation of defects is shown to occur more efficiently in a shutdown reactor in contrast to 60 Co source [ru

  3. Effects of gamma irradiation on raw materials and perfumes

    International Nuclear Information System (INIS)

    Guillot, M.; Pelpel, A.

    1983-01-01

    In order to enlight the strange problem of apparent perfume stability observed in manufactured talc powders sterilized by gamma rays, investigations were made on samples of odorant substances (raw materials, essential oils, or elaborated mixtures). As a rule, no immediate adulteration of olfactive caracteristics resulted at once from gamma irradiation. In several cases, a stabilizing effect appeared immediately and remained effective after long storage in various conditions (of temperature, or light, or oxygen exposure). This unexpected effect seems to be in accordance with previous experiments on gamma or electron irradiations of mixtures of organic molecules, reported in litterature: a mutual inhibition was observed to take place [fr

  4. Radiation protection in category III large gamma irradiators

    International Nuclear Information System (INIS)

    Costa, Neivaldo; Furlan, Gilberto Ribeiro; Itepan, Natanael Marcio

    2011-01-01

    This article discusses the advantages of category III large gamma irradiator compared to the others, with emphasis on aspects of radiological protection, in the industrial sector. This category is a kind of irradiators almost unknown to the regulators authorities and the industrial community, despite its simple construction and greater radiation safety intrinsic to the model, able to maintain an efficiency of productivity comparable to those of category IV. Worldwide, there are installed more than 200 category IV irradiators and there is none of a category III irradiator in operation. In a category III gamma irradiator, the source remains fixed in the bottom of the tank, always shielded by water, negating the exposition risk. Taking into account the benefits in relation to radiation safety, the category III large irradiators are highly recommended for industrial, commercial purposes or scientific research. (author)

  5. Extending the storage life of garlic by gamma-irradiation

    International Nuclear Information System (INIS)

    Curzio, O.A.; Croci, C.A.; Quaranta, H.O.

    1983-01-01

    The effect of gamma irradiation (0.03kGy) on garlic bulbs from local cultivars was studied. The treatment proved to be effective in reducing weight loss and spoilage percentage of the bulbs. After 10 months of storage the weight loss was found to be reduced by 37% in irradiated garlic. Irradiation reduced sprouting of the fresh bulbs but did not affect the rotting process. (author)

  6. Gamma irradiation for sewage treatment at US army facilities

    International Nuclear Information System (INIS)

    Van den Berg, A.J.; Hollis, H.D.; Musselman, H.D.; Woodbridge, D.D.

    1975-01-01

    The US Army Corps of Engineers has been sponsoring research for many years on the use of gamma irradiation for disinfection and sterilization of sewage plant effluents. Initial research was directed to laboratory experiments using sterile solutions to determine the effects of gamma irradiation on E. coli, M-pyogenes and M-smegmatis organisms, and on the chemical constituents of sewage such as phenols, surfactants and pesticides. The results of the initial research warranted further study using municipal sewage secondary effluent as test samples. Current research is directed towards investigating the effects of radiation on the constituents of sewage sludge and on the cyst stage of the amoebic protozoa. Consideration has been given by the Corps to the management of waste-waters by disposal on land. Legal and medical reasons dictate that the plant effluents be sterilized before being used as fertilizers and soil conditioners. Gamma radiation from isotopic sources appears to be the best source of sterilizing energy for Army waste-water disposal. The Corps of Engineers is considering the construction of an experimental gamma irradiation pilot facility to validate laboratory experimental work and to establish design criteria for operating plants. The data obtained will provide a basis for performing detailed cost effectiveness studies on gamma irradiation as a method to treat secondary plant effluent. In addition, optimization work will be conducted to determine where in the sewage treatment cycle the use of gamma irradiation will produce the best results in meeting current and anticipated standards. (author)

  7. Studies on safety and efficiency of gamma-irradiated ginseng

    International Nuclear Information System (INIS)

    Kwon, Joong Ho; Cho, Han Ok; Byun, Myung Wo; Kim, Suc Won; Yang, Jae Seong; Yoo, Young Soo; Jin, Joon Ha; Park, Soon Chul

    1991-09-01

    Gamma irradiation was applied to the biological quality improvement and preservation of white ginseng which has problems in a hygienic quality and storage stability. The current phosphine treatment showed no influence on microorganisms contaminated even though it was very useful for disinfestation of the sample, while 5 kGy irradiation effectively controlled the biological quality of the stored sample, with minimal effects on the quality parameters of white ginseng. Thus, it is concluded that gamma irradiation at a range of 5 kGy can be an alternative method of chemical fumigants provided air-tight packaging excluding recontamination is used for the stored product. (Author)

  8. Radiation safety for operators of gamma irradiation plants

    International Nuclear Information System (INIS)

    1989-01-01

    These notes have been prepared by the UK Panel for Gamma and Electron Irradiation with advice from the HSE (Technology Division and Factory and Agricultural Inspectorate) to assist operators of Gamma irradiation plants to comply with the requirements of the Ionising Radiations Regulations (IRR 1985), and other relevant regulations (see below). The process is currently used for the sterilisation of medical devices and in the treatment of plastics materials etc. The Government has proposed that the process should also be permitted for the treatment of foodstuffs, and these notes will also be relevant to any irradiation plants which may be used in the UK for this purpose. (author)

  9. Neutron and gamma irradiation effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  10. Comparison of gamma, neutron and proton irradiations of multimode fibers

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Dorsey, K.L.; Askins, C.G.; Friebele, E.J.

    1987-01-01

    The effects of pure gamma, pure proton, and mixed neutron-gamma irradiation fields on a set of both pure and doped silica core multimode fibers have been investigated. Only slight differences are found in the radiation response of pure and doped silica core fibers exposed to gamma or mixed neutron-gamma fields, indicating that Co-60 sources can be used to simulate the effects of the mixed field (except in the case of a pure neutron environment). Although it is noted that neither mix field nor gamma sources adequately simulate the effects of proton irradiation of doped silica core fibers, a good correspondence is found in the case of the pure silica core waveguide. 13 references

  11. Development of food preservation and processing techniques by radiation - Quarantine treatment of agricultural products for export and import by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong Ho; Kang, H. J.; Chung, H. W.; Roh, M. J. [Kyungbuk National University, Taegu (Korea)

    2000-04-01

    To pre-establish an alternative technique to the toxic fumigant, methyl bromide which is the current quarantine measure of agricultural products for export, some selected agricultural products, such as apple and pear, were subjected to a preliminary study to confirm the comparative effects of gamma irradiation and MeBr fumigant on their disinfestation and quality, thereby preparing the basic data for the practical approach. Current quarantine activities were examined and the related limitations were investigated. Quarantine-related pests were investigated on their radiosensitivity and disinfestation effects by both treatments. The pests in apple and pear, Tetranychus urticae Koch, Panonychus ulmis Koch revealed a 100% mortality at around 17 days after irradiation of 3 kGy but it was too high dose for apple and pear. Tetranychus urticae Koch, Panonychus ulmi Koch from both apple and pear showed an increased mortality when exposed to 1 {approx} 2 kGy irradiation, resulting in apparent mortality 1 month later. 1 {approx} 2 kGy irradiation could be recommended for apple and pear. Current fumigation was perfect in its disinfesting capability, but it caused the detrimental effects on physical quality of agricultural produce. Whereas, irradiation doses suitable for controlling the pests did not induce any significant changes in the quality of the samples. 40 refs., 64 figs., 160 tabs. (Author)

  12. Decay prevention in waterlogged archaeological wood using gamma irradiation

    International Nuclear Information System (INIS)

    Pointing, S.B.; Jones, E.B.G.; Jones, A.M.

    1998-01-01

    Gamma irradiation is evaluated as a novel decay prevention treatment for waterlogged archaeological wood. A dose of 15 kGy was found to be sufficient to inactivate a large number of wood biodeteriogens, including fungi, bacteria and invertebrates, at various stages of development. For timbers excavated from polluted sites, a dose of 25 kGy is suggested to inactivate human pathogens. The dose spread required for such treatments are 1.33:1 and 1.2:1, respectively, in timbers up to 150 mm thickness and density not exceeding 1590 kg/m3. No adverse effects on the physical properties of slightly or heavily degraded waterlogged archaeological wood were detected at doses of up to 100 kGy. This is the maximum recommended single or cumulative lifetime dose for any timber. Gamma irradiation offers far greater efficacy over currently used decay prevention treatments and, a step-wise procedure for evaluating timbers for treatment and dosimetry is presented. (author)

  13. Dose rate distribution of the GammaBeam: 127 irradiator using MCNPX code

    International Nuclear Information System (INIS)

    Gual, Maritza Rodriguez; Batista, Adriana de Souza Medeiros; Pereira, Claubia; Faria, Luiz O. de; Grossi, Pablo Andrade

    2013-01-01

    The GammaBeam - 127 Irradiator is widely used for biological, chemical and medical applications of the gamma irradiation technology using Cobalt 60 radioactive at the Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The source has maximum activity of 60.000Ci, which is composed by 16 double encapsulated radioactive pencils placed in a rack. The facility is classified by the IAEA as Category II (dry storage facility). The aim of this work is to present a modelling developed to evaluate the dose rates at the irradiation room and the dose distribution at the irradiated products. In addition, the simulations could be used as a predictive tool of dose evaluation in the irradiation facility helping benchmark experiments in new similar facilities. The MCNPX simulated results were compared and validated with radiometric measurements using Fricke and TLDs dosimeters along several positions inside the irradiation room. (author)

  14. Effects of gamma-irradiation on meat proteins

    International Nuclear Information System (INIS)

    Yook, H.S.; Kim, M.R.; Kim, J.O.; Lim, S.I.; Byun, M.W.

    1998-01-01

    The proteins extracted from beef, pork and chicken meats were irradiated with up to 100 kGy at room temperature. The extracted proteins were evaluated on their in vitro digestibility by incubating successively with pepsin and pancreatin conjugate. Amino acid compositions and SDS-PAGE pattern were also analyzedin for these proteins. Gamma irradiation within the applied dose range (up to 100 kGy) produced negligible in in vitro digestibility and amino acid composition. Analysis of gamma-irradiated proteins by SDS-PAGE revealed radiolysis of ovalbumin to proteins or peptides with lower molecular weight. On the other hand, the proteins directly extracted from irradiated meats containing moisture were also evaluated for their in vitro digestibility, amino acid compositions and SDS-PAGE pattern. However, the results obtained from this experiment were similar to those of irradiated proteins after extraction from the meats

  15. Change of microflora of two starch samples by gamma irradiation

    International Nuclear Information System (INIS)

    Fretton, R.; Fretton, J.; Delattre, J.M.

    1975-01-01

    Starch is the basic component of a larger number of manufactured foods. The disinfection of such a powder by 60 Co is studied here. Gamma irradiation of two starch samples with different degrees of contamination allows the assumption that, in most cases, good radio-pasteurization can be achieved with 300 krad. The radio-pasteurization doses (varying from 300 to 600 krad) are a function of the initial contamination. Irradiation effects are spectacular with moulds. Activation of spores of some Clostridium species leads us to recommend an irradiation level higher than 200 krad. The most resistant organisms to gamma irradiation are the aerobic and anaerobic sporulated bacteria. The thermophilic forms are the most important. Spores of Bacillus, chiefly Bacillus licheniformis and Bacillus brevis, are the most frequent bacteria. Storage of irradiated starch at room temperature has little effect upon the number of revivable survivors. (orig.) [de

  16. Effect of [gamma]-irradiation on soya bean proteins

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung-Woo; Kang, Il-Jun (Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)); Hayashi, Yukako; Matsumura, Yasuki; Mori, Tomohiko (Kyoto Univ., Uji (Japan). Research Inst. for Food Science)

    1993-09-01

    The properties of soya beans proteins following [gamma]-irradiation (5-20 kGy) were investigated in connection with protein denaturation. Irradiation doses above 10 kGy caused a decrease in 7S and 11S components and an increase in 2S and 15S components (P < 0.05). However, subunit patterns determined by electrophoresis were not changed appreciably over the entire irradiation dose range. In the differential scanning calorimetry thermogram, the denaturation temperatures of 11S and 7S components were not affected by [gamma]-irradiation, while increased irradiation dose caused a decrease in the enthalpy values of 11S and 7S components due to protein denaturation. Changes in the circular dichroism spectra and tryptophan fluorescence intensity (P < 0.05) were observed only at 20 kGy. (author).

  17. Effect of spirit irradiation with 60Co gamma-rays

    International Nuclear Information System (INIS)

    Gwardys, S.

    1975-01-01

    A few sorts of spirit were irradiated with a dose of 1 or 5 Mrad of 60 Co gamma-rays. Then the chemical composition of spirits was investigated. It was found that as a result of irradiation the content of acids, esters, acetal aldehydes and methanol increases, while the strength of higher alcohols decreases slightly. The changes of compounds content in particular spirits are dependent on radiation doses and chemical composition before irradiation. It was also discovered that spirit irradiation causes decrease or even disappearance of characteristic - for given spirits - maxima of UV absorption. (Z.M.)

  18. Thermoluminescence of Simulated Interstellar Matter after Gamma-ray Irradiation

    OpenAIRE

    Koike, K.; Nakagawa, M.; Koike, C.; Okada, M.; Chihara, H.

    2002-01-01

    Interstellar matter is known to be strongly irradiated by radiation and several types of cosmic ray particles. Simulated interstellar matter, such as forsterite $\\rm Mg_{2}SiO_{4}$, enstatite $\\rm MgSiO_{3}$ and magnesite $\\rm MgCO_{3}$ has been irradiated with the $\\rm ^{60}Co$ gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is $10^{...

  19. Effect of low dose gamma irradiation on plant and grain nutrition of wheat

    Science.gov (United States)

    Singh, Bhupinder; Datta, Partha Sarathi

    2010-08-01

    We recently reported the use of low dose gamma irradiation to improve plant vigor, grain development and yield attributes of wheat ( Singh and Datta, 2010). Further, we report here the results of a field experiment conducted to assess the effect of gamma irradiation at 0, 0.01, 0.03, 0.05, 0.07 and 0.1 kGy on flag leaf area, stomatal conductance, transpiration and photosynthetic rate and plant and grain nutritional quality. Gamma irradiation improved plant nutrition but did not improve the nutritional quality of grains particularly relating to micronutrients. Grain carotene, a precursor for vitamin A, was higher in irradiated grains. Low grain micronutrients seem to be caused by a limitation in the source to sink nutrient translocation rather than in the nutrient uptake capacity of the plant root.

  20. Sprout inhibition of potatoes by gamma irradiation

    International Nuclear Information System (INIS)

    Pringsulaka, Vachira.

    1982-08-01

    Harvested fresh potatoes of Spunta variety were irradiated at 0, 60, 90, 120 and 150 gray and then stored at three different temperatures; room temperature (30+-5degC) with R.H. 55-65%, 15degC and 10degC with R.H. 85-95%. The percentage of sprout, rot, and weight loss were investigated every two weeks for six months. Both non-irradiated and irradiated potatoes stored at room temperature with R.H. 55-65% showed higher percentage in rottenint than in sprouting. All of irradiated potatoes stored at 15degC and 10degC with R.H. 85-95% sprouted after 3 months and at 4 months respectively. However, only 2.54% and 1.27% of sprout were found in 150 gray of irradiated potatoes stored at 15degC and 10degC with R.H. 85-95% respectively. No significant difference was found in weighted loss and in texture between irradiated and non-irradiated potatoes under the same condition. There is no significant difference in organoleptic test (P<0.05) between the irradiated and non-irradiated potatoes in all doses

  1. Effect of gamma irradiation on drugs

    International Nuclear Information System (INIS)

    Crucq, A.S.; Deridder, V.; Engalytcheff, A.; Slegers, C.; Tilquin, P.

    2005-01-01

    Several drugs (ceftazidime, vancomycin, glucagon, erythromycin and dobutamine) were studied in order to determine their radiostability. The methods used to measure the degradation of the drug were the potency and the colour change after irradiation. Electron spin resonance (ESR) is currently being used to detect irradiated foodstuffs and may be a promising technique to detect irradiated drugs. Trapped radicals in cefazolin sodium were studied and quantified by ESR for this purpose. It is proposed that the trapped radicals play an important role in the formation of the final radiolytic compounds. The potency of ceftazidime was not significantly modified after an irradiation of 25 kGy, whereas the potency of erythromycin and dobutamine decreased slightly. Glucagon was revealed to be radiosensitive with a significant decrease in its potency after irradiation. The visible spectra of glucagon and dobutamine did not change significantly after irradiation. The absorbance of erythromycin and vancomycin increased after irradiation. According to European Pharmacopoeia standards, the colour change of ceftazidime is unacceptable. The ESR spectra reveal that the trapped radicals in cefazolin sodium are characteristic of an irradiation. The radical concentration is dependent on the irradiation dose and decays over time. Radical concentration in cefazolin sodium was reduced by 99% after 100 days of storage. These radicals are responsible for about 13% of the measured final radiolytic product. Ionic reactions could also lead to final radiolytic products. (author)

  2. High irradiation and ageing properties of resistive Micromegas detectors at the new CERN Gamma Irradiation Facility

    CERN Document Server

    Andreou, Dimitra

    2016-01-01

    Resistive Micromegas have been developed in recent years with the aim of making this technology usable in HEP experiments where the high sparking rate of classical Micromegas is not tolerable. A resistive Micromegas with four layers and an active surface of 0.5 m2 each, has been designed and built at CERN as prototype of the detectors to be used for the upgrade of the ATLAS experiment. The detector has been exposed to an intense gamma source of 16 TBq in order to study the effects of ageing and evaluate the detector behavior under high irradiation.

  3. Effects of Gamma Irradiation on Polyvinylidene Fluoride Thin Films

    Science.gov (United States)

    Madivalappa, Shivaraj; Jali, V. M.

    2018-02-01

    Polyvinylidene fluoride thin films were synthesized by Sol-Gel method with spin rate of 3000 rpm for 30 sec on ITO glass substrates and were annealed at 170 C. The films were irradiated by Gamma radiation with different doses (10, 30, 40 and 50 kGy). XRD and FTIR spectra have been obtained to identify the presence of α / β phases. Mean crystallite size was calculated by Scherer’s equation. Different vibrational bands were identified and percentage of β phase was determined by FTIR analysis. Optical properties like band gap, refractive index, optical activation energy have been determined. Surface morphology and compositions of pristine and gamma irradiated PVDF thin films were confirmed respectively, by SEM and Energy dispersive X-ray analysis. The comparison of the structural and optical optical properties of pristine PVDF polymer film has been made with those of the Gamma irradiated films.

  4. EPR structure of the gamma irradiated alanine spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Jimenez D, H.; Urena N, F.; Galindo, S.; Bosch, P

    1992-03-15

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of {gamma}-irradiated powder DL- and L-alanine. (Author)

  5. Health protection and food preservation by gamma irradiation

    Science.gov (United States)

    1976-01-01

    Results of several major studies on food systems for space missions beginning with Apollo 12 through Apollo-Soyuz and investigations of the application of irradiation to food for manned space flight are reported. The study of flight food systems involved the application of radurization (pasteurizing levels) doses of gamma irradiation to flour and bread supplied by Pepperidge Farms in advance of the missions. All flights from Apollo 12 through 17 carried irradiated fresh bread. On Apollo 17, cooperation with Natick Laboratories permitted the introduction of a ham sandwich using irradiated bread and irradiated sterile ham. Investigations centered on irradiated bread were conducted during the course of these missions. Studies were applied to the concept of improving fresh bread from the point of view of mold inhibition. The studies considered how irradiation could best be applied at what levels and on a variety of bread types. Throughout the studies of the application of gamma irradiation the emphasis was placed upon using low levels of irradiation in the pasteurizing or radurizing doses--under a Megarad. The primary goal was to determine if a public health benefit could be demonstrated using radurization along with food preservation and food quality improvements. The public health benefit would be parallel to that of pasteurization of milk as a concept. Publications are included providing the details of these observations, one dealing with the flour characteristics and the other dealing with the influence on fresh bread types. These demonstrate the major findings noted during the period of the studies examining bread.

  6. Kraft cooking of gamma irradiated wood, (2)

    International Nuclear Information System (INIS)

    Inaba, Masamitsu; Meshitsuka, Gyosuke; Ishizu, Atsushi; Nakano, Junzo

    1981-01-01

    Pre-irradiation of wood in alkaline aqueous ethanol increases kraft pulp yield by up to 1.2%, as already reported. In order to clarify the mechanism of the pulp yield gain, the behaviors of lignin and carbohydrates during pre-irradiation and cooking were investigated. The results are summarized as follows: 1) γ-Irradiation of guaiacylethane in alkaline aqueous ethanol produced 5-(1-hydroxyethyl)-guaicylethane, which is formed by radical coupling between α-hydroxyethyl radical from ethanol and guaiacylethane radical having an unpaired electron at C-5. 5,5'-Dehydrodiguaiacylethane, which may be a predominant product produced by γ-irradiation in the absence of ethanol, was also detected. 2) The yield of vanillin obtained by nitrobenzene oxidation of MWL decreased with an increase of γ-ray dosage. The presence of ethanol during γ-irradiation lessened the extent of this decrease and also the degradation of cellobiose. 3) Gel filtration of the products obtained by γ-irradiation of MWL and cellobiose in the presence of 14 C-ethanol showed the possible combination between ethanol and MWL or cellobiose. 4) Molecular weight distributions of kraft lignin obtained from pre-irradiated beech chips were compared with those obtained from unirradiated chips. This result shows that γ-irradiation in the presence of ethanol decreases the ability of lignin to condense during kraft cooking. (author)

  7. Initial Gamma Spectrometry Examination of the AGR-3/4 Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    2016-11-01

    The initial results from gamma spectrometry examination of the different components from the combined third and fourth US Advanced Gas Reactor Fuel Development TRISO-coated particle fuel irradiation tests (AGR-3/4) have been analyzed. This experiment was designed to provide information about in-pile fission product migration. In each of the 12 capsules, a single stack of four compacts with designed-to-fail particles surrounded by two graphitic diffusion rings (inner and outer) and a graphite sink were irradiated in the Idaho National Laboratory’s Advanced Test Reactor. Gamma spectrometry has been used to evaluate the gamma-emitting fission product inventory of compacts from the irradiation and evaluate the burnup of these compacts based on the activity of the radioactive cesium isotopes (Cs-134 and Cs-137) in the compacts. Burnup from gamma spectrometry compares well with predicted burnup from simulations. Additionally, inner and outer rings were also examined by gamma spectrometry both to evaluate the fission product inventory and the distribution of gamma-emitting fission products within the rings using gamma emission computed tomography. The cesium inventory of the scanned rings compares acceptably well with the expected inventory from fission product transport modeling. The inventory of the graphite fission product sinks is also being evaluated by gamma spectrometry.

  8. Development and characterization of a novel, antimicrobial, sterile hydrogel dressing for burn wounds: single-step production with gamma irradiation creates silver nanoparticles and radical polymerization.

    Science.gov (United States)

    Boonkaew, Benjawan; Barber, Philip M; Rengpipat, Sirirat; Supaphol, Pitt; Kempf, Margit; He, Jibao; John, Vijay T; Cuttle, Leila

    2014-10-01

    Patients with burn wounds are susceptible to wound infection and sepsis. This research introduces a novel burn wound dressing that contains silver nanoparticles (SNPs) to treat infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na(+) ) hydrogel. Silver nitrate was dissolved in AMPS-Na(+) solution and then exposed to gamma irradiation to form SNP-infused hydrogels. The gamma irradiation results in a cross-linked polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNPs infused in the hydrogel in a one-step process. About 80% of the total silver was released from the hydrogels after 72 h immersion in simulated body fluid solution; therefore, they could be used on wounds for up to 3 days. All the hydrogels were found to be nontoxic to normal human dermal fibroblast cells. The silver-loaded hydrogels had good inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Results from a pilot study on a porcine burn model showed that the 5-mM silver hydrogel was efficient at preventing bacterial colonization of wounds, and the results were comparable to the commercially available silver dressings (Acticoat(TM) , PolyMem Silver(®) ). These results support its use as a potential burn wound dressing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Investigation on the effects of gamma irradiation on bitumen

    International Nuclear Information System (INIS)

    Mello, M.S.; Braz, D.; Motta, L.M.G.

    2011-01-01

    Brazil has more than 218,000 km of asphalt-paved highways. Bitumen is a generic term for natural or manufactured black or dark-colored solid, semisolid, or viscous cementitious materials that are composed mainly of high molecular weight hydrocarbons (90-95%). Several papers have shown that the irradiation process has changed the mechanical behavior in some polymers. This work aims to analyze the behavior of Brazilian irradiated Bitumen (CAP 50-70). In order to provide a preliminary evaluation, bitumen samples and cylindrical specimens of asphaltic mixture were tested. The bitumen samples were irradiated 0.1 to 300 kGy, and asphaltic mixture specimen was irradiated 5 to 300 kGy. The cylindrical asphaltic mixture specimen of 10.16 cm diameter used in this study was molded using an asphalt-aggregate mixture. The specimens were irradiated in LIN/UFRJ/Brazil using a Gamma cell Co 60 source of gamma irradiation with an applied dose rate of 29.7 Gy/min. After irradiated, the bitumen samples were subjected to penetration test and the asphaltic mixtures were subjected to indirect tensile strength test (diametral compression) for determination of the resilient modulus, according to ASTM method D 4123. The results of these experiments for each dose were compared with the control (nonirradiated). As expected, the penetration results showed that the ratio (irradiated/non-irradiated) decreases with increasing of irradiation dose for bitumen samples and the resilient modulus results showed that the ratio (irradiated/non-irradiated) increases with increasing of irradiation dose for asphaltic mixture. (author)

  10. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.

    2013-09-13

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10°C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  11. Induction and selection of citrus mutant by gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Jung; Oh, Seung Kyu; Lee, Hyo Yeon [Jeju National University, Jeju (Korea, Republic of)

    2010-09-15

    We have subjected to gamma-irradiation to citrus buds and then grafted onto mature citrus tree. Mutant citrus branch lines have been induced. As a result of first selection, we found the several mutant lines showing interesting phenotypes such as higher sugar content. We have selected several branches showing good qualities such as higher sweetness and/or lower acidity. Some branch lines showed over 13 .deg. Brix sugar content and below 0.9% acidity. Other mutant branch lines showed the changes of shape, size, peel thickness, and fiber contents or distribution of fruits. The results suggest that gamma-irradiation is an effective tool for induction of citrus mutant lines.

  12. Technical Safety Requirements for the Gamma Irradiation Facility (GIF)

    CERN Document Server

    Mahn, J A E M J G

    2003-01-01

    This document provides the Technical Safety Requirements (TSR) for the Sandia National Laboratories Gamma Irradiation Facility (GIF). The TSR is a compilation of requirements that define the conditions, the safe boundaries, and the administrative controls necessary to ensure the safe operation of a nuclear facility and to reduce the potential risk to the public and facility workers from uncontrolled releases of radioactive or other hazardous materials. These requirements constitute an agreement between DOE and Sandia National Laboratories management regarding the safe operation of the Gamma Irradiation Facility.

  13. Effects of {gamma}-irradiation on caprolactam level from multilayer PA-6 films for food packaging: Development and validation of a gas chromatographic method

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Henrique Peres; Felix, Juliana Silva [Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University, PO Box 502, 14801-902 Araraquara, SP (Brazil); Manzoli, Jose Eduardo [Nuclear and Energetic Research Institute (IPEN), Sao Paulo, SP (Brazil); Padula, Marisa [Packaging Technology Center/Food Technology Institute (CETEA/ITAL), Campinas, SP (Brazil); Monteiro, Magali [Department of Food and Nutrition, School of Pharmaceutical Science, Sao Paulo State University, PO Box 502, 14801-902 Araraquara, SP (Brazil)], E-mail: monteiro@fcfar.unesp.br

    2008-07-15

    A gas chromatographic method to determine caprolactam in multilayer PA-6 films used for meat foodstuffs and cheese was developed and validated. A wide linear range (0.8-400 {mu}g/ml), RSD{<=}4.1% and recovery higher than 90.0% were obtained for the chromatographic system, while precision and accuracy of the method showed RSD{<=}3.8%, recovery from 95.5-100.0% and LOQ of 32 {mu}g/g. Irradiated (3, 7 and 12 kGy) and non-irradiated commercial films were analyzed. Most of them increased caprolactam levels with the increase of irradiation doses.

  14. Study on silk yellowing induced by gamma-irradiation

    International Nuclear Information System (INIS)

    Tsukada, Masuhiro; Aoki, Akira

    1985-01-01

    The changes in the yellow color of silk threads with total dose of irradiation applied were described and studied by a colorimetric method and by monochrome photography. The change into a yellow color of the specimen in the course of irradiation was clearly detected in photographs using filters, 2B and SC 56 under light conditions at the wavelength of 366 nm. The b/L value measured by colorimetry in undegummed and degummed silk fibers sharply increased in the early stage of irradiation. Yellow color indices (b/L) of the specimen subjected to gamma-irradiation continued to increase and the yellow color of the silk threads became more pronounced above a total dose of irradiation of 21 Mrad. The b/L value of the undegummed silk fiber which had deen irradiated was about 2 times that of the degummed silk fiber. (author)

  15. Carbamazepine degradation by gamma irradiation coupled to biological treatment

    International Nuclear Information System (INIS)

    Wang, Shizong; Wang, Jianlong

    2017-01-01

    Highlights: • Carbamazepine was removed by the combined gamma radiation and biodegradation. • The removal efficiency of carbamazepine increased with dose. • Irradiation could enhance the mineralization of carbamazepine significantly. • The combined irradiation and biodegradation was effective for carbamazepine removal. - Abstract: Carbamazepine is an emerging contaminant and resistant to biodegradation, which cannot be effectively removed by the conventional biological wastewater treatment processes. In this study, the combined gamma irradiation and biodegradation was employed to remove carbamazepine from wastewater. The effect of dose on the removal of carbamazepine was studied at different doses (300, 600 and 800 Gy). The results showed that the removal efficiency of carbamazepine increased with dose increasing during the irradiation process. The maximum removal efficiency was 99.8% at 800 Gy, while the removal efficiency of total organic carbon (TOC) was only 26.5%. The removal efficiency of TOC increased to 79.3% after the sequent biological treatment. In addition, several intermediates and organic acids were detected. The possible degradation pathway of carbamazepine during the integrated irradiation and biodegradation was proposed. Based on the overall analysis, the combined gamma irradiation and biological treatment process can be an alternative for removing the recalcitrant organic pollutants such as carbamazepine from wastewater.

  16. Carbamazepine degradation by gamma irradiation coupled to biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shizong [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2017-01-05

    Highlights: • Carbamazepine was removed by the combined gamma radiation and biodegradation. • The removal efficiency of carbamazepine increased with dose. • Irradiation could enhance the mineralization of carbamazepine significantly. • The combined irradiation and biodegradation was effective for carbamazepine removal. - Abstract: Carbamazepine is an emerging contaminant and resistant to biodegradation, which cannot be effectively removed by the conventional biological wastewater treatment processes. In this study, the combined gamma irradiation and biodegradation was employed to remove carbamazepine from wastewater. The effect of dose on the removal of carbamazepine was studied at different doses (300, 600 and 800 Gy). The results showed that the removal efficiency of carbamazepine increased with dose increasing during the irradiation process. The maximum removal efficiency was 99.8% at 800 Gy, while the removal efficiency of total organic carbon (TOC) was only 26.5%. The removal efficiency of TOC increased to 79.3% after the sequent biological treatment. In addition, several intermediates and organic acids were detected. The possible degradation pathway of carbamazepine during the integrated irradiation and biodegradation was proposed. Based on the overall analysis, the combined gamma irradiation and biological treatment process can be an alternative for removing the recalcitrant organic pollutants such as carbamazepine from wastewater.

  17. Gamma irradiation for disinfestation of salted and dried fish

    International Nuclear Information System (INIS)

    Loaharanu, S.

    1975-01-01

    About 60-70% of commercially salted and dried fish were found to be infested by flies of 6 different species, i.e. the Cheese skipper (Piophila casei, L.) the Bronze bottle fly (Paenicia cuprina), the Screw worm fly (Chrysomya megacephala, Fab.), the Red-tailed flesh fly (Sarcophaga haemorrhoidalis, Fallen), Lucilia illustris, Meigen and Chrysomya marginalis, Weidemann. Larvae of the Cheese skipper were found to be the least radiation-sensitive, as 225 krad was required to prevent 99% of the larvae from developing into pupae. This dose was completely lethal to other developmental stages of the Cheese skipper and to all stages of other species. Irradiation at this doselevel also has some beneficial microbiological effects. Doses between 3 and 12,5 krad prevented larvae of all insects mentioned above from reaching the adult stage, though they did not inhibit the transition into the pupal form. No significant difference was observed on the organoleptic properties between salted and dried mackerel and Pla salid (Trichogaster pectoralis, Regan), a fresh water fish, irradiated up to 300 krad and those of untreated samples when tested up to 6 months of storage time at room temperature. Polypropylene bags of 0,13 and 0,20 mm thickness and polyethylene bags of 0,20 mm thickness could prevent re-infestation of the samples. Transportation tests by truck for a distance of 800 km revealed that both polypropylene and polyethylene bags of 0,13 and 0,20 mm thickness were suitable to package the mackerel samples but only polypropylene bags of 0,20 mm thickness were sufficient to protect the Pla salid samples. It appeared that salted and dried mackerel irradiated up to 300 krad and stored for 4 months was not considered rancid. No change in fat, protein and ash contents of irradiated samples was observed. It was concluded that gamma irradation could be considered as an effective method for disinfesting and preserving salted and dried fish. (author)

  18. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio

    International Nuclear Information System (INIS)

    Gagnaire, B.; Cavalié, I.; Pereira, S.; Floriani, M.; Dubourg, N.; Camilleri, V.; Adam-Guillermin, C.

    2015-01-01

    Highlights: • The present study aimed to evaluate the effects of gamma rays on zebrafish larvae. • Different techniques were used: gene expression, biochemistry, microscopy and macroscopical observations. • The results showed that gamma irradiation can alter embryo-larval development at several levels of organization. - Abstract: In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.

  19. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Gagnaire, B., E-mail: beatrice.gagnaire@irsn.fr [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Cavalié, I. [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Pereira, S. [Neolys Diagnostics, Lyon 69373 (France); Floriani, M.; Dubourg, N.; Camilleri, V.; Adam-Guillermin, C. [Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France)

    2015-12-15

    Highlights: • The present study aimed to evaluate the effects of gamma rays on zebrafish larvae. • Different techniques were used: gene expression, biochemistry, microscopy and macroscopical observations. • The results showed that gamma irradiation can alter embryo-larval development at several levels of organization. - Abstract: In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.

  20. Vanderbilt University Gamma Irradiation of Nano-modified Concrete (2017 Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Deichert, Geoffrey G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Selby, Aaron P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reches, Yonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document outlines the irradiation of concrete specimens in the Gamma Irradiation Facility in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Two gamma irradiation runs were performed in July of 2017 on 18 reference mortar bar specimens, 26 reference cement paste bar specimens, and 28 reference cement paste tab specimens to determine the dose and temperature response of the specimens in the gamma irradiation environment. Specimens from the first two gamma irradiations were surveyed and released to Vanderbilt University. The temperature and dose information obtained informs the test parameters of the final two gamma irradiations of nano-modified concrete planned for FY 2018.

  1. Studies on apple preservation by 60 -gamma irradiation

    International Nuclear Information System (INIS)

    Wang Chuanyao; Jiang Mengyue; Gao Meixu

    1992-01-01

    Studies on '60'Co-gamma irradiation of Golden Delicious apple have been carried out. The results showed that the optimum irradiation dosage for stored apple was ranged from 0.3-0.5 k Gy, with this dosage, the contents of vitamin c and titratalbe acidity in these apples had no significant change compared with unirradiated apples. The respiratory rate and the amount of ethylene release were decreased after irradiation. The mortality of the verticillate pathogenic fungi was 97% at the dose of 0.5 k Gy

  2. Effect of gamma irradiation on some nutritional factors of rice

    International Nuclear Information System (INIS)

    Mohamad Khan Ayob; Osman Hassan.

    1987-01-01

    The effect of gamma irradiation and types of packaging material used (namely: gunny sack, heavy duty polyethylene, woven laminated bags) on moisture content, gel viscosity and reducing sugar of rice was observed. Moisture content, gel viscosity and reducing sugar were determined by drying method, brookfield viscometer and Nelson method, respectively. The results showed that moisture and reducing sugar content were not significantly affected by types of material and irradiation doses. On the other hand gel viscosity was greatly influenced by irradiation doses and storage time. (A.J.)

  3. The effect of gamma irradiation on bacteria in stored rice

    International Nuclear Information System (INIS)

    Kamaruzzaman Sijam.

    1987-01-01

    The effect of gamma irradiation on bacteria was studied for reducing the total microbial numbers that contaminating raw product under storage. Different storage packages of rice samples were irradiated at various levels of dosage. The results of bacterial isolation, total bacterial count and the isolation of bacterial food pathogenus were discussed. It was observed that the presence of bacteria colonies was suppressed by the presence of yeast and moulds eventhough the number of them decreased as the irradiation dosage levels were increased. (A.J.)

  4. Postradiation changes in rats after 15 Gy gamma irradiation

    International Nuclear Information System (INIS)

    Strsskova, K.; Danova, D.; Novakova, J.; Kafka, I.

    2008-01-01

    The wide use of nuclear technologies in various areas of human activities made necessary to work out methods of radioprotection. Male Wistar rats, aged 3 months, were exposed a single whole-body dose of 15 Gy gamma rays. We followed some biochemical changes, the changes of hematological parameters in time intervals 3, 6 and 9 days after expose and the clinical symptoms. The clinical symptoms in irradiated animals were diarrhea, apathy, somnolence, piloerection and hemorrhages on eyes. None of irradiated rats survived the 10 th day after irradiation. (authors)

  5. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  6. Influence of MWCNTs and gamma irradiation on thermal ...

    Indian Academy of Sciences (India)

    37, No. 2, April 2014, pp. 347–356. c Indian Academy of Sciences. Influence of MWCNTs and gamma irradiation on thermal characteristics of medical grade UHMWPE. P S RAMA SREEKANTH and S KANAGARAJ. ∗. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India.

  7. Radiation safety of gamma and electron irradiation facilities

    International Nuclear Information System (INIS)

    1992-01-01

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  8. Discrimination of surface tracking patterns of gamma irradiated ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The purpose of this paper is to evaluate the radiation resistance of gamma irradiated ethylene propylene diene monomer (EPDM) and to identify the pattern discriminating abilities of the surface tracking patterns. Simple objects can be described by the ideal shape primitives such as cubes, cones and cylinders. But.

  9. Conservation of garlic bulbs (allium sativum L.) by gamma irradiation

    International Nuclear Information System (INIS)

    Fernandez, J.; Arranz, T.

    1979-01-01

    The effect of different doses of gamma radiation (from 5 to 30 krad) on the conservation of garlic bulbs during a 12 months period is studied. Irradiations were made at three different times and the best results were obtained with the treatment given during the two months following harvest. During this period, 5krad are enough to inhibit garlic bulbs sprouting. (author)

  10. The secondary biogenic radiation of gamma-irradiated human blood

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Surkenova, G.N.; Budagovskij, A.V.; Gudi, G.A.

    1997-01-01

    The sample of blood freshly taken from healthy men were gamma-irradiated with a dose of 10 Gy. It was shown that after the treatment the blood gained the capacity to emit secondary biogenic radiation. Emission lasted for some hours, passed through quartz-glass curette and was revealed by stimulating influence on biological detector (sprouting seeds)

  11. Dosimetry computer module of the gamma irradiator of ININ

    International Nuclear Information System (INIS)

    Ledezma F, L. E.; Baldomero J, R.; Agis E, K. A.

    2012-10-01

    This work present the technical specifications for the upgrade of the dosimetry module of the computer system of the gamma irradiator of the Instituto Nacional de Investigaciones Nucleares (ININ) whose result allows the integration and consultation of information in industrial dosimetry subject under an outline client-server. (Author)

  12. Gamma-Weighted Discrete Ordinate Two-Stream Approximation for Computation of Domain Averaged Solar Irradiance

    Science.gov (United States)

    Kato, S.; Smith, G. L.; Barker, H. W.

    2001-01-01

    An algorithm is developed for the gamma-weighted discrete ordinate two-stream approximation that computes profiles of domain-averaged shortwave irradiances for horizontally inhomogeneous cloudy atmospheres. The algorithm assumes that frequency distributions of cloud optical depth at unresolved scales can be represented by a gamma distribution though it neglects net horizontal transport of radiation. This algorithm is an alternative to the one used in earlier studies that adopted the adding method. At present, only overcast cloudy layers are permitted.

  13. The effect of gamma irradiation on the germination and growth of certain Nigerian agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Mokobia, C E; Anomohanran, O [Department of Physics, Delta State University, Abraka, Delta State (Nigeria)

    2005-06-01

    Gamma irradiation has been found to be very useful both for sterilisation in medicine and the preservation of food and cereals in nutrition and agriculture. This investigation was carried out to determine the effect of gamma irradiation on the subsequent germination and growth of irradiated seeds. Thirty seeds each of maize, okra and groundnut were irradiated to varying doses of 150, 300, 500, 700, 900, 1000 Gy using the {sup 60}Co gamma cell irradiator facility at the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife. These, as well as the controls (unirradiated seeds), were planted on the same day in an already prepared area of farmland during the rainy season to ensure a constant moisture flow. The times of germination and subsequent growth were monitored. Results show that maize, okra and groundnut seeds needed for planting can be safely stored using gamma irradiation. However, the study reveals that the number of germinated seeds and the growth rate for the crops decrease with increase in the radiation dose the seeds were exposed to. Third-degree polynomial equations were derived which describe the percentage germination of the crops at various levels of exposure. A chart of percentage germination of seeds versus exposure dose is also presented as a quick guide to farmers, policy makers and agricultural institutions. (note)

  14. Evaluating the effects of gamma-irradiation for decontamination of medicinal cannabis

    Directory of Open Access Journals (Sweden)

    Arno eHazekamp

    2016-04-01

    Full Text Available In several countries with a National medicinal cannabis program, pharmaceutical regulations specify that herbal cannabis products must adhere to strict safety standards regarding microbial contamination. Treatment by gamma irradiation currently seems the only method available to meet these requirements. We evaluated the effects of irradiation treatment of four different cannabis varieties covering different chemical compositions. Samples were compared before and after standard gamma-irradiation treatment by performing quantitative HPLC analysis of major cannabinoids, as well as qualitative GC analysis of full cannabinoid and terpene profiles. In addition, water content and microscopic appearance of the cannabis flowers was evaluated. This study found that treatment did not cause changes in the content of THC and CBD, generally considered as the most important therapeutically active components of medicinal cannabis. Likewise, the water content and the microscopic structure of the dried cannabis flowers were not altered by standard irradiation protocol in the cannabis varieties studied. The effect of gamma-irradiation was limited to a reduction of some terpenes present in the cannabis, but keeping the terpene profile qualitatively the same. Based on the results presented in this report, gamma irradiation of herbal cannabis remains the recommended method of decontamination, at least until other more generally accepted methods have been developed and validated.

  15. Developmental inhibition of gamma irradiation on the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae)

    Science.gov (United States)

    Ryu, Jihoon; Ahn, Jun-Young; Sik Lee, Seung; Lee, Ju-Woon; Lee, Kyeong-Yeoll

    2015-01-01

    Ionizing irradiation is a useful technique for disinfestation under plant quarantine as well as post-harvest management. Effects of gamma irradiation treatment were tested on different developmental events of Carposina sasakii, which is a serious pest of various orchard crops. Apple fruits infested by C. sasakii were irradiated by gamma rays ranging from 0 to 300 Gy. Inhibition rates were determined on behavioral events related to development, including larval exit from apples, cocoon formation, adult eclosion, and oviposition. Failure rates of all these developmental events increased with increasing doses of irradiation. Rates of larval exit from apples and cocoon formation decreased to 13.2% and 1.7%, respectively, at 300 Gy. However, the adult eclosion rate decreased to 5.4% at 100 Gy and was completely inhibited at doses greater than 150 Gy. LD99 values for the inhibition of cocoon formation and adult emergence was estimated into 313.4 and 191.0 Gy. Furthermore, adults developed from irradiated larvae completely failed to lay eggs. Thus, irradiation of infested apples at doses of 200 Gy and higher completely inhibited the next generation of C. sasakii. Our results suggest that gamma irradiation treatment would be a promising technique for the control of C. sasakii.

  16. Effects of storage and gamma irradiation on (japonica) waxy rice

    International Nuclear Information System (INIS)

    Sung, W.-C.; Hong, Mei-Chu; Chang, T.-S.

    2008-01-01

    Japonica cultivar, Taichung waxy 70 (TCW 70), was exposed to gamma radiation with doses ranging from 0 to 2.0 kGy. The effects of gamma irradiation on waxy rice pasting properties and the qualities of its food product, mochi, were compared to the effects of storage over 12 months. Doses ranging from 0.5 to 2 kGy can decrease the paste viscosity of waxy rice as those obtained after 6 months of storage. Radiation treatments were less effective to decrease the hardness of mochi than waxy rice samples stored over 6 months. It was shown the effects of gamma irradiation on shortening the japonica waxy rice aging time and improving the quality of rice products, like mochi, were not as good as the effects of storage

  17. A simple and efficient gamma irradiator for RVNRL

    International Nuclear Information System (INIS)

    Smolko, E.; Ferenaz, G.; Docters, E.; Keizo Makuuchi

    1996-01-01

    This work describes a new design of a gamma irradiator for RVNRL which obeys a reliable operation and an efficient economical equation. Our irradiator is of a nobel design according to present requirements of latex industries and to the state of the art of radiation technology. The irradiator is of a wet storage type, where the radioactive sources are fixed in the reactor vessel, permanently submerged in deionized water. Preformulated latex is pumped from a deposited vessel into the reactor vessel and it is recirculated during the irradiation cycle avoiding turbulences and dose inhomogeneities. The irradiation time per one ton batch with a Co-60 charge of 3.5E15 Bq (100 kCi) is of approximately 4 hours

  18. Thermoluminescence response of gamma-irradiated sesame with mineral dust

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez L, Y. [CSIC, Instituto de Estructura de la Materia, Calle Serrano 121, 28006 Madrid (Spain); Correcher, V. [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Garcia G, J. [CSIC, Museo Nacional de Ciencias Naturales, Calle Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Cruz Z, E., E-mail: y.r.l@csic.es [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2011-10-15

    The thermoluminescence (Tl) emission of minerals isolated from Mexican and Indian sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction and environmental scanning microscope, the adhered dust in both samples is mainly composed by different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good Tl intensity, (ii) high stability of the Tl signal during the storage of the material (i.e. low fading) and (iii) are thermally and chemically stable. Blind tests performed under laboratory conditions, but simulating industrial preservation processes (similar temperature and moisture, and presence of white light), allows to distinguish between 1 KGy gamma-irradiated and non-irradiated samples even 11000 hours (15 months) after the irradiation proceeding. (Author)

  19. Management of Potato Soft Rot by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abd El-Ghany, H.; Moussa, Z.; Abd El-Rahman, A.F.; Salem, E.A.

    2017-01-01

    This investigation aims to apply a safe practice to minimize potato losses due to soft rot disease of tubers kept under ambient temperature. In this regard, gamma irradiation was used to extend keeping quality through its effect on soft rot bacteria. Eight bacterial isolates were recovered on Logan’s medium from kitchen kept tubers with symptoms of soft rot disease. Five isolates were found pathogenic and tentatively identified as Pectobacterium atrosepticum and Pectobacterium carotovorum sub sp. brasiliense on the basis of the usual bacteriological methods. A molecular method using 16SrDNA sequence analysis for verification of the identity of two isolates was made. The two bacterial isolates, Pectobacterium atrosepticum and Pectobacterium carotovorum sub sp. brasiliense, were irradiated by different doses of gamma rays. Complete inhibition occurred at doses 2.5 and 2.0 KGy for high densities (Approximately 4.0x10 9 CFU/ml) of P. atrosepticum and P. carotovorum sub sp. brasiliense, respectively. The D10 value of gamma irradiation was 0.24 KGy for P. atrosepticum and 0.20 KGy for P. carotovorum subsp. brasiliense. Irradiation of artificially infected tubers with soft rot bacteria using the two mentioned D10 doses for the two bacterial species increased the shelf life of tubers kept under ambient temperature. The internal chemical quality of tubers was shown to be improved by keeping the tubers under ambient temperature after irradiation by the two D10 doses 0.24 and 0.20 KGy

  20. Gamma irradiation of Cryptosporidium parvum oocysts affects intracelluar levels of the viral symbiont CPV

    Science.gov (United States)

    Previous studies have shown a dose-dependent effect of gamma irradiation on Cryptosporidium parvum development in neonatal mice and newborn calves. In mice, C. parvum oocysts exposed to 200 Gy showed nearly complete inability to develop as measured by C. parvum-specific quantitative PCR of ileal ti...

  1. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  2. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580185 (Korea, Republic of); Soo Chun, Byeong; Hyun Ahn, Dong [Department of Food Science and Biotechnology, Pukyong National University, Busan 608737 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, Jinju International University, Jinju 660759 (Korea, Republic of); Kim, Duk-Jin [Division of Food Engineering and Nutrition, Daegu University, Daegu 712714 (Korea, Republic of); Kim, Gwang Hoon [Department of Biology, Kongju National University, Chungnam 314701 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  3. Mutagenicity studies on alcohol extracts from gamma-irradiated potatoes

    International Nuclear Information System (INIS)

    Ishidate, M. Jr.; Yoshikawa, Kunie; Sofuni, Toshio; Iwahara, Shigeo; Sibuya, Tohru.

    1981-01-01

    The alcohol extracts freshly prepared from gamma-irradiated potatoes were examined for their mutagenic activity in bacterial and mammalian cell systems. Negative results were obtained from all following test systems: Mutation assays with Salmonella typhimurium His - strains such as TA 100, TA 98, TA 1535, TA 1537, and streptomycin-dependent mutant (SM sup(d)) strain, TA 100 - 10, inductests with Escherichia coli strains, K 12 GY 5027 and K 12 C600, chromosomal aberration tests with Chinese hamster cells in culture, as well as micronucleus tests in mice. In addition, no difference in the mutagenic activities was found between extracts prepared from the irradiated and the unirradiated potatoes, suggesting that no mutagenic substance was produced in potatoes following gamma-irradiation. (author)

  4. EPR structure of the gamma irradiated alanine spectrum

    International Nuclear Information System (INIS)

    Cabral P, A.; Jimenez D, H.; Urena N, F.; Galindo, S.; Bosch, P.

    1992-03-01

    In this study is shown that the broadened five-line EPR pattern of the gamma irradiated alanine possibly decomposes into a more complex pattern when the recorded spectrum is subject to an operation of deconvolution. The EPR powder spectra of gamma irradiated DL- and L-alanine with and without binders are analysed. In all recorded spectra, each observed line is resolved into an asymmetrical triplet when a Gaussian distribution of 8.2 gauss width is removed, by deconvolution, from the observed spectrum. On the other hand, from a simple fitting analysis carried out on the original data, one encounters that some calculated relations between characteristic parameters, such as intensity ratios, deviate consistently from assumed height ratios. Both, from deconvolution and fitting results, a different structure is suggested for the observed broadened five-line EPR pattern of γ-irradiated powder DL- and L-alanine. (Author)

  5. Computational model of gamma irradiation room at ININ

    Science.gov (United States)

    Rodríguez-Romo, Suemi; Patlan-Cardoso, Fernando; Ibáñez-Orozco, Oscar; Vergara Martínez, Francisco Javier

    2018-03-01

    In this paper, we present a model of the gamma irradiation room at the National Institute of Nuclear Research (ININ is its acronym in Spanish) in Mexico to improve the use of physics in dosimetry for human protection. We deal with air-filled ionization chambers and scientific computing made in house and framed in both the GEANT4 scheme and our analytical approach to characterize the irradiation room. This room is the only secondary dosimetry facility in Mexico. Our aim is to optimize its experimental designs, facilities, and industrial applications of physical radiation. The computational results provided by our model are supported by all the known experimental data regarding the performance of the ININ gamma irradiation room and allow us to predict the values of the main variables related to this fully enclosed space to within an acceptable margin of error.

  6. Gamma- irradiation to increase crop production

    International Nuclear Information System (INIS)

    Nomai, Matongo

    2000-01-01

    Brief background information on past research activities on the use of Co-60 Gamma Irraditor in production of medical products such as sterilised biological tissue grafts and surgical Gloves and in food preservation.The general results of the application of Radiation Mutation Breeding is discussed from the current research activities involving Beans,Pumpkins,Cotton Seeds,Finger Millet,Wheat,Groundnuts and Rice.The focus is to demonstrate the great potential of the technique in increasing food security

  7. Effects of prenatal gamma irradiation on postnatal development of the nervous system and some forms of behavior in rats: Melatonin effect

    International Nuclear Information System (INIS)

    Smajda, B.; Pipova, N.; Kiskova, T.

    2017-01-01

    The aim of our work was to find out whether irradiation of pregnant female rats with a dose of 1 Gy gamma rays during the most sensitive phase of CNS organogenesis causes a change in the intensity and time dynamics of neurogenesis in the hippocampus and whether these changes will correlate with changes in some selected behavioral parameters. Another objective was to investigate the protective effect of chronic administration of melatonin, an endogenous substance with proven antioxidant and genoprotective effects on neurogenesis processes in two age-differentiated groups of animals. The results showed a significant effect of a low dose of gamma rays applied during the sensitive phase of CNS embryogenesis on the intensity and time dynamics of neurogenesis in young and adult mammals. Melatonin administration has had a positive effect on cell proliferation and survival of mature neurons. From behavioral parameters, the positive effect of melatonin has only been shown to improve the long-term spatial memory of rats in the Morris swimming pool. (authors)

  8. The resistance of salmonella typhirium on gamma irradiation

    International Nuclear Information System (INIS)

    Harsoyo; Andini, L.S.

    1988-01-01

    This research intended to investigate the registance of S. typhimurium on the gamma irradiation, temperature and pH in the cell suspension of 10 exp. 8 and homogenants sludge medium. The resistance of bacteria S. typhimurium in cells suspension of 10 exp. 8 was irradiated with gamma ray (60-Co) at the doses of 0; 0.15; 0.30; and 0.45 kGy. The dose rate was 1.00 kGy/h, in the gamma cell 220 irradiator and then the suspension was plated on the media, which have pH from 6, 7, and 8. Then incubated at temperature of 30, 37 and 42 Celcius centigrade for 2 x 24 hours. The resistance of bacteria S. typhimorium in 10% sludge homogenate in TGY broth was iradiated with gamma ray at doses of 0; 0.5; 1.0; 1.5; 2.0; and 2.5 kGy with dose rate of 0.95 kGy/h. After irradiation the bacteria was incubated for 24 hours at room temperature (28 +/- 2) Celcius centigrade then innoculate on SS, Mac Conkey, and XLD media. After 2 x 24 hours grows on petri dishes, the growth of colonies were observed and total bacterial counts per ml was calculated. The results showed irradiation and pH media gave significant decrease in the total bacterial count. Irradiation doses of 0.45 kGy reduced the total number of bacterial counts by 5 log cycles with the pH variation from 6 - 8 while the results in the sludge homogenete showed that the media give no significant effect on the ground capabilities of S. typhimorium. (author). 7 refs, 4 figs, 4 tabs

  9. Effect of gamma irradiation on nano polymer poly aniline

    International Nuclear Information System (INIS)

    Chan Yan Yhee

    2012-01-01

    Poly aniline (PANI) is a conductor polymer that investigated by a lot of researchers which display unique electric characteristic and widely applications. The objective in this research is to see the effect of gamma irradiation on PANI by using microemulsion method. Cation surfactant, cetyltrimethylammonium bromide, (CTAB) use in microemulsion method for dissolve aniline with distilled water. Mixture of aniline, ammonium persulfate (APS) as oxidizing agent and hydrochloric acid (HCL) into aqueous CTAB and magnetic bar stirrer applied at temperature of 3 degree Celsius for 3 hours to form PANI. The washing is done by using distilled water and ethanol to purify PANI. After washing the PANI are categories in two group, PANI aqueous solution and PANI powder. PANI aqueous solution irradiated with gamma irradiation from 0 kGy to 100 kGy doses in 10 kGy intervals while PANI powder are dried in oven before irradiated with gamma irradiation with same doses as PANI aqueous solution. These aqueous solution products are characterized by ultraviolet absorption spectroscopy (UV-Vis) which shows the electron transition π - π * and Microscope Electron Transmission (TEM) for morforlogy of PANI nanoparticles while PANI powder are characterized using Spectroscopy Fourier Transformation Intra-Red (FTIR) for the functional group, X-Ray Diffraction (XRD) to determine the crystalline peak and Field Emission Scanning Electron Microscope (FESEM) for morphology PANI nanoparticles. The effect of gamma irradiation nanoparticles are PANI aqueous solution produce aggregation and changing of PANI nanoparticles sizes while PANI powder produce fractures and distortion on PANI nanoparticles. (author)

  10. Effects of whole-body gamma irradiation on oxygen transport by rat erythrocytes

    International Nuclear Information System (INIS)

    Thiriot, Christian; Kergonou, J.F.; Rocquet, Guy; Allary, Michel; Saint-Blancard, Jacques

    1982-01-01

    In this work, we studied the influence of whole-body gamma irradiation (8 Gy) upon oxygen transport by erythrocytes, through the erythrocyte count and related parameters, and through the factors affecting the oxygen affinity of hemoglobin. The oxygen affinity of hemoglobin is increased from day D + 5 after irradiation, and a severe erythropenia develops from day D + 8. These modifications probably result in tissue hypoxia via diminished oxygen transport from lungs to tissues, and decreased oxygen release from oxyhemoglobin in tissues

  11. Dosimetry and irradiation methods for the ANSTO gamma technology research irradiator (GATRI)

    International Nuclear Information System (INIS)

    Izard, M.E.

    1988-07-01

    The Australian Nuclear Science and Technology Organisation's gamma technology research irradiator (GATRI) at Lucas Heights, New South Wales, has been modified for use as a research and small-scale commercial irradiation facility to be available to government agencies and private industry for the technical and economic evaluation of irradiation processing. The new source rack was designed around existing mechanical components to optimise the limited space available within the irradiation cell. Irradiation parameters investigated during commissioning included the effect of source-to-target distance on relative dose rates within targets of the same density; effect of density on dose-rate distribution within targets irradiated at the same distance from the source; and the contribution of transit dose to low absorbed doses as the source is raised and lowered. The efficiency of the irradiator was determined for various target densities and overdose ratios

  12. Effects of gamma irradiation on the degradation of dyes

    International Nuclear Information System (INIS)

    Piccinini, N.; Ferrero, F.

    1975-01-01

    To investigate the degradation kinetics of aqueous solutions of dyes of several classes, we studied the effects of gamma irradiation versus the dose (up to 80 krad), the dye concentration, the pH and the oxygen content of these solutions. To study the influence of some of the above-mentioned parameters, anthraquinonic dyes have been irradiated in a wide range of doses (up to 5 Mrad). Furthermore these dyes were acted upon in order to investigate the complex reactions of molecular alteration through chromatographic separations and spectrophotometric analyses. Experimental results agreed with a first order kinetics for dye concentrations lower than 0.04 g/1, and with a zero order one for higher concentrations. The pH was found to have a different influence according to the type of dye; for example we found that the degradation efficiency for anthraquinonic dyes has higher values for basic ranges. The dissolved oxygen supports the degradation in comparison with de-aerated solutions, though its influence varies according to the dye type and the pH. The oxygen action is particularly evident with high doses; in fact, tests on anthraquinonic dyes with doses up to 5 Mrad showed a marked decrease in the kinetic constants caused by the oxygen disappearance. Radiochemical degradation yields (Gd), never greater than a few units, show that the radical reactions responsible for the decolorization effect, are limited to a few transfer sequences. COD decrease, on the other hand, confirms the presence of oxidation phenomena which correspond to computed radiochemical yields (Gsub(ox)) markedly higher than those spectrophotometrically measured; such a difference is enhanced in the case of irradiation with aeration of solutions. The theoretical considerations are also described that were developed for outlining a general scheme involving the experimental results of both the kinetics and the radiochemical yield. (author)

  13. Potential Application of Gamma Irradiated Polyvinyl Pyrrolidone (PVP) - Starch Hydrogel As Fever Cooling Plaster

    International Nuclear Information System (INIS)

    Darmawan Darwis; Lely Hardiningsih

    2010-01-01

    Research on the development of hydrogel for cooling fever by using gamma irradiation technique has been done. The hydrogel was prepared by irradiating the mixture of PVP with concentration of 7% (w/v) and starch with various concentrations using gamma ray at irradiation dose of 20 to 40 kGy. The results showed that optimum starch concentration to make solid constituent of PVP-starch prior to irradiation were 10-15%. Gel fraction of PVP-starch hydrogel showed an increase by increasing of irradiation dose up to 35 kGy, and acceleration of irradiation dose did not have any effect on gel fraction. At the same irradiation dose, there was no influence of starch concentration on gel fraction. Maximum gel fraction was achieved at 35 kGy irradiation dose. Water content of PVP-Starch hydrogel with starch concentration of 10 to 15% was in the range of 73 - 76%. Water content of hydrogel depends on starch concentration, while irradiation dose does not give any effect on water content of hydrogel. Hydrogel with high water content is potential to be used for fever cooling. Hydrogel PVP-Starch with starch concentration of 10% irradiated by gamma irradiation at the dose of 35 kGy had the ability to reduce water temperature from 40°C to 36°C in 21 minutes, while it took 24 minutes for the hydrogel with starch concentration of 12.5 and 15%. Commercial cooling pad hydrogel need 24 minutes to reduce temperature of water from 40°C to 36°C. Based on these results, it can be concluded that PVP hydrogel with 10% starch content showed faster cooling effect compared to hydrogel with 12.5 and 15 % starch content as well as the commercial hydrogel. Beside these advantages, the hydrogel obtained has some disadvantages such as low stickiness, brittle and opaque. (author)

  14. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Qi, Wencai; Zhang, Liang; Wang, Lin; Xu, Hangbo; Jin, Qingsheng; Jiao, Zhen

    2015-05-01

    Heavy metals are important environmental pollutants with negative impact on plant growth and development. To investigate the physiological and molecular mechanisms of heavy metal stress mitigated by low-dose gamma irradiation, the dry seeds of Arabidopsis thaliana were exposed to a Cobalt-60 gamma source at doses ranging from 25 to 150Gy before being subjected to 75µM CdCl2 or 500µM Pb(NO3)2. Then, the growth parameters, and physiological and molecular changes were determined in response to gamma irradiation. Our results showed that 50-Gy gamma irradiation gave maximal beneficial effects on the germination index and root length in response to cadmium/lead stress in Arabidopsis seedlings. The hydrogen peroxide and malondialdehyde contents in seedlings irradiated with 50-Gy gamma rays under stress were significantly lower than those of controls. The antioxidant enzyme activities and proline levels in the irradiated seedlings were significantly increased compared with the controls. Furthermore, a transcriptional expression analysis of selected genes revealed that some components of heavy metal detoxification were stimulated by low-dose gamma irradiation under cadmium/lead stress. Our results suggest that low-dose gamma irradiation alleviates heavy metal stress, probably by modulating the physiological responses and gene expression levels related to heavy metal resistance in Arabidopsis seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Reduction of Graphene Oxide to Graphene by Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Shamellia Sharin; Irman Abdul Rahman; Ainee Fatimah Ahmad

    2015-01-01

    This research aims to gauge the ability of gamma radiation to induce the reduction of graphene oxide to graphene. Graphene oxide powders were dispersed into a mixture of alcohol and deionized water, and the mixture was then irradiated with a 60 Co source using a GammaCell 220 Excel irradiator at absorbed doses of 0, 5, 15, 20 and 35 kGy. According to characterization using Fourier Transformed Infrared Spectroscopy (FTIR), it can be seen that almost every oxygen-containing functional group has been removed after irradiation of the graphene oxide mixture. Reduction of graphene oxide was also proven from the characterization using UV-Vis Spectroscopy, in which the wavelength of graphene oxide at 237 nm was red-shifted to 277 nm after being irradiated and the peak at 292 nm, (indicating the carboxyl group) disappears in the UV-Vis spectrum of reduced graphene oxide. Morphology of graphene oxide also changed from a smooth and flat surface to crumpled. The ratio of carbon/ oxygen in the graphene oxide was lower than the carbon/ oxygen of reduced graphene oxide. At the end of the experiment, it can be deduced that graphene oxide underwent reduction, characterized before and after irradiation using Emission Scanned Electron Microscopy and Energy Dispersive X-ray, Fourier Transformed Infrared Spectroscopy and UV-Vis Spectroscopy. Therefore, we postulate that the irradiation technique that induces reduction, can be used to obtain reduced graphene oxide from graphene oxide. (author)

  16. Comparison of electron-irradiation and gamma-irradiation as a decontamination treatment of spices

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Mamun.

    1993-01-01

    Electron-irradiation at 10 kGy decontaminated all the eight kinds of spices (black pepper, white pepper, nutmeg, red pepper, parsley, paprika, laurel and onion powder) to the microbial levels lower than 10 2 /g. Similar sterilization effects by the irradiation were observed on heat-resistant bacterial spores. The 10 kGy irradiation did not significantly affect the contents of essential oils and colors of the spices. These results indicate that electron-irradiation at 10 kGy effectively decontaminates spices without notable adverse effect on the qualities. The disinfecting effect of electron beams on spices was smaller than that of gamma-rays. (author)

  17. Gamma irradiation service in Mexico; Servicio de Irradiacion Gamma en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Liceaga C, G.; Martinez A, L.; Mendez T, D.; Ortiz A, G.; Olvera G, R. [Departamento del Irradiador Gamma. Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Col. Escandon, 11801 Mexico D.F. (Mexico)

    1997-12-31

    In 1980 it was installed in Mexico, on the National Institute of Nuclear Research, an irradiator model J S-6500 of a canadian manufacture. Actually, this is the greatest plant in the Mexican Republic that offers a gamma irradiation process at commercial level to diverse industries. However, seeing that the demand for sterilize those products were not so much as the irradiation capacity it was opted by the incursion in other types of products. During 17 years had been irradiated a great variety of products grouped of the following form: dehydrated foods, disposable products for medical use, cosmetics, medicaments, various. Nowadays the capacity of the irradiator is saturated virtue of it is operated the 24 hours during the 365 days of the year and only its operation is suspended by the preventive and corrective maintenance. However, the fresh food market does not be attended since this irradiator was designed for doses greater than 10 kGy (1.0 Mrad)

  18. Genetic Changes in Stevia rebaudiana after Gamma Irradiation

    International Nuclear Information System (INIS)

    Aly, A.A.

    2005-01-01

    In vitro propagated plantlets of Stevia rebaudiana Bertoni J.were irradiated with doses 0, 5, 10 and 20 Gy. Irradiated plantlets exhibited changes in electrophoretic profile of proteins, there were some new bands induced with molecular weight of 100, 45, 32, and 30 kDa. In some treatments and some other bands disappeared such as the 205 and 100 kDa bands form plantlets treated with 10 Gy. Isoenzyme were also examined, esterase isozyme, isopolyphenol oxidase, alkaline phosphatase, catalse, acid phosphatase and peroxidase isozyme also altered by treatments. RAPD analysis was performed to determine the effect of gamma-irradiation on DNA changes. Polymorphisms between regenerates from non-irradiated and irradiated plantlets were found. The scope of variation spectrum by gamma-irradiation was larger than that by tissue culture. All the primers used produced polymorphic bands. Six primers generated 129.0 RAPD markers, among which 49.0 (37.98%) were polymorphic, with a mean of 8.17 pol morphisms per primer. The results showed that gamma-irradiation induced changes in plantlets that can be detected by molecular and biochemical markers. Stevia rebaudiana Bertoni. Stevia is a member of the Compositae family and native to the valley of the Rio Monday in the highlands of Paraguay, where it has been used by aboriginal people as a sweetener for centuries. It is one of 154 members of the genus Stevia and one of only two that produce sweet steviol glycosides. Stevioside has a sweetening potency of 200-300 times that of sucrose and it is stable to heat (Soejarto et a/., 1982 and 1983 and Lewis, 1992). The leaves were used either to sweeten mate or as a general sweetening agent. Currently Stevia production is centred in China and there is a major market in Japan (Kinghorn and Soejarto 1985)

  19. Isolation of Enterobacter cowanii in tomatoes after gamma irradiation

    International Nuclear Information System (INIS)

    Vicalvi, M.C.V.; Solidonio, E.G.; Silva, M.A.; Colaco, W.; Silva, G.R. da; Sena, K.X.F.R de

    2013-01-01

    The tomato is one of the most consumed fruit in the world. Bacteria of the family Enterobacteriaceae are responsible for large outbreaks of gastroenteritis. Irradiation is a physical method which reduces waste by eliminating spoilage organisms in foods. The objective of this study was to identify and determine the resistance profile of micro-organisms of the family Enterobacteriaceae from irradiated tomatoes. Were used three batches each containing 80 tomatoes, and divided in control and irradiated. The samples were individually properly identified as the irradiation dose applied. The material was subjected to irradiation with gamma rays, for irradiating with a cobalt-60 source, using doses: 1.0, 1.5 and 2 kGy (6,060 kGy/h). For microbiological analysis tomatoes were cut out, and removing the shells to obtain samples weighing 25g. Each sample was transferred to an Erlenmeyer containing sterilized water, stirring the assembly mechanically. Aliquots of the wash waters were sown in differential and selective media. After reisolation, the colonies were subjected to Gram staining then performed biochemical tests for identification. The antibiotic susceptibility tests were performed according to CLSI (Clinical Laboratory Standard Institute). It was isolated three strains of Enterobacter cowanii in tomato samples irradiated with a dose of 1.0 kGy, without isolating the other doses. As for the resistance profile, the strains were resistant to Ampicillin identified. Gamma irradiation at a dose of 1.5 and 2 kGy was effective in tomatoes as well as the micro-organism isolated after irradiation showed no profile of multidrug resistance. (author)

  20. Sterilization of ready-to-cook Bibimbap by combined treatment with gamma irradiation for space food

    Science.gov (United States)

    Park, Jae-Nam; Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il; Sung, Nak-Yun; Han, In-Jun; Lee, Ju-Woon

    2012-08-01

    Bibimbap, Korean traditional cooked rice mixed with various kinds of vegetables, together with mushrooms and a ground meat, and seasoned with red pepper paste, was developed as a ready-to-cook food by combined treatment with irradiation for the use in space. By gamma irradiation of 25 kGy, the total aerobic bacteria of Bibimbap that was initial by 6.3 log CFU/g decreased to below detection limit, but its sensory qualities were drastically decreased. To enhance the sensory quality, the effects of antioxidant in Bibimbap were evaluated. A treatment with 0.1% of vitamin C, vacuum packaging and gamma-irradiated at 25 kGy and -70 °C showed higher sensory scores than only the irradiation process. This result indicates that the radiation technology may be useful to produce a variety of space foods with high quality of taste and flavor, when combined with other methods.

  1. Experimental posterior perforating ocular injury: a controlled study of the gross effects of localised gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, U.; Maguire, C.J.F.; Archer, D.B.

    1986-08-01

    A pilot study on the effect of localised irradiation applied to the site of a standard perforating injury in the rabbit eye, showed that gamma rays limited the formation of post-traumatic vitreoretinal membranes. A controlled study was therefore undertaken to confirm this observation. Twenty-four pairs of rabbits underwent a standard perforating injury in the right eye. One rabbit of each pair received a radioactive ophthalmic /sup 60/Cobalt applicator and the other a dummy applicator. Nineteen of 24 non-irradiated eyes developed vitreoretinal membranes, with associated traction retinal detachment. Only four of 24 irradiated eyes developed traction retinal detachment.

  2. Experimental posterior perforating ocular injury: a controlled study of the gross effects of localised gamma irradiation

    International Nuclear Information System (INIS)

    Chakravarthy, U.; Maguire, C.J.F.; Archer, D.B.

    1986-01-01

    A pilot study on the effect of localised irradiation applied to the site of a standard perforating injury in the rabbit eye, showed that gamma rays limited the formation of post-traumatic vitreoretinal membranes. A controlled study was therefore undertaken to confirm this observation. Twenty-four pairs of rabbits underwent a standard perforating injury in the right eye. One rabbit of each pair received a radioactive ophthalmic 60 Cobalt applicator and the other a dummy applicator. Nineteen of 24 non-irradiated eyes developed vitreoretinal membranes, with associated traction retinal detachment. Only four of 24 irradiated eyes developed traction retinal detachment. (author)

  3. Effect of gamma irradiation on antinutritional factors in broad bean

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kaisey, M.T. E-mail: istd@uruklink.net; Alwan, A.-K.H.; Mohammad, M.H.; Saeed, A.H

    2003-06-01

    The effect of gamma irradiation on the level of antinutritional factors (trypsin inhibitor (TI), phytic acid and oligosaccharides) of broad bean was investigated. The seeds were subjected to gamma irradiation at 0, 2.5, 5, 7.5 and 10 kGy, respectively using cobalt-60 gamma radiation with a dose rate 2.37 kGy/h. TI activity was reduced by 4.5%, 6.7%, 8.5% and 9.2% at 2.5, 5, 7.5 and 10 kGy, respectively. Meanwhile, irradiation at 10.2, 12.3, 15.4 and 18.2 kGy reduced the phytic acid content. The flatulence causing oligosaccharides were decreased as the radiation dose increased. The chemical composition (protein, oil, ash and total carbohydrates) of the tested seeds was determined. Gamma radiation seems to be a good procedure to improve the quality of broad bean from the nutritional point of view.

  4. Variation in electrical properties of gamma irradiated cadmium selenate nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, R.P., E-mail: chauhanrpc@gmail.com; Rana, Pallavi, E-mail: prana.phy@gmail.com; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika

    2016-07-15

    Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a {sup 60}Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I–V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.

  5. Continuous induction of unscheduled DNA synthesis by gamma irradiation

    International Nuclear Information System (INIS)

    Weniger, P.; Klein, W.; Ott, E.; Kocsis, F.; Altmann, H.

    1988-08-01

    The induction of DNA-synthesis in non-S-phase cells is a very sensitive measure of a preceding damage of the DNA. Usually, in an in vivo -in vitro test (treatment of an animal, incorporation of H3-thymidine in a cell suspension) the damaging of DNA takes place hours to days before the evaluation. In this case, the time course of the UDS-induction after a single dose of 1 Gy gamma irradiation should be observed for a long time (21 months). C57 black mice served as test animals. In an age of about 80 days they were irradiated and the induction of unscheduled DNA synthesis was measured at ten points of time during the whole life-span of the animals. Although the repair in this gamma radiation damage in DNA is a very quick process - with centrifugation in alkaline sucrose you find a half time of some minutes - an induction of unscheduled DNA synthesis could be seen at the irradiated animals until the end of their life (640 days). The reason for this could be permanent disorders in cellular regulation caused by the gamma irradiation. 4 figs. (Author)

  6. Molecular characteristics of fungus trichoderma viride irradiated gamma rays

    International Nuclear Information System (INIS)

    Dadang Sudrajat; Nana Mulyana; Tri Retno DL; Rika Heriyani; Almaida

    2016-01-01

    Information about the genetic changes due to irradiation on the fungus Trichoderma viride is indispensable in order to improve the ability of these isolates for the delignification of lignocellulose. This study aims to determine the molecular characteristics of isolates fungus Trichoderma viride after irradiation with gamma rays through an approach expression of protein profiles and molecular markers random amplified polymorphic DNA (RAPD). Irradiation doses used in this study are 6 levels i.e 0; 75; 125; 250; 375; 500 and 750 Gy with a dose rate of 0.21 kGy / hour. Protein and DNA extraction isolate is done using the method of extracting phosphate buffer pH 7 and CTAB- phenol-chloroform extraction. Protein in the supernatant was analyzed by electrophoresis (SDS-gel polyacrylamide) to produce a protein fingerprint profile. Randomly amplified polymorphic DNA (RAPD) markers were used to estimate the genetic variations between 7 isolates of irradiated Trichoderma viride which were RAPD reactions using 3 random primers. The results showed that protein profiles generated by irradiation isolates and the control (no irradiation) gave a different pattern, especially at doses of irradiation 250-750 Gy based dendrogram analysis. DNA-RAPD profile showed a high genetic variation between the isolates were irradiated at a dose of 250; 375; 500 and 750 Gy and isolates the control (0 Gy); 75; 125 Gy with 5 cluster formation. Dendrogram analysis showed the coefficient of similarity between 0.62 to 0.68. (author)

  7. Application of gamma irradiation on forming protein-based edible films

    International Nuclear Information System (INIS)

    Sabato, Susy Frey

    2000-01-01

    In the last decade considerable interest has been addressed to the development of protein-based edible films due to their application in the food industry, as a substitute to traditional plastic films. The use of soy and whey proteins to form those films has been investigated, using heat, chemical and enzymatic processes. Gamma irradiation was recently reported to form caseinate-based edible films, due to the increase of the cohesive strength of the proteins by the formation of cross-links. This work aimed to verify the role of the gamma irradiation in the process of forming edible films from soy protein isolate (SPI) alone and in complex mixtures, that is, mixed with whey protein isolate (WPI), with carbethoxymethyl cellulose (CMC) and with poly(vinyl)alcohol (PVA). Gamma irradiation treatment improved significantly the mechanical properties for all films. The mechanical behavior is strongly related to the formulation, showing synergy between the gamma irradiation and the CMC, mainly for SPI-based films. SPI-based films presented a trend to decrease the water vapor permeability values when irradiated. The CMC addition showed significant improvements on the permeability for films from SPI and from the mixture of SPI with WPI. (author)

  8. ESR investigation of gamma-irradiated Aspirin

    International Nuclear Information System (INIS)

    Cozar, O.; Chis, V.; David, L.; Damian, G.; Barbur, I.

    1997-01-01

    Electron spin resonance spectroscopy was used to investigate the radiation damage in a powder of 2-acetoxybenzoic acid (Aspirin). Three types of radicals occur by γ-irradiation of Aspirin at room temperature. Two of them are result of hydrogen abstraction while the third is produced by hydrogen addition at one of the carbon atoms of the ring. The relative yielding of the free radicals as a function of absorbed dose in the range of 2.4 kGy to 160 kGy is also discussed. (author)

  9. Aversive conditioning in prenatally gamma-irradiated rats

    International Nuclear Information System (INIS)

    Tamaki, Yoshitaka; Hoshino, Kiyoshi; Kameyama, Yoshiro

    1987-01-01

    To examine how intrauterine exposure to gamma rays would exert on four kinds of aversive conditioning, rat fetuses were irradiated with 0.27, 0.48, or 1.46 Gy at Day 15 post conception. When ordinary avoidance conditioning was given to the groups with 0.27 and 0.48 Gy, there was no significant difference between the irradiated groups and the control group in the rate of positive avoidance response. Nor was this different in the irradiated groups and the control group, when the rate of baseline response was examined in avoidance conditioning. In positive avoidance conditioning to two kinds of anticipatory electric stimuli, the acquisition of avoidance was significantly inferior in all irradiated groups to that in the control group. When giving succesive discrimination learning, the group with 1.46 Gy tended to have higher rate of positive avoidance response and remarkably lower rate of passive avoidance response than the control group. (Namekawa, K.)

  10. The decontamination effects of gamma irradiation on the edible gelatin

    International Nuclear Information System (INIS)

    Fu, Junjie; Shen, Weiqiao; Bao, Jinsong; Chen, Qinglong

    2000-01-01

    The decontamination effects of gamma irradiation on the edible gelatin were studied. The results indicated that the bacterium and mold in the gelatin decreased significantly with the dose of 5 kGy treatment. However, the content of crude protein, microelement, amino acid in the gelatin remained unchanged under the irradiation of 4 and 8 kGy. The viscosity of the gelatin decreased with the increase of the irradiation dose, but the gelatin with a dose of 5 kGy treatment still accorded with the standard of the second-order class. These results suggested that the optimum irradiation dose for edible gelatin for the purpose of decontamination was in the range 3-5 kGy. (author)

  11. Low temperature gamma-ray irradiation effects on polymer materials

    International Nuclear Information System (INIS)

    Kudoh, Hisaaki; Kasai, Noboru; Sasuga, Tsuneo; Seguchi, Tadao

    1995-01-01

    The gamma radiation induced degradation of glass fiber reinforced plastic (GFRP) and polymethylmethacrylate (PMMA) at 77K was examined by flexural test and gas analysis after irradiation and compared by the irradiation at room temperature. The decrease in flexural strength at break was much less at 77K than at RT. The evolution of CH 4 , CO and CO 2 was also depressed at 77K. The temperature dependence of the degradation closely relates to the local molecular motion of matrix resin during irradiation. Polytetrafluoroethylene (PTFE) was also studied by irradiation at RT, 77K and 4K in terms of tensile elongation and molecular weight. The degradation was much less at 77K and 4K than at RT, and the same between 77K and 4K. (author)

  12. Characterization of Gamma-Irradiated Egyptian Wheat Flour

    International Nuclear Information System (INIS)

    Amer, H.H.; Attia, A. A.; Elsayed, A.A.; Ali, M.A.

    2008-01-01

    Physical, rheological and baking properties of bread Shamy, prepared from gamma-irradiated Egyptian wheat flour up to 25 KGy as one of common types of bread in Egypt, were studied and the acceptability of bread was evaluated by sensory tests. All amylo-, farino-, and extensograph characteristics and also sample ph showed significant decrease as irradiation dose increased. Such results could be explained in terms of loss of unique elastic and cohesive properties of wheat gluten and starch damage upon increment of radiation dose. The improvement in properties of bread, baked from flour irradiated up to 7.5 KGy, could be explained on the basis of a simulation in gas production during dough fermentation due to increase in starch degradation products. However, bread, prepared from wheat samples irradiated above 7.5 KGy, exhibited significantly lower values of acceptance because of physico-chemical changes in both starch and gluten

  13. Gamma irradiation increase the sensitivity of Salmonella to antibiotics

    International Nuclear Information System (INIS)

    Ben Miloud, Najla; Barkallah, Insaf

    2008-01-01

    In order to study the effect of ionizing radiation on the resistance of Salmonella to antibiotics, four strains of Salmonella were isolated from foods, The different strains used in the present study are (S. Hadar isolate 287, S. Hadar isolate 63, S. Cerro isolate 291, S. Zanzibar isolate 1103), antibiogram analyses were made to test the in vitro-sensitivity of irradiated Salmonella isolates to different antibiotics.The analyse of Control and exposed antibiograms showed that gamma radiation have increased the sensitivity of Salmonella isolates to Cefalotin, Chloramphenicol, Nalidixic acid, Spiramycin and Gentamycin excepted S. Hadar isolate 287 that was resistant to Cefalotin and became sensitive after irradiation. Statistical analyses showed that the effect of different irradiation dose treatment on the antibiotic sensitivity is increasingly significant. The irradiation didn't induce modifications of the sensitivity to other antibiotics,probably because of their nature, of their penetration mode inside the cell or their action way

  14. Alkylpyrazines produced by bacterial spoilage of heat-treated and gamma-irradiated coconut

    Energy Technology Data Exchange (ETDEWEB)

    Kinderlerer, J.L.; Kellard, B.

    1987-08-17

    This paper reports the sterilisation of coconut by autoclaving or gamma irradiation, followed by storage in water at 25/sup 0/ C for 8 weeks. Bacillus subtilis developed after storage in water. The volatile compounds formed as a result of bacterial activity were extracted and identified.

  15. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo; Hayashi, Toru; Yasumoto, Kyoden.

    1990-01-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  16. NMR study of poly({gamma}-glutamic acid) hydrogels prepared by {gamma}-irradiation : characterization of bond formation and scission

    Energy Technology Data Exchange (ETDEWEB)

    Han, Oc Hee [Korea Basic Science Institute, Taejon (Korea, Republic of); Choi, Hyuk Joon [Doosan Technical Center, Yongin (Korea, Republic of)

    1999-08-01

    Hydrogels were prepared from poly({gamma}-glutamic acid) (PGA) solution by {gamma}-irradiation of 90 kGy and 170 kGy. The hydrogels were more cross-linked with a higher dosage {gamma}-irradiation and completely hydrolyzed at 85.deg.C within 4 hours resulting in homogeneous solution, NMR techniques were employed to clarify chemical bond formation and scission involved during {gamma}-irradiation and hydrolysis. Characterization of these samples was carried out by taking both liquid state NMR spectra of PGA and hydrolyzed hydrogels and comparison of these spectra with the solid state NMR spectra of hydrogels. Our results indicate that complicated chemical bond formation and scission have occurred during hydrolysis and {gamma}-irradiation . The samples prepared with higher dosage of {gamma} irradiation showed more diverse chemical bond formation and scission.

  17. Shrubs of the Field Irradiator - Gamma area in eastern Manitoba

    International Nuclear Information System (INIS)

    Dugle, J.R.; Mayoh, K.R.; Barclay, P.J.

    1979-11-01

    Detailed descriptions and line drawings are given of over 100 shrub taxa (including semi-woody shrubs and vines) which are common in Manitoba; most of them are found within the Field Irradiator - Gamma (FIG) area or its immediate surroundings. Ecological and morphological notes are included along with a few general remarks on the effects of exposure to long-term gamma radiation. Keys are given for certain genera, small family groups or other critical species groups. This document is intended to facilitate identification of shrubs for experimental purposes in the FIG projects, and it should also be useful to those who are generally interested in the shrubs of Manitoba. (auth)

  18. Physicochemical changes taking place in bovine globulins under the influence of gamma irradiation studied by thermal analysis

    International Nuclear Information System (INIS)

    Ciesla, K.; Vansant, E.F.

    2006-01-01

    Radiation modification of protein based polymers as well as the development of gamma irradiation techniques as a method of food sterilisation and preservation induces necessity of better recognition of the physicochemical changes occurring in proteins after gamma irradiation. Recently differential scanning calorimetry (DSC) was applied widely in structural studies of proteins. Also thermoanalytical methods (TG, DTG) applied for proteins pyrolysis were also found to be useful in characterisation of proteins structure and the properties of proteins containing tissues. In presented paper, the aforementioned methods were applied for investigation of the gamma irradiation influence on thermal decomposition of gamma and alpha globulins and the results were related to their structural modifications. It has been found, that irradiation influences the course of decomposition of gamma and alpha globulins. Irradiation of solid native proteins result in decreased temperature of decomposition, especially decreased temperature of the last stage. The effects of irradiation performed for water suspensions were clearly more significant. The relatively large differences between decomposition of the irradiated and non-irradiated samples were detected by DSC and thermogravimetry already after irradiation of water suspensions

  19. Inactivation of Coxiella burnetii by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.H.; McCaul, T.F. (Army Medical Research Inst. of Infectious Diseases, Fort Detrick, Frederick, MD (USA)); Williams, J.C. (National Inst. of Allergy and Infectious Diseases, Bethesda, MD (USA))

    1989-12-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79{sup 0}C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0.64 to 1.2 kGy depending on the phase of the micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing 10{sup 11} C. burnetii ml{sup -1} was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes. (author).

  20. Inactivation of Coxiella burnetti by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.H.; McCaul, T.F.; Williams, J.C.

    1989-01-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79 C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0-64 to 1.2 kGy depending on the phase of hte micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing C. burnetti was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes.

  1. Change in the enzymatic dual function of the peroxiredoxin protein by gamma irradiation

    International Nuclear Information System (INIS)

    An, Byung Chull; Lee, Seung Sik; Lee, Jae Taek; Park, Chul-Hong; Lee, Sang Yeol; Chung, Byung Yeoup

    2012-01-01

    PP1084 protein was exposed to gamma irradiation ranging from 5 to 500 kGy. Native PAGE showed minor structural changes in PP1084 at 5 kGy, and major structural changes at >15 kGy. Size-exclusion chromatography (SEC) showed the formation of a new shoulder peak when the protein was irradiated with 15 and 30 kGy, and a double peak appeared at 100 kGy. The results of PAGE and SEC imply that PP1084 protein is degraded by gamma irradiation, with simultaneous oligomerization. PP1084 chaperone activity reached the highest level at 30 kGy of gamma irradiation, and then, decreased in a dose-dependent manner with increasing gamma irradiation. However, the peroxidase activity significantly decreased following exposure to all intensities of gamma irradiation. The improvement of chaperone activity using gamma irradiation might be promoted by the oligomeric structures containing covalently cross-linked amino acids. Consequently, PP1084 modification using gamma irradiation could elevate chaperone activity by about 3–4 folds compared to the non-irradiated protein. - Highlights: ► The structure of PP1084 protein was drastically changed above 15 kGy gamma irradiation. ► PP1084 chaperone activity reached the highest level at 30 kGy of gamma irradiation. ► PP1084 modification using gamma irradiation could elevate chaperone activity by about 3–4 folds.

  2. Gamma greenhouse for chronic irradiation in plant mutation breeding

    International Nuclear Information System (INIS)

    Azhar Mohamad; Rusli Ibrahim; Sobri Hussein

    2009-01-01

    The gamma greenhouse makes use of chronic irradiation from a 137 Cs source (double encapsulated 800 Ci caesium-137 pencil) producing a low dose rate, which is considered to be more effective in recovering and producing useful mutants in comparison to acute irradiation. The irradiation facility comprises an open topped irradiation area 30 m in diameter, protected by a partial concrete wall with entry maze and site topography. For safety, the facility is protected by a sophisticated interlock system, which only allows the source to be exposed when all the prerequisite safety conditions are met, and automatically returns the source to the safe storage position if any safety device is compromised. The main irradiation area is further protected by a 300 m diameter exclusion zone that is also protected by the safety interlock circuit. The facility can accommodate a wide range of plant materials such as seeds, seedlings in pots, cuttings, callus, somatic embryos and suspension cell cultures. Plant samples will be exposed to low dose gamma radiation over long periods of time (hours, weeks, months), depending on their nature and sensitivity. There was evidence whereby exposure of tissue culture materials to continuous low dose gamma irradiation resulting in considerably elevated somaclonal variation frequency without negative effects on culture response. It is not surprising that in vitro culture generating somaclonal variation together with in vitro mutagenesis inducing mutation lead to a higher variation frequency due to possible addition of mutagenic effect by in vitro mutagenesis to somaclonal variability arising from in vitro culture as well as the interaction between them. (Author)

  3. Fade statistics for a lasercom system and the joint PDF of a gamma-gamma distributed irradiance and its time derivative

    Science.gov (United States)

    Stromqvist Vetelino, Frida E.

    The performance of lasercom systems operating in the atmosphere is reduced by optical turbulence, which causes irradiance fluctuations in the received signal. The result is a randomly fading signal. Fade statistics for lasercom systems are determined from the probability density function (PDF) of the irradiance fluctuations. The expected number of fades per second and their mean fade time require the joint PDF of the fluctuating irradiance and its time derivative. Theoretical integral expressions, as well as closed form, analytical approximations, were developed for the joint PDF of a gamma-gamma distributed irradiance and its time derivative, and the corresponding expression for the expected number of fades per second. The new approximation for the conditional PDF of the time derivative of a gamma-gamma irradiance is a zero mean Gaussian distribution, with a complicated irradiance depending variance. Fade statistics obtained from experimental data were compared to theoretical predictions based on the lognormal and gamma-gamma distributions. A Gaussian beam wave was propagated through the atmosphere along a horizontal path, near ground, in the moderate-to-strong optical turbulence. To characterize the propagation path, a new method that infers atmospheric propagation parameters was developed. Scintillation theory combined with a numerical scheme was used to infer the structure constant Cn2, the inner scale, l0, and the outer scale, L0, from the optical measurements. The inferred parameters were used in calculations for the theoretical PDFs. It was found that fade predictions made by the gamma-gamma and lognormal distributions provide an upper and lower bound, respectively, for the probability of fade and the number of fades per second for irradiance data collected in the moderate-to-strong fluctuation regime. Aperture averaging effects on the PDF of the irradiance fluctuations were investigated by comparing the irradiance distributions for the three receiver

  4. EPR study on tomatoes before and after gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Georgieva, L.; Tzvetkova, E. [Institute of Cryobiology and Food Technology, 1162 Sofia (Bulgaria); Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)], E-mail: ndyepr@bas.bg

    2009-09-15

    The results from the EPR studies on fresh, air-dried and lyophilized tomato samples before and after gamma-irradiation are reported. Before irradiation fresh and air-dried tomatoes exhibit one singlet EPR line characterized with common g-factor of 2.0048{+-}0.0005, whereas freeze-dried tomato does not show any EPR spectrum. After irradiation, a typical 'cellulose-like' triplet EPR spectrum appears in all samples, attributed to cellulose free radicals, generated by gamma-irradiation. It consists of intense central line with g=2.0048{+-}0.0005 and two weak satellite lines separated ca. 3 mT left and right of it. In air-dried and lyophilized tomatoes the 'cellulose-like' EPR spectrum is superimposed by an additional partly resolved carbohydrate spectrum. Fading measurements of the radiation-induced EPR signals indicate that the intensity of the EPR spectra of air-dried and freeze-dried tomato are reduced to about 50% after 50 days, whereas those of fresh irradiated tomatoes kept at 4 {sup o}C fade completely in 15 days. The reported results unambiguously show that the presence of two satellite lines in the EPR 'cellulose-like' spectra of tomato samples can be used for identification of radiation processing.

  5. Bacteriostatic activity of various antibiotics after gamma-ray irradiation

    International Nuclear Information System (INIS)

    Fleurette, J.; Madier, S.; Transy, M.J.

    1975-01-01

    The purpose of the work described was to discover whether the antibiotics used in medicine can be sterilized by gamma rays; in this preliminary study, only the antimicrobic activity - the principal criterion for this type of medicament - was evaluated. Thirty-three products belonging to the various families of antibacterial and antifungic antibiotics were studied. The substances were irradiated in the dry state and in an aqueous solution, using a caesium-137 irradiator. The antibacterial and antifungic activity before and after irradiation was investigated by the method of diffusion in gelose. When irradiated in the dry state, 14 antibiotics preserve normal activity up to a dose of 10 Mrad; at doses between 5 and 10 Mrad, 15 other antibiotics are subject to a variable, but moderate, loss activity; and four register a slight loss of activity at a dose of 2.5 Mrad. In an aqueous solution all but two of the antibiotics suffer total loss of activity at a dose of 2.5 Mrad. As most commercial antibiotics are supplied in the dry state, gamma irradiation may be a useful sterilization process. However, preparations such as eye lotions, suspensions, ointments, etc. should be excepted

  6. Effect of gamma irradiation on some organic pollutants in water

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.; Ismail, S.A.

    1998-01-01

    Complete text of publication follows. The degradation kinetics due to irradiation of aqueous solutions of two acid dyes, namely Sandolane Milling N-Bl and Telon Fast Red and a basic dye (Sandocryl Blue B-3G) has been investigated. The factors affecting the radiolysis of the dyes such as dye concentration, irradiation dose, dose rate and pH of the solutions were studied. The effect of irradiation dose on various dye concentrations showed the complete destruction of the dyes at a dose of 4 kGy for low dye concentrations (20-50 mg/l), while at higher concentrations (100 mg/l) a dose of 20 kGy did not achieve the same effect. A combined treatment of the dye solutions by gamma irradiation and conventional methods showed that the saturation of these solutions did not enhance the degradation of the dyes. However, the addition of oxygen, hydrogen peroxide and sodium hypochlorite to the dye solutions coupled with γ-irradiation resulted in a remarkable enhancement in the degradation process and complete degradation of these pollutants was achieved using much lower doses of gamma radiation

  7. EPR study on tomatoes before and after gamma-irradiation

    Science.gov (United States)

    Aleksieva, K.; Georgieva, L.; Tzvetkova, E.; Yordanov, N. D.

    2009-09-01

    The results from the EPR studies on fresh, air-dried and lyophilized tomato samples before and after gamma-irradiation are reported. Before irradiation fresh and air-dried tomatoes exhibit one singlet EPR line characterized with common g-factor of 2.0048±0.0005, whereas freeze-dried tomato does not show any EPR spectrum. After irradiation, a typical "cellulose-like" triplet EPR spectrum appears in all samples, attributed to cellulose free radicals, generated by gamma-irradiation. It consists of intense central line with g=2.0048±0.0005 and two weak satellite lines separated ca. 3 mT left and right of it. In air-dried and lyophilized tomatoes the "cellulose-like" EPR spectrum is superimposed by an additional partly resolved carbohydrate spectrum. Fading measurements of the radiation-induced EPR signals indicate that the intensity of the EPR spectra of air-dried and freeze-dried tomato are reduced to about 50% after 50 days, whereas those of fresh irradiated tomatoes kept at 4 °C fade completely in 15 days. The reported results unambiguously show that the presence of two satellite lines in the EPR "cellulose-like" spectra of tomato samples can be used for identification of radiation processing.

  8. Genetic repairing through storage of gamma irradiated seeds in inbred maize (Zea mays L.)

    OpenAIRE

    KUMAR, Girjesh; RAI, Prashant KUMAR

    2009-01-01

    Gamma irradiation can induce beneficial as well as deleterious impacts on chromosome behavior in crop plants. The cytogenetic changes occurring due to the storage of inbred seeds after gamma irradiation in the somatic and gametic cells of Zea mays L. were investigated in this study. A wide spectrum of chromosomal anomalies was encountered in somatic and gametic cells of maize that are gamma irradiated, stored (aged), and treated with a combination of both of these treatments. Gamma rays and a...

  9. In-pile gamma spectrometry and irradiation control at Osiris

    International Nuclear Information System (INIS)

    Farny, G.; Destot, M.; Corre, J.; Texier, D.; Faugere, J.L.; Mouchnino, M.

    1975-01-01

    A new gamma spectrometry facility is available near Osiris reactor core, at Saclay. This device enables nuclear fuels to be examined in loops or capsules all along their irradiation, a few minutes being sufficient to transfer the fuel from the irradiation place to the measurement bench. So, spacelike and timelike history of a lot of fission products, especially short-lived radionuclides, can be observed. Using such in-pile spectrometry device, of original design, allows to avoid radioactive decay corrections and the risks of any information less. Performance of the device is given together with some preliminary results and their interpretation [fr

  10. Cadmium leaching from thermal treated and gamma irradiated Mexican aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Rangel, J.I. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico 11801, D.F. (Mexico); Unidad Academica Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas Cipres 10, Frac. La Penuela, Zacatecas, Zacatecas 98068 (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100 Col. Centro C.P. 50000, Toluca, Edo. de Mexico (Mexico); Solache-Rios, M. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico 11801, D.F. (Mexico)], E-mail: msr@nuclear.inin.mx

    2008-10-15

    Thermal and radiation effects on the leaching of cadmium from two cadmium exchanged zeolitic tuffs and one clay were determined. The cadmium exchanged aluminosilicates were heated at different temperatures (500, 700, 900 and 1100 {sup o}C), and the materials were then treated with NaCl (1 M and 5 M) and HNO{sub 3} (0.001 M and 1 M) solutions to determine the leaching behaviour of cadmium from the materials. The stability of cadmium in the materials increased as the heating temperature was increased. Cadmium leaching from gamma irradiated and heated materials at 1100 {sup o}C was higher than leaching from non-irradiated samples.

  11. Effect of gamma irradiation on fungi in stored rice

    International Nuclear Information System (INIS)

    Zainal Abidin Mior Ahmad.

    1987-01-01

    The objective of this study is to examine the effect of different doses of gamma irradiation on fungi infecting rice stored in various packaging materials. The agar plate test method was used. It was observed that the percentage of fungi did not appear to decrease with the increase of irradiation up to 2 kGy and also no indication of any significant reduction in percentage of fungi isolated with increasing time of storage at all levels of radiation treatment. The majority of the fungi isolated were Aspergillus and Penicillium species. (A.J.)

  12. Dose mapping of the multi-purpose gamma irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Villamater, D.T.

    1989-01-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author)

  13. Inactivation of Salmonellae in Frozen Catfish by Gamma Irradiation

    International Nuclear Information System (INIS)

    Nouchpramoon, Kovit; Amsiri, Jarurat

    2003-06-01

    The effect of gamma irradiation on salmonellae viability in frozen catfish was investigated using fresh cut of catfish artificially contaminated with stationary phase cells of salmonellae, frozen at-18 οC and irradiated with does ranging from 0.0 to 2.4 kGy. The D 10 values for ten serovars of salmonellae ranged from 0.47 to 0.77 kGy. Salmonella Enteritidis was the most resistant serovars found in frozen catfish. Dosage at 2.5 kGy would be sufficient to kill 10 3 . 2 Salmonella Enteritidis that may occasionally present in frozen catfish

  14. Incidence and nature of tumors induced in Sprague-Dawley rats by gamma-irradiation

    International Nuclear Information System (INIS)

    Gross, L.; Dreyfuss, Y.; Faraggiana, T.

    1988-01-01

    In our previous studies carried out on inbred rats of the Sprague-Dawley strain, the tumor incidence was increased following irradiation (150 rads, 5 times, at weekly intervals), from 22 to 93% in females and from 5 to 59% in males. Experiments here reported suggest that 2 consecutive total-body gamma-irradiations of 150 rads each are sufficient to induce in rats the development of tumors, some malignant; 18 of 19 females (94.7%) developed tumors at an average age of 11.4 mo, and seven of the 14 males in this group (50%) developed tumors at an average age of 10.4 mo. In the second group, which received 3 consecutive gamma-irradiations, 20 of 23 females (86.9%) and 5 of 13 males (38.4%) developed tumors at average ages of 9.1 and 7.5 mo, respectively. In the third group, among rats which received 4 consecutive gamma-irradiations, 17 of 19 females (89.4%) and 4 of 12 males (33.3%) developed tumors at average ages of 9.4 and 10.5 mo, respectively. The etiology of tumors either developing spontaneously or induced by irradiation in rats remains to be clarified. Our attempts to detect virus particles by electron microscopy in such tumors or lymphomas have not been successful. As a working hypothesis, we are tempted to theorize that tumors or lymphomas developing spontaneously or induced by gamma irradiation in rats are caused by latent viral agents which are integrated into the cell genome and are cell associated, i.e., not separable from the rat tumor cells by conventional methods thus far used

  15. Thermally stimulated currents in gamma irradiated polymer

    International Nuclear Information System (INIS)

    Chu, S.S.

    1982-01-01

    Thermally stimulated currents of polymers have some properties as radiation dosimetry, especially polymer could be made as a good dosimeter in biological fields because of tissue equivlent material. We experimented the radiation response of polymers and attempted to apply it in clinical use. Polymers have properties of thermoluminescence and thermally stimulated currents which are due to several kinds of charged particles such as dipoles, electronic trapped charges and mobile ions. Several peaks are detected in the thermally stimulated currents in polyethylene under vias field V, by heating from room temperature to 100degC shortly after irradiation. As V increases, both the peak temperature Tsub(m) and the activation energy H decreases, while the peak current Isub(m) increases. We plotted the Tsub(m)-V and Isub(m)-V curves and calculated the electron trap depth with the recombination operative TSC theory and compared the peak TSC with radiation doses. (Author)

  16. Improving Quality and Microbial Safety of Wheat Flour by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hammad, A.A.; Hassan, M.F.; Soliman, S.M.; Abu-Shady, M.R.

    2017-01-01

    In the present study Egyptian wheat flour extracted from wheat (variety Seds 6 ) were irradiated at a dose of 5.0 kGy using Co-60 gamma source. The influence of this irradiation dose on the aerobic bacterial count, mold and yeast count, aflatoxins and major chemical composition of wheat flour was investigated. The influence of a 5.0 kGy gamma radiation dose on the rheological characteristics of wheat flour as well as on the sensory properties of Balady bread was also investigated. It was found that irradiation greatly reduced aerobic bacterial count and mold and yeast count as well as decreasing aflatoxin B1. The major chemical composition of wheat flour almost had no changes as a result of exposure to gamma radiation. An irradiation dose of 5.0 kGy caused a decrease in dough development time, dough stability time and deformation energy of dough as well as increasing dough water absorption which are all desirable in bread making. On the other hand, sensory properties of bread prepared from irradiated flour were almost similar to that of bread made from non-irradiated flour

  17. Software for planning processes gamma irradiation sterilization of products intended for health care

    International Nuclear Information System (INIS)

    Gonzalez, Juan P; Carrillo, Miguel A; Mangussi, Josefina; Menendez, Franco

    2012-01-01

    In this work was developed an application software for PC, with a friendly interface whose main objective is to facilitate the planning processes for gamma irradiation of health care devices for a irradiation plant, decreasing costs and delays caused in the dosimetry and pretesting. Wascreated a program that predicts, previously establishing the location of a plane in the enclosure of irradiation, dose rate in [kGy/h] at certain strategic points of this plane in addition to calculating the corresponding absorbed dose [kGy] for a time defined by the user (author)

  18. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    International Nuclear Information System (INIS)

    Aleksieva, K.I.; Dimov, K.G.; Yordanov, N.D.

    2014-01-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to “cellulose-like” EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical “sugar-like“ spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation. - Highlights: • The EPR analysis of juices, nectars and syrups proves that the sample has been irradiated. • Two sample preparation procedures were used. • The stability of the radiation induced EPR signals was studied over 2 months. • Application of European standards can be extended for irradiated juices and syrups

  19. Postharvest storage quality of gamma-irradiated 'climax' rabbiteye blueberries

    International Nuclear Information System (INIS)

    Miller, W.R.; Mitcham, E.J.; McDonald, R.E.; King, J.R.

    1994-01-01

    Postharvest quality of 'Climax' rabbiteye blueberries (Vaccinium ashei Read) was evaluated after exposure to dosages of 0, 0.75,1.5,2.25, or 3.0 kGy gamma irradiation (0.1 18 kGy-min-1) and after subsequent storage. Irradiation did not affect weight loss, but irradiated berries were softer than nontreated berries. There was also a trend toward increased decay as dose increased. Irradiation had no effect on powdery bloom or surface color; total soluble solids concentration, acidity, and pH were affected slightly. Flavor preference was highest for nonirradiated berries and generally declined as dosage increased. Irradiation at 2.25 and 3.0 kGy resulted in increased levels of xylosyl residues in cell walls, and xylosyl residues were the most abundant cell-wall neutral sugar detected in blueberries. There was no evidence of cell wall pectin loss in irradiated berries. Irradiation at 1.5 kGy lowered the quality of fresh-market 'Climax' blueberries

  20. Appearance of thymic nurse cells after gamma irradiation

    International Nuclear Information System (INIS)

    Mulder, A.H.; Bekkum, D.W. van

    1983-01-01

    Since prothymocytes home from the bone marrow to the thymus, it was tested in the mouse whether prothymocytes could be recaptured from thymic nurse cells (TNC). Bone marrow cells were labelled with the red fluorescing anthracycline daunomycin and varying numbers (up to 25 x 10 6 nucleated bone marrow cells) were injected into lethally irradiated recipients. At several time intervals after transplantation (up to 24 hours), thymuses were removed and the TNCs were isolated. No specific red fluorescence was found within the TNCs. These experiments were repeated with supravital compounds at concentrations which have been shown not to affect viability, homing pattern and function. Again, no specific fluoresence was found in the TNC after transplantation of labelled bone marrow into irradiated mice. The relationship between the dose of total body gamma irradiation and the time after irradiation was investigated. Maximal numbers of TNCs were found at 6 hours after irradiation with 4 Gy. Eight to 12 hours after irradiation, the number of TNCs isolated decreased and had returned to preirradiation levels at 24 hours. The relation between TBI dose and the number of TNCs per thymus is shown. The number determined at 3 hours increased with the dose to reach a maximum at 4 Gy. The authors later studied the morphology of the TNCs isolated at 4 to 6 hours after irradiation. On electron microscopic examination, signs of degeneration and death of the enclosed thymocytes was detected. (Auth.)

  1. A commercial gamma-ray irradiation plant in Japan

    International Nuclear Information System (INIS)

    Tomita, K.; Sugimoto, S.

    1977-01-01

    In 1973, a commercial gamma-ray irradiation plant was constructed in Takasaki, about 100 km north of Tokyo. The plant has been used for both production of irradiated commercial products and irradiation services. The irradiation services are being made available for sterilization of both medical appliances such as disposable medical syringes, catheters, surgical sutures, and sterilization of feed stuffs for animals. Treatment of plastic materials and colouring of both crystals and glass wares are also undertaken. This facility can accommodate 600 kCi of 60 Co and has a monthly treating capacity of 12,000 packages ( a standard carton of 340 mm x 400 mm x 500 mm) at an irradiation dose of 1 Mrad/hr. A receiving port for packages is on the second floor and the outlet of the irradiated packages on the first floor, with three lines of connecting loop conveyors between them, and the irradiation compartment in the center section. The space arrangement of the facility is well designed and gravity can be utilized for the transportation of the packages. Polymer impregnated coral is put on the market for ornamental building material on an order contract basis. (author)

  2. Gamma-rays irradiation of YBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Timko, M.; Matas, S.; Kovac, J.; Kavecansky, V.; Zentkova, M.; Sargankova, I. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Experimental Physics; Bunda, V. [Uzhorod State Univ. (Ukraine). Dept. of Physics of Semiconductors

    1994-03-01

    A YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} ceramic was sequentially irradiated with {sup 60}Co {gamma}-rays of 155.4 R/min in dose rate; up to the dose 5000 Gy at ambient temperature, AC susceptibility and magnetization were measured as a function of temperature and magnetic field, respectively. The transition to the superconducting state has decreased roughly linearly with radiation dose at a rate of 6.2*10{sup {minus}4} K/Gy probably as a consequence of the change of carrier concentration in CuO{sub 2} planes. The intragrain critical current density has increased for lower and higher radiation doses. Formation of the extra centers of pinning by {gamma} irradiation is suggested.

  3. Enhanced biological activities of gamma-irradiated persimmon leaf extract.

    Science.gov (United States)

    Cho, Byoung-Ok; Nchang Che, Denis; Yin, Hong-Hua; Jang, Seon-Il

    2017-09-01

    The aim of this study was to compare the anti-oxidative and anti-inflammatory activities of gamma-irradiated persimmon leaf extract (GPLE) with those of non-irradiated persimmon leaf extract (PLE). Ethanolic extract of persimmon leaf was exposed to gamma irradiation at a dose of 10 kGy. After gamma irradiation, the color of the extract changed from dark brown to light brown. The anti-oxidative and anti-inflammatory activities of GPLE and PLE were assessed from: total polyphenol and total flavonoid contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay, and levels of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The total polyphenol contents of GPLE and PLE were determined to be 224.44 ± 1.54 and 197.33 ± 5.81 mg gallic acid equivalents (GAE)/g, respectively, and the total flavonoid contents of GPLE and PLE were 206.27 ± 1.15 and 167.60 ± 2.00 mg quercetin equivalents (QUE)/g, respectively. The anti-oxidant activities of GPLE and PLE as measured by DPPH assays were 338.33 ± 30.19 μg/ml (IC50) and 388.68 ± 8.45 μg/ml (IC50), respectively, and those measured by ABTS assays were 510.49 ± 15.12 μg/ml (IC50) and 731.30 ± 10.63 μg/ml (IC50), respectively. IC50 is the inhibitor concentration that reduces the response by 50%. GPLE strongly inhibited the production of NO, PGE2 and IL-6 compared with PLE in lipopolysaccharide-stimulated RAW264.7 macrophages. Furthermore, GPLE significantly inhibited the production of TNF-α and IL-6 cytokines compared with PLE in phorbol 12-myristate 13-acetate (PMA) plus A23187-stimulated HMC-1 human mast cells. These results indicate that gamma irradiation of PLE can enhance its anti-oxidative and anti-inflammatory activities through elevation of the phenolic contents. Therefore, gamma-irradiated PLE has potential for use in the food and cosmetic

  4. Examination into the gamma irradiation of activated sludge

    International Nuclear Information System (INIS)

    Mustapha, S.; Forster, C.F.

    1985-01-01

    This study has shown that the treatment of activated sludge by gamma irradiation resulted in a deterioration in the filterability, a decrease in the size of the floc particles and an increase in the organic matter present in the sludge supernatant. A significant difference was found between the results obtained for filamentous and non-filamentous sludges in relation to the amount of soluble polysaccharide produced. (author)

  5. Effect of gamma irradiation on some plant oils

    International Nuclear Information System (INIS)

    Aafifi, El-Sayed A.M.

    1985-01-01

    The aim of this work was to study the possibility of using different sage doses of γ -rays (up to 1000 K. rad) for destroying or minimizing trypsin inhibitors for soybean seeds and detect their effect on the main constituents of seeds. Attention was focussed on changes occured in physiochemical properties, fatty acids composition and unsaponifiable matter components of soybean oil due to both gamma irradiation and storage treatments. In addition, the changes in the main constituents of soybean meals were also studied

  6. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    However, appreciable change in the capacitance has been observed due to low doses of fast neutrons (cumulative dose, 115 cGy) with flux ∼ 9.925 × 107 neutrons/cm2 h from 252Cf neutron source of fluence, 2.5 × 107 neutrons/s. We have also observed that the impact of gamma and neutron irradiation is more at ...

  7. Mutagenicity studies on alcohol extracts from gamma-irradiated potatoes

    International Nuclear Information System (INIS)

    Shinozaki, Yoshiharu; Hogetsu, Daisuke; Okuyama, Norio; Manabe, Takashi; Sasagawa, Tatsuru.

    1981-01-01

    The preparation of alcohol extracts from gamma-irradiated potatoes of the ''Danshaku'' variety and their chemical aspects were studied. The final concentrate of alcohol extracts from potatoes showed pH values of 3 -- 4. The o-quinones or ''radiotoxins'' reported by Kuzin, et al. were not detected in the alcohol extracts from potatoes of this variety by high performance liquid chromatography (HPLC) analysis, paper chromatography and the model enzymatic experiment. (author)

  8. Growth studies on Lens culinaris after gamma irradiation

    International Nuclear Information System (INIS)

    Ahmad, S.; Bokhari, F.S.; Shahnaz, F.

    1996-01-01

    A study on growth parameters was carried out on two varieties of Lens culinaris after gamma irradiation. Experiment was conducted at Botanical Garden, Bahauddin Zakariya University, Multan in 1993. The germination percentage, survival percentage, height, branch number, pods per plant and 100-seed weight decreased with the increasing dose of radiation. Comparing the two varieties, variety-86642 appeared more sensitive to radiation than variety-87528

  9. Mutation induction in oil palm cultures using gamma irradiation

    International Nuclear Information System (INIS)

    Rohani Othman; Rajinder Singh; Mohd Nazir Basiran

    2002-01-01

    Induced mutations have played an important role in the improvement of wide range of food crops, ornamental plants and oil crops such as sesame and sunflower. Based on these successes an attempt was made to employ the mutagenesis techniques to broaden the genetic variation in breeding materials of oil palm. Traits of interest are high yield, dwarfness and disease resistance. Embryogenic callus initiated from several high yielding clones were exposed to gamma irradiation for optimum dose determination. (Author)

  10. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    Science.gov (United States)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  11. Improvement of microbiological qualities of namphrik by gamma irradiation

    Science.gov (United States)

    Chahorm, K.; Neramitmansook, N.; Kongsang, N.; Ko, J.

    2017-06-01

    Twenty samples of Namphrik from commercial markets were evaluated the microbiological qualities. It was found that 15 samples did not meet Thai Community Product Standard. The total plate count (TPC) in 15 samples were higher than the maximum limits (1.60x104 - 4.4x105 CFU/g). In addition, the other pathogens were higher than the maximum limits such as B. cereus in 11 samples (2.10x103 - 6.10x104 CFU/g) S. aureus in 2 samples (15 - 40 CFU/g) Clostridium perfringens in 4 samples (1.00x102 - 8.8x103 CFU/g) and yeast&mold in 9 samples (3.00 x102 - 9.00x103 CFU/g). To reduce TPC and pathogenic bacteria, the gamma irradiation were applied at 3.28- 4.43 kGy. The results indicated that the irradiation can reduce the TPC around 1.2 - 3.9 log cycles and eliminate pathogens bacteria in the product to make all of 15 samples qualified to the standard. The sensory evaluation was conducted in Namphrik Narok by using difference from control test to determine whether the consumers can differentiate between the non-irradiated and irradiated. The result showed that the consumers can significantly differentiate the color, odor and flavor (p0.05. Both non-irradiated and irradiated were scored at 6.4 (slightly to moderately preference). Thus the gamma irradiation can be used as a tool to improve the microbiological qualities of the Namphrik Narok product without effecting the consumer preference.

  12. Improvement of microbiological qualities of namphrik by gamma irradiation

    International Nuclear Information System (INIS)

    Chahorm, K; Neramitmansook, N; Kongsang, N; Ko, J

    2017-01-01

    Twenty samples of Namphrik from commercial markets were evaluated the microbiological qualities. It was found that 15 samples did not meet Thai Community Product Standard. The total plate count (TPC) in 15 samples were higher than the maximum limits (1.60x10 4 – 4.4x10 5 CFU/g). In addition, the other pathogens were higher than the maximum limits such as B. cereus in 11 samples (2.10x10 3 – 6.10x10 4 CFU/g) S. aureus in 2 samples (15 – 40 CFU/g) Clostridium perfringens in 4 samples (1.00x10 2 – 8.8x10 3 CFU/g) and yeast and mold in 9 samples (3.00 x10 2 – 9.00x10 3 CFU/g). To reduce TPC and pathogenic bacteria, the gamma irradiation were applied at 3.28- 4.43 kGy. The results indicated that the irradiation can reduce the TPC around 1.2 – 3.9 log cycles and eliminate pathogens bacteria in the product to make all of 15 samples qualified to the standard. The sensory evaluation was conducted in Namphrik Narok by using difference from control test to determine whether the consumers can differentiate between the non-irradiated and irradiated. The result showed that the consumers can significantly differentiate the color, odor and flavor (p<0.05). However, the preference test showed that there was no significant preferences at p>0.05. Both non-irradiated and irradiated were scored at 6.4 (slightly to moderately preference). Thus the gamma irradiation can be used as a tool to improve the microbiological qualities of the Namphrik Narok product without effecting the consumer preference. (paper)

  13. Using of AFLP to evaluate gamma-irradiated amaranth mutants

    Directory of Open Access Journals (Sweden)

    Labajová Mária

    2013-01-01

    Full Text Available To determine which of several gamma-irradiated mutants of amaranth Ficha cultivar and K-433 hybrid are most genetically similar to their non-irradiated control genotypes, we performed amplified fragment length polymorphism (AFLP based analysis. A total of 40 selective primer combinations were used in reported analyses. First analyses of gamma-irradiated amaranth mutant lines were done used the AFLP. In the study, primers with the differentiation ability for all analysed mutant lines are reported. The very specific changes in the mutant lines´ non-coding regions based on AFLP length polymorphism were analysed. Mutant lines of the Ficha cultivar (C15, C26, C27, C82, C236 shared a genetic dissimilarity of 0,11 and their ISSR profiles are more similar to the Ficha than those of K-433 hybrid mutant lines. The K-433 mutant lines (D54, D279, D282 shared genetic dissimilarity of 0,534 but are more distinct to their control plant as a whole, as those of the Ficha mutant lines. Different AFLP fingerprints patters of the mutant lines when compared to the Ficha cultivar and K-433 hybrid AFLP profiles may be a consequence of the complex response of the intergenic space of mutant lines to the gamma-radiance. Although a genetic polymorphism was detected within accessions, the AFLP markers successfully identified all the accessions. The AFLP results are discussed by a combination of biochemical characteristics of mutant lines and their control genotypes.

  14. Gamma irradiation effects on poly(vinylidene fluoride) films

    International Nuclear Information System (INIS)

    Ribeiro, Geise; Zen, Heloisa A.; Geraldes, Adriana N.; Souza, Camila P.; Parra, Duclerc F.; Lima, Luis Filipe C.P.; Lugao, Ademar B.

    2009-01-01

    In this work, the properties of Poly(vinylidene fluoride) PVDF films after exposing to gamma radiation at different doses (5, 10 and 15 kGy) were investigated. PVDF is a semicrystalline polymer that shows good properties in terms of chemical, thermal and electrical stabilities. The gamma radiation is a convenient and effective way of modification perfluorinated and partially fluorinated polymers such as PVDF. The properties of the pristine and irradiated PVDF films were studied by infrared spectroscopy, thermal analysis (TGA and DSC) and mechanical measurements at room temperature and at melting temperature of the PVDF. The infrared spectra of the irradiated PVDF samples do not present significant alterations in the absorption bands at all irradiated doses. The results obtained by thermal analysis indicate that the radiation does not alter significantly the decomposition temperature of the pristine PVDF film. Tensile strength measurements at room temperature before and after exposition to gamma radiation showed decrease of elongation at rupture in relation of pristine PVDF, suggesting that the radiation caused the crosslinking or chain scission of the PVDF film. (author)

  15. Microbial decontamination of some chicken meat products by gamma irradiation

    International Nuclear Information System (INIS)

    Afifi, E.A.; El-Nashaby, F.M.

    2001-01-01

    This investigation aims to study the possibility of using gamma irradiation for microbial decontamination of some chicken meat products (Luncheon, Burger and debonded minced chicken) which are produced by three companies (Halwany Bros.(H)-Faragalla (F) and Egypco (E)). The samples were purchased from local supermarkets and examined for the presence of Salmonella spp. and Staphylococcus aureus. The examination illustrated that all examined samples were positive for Staphylococcus aureus. While Luncheon (F), Burger (H) and debonded minced chicken (E) were only positive for Salmonella spp. Therefore, these product samples were gamma irradiated at 0, 3, 6 and 9 kGy. The effects of radiation treatments and cold storage (5+,-1 degree) on the total volatile basic nitrogen (T.V.B.N.), microbiological quality and sensory properties of samples under investigation were studied. The results indicated that 3kGy dose of gamma irradiation completely destroyed Staphylococcus aureus and Salmonella spp. and caused slight increase in (T.V.B.N.) content for all samples. A gradual increase in total bacteria, molds and yeast and T. V. B. N. during storage were observed, while 6 kGy dose was also sufficient for destroying Salmonella spp. and Staphylococcus aureus in all chicken meat products under investigation without any detectable effects on the sensory properties of these products and increased the shelf-life of luncheon, burger and minced for 8, 4 and 3 weeks respectively as compared with 4, 2 and 1 weeks for control samples

  16. Effect of gamma irradiated parenchyma on the growth of irradiated potato tuber buds

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Garcia Collantes, M. A.

    1976-01-01

    The development of buds greffed on irradiated potato parenchyma was studied. The irradiated parenchyma does not influence the sprouting capacity of buds, but it affects the way they develop. (Author) 9 refs

  17. Gamma background irradiation. Standards and reality

    International Nuclear Information System (INIS)

    Miloslavov, V.

    1998-01-01

    The systematic deviation of the results of measuring the power of air dose absorbed from the natural gamma background radiation in Bulgaria is inadmissibly large and variable. This in turn augments the dispersion of results as well as the mean value relative to worldwide data, to an implausible level, hardly attributable to the variegated geographical relief of the country. Thus in practice local anthropogenic increases hardly lend themselves to detection and demonstration. In the Radiation Protection Standards (RPS-92) in effect in Bulgaria, and in other documents concerning the same radiation factors as well, the maximum allowable limits for the population as a whole are clearly specified on the basis of worldwide expertise along this line. As a rule these limits are being exceeded by the actually measured values, and for this reason the cited documents contain a clause stipulating that these limits do not refer to the natural radiation background and therefore the latter may be virtually ignored. Thus the basic risk factor for the population goes beyond control at levels commensurable with the officially established limits, its twofold increase inclusive. The maximum allowable limit becomes undefinable. Bearing in mind the fact that in compliance with the cited RPS-92 elimination of the technogenic ionizing radiation sources incorporated in the environment prior to 1992 is 'freezed', it is evident that exposure of the population to anthropogenic radiation becomes legally allowable in a much wider range than the one specified by world legislators. One may anticipate radiation induced health noxae for the population directly or by anthropogenic radiation stress on biocenosis. A relatively large part of the population is susceptible to the effect of low radiation doses. Presumably this contingent will augment as a result of eventual fluctuations. The casual relationship which is difficult to establish should be given due consideration in the analysis of the causes

  18. Mutagenic efficiency of gamma irradiation in two soybean varieties

    International Nuclear Information System (INIS)

    Ozbek, N.; Atak, C.

    1984-01-01

    Efficiency of gamma irradiation on certain characteristics such as seedling height and dry weight of Amsoy-71 and Calland soybean varieties has been measured considering to use this mutagen effectively in mutation breeding. A greenhouse experiment was conducted using different doses of gamma irradiation (0 to 70 krad) and two soybean varieties. All treatments were carried out in 5 replications and consisted of 50 seeds. Seeds were sown in pots and plants were grown under climatically controlled conditions. Seedling height measurements were made 14 days after the emergence when the first leaf has stopped its growth and dry weights were measured after 5 weeks of growth. ED 50 (Effective Dose) values were also calculated in order to find out the suitable irradiation doses to be used in mutation induction for both varieties. The results showed clearly that seedling height and dry weight were affected by γ-irradiation and, as compared with the control, both of them were reduced as the dose was increased with some differences between the varieties. The soybean varieties also showed differences in terms of ED 50 (Effective Dose) values and this value was found for Amsoy-71 as 16 krad, whereas for Calland as 20 krad. These results were in agreement with the literature values. (author)

  19. Human cytomegalovirus replicates in gamma-irradiated fibroblasts

    International Nuclear Information System (INIS)

    Shanley, J.D.

    1986-01-01

    Because of the unique interdependence of human cytomegalovirus (HCMV) and the physiological state of the host cell, we evaluated the ability of human foreskin fibroblasts (HFF), exposed to gamma radiation, to support HCMV growth. Irradiation of HFF with 2,500 rADS prevented cellular proliferation and suppressed cellular DNA, but not RNA or protein synthesis. Treatment of HFF cells with 2,500 rADS 6 or 48 hours prior to infection did not alter the time course or virus yield during HCMV replication. Virus plaquing efficiency in irradiated cells was comparable to that of nonirradiated cells. As judged by thymidine incorporation and BUdR inhibition of virus replication, HCMV infection induced both thymidine kinase activity and host cell DNA synthesis in irradiated cells. In addition, virus could be recovered from HFF exposed to radiation 0-2 days after infection with HCMV. These studies indicate that the damage to cells by gamma irradiation does not alter the capacity of host cells to support HCMV replication

  20. Effects of Gamma Irradiation on Antioxidant, Antimicrobial Activities and Physical Characteristics of Sargassum thunbergii Extract

    International Nuclear Information System (INIS)

    Lee, S.J.; Song, E.J.; Lee, S.Y.

    2010-01-01

    This study was carried out to determine the effect of gamma irradiation (3-20 kGy) on the antioxidant, antimicrobial activities and physical characteristics of Sargassum thunbergii (ST) extracts. When ST powder was treated by gamma irradiation, the yields and total phenolic compounds (TPC) of water extracts were increased, but radical scavenging activities were not changed. When ST extract was irradiated, the TPC and DPPH radical scavenging activities were increased. In addition, gamma irradiation of ST extract decreased viscosity and removed color. These results suggest that gamma irradiation would be a useful method for improving the physical characteristics of ST extract while maintaining native biological activities

  1. Effect of gamma irradiation in 'jongkolnee' water lily

    International Nuclear Information System (INIS)

    Puripunyavanich, Vichai; Boonsirichai, Kanokporn

    2005-10-01

    Bulb lets of 'Jongkolnee' water lily irradiated with gamma rays at 0, 50, 100, 150 and 200 grays (20) bulb lets/treatment). All of them were planted in nursery tubs. Ninety percents of the non-irradiated 'Jongkolnee' germinated in 3-4 dyas. The irradiated 'Jongkolnee' germinated in 5, 7, 10 and 14 days and their germination ratios were 75%, 50%, 30% and 10% respectively. Later, they were transplanted into water lily pots. irradiated 'Jongkolnee' were grew slower than non irradiated 'Jongkolnee' and some irradiated plants died in the first 3 months. Healthy plants were transplanted in bigger pots. When they flowered, two nutnat characteristics were transplanted into bigger pots. When they flowered, two mutant characteristics were discovered: one with white petals and one with purple petals. However, the white 'Jongkolnee' flower shape was abnormal bad, therefore, bulb lets of white 'Jongkolnee' will be plant for selecting in the next generation. On the other hand, the purple 'Jongkolnee' flower shape was similar to the original pink one. the purple 'Jongkolnee' will be used for further studies in the future

  2. Is Vitamin E Life Supporter for Gamma Irradiated Galleria Mollenella?

    International Nuclear Information System (INIS)

    Mohamed, H.F.

    2012-01-01

    This study conducted to determine the effect of vitamin E separate or combined with gamma ray in semi artificial diets on some biological aspects of the Greater wax moth, Galleria mellonella L. (Pyralidae : Lepidoptera). The increase in the average number of eggs per mated female for more than 70 % of the control in both treated male and female. Also, through the F1 generation (descendant of P1 progeny fed on artificial diet plus vitamin E) in either irradiated male or female at 100 and 300 Gy dose levels. The life supporter of vitamin E clearly demonstrates throughout F1 whose offspring fed on artificial diet plus Vitamin E, also more pronounced during the first generation treated with gamma irradiation (100 and 300 Gray) which descendant from the offspring were fed on the artificial diet containing Vitamin E (0.02%) than that treatments which treated with gamma irradiation only. The average weight of larvae and pupae significantly increase by using petroleum ether only or this may be abnormal. The average weight of larvae and pupae at the concentration 0.02% was 105.07 and 121.87 % from the control treatment, respectively then decreased to 67.86 and 75.12%, respectively from the control treatment at the concentration 0.04% and then increase at the two concentrations 0.06 and 0.08 %. The increase in weight gain in the case combined ( 100 Gy or 300 Gy with Vitamin E) more than in case using a single dose of gamma irradiation , the increase in case 300 Gy only or combined with Vitamin E more than the control treatment. The best result in case of Vitamin (E) only then when treated the pest with gamma radiation after Vitamin (E) and the effect at 100 Gy better than in case 300 Gy. The combined effect of sub sterilizing dose (300 Gy) and sterilizing doses (400 and 500 Gy) of gamma radiation and vitamin E on the mating competitiveness of F1 males G. Mellenella shows that the competitiveness values more than 1.0 at the combined VE and the two dose levels 400 and 500 Gy

  3. Production of aflatoxins during storage of gamma-irradiated wheat

    Energy Technology Data Exchange (ETDEWEB)

    Behere, A.G.; Sharma, A.; Padwaldesai, S.R.; Nadkarni, G.B.

    1978-01-01

    A correlation between relative humidity (RH) during storage and moisture content was obtained in wheat subjected to gamma irradiation at 20 krad. The samples were assessed for storage up to 6 months with and without artificial loading of grains with conidia of Aspergillus flavus. The mycotoxin production seemed to be determined by a critical level of moisture in the grain (13%) at RH over 80% at 28/sup 0/ +- 2/sup 0/C. The total aflatoxin produced in the irradiated grains was observed to be lower than in the unirradiated controls. The amount of toxin contained in grains, artificially infected with A. flavus before or after irradiation, did not show appreciable differences. The results, while defining the storage conditions with reference to humidity, did not indicate any alterations in wheat relating to aflatoxin producing potential.

  4. Effect of gamma irradiation on the immune system of the chick embryo and the induction of tolerance

    International Nuclear Information System (INIS)

    Harateh, M.; Okla, S.; Rizk, H.

    1998-01-01

    The effect of low doses of gamma ray (1, 2.5 and 5 gray) irradiation on the lymphoid organs (bursa of fabricius - BF-, the thymus- Thy - and the bone marrow) of the developing chick were investigated.The embryos were irradiated at stage 34 (about 8 days of incubation)

  5. Effects of gamma irradiation on Commercial Food Packaging films

    International Nuclear Information System (INIS)

    Cabalar, P.J.; Abad, L.V.; Laurio, C.

    2015-01-01

    Gamma Radiation is a well-known technology to inactivate bacterial pathogens in food products. Currently, there is a growing interest in this technology considering its advantage of being a non-thermal process and the convenience of food being pre-packaged in its final form before treatment that prevents possible recontamination. The process of irradiating pre-packaged food requires that appropriate packaging materials are chosen as this would play a vital role in the quality assessment and safety evaluation of the irradiated products. Irradiation can cause changes to the packaging materials that might affect its integrity and functionality as a barrier e.g. to chemical or microbial contamination. Likewise, components of packaging materials that have been irradiated may migrate to food as a result of irradiation. Hence, this study was conducted to screen locally available commercial packaging films and determine its effect with radiation. Commercials packaging films made up of PET / FOIL / PE, Plain PET 12 / Foil 7 / PE 100, VMPET 12 / PE 70, OPP 20 / Foil 6.5 / PE 40, PET 12 / CPS 40, PET 12 / PE 50, Laminated PET / PE, Nylon / PE, and Nylon 15 / PE 50 were investigated for its effect with gamma radiation at 10 kGy. Their mechanical and thermal properties generally did not show any changes after irradiation except for OPP 20/ Foil 6.5 / PE 40. Gel Permeation Chromatography of leachates from water samples detected the presence of high molecular weight radiolytic products especially from laminated PET/PE films. Radiation effects were minimal for VMPET12/PE70, Nylon/PE and Nylon 15/PE 50 films. Preliminary results, using the stable isotope technique, to study the leachates in the water samples in contact with the packaging materials reveal an indicative increase in δ 18 O 0 / 00 and δD 0/ 00 .(author)

  6. Positron irradiation effect on positronium formation in gamma-irradiated LDPE and unplasticized PVC

    Science.gov (United States)

    Yang, J.; Zang, P.; Cao, X. Z.; Yu, R. S.; Wang, B. Y.

    2017-06-01

    Positron irradiation effects on positronium formation in low-density polyethylene (LDPE), gamma-irradiated LDPE and unplasticized PVC (UPVC) are studied. At least in one of the three different measurements, i.e., prolonged positron annihilation measurement at room temperature, low temperature in darkness and subsequent measurement under light, changes in o-Ps intensity are observed in non-irradiated LDPE and gamma-irradiated LDPE. While in UPVC, change in o-Ps intensity is hardly observable in all the above-mentioned three measurements. Reduction of o-Ps intensity by light indicates that positronium formation via the recombination of a positron and a trapped electron exists in LDPE and gamma-irradiated LDPE. The absence of light bleaching effect, together with the fact that the value of o-Ps intensity in heating and cooling process of a thermal circle is nearly the same, indicates that in UPVC, positronium can not be formed through trapped electron mechanism. This study highlights the speciality of positronium formation in UPVC, positronium is formed exclusively by the recombination of electron-positron pairs with short separations.

  7. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    International Nuclear Information System (INIS)

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M.

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice

  8. Relationship of some upland rice genotype after gamma irradiation

    Science.gov (United States)

    Suliartini, N. W. S.; Wijayanto, T.; Madiki, A.; Boer, D.; Muhidin; Juniawan

    2018-02-01

    The objective of the research was to group local upland rice genotypes after being treated with gamma irradiation. The research materials were upland rice genotypes resulted from mutation of the second generation and two parents: Pae Loilo (K3D0) and Pae Pongasi (K2D0) Cultivars. The research was conducted at the Indonesian Sweetener and Fiber Crops Research Institute, Malang Regency, and used the augmented design method. Research data were analyzed with R Program. Eight hundred and seventy one genotypes were selected with the selection criteria were based on yields on the average parents added 1.5 standard deviation. Based on the selection, eighty genotypes were analyzed with cluster analyses. Nine observation variables were used to develop cluster dendrogram using average linked method. Genetic distance was measured by euclidean distance. The results of cluster dendrogram showed that tested genotypes were divided into eight groups. Group 1, 2, 7, and 8 each had one genotype, group 3 and 6 each had two genotypes, group 4 had 25 genotypes, and group 5 had 51 genotypes. Check genotypes formed a separate group. Group 6 had the highest yield per plant of 126.11 gram, followed by groups 5 and 4 of 97.63 and 94.08 gram, respectively.

  9. Pollen-gamma irradiation on pineapple and pollination using irradiated pollen

    International Nuclear Information System (INIS)

    Benega, R.; Cisneros, A.; Martinez, J.; Arias, E.; Yabor, L.; Isidron, M.; Castillo, E.; Fernandez, J.

    1997-01-01

    In order to try to induce haploid plants, pineapple (Ananas comosus (L.) ;err.) pollen grains were gamma-rays irradiated with a Co 60 source at rates of doses from 0 to 300 Gy. The effect of gamma-rays on the generative-nucleus division and vitro pollen viability as well as, seed contents and plantlets obtained after pollinations was analysed. The were reducing in the division frequencies of generative nucleus at all assayed doses. The LD50 was achieved among 200 and 250 Gy. There were not differences on pollen viability in the rates of assayed doses. Seed contents were dose-dependent. The percentages of seed full and seed containing only embryos decreases at increasing of irradiation doses. Contrary effect was observed on the seed empty. Some plantlets regenerated from the different irradiation doses showed phenotypes with small and leaves and short inter nodes

  10. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production.

    Science.gov (United States)

    Blasco, Manuel; Badenes, María Luisa; Del Mar Naval, María

    2016-09-01

    Successful haploid induction in loquat ( Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar 'Algerie' were pollinated using pollen of cultivars 'Changhong-3', 'Cox' and 'Saval Brasil' irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from 'Algerie' pollinated with 300-Gy-treated pollen of 'Saval Brasil' from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids.

  11. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    International Nuclear Information System (INIS)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S.

    1991-01-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy

  12. Effect of gamma irradiation on the production and degradation system of the second hormonal messenger

    International Nuclear Information System (INIS)

    Tine, J.; Kergonou, J.F.; Rocquet, G.

    1976-01-01

    Gamma irradiation of rat liver plasma membranes leads to a decrease of the adenylcyclase activities stimulated by glucagon and fluoride. The observed inhibition is more important for the activity stimulated with glucagon. The 5'-nucleotisade activity is not changed by irradiation. When the phosphodiesterase system is submitted to gamma irradiation, the radiosensibility of enzymatic complex is more important [fr

  13. Effect of gamma irradiation on olive leaves and application on meat products

    International Nuclear Information System (INIS)

    Farhi, Hana

    2009-01-01

    The gamma irradiation is a high technology in the treatment of food product, for this reason we have been interested to study the effect of gamma irradiation on microbial charge (Bioburden), the phenolics compounds and their antioxidant activities on the olive leaves. The irradiated olive leaves are added as an antimicrobial and antioxidant compound on minced meat for preservation.

  14. Gamma irradiation as a quarantine treatment for spider mites (Acarina: tetranychidae) in horticultural products

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Banasik-Solgala, K.

    1999-01-01

    The carmine spider mite, Tetranychus cinnabarinus (Boisd.), and the two-spotted spider mite, Tetranychus urticae Koch, are closely related species of tetranychid mites (Acarina, Tetranychidae) that respond to gamma irradiation in a similar way. Eggs of both species exposed to gamma radiation early in embryonic development were considerably more susceptible to irradiation than older eggs. The tolerance of eggs to gamma radiation increased in 3-4-day-old eggs, when eye-spots were formed. Nymphs were more resistant to gamma radiation than eggs and larvae. Deteriorative effects of irradiation treatment were reflected in the immatures by their mortality in subsequent developmental stages. A positive relationship between dosage and the percent egg mortality or the mortality of subsequent stages was usually found when the immature stages were irradiated. The sex ratio of adults developed from irradiated eggs, larvae, and nymphs was affected by the irradiation treatment; the ratio was usually skewed towards males. Irradiation of females resulted in increased mortality, lowered fecundity, reduced egg viability, and sex ratio distortion in their progeny. Two-day-old females of the carmine spider mite and the two-spotted spider mite irradiated with 200 or 300 Gy lived as long as the controls. Mortality occurred after 3 weeks. The number of eggs laid by irradiated females of spider mites was considerably lower than in the control, and it decreased as the absorbed dose increased. The higher the dose of gamma radiation applied to adults of the spider mites (the parental generation, P), the higher the mortality of the F1 mites during their embryonic development. Viability of eggs laid by irradiated females of spider mites mated with irradiated males was significantly reduced. Young females treated with a dose of 0.2 kGy produced 40-50% nonviable eggs, while control mites produced only 6.0-6.6% nonviable eggs. A dose of 0.3 kGy caused high mortality of eggs; 88% and 97% nonviable

  15. Colour changes in gamma-irradiated polymer fibres

    International Nuclear Information System (INIS)

    Kabeel, M.A.; Sokkar, T.Z.N.; Shahin, M.M.

    1991-01-01

    The change in colour of some polymer fibres using γ-irradiation has been carried out to develop a sensor for γ-ray dosimetry. The spectral reflectance values of unirradiated and γ-irradiated polyester, nylon-6 and Dralon fibres were measured spectrophotometrically in a previous work. The tristimulus values of those samples were calculated. Also colour difference between the unirradiated samples and these irradiated with different doses of γ-irradiation were calculated using four colour difference formulae. The change in colour difference by the applied dose was evaluated for nylon-6 and Dralon fibres. The colour of polyester fibres is slightly affected by γ-irradiation. An empirical formula is deduced for the relation between colour difference ΔE and the dose r of γ-irradiated nylon-6 and Dralon fibres. This study can be used to develop a sensor for γ-ray dosimetry. (author)

  16. Food irradiation development in Pakistan

    Science.gov (United States)

    Khan, I.

    The large scale trials were held to extend the storage life of potatoes, onions and dry fruits by gamma radiation. It was concluded that radiation preservation of potatoes and onions was much cheaper as compared to conventional methods. A dose of 1 kGy can control the insects in dry fruits and nuts. The consumers' acceptability and market testing performed during the last four years are also conducive to the commercialization of the technology in this country. The Government of Pakistan has accorded clearance for the irradiation of some food items like potatoes, onions, garlic and spices for human consumption. The Pakistan Radiation Services (PARAS), the commercial irradiator (200 Kci) at Lahore, has already started functioning in April, 1987. It is planned to start large scale sterilization of spices by gamma radiation in PARAS shortly.

  17. Effects of gamma radiation on the Mediterranean flour moth eggs and acceptability of irradiated eggs by trichogramma cacoeciae females

    International Nuclear Information System (INIS)

    Mansour, M.

    2008-12-01

    The sensitivity of the Mediterranean flour moth, Ephestia kuehniella, eggs in different stages of development to gamma irradiation was studied and the acceptability of irradiated eggs by Trichogramma cacoeciae females was examined. In addition, the developmental rate of immature stages (larvae and pupae), resulting from irradiated eggs, to the adult stage was examined and the acceptance of irradiated eggs to T. cacoeciae females was evaluated. Results showed that the radio-sensitivity of E. kuehniella eggs decreased with increasing age. Irradiation also negatively affected survival to the adult stage and the rate of development of immature stages (larvae and pupae) to adults. In addition, the rate of development of immature stages resulting from irradiated eggs was negatively affected. Furthermore, irradiation positively affected the degree of acceptance of eggs to parasitization; irradiated eggs were more acceptable to T. cacoeciae than cold treated ones. (Author)

  18. Effect of gamma irradiation on microbial load, chemical and sensory evaluation of chicken meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2008-03-01

    The effect of gamma irradiation on microbial load, chemical sensory characteristics of chicken meat has been evaluated. Chicken meat were irradiated at doses of 0, 2, 4 and 6 kGy of gamma irradiation. Irradiated and unirradiated meat were kept in a refrigerator (1-4 Degree Centigrade). Immediately after irradiation, general composition, microbiological and sensory evaluation of chicken meat were done. Microbiological and chemical analysis of chicken meat were evaluated at weekly up to end of the storage period. The results indicated that all doses of gamma irradiation reduced the microbial load, and increased the shelf-life of chicken meat. Total acidity, volatile basic nitrogen (VBN) and lipid oxidation value in chicken meat were not affected by gamma irradiation. Sensory evaluation showed no significant differences between irradiated and un-irradiated chicken meat. (author)

  19. Development and Establishment of Detection Method of Irradiated Foods

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Woon; Kim, Dong Ho; Jo, Cheo Run; Kim, Jang Ho; Kim, Kyong Su

    2004-12-15

    The present project was related to the development and establishment of the detection techniques for the safety management of gamma-irradiated food and particularly conducted for the establishment of standard detection method for gamma-irradiated dried spices and raw materials, dried meat and fish powder for processed foods, bean paste powder, red pepper paste powder, soy sauce powder, and starch for flavoring ingredients described in 3, 6, 7 section of Korean Food Standard. Since the approvement of gamma-irradiated food items will be enlarged due to the international tendency for gamma-irradiated food, it was concluded that the establishment of detailed detection methods for each food group is not efficient for the enactment and enforcement of related regulations. For this reason, in order to establish the standard detection method, a detection system for gamma-irradiated food suitable for domestic operation was studied using comparative analysis of domestic and foreign research data classified by items and methods and European Standard as a reference. According to the comparative analyses of domestic and foreign research data and regulations of detection for gamma-irradiated food, it was concluded to be desirable that the optimal detection method should be decided after principal detection tests such as physical, chemical, and biological detection methods are established as standard methods and that the specific descriptions such as pre-treatment of raw materials, test methods, and the evaluation of results should be separately prescribed.

  20. Development and Establishment of Detection Method of Irradiated Foods

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Woon; Kim, Dong Ho; Jo, Cheo Run; Kim, Jang Ho; Kim, Kyong Su

    2004-12-01

    The present project was related to the development and establishment of the detection techniques for the safety management of gamma-irradiated food and particularly conducted for the establishment of standard detection method for gamma-irradiated dried spices and raw materials, dried meat and fish powder for processed foods, bean paste powder, red pepper paste powder, soy sauce powder, and starch for flavoring ingredients described in 3, 6, 7 section of Korean Food Standard. Since the approvement of gamma-irradiated food items will be enlarged due to the international tendency for gamma-irradiated food, it was concluded that the establishment of detailed detection methods for each food group is not efficient for the enactment and enforcement of related regulations. For this reason, in order to establish the standard detection method, a detection system for gamma-irradiated food suitable for domestic operation was studied using comparative analysis of domestic and foreign research data classified by items and methods and European Standard as a reference. According to the comparative analyses of domestic and foreign research data and regulations of detection for gamma-irradiated food, it was concluded to be desirable that the optimal detection method should be decided after principal detection tests such as physical, chemical, and biological detection methods are established as standard methods and that the specific descriptions such as pre-treatment of raw materials, test methods, and the evaluation of results should be separately prescribed

  1. Multi-purpose research facility: 60Co gamma irradiation unit at Centrum vyzkumu Rez

    International Nuclear Information System (INIS)

    Miklos, M.; Namburi, H. K.

    2014-01-01

    It is well know from 1950's till date, that the users, demand and network of gamma irradiation facility centers are growing rapidly to support industries as well as research due to its versatility. At present, its applications are in the fields of biological, chemical, solid state physics, medical, food and sterilization etc. The Gamma Irradiation Facility of the CVREZ is a dry-storage irradiator, which reached source end of life. The facility is now under refurbishment as a multi-purpose research center, fulfilling the requirements of international standards to support primarily the research sector and industries. Apart from the classical usage of gamma irradiation facility there is great scientific interest to use them to characterize the materials that are used in Nuclear Power Plants (NPP's). Electrical system unit in a nuclear power plants consists of several components. For instance some of them are light emitting diodes, pin-type photo-detectors and optical fibers, rubber seals, electrical insulation, thermal insulation, polymeric composites and metallic components etc. Under normal environmental conditions these materials possess good mechanical properties/chemical stability. The qualification of these materials for usage in NPPs under radiation environments and at high temperatures are desired for their better performance. Another feasibility of using gamma irradiation facility in the contest of NPP's is radiation hardening of robots that are used time-to-time in inspection of NPP's. Overall objective of our project is to support research activities aiming to understand the materials modification due to ionizing radiation. Upgraded facility will provide high-fidelity simulation of nuclear radiation environments for materials and component testing. We present our work by providing the information on (i) our objectives in utilizing the gamma facility, (ii) specific experimental test set-up under development to perform tests at elevated

  2. Effect of gamma irradiation on textile waste water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, Teo Ming; Jamaliah Sharif; Khairul Zaman Dahlan

    2010-01-01

    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw wastewater was diluted to using tap water to targeted concentration of COD 400 mg/ l. The sample was irradiated at selected dose between the ranges of 2 kGy to 100 kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The degree of removal influenced by the dose introduced during the treatment process. As the dose increased, higher removal of organic pollutant was recorded. The COD removal at lowest dose, 2 kGy is about 310 mg/ l. Meanwhile, at highest dose, 100 kGy the COD reduced to 100 mg/ l. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This showed the concentration of pollutants and dose of irradiation applied are directly proportional to each other. (author)

  3. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    Science.gov (United States)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  4. Color changes of vienna sausage by gamma irradiation

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Aoki, Shohei; Sato, Tomotaro

    1978-01-01

    Color change of vienna sausage induced by gamma irradiation was investigated. Discoloration of irradiated vienna sausage was evaluated by use of the color difference meter and sensory test. The discoloration by irradiation was influenced by oxygen contents in packing pouches. In the case of commercial vienna sausage, significant difference from unirradiated control by 99% of probability was recognized at the doses of 1.0 Mrad in nitrogen, 0.5 Mrad in air and 0.3 Mrad in oxygen, respectively. The color change of the specially prepared vienna sausage (40% pork, 40% mutton, 20% beef, and no additional preservatives) was less than that of the commercial one. The absorbance at 540 nm of extracts from vienna sausages with 80% acetone decreased with increasing irradiation dose and oxygen content. While, change in absorbance at 340 nm was practically unaffected by the oxygen concentration. These results suggest that the degradation of nitroso-heme complex by irradiation causes mainly the discoloration of vienna sausage. (auth.)

  5. Insect disinfestation in smoked fish by gamma irradiation

    International Nuclear Information System (INIS)

    Sudatis, Boonya; Banditsing, Chettachai

    1982-01-01

    The experiment on insect disinfestation in smoked fish by gamma irradiation was done by irradiating 2-day-old eggs, 28-day-old larvae, 5-day-old pupae, and 5-day-old adults, reared at 26 +- 1 degC and 75-70% RH., with doses of 0-.5, 0-20 Krad respectively for sterility dose and with doses of 0-2, 0-6, 0-60, 20-60 Krad respectively for LD 50 . The results obtained from this experiment are as follows: (1) For the study of all stages of this insect sterility doses, there was no irradiated egg hatch in all doses and only irradiated larvae with 1-5 Krad reached pupal stage but emerged as malformed adults and died. Furthermore, the sterility doses for pupal and adult stage are both at 7.5 Krad. However, the percent of egg hatch from 5 Krad pupae and 5 Krad adults are .18 and .4 respectively. (2) The LD 50 checked at different times after irradiation in each stage for 2-day-old eggs after 2 days, for 28-day-old larvae after 7 days, 5-day-old pupae after 5 days, and for 5-day-old adults after 5 days are .48, 12.85, 18.5 and 29.78 Krad respectively

  6. Ensuring Microbiological Safety of Fresh Eggs by Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Hammad, A. A.; Swailam, H.M.; Aly, W. F.

    2008-01-01

    Egg shell sanitizing practices are necessary to improve microbiological safety of fresh eggs. In this work, fifteen fresh eggs samples of each (Balady, White and Brown eggs) were collected from different local supermarkets to evaluate their microbiological quality. The results indicated that Balady eggs were higher in microbial population in comparison with the two other varieties. Salmonella spp. was detected in 9 (60%) samples of Balady eggs. The effect of gamma irradiation at dose of 0, 2, 3 and 4 kGy on microbiological quality of Balady eggs during storage at 4±1 degree C for 35 days was studied. The effects of irradiation and storage on total cholesterol, and total carotenoids contents in Balady eggs were also investigated. The results showed that irradiation at 3 kGy reduced total aerobic bacterial counts. Coliform bacteria, E. coli and Salmonella spp. were completely eliminated. Total cholesterol and total carotenoids were decreased in yolk egg as a result of irradiation. Treated Balady eggs with irradiation dose of 3 kGy were efficient and sufficient for ensuring safety, maintain quality and extend shelf-life.

  7. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    International Nuclear Information System (INIS)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup; Kim, Dong-Ho

    2007-01-01

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10 5 to 10 7 CFU/ml and 0 to 10 3 CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10 2 CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10 7 CFU/g) were eliminated by irradiation at 3 kGy. Approximate D 10 values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts

  8. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    Science.gov (United States)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup; Kim, Dong-Ho

    2007-11-01

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10 5 to 10 7 CFU/ml and 0 to 10 3 CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10 2 CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10 7 CFU/g) were eliminated by irradiation at 3 kGy. Approximate D10 values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts.

  9. Gamma irradiation enhances biological activities of mulberry leaf extract

    Science.gov (United States)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-04-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE2, and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods.

  10. Gamma irradiation effect on thermo shrink polyethylene tube: Case study

    International Nuclear Information System (INIS)

    Naurah Mat Isa; Siti Zulaiha Hairaldin; Mohd Yusof Hamzah; Zulkafli Ghazali

    2010-01-01

    The production technology of heat shrinkable tubes is based on the industrial usage of so-called memory effect in some polymers. Many polymers can be rendered heat shrinkable, particularly polyolefins by introducing crosslinking in the polymer backbone. Heat shrinkable tubes and moulded parts provide mechanical and/or chemical and/or electrical protection. . In this work, irradiation from Co-60 was used to impart crosslinking in polymer and thus modify their mechanical and thermal properties. Heat shrinkable or thermo shrink polyethylene (PE) tube with diameter 6.4 mm was selected to evaluate crosslinking behaviour from the gamma irradiation exposure at 5 different doses (120, 140, 160, 200 and 220 kGy). The gel content (%), tensile properties and thermal behavior and stability of the tubes were measured using DSC and TGA. Tubes irradiated at 140 kGy and 160 kGy showed better tensile properties than those at 120, 200 and 220 kGy doses. Maximum percent of crystallization was observed at 160 kGy and temperature required to crystallize is lower than melting temperature due to changes in molecular orientation. Thermal decomposition of the irradiated tubes occurred at 430-450 degree Celsius which is lower than the unirradiated sample. Gel content analysis for samples irradiated at 180-220 kGy yield up to 30 to 40 % gel fraction. Although the gel fractions are higher than other dose, the samples are expected to experience chain scission presumably due to localized gel formation. (author)

  11. Elimination of salmonella from fermented pork by gamma irradiation

    International Nuclear Information System (INIS)

    Noochpramul, K.; Loaharanu, P.

    1974-01-01

    A fermented pork product, locally known as ''Nham'', is usually contaminated with salmonella and occasionally with Trichinella spiralis and Taenea solium. This product is always eaten raw as cooking destroys its delicate flavour. A survey made on the MPN of salmonella revealed that much less than 100 salmonella was found in one gram of the product. Nham was inoculated with S. derby, S. anatum, S. newport, or S. paratyphi B, the most common serotypes of salmonella found in this product, at 10 6 , 10 4 , or 10 2 per gram. The inoculated product was irradiated by the gamma beam-650 Co-60 irradiator at 0, 0.1, 0.2, 0.3 or 0.4 Mrad. Dosage at 0.4 Mrad eliminated salmonella as much as 10 6 per g; 0.3 Mrad eliminated 10 6 /g of S. newport and S. paratyphi B and 10 4 /g of S. derby and S. anatum; and 0.2 Mrad eliminated 10 2 /g of all serotypes of salmonella in the product. No changes in the organoleptic properties of irradiated Nham was found when irradiated at 0.3 Mrad or less. Dosage at 0.2 Mrad appeared to be sufficient for commercial irradiation of Nham for the elimination of salmonella

  12. Effect of gamma irradiation on the behavioral properties of crotoxin

    Directory of Open Access Journals (Sweden)

    E.G. Moreira

    1997-02-01

    Full Text Available Crotoxin has been detoxified with gamma radiation in order to improve crotalic antiserum production. Nevertheless, present knowledge of the biological characteristics of irradiated crotoxin is insufficient to propose it as an immunizing agent. Crotoxin is known to increase the emotional state of rats and to decrease their exploratory behavior (Moreira EG, Nascimento N, Rosa GJM, Rogero JR and Vassilieff VS (1996 Brazilian Journal of Medical and Biological Research, 29: 629-632. Therefore, we decided 1 to evaluate the effects of crotoxin in the social interaction test, which has been widely used for the evaluation of anxiogenic drugs, and 2 to determine if irradiated crotoxin induces behavioral alterations similar to those of crotoxin in the social interaction, open-field and hole-board tests. Male Wistar rats (180-220 g were used. Crotoxin (100, 250, and 500 µg/kg was injected intraperitoneally 2 h before the social interaction test. Similarly, irradiated crotoxin (2000 Gy gamma radiation from a 60Co source was administered at the doses of 100, 250, and 500 µg/kg for the hole-board test, and at the doses of 1000 and 2500 µg/kg for the open-field and social interaction tests. ANOVA complemented with the Dunnett test was used for statistical analysis (P<0.05. Crotoxin decreased the social interaction time (s at the doses of 100, 250 and 500 µg/kg (means ± SEM from 51.6 ± 4.4 to 32.6 ± 3.7, 28.0 ± 3.6 and 31.6 ± 4.4, respectively. Irradiated crotoxin did not induce behavioral alterations. These results indicate that 1 crotoxin may be an anxiogenic compound, and 2 in contrast to crotoxin, irradiated crotoxin was unable to induce behavioral alterations, which makes it a promising compound for the production of crotalic antiserum

  13. Sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Our investigations prove that sludge contains Salmonellae in more than 90% of samples. The maximum number of organisms was 10 7 per litre. One of our most important findings was the fact that neither aerobic stabilization nor anaerobic digestion significantly reduces contamination with Salmonellae. Moreover we found that Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. The increasing number of Salmonella carriers among our herds of cattle and their striking accumulation during the grazing period demonstrate that such transmission represents a growing danger. Sanitation of sludge to be used as fertilizer is therefore urgent. In our investigation of the sanitary effect of pasteurization (70degC for 30 min) and of gamma irradiation on sewage sludge, we examined the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants. The doses applied were 100, 200, 300, 400 and also 500 krad. We found a linear reduction of Enterobacteriaceae with increasing doses; a dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae; and there were less than 10 Enterobacteriaceae per gram in 97.2% of the samples irradiated with 300 krad. The results of these model experiments could be completely confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by the reduction in Enterobacteriaceae, was equivalent to the effect of heat treatment by pasteurization. (author)

  14. Gamma-irradiation to inactivate thioglucosidase of crucifers

    International Nuclear Information System (INIS)

    Lessman, K.J.; McCaslin, B.D.

    1987-01-01

    The crucifers contain glucosinolates which through enzymatic hydrolysis give rise to toxicants that limit the use of oil-free meal obtainable from this plant family. Seeds from three crucifers were used to test gamma irradiation to inactivate enzyme systems as a step toward detoxification. Seeds of Crambe abyssinica Hochst (crambe), ground seeds of Sinapis alba L. (mustard), and seeds of Brassica napus L. (rape) were subjected to gamma-irradiation (6.25, 12.5, 25.0 and 50.4 Mrad) to inactivate thioglucosidase and/or destroy glucosinolates. Samples of ground seeds, their oil-free meals, previously irradiated ground seeds and their oil-free meals were assayed for glucose, a product of enzymatic hydrolysis of glucosinolates present in the crucifer seeds. The 50.4 Mrad exposure inactivated thioglucosidase but did not destroy glucosinolates. The fatty acid contents of extracted oils were affected. The amino acid profile of defatted crambe protein meal was affected, while that of white mustard was not

  15. The influence of chronic gamma-irradiation on the structure of follicular system of animal ovaries

    International Nuclear Information System (INIS)

    Banetskaya, N.B.; Amvros'ev, A.P.

    1994-01-01

    The influence of a chronic gamma - irradiation in a low doze (0.5 Gy, capacity of a doze 1.8 * 10 -7 Gy / s) on follicular apparatus of ovary of young white female rats was investigated. Quantity of the follicles on the all stages of development was calculated. It is detected that the chronic irradiation by a low doze of young rats causes to morphological changes in ovaries. At once after an irradiation is marked the ovulation stimulation, it can be connected with change of the hormone balance in a body of the animals. In one month after an irradiation quantity of follicles on the all stages of development is reduced and number of atretic bodies is increased. The similar disorders can be connected as with direct influence of ionizing radiation on oocytes and them follicular cells, and also with action through change in bodies of the endocrine system. 14 refs., 2 tabs

  16. Effect of gamma irradiation on antioxidant activity of Amoora rohitaka

    International Nuclear Information System (INIS)

    Rajurkar, N.S.; Gaikwad, K.N.

    2012-01-01

    The effect of a medium dose of gamma radiation on antioxidant activity of Amoora rohitaka was studied. Radiation doses were 0, 1, 3 and 5 kGy. Antioxidant activity was screened by using different assay. With increasing dose the formation of Maillard reaction products (MRPs) contributes to the increase in the antioxidant activity. MRPs are formed as a result of Maillard reaction. In ABTS [2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid di-ammonium salt] assay, ethanol extract showed increase in scavenging activity. It also showed a marked increase in polyphenolic contents. The present study reveals that gamma irradiation can be an efficient process to increase antioxidant activity of Amoora rohitaka. (author)

  17. Grafting study of polysulfone polymeric membranes by gamma ray irradiation

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio A.M.; Gomes, Ailton de S.

    2011-01-01

    Radiation-induced grafting of styrene poli sulfone films were investigated by simultaneous method in solution using gamma-ray from a radio nuclide 60 Co source. The gamma-ray energy of high intensity induced breaking of chemical bonds leading to free radical formation. The radical start a conventional polymerization sequence comparable with that obtained with a chemical catalyst acting as initiator. The effects of grafting conditions such as irradiation total dose, dose rate and addition of cross linking agent, were studied by means of morphology analysis, thermal degradation and crystallinity. After the grafting reaction, the membranes were submitted to an exhaustive extraction with solvent to remove the polystyrene homopolymer formed. The degree of grafting (DOG) was analyzed by percentage of weight increase. As a result, the reaction always follows the same pattern: DOG increases rapidly initially whilst propagation is the main reaction, then more slowly as termination becomes more frequent. (author)

  18. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    Science.gov (United States)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  19. DNA-repair after irradiation of cells with gamma-rays and neutrons

    International Nuclear Information System (INIS)

    Altmann, H.

    1975-11-01

    The structural alterations of calf thymus DNA produced by neutron or gamma irradiation were observed by absorption spectra, sedimentation rate and viscosity measurements. Mixed neutron-gamma irradiation produced fewer single and double strand breaks compared with pure gamma irradiation. RBE-values for mixed neutron-gamma radiation were less than 1, and DNA damage decreased with increasing neutron dose rate. Repair processes of DNA occuring after irradiation were measured in mouse spleen suspensions and human lymphocytes using autoradiographic methods and gradient centrifugations. The number of labelled cells was smaller after mixed neutron-gamma irradiation than after gamma irradiation. The rejoining of strand breaks in alkaline and neutral sucrose was more efficient after gamma irradiation than after mixed neutron-gamma irradiation. Finally, the effect of detergents Tween 80 and Nonident P40 on unscheduled DNA synthesis was studied by autoradiography after mixed neutron-gamma irradiation (Dn=5 krad). The results showed that the DNA synthesis was inhibited by detergent solutions of 0.002%

  20. Two-faces stationary irradiation method and dosimetric considerations for radiation processing at the multipurpose gamma irradiation facility / IPEN-CNEN

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo S.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Over the last ten years, the Multipurpose Gamma Irradiation Facility of the Nuclear and Energy Research Institute - IPEN/CNEN located inside the Sao Paulo University campus has been providing services on radiation processing, especially for sterilization of health care and disposable medical products as well as support to research studies on modification of physical, chemical and biological properties of several materials. Placed at the same campus operates an extremely important radiopharmaceutical production facility when almost all disposable supplies used to produce medical products as the technetium-99m are continuously sterilized by gamma radiation. Many university biomedical research laboratories specially those working with equipment for cell cultures and vaccine production also make use of the gamma sterilization. Animal feed and shavings used by certified bioteries are routinely disinfected. Alternative underwater irradiation methods were developed to meet the demand of gemstone color enhancement. Human tissues including bone, skin, amniotic membranes, tendons, and cartilage belonging to National Banks are usually irradiated too. Different kind of polymers, hydrogels, foods as well native fruits, have been irradiated in this facility. Cultural heritage objects as books, paintings and furniture are disinfected routinely by gamma radiation. The success of the implementation of radiation processing in this facility is due to research and development of irradiation and dosimetry methods suitable for each condition. In this work are presented some considerations about the distribution dose and the two-faces stationary irradiation method developed and validated for this facility. (author)

  1. Two-faces stationary irradiation method and dosimetric considerations for radiation processing at the multipurpose gamma irradiation facility / IPEN-CNEN

    International Nuclear Information System (INIS)

    Santos, Paulo S.; Vasquez, Pablo A.S.

    2015-01-01

    Over the last ten years, the Multipurpose Gamma Irradiation Facility of the Nuclear and Energy Research Institute - IPEN/CNEN located inside the Sao Paulo University campus has been providing services on radiation processing, especially for sterilization of health care and disposable medical products as well as support to research studies on modification of physical, chemical and biological properties of several materials. Placed at the same campus operates an extremely important radiopharmaceutical production facility when almost all disposable supplies used to produce medical products as the technetium-99m are continuously sterilized by gamma radiation. Many university biomedical research laboratories specially those working with equipment for cell cultures and vaccine production also make use of the gamma sterilization. Animal feed and shavings used by certified bioteries are routinely disinfected. Alternative underwater irradiation methods were developed to meet the demand of gemstone color enhancement. Human tissues including bone, skin, amniotic membranes, tendons, and cartilage belonging to National Banks are usually irradiated too. Different kind of polymers, hydrogels, foods as well native fruits, have been irradiated in this facility. Cultural heritage objects as books, paintings and furniture are disinfected routinely by gamma radiation. The success of the implementation of radiation processing in this facility is due to research and development of irradiation and dosimetry methods suitable for each condition. In this work are presented some considerations about the distribution dose and the two-faces stationary irradiation method developed and validated for this facility. (author)

  2. Gamma and neutron irradiation tests on commercial IC op amps

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Morris, A.C. Jr.; Su, D.K.

    1985-01-01

    Experimental results of gamma and neutron irradiation tests on 30 types of integrated-circuit operational amplifiers from 11 manufacturers are presented. All units were low-cost, commercial-grade devices. Op amps were evaluated for changes in offset voltage, input bias current, power supply current, open-loop gain, gain-bandwidth product, slew rate, power-supply and common-mode rejection ratios. Bipolar transistor op amps with resistive collector load resistors for the input stage indicated the best radiation hardness

  3. EPR studies of gamma-irradiated taurine single crystals

    International Nuclear Information System (INIS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Koeksal, F.

    2000-01-01

    An EPR study of gamma-irradiated taurine [C 2 H 7 NO 3 S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32 SO - 2 and 33 SO - 2 radicals. The hyperfine values of 33 SO - 2 radical were used to obtain O-S-O bond angle for both sites

  4. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  5. EPR studies of gamma-irradiated taurine single crystals

    Science.gov (United States)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Köksal, F.

    2000-04-01

    An EPR study of gamma-irradiated taurine [C 2H 7NO 3S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32ṠO -2 and 33ṠO -2 radicals. The hyperfine values of 33ṠO -2 radical were used to obtain O-S-O bond angle for both sites.

  6. Polymer nanocomposite of laponite RD prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Oliveira, Maria J.A.; Silva, Estefania O.; Lugao, Ademar Benevolo; Parra, Duclerc Fernandes; Amato, Valdir S.

    2012-01-01

    Nanocomposite hydrogels based on polyvinyl alcohol (PVAl) and polyvinylpyrrolidone (PVP) containing 0-5 wt % of the synthetic laponite RD clay were prepared by gamma irradiation process. The morphology of the nanocomposite hydrogel was observed by characterizations techniques using: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The structural properties crosslinking was determined by measuring the crosslink gel content extraction on mesh 500 sizes and swelling kinetics at 22 °C. The results showed that crosslinks have inverse dependence on the clay level in the nanocomposite hydrogels, while swelling shows direct dependence. (author)

  7. Immunological aspects of low doses gamma-irradiation effects

    International Nuclear Information System (INIS)

    Pokrovskij, B.S.

    1997-01-01

    Low dose gamma-radiation effect on the nonspecific protection factors and immune reactions of agricultural birds (diurnal broiler chicks Broiler-6) was studied. Quantitative and qualitative composition of crest skin autoflora and oral cavity mucosa, level of essential antibodies in blood serum, activity of lysozyme, β-lysines, general bactericidal properties of blood serum were determined. It is shown that low dose irradiation promotes the enhancement of antimicrobial properties of skin and oral cavity mucosa, blood serum bactericidal properties due to the increase in lysozyme content as well as beta-lysines and normal antibodies. Radiation affect the formation of immune intensity and favourable result of infectious process

  8. Physicochemical, thermal and functional properties of gamma irradiated chickpea starch.

    Science.gov (United States)

    Bashir, Khalid; Aggarwal, Manjeet

    2017-04-01

    The study was conducted to evaluate the effect of gamma irradiation (0, 0.5, 1, 2.5, 5 and 10kGy) on physicochemical, functional and thermal properties of chickpea starch. Results revealed that the pasting properties showed a significant (p≤0.05) decrease in peak viscosity, final viscosity, setback viscosity, trough viscosity and pasting temperature in dose dependent manner. Swelling, solubility index, oil absorption capacity and water absorption capacity increased significantly with dose, while as syneresis decreased with dose. Gelatinization temperatures T o , T p and T c decreased significantly with dose. X-ray diffraction showed a characteristic C type pattern of the starches and the crystallinity decreased with dose. Scanning electron microscopy revealed small oval shaped starch granules and slight surface fissures were seen in the irradiated starch treated with 5 and 10kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Chronic gamma irradiation and hypothalamo-pituitary system in sheep

    International Nuclear Information System (INIS)

    Arendarcik, J.; Praslicka, M.; Molnarova, M.

    1982-01-01

    After seven days of irradiation with gamma radiation to a total dose of 6.7 Gy the biochemical, morphological and hematological changes were observed in the bodies of sheep. A chromosomal analysis found a very low number of mitoses. A decrease was found in the total trypsin inhibition activity of the plasma. In the hypothalamus were found significant changes in the representation of catecholamines and a decrease was observed in the weight of ovaries and their follicular system was found to be damaged. This damage is more significant from the functional point of view than the damage caused by an acute local irradiation of the ovaries with doses of 4.7 and 9.5 Gy. (M.D.)

  10. Modification of ethylene-norbornene copolymer by Gamma irradiation

    Directory of Open Access Journals (Sweden)

    Kačarević-Popović Zorica M.

    2006-01-01

    Full Text Available The possibility of modifying polyethylene and many other polymers with high energy radiation has led to many useful applications. Due to their new combination of properties and the shortage of experimental data, the radiolysis of a new class of materials, cyclo-olefin copolymers (COC, polymerised from norbornene and ethylene using metallocene catalysts, is of great interest to the study of radiation chemistry and the physics of polymeric systems. Ethylenenorbornene copolymer, pristine and containing an antioxidant were subjected to gamma irradiation in the presence of air and in water. The irradiated copolymer was studied using IR and UV-vis spectrophotometric analysis. The radiation-induced changes in the molecular structure were correlated to changes in the glass transition temperature measured by the DSC method.

  11. Gamma irradiation studies on Gladiolus cv. White Friendship

    International Nuclear Information System (INIS)

    Banerji, B.K.; Datta, S.K.; Sharma, S.C.

    1994-01-01

    Dormant corms of Gladiolus cv. White Friendship were irradiated with 250, 500, 750, 1000 and 1250 Gy of gamma rays. Reduction in survival, plant height, number of leaves and floret, spike length, leaf and corm size and delayed flowering were recorded after irradiation. Morphological abnormalities in foliage and florets and chromosomal aberration during root tip mitosis increased with increase in exposure. Flowering was ceased cent per cent in highest dose of 1250 Gy. LD 50 on survival basis was found in 750 Gy exposure. MV 2 and MV 3 also followed the similar pattern of results as exhibited by MV 1 plants. Pink flower colour mutation was detected in few plants as sectorial chimeric form in MV 2 in treated population. In MV 3 one plant produced spike with lighter pink florets in 750 Gy treatment. This mutant has been isolated in pure form. (author). 10 refs., 2 figs., 2 tabs

  12. Gamma irradiation of unsaturated hydrocarbons in presence of hydrogen

    International Nuclear Information System (INIS)

    Molinari, M.A.; Strehar, N.R.; Videla, G.J.

    1975-11-01

    Only small increases in yield (G values) of saturated products are observed in the irradiation with 60 Co gamma radiation, of ethylene and 1-butene. The values obtained are: G(C 2 H 6 )=0,3-0,4 (for ethylene/H 2 ) and G(n-C 4 H 10 )=2,1 (for 1-butene/H 2 ), with total dose of 8 to 9.10 19 eV. In a similar irradiation of acetylene in presence of hydrogen, ethylene was obtained with relatively high G-values: G=5,4 for a dose of 2.10 18 eV G=17,5 for 2,5x10 19 eV and G=8,4 for 2,3.10 20 eV. Benzene yield shows some increases (G=6,6-9,1) in relation to values in absence of hydrogen. (author) [es

  13. Cobalt 60 gamma irradiation current status, trends and insights

    International Nuclear Information System (INIS)

    Corley, John T.

    1998-01-01

    This paper discusses the current status, trends and insights into the continued, safe use of cobalt 60 gamma irradiation. Also presented are some of the many initiatives undertaken at MDS Nordion. Topics covered include our investment for the future supply of raw materials and the latest news from source production. Briefly presented are the tasks associated with the safe transport of cobalt 60 around the world. Discussed is cobalt 60 usage at the customer site; more specifically maintaining source integrity, source utilization and irradiator design trends. Highlighted are industry trends for North America, Europe and the rest of the world. Finally presented are the challenges and opportunities for the industry. Stressed in the paper is the need to work together

  14. Synthesis of copper polyacrylate nanocomposites by gamma irradiation

    International Nuclear Information System (INIS)

    Casalme, Loida Olores

    2005-04-01

    This research involves the synthesis of copper nanoparticles with controlled size by the application of gamma radiation with varying polyacrylic acid (PAA) and CuSO 4 concentration. An alternative and convenient method was done which employs Co 60 irradiation of solutions of copper salt and PAA with irradiation dose of 1.6, 3.6, 6.4, and 9.2 MRad. The effect of polymer and copper sulfate's initial concentrations as well as the effect of the presence of alcohol as radical scavenger and the presence of ethylenediaminetetraacetic acid as stabilizer were evaluated. Characterization of nanocomposite properties such as plasmon resonance band, fluorescence, and particle morphology and size were determined. Layer-by-layer assembly of Cu-PAA nanocomposites and polydiallyl dimethyl ammonium chloride (PDDA) was also constructed. Stability of the synthesized copper-PAA nanocomposites in terms of the disappearance of plasmon band with time was evaluated. (Author)

  15. International Developments of Food Irradiation

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1997-01-01

    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940's: discovery of principles of food irradiation; 1950's: initiation of research in advanced countries; 1960's: research and development were intensified in some advanced and developing countries; 1970's: proof of wholesomeness of irradiated foods; 1980's: establishment of national regulations; 1990's: commercialization and international trade. (Author)

  16. International Developments of Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940`s: discovery of principles of food irradiation; 1950`s: initiation of research in advanced countries; 1960`s: research and development were intensified in some advanced and developing countries; 1970`s: proof of wholesomeness of irradiated foods; 1980`s: establishment of national regulations; 1990`s: commercialization and international trade. (Author)

  17. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu [Nanjing University of Aeronautics and Astronautics, Department of Nuclear Science and Engineering, Nanjing (China); Zhou, Qi-fu [Nanjing University of Aeronautics and Astronautics, Department of Nuclear Science and Engineering, Nanjing (China); Nuclear and Radiation Safety Center, Beijing (China); Zhang, Hai-qian [Nanjing University of Aeronautics and Astronautics, Department of Nuclear Science and Engineering, Nanjing (China); Southeast University, Jiangsu Laboratory for Biomaterials and Devices, Nanjing (China)

    2016-03-15

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ({sup 60}Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  18. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-01-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ( 60 Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  19. EPR study on non- and gamma-irradiated herbal pills

    Science.gov (United States)

    Aleksieva, K.; Lagunov, O.; Dimov, K.; Yordanov, N. D.

    2011-06-01

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048±0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show "cellulose-like" EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  20. Effect of gamma irradiation on the properties of tyre cords

    International Nuclear Information System (INIS)

    Aytac, Ayse; Sen, Murat; Deniz, Veli; Gueven, Olgun

    2007-01-01

    Gamma irradiation of high tenacity Nylon 6.6 (Ny 66) and polyester (PET) tyre cords was investigated. The untreated and treated tyre cords with different twist levels were irradiated at different dose rates in air. The effects of irradiation on both Ny 66 and PET cords were not found to be depending on the twist levels of the cords. The changes in the mechanical and thermal properties with absorbed dose at two different dose rates were measured. The mechanical properties were observed to deteriorate with increasing dose for Ny 66 cords, whereas remained almost unchanged for PET cords both in greige and dipped forms. Hot shrinkage value for the greige Ny 66 cords was found to be improved, i.e. decreased. This decrease was much lower for greige PET than Ny 66 cords. It is concluded that PET cord has higher radiation resistance than Ny 66 cord and the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design if pre-vulcanization with high energy radiation is to be applied

  1. EPR study on non- and gamma-irradiated herbal pills

    Energy Technology Data Exchange (ETDEWEB)

    Aleksieva, K., E-mail: katerina_bas@abv.b [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Lagunov, O. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Dimov, K. [Institute of Cryobiology and Food Technologies, 1162 Sofia (Bulgaria); Yordanov, N.D. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2011-06-15

    The results of EPR studies on herbal pills of marigold, hawthorn, yarrow, common balm, tutsan, nettle and thyme before and after gamma-irradiation are reported. Before irradiation all samples exhibit one weak singlet EPR line with a g-factor of 2.0048{+-}0.0005. After irradiation herbal pills could be separated in two groups according to their EPR spectra. Radiation-induced free radicals in pills of marigold, yarrow, nettle, tutsan and thyme could be attributed mainly to saccharide excipients. Tablets of hawthorn and common balm show 'cellulose-like' EPR spectrum, superimposed on partly resolved carbohydrate spectrum, due to the active part (herb) and inulin, which is present in the pills as an excipient. Fading study of the radiation-induced EPR signals confirms that sugar radicals are more stable than cellulose species. The reported results show that the presence of characteristic EPR spectra of herbal pills due to excipients or active part can be used as unambiguous proof of radiation processing within 35 or more days after irradiation.

  2. Thermoluminescence in gamma irradiated iPP-VGVGCNF

    Energy Technology Data Exchange (ETDEWEB)

    Cherestes, Margareta [S. C. Dozimed SRL, Bucharest (Romania); Constantinescu, Livia Maria [University of Bucharest, Faculty of Physics, Magurele, Bucharest (Romania); Chipara, Dorina Magdalena, E-mail: dchipara@utpa.edu [The University of Texas Pan-American, Department of Physics and Geology, Edinburg, TX 78539 (United States); Cherestes, Codrut [S. C. Dozimed SRL, Bucharest (Romania); Chipara, Mircea [The University of Texas Pan-American, Department of Physics and Geology, Edinburg, TX 78539 (United States)

    2013-06-15

    Nanocomposites have been obtained by dispersing various amounts of vapor grown carbon nanofibers within isotactic polypropylene via melt mixing. The as obtained nanocomposites were gamma irradiated at various integral doses by using a {sup 60}Co source. The irradiation was performed in air, at room temperature, and at a dose rate of about 1 kGy/h up to an integral dose of 28 kGy. Thermoluminescence investigations revealed the role of carbon nanotubes in the radiation-induced modification of polymer-based nanocomposites. Almost all samples (pristine polymer and polymer-based nanocomposites irradiated and not irradiated) showed two overlapping thermoluminescence signals. It is concluded that the dispersion of carbon nanotubes decreases the amount of trapped electrons improving eventually the radiation stability of the polymeric matrix. The low temperature thermoluminescence peak was tentatively associated to melting phenomena. The origin of the high temperature thermoluminescence peak is more complex. Nevertheless, the experimental data suggests that this peak is sensitive to the polymer-filler interface.

  3. Concomitant Effects of Caffeine and Gamma Irradiation in Female Rats

    International Nuclear Information System (INIS)

    Kafafy, Y. A.

    2004-01-01

    The present study was undertaken to evaluate the protective potential of caffeine as an antioxidant (80 mg/kg b.w.) i.p. injected 1 hr before exposure to a dose of (7 Gy) gamma irradiation in female rats. Alterations in serum lipids, cholesterol, triacylglycerol and fatty acids as well as total proteins, urea and uric acid have been investigated 1, 3 and 7 days post irradiation and /or caffeine treatment. Histological and histochemical changes of the dorsal aorta have been studied 7 days post treatment. Results revealed elevated total lipids, cholesterol, triacylglycerol, beside distortion in fatty acids throughout the whole experimentation period by caffeine pre injection, irradiation application and by dual treatment. Protein and urea were elevated by caffeine or irradiation, while both treatments dropped their levels, whereas uric was decreased by all treatments. Histopathological changes and deposition of sudanophilic material in the dorsal aorta wall were detected by either one or both treatments, which point out a limitation in the protective potential of caffeine

  4. Modulator Effect of Turmeric on Oxidative Damage in Whole Body Gamma Irradiated rats

    International Nuclear Information System (INIS)

    Amin, H.H.; Abdou, M.I.

    2012-01-01

    Because of its penetrating power and its ability to travel great distances, gamma rays are considered the primary hazard to the population during most radiological emergencies. So, there is a need to develop medical countermeasures to protect the first responders and remediation workers from biomedical effect of ionizing radiation. Turmeric has been reported to have many beneficial health effects, including a strong anti-oxidant effect, anti-inflammatory and anti-microbial properties. In the present study, turmeric was investigated as a therapeutic agent against hazards induced by ionizing radiation on kidney, liver, urinary and serum calcium levels and blood counts. A daily dose of 0.5 g/kg body weight was used in whole body gamma irradiated female rats with 3 Gy. Radiation effects were followed up for four weeks post irradiation. The results revealed that the administration of turmeric post-irradiation resulted in a significant inhibition in the frequency of radiation induced oxidative damage. It could be concluded that definite turmeric dose exerts a vital modulator role against gamma irradiation hazard

  5. Evaluation of the physicochemical stability of liquid soy lecithin after decontamination by gamma irradiation

    International Nuclear Information System (INIS)

    Adeil Pietranera, Maria S.; Narvaiz, Patricia

    1999-01-01

    Commercial samples of liquid soy lecithin were irradiated with different gamma doses up to 5 kGy. Several physicochemical properties were determined every 2 months for a period of 8 months after the irradiation and were compared to those of blank samples. No significant differences were found between the physicochemical properties of irradiated and non-irradiated soy lecithin samples. (author)

  6. Application of Gamma spectrometry for dimensional measurement, by non destructive control, of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Gleizes, B.

    1993-01-01

    Gamma spectrometry is an efficient tool for measurement of radionuclides activity, but it can be used in a more qualitative way to determine the diameter of gamma radioactive materials. This application has been developed in CENG at Siloe research reactor, particularly for the determination of nuclear fuel swelling when irradiated during normal or incidental conditions. Gamma spectrometry takes place on the measurement of the sample activity profile at the main energy of a fission product, this fission product is chosen for its good cohesion with the fuel. The profile is compared to a simulation on the basis of a calculation in straight line attenuation of gamma radiation; the adjustment of the sample diameter in the calculation is made in order to obtain an agreement between measured and computed profiles. Several parameters can disturb the measurement (gamma emitters distribution in fuel section, radiation scattering...) and make the adjustment of a simulation pattern more difficult. Then it becomes necessary to qualify the method with an irradiated sample calibrated in diameter. (author). 6 figs., 5 refs

  7. Dose rate on the environment generated by a gamma irradiation plant

    International Nuclear Information System (INIS)

    Mangussi, J.

    2011-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation reaching the outdoors floor is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on tables and graphics. (author) [es

  8. Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses

    International Nuclear Information System (INIS)

    Chu, Eun-Hee; Shin, Eun-Jung; Park, Hae-Jun; Jeong, Rae-Dong

    2015-01-01

    DCC introduced to control of gray mold on cut rose flowers. • Integration of gamma irradiation and NaDCC inhibited the fungal development. • Combined treatment can be applied to preserve the quality of the cut rose flowers

  9. Bio-efficacy of gamma irradiation against pulse beetle, Callosobruchus maculatus L. infesting cowpea seeds

    International Nuclear Information System (INIS)

    Chauhan, Sumit Kumar; Bhalla, S.; Gautam, S.

    2015-01-01

    The pulse beetle, Callosobruchus maculatus is an important pest of cowpea in storage. It has cosmopolitan distribution with wide host range and also has different strains. It causes 20-60 per cent losses during storage of cowpea. Hazardous environmental effects posed by the chemicals used for its management necessitate the need for an alternative ecofriendly strategy to control the insect. Gamma irradiation seems to be a viable, non-chemical, residue-free, ecofriendly strategy. The experimental insect, C. maculatus was reared on the cowpea seeds under controlled conditions (28±1℃ and 65±5% RH). The freshly emerged adults (about 24-36 h of age) were exposed in very fine thin polythene envelops to gamma radiation at different doses viz., 25, 50, 100, 200, 400, 600 and 800 Gy using Cobalt-60 Gamma irradiation facility at Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India. The parameters observed included adult mortality, longevity, fecundity of the survivors and adult emergence in F1 generation. Dose dependent insect mortality was observed with immediate mortality at higher doses. High mortality was observed within 24 hour of irradiation. However, complete mortality resulted within five days of irradiation at 600 and 800 Gy as compared to 12 days in control. Adult longevity decreased with increase in radiation dose. The mean longevity decreased from 6.00 days in control to 2.48 days at the highest dose. The eggs laid by the treated adult beetles did not develop into the adults of next generation. Much higher doses were required to kill the adult while the complete sterility (100% sterility) was found even at the lowest dose of 25 Gy. Thus, gamma irradiation has potential to be used as an eco-friendly mitigation measure against C. maculatus. (author)

  10. Effect of gamma-irradiation and extended storage on chemical quality in onion (Allium cepa L.)

    International Nuclear Information System (INIS)

    Croci, C.A.; Banek, S.A.; Curzio, O.A.

    1995-01-01

    The effects of gamma-irradiation and long-term storage on the chemical quality of the Valenciana sintética 14 onion variety were determined under warehouse conditions in two sets of bulbs grown consecutively in 1988 and 1989. In both years irradiated and non-irradiated bulbs showed similar behaviour in terms of carbohydrate and ascorbic acid contents throughout the 300 days of storage. It was found that the carbohydrate content significantly decreased in irradiated and non-irradiated samples up to 180 days of storage. The storage time was found not to have a significant effect on the ascorbic acid content of bulbs. The carbohydrate and ascorbic acid contents were found to be higher in the irradiated and non-irradiated bulbs grown in 1988. Neither storage time nor gamma-irradiation nor the specific year significantly affected dry matter or acidity. Gamma-irradiation did not significantly affect flavour strength in terms of total pyruvate content

  11. Gamma irradiation of quartz from Pannier basin, South America

    International Nuclear Information System (INIS)

    Enokihara, Cyro T.; Rela, Paulo R.; Guttler, Rainer A.S.

    2007-01-01

    The use of gamma radiation to induce or enhance color centers in gemstones is a widespread technique and applied worldwide on a industrial scale since at least 1970. The presence of defects and defect structures in quartz from a border region of southern Brazil and Uruguay are the reason for the creation of a new color variety of quartz called 'Prasiolite' in the gem trade. This quartz has a pleasant green color produced by gamma irradiation. The procedures of irradiation at IPEN show that the activation of these color producing defects can be monitored by detailed chemical and spectroscopic analysis. For the first time UV-VIS-NIR spectra of this new color variety of quartz are shown. They revealed special features of these quartz crystals coming from basaltic terranes of the Parana Basin. Contrary to most specimen of quartz from other parts of Brazil, they have such a high water and OH content that they resemble more chalcedony or opal, but not highly crystalline quartz specimens. The cause of the color are broken bonds of Si-OH defining the so-called dangling bonds. (author)

  12. Biosolubilization of raw and gamma irradiated lignite by trichoderma asperellum

    International Nuclear Information System (INIS)

    Sugoro, I.; Astuti, D.I.; Aditiawati, P.; Sasongko, D.

    2012-01-01

    Biosolubilization is a promising technology for converting solid coal to liquid oil by addition of microorganism. Aim of this research is to compare between gamma irradiated lignite (10 kGy) with raw lignite in biosolubilization by selected fungi Trichoderma asperellum. Treatments were A (MSS + gamma irradiated lignite 5% + T. asperellum) and B (MSS + raw lignite 5% + T. asperellum) with sub-merged culture. There were two parameters observed i.e. biosolubilization product based on absorbance value at λ 250nm and λ 450nm and metal analysis by neutron activation analysis (NAA). The highest biosolubilization will be analyzed by FTIR and GCMS. The results showed that biosolubilization of raw lignite (B) was higher than sterilized lignite (A) based on absorbance value at λ 250nm and λ 450nm . The metal of lignite was decreased after incubation. FTIR analysis showed that both of treatment had similar spectra on biosolubilization products. GCMS analysis showed that both of treatment had different number of hydrocarbon, i.e. C 6 - C 35 (A) and C 10 - C 35 (B) and dominated by aromatic acids, aliphatic and phenylethers. Both of treatment product had the potency as oil substituted but its recommended to deoxygenate for higher quality. (author)

  13. Albumin grafting on biomaterial surfaces using gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls.

  14. Gamma irradiation of quartz from Pannier basin, South America

    Energy Technology Data Exchange (ETDEWEB)

    Enokihara, Cyro T.; Rela, Paulo R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: cteiti@ipen.br, E-mail: prela@ipen.br; Guttler, Rainer A.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias

    2007-07-01

    The use of gamma radiation to induce or enhance color centers in gemstones is a widespread technique and applied worldwide on a industrial scale since at least 1970. The presence of defects and defect structures in quartz from a border region of southern Brazil and Uruguay are the reason for the creation of a new color variety of quartz called 'Prasiolite' in the gem trade. This quartz has a pleasant green color produced by gamma irradiation. The procedures of irradiation at IPEN show that the activation of these color producing defects can be monitored by detailed chemical and spectroscopic analysis. For the first time UV-VIS-NIR spectra of this new color variety of quartz are shown. They revealed special features of these quartz crystals coming from basaltic terranes of the Parana Basin. Contrary to most specimen of quartz from other parts of Brazil, they have such a high water and OH content that they resemble more chalcedony or opal, but not highly crystalline quartz specimens. The cause of the color are broken bonds of Si-OH defining the so-called dangling bonds. (author)

  15. Effect of gamma irradiation on the microbial load and quality characteristics of Baladi cheese

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2001-12-01

    Baladi cheese (manufactured from raw milk) were treated with 0, 1, 2, and 3 kGy of gamma irradiation. Microbial load, moisture, protein, lipid, free fatty acids, total volatile basic nitrogen, lipid oxidation, firmness, taste, flavour and color were determined immediately after irradiation and after 12 months of storage. The results showed that, all used doses of gamma irradiation reduced significantly the microbial load. Gamma irradiation decreased moisture, K + , Ca + , Na + , ash and free fatty acids, and increased protein contents of Baladi cheese. Volatile basic nitrogen and firmness of irradiated cheese were increased after irradiation and decreased after 12 months of storage. Gamma irradiation had no effect on sensory characteristics of Baladi cheese. (authors)

  16. Effect of gamma irradiation on the sugar and protein composition of Iraqi dates

    International Nuclear Information System (INIS)

    Auda, H.; Khalaf, Z.; Mirjan, J.

    1978-01-01

    Completely ripened date fruits of several Iraqi varieties were irradiated with 30, 70, 100, 270 and 500krad of gamma irradiation and stored at a temperature of 25-35 0 C in wooden boxes or in plastic bags. At various intervals samples were taken and analysed by paper-chromatography, gas-chromatography and spectrophotometry for quantitative and qualitative changes in carbohydrates. The results showed no effect of gamma irradiation on reducing sugar and major carbohydrate components. The formation of malonaldehyde under gamma irradiation of dates and solid standard sugars was also studied up to 500krad. The results showed no formation of malonaldehyde in irradiated date samples as well as standard sugars. Gamma irradiation showed no effect on the protein content of dates. However, storage showed some reduction in the protein content of both unirradiated and irradiated samples. (author)

  17. Effect of Gamma Irradiation on The Microbial Load and Quality Characteristics of Baladi Cheese

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2004-01-01

    Baladi cheese (manufactured from raw milk) was treated with 0, 1, 2 and 3 kGy of gamma irradiation. Microbial load, moisture, protein, lipid, free fatty acids, total volatile basic nitrogen, lipid oxidation, firmness, taste, flavour and color were determined Immediately after irradiation and after 12 months of cold storage in brine. The results showed that, all used doses of gamma irradiation reduced significantly the microbial load. Gamma irradiation decreased the the moisture content, Ca++, Na+ , K+, ash and free fatty acids, and increased the protein contents of Baladi cheese. Volatile basic nitrogen and firmness of irradiated cheese were increased after irradiation and decreased after 12 months of storage. Gamma irradiation had no effect on the sensory characteristics of Baladi cheese. (authors)

  18. Effect of gamma irradiation on the microbial load and quality characteristics of Baladi cheese

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Farah, S.

    2003-01-01

    Baladi cheese (manufactured from raw milk) were treated with 0, 1, 2, and 3 kGy of gamma irradiation. Microbial load, moisture, protein, lipid, free fatty acids, total volatile basic nitrogen, lipid oxidation, firmness, taste, flavour and color were determined immediately after irradiation and after 12 months of storage. The results showed that, all used doses of gamma irradiation reduced significantly the microbial load. Gamma irradiation decreased moisture, K + , Ca 2+ , Na + , ash and free fatty acids, and increased protein contents of Baladi cheese. Volatile basic nitrogen and firmness of irradiated cheese were increased after irradiation and decreased after 12 months of storage. Gamma irradiation had no effect on sensory characteristics of Baladi cheese. (authors)

  19. Polyclonal antibody to ovomucoid determination in gamma irradiated laying eggs

    International Nuclear Information System (INIS)

    Harder, Marcia N.C.; Arthur, Valter; Silva, Lucia C.A.S.; Lopes, Tatiana G.G.; Duarte, Keila M.R.; Canniatti-Brazaca, Solange G.; Savino, Vicente J.M.; Coelho, Antonio A.D.

    2009-01-01

    To determine allergenic food proteins, one of the most used tests is the immunoassays such as ELISA (enzyme linked immunosorbent assay), where the antibody recognizes the antigen and this connection is showed by an enzymatic system, in other words, optical density. The aim of this study was to determine the polyclonal antibody efficiency, produced in laboratory, to identify the presence the ovomucoid antigen in treated eggs by gamma irradiation for its inactivation. To evaluate the treatments, polyclonal antibody was produced in female rabbits immunized with bioconjugated ovomucoid. Was used Freund Complete Adjuvant at first immunization and PBS Buffer at four subsequently immunizations every fifteen days, plus a booster 48 hours before the blood retreated. The blood serum was tittered by PTA-ELISA (Plate trapped antigen). All procedures were according to European Norms for ethical and animal welfare. It was used, in nature, commercial laying eggs. So the samples were submitted to the gamma radiation coming from a source of Co 60 , type Multipurpose, under a dose rate of 19.4 and 31.8 Gy/hour, in the doses: 0 (control); 10 KGy; 20 KGy and 30 KGy, in all rates. By the ELISA.s test we can find the egg allergen ovomucoid and the radiation treatment do not showed considerable changes. So we can concluded that the antibody produced is capable of identify the ovomucoid allergenic protein and the gamma irradiation in such rates does not shows changes in that protein, therefore showed some changes in the color and visual viscosity of the egg samples. (author)

  20. Stability of vitamin E content of {gamma}-irradiated biscuits

    Energy Technology Data Exchange (ETDEWEB)

    Taipina, Magda S.; Mastro, Nelida L. del [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: nlmastro@ipen.br; magtaipina@ig.com.br; Lamardo, Leda C.A. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil). Secao de Quimica Biologica]. E-mail: llamardo@ial.sp.gov.br

    2007-07-01

    The technology of food irradiation is seen by the industry as a means of ensuring food safety, since it exposes foods to ionizing radiation that kills insects, moulds and bacteria. The need to eliminate bacterial pathogens from read-to-eat food products must always be balanced with the maintenance of product quality. In addition to determining the effective ionizing radiation doses required for pathogen elimination the effects of irradiation on product chemistry, nutritional value and quality must also been determined. Vitamin E ({alpha}-tocopherol) is one of the most potent natural lipophilic antioxidants commonly present in the human diet. As it is considered a free radical scavenger there is a growing concern that irradiation might reduce the vitamin E content of food products prepared with ingredients rich in any of the dietary source of the vitamin. This work describes the effects of ionizing radiation on the vitamin E content of some biscuits commercially found in the market. Three lots of biscuits were used. Irradiation was performed in a {sup 60}Co Gammacell 220 source, dose rate of about 3.5 kGy/h at doses of 1 kGy and 3 kGy. For vitamin E determination samples were saponified with ethanolic potassium hydroxide in the presence of pyrogallol, and the tocopherols were extracted with petroleum ether. The absorbance was measured at 520 nm. From the obtained results it is possible to conclude that there was a notorious stability of the vitamin content of the biscuits submitted to gamma-irradiation at the assayed doses. (author)

  1. Cytosine modifications after gamma irradiation in aerated aqueous solution of Escherichia coli DNA

    International Nuclear Information System (INIS)

    Polverelli, M.

    1983-04-01

    After gamma irradiation of cytosine in aerated aqueous solution and utilization of various spectrometric methods (mass spectrometry, proton nuclear magnetic resonance and infrared spectrometry) about ten new radiolysis products were identified. The formation of N-glycolylbiuret in H 2 18 O aqueous solution of irradiated cytosine at pH 4,5 indicated that the preferred 18 OH hydroxyl radical attack was at C-5. The formation of trans 1-carbamoyl-4,5 dihydroxyimidazolidin-2 oxo which is the major product after cytosine pyrimidine ring rearrangement took place preferentially at neutral pH, while N-glycolylbiuret predominated at pH 4,5. The deamination pathway was predominant when cytosine was irradiated at acidic pH values (pH 2 ) or in copper complexes. The development of a new acid hydrolysis method using fluorhydric acid stabilized in pyridine made easier the evaluation of cytosine modifications after gamma irradiation in aerated aqueous solution of E. Coli DNA- 14 C-2 cytosine. This hydrolytic agent removed the modified bases from the polynucleotidic chain. A difference was found between the proportion of radiolytic products removed by acid hydrolysis and by irradiation of the free base in solution [fr

  2. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce[Gamma irradiation; Fermented anchovy; Color; Flavor compounds; Electronic nose; Sensory evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo E-mail: mwbyun@kaeri.re.kr

    2004-02-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy (P<0.05), while the alcohols and furan groups were increased by irradiation. Different odor patterns were observed among samples using electronic nose system analysis. Gamma-irradiated samples showed better sensory score and the quality was sustained during storage. In conclusion, gamma irradiation of salted and fermented anchovy sauce could improve its sensory quality by reducing typical fishy smell.

  3. Effect of polyamines on biochemical properties in gamma irradiated Okra (Abelmoschus esculentus L.) varieties

    International Nuclear Information System (INIS)

    Bhushan, Himanshu; Shukla, Pradeep K.; Ramteke, Pramod W.; Misra, Pragati

    2014-01-01

    Gamma rays are electromagnetic radiations and can be useful for the alteration of physiological characters. In plant systems, gamma ray induced free radicals can damage or modify important components of plant cells and also modulate the morphological, anatomical and biochemical characters of the cell and the plant therein. Polyamine possesses protective role against unfavorable conditions because of its highest positive charge due to presence of amine groups. In plants polyamines are involved in organ development, flowering, fruit ripening, and senescence and stress responses. Okra (Abelmoschus esculentus L.) has captured a prominent position among vegetables and in India; it is grown on an area of 3.6 lakh hectares with a production of 34.2 lakh tones. Keeping these facts in mind, an experiment was conducted to study the effect of polyamines on biochemical properties in gamma irradiated Okra (Abelmoschus esculentus L.) varieties. Seeds of four Okra varieties (namely Kaveri 49, Kaveri 54, Deepika and OH2324) were expose to different levels of gamma radiation (T 1 = 200 Gy, T 2 = 400 Gy, T 3 = 600 Gy, and T 4 = 800 Gy) using 60 Co as source at National Botanical Research Institute (NBRI) research institute of CSIR at Lucknow. These plants were also subjected to an exogenous application of 1 mM spermine and 1 mM spermidineas foliar spray. The results showed that application of Polyamines (spermine and spermidine) increased Chlorophyll α content, Chlorophyll b content (mg/g fresh weight) in gamma treated plants as compared to control. Application of polyamines also increased enzymatic and non-enzymatic antioxidants (proline, ascorbte peroxidase and glutathione reductase) level in gamma treated plants as compared to control. Carotenoid and protein content showed variations under polyamine treatment. In general, variety Deepika was relatively tolerant to gamma radiation among all the varieties, whereas, Kaveri 49 and Kaveri 54 were relatively sensitive to gamma

  4. Physical and Biological Characterization of the Gamma-Irradiated Human Cornea.

    Science.gov (United States)

    Chae, J Jeremy; Choi, Joseph S; Lee, Justin D; Lu, Qiaozhi; Stark, Walter J; Kuo, Irene C; Elisseeff, Jennifer H

    2015-10-01

    To compare the physical and biological characteristics of commercial gamma-irradiated corneas with those of fresh human corneas and to determine suitability for transplantation. The physical properties of gamma-irradiated and fresh corneas were evaluated with respect to light transmittance, hydration (swelling ratio), elastic modulus (compressive modulus by the indentation method), matrix organization (differential scanning calorimetry), and morphology (light and transmission electron microscopy). The biological properties of the gamma-irradiated cornea, including residual cell content and cellular biocompatibility, were evaluated by quantifying DNA content and measuring the proliferation rate of human corneal epithelial cells, respectively. The hydration, light transmittance, elastic modulus, and proliferation rate of human corneal epithelial cells were not significantly different between fresh and gamma-irradiated corneas. However, differences were observed in tissue morphology, DNA content, and thermal properties. The density of collagen fibrils of the gamma-irradiated corneal sample (160.6 ± 33.2 fibrils/μm) was significantly lower than that of the fresh corneal sample (310.0 ± 44.7 fibrils/μm). Additionally, in the gamma-irradiated corneas, cell fragments-but not viable cells-were observed, supported by lower DNA content of the gamma-irradiated cornea (1.0 ± 0.1 μg/mg) than in fresh corneas (1.9 μg/mg). Moreover, the denaturation temperature of gamma-irradiated corneas (61.8 ± 1.1 °C) was significantly lower than that of fresh corneas (66.1 ± 1.9 °C). Despite structural changes due to irradiation, the physical and biological properties of the gamma-irradiated cornea remain similar to the fresh cornea. These factors, combined with a decreased risk of rejection and longer shelf life, make the gamma-irradiated tissue a viable and clinically desired option in various ophthalmic procedures.

  5. Gamma irradiation induced effects of butyl rubber based damping material

    Science.gov (United States)

    Chen, Hong-Bing; Wang, Pu-Cheng; Liu, Bo; Zhang, Feng-Shun; Ao, Yin-Yong

    2018-04-01

    The effects of gamma irradiation on the butyl rubber based damping material (BRP) at various doses in nitrogen were investigated in this study. The results show that irradiation leads to radiolysis of BRP, with extractives increasing from 14.9 ± 0.8% of control to 37.2 ± 1.2% of sample irradiated at 350 kGy, while the swelling ratio increasing from 294 ± 3% to 766 ± 4%. The further investigation of the extractives with FTIR shows that the newly generated extractives are organic compounds containing C-H and C˭C bonds, with molecular weight ranging from 26,500 to 46,300. SEM characterization shows smoother surface with holes disappearing with increasing absorbed doses, consistent with "softer" material because of radiolysis. Dynamic mechanical study of BRP show that tan δ first slightly then obviously increases with increasing absorbed dose, while storage modulus slightly decreases. The tensile testing shows that the tensile strength decreases while the elongation at break increases with increasing dose. The positron annihilation lifetime spectroscopy show no obvious relations between free volume parameters and the damping properties, indicating the complicated influencing factors of damping properties.

  6. Inactivation of viral agents in bovine serum by gamma irradiation.

    Science.gov (United States)

    House, C; House, J A; Yedloutschnig, R J

    1990-10-01

    Cell culture origin or suckling mouse brain origin viruses of Akabane disease, Aino, bovine ephemeral fever, swine vesicular disease, hog cholera, bluetongue, and minute virus of mice were each suspended in bovine serum. Aliquots (1 mL) were exposed to various doses of gamma radiation from a 60Co source while at -68 degrees C. Aliquots (100-mL) of serum from a steer experimentally infected with foot-and-mouth disease virus were similarly irradiated. The samples were assayed for infectivity in cell culture systems before and after irradiation, and the data points were analyzed by linear regression. The irradiation doses (in megarads) necessary to inactivate one log10 of viral infectivity (D10) was calculated for each virus. D10 is otherwise known as the slope of the regression line. The r2 value, a measure of association with 1.0 = perfect fit, was also calculated for each regression line. The values (D10, r2) for each virus were as follows: Akabane, 0.25, 0.998; Aino, 0.35, 0.997; bovine ephemeral fever, 0.29, 0.961; swine vesicular disease, 0.50, 0.969; foot-and-mouth disease, 0.53, 0.978; hog cholera, 0.55, 0.974; bluetongue, 0.83, 0.958; and minute virus of mice, 1.07, 0.935.

  7. Ensuring microbiological safety of commercial eggs by gamma irradiation

    International Nuclear Information System (INIS)

    Hammad, A.A; Swailam, H.M.; Abd El-Rahim, E.A.; Shallan, M.A; Aly, W.F.

    2009-01-01

    Egg shell sanitizing practices are necessary to improve microbiological safety of fresh eggs. In this work, fifteen fresh eggs samples of each (balady, white and brown eggs) were collected from different local supermarkets to evaluate their microbiological quality. The results indicated that balady eggs were higher in microbial population in comparison with the two other varieties. Salmonella spp. was detected in 9 (60%) samples of balady eggs. The effect of gamma irradiation at dose of 0,2,3 and 4 kGy on microbiological quality of balady eggs during storage at 4± 1 deg c for 35 days as well as on total cholesterol , ph, and total carotenoids contents were also investigated. The results showed that irradiation at 3 kGy reduced total aerobic bacterial counts. Whereas completely eliminated coliform bacteria, E.coli and salmonella spp. Total cholesterol and total carotenoids were decreased in yolk egg. irradiation dose of 3 kGy were efficient and sufficient for ensuring safety, maintain quality and extend shelf-life of balady eggs

  8. A Study on Gamma Irradiation Synthesis of Copper Nanoparticles

    International Nuclear Information System (INIS)

    Ahmad, Shahrul Izwan Bin; Ahmad, Md. Soot Bin Hj.; Radiman, Shahidan Bin

    2009-01-01

    A study on the effect of gamma radiation dose and dose rate on the yield of copper nanoparticles produced had been done. Its objective is to show the relationship between the absorbed doses with the yield of production. The copper sulphate solution is prepared with addition of ethanol as radical scavenger. Then the solution is bubbled with nitrogen for before being irradiated at different absorbed dose and dose rate. There are five different dose rates being used in this experiment. Atomic absorption spectroscopy (AAS) was used to detect directly the quantity of copper nanoparticles produced. The AAS results show positive linear relationship between the yields of copper nanoparticles with increasing absorbed dose. Yield of production show independency with dose rate at every absorbed dose. AAS result is supported with UV-Vis analysis data on the supernatant from irradiated products. Transmission electron microscope (TEM) confirms the existence of copper nanoparticles in all samples that being irradiated at absorbed dose of 100 kGy. The size of nanoparticles is range from 2 to 10 nm. Peak from the XRD analysis show the existence of pure copper.

  9. Modification of LDPE molecular structure by gamma irradiation for bioapplications

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L.M. [ITN, Nuclear and Technological Institute, EN 10, 2686-953 Sacavem (Portugal)]. E-mail: ferreira@itn.pt; Falcao, A.N. [ITN, Nuclear and Technological Institute, EN 10, 2686-953 Sacavem (Portugal); Gil, M.H. [Department of Chemical Engineering, Faculty of Science and Technology, University of Coimbra, Polo II - Pinhal de Marrocos, 3030-290 Coimbra (Portugal)

    2005-07-01

    The surface properties of low-density polyethylene (LDPE) can be modified by the grafting of 2-hydroxyethyl methacrylate (HEMA). This was done aiming at the production of new materials suitable for bioapplications. Samples with different monomer concentrations were prepared from LDPE particles by gamma irradiation, following different irradiation protocols, including irradiation in presence and absence of air. The samples were characterized by thermal analysis techniques (DSC and TGA) and by Fourier transform infrared spectroscopy (FTIR). The results obtained show a decrease in the crystallinity of the supporting matrix for copolymers with high yields of grafting. However, the new materials prepared maintain good structural order resulting from the protective effect of polyHEMA grafted onto LDPE backbone. These effects can improve the diffusion of other species deeper inside the matrix and increase the material hydrophilicity. The studies performed made possible the selection of experimental protocols adequate for the production of new copolymeric materials with high grafting yield. These were used in the production of new LDPE films with enhanced hydrophilic properties.

  10. Comparison of the effects of gamma irradiation and steam sterilization on Southern pine sapwood

    Science.gov (United States)

    Simon Curling; Jerrold E. Winandy

    2008-01-01

    Gamma irradiation is a commonly used method of sterilization of wood specimens prior to decay testing. As part of a larger series of studies, an investigation was made into the effects of gamma irradiation on flexural bending strength properties and its corresponding relationship to changes in lignin and hemicellulosic contents of wood after exposure to various dose...

  11. Effects of gamma irradiation on microbial contamination and extraction yields of Korean medicinal herbs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Jung; Yook, Hong-Sun; Byun, Myung-Woo

    2000-01-01

    Effects of gamma irradiation on hygienic quality and extraction yields in twenty-one kinds of Korean medicinal herbs were investigated. Gamma irradiation at 5-10 kGy inactivated contaminating microorganisms. The total extraction yield in fifteen kinds of the investigated medicinal herbs increased by 5-25% by a dose of 10 kGy. (author)

  12. Effects of gamma irradiation on physiological effectiveness of Korean medicinal herbs

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung-Woo [Department of Food Irradiation, Korea Atomic Energy Research Institute, Yusung P.O. Box 105, Taejon (Korea, Republic of); Yook, Hong-Sun [Department of Food Irradiation, Korea Atomic Energy Research Institute, Yusung P.O. Box 105, Taejon (Korea, Republic of); Kim, Kyong-Su [Department of Food and Nutrition, Chosun University, Kwangju (Korea, Republic of); Chung, Cha-Kwon [Department of Food and Nutrition, Hallym University, Chunchon (Korea, Republic of)

    1999-03-01

    Effects of gamma irradiation on the physiological effectiveness of Korean medicinal herbs were investigated. The physiological effectiveness including antioxidant and anticomplement function, nitrite scavenging and electron donating ability of Korean medicinal herbs by gamma irradiation at 10 kGy did not differ from that of the nonirradiated control.

  13. Effect of gamma-irradiation pretreatment on improvement of anaerobic digestive characteristic of sludge

    International Nuclear Information System (INIS)

    Mou Yanyan; Yuan Shoujun; Yu Xin; Zheng Zheng; Cui Lei; Zhao Yongfu

    2005-01-01

    A comparative study was made about main anaerobic digestive characteristics of sludge which was subjected to a 60 Co gamma-irradiation pretreatment. The results showed the gamma-irradiation pretreatment can clearly improve anaerobic digestibility of sludge and pick up the anaerobic digestion speed of sludge. (authors)

  14. Effects of gamma irradiation on physiological effectiveness of Korean medicinal herbs

    International Nuclear Information System (INIS)

    Byun, Myung-Woo; Yook, Hong-Sun; Kim, Kyong-Su; Chung, Cha-Kwon

    1999-01-01

    Effects of gamma irradiation on the physiological effectiveness of Korean medicinal herbs were investigated. The physiological effectiveness including antioxidant and anticomplement function, nitrite scavenging and electron donating ability of Korean medicinal herbs by gamma irradiation at 10 kGy did not differ from that of the nonirradiated control

  15. Survival of embryo irradiated with gamma rays by embryo culture in Brassica pekinensis Rupr

    International Nuclear Information System (INIS)

    Moue, T.

    1984-01-01

    The effect of irradiation on the survival rates and embryonic development of Brassica pekinensis RUPR. (Varieties; Kashin, Kohai 65 nichi and kairyochitose) was investigated. The purpose of this study was to seek ways of increasing the survival rates of embryos such as B.oleracea obtained through embryo culture techniques after irradiation doses affecting seed fertility and germination, for the purpose of increasing mutation rates. Embryos at different developmental stages ranging from the globular to the early heart stages were irradiated with 20 KR of gamma rays at the daily rate 0L 20 KR or 10 KR (Fig.1 and Table 1). The embryos were excised from ovules 4 to 10 days after irradiation and cultured on White's medium. The shooting and rooting rates on the 34th day of culture were higher at the dose of 10 KR/day than 20 KR/day and were lower when the materials were irradiated at the young embryonic stage (Table 3). Varietal differences in the shooting and rooting rates were also observed. The irradiated embryos survived mainly in the state of callus. It was concluded that the embryo culture technique was successful when applied to irradiated embryos excised at the young embryonic stage and that the technique affected B.pekinensis less than B.oleracea

  16. Morphological investigations on the tulip plants irradiated by gamma rays, 1

    International Nuclear Information System (INIS)

    Matsubara, Hisao

    1975-01-01

    The present investigation was carried out in order to find out the effects of irradiation on the flower organ formation in tulip and to elucidate the mechanisms of the morphological changes anatomically. The bulbs and plants of tulips at the various growing stages, from the early stage of the flower bud differentiation (July) to the late stage of appearance of flower bud (March) were irradiated with cobalt-60 gamma rays. Dosages employed were 0.5, 1 and 3 krad at dose rates of 1.6 x 10 2 and 1.4 x 10 4 rad/hr. The results of the observation are as follows: 1. The remarkable retardations in the development of flower organs were observed by the irradiation at the stages during and immediately after the flower bud differentiation, whereas the retardations were slight at the stages of flower bud formation after the completion of the differentiation. 2. The dwarfish plants with abnormal flower were obtained after the high dose irradiation at the early stages of the differentiation, whereas the dwarfish plants with narrow petals were obtained by the irradiation at the stages after the completion of flower bud differentiation. 3. The flower with the petals deformed or breaked was obtained by the high dose irradiation at the stages during flower bud differentiation. 4. The feature in color change of a flower was also varied with the different stages irradiated, etc. (JPN)

  17. Gamma irradiation of corn starches with different amylose-to-amylopectin ratio

    International Nuclear Information System (INIS)

    Chung, Kok-Heung; Lee, Jau-Shya; Othman, Zainon

    2015-01-01

    Corn starches with different amylose-to-amylopectin ratio (waxy, normal, Hylon V, and Hylon VII) were treated with five doses of gamma irradiation (1, 5, 10, 25, and 50 kGy). The effects of gamma irradiation on the physico-chemical properties of starch samples were investigated. Waxy samples showed an increase of amylose-like fractions when irradiated at 10 kGy. The reduction in apparent amylose content increased with amylose content when underwent irradiation at 25 and 50 kGy. Low amylose starches lost their pasting ability when irradiated at 25 and 50 kGy. Results from thermal behavior and pasting profile suggested that low level of cross-linking occurred in Hylon VII samples irradiated at 5 kGy. Severe reduction in pasting properties, gelatinization temperatures and relative crystallinity with increasing irradiation intensity revealed that waxy samples were affected more by gamma irradiation; this also indicated amylopectin was the starch fraction most affected by gamma irradiation. Alteration level was portrayed differently when different kind of physico-chemical properties were investigated, in which the pasting properties and crystallinity of starches were more immensely influenced by gamma irradiation while thermal behavior was less affected. Despite the irradiation level, the morphology and crystal pattern of starch granules were found remain unchanged by irradiation. (author)

  18. Structural evolution of defective graphene under heat treatment and gamma irradiation

    Science.gov (United States)

    Zhang, Yifei; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Zhao, Lihuan; Li, Jing; Jing, Miaolei

    2018-03-01

    We have studied the structural change of defective graphene built by annealing in different temperature under the condition of gamma irradiation. Firstly, we found the heat treatment not only reduced but also striped the graphene. This behavior made defects become more firstly and then become less with the increase of temperature. And then gamma irradiation removed some oxygen-containing groups, by a simultaneous changed over carbon in the graphitic lattice from sp3 to sp2. Also, the gamma irradiation decreased the interlayer spacing between graphene lowest to 3.391 Å and made a crosslink which resulting in the size of the ordered gaining. A variation was detected by Raman spectroscopy that the amorphous carbon was declined after gamma irradiation. Furtherly we found the degree of this decline raised first and then diminished with the increase in the number of defects. The change in repair capacity of gamma irradiation presented a strategy for repairing the defects of graphene.

  19. Gamma ray irradiation induced optical band gap variations in silica sol-gel doped sucrose

    International Nuclear Information System (INIS)

    Marzouki, F.; Farah, K.; Hamzaoui, A.H; Ben Ouada, H

    2015-01-01

    The silica xerogels doped sucrose was prepared via sol-gel process and exposed at room temperature to different doses of high energy ( 60 Co) gamma irradiation. Changes in the UV-visible and FTIR spectra of pristine and irradiated xerogels with varying of gamma doses rays show variation in the gap energy. It was found that energy gap of the investigated silica xerogels decreases with increasing the gamma irradiation doses. Thereby the irradiated samples reveal behaviour changes, from an insulator (Eg ∼5,8 eV) towards a semiconductor with (Eg ∼ 3.5 eV).

  20. Effect of gamma irradiation on physicochemical properties of stored pigeon pea (Cajanus cajan) flour.

    Science.gov (United States)

    Bamidele, Oluwaseun P; Akanbi, Charles T

    2013-09-01

    The effect of gamma irradiation at various doses (5, 10, 15, 20 kGy) was observed on pigeon pea flour stored for 3 months on proximate composition, functional properties, and peroxide value. Sensory evaluation was also carried out on bean cake (moinmoin) made from nonirradiated and irradiated pigeon pea flour. The results showed that stored gamma-irradiated samples had significantly lower (P pigeon pea flour showed no significant difference from the moinmoin sample prepared from nonirradiated flour. It can be concluded that gamma irradiation can extend the shelf life of pigeon pea flour.

  1. Effect of Gamma Irradiation on Antioxidant Activity and Curcuminoids of Curcuma longa L

    International Nuclear Information System (INIS)

    Thongphasuk, Piyanuch; Thongphasuk, Jarunee; Kulchanapakawat, Tiwat; Sajjabut, Surasak; Pongpat, Suchada; Eamsiri, Jaruratana

    2007-08-01

    Full text: Gamma irradiation at the dose of 10 kGy is one of the methods to reduce microbial contamination of medicinal herbs. Since irradiation may also affect active compounds of the herbs, the objective of this research was to study the effect of gamma irradiation (10 kGy) on antioxidant activity and curcuminoids contents of Curcuma longa L. DPPH (1,1-diphenyl-2-picryl-hydrazyl H) was used to study antioxidant activity and UV-spectrophotometry was used to study curcuminoids contents. The results showed that gamma irradiation at 10 kGy did not significantly affect antioxidant activity and curcuminoids contents of C. longa

  2. Effects of gamma irradiation on the survival and development of Gymnophalloides seoi in C3H mice. Final report for the period 1 November 1994 - 31 October 1995

    International Nuclear Information System (INIS)

    Chai Yong-Vil

    1996-01-01

    Gymnophalloides seoi is a peculiar human intestinal trematode in Korea transmitted by oysters. This study was carried out to observe the effects of radiation on the infectivity of G. seoi metacercariae to C3H mice and to assess the applicability of radiation for use in the control of gymnophalloidiasis. Oysters were collected from the endemic area. Non-irradiated control, metacercaria-irradiation, and oyster-irradiation groups were prepared. One hundred metacercariae were infected orally to each mouse, and worm recovery rates of three groups were compared at the seventh day post-infection. In the metacercaria-irradiation group, the worm recovery rate was significantly reduced at radiation doses higher than 200 Gy, and the number of intrauterine eggs was significantly reduced at doses over 50 Gy. In the oyster-irradiation group, 50 Gy significantly reduced the worm recovery rate and number of uterine eggs. In the two groups, no worm was recovered at 1,000 Gy. In conclusion, G. seoi metacercariae showed some resistance to radiation at lower doses than 200 Gy, but irradiation of oyster with 200-1,000 Gy could be applied as a control measure for gymnophalloidiasis. (author). 10 refs, 3 figs, 2 tabs

  3. Effect of gamma irradiation in papaya (Carica papaya L.) harvested in three degrees of maturation

    International Nuclear Information System (INIS)

    Pimentel, Rodrigo Meirelles de Azevedo

    2001-01-01

    The papaya is a fragile tropical fruit with thin skin, susceptible to post harvest diseases and mechanical injuries. Furthermore, it is sensible to low temperatures and at normal conditions it ripens rapidly, increasing the difficulties with storage. The objective of this work was to evaluate the influence of gamma irradiation in papayas harvested in three degrees of maturation, in order to increase shelf life. To accomplish that, papayas were harvested in perfect quality conditions, washed, submitted to carnauba wax and selected by skin coloration into three distinct degrees of maturation: Mat 0, or beginning of yellow coloration; Mat 1, yellow stripes more developed, and Mat 2, one third yellow. Half of them were submitted to irradiation with 0, 75 kGy, while the others became control treatment. They were analyzed in four different periods of conservation, which were 1 day after irradiation (DAI) refrigerated (11 +- 1 deg C), 14 DAI refrigerated, 14 DAI refrigerated + 3 at room temperature (RT = 24 deg +- 2 deg C) and 14 DAI refrigerated + 6 at RT. The effect of irradiation was not influenced by the maturation degree at harvest. Irradiation promoted firmness maintenance of papaya and, therefore, delayed ripening; modified the green color of papaya to a lighter tone, which determined more homogeneity in the skin yellow color development (greater values of L* and b*), and turned the papaya flesh color lighter (rower values of b*). There was no effect of irradiation in papaya weight loss, in the occurrence of diseases, in the development of surface yellow color, in the parameter a* of papaya skin color, in the parameters L*, a* and chroma of flesh color, p H and total soluble solids content. Visual and organoleptic sensorial tests were accomplished with papayas from a new delivery in the conservation period of 14 DAI refrigerated + 3 at RT. In the visual test was evaluated the appearance of papaya in the following treatments: Mat O control, Mat O irradiated, Mat 1

  4. Application of gamma irradiation technique for the preservation of propolis

    International Nuclear Information System (INIS)

    Matsuda, Andrea Harumi

    2002-01-01

    Irradiation has been recognized as an efficient method for the reduction of deteriorating and pathogenic microorganisms in foods. Propolis is a resinous product made by bees from material processed by the bee's own metabolism and resins from plants. The aim of this work was the application of gamma irradiation technique for the preservation of propolis, because of its efficiency in the reduction of the microbial load. The changes on the total flavonoids content, phenolic compounds and other characteristics required for the qualification and characterization of Brazilian propolis were also analysed. Propolis samples from Juiz de Fora region, Minas Gerais, were irradiated in a 60 Co source, with doses from 0 to 10kGy for the microbiological analyses and 5.0, 7.0 and 10.0kGy for the physico-chemical analyses. The physico-chemical that have been made were: determination of total flavonoids content, semi-quantitative determination of phenolic compounds (artepelin-C, kempferol, chrysin, galangin and quercetin), dry matter analysis, humidity, ash content, mechanical mass and waxes. The ionizing radiation has shown to be efficient in the reduction of the microbial load. Total coliforms determination showed a great reduction with the dose of 3kGy and concerning mesophile aerobic bacteria a systematic reduction was observed, achieving values <10 UFC/g for the dose of 10kGy; similar results was obtained for molds and yeasts. Salmonella assays were negative for all samples. There was no significant alteration on total flavonoids contents nor on the composition of phenolic compounds as a consequence of radiation application at the assayed conditions. The complementary analyses of dry matter and humidity contents, ashes, mechanical mass and waxes did not shown changes after irradiation even with the maximum dose of 10kGy, remaining the results within the standards required by the Brazilian legislation. (author)

  5. The gamma irradiation effects on structural and optical properties of silk fibroin/HPMC blend films

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, G. Rajesha [Department of Physics, Govt. First Grade College, Hiriadka, Udupi - 576 113 (India); Rao, B. Lakshmeesha; Gowda, Mahadeva; Shivananda, C. S.; Asha, S.; Byrappa, K. [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574 199 (India); Sangappa, Y., E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574 199 (India); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2016-05-23

    In this paper the structural, chemical and optical properties of gamma irradiated silk fibroin/Hydroxypropyl methyl cellulose (SF-HPMC) blend films were studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The results indicate that the gamma radiation did not affect significantly the primary structure of polypeptide arrangement in the blend films. But the optical properties of the blends changed with gamma irradiation dosage.

  6. Effect of gamma irradiation on physico-chemical and sensorial characteristics of rice (Oryza sativa L.) and on the development of Sitophilus oryzae L; Efeito da irradiacao gama nas caracteristicas fisico-quimicas e sensoriais do arroz (Oryza sativa L.) e no desenvolvimento de Sitophilus oryzae L

    Energy Technology Data Exchange (ETDEWEB)

    Zanao, Cintia Fernanda Pedroso; Canniatti-Brazaca, Solange Guidolin; Sarmento, Silene Bruder Silveira [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao], e-mail: sgcbrazaca@esalq.usp.br, e-mail: cpedroso@claretianas.com.br, e-mail: sbssarme@esalq.usp.br; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia], e-mail: arthur@cena.usp.br

    2009-01-15

    The objective of this research was to verify the viability of the gamma radiation as polished rice (Oryza sativa L.) conservation method. The samples were irradiated with doses of 0.5; 1.0; 3.0; and 5.0 kGy. Analysis of the grain breakage during the enriching process, longevity and reproduction of the Sitophilus oryzae L., centesimal composition, apparent amylose content, starch paste properties, color (instrumental), and the sensorial evaluation of raw and cooked rice were performed. It was verified that the irradiation did not change the percentage of grain breakage during the enrichment process, and it caused a negative effect on the development of insects. The irradiation did not change significantly the centesimal composition and the apparent amylase content. The Tukey test (p {<=} 0.05) was conducted to verify the differences between the treatments. Gamma irradiation affected the pasting properties of the rice flour. Pasting parameters as temperature, peak, final viscosity, and setback values showed decreasing values with irradiation doses. Differences were detected in the sensorial aspect among the samples, and the sample irradiated with the dose of 1.0 kGy presented greater averages. Regarding the instrumental color parameter, it was observed the difference in the values b{sup *} indicating that the rice changed the white color for yellowish with the increase in the irradiation dose. The irradiation dose of 1.0 kGy proved the best to meet the objectives of this study. (author)

  7. Irradiated-Microsphere Gamma Analyzer (IMGA): an integrated system for HTGR coated particle fuel performance assessment

    International Nuclear Information System (INIS)

    Kania, M.J.; Valentine, K.H.

    1980-02-01

    The Irradiated-Microsphere Gamma Analyzer (IMGA) System, designed and built at ORNL, provides the capability of making statistically accurate failure fraction measurements on irradiated HTGR coated particle fuel. The IMGA records the gamma-ray energy spectra from fuel particles and performs quantitative analyses on these spectra; then, using chemical and physical properties of the gamma emitters it makes a failed-nonfailed decision concerning the ability of the coatings to retain fission products. Actual retention characteristics for the coatings are determined by measuring activity ratios for certain gamma emitters such as 137 Cs/ 95 Zr and 144 Ce/ 95 Zr for metallic fission product retention and 134 Cs/ 137 Cs for an indirect measure of gaseous fission product retention. Data from IMGA (which can be put in the form of n failures observed in N examinations) can be accurately described by the binomial probability distribution model. Using this model, a mathematical relationship between IMGA data (n,N), failure fraction, and confidence level was developed. To determine failure fractions of less than or equal to 1% at confidence levels near 95%, this model dictates that from several hundred to several thousand particles must be examined. The automated particle handler of the IMGA system provides this capability. As a demonstration of failure fraction determination, fuel rod C-3-1 from the OF-2 irradiation capsule was analyzed and failure fraction statistics were applied. Results showed that at the 1% failure fraction level, with a 95% confidence level, the fissile particle batch could not meet requirements; however, the fertile particle exceeded these requirements for the given irradiation temperature and burnup

  8. Effect of gamma-irradiation on the whitening activity of {beta}-glucan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hun; Sung, Nak Yun; Jung, Pil Moon; Choi, Jong Il; Kim, Jin Kyu; Lee, Ju Woon [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Byun, Eui Hong [Chungnam Naitonal University, Daejeon (Korea, Republic of)

    2010-09-15

    This study evaluated the change in whitening activity of {beta}-glucan by gamma-irradiation. Tyrosinase inhibition was significantly increased in the samples with 30, 50, 10 kGy irradiated {beta}-glucan. Melanin synthesis of irradiated {beta}-glucan was measured from B16BL6 melanoma cell line treated with {alpha}-melanin stimulating hormone. Melanin synthesis was increased in the {alpha}-melanin stimulating hormone added group. However, it was decreased in the groups of 30, 50 and 100 kGy gamma-irradiated {beta}-glucan treated with {alpha}-melanin stimulating hormone. These results indicate that gamma irradiated {beta}-glucan may elevate the whitening activity. Therefore, gamma-irradiated {beta}-glucan could be used for nutraceutical foods in cosmetic industry.

  9. Combined Effect of Gamma Irradiation with Protecto on Potato Tuber Moth, Phthorimaea operculella Zeller

    International Nuclear Information System (INIS)

    Salem, H.M.; Haiba, I.M.; Rizk, M.A.; Youssef, L.A.; Zahran, N.F.M.

    2008-01-01

    Effect of gamma irradiation on certain biological aspects of potato tuber moth, Phthorimaea operculella was studied. Five day old pupae were irradiated with sub sterilizing dose (10, 20, 30, 40, 50 and 100 Gy). Laboratory experiments were carried out to investigate the effect of bacterial commercial product of Bacillus thuringiensis (Protecto) on the newly hatched larvae of Ph. operculella at four concentrations (0.15, 0.30, 0.45 and 0.60 g/100 ml water). LC 50 value was calculated for protecto, significant positive relationship between dose levels and the percentage of adult emergence was obtained. The number of egg per female and the percentage of egg hatch of emerged adults were significantly decreased by the increase of gamma rays. In addition, dose levels of 50 and 100 Gy were completely inhibited the larval development. The larval mortality percentages were increased with the increase of concentrations as well as the period after the treatment of Protecto. The percentage of survived larvae to adult stage was reduced as the irradiation dose and Protecto concentrations increased, while larval and pupal durations were relatively longer. The longevity of adults was decreased by increasing the dose of radiation and concentration of Protecto. The percentage of malformation among adults was increased by increasing gamma rays doses and concentration of the Protecto

  10. One-step synthesis of graphene-Pt nanocomposites by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Tokai, Akihiro; Okitsu, Kenji; Hori, Fuminobu; Mizukoshi, Yoshiteru; Iwase, Akihiro

    2016-01-01

    We developed a one-step gamma-ray irradiation method to synthesize nanocomposites composed of graphene and Pt nanoparticles from aqueous solution containing graphene and Pt(IV) complex ions in the presence of 2-propanol (IPA) or sodium dodecyl sulfate (SDS). It was confirmed that gamma-ray irradiation provided carbonyl groups on graphene and Pt nanoparticles formed from the radiolytic reduction of Pt(IV) complex ions were deposited onto the carbonyl modified graphene. In the presence of IPA, small Pt nanoparticles were deposited on graphene, but large Pt nanoparticles were deposited in the presence of SDS: the size of Pt nanoparticles formed was larger in the presence of SDS than IPA. Based on the results, formation and deposition mechanisms of Pt nanoparticles were proposed. - Highlights: • Graphene-Pt nanocomposites were synthesized by gamma-ray irradiation. • Reduction of Pt(IV) complex ions and oxidation of graphene occurred simultaneously. • Smaller Pt nanoparticles were formed in the presence of IPA than SDS. • Mechanism for formation of graphene-Pt nanocomposites was proposed.

  11. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad, Ahmad Zaki Hussain; Ahmad Fairuz Mohd Nasir

    2009-01-01

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  12. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  13. The influence of low temperature on gamma-ray irradiated permanent magnets.

    Science.gov (United States)

    Han, Young Chul; Cha, Hyun Gil; Kim, Chang Woo; Ji, Eun Sun; Kim, Young Hwan; Kang, Dong In; Kang, Young Soo

    2009-12-01

    The temperature effect on the magnetic property of gamma-ray irradiated Nd-Fe-B and Sr-Ferrite magnets has been investigated. When the permanent magnets are exposed to gamma-ray, it's magnetic and other related properties are declined with degree of dose. The decreased magnetic property by gamma-ray irradiation at low temperature is similar with the result of magnet at high temperature. The temperature effect on the gamma-ray irradiation at exposed moment is also regarded as one of the important parameters for the reduced magnetic properties. The gamma-irradiation at low temperature was carried out at 195 K, and the changed properties of two kinds of magnets before and after gamma-irradiation were comparatively studied. The increased demagnetization of the magnets were studied by Hall probe. And changed Curie temperature and micro-crystal structure of each permanent magnet by gamma-ray irradiation has been also studied. Moreover the strong and broad single line shape of ESR signal in the resonance magnetic field is attributed to unpaired electron of Fe2+ in the sample by the effect of gamma-ray irradiation.

  14. Improvement of colour strength and colourfastness properties of gamma irradiated cotton using reactive black-5

    International Nuclear Information System (INIS)

    Ahmad Bhatti, Ijaz; Adeel, Shahid; Nadeem, Raziya; Asghar, Toheed

    2012-01-01

    The dyeing behaviour of gamma irradiated cotton fabric using Reactive Black-5 dye powder has been investigated. The mercerized, bleached and plain weaved cotton fabric was irradiated to different absorbed doses of 100, 200, 300, 400, 500 and 600 Gy using Co-60 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature of dyeing, time of dyeing and pH of dyeing solutions were optimised. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organisation (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It is found that gamma irradiated cotton dyed with Reactive Black-5 has not only improved the colour strength but also enhanced the rating of fastness properties. - Highlights: ► Optimum absorbed dose for cotton is 500 Gy using un-irradiated Reactive Black-5. ► Optimum dyeing conditions: 60 °C, 30 min and dyeing pH is10. ► At optimum conditions colour strength and fastness properties are enhanced. ► Gamma irradiation can improve dyeing characters of other dyed fabrics.

  15. Design of device for testing in the gamma irradiator

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-02-01

    In eves of the recharge of the Gamma Irradiator, JS-6500 it was detected, that there was contamination in the container that housed the pencils of Co-60, coming from Argentina, country to which the ININ buys it recharges. It was determined that the contamination in the container was it interns and after discussing several solution options it was determined to manufacture a device to make a washing of the pencils. It was touch to the Management of Radiological Safety to determine the conceptual design of the device to make the washing and the way of operation of the same one. The Management of Prototypes and Models was responsibility of the mechanical design and its production. (Author)

  16. Decontamination of toxigenic moulds in stored grains by gamma irradiation

    International Nuclear Information System (INIS)

    Aziz, N.H.; El-Halfawy, N.A.

    1991-01-01

    Samples of wheat, cow peas, and rice, collected from different stores, were found to be highly infested by some of the well known insects. The fungal genera, aspergillus, penicillium, fusarium and alternaria also predominated in all these samples. As the insect infection increases, the stored grains become heavily contaminated by aspergilli and penicilii. Aspergillus flavus that was isolated from all stored grains and insects is characterized by its ability to produce aflatoxins. When stored grains and insects were exposed to gamma irradiation dose of 0.4 - 0.6 kGy and 2 - 4 kGy, the insect and mould growth were greatly suppressed. The growth of A.flavus was inhibited completely at 4 kGy and the stored grains became totally free from the toxigenic moulds. 1 fig., 2 tab

  17. Disinfestation of whole and ground spices by gamma-irradiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Sharma, Arun; Amonkar, S.V.

    1987-01-01

    Number of insect species were identified in chilli (Capsicum annum Linn), turmeric (Curcuma longa Linn), ginger (Zingiber officinale Roscoe), pepper (Piper nigrum Linn) and coriander (Coriandrum sativum) and also in two commercial brands of prepacked ground spices. Lasioderma serricorne (Cigarette beetle), Oryzaephilus surinamensis (Saw toothed grain beetle), Rhizopertha dominica (Lesser grain borer), Sitotroga cerealella (Angoumois grain moth) and Tribolium castaneum (Red flour beetle) were the predominant pest species found in these spices. Exposure of spices to Co 60 gamma irradiation at 1 kGy dose level did not show adult emergence of insects in these species during storage at ambient temperature (28-30degC) indicating that the radiation dose (10 kGy) that has been shown to be effective for microbial decontamination of spices destroys insect pests as well. (author). 8 refs

  18. EFFECT OF GAMMA RAY IRRADIATION ON INTERLAMINAR SHEAR STRENGTH OF GLASS FIBER REINFORCED PLASTICS AT 77 K

    International Nuclear Information System (INIS)

    Nishimura, A.; Nishijima, S.; Izumi, Y.

    2008-01-01

    It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation

  19. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2014-01-01

    Full Text Available Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC, thermal behavior (DSC, wettability (contact angle, cell viability (MTT assay, and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial.

  20. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Science.gov (United States)

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  1. Sesamol attenuates cytogenetic damages in bone marrow cells of whole body gamma irradiated mice

    International Nuclear Information System (INIS)

    Kumar, Arun; Tamizh Selvan, G.; Adhikari, Jawahar S.; Chaudhury, N.K.

    2014-01-01

    Whole body radiation exposure cause damages to all vital organs and bone marrow is the most sensitive. Pre-treatment with antioxidant as single prophylactic dose is expected to lower induction of damages in bone marrow. In the present study we have focused on sesamol, a dietary antioxidant mediated radioprotection in bone marrow cells of gamma irradiated mice and compared with melatonin. Male C57BL/6 mice were intraperitoneally administered with sesamol (10 and 20 mg/kg body) and after 30 minutes exposed to whole body gamma radiation using 60 Co Teletherapy unit. Mice were injected with 0.2 ml of a metaphase arresting agent (0.05% colchicine) intra-peritoneally 3 hours prior to sacrifice (24 hrs. post-irradiation). Bone marrow cells were flushed out from femurs of each animal and processed for chromosomal aberration assay. Another set of experiment without colchicine injection was performed to access the DNA damage in bone marrow using alkaline comet assay. At least 100 metaphases per animal were scored under light microscope to record various aberrations and total chromosomal aberrations (TCA) was calculated. Similar measurements were performed with melatonin for comparing the efficacy of sesamol. Gamma irradiation has increased the chromatid type aberrations (break formation, fragment) and chromosomal type aberrations (ring formation, acentric) in bone marrow cells. The results have shown significant (p< 0.001) increase in TCA of irradiated mice than control. While pre-treatment of sesamol and melatonin 10 mg/kg significantly (p<0.05) reduced the TCA. The extend of protection has increased at 20 mg/kg significantly (p<0.001) as evident from the reduced TCA compared to irradiated group. Interestingly, sesamol and melatonin have shown similar extent of reduction of TCA. Thus sesamol has demonstrated strong ability to protect bone marrow at low dosage. These investigations on sesamol mediated protection in bone marrow are likely to benefit development of

  2. Molecular weight changes induced in an anionic polydimethylsiloxane by gamma irradiation in vacuum

    International Nuclear Information System (INIS)

    Satti, Angel J.; Andreucetti, Noemi A.; Ciolino, Andres E.; Vitale, Cristian; Sarmoria, Claudia; Valles, Enrique M.

    2010-01-01

    An anionic almost monodisperse linear polydimethylsiloxane (PDMS) was subjected to gamma irradiation under vacuum at room temperature. The molecular weight changes induced by the radiation process have been investigated using size exclusion chromatography (SEC) with refraction index (RI) and multi angle laser light scattering (MALLS) detectors, to obtain the number and weight average molecular weights of the irradiated samples. The analysis of the data indicates that crosslinking reactions predominated over scission reactions. The results obtained by an SEC-RI have confirmed the presence of small, but measurable amounts of scission. A previously developed mathematical model of the irradiation process that accounts for simultaneous scission and crosslinking and allows for both H- and Y-crosslinks, fitted well the measured molecular weight data. This prediction is in accordance with the experimental data obtained by 29 Si-Nuclear Magnetic Resonance spectroscopy (NMR) and previously reported data for commercial linear PDMS ().

  3. Increasing genetic variability in black oats using gamma irradiation.

    Science.gov (United States)

    Silveira, G; Moliterno, E; Ribeiro, G; Costa, P M A; Woyann, L G; Tessmann, E W; Oliveira, A C; Cruz, C D

    2014-12-04

    The black oat (Avena strigosa Schreb) is commonly used for forage, soil cover, and green manure. Despite its importance, little improvement has been made to this species, leading to high levels of genotypic disuniformity within commercial cultivars. The objective of this study was to evaluate the efficiency of different doses of gamma rays [(60)Co] applied to black oat seeds on the increase of genetic variability of agronomic traits. We applied doses of 0, 10, 50, 100, and 200 Gy to the genotype ALPHA 94087 through exposure to [(60)Co]. Two experiments were conducted in the winter of 2008. The first aimed to test forage trait measurements such as plant height, dry matter yield, number of surviving tillers, and seedling stand. The second test assessed seed traits, such as yield and dormancy levels. Gamma irradiation seems not to increase seed yield in black oats, but it was effective in generating variability for the other traits. Tiller number and plant height are important selection traits to increase dry matter yield. Selection in advanced generations of mutant populations can increase the probability of identifying superior genotypes.

  4. Gamma-ray spectroscopy on irradiated MTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A. E-mail: laaterre@net.ipen.br; Zeituni, C.A.; Perrotta, J.A.; Silva, J.E.R. da

    2000-08-11

    The availability of burnup data is an important requirement in any systematic approach to the enhancement of safety, economics and performance of a nuclear research reactor. This work presents the theory and experimental techniques applied to determine, by means of nondestructive gamma-ray spectroscopy, the burnup of Material Testing Reactor (MTR) fuel elements irradiated in the IEA-R1 research reactor. Burnup measurements, based on analysis of spectra that result from collimation and detection of gamma-rays emitted in the decay of radioactive fission products, were performed at the reactor pool area. The measuring system consists of a high-purity germanium (HPGe) detector together with suitable fast electronics and an on-line microcomputer data acquisition module. In order to achieve absolute burnup values, the detection set (collimator tube+HPGe detector) was previously calibrated in efficiency. The obtained burnup values are compared with ones provided by reactor physics calculations, for three kinds of MTR fuel elements with different cooling times, initial enrichment grades and total number of fuel plates. Both values show good agreement within the experimental error limits.

  5. Gamma-ray spectroscopy on irradiated MTR fuel elements

    International Nuclear Information System (INIS)

    Terremoto, L.A.A.; Zeituni, C.A.; Perrotta, J.A.; Silva, J.E.R. da

    2000-01-01

    The availability of burnup data is an important requirement in any systematic approach to the enhancement of safety, economics and performance of a nuclear research reactor. This work presents the theory and experimental techniques applied to determine, by means of nondestructive gamma-ray spectroscopy, the burnup of Material Testing Reactor (MTR) fuel elements irradiated in the IEA-R1 research reactor. Burnup measurements, based on analysis of spectra that result from collimation and detection of gamma-rays emitted in the decay of radioactive fission products, were performed at the reactor pool area. The measuring system consists of a high-purity germanium (HPGe) detector together with suitable fast electronics and an on-line microcomputer data acquisition module. In order to achieve absolute burnup values, the detection set (collimator tube+HPGe detector) was previously calibrated in efficiency. The obtained burnup values are compared with ones provided by reactor physics calculations, for three kinds of MTR fuel elements with different cooling times, initial enrichment grades and total number of fuel plates. Both values show good agreement within the experimental error limits

  6. Influence of gamma irradiation in the thermoplastic elastomer (TPE)

    International Nuclear Information System (INIS)

    Oliveira, Camila B.; Parra, Duclerc F.; Marchini, Leonardo G.

    2017-01-01

    The TPE is the nomenclature used for the thermoplastic elastomer, which is also known as thermoplastic rubber. It belongs to an under-researched class of engineering plastics, however, in recent years there has been steady growth due to its important and unusual combination of properties. During its use, it behaves like an elastomer, but, unlike traditional elastomers (vulcanized rubbers), it can be processed using conventional technologies and equipment used for thermoplastics, such as extrusion and injection. The processing of polymers, such as TPE by means of radiation, constitutes a technological area dedicated to the study of the physical and chemical effects caused by high energy radiation, such as gamma radiation. Thus the objective of this work is to evaluate the mechanical and thermal properties of TPE irradiated by 60 Co source of gamma radiation in different doses. The thermoplastic elastomer being modified by means of ionizing radiation at doses of 5, 10, 20, 30, 50 and 100 kGy the effects of the radiation on the mechanical and thermal properties of this material are evaluated through the tests of tensile tests, TGA, FTIR and Fluency Index

  7. The effect of gamma irradiation on rice protein aqueous solution

    Science.gov (United States)

    Baccaro, Stefania; Bal, Oya; Cemmi, Alessia; Di Sarcina, Ilaria

    2018-05-01

    The use of proteins as natural biopolymers are sensibly increasing in several application fields such as food industry, packaging and environment protection. In particular, rice proteins (RP) present good nutritional, hypoallergenic and healthful properties very interesting for human consumption. Since ionizing radiation can be successfully applied on protein containing systems involved in different industrial processes, this work aims to determine the effect of gamma radiation on 5 wt%-7.5 wt% RP aqueous solutions in a wide range of absorbed doses up to around 40 kGy. The changes of RP secondary and tertiary structures and their chemical composition were followed by UV-VIS absorbance spectroscopy, luminescence analysis and pH measurements. The experimental data showed the occurrence of the unfolding of RP chains with the increase of the absorbed dose and the formation of new molecules, due to the reaction among tryptophane and tyrosine amino acids and the radical species induced by gamma radiation. The results are also confirmed by the modification of the pH values measured for the irradiated solutions.

  8. Enhancement of refrigerated storage of fishery products using gamma irradiation

    International Nuclear Information System (INIS)

    Lewis, N.F.; Ghadi, S.V.; Doke, S.N.; Venugopal, V.; Alur, M.D.

    1977-01-01

    A processe combining gamma radiation treatment with refrigeration has been suggested for better utilization of sea-foods of which large quantities will be available for processing after the implementation of the expansion programme of the fishing industry in India and the present capacity of refrigeration industry may be found to be inadequate to meet the demands of the expanded fishing industry. Gamma irradiation in the range of 0.1-0.25 Mrad enhances 2-3 fold storage life of refrigerated sea-foods. Low dose radiation treatment inactivates the gram-negative bacteria, the main source of sea-food spoilage, but not C. botulinum the growth of which is inhibited by the gram-negative bacteria in unirradiated sea-foods. Care has, therefore, to be taken to use a radiation dose which does not totally eliminate these bacteria so that a small percentage which survives leads to terminal spoilage and rejection of sea-foods even before C. botulinum produces toxins thus avoiding food poisoning. (M.G.B.)

  9. Nutritional, physiological, physicochemical and sensory stability of gamma irradiated Kimchi (Korean fermented vegetables)

    International Nuclear Information System (INIS)

    Song, H.-P.; Kim, D.-H.; Yook, H.-S.; Kim, M.-R.; Kim, K.-S.; Byun, M.-W.

    2004-01-01

    Effects of gamma irradiation on nutritional, physiological, physicochemical and sensory properties of the Korean lactic acid fermented vegetable, Kimchi, were investigated. The composition of amino acids and organic acids in Kimchi were not influenced by gamma irradiation less than 10 kGy. Angiotensine converting enzyme inhibitory, xanthin oxidase inhibitory, electron donating and antimicrobial activity of Kimchi extract were stable up to 10 kGy. There were no significant changes in pH and texture at less than 10 kGy. Color values were influenced at 10 kGy of gamma irradiation, and resulted in the increase of L*- and reduction of a*-value. About 90% of panelists identified a sensory difference between non-irradiated and 10 kGy-irradiated sample, and Kimchi irradiated at 10 kGy had lower scores in acceptability than those of the control or irradiated at 2.5 and 5 kGy

  10. Nutritional, physiological, physicochemical and sensory stability of gamma irradiated Kimchi (Korean fermented vegetables)

    Science.gov (United States)

    Song, Hyun-Pa; Kim, Dong-Ho; Yook, Hong-Sun; Kim, Mee-Ree; Kim, Kyong-Soo; Byun, Myung-Woo

    2004-01-01

    Effects of gamma irradiation on nutritional, physiological, physicochemical and sensory properties of the Korean lactic acid fermented vegetable, Kimchi, were investigated. The composition of amino acids and organic acids in Kimchi were not influenced by gamma irradiation less than 10 kGy. Angiotensine converting enzyme inhibitory, xanthin oxidase inhibitory, electron donating and antimicrobial activity of Kimchi extract were stable up to 10 kGy. There were no significant changes in pH and texture at less than 10 kGy. Color values were influenced at 10 kGy of gamma irradiation, and resulted in the increase of L*- and reduction of a*-value. About 90% of panelists identified a sensory difference between non-irradiated and 10 kGy-irradiated sample, and Kimchi irradiated at 10 kGy had lower scores in acceptability than those of the control or irradiated at 2.5 and 5 kGy.

  11. Some microbial, chemical and sensorial properties of gamma irradiated sesame (Sesamum indicum L.) seeds.

    Science.gov (United States)

    Al-Bachir, Mahfouz

    2016-04-15

    The effect on microbial, chemical and sensorial properties of sesame seeds was determined after irradiation and storage. The sesame seeds were analyzed before and after irradiation with 3, 6 and 9 kGy of gamma irradiation, and after 6 and 12 months of storage. The results showed that gamma irradiation had no significant (p>0.05) effect on the moisture, ash and fat content on sesame seeds. While, small differences, but sometimes significant (p0.05) than those of non-irradiated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Removal of garlic-like off-odours from crustacea by gamma irradiation

    International Nuclear Information System (INIS)

    Freeman, D.J.; Izzard, M.E.; Whitfield, F.B.

    1985-01-01

    The strong garlic-like off-odours associated with the male shovel-nosed lobster (Ibacus peronii) and the royal red prawn (Hymenopenaeus sibogae) have been attributed principally to the presence of the sulphur-containing compound bis-(methylthio)-methane. In the male shovel-nosed lobster the concentration of this compound increases very rapidly following death, and a small number of contaminated crustacea may cause an entire consignment to be condemned. A method for removing this noxious odour was developed which involved gamma-irradiation of the affected crustacea using a cobalt-60 source. Eight lobsters were subjected to gamma-irradiation at a dose rate of 10 kGy an hour; one half of each was given a dose of 25 kGy and the other half a dose of 5 kGy. Results showed that a high dose completely removes the existing off-odour, and also prevents its further formation. With the lower dose the off-odour is not completely removed. A trial using fresh royal red prawns at doses of 0.5 and 1.0 kGy showed irradiation removed all traces of the off-odour, but in those irradiated at the higher dose a slight burnt flavour was noticeable

  13. Gamma radiation effect on staphylococcus aureus (atcc 19095) in cheese minas frescal irradiated

    International Nuclear Information System (INIS)

    Amaral Gurgel, M.S.C.C. Do; Spoto, M.H.F.; Domarco, R.E.

    1999-01-01

    Milk is an excellent medium of culture for development of staphylococcus aureus. Gamma Radiation can be an alternative method to guarantee the safety of the comtamined cheeses. The objective of this research was determine the effects of the gamma radiation on the resistance of S.aureus (atcc 19095) in cheese minas frescal irradiated. The cheeses elaborated in the Laboratory of food irradiation of cena/usp, were contaminated during their production with 10 6 cfu/ml of culture of s.aureus (atcc 19095). The cheeses were irradiated with 0; 1; 2; 3 and 4 kgy, maintained under refrigeration condition (± 5 0 c) and analyzed at 1, 7 and 14 days of storage. The evaluation microbiology was made through the s.aureus survival analysis using baird parker selective medium and confirmative test of coagulase, catalase and fermentation aerobics of the manitol. The capacity of enterotoxins production by irradiated s.aureus was detected by the method of passive reverse agglutination latex. results showed that 3 kgy is enough to destroy the s.aureus and 2 kgy to inhibited its toxins production

  14. New developments in food irradiation

    International Nuclear Information System (INIS)

    Molins, R.

    1996-01-01

    Food irradiation technology is rapidly gaining worldwide acceptance as a promising tool to help alleviate some important food security and safety concerns, and to facilitate the international trade in food. Because of the different priorities that these issues receive in various countries, food irradiation is being considered by developing countries as the technology of choice over chemical fumigants in applications related to the reduction of food losses such as the insect disinfestation of stored staple and export commodities and the inhibition of sprouting of bulb and tuber crops. In contrast, the use of irradiation as a 'cold pasteurization' method to improve the hygienic quality and safety of foods is emerging as the primary field of application in developed countries. Moreover, the use of irradiation as an alternative, non-chemical quarantine treatment for fresh fruits, vegetables and other agricultural commodities entering international trade will no doubt benefit exporting as well as importing countries. 4 figs

  15. Characterization of color centers in quartz induced by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Guttler, Rainer A.S., E-mail: rainersg@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias; Enokihara, Cyro T.; Rela, Paulo R., E-mail: prela@ipen.b, E-mail: cteiti@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The availability of gamma ray irradiators in Brazil increased the possibilities of treatments of gemstones for color enhancements. One of the minerals with a very high potential of these treatments is quartz, a very widespread mineral with much colored commercial varieties. Quartz occurs in Brazil mainly in two geological environments, called pegmatitic and hydrothermal. The detailed mechanism of color center formation of these two types of quartz will be investigated by spectroscopic and chemical analysis. Until yet, it can be shown that due to chemical differences of the nature of mineral forming fluids, the two types behave differently. All quartzes contain mainly traces of Iron, Aluminum, Lithium and some amounts of Water. The quartz of hydrothermal origin incorporated much structurally bound water, and despite some similarities with the chemical composition of pegmatitic quartz, this high water content is the reason for the formation of Silanol radicals, giving the green color to the quartz. The main difference in chemical composition of pegmatitic quartz is the presence of higher amounts of Al and Li , responsible for the brownish and yellowish colors formed by irradiation. Since each pegmatite is different, the quartz will behave differently. This explains the formation of the famous 'Green Gold' of quartz from Sao Jose da Safira , and the more yellowish, Citrine type, color of quartz from the Coluna deposit, near Itamarandiba, Minas Gerais. (author)

  16. Characterization of color centers in quartz induced by gamma irradiation

    International Nuclear Information System (INIS)

    Guttler, Rainer A.S.

    2009-01-01

    The availability of gamma ray irradiators in Brazil increased the possibilities of treatments of gemstones for color enhancements. One of the minerals with a very high potential of these treatments is quartz, a very widespread mineral with much colored commercial varieties. Quartz occurs in Brazil mainly in two geological environments, called pegmatitic and hydrothermal. The detailed mechanism of color center formation of these two types of quartz will be investigated by spectroscopic and chemical analysis. Until yet, it can be shown that due to chemical differences of the nature of mineral forming fluids, the two types behave differently. All quartzes contain mainly traces of Iron, Aluminum, Lithium and some amounts of Water. The quartz of hydrothermal origin incorporated much structurally bound water, and despite some similarities with the chemical composition of pegmatitic quartz, this high water content is the reason for the formation of Silanol radicals, giving the green color to the quartz. The main difference in chemical composition of pegmatitic quartz is the presence of higher amounts of Al and Li , responsible for the brownish and yellowish colors formed by irradiation. Since each pegmatite is different, the quartz will behave differently. This explains the formation of the famous 'Green Gold' of quartz from Sao Jose da Safira , and the more yellowish, Citrine type, color of quartz from the Coluna deposit, near Itamarandiba, Minas Gerais. (author)

  17. Gamma ray irradiated goat milk: comparative sensorial analysis with pasteurized goat milk

    International Nuclear Information System (INIS)

    Gurgel, Maria Sylvia de C.C. do Amaral; Domarco, Rachel E.; Spoto, Marta H.F.

    2002-01-01

    Goat milk consumption has increased in the last years, due to its better digestibility and for constituting a good alternative to cow milk for intolerant people. Brazil has over 10 millions goats, mainly in the Northeast area. Considering that it is very important to increase the shelf-life for this product, this work was done to test the gamma-radiation as a preservation method, evaluating acceptability by sensorial analysis compared with pasteurized milk. The goat milk was bought in the Animal Production Department/ESALQ/USP, Piracicaba, and irradiated with 3,5 kGy in the Food Irradiation Laboratory/CENA/USP, using a cobalt-60 irradiator, type Gammabeam-650, from Nordion, Canada. After irradiation, the samples were maintained under refrigeration at 5 deg C and submitted to sensorial analysis at 1 st , 7 th and 15 th days by 30 untrained tasters. The results indicated, by Tukey test, a significant preference for the pasteurized milk in comparison to the irradiated one, because a hard caprine flavor was developed by the irradiation. (author)

  18. Decommissioning of an Irradiator MPX-{gamma} - 25M and a neutron Irradiator; Desmantelamiento de un irradiador tipo MPX-{gamma}-25M y de un irradiador de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Soguero, Dania; Guerra, Mercedes; Prieto, Enrique; Desdin, Luis, E-mail: sdania@ceaden.edu.cu [Centro de Aplicaciones Tecnologica y Desarrollo Nuclear (CEADEN), La Habana (Cuba)

    2013-07-01

    In this paper a technology is developed with its procedures in radiation protection to ensure the safety of the process of decommissioning of two irradiators. Both processes are described, the process of decommissioning of a neutron Irradiator 4. 44{center_dot}10{sup 11}Bq, employed in the vegetal radio mutagenesis, and disassembling of an installation of gamma irradiation of 3.33 * 10{sup 12} Bq, self-shielded of category I, model MPX - {gamma} - 25 M. The specific objectives are: a) identify aspects of the contractual assurance, of human and technical resources, b) to evaluate the radiological situation of the process and c) analyze the potential radiological extraordinary events in each of the steps of the process, ensuring the right answers. Evaluation of radiological successful events described can be considered as reference to address the process of disassembling of other similar irradiators.

  19. Induction of antigen-specific Th1-type immune responses by gamma-irradiated recombinant Brucella abortus RB51.

    Science.gov (United States)

    Sanakkayala, Neelima; Sokolovska, Anna; Gulani, Jatinder; Hogenesch, Harm; Sriranganathan, Nammalwar; Boyle, Stephen M; Schurig, Gerhardt G; Vemulapalli, Ramesh

    2005-12-01

    Brucella abortus strain RB51 is an attenuated rough mutant used as the live vaccine against bovine brucellosis in the United States and other countries. We previously reported the development of strain RB51 as a bacterial vaccine vector for inducing Th1-type immune responses against heterologous proteins. Because safety concerns may preclude the use of strain RB51-based recombinant live vaccines, we explored the ability of a gamma-irradiated recombinant RB51 strain to induce heterologous antigen-specific immune responses in BALB/c mice. Exposure of strain RB51G/LacZ expressing Escherichia coli beta-galactosidase to a minimum of 300 kilorads of gamma radiation resulted in complete loss of replicative ability. These bacteria, however, remained metabolically active and continued to synthesize beta-galactosidase. A single intraperitoneal inoculation of mice with 10(9) CFU equivalents of gamma-irradiated, but not heat-killed, RB51G/LacZ induced a beta-galactosidase-specific Th1-type immune response. Though no obvious differences were detected in immune responses to B. abortus-specific antigens, mice vaccinated with gamma-irradiated, but not heat-killed, RB51G/LacZ developed significant protection against challenge with virulent B. abortus. In vitro experiments indicated that gamma-irradiated and heat-killed RB51G/LacZ induced maturation of dendritic cells; however, stimulation with gamma-irradiated bacteria resulted in more interleukin-12 secretion. These results suggest that recombinant RB51 strains exposed to an appropriate minimum dose of gamma radiation are unable to replicate but retain their ability to stimulate Th1 immune responses against the heterologous antigens and confer protection against B. abortus challenge in mice.

  20. Imaging of gamma-Irradiated Regions of a Crystal

    Science.gov (United States)

    Dragoi, Danut; McClure, Steven; Johnston, Allan; Chao, Tien-Hsin

    2004-01-01

    A holographic technique has been devised for generating a visible display of the effect of exposure of a photorefractive crystal to gamma rays. The technique exploits the space charge that results from trapping of electrons in defects induced by gamma rays. The technique involves a three-stage process. In the first stage, one writes a holographic pattern in the crystal by use of the apparatus shown in Figure 1. A laser beam of 532-nm wavelength is collimated and split into signal and reference beams by use of a polarizing beam splitter. On its way to the crystal, the reference beam goes through a two-dimensional optical scanner that contains two pairs of lenses (L1y, L2y and L1x,L2x) and mirrors M1 and M2, which can be rotated by use of micrometer drives to make fine adjustments. The signal beam is sent through a spatial light modulator that imposes the holographic pattern, then through two imaging lenses L(sub img) on its way to the crystal. An aperture is placed at the common focus of lenses Limg to suppress high-order diffraction from the spatial light modulator. The hologram is formed by interference between the signal and reference beams. A camera lens focuses an image of the interior of the crystal onto a charge-coupled device (CCD). If the crystal is illuminated by only the reference beam once the hologram has been formed, then an image of the hologram is formed on the CCD: this phenomenon is exploited to make visible the pattern of gamma irradiation of the crystal, as described next. In the second stage of the process, the crystal is removed from the holographic apparatus and irradiated with rays at a dose of about 100 krad. In the third stage of the process, the crystal is remounted in the holographic apparatus in the same position as in the first stage and illuminated with only the reference beam to obtain the image of the hologram as modified by the effect of the rays. The orientations of M1 and M2 can be adjusted slightly, if necessary, to maximize the

  1. In vitro studies on callus induction in gamma-irradiated velvet bean seeds (Mucuna pruriens L.)

    International Nuclear Information System (INIS)

    Gupta, Ankit; Misra, Pragati; Shukla, Pradeep K.

    2014-01-01

    Gamma rays are often used for developing plants varieties that are agriculturally and economically important and have high productivity potential with the minimum input. Ionizing radiations are currently a very important way to create genetic variability that is not exists in nature or that is not available to the breeder. Irradiation treatments performed at in vitro culture has been also employed to increase genetic variability and mutants as a potential source of new commercial cultivars. Large number of research reports suggests also that mutagenesis in combination with tissue culture has high potential in plant breeding programs. Mucuna pruriens L., also known as velvet bean, contains L-DOPA, a precursor to the neurotransmitter dopamine and formulation of the seed power has been studied for management of Parkinson's disease. Seeds were exposed to different doses of gamma radiation (10 kGy, 20 kGy and 30 kGy) using 60 Co as source, at National Botanical Research Institute (NBRI) Lucknow. Gamma treated and untreated seeds (control) were inoculated in MS media supplemented with different phytohormone concentrations and combinations. The best callus induction was observed in control seeds on MS media supplemented with 0.5 mg/l kinetin, 2 mg/l NAA and 10 mg/l adenine sulphate, whereas gamma treated seeds showed poor callus induction in the same phytohormone concentrations. The callus induction was poor in control seeds on MS media supplemented with 1.0 mg/l kinetin, 2.0 mg/l NAA and 10 mg/l adenine sulphate, whereas gamma treated seeds showed even poor callus induction under the same phytohormone concentrations. The callus induction frequency was in declined gradually with the increasing dose of gamma radiation. Gamma treated seeds developed greenish and fragile callus and also showed decreased weight as compare to control which was white greenish, compact and heavier. (author)

  2. Inactivation of Xanthomonas citri subsp. citri and Effect on Infection of Citrus Canker by Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    Kyung Nam Kim

    2015-06-01

    Full Text Available Citrus canker caused by Xanthomonas citri subsp. citri (Xcc has been quarantined by many countries in the world. Recently, the usage of methyl bromide should be limited, application by gamma irradiation on the agricultural production is raised as an alternative method. In this study, the level of gamma irradiation which could decrease of population of Xcc in the suspension or on the surface of citrus fruit was investigated. The D10 value of Xcc, which is radiation dose required to reduce the number of the microorganism, was 55 and 28 Gy in the suspension and on the surface of citrus fruit, respectively. Furthermore, disease severity was suppressed on the citrus leaves inoculated with Xcc suspension pre-treated with gamma irradiation. Based on this study, it is suggested that Xcc on the citrus fruit could be eradicated by gamma irradiation and the results of this study may be valuable for application of gamma ray in quarantine activity

  3. Analysis of gamma irradiator dose rate using spent fuel elements with parallel configuration

    International Nuclear Information System (INIS)

    Setiyanto; Pudjijanto MS; Ardani

    2006-01-01

    To enhance the utilization of the RSG-GAS reactor spent fuel, the gamma irradiator using spent fuel elements as a gamma source is a suitable choice. This irradiator can be used for food sterilization and preservation. The first step before realization, it is necessary to determine the gamma dose rate theoretically. The assessment was realized for parallel configuration fuel elements with the irradiation space can be placed between fuel element series. This analysis of parallel model was choice to compare with the circle model and as long as possible to get more space for irradiation and to do manipulation of irradiation target. Dose rate calculation were done with MCNP, while the estimation of gamma activities of fuel element was realized by OREGEN code with 1 year of average delay time. The calculation result show that the gamma dose rate of parallel model decreased up to 50% relatively compared with the circle model, but the value still enough for sterilization and preservation. Especially for food preservation, this parallel model give more flexible, while the gamma dose rate can be adjusted to the irradiation needed. The conclusion of this assessment showed that the utilization of reactor spent fuels for gamma irradiator with parallel model give more advantage the circle model. (author)

  4. Induced disease resistance of satsuma mandarings against penicillium digitatum by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Rae Dong [Dept. of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju (Korea, Republic of)

    2017-06-15

    Gamma irradiation, which is a type of ionizing radiation, can be used as a fruit inducible factor. In the present study, the effects of gamma irradiation on the resistance of mandarin fruits against Penicillium digitatum, the causal agent of postharvest green mold disease, were investigated. Pretreatment of a low dose of gamma irradiation effectively reduced the disease incidence and lesion diameter of mandarin fruits inoculated with P. digatatum during storage for 14 d. Interestingly, exposed to 400 Gy of gamma irradiation significantly maintained firmness and stimulated the synthesis of defense-related enzymes, (e.g., β-1,3-glucanase, phenylalanine, peroxidase, and polyphenol oxidase) and pathogenesis-related (PR) genes (e.g., PR-1 and PR-2). Therefore, the gamma irradiation-induced resistance against P. digatatum involves both changes of phenolic compounds and the induction of expression of defense-related genes. In addition, scanning electron microscopy analysis revealed that induced disease resistance by gamma irradiation signifcantly inhibits the growth of P. digatatum in mandarin fruits. These results suggest that the exposure of gamma irradiation is a potential methods for inducing the disease resistance of fruit to postharvest fungal pathogens and for extending the postharvest life of mandarin fruit.

  5. Effect of Gamma Irradiation on Botrytis cinerea Causing Gray Mold and Cut Chrysanthemum Flowers

    Directory of Open Access Journals (Sweden)

    Eun-Hee Chu

    2015-09-01

    Full Text Available Gray mold caused by Botrytis cinerea is one of the most important postharvest fungal pathogens of cut flowers. Here, gamma irradiation, an alternative for phytosanitary purposes, and sodium dichloroisocyanurate (NaDCC were used to control B. cinerea in a cut chrysanthemum (Chrysanthemum morifolium Ramat. cultivar, ‘Baekma’, one of the cultivars susceptible to B. cinerea. Spore germination and mycelium growth of B. cinerea were inhibited by gamma irradiation in an inversely dose-dependent manner. A dose of 4 kGy completely inhibited the mycelium growth of B. cinerea. A significant change in flower quality (physical properties on chrysanthemum was shown from gamma irradiation at over 0.2 kGy (p<0.05. Therefore, in this study, the integration of gamma ray (below 0.2 kGy and NaDCC, an eco-friendly form of chlorine, was investigated to control the disease with low dose of gamma irradiation dose. Interestingly, the gamma irradiated flowers showed more disease severity than the non-irradiated flowers. The combined treatment of gamma irradiation and NaDCC does not affect the severity of the fungal disease, whereas only 70 ppm of NaDCC treatment showed a significantly reduced severity. These results suggest that only chlorination treatment can be applied to control B. cinerea in cut chrysanthemum flowers.

  6. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    Science.gov (United States)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  7. Inactivation of histidine decarboxylase by gamma irradiation for controlling histamine formation

    Science.gov (United States)

    Pak, Won-Min; Kim, Koth-Bong-Woo-Ri; Kim, Min-Ji; Ahn, Dong-Hyun

    2017-12-01

    In this study, the effects of gamma irradiation on the survival of Morganella morganii and Photobacterium phosphoreum and the activity of their crude histidine decarboxylase (HDC) were investigated. The two strains and their crude HDC were irradiated up to 10 kGy. Viable cells of M. morganii and P. phosphoreum were not detected at any dose. The activity of crude HDC was decreased with increasing dose. In particular, the gamma irradiation at 5 and 10 kGy resulted in > 90% inactivation of crude HDC from M. morganii and P. phosphoreum, respectively. In SDS-PAGE and native PAGE, slight structural changes of crude HDC appeared with gamma irradiation. These results suggest that gamma irradiation is effective in reducing histamine production through inactivation survival of M. morganii and P. phosphoreum, and their histidine decarboxylase activity.

  8. Study on effects of gamma-ray irradiation on TlBr semiconductor detectors

    International Nuclear Information System (INIS)

    Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro

    2016-01-01

    Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60 Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137 Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy. (author)

  9. Resistance of gamma-irradiated sapwood of Cryptomeria japonica to biological attacks

    International Nuclear Information System (INIS)

    Katsumata, N.; Yoshimura, T.; Tsunoda, K.; Imamura, Y.

    2007-01-01

    Any means helpful for the promotion of termite feeding activity has potential for use in a matrix in termite bait application. Therefore, energy transfer by gamma irradiation is worthy of consideration for converting wood into termite-accessible material. Wood specimens gamma-irradiated at 100 kGy and at lower levels were tested for their degrees of polymerization (DP) of cellulose and biological resistance. The DP of cellulose adversely decreased with increased doses of gamma irradiation. Termite wood consumption rates, which were determined by laboratory tests using undifferentiated larvae (workers) of Coptotermes formosanus Shiraki, were significantly higher at 100 kGy than at other doses. On the other hand, the decay resistance of gamma-irradiated wood against the fungi Fomitopsis palustris (Berkeley et Curtis) Murrill and Trametes versicolor (L. ex Fr.) Quel did not vary by irradiation dose. (author)

  10. Effect of gamma irradiation on quality characteristics of red color egg powder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Nam; Park, Jin Gyu; Han, In Jun; Song, Beom Seok; KIm, Jae Hun; Byun, Myung Woo; Lee, Ju Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute,Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim Mi Jung [Dept. of Food Science and Nutrition, Anyang Unversity, Anyang (Korea, Republic of)

    2007-11-15

    This study was carried out to investigate effects of gamma irradiation on microbiological and quality characteristics of the red color egg powder (RCEP). The control sample was contaminated by microbial levels of 3.16 log CFUg{sup -1} in total aerobic bacteria, but microorganisms in gamma-irradiated samples at above 3.0 kGy were not found at detection limit less than 10{sup 2} CFUg{sup -1}. However, sensory scores and Hunter’s color value of the gamma-irradiated RCEP were decreased depending upon the irradiation dose. The RCEP treated by a combination of the vacuum packaging with gamma irradiation at 3.0 kGy was considered having a microbiological safety and maintaining the sensory quality.

  11. Defect formation in oxygen- and boron- implanted MOS structures after gamma irradiation

    CERN Document Server

    Kaschieva, S; Skorupa, W

    2003-01-01

    The effect of gamma irradiation on the interface states of ion-implanted MOS structures is studied by means of the thermally stimulated charge method. 10-keV oxygen- or boron- (O sup + or B sup +) implanted samples are gamma-irradiated with sup 6 sup 0 Co. Gamma irradiation creates electron levels at the SiSiO sub 2 interface of the samples in a different way depending on the type of the previously implanted atoms (O sup + or B sup +). The results demonstrate that the concentration of the shallower levels (in the silicon band gap) of oxygen-implanted samples increases more effectively after gamma irradiation. The same irradiation conditions increase more intensively the concentration of the deeper levels (in the silicon band gap) of boron-implanted samples. (orig.)

  12. Effect of gamma irradiation on the microstructure and post-mortem anaerobic metabolism of bovine muscle

    Energy Technology Data Exchange (ETDEWEB)

    Yook, H.-S.; Lee, J.-W.; Lee, K.-H.; Kim, M.-K.; Song, C.-W.; Byun, M.-W. E-mail: mwbyun@nanum.kaeri.re.kr

    2001-05-01

    Experiments were performed to study the effect of gamma irradiation on morphological properties and post-mortem metabolism in bovine M. sternomandibularis with special reference to ultrastructure, shear force, pH and ATP breakdown. The shortening of sarcomere was not observed in gamma-irradiated muscle, however, the disappearance of M-line and of A- and I-bands was perceptible. During cold storage, the destruction of muscle bundles was faster in the gamma-irradiated muscle than in the non-irradiated with a dose-dependent manner. The same is true for the post mortem pH drop and ATP breakdown. So, experimental results confirmed that the anaerobic metabolism and morphological properties are noticeably affected by gamma irradiation in beef.

  13. Life shortening and carcinogenesis in mice irradiated at the perinatal period with gamma rays

    International Nuclear Information System (INIS)

    Sasaki, S.; Kasuga, T.

    1986-01-01

    This study elucidates the life-span radiation effects in mice irradiated at the perinatal period in comparison to mice irradiated at the young adult period. B6C3F 1 female mice were irradiated at 17 days of prenatal age, at 0 days of postnatal age, or as young adults at 15 weeks of age with 190, 380, or 570 rads of 137 Cs gamma rays. Mice irradiated at the late fetal period showed dose-dependent life shortening of somewhat lesser magnitude than that seen after neonatal or young adult irradiation. Mice exposed at the late fetal period were highly susceptible to induction of pituitary tumors for which the latent period was the longest of all induced neoplasms. Incidence of lung tumors in mice irradiated at the late fetal period with 190 and 380 rads was higher than in controls. Malignant lymphomas of the lymphocytic type developed in excess, after a short latent period, in mice irradiated fetally with the highest dose; susceptibility of prenatally exposed mice was lower than that of early postnatally exposed mice. Liver tumors developed more frequently in mice irradiated in utero than in controls; susceptibility to induction of this type of neoplasm was highest at the neonatal period. In general, carcinogenic response of mice exposed at the late fetal period resembled that of neonatally exposed mice but was quite different from that of young adult mice. Mice exposed as young adults have no, or low, susceptibility to induction of pituitary, lung, and liver tumors; and a higher susceptibility to induction of myeloid leukemias and Harderian gland tumors. 19 refs., 4 figs., 3 tabs

  14. Irradiation tests of critical components for remote handling system in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1996-03-01

    This report covers the gamma ray irradiation tests according to the Agreement of ITER R and D Task (T35) in 1994 and describes radiation hardness of the standard components for the ITER remote handling system which are categorized into the robotics (Subtask-1), the viewing system (Subtask-2) and the common components (Subtask-3). The gamma ray irradiation tests have been conducted using No.2 and No.3 cells at the cobalt building of Takasaki Establishment in JAERI. The radiation source is cobalt sixty (Co-60), and the maximum dose rate of No.2 and No.3 cells is about 1x10 6 R/h and 2x10 6 R/h, respectively. The environmental conditions of the irradiation tests are described below and all of components excepting electrical wires have been tested in the No.2 cell. [No.2 cell : Atmosphere and ambient temperature No.3 cell : Nitrogen gas and 250degC] As a whole, many of components have been irradiated up to the rated dose of around 1x10 10 rads and the following main results are obtained. The developed AC servo motor and periscope for radiation use have shown excellent durability with the radiation hardness tolerable for more than 10 9 rads. An electrical connector compatible with remote operation has also shown no degradation of electrical characteristics after the irradiation of 10 10 rads. As for polyimide insulated wires, the mechanical and electrical characteristics are not degradated after the irradiation of 10 9 rads and more radiation hardness can be expected than the anticipation. On the contrary, standard position sensors such as rotary encoder show extremely low radiation hardness and further efforts have to be made for improvements. (J.P.N.)

  15. Improvement of color and physiological properties of tuna-processing by-product by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Song, Beom-Seok [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Chun, Byeong-Soo; Ahn, Dong-Hyun [Department of Food Science and Biotechnology, Pukyong National University, Busan 608-737 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Although the by-products from fishery industry had many nutrients, it is being wasted or only used as bacteria media. In this study, the effect of a gamma irradiation on the cooking drips of Thunnus thynnus (CDT) was investigated to examine the possible use of the cooking drips as a functional material for food and cosmetic composition. Total aerobic bacteria, and yeasts/molds from CDT were detected at the level of 2.79 and 2.58 Log CFU/mL, respectively. But, CDT was efficiently sterilized by a gamma irradiation at a low dose of 1 kGy. The Hunter L* value of the gamma-irradiated ethanol extract of CDT was increased, and the a* and b* values were decreased compared to the non-irradiated extract, showing color improvement. Antioxidant activity of the ethanol extract of CDT was increased by a gamma irradiation depending on the irradiation dose. The increased contents of polyphenolic compounds and proteins in CDT extract by gamma irradiation may be the reason of the increased biological activity. These results suggested that the wasted cooking drips can be successfully used as functional components with gamma irradiation treatment.

  16. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    International Nuclear Information System (INIS)

    Lee, Eun Mi; Bai, Hyoung-Woo; Lee, Seung Sik; Hong, Sung Hyun; Cho, Jae-Young; Byung, Yeoup Chung

    2012-01-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  17. Gamma irradiation improves the antioxidant activity of Aloe vera (Aloe barbadensis miller) extracts

    Science.gov (United States)

    Mi Lee, Eun; Bai, Hyoung-Woo; Sik Lee, Seung; Hyun Hong, Sung; Cho, Jae-Young; Yeoup Chung, Byung

    2012-08-01

    Aloe has been widely used in food products, pharmaceuticals, and cosmetics because of its aromatic and therapeutic properties. In the present study, the ethanolic extracts of aloe gel were gamma-irradiated from 10 to 100 kGy. After gamma irradiation, the color of the ethanolic extracts of aloe gel changed to red; this color persisted up to 40 kGy but disappeared above 50 kGy. Liquid chromatography/mass spectrometry analysis demonstrated the production of a new, unknown compound (m/z=132) after gamma irradiation of the ethanolic extracts of aloe gel. The amount of this unknown compound increased with increasing irradiation up to 80 kGy, and it was degraded at 100 kGy. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by the 1,1-diphenyl-2-picrylhydrazyl-radical scavenging capacity. The antioxidant activity of aloe extract was dramatically increased from 53.9% in the non-irradiated sample to 92.8% in the sample irradiated at 40 kGy. This strong antioxidant activity was retained even at 100 kGy. These results indicate that gamma irradiation of aloe extract can enhance its antioxidant activity through the formation of a new compound. Based on these results, increased antioxidant activity of aloe extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  18. Improvement of color and physiological properties of tuna-processing by-product by gamma irradiation

    Science.gov (United States)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Song, Beom-Seok; Chun, Byeong-Soo; Ahn, Dong-Hyun; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Although the by-products from fishery industry had many nutrients, it is being wasted or only used as bacteria media. In this study, the effect of a gamma irradiation on the cooking drips of Thunnus thynnus (CDT) was investigated to examine the possible use of the cooking drips as a functional material for food and cosmetic composition. Total aerobic bacteria, and yeasts/molds from CDT were detected at the level of 2.79 and 2.58 Log CFU/mL, respectively. But, CDT was efficiently sterilized by a gamma irradiation at a low dose of 1 kGy. The Hunter L* value of the gamma-irradiated ethanol extract of CDT was increased, and the a* and b* values were decreased compared to the non-irradiated extract, showing color improvement. Antioxidant activity of the ethanol extract of CDT was increased by a gamma irradiation depending on the irradiation dose. The increased contents of polyphenolic compounds and proteins in CDT extract by gamma irradiation may be the reason of the increased biological activity. These results suggested that the wasted cooking drips can be successfully used as functional components with gamma irradiation treatment.

  19. Effect of gamma-irradiation on the survival of Listeria monocytogenes and allergenicity of cherry tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Todoriki, Setsuko [National Food Research Institute, Tsukuba, Ibaraki 305-8642 (Japan)], E-mail: setsuko@affrc.go.jp; Bari, Latiful; Kitta, Kazumi; Ohba, Mika; Ito, Yasuhiro; Tsujimoto, Yuka [National Food Research Institute, Tsukuba, Ibaraki 305-8642 (Japan); Kanamori, Norihito [Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki 305-8686 (Japan); Yano, Erika; Moriyama, Tatsuya; Kawamura, Yukio [School of Agriculture, Kinki University, Nara-city, Nara 631-8505 (Japan); Kawamoto, Shinichi [National Food Research Institute, Tsukuba, Ibaraki 305-8642 (Japan)

    2009-07-15

    The presence of Listeria monocytogenes in fresh produce is a growing concern because of the possibility of food-borne illness. Ionizing radiation is an effective non-thermal means of eliminating pathogenic bacteria in fresh produce; however, the effect of ionizing irradiation on the allergenic properties of the host commodities remains unknown. This study aimed (i) to determine the effective dose of gamma-irradiation in eliminating L. monocytogenes on whole cherry tomatoes and (ii) to evaluate the effect of gamma-irradiation on the allergenic properties of tomato proteins. Cherry tomatoes that were inoculated with a mixture of five L. monocytogenes strains were treated with gamma-rays from a {sup 60}Co source. A 1.25 kGy dose of gamma-irradiation was found to be sufficient to eliminate L. monocytogenes on whole cherry tomatoes. The immunoblot profile of serum samples obtained from two patients with tomato allergy revealed that gamma-irradiation did not affect the allergenicity of tomato proteins for up to 7 days after irradiation when the tomatoes were stored at 20 deg. C. Additionally, the m-RNA levels of {beta}-fructofuranosidase, polygalacturonase, pectin esterase, and superoxide dismutase, the main allergenic proteins in tomato, were not affected by the applied irradiation dose. Thus, this study demonstrated that a 1.25 kGy dose of gamma-irradiation effectively eliminates L. monocytogenes on cherry tomatoes without affecting the expression of allergenic proteins in the fruits.

  20. Effect of gamma-irradiation on the survival of Listeria monocytogenes and allergenicity of cherry tomatoes

    International Nuclear Information System (INIS)

    Todoriki, Setsuko; Bari, Latiful; Kitta, Kazumi; Ohba, Mika; Ito, Yasuhiro; Tsujimoto, Yuka; Kanamori, Norihito; Yano, Erika; Moriyama, Tatsuya; Kawamura, Yukio; Kawamoto, Shinichi

    2009-01-01

    The presence of Listeria monocytogenes in fresh produce is a growing concern because of the possibility of food-borne illness. Ionizing radiation is an effective non-thermal means of eliminating pathogenic bacteria in fresh produce; however, the effect of ionizing irradiation on the allergenic properties of the host commodities remains unknown. This study aimed (i) to determine the effective dose of gamma-irradiation in eliminating L. monocytogenes on whole cherry tomatoes and (ii) to evaluate the effect of gamma-irradiation on the allergenic properties of tomato proteins. Cherry tomatoes that were inoculated with a mixture of five L. monocytogenes strains were treated with gamma-rays from a 60 Co source. A 1.25 kGy dose of gamma-irradiation was found to be sufficient to eliminate L. monocytogenes on whole cherry tomatoes. The immunoblot profile of serum samples obtained from two patients with tomato allergy revealed that gamma-irradiation did not affect the allergenicity of tomato proteins for up to 7 days after irradiation when the tomatoes were stored at 20 deg. C. Additionally, the m-RNA levels of β-fructofuranosidase, polygalacturonase, pectin esterase, and superoxide dismutase, the main allergenic proteins in tomato, were not affected by the applied irradiation dose. Thus, this study demonstrated that a 1.25 kGy dose of gamma-irradiation effectively eliminates L. monocytogenes on cherry tomatoes without affecting the expression of allergenic proteins in the fruits.

  1. Studies on enhancing the keeping quality of peach (Prunus persica Bausch) Cv. Elberta by gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, P.R.; Meena, R.S.; Dar, M.A. [Nuclear Research Laboratory, Bhabha Atomic Research Centre, Zakura, Srinagar-190006 (India); Wani, A.M. [Nuclear Research Laboratory, Bhabha Atomic Research Centre, Zakura, Srinagar-190006 (India)], E-mail: alimwani@yahoo.co.uk

    2008-04-15

    The effect of gamma-irradiation on keeping quality of peach fruit was studied. The fruit, after harvesting at proper maturity stage, was irradiated in the dose range of 1.0-2.0 kGy, stored under ambient (temp. 25{+-}2 deg. C, RH 70%) and refrigerated (temp. 3{+-}1 deg. C, RH 80%) conditions and evaluated periodically for firmness, total soluble solids (TSS), anthocyanins, water-soluble pectic fractions, loss in weight and decay percentage. The anthocyanin evaluation of the fruits revealed that irradiation enhanced the colour development under both the storage conditions. The gamma-irradiation dose range of 1.2-1.4 kGy proved effective in maintaining higher TSS concentration, reducing weight loss and significantly (p{<=}0.05) delaying the decaying of the fruit by 6 days under ambient conditions and by 20 days under refrigerated storage conditions.

  2. Dosimetric properties of textile fibers: application of electron paramagnetic resonance dosimetry to an accidental gamma irradiation

    International Nuclear Information System (INIS)

    Kamenopoulou, V.

    1988-01-01

    The dosimetric properties of some twenty textile fibers have been studied in order to develop a method for determining the dose received in the case of an accidental gamma irradiation. Three textile fibers having properties most closely satisfying our needs were selected for detailed investigations: cotton, polypropylene and quartz. Electron Paramagnetic Resonance (EPR) readout techniques were used. In order to eliminate spectral anisotropy problems due to textile fiber inhomogeneities, a system has been developed to rotate samples in the resonant cavity during measurements. The structure, physical and chemical properties of cotton and polypropylene were investigated. A bibliographic study of the combined effects of light, heat and ionizing radiation on textile fibers was carried out. A linear relation exists between the EPR signal and the gamma ray dose received over a certain dose range. A method has been developed for preparing samples so as to reduce background noise not due to irradiation; in this way the detection threshold is lowered and a greater time stability obtained. Unknown doses corresponding to known spectra are determined by linear interpolation using a series of spectra obtained from the same fabric irradiated with known doses [fr

  3. Effect of gamma irradiation on microbial load and quality characteristics of minced camel meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Zeinou, R.

    2006-12-01

    The effect of gamma irradiation on microbial load, chemical and sensory characteristics of camel meat has been evaluated. Camel meat were irradiated at doses of 0, 2, 4 and 6 kGy of gamma irradiation. Irradiated and unirradiated meat were kept in a refrigerator (1-4 Centigrade). Immediately after irradiation, general composition and sensory evaluation of camel meat were done. Microbiological and chemical analyses of camel meat were evaluated at 0, 2, 4 and 6 weeks of storage. The results indicated that all doses of gamma irradiation reduced the total counts of mesophilic aerobic bacteria and total coli form of camel meat. Thus the microbiological shelf-life of camel meat was significantly extended from less than 2 weeks (control) to more than 6 weeks (samples irradiated with 2, 4 or 6 kGy). No significant differences in moisture, protein, fat, Thiobarbituric acid (TBA) value, total acidity, pH vale and fatty acids (C14: 0; C16: 0; C18:0) of camel meat were observed due to irradiation. Both total volatile basic nitrogen (VBN) and lipid oxidation value in camel meat were effected by gamma irradiation. Immediately after treatment, VBN of irradiated camel meat increased and lipid oxidation values decreased. Sensory evaluation showed no significant differences between irradiated and unirradiated camel meats. (author)

  4. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.

  5. Effect of gamma-ray irradiation on starch in sweet popato roots

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoroki, S.

    1994-01-01

    Starch contents, as well as the size and molecular weight, in sweet potato roots decreased during steerage at 30 degrees C after gamma-ray irradiation, accompanying the increase of sucrose content. No change in the starch and sucrose contents was observed in unirradiated specimens. By microscopy damaged starch granules were observed only in gamma-ray irradiated root. The results suggested that starch was converted into sucrose unirradiated sweet potato roots by the enzymes responsible for starch-sugar interconversion of which the activities were enhanced by gamma-ray irradiation

  6. Effect of the gamma irradiation on the bio-sorption of Cr (Vi) by orange peel

    International Nuclear Information System (INIS)

    Lugo L, V.; Barrera D, C. E.; Sanchez M, V.; Urena N, F.

    2009-01-01

    The orange peel (Citrus sp.) is a bioadsorbent that contains functional groups able to remove Cr (Vi). To study the effect of gamma irradiation in the sorption capacity, the Nn materials were irradiated with gamma rays using a Co 60 source to dose from 10 to 3500 KGy (Nlγ). The biomass irradiation with gamma rays was successful since it increased the hexavalent chromium removal obtaining a maximum removal percentage of 100%. Sorption isotherms were realized to determine the concentration effect of initial Cr (Vi), the ph effect of the solution and the relationship m/v. (Author)

  7. Studies on the effect of gamma irradiation on shelf life of Kagzi lime (Citrus aurantifolia swingle)

    International Nuclear Information System (INIS)

    Pandey, S.K.; Bisen, A.

    2006-01-01

    Influence of irradiation on shelf life of Kagzi lime fruits were studied. The results revealed that most of the physical and chemical parameters of fruits were significantly influenced by 100 Gy gamma radiation up to 22 days without affecting fruit quality. Higher doses of gamma irradiation (> 200 Gy) deteriorated the fruit quality and organoleptic parameters of the fruit. Thus, irradiation of lime fruits with 100 Gy gamma radiation extended shelf life of lime fruits and also helps in maintaining the chemical constituents viz., T.S.S. Acidity, Vitamin C, pH and juice content. (author)

  8. Effects of gamma irradiation on total polyphenols, radical scavenging activities and decolourization of Nelumbo nucifera extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun [Radiation Research Center for Innovative Technology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeong-up 580-185 (Korea, Republic of)], E-mail: iyjeong@kaeri.re.kr; Lee, Hyo Jung; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong; Byun, Myung Woo [Radiation Research Center for Innovative Technology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeong-up 580-185 (Korea, Republic of)

    2009-07-15

    The ethanolic leaf extract of Nelumbo nucifera (NC) was exposed to {gamma}-irradiation, and its antioxidant activities, total polyphenols and colour characteristics were studied to discern its potential ability as a food or cosmetic materials. The results demonstrated that the radical scavenging activities and total polyphenols of the {gamma}-irradiated leaf extract of NC were not observed to be significantly different. However, {gamma}-irradiation significantly increased the Hunter colour L*-value at doses of 20 and 50 kGy, while the Hunter colour b*-values were decreased under the same conditions.

  9. Effect of gamma irradiation on curcuminoids and volatile oils of fresh turmeric ( Curcuma longa)

    Science.gov (United States)

    Dhanya, R.; Mishra, B. B.; Khaleel, K. M.

    2011-11-01

    In our earlier study a radiation dose of 5 kGy was reported to be suitable for microbial decontamination and shelf life extension of fresh turmeric ( Curcuma longa), while maintaining its quality attributes. In continuation of that work, the effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric was studied. Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. Curcuminoid content and volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. The curcuminoid content was slightly increased by gamma irradiation. No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents.

  10. The effects of. gamma. -irradiation on Ti-Ni shape-memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guilin; Xu Feng; Liu Wenhong; Hu Wenxiang; Yu Fanghua; Zhang Yiping (Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research); Wang Jingcheng; Shao Zichang (Shanghai Iron and Steel Research Inst, SH (China))

    1992-04-01

    Because gamma irradiation provides a means of introducing lattice defects into crystalline solids in a controlled fashion, it can be used to study the influence of lattice defects on the physical properties of solids such as shape-memory alloys (SMAs). The study described here shows that gamma irradiation can be used to ameliorate the performance of SMAs and to understand the mechanism of the shape memory further in these alloys. In particular it shows the effect of gamma irradiation on the martensitic transformation temperatures of Ti-Ni alloys. (UK).

  11. Influence of the temperature in heptahydrate iron sulfate and calcium sulphate, under gamma irradiation

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Frias, D.; Sanchez M, G.

    2007-01-01

    Full text: Experimental results have shown that kinetics of the reaction mechanism initiated by radiolysis is strongly affected by changes in the state of the dosimeter and temperature of irradiation: Response of the dosimeter as a function of the irradiation temperature plays an important role that has not been considered. This effect also has consequences for practical applications in dosimetry. It is obvious that significant errors may occur if dependence on irradiation temperature takes place and it was not taken into account.This issue is relevant to irradiation that takes place at low temperatures. If products are presented and irradiated below room temperature, the evaluation of energy deposited by gamma radiation on samples irradiated below room temperature is a truly difficult task. In irradiating heptahydrate iron sulphate and calcium sulphate with gamma rays at different decreasing temperatures keeping constant the rest of irradiation conditions, we have used low and high doses.(Author)

  12. Effect of gamma irradiation on storability of apples (Malus domestica L.)

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    1997-12-01

    The effects of gamma irradiation on storability of two main apple varieties in Syria, Golden Delicious and Starking, were investigated. Fruits were irradiated with 0, 0.5, 1, and 1.5 kGy and combined irradiation with 1 kGy after packaging the fruits with polyethylene or paper bags. Irradiated and unirradiated fruits were stored at 1 to 2 C deg and 80 to 90% Rh. Weight loss and spoilage were evaluated throughout the different storage periods. Firmness, coloration and pH values were estimated immediately after irradiation. The results showed that in both varieties, gamma irradiation increased the weight loss after 45 days of storage in the 1995, but not in the 1996 season. After 180 days of storage gamma irradiation had different effects on weight loss depending on the season and variety, and increased the fungal spoilage. Application of gamma irradiation prevented the growth of Aspergillus niger and the formation of skin scald in Golden Delicious fruits. Immediately after treatment, gamma irradiation increased the softening of fruits, changed their colour from green to yellow and decreased the pH value of the juice. Combined treatments decreased the rate of weight loss and skin scald in Golden Delicious fruits and increased the fungal spoilage. (author)

  13. Effects of Gamma Irradiation on Ruminal Degradation of Samurai 1 Sweet Sorghum Bagasse

    Directory of Open Access Journals (Sweden)

    T. Wahyono

    2017-06-01

    Full Text Available The purpose of this study was to investigate the influence of gamma irradiation on dry matter, organic matter, and neutral detergent fiber degradability of Samurai 1 sweet sorghum bagasse, to facilitate its utilization in ruminant diets. Sorghum bagasse was obtained from Samurai 1 sorghum stem by-product after juice extraction. Gamma irradiation was carried out in a cobalt-60 irradiator in the Center for the Application of Isotopes and Radiation. Two polyethylene packages of samples were irradiated in gamma cell (Co-60 at doses of 50 and 100 kGy in the presence of air. Treatments were untreated/unirradiated and  50- and 100-kGy gamma irradiation. Sample were incubated in the rumen for periods of 0, 8, 24, 48, and 72 h with in sacco method. The observed parameters were the degradations of dry matter (DM, organic matter (OM, and neutral detergent fiber (NDF. DM, OM and NDF degradation characteristics were also observed. DM degradation of 50 kGy irradiation dose started higher than untreated samples after 24 hours incubation while OM degradation started higher than untreated samples after 48 hours incubation. DM and OM degradation of 100 kGy irradiation started higher than untreated after 8 hours incubation. Gamma irradiation treatment of 50 kGy and 100 kGy could increase NDF degradation on 8 to 72 hours incubation. Irradiation was also capable to increase NDF degradation rate (c fraction and ruminal effective degradation (ED value on Samurai 1 sweet sorghum bagasse. Gamma Irradiation could break down the lignocellulose materials, break β 1,4 branch chain of cellulose and make it easily digested for rumen bacteria. The best dose of gamma irradiation for processing Samurai 1 sweet sorghum bagasse as a fiber source for ruminants was 100 kGy.Received: 10 December 2015; Revised: 10 October 2016; Accepted: 10 October 2016

  14. Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr; Kim, Jae-Hun; Oh, Sang-Hee; Byun, Eui-Hong [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yook, Hong-Sun; Kim, Mee-Ree [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Kwan-Soo [Research and Development Department, Greenpia Technology, Yeoju 469-811 (Korea, Republic of); Byun, Myung-Woo [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: mwbyun@kaeri.re.kr

    2008-03-15

    Cereal porridges have low energy and nutrient density because of its viscosity. The objective of the present study was to evaluate the effect of irradiation on the reduction of viscosity and on the increasing solid content of cereal porridge. Four cereals, wheat, rice, maize (the normal starchy type) and waxy rice, were used in this study. The porridge with 3000 cP was individually prepared from cereal flour, gamma-irradiated at 20 kGy and tested. Gamma irradiation of 20 kGy was allowed that the high viscous and rigid cereal porridges turned into semi-liquid consistencies. The solid contents of all porridges could increase by irradiation, compared with non-irradiated ones. No significant differences of starch digestibility were observed in all cereal porridge samples. The results indicated that gamma irradiation might be helpful for improving energy density of cereal porridge with acceptable consistency.

  15. Characterization of Amylopectin irradiated by gamma rays using viscosity and radius gyration technique

    International Nuclear Information System (INIS)

    Ku Sarah Syahidah Ku Muhamad

    2012-01-01

    Food irradiation is one of the most applicable methods that have been used in food industry especially to preserve food. Besides preservation of food, irradiation can also reduce microorganism, inhibit budding and others. However, this method can be misused by some irresponsible organization or person such as irradiate the food over the dose limit value. Therefore, the detection method is important to detect any misused in irradiation method. The objective of this research is to identify any changes in the structure of amylopectin by using radius gyration technique. Besides that, the viscosity of the sample is also determined by using Rheometer. The last objective of this research is to find a relationship between radius gyration and irradiation dose can be determined. Amylopectin and cassava powder were the sample in this research. The samples were irradiated in the gamma-cell at 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, and 10.0 kGy doses. 0 kGy were the controlled sample. The sample were made into gel to analysed using Rheometer and Small Angle X-ray Scattering (SAXS). The viscosity of the sample were analysed by using Rheometer while the radius gyration of the sample were analysed by using SAXS. Hence, the result of this experiment is, the viscosity of amylopectin reduces as the doses increases. But, at 10 kGy, the viscosity of the cassava starch was increased significantly. For the SAXS analysis, it is shows that the graph for amylopectin were fluctuates. While, for cassava starch the radius gyration increases with doses. Hence, the rheometer technique is suitable to be develop as a detection method in food irradiation. Further research should be done to improve the detection technique in food irradiation. (author)

  16. Repair of radiation damage of Micrococcus radioproteolyticus due to gamma and UV irradiation

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1982-01-01

    Cells were irradiated in dry state with gamma radiation and UV radiation. The post-irradiation warming of freeze dried cells (2 hours to 60deg or to 80deg) influenced the ability to repair sublethal damage. Heating to 80deg caused a mild reduction in survival. The repair of irradiated and heated cells required more time than that of cells which had only been irradiated. (M.D.)

  17. Effect of Gamma irradiation on the Production of Four Species of Some Labiateae Family

    International Nuclear Information System (INIS)

    El-Sharnouby, M.E.

    2013-01-01

    This investigation was carried out on four species of Labiateae family (Sweet basil, Marjoram, Rosemary and Thyme), plants cultured on Taif region in KSA and seeds were exposed to gamma rays treatments at 20, 40, 60 and 80 Gy. The results indicated increase the number of shoots of all labiateae species with control plants after 2 and 4 months (except Rosmary seeds irradiated with 20 Gy of gamma irradiation which produced maximum number of shoots (3.1) after four months from seeds culturing). The highest dose of gamma rays (80 Gy), significantly decreased the average shoot number on Marjoram plants. Exposing to gamma irradiation, the irradiated sweet basil plants with gamma rays at 40 and 60 Gy formed significantly longer shoots after 4 months from culturing compared with the control plants. The high dose of gamma rays (80 Gy), significantly decreased the average of Marjoram shoot length. The Rosmary plants, showed a significant increase in the shoot length with gamma irradiation at 20 Gy which produced (4.0 cm) than other gamma irradiation treatments. Stem diameter and plant dry weight of the Rosmary, Marjoram and Thyme plants were the best on control than other gamma rays treatments after 2 and 4 months respectively. The highest number of leaves percentage (12.2) was recorded with the control of marjoram plants. Most of the irradiation treatments decreased the number of leaves of all labiateae plants except sweet basil plants specially gamma ray at 60 Gy which reached more number of leaves than sweet basil control plants after 4 months from seeds culturing.

  18. Synthetic activity of rat blood lymphocytes under acute and continuous gamma-irradiation - fluorescent microspectral study

    International Nuclear Information System (INIS)

    Karnaukhova, N.A.; Sergiyevich, L.A.; Aksenova, G.Y.; Karnaukhov, V.N.

    1999-01-01

    The effects of different doses of acute and continuous gamma-irradiation on the synthetic activity of rat blood lymphocytes stained with acridine orange were studied by fluorescent microspectrometry. Male rats were exposed to acute gamma-irradiation with doses of 7.5, 4 and 3 Gy, or to continuous irradiation with dose rates of 14.4, 2.1, 1.1 and 0.43 cGy/day, respectively. The changes of the synthetic activity of blood lymphocytes occurred in three main stages after acute gamma-irradiation and in four stages under continuous irradiation. The stages reflect the processes of depression and activation of the immune system under irradiation. Essential differences between the acute and continuous effects were observed in the first stage. After acute gamma-irradiation, the synthetic activity decreased sharply, indicating the predominant contribution of the damaging effect of irradiation, whereas under continuous irradiation, as a result of the stimulatory effect of low-dose irradiation, the synthetic activity increased during the first stage. (orig.)

  19. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets

    International Nuclear Information System (INIS)

    Tomac, Alejandra; Cova, María C.; Narvaiz, Patricia; Yeannes, María I.

    2015-01-01

    The effect of gamma irradiation (0, 2, 3 and 4 kGy) on vacuum-packed marinated anchovy fillets was analyzed for their texture, color, lipid oxidation and sensory acceptability after 10 months under refrigeration. Marinated (3% acetic acid, 10% sodium chloride and 0.2% citric acid) Engraulis anchoita fillets were vacuum-packed and irradiated with a cobalt-60 source at a semi-industrial irradiation facility. The irradiation caused a slight increase in hardness values regardless of the applied dose but maintained a consistent texture over the 10 months, even though the control samples softened, most likely due to degradation. This hardness increase did not affect the textural sensory acceptability. Irradiation did not modify the color but still reduced color changes during storage, benefitting the product's quality. TBARS was increased in every sample throughout storage, but irradiation decreased these values. Sensory acceptability was not affected by gamma irradiation. Therefore, gamma irradiation could be successfully applied to this type of product for the purpose of shelf-life extension. - Highlights: • Marinated anchovies were γ-irradiated at 2, 3 and 4 kGy and stored at 4 °C (10 months). • Irradiation slightly hardened the texture and reduced its softening during storage. • Irradiated marinades had good sensory acceptability without differences with controls. • Irradiation improved the quality by reducing texture softening and color changes

  20. Gamma sterilization of pharmaceuticals--a review of the irradiation of excipients, active pharmaceutical ingredients, and final drug product formulations.

    Science.gov (United States)

    Hasanain, Fatima; Guenther, Katharina; Mullett, Wayne M; Craven, Emily

    2014-01-01

    Sterilization by gamma irradiation has shown a strong applicability for a wide range of pharmaceutical products. Due to the requirement for terminal sterilization where possible in the pharmaceutical industry, gamma sterilization has proven itself to be an effective method as indicated by its acceptance in the European Pharmacopeia and the United States Pharmacopeia ( ). Some of the advantages of gamma over competitive procedures include high penetration power, isothermal character (small temperature rise), and no residues. It also provides a better assurance of product sterility than aseptic processing, as well as lower validation demands. Gamma irradiation is capable of killing microorganisms by breaking their chemical bonds, producing free radicals that attack the nucleic acid of the microorganism. Sterility by gamma irradiation is achieved mainly by the alteration of nucleic acid and preventing the cellular division. This review focuses on the extensive application of gamma sterilization to a wide range of pharmaceutical components including active pharmaceutical ingredients, excipients, final drug products, and combination drug-medical devices. A summary of the published literature for each class of pharmaceutical compound or product is presented. The irradiation conditions and various quality control characterization methodologies that were used to determine final product quality are included, in addition to a summary of the investigational outcomes. Based on this extensive literature review and in combination with regulatory guidelines and other published best practices, a decision tree for implementation of gamma irradiation for pharmaceutical products is established. This flow chart further facilitates the implementation of gamma irradiation in the pharmaceutical development process. The summary therefore provides a useful reference to the application and versatility of gamma irradiation for pharmaceutical sterilization. Many pharmaceutical products

  1. Rates of mutant production in Bacillus subtilis by dry heat and gamma irradiation. A preliminary report

    International Nuclear Information System (INIS)

    Dillon, R.T.; Conley, M.B.

    1975-04-01

    Bacillus subtilis var. niger spores were inactivated by dry heat, gamma irradiation, and combination of the two. The percentage of auxotrophic mutants among the survivors was determined as a function of treatment time over seven decimal reductions of the initial population. For dry heat inactivation the percentage of mutants increased to a maximum and then decreased. In general, similar results were obtained with gamma irradiation although there were more peaks and valleys in the percentage of mutants as a function of irradiation. For some combinations of dry heat and simultaneous irradiation the percentage of mutants obtained was greatly reduced. (U.S.)

  2. Use of gamma irradiation to prevent aflatoxin B1 production in smoked dried fish

    International Nuclear Information System (INIS)

    Ogbadu, G.H.

    1988-01-01

    Smoked dried fish bought from the Nigerian market was inoculated with spores of Aspergillus flavus (U.I. 81) and irradiated with doses of 0.625, 1.25, 2.50 and 5.00 kGy gamma irradiation. The effect on aflatoxin B 1 production on subsequent incubation for 8 days as stationary cultures was measured. The amount of aflatoxin B 1 produced was found to decrease with increased gamma irradiation dose levels. The non-irradiated control produced significantly (at 1% level) greater amounts of aflatoxin B 1 as compared to the treated cultures. (author)

  3. Effect of gamma irradiation on the sensitivities of escherichia coli at deep frozen conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takigami, Machiko; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-09-01

    Phosphate buffer suspensions of three strains of Escherichia coli were irradiated with gamma-rays at room temperature and deep frozen conditions. They were inoculated on MacConkey agar plates to see the comparative sensitivities to the irradiation. Compared to the irradiation at room temperature, the sensitivities of the strains decreased by irradiation at deep frozen conditions. Addition of glycerol to the E. coli suspensions decreased the sensitivities of E. coli to gamma-rays not only at room temperature but also at deep frozen conditions. These phenomena were elucidated by the decrease of production and mobility of OH radicals at deep frozen conditions. (author)

  4. Gamma ray irradiated AgFeO2 nanoparticles with enhanced gas sensor properties

    Science.gov (United States)

    Wang, Xiuhua; Shi, Zhijie; Yao, Shangwu; Liao, Fan; Ding, Juanjuan; Shao, Mingwang

    2014-11-01

    AgFeO2 nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV-vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV-Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO2 nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects.

  5. Gamma irradiation as a quarantine treatment for sweet cherries against Queensland fruit fly

    International Nuclear Information System (INIS)

    Jessup, A.J.

    1990-01-01

    The quality of 'Ron's Seedling', 'American Bing', and 'Lambert' sweet cherry drupes was not affected by irradiation doses up to 300 to 1000 gray. Peduncle discoloration increased in 'Ron's Seedling' cherries when irradiated at 600 and 1000 gray. A dose of 75 gray prevented adult eclosion of more than 1300 Queensland fruit fly (Dacus tryoni, Froggatt). Larvae treated at the third instar were the least susceptible to gamma irradiation. The results indicated that gamma irradiation is a feasible quarantine treatment against D. tryoni without impairment to the quality of cherries

  6. Effect of gamma irradiation on the sensitivities of escherichia coli at deep frozen conditions

    International Nuclear Information System (INIS)

    Takigami, Machiko; Ito, Hitoshi

    1996-01-01

    Phosphate buffer suspensions of three strains of Escherichia coli were irradiated with gamma-rays at room temperature and deep frozen conditions. They were inoculated on MacConkey agar plates to see the comparative sensitivities to the irradiation. Compared to the irradiation at room temperature, the sensitivities of the strains decreased by irradiation at deep frozen conditions. Addition of glycerol to the E. coli suspensions decreased the sensitivities of E. coli to gamma-rays not only at room temperature but also at deep frozen conditions. These phenomena were elucidated by the decrease of production and mobility of OH radicals at deep frozen conditions. (author)

  7. Physical, proximate, functional and pasting properties of flour produced from gamma irradiated cowpea (Vigna unguiculata, L. Walp)

    International Nuclear Information System (INIS)

    Darfour, B.; Wilson, D.D.; Ofosu, D.O.; Ocloo, F.C.K.

    2012-01-01

    Cowpeas are leguminous seeds widely produced and consumed in most developing countries of sub Saharan Africa. The aim of this study was to determine the physical, proximate, functional and pasting properties of flour obtained from gamma irradiated cowpea. Four cowpea cultivars were irradiated with gamma radiation at dose levels of 0.25, 0.5, 0.75, 1.0 and 1.5 kGy with the unirradiated cultivars serving as controls. The samples were hammer milled, sieved and stored at 4 °C for analysis. Physical, proximate, functional, pasting properties were determined using appropriate methods. In general, the irradiation dose applied to cowpea for insect control did not significantly affect the physical and proximate properties of the flour. However, significant increase (p<0.05) was achieved in paste bulk density, water and oil absorption capacities, foam capacities and least gelation concentrations of flour in general, which may be attributed to the irradiation. The radiation reduced the swelling power and water solubility index significantly. The peak temperature, peak viscosity and setback viscosity of the pastes were significantly (p<0.05) reduced while breakdown viscosity was significantly (p<0.05) increased by the radiation. It was established that the doses used on cowpea affected both the functional and pasting properties of the flour. - Highlights: ► We investigated the effects of gamma irradiation of cowpea on quality characteristics of its resultant flour. ► Flour was prepared from four cowpea cultivars irradiated at 0, 0.25, 0.5, 0.75, 1.0 and 1.5 kGy. ► Proximate and physical properties of flour from irradiated cowpea were generally not affected by the radiation doses used. ► Functional properties of flour samples were affected by gamma irradiation of cowpea. ► Pasting parameters studied were also affected by the radiation at various radiation doses.

  8. Microbial decontamination of cosmetic products by gamma irradiation

    International Nuclear Information System (INIS)

    Taha, S.M.A.

    2010-01-01

    The microbiological quality of cosmetic products (skin creams, massage gels and hair lotion) and the effect of gamma irradiation on this quality were investigated.The effectiveness of these cosmetic products with the tested pathogenic microorganisms was also examined. Total bacterial counts (TBC) of examined cosmetic products ranged between 5 cfu/g or ml. Most cosmetic products evaluated were free from mold and yeast. Spore forming bacteria (SFB) were low and ranged between 2 cfu/g or ml. The enterobacteriaceae (Ent) group was generally absent from the examined cosmetic products except for one sample (varic, skin cream) which contained 7x10 3 cfu/g. All cosmetic products studied were free from Pseudomonas species, Aeromonas hydrophila; Bacillus cereus; Listeria monocytogenes and Salmonella species. Only one sample (varic, skin cream) contained E. coli (2x10 2 cfu/g). Enterococcus faecalis was found in three samples of cosmetic products tested (maxi care, panol and varic creams) and the counts were 7x10 2 , 2x10 2 and 5x10 4 cfu/g, respectively. Also Staphylococcus aureus was found in the same three samples and the counts were in the range of 2-3x10 2 cfu/g. The effectiveness of cosmetic products with the tested pathogenic bacteria differs according to the type of cosmetic products examined . The irradiation dose of 6 kGy was very effective in microbial decontamination and elimination of pathogenic bacteria in cosmetic products for enhancing health quality and ensuring safety of these products.

  9. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    Science.gov (United States)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  10. Gamma irradiation as a quarantine treatment against mite (Tetranychidae) on cut flowers

    International Nuclear Information System (INIS)

    Zainon Othman; Mohd Ridzuan Ismail; Hamidah Sulaiman; Mohd Shamsudin Osman

    2000-01-01

    Cut flower, an important export commodity of Malaysia in international trade, is often subjected to infestation by various pests such as mites, scales and thrips. The use of low ionising radiation has been suggested as an alternative to methyl bromide fumigation, the current pest disinfestation treatment for cut flower but which is being phased out due to environmental concerns. The criterion for efficacy of radiation as a quarantine treatment will be the inability of treated mites to reproduce at a new location rather than causing immediate mortality. Irradiating red spider mite Tetranychus piercie at a dose of 300 and 400 Gy produced sterile female adults from irradiated protonymph and deutonymph respectively. A lower dose of 200 Gy induced sterility in female adults developed from the less immature stages of irradiated egg and larva. Deteriorating effects caused by irradiation treatment were reflected in immatures by their reduced emergence rate/mortality in subsequent developmental stages. A dose of 240 Gy prevented reproduction in female adult of T piercie by inducing sterility while a much higher dose of 5 kGy is required to produce instant mortality. Based on the results obtained gamma irradiation of dose range 300-400 Gy may be applied as a quarantine treatment against Tetranychus piercie. However, this dose range is only suitable for chrysanthemum (in 4% sucrose solution) but not roses, carnations and orchids which showed phytotoxic symptoms at dose range of 100-300 Gy

  11. The field-irradiator gamma study: Fourteen years of irradiation of the boreal forest

    International Nuclear Information System (INIS)

    Amiro, B.D.; Hawkins, J.L.; Laverock, M.J.; Sheppard, S.C.

    1996-01-01

    The Field-Irradiator Gamma (FIG) project is a long-term experiment on the response of boreal forest vegetation to chronic ionizing radiation. The forest was irradiated from 1973 to 1986 by a 370 TBq point source of 137 Cs placed at a height of 20 m. The forest is now in the recovery phase. The irradiated forest included several different community types, and each of these was affected differently by the radiation stress. New vegetation zones have now been created because of the selective tolerance to radiation along a gradient from background dose rates to a maximum of 65 mGy h -1 . One of the easiest measured indicators of the radiation stress has been photographic documentation of changes in forest communities over time. Measured changes in species composition and the decrease in tree canopy cover at dose rates >2 Gy h -1 have also helped quantify radiation effects. Indicators such as trends in annual growth rings have been less satisfactory. Our experiment suggests that there are no visible impacts at chronic dose rates less than 0.1 mGy h -1 and the threshold for effects likely is between 0.1 and 1 mGy h -1 . The experimental area has been preserved to allow measurements of long-term recovery of the site

  12. Effect of gamma irradiation on storability of apples (Malus Domestica L.)

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2000-01-01

    The aim of this study was to investigate the effect of gamma irradiation on storability of the two main apple varieties, Golden Delicious and Starking, in Syria. The experiments were performed in 1995 and 1996. Fruits were irradiated with 0, 0.5, 1.0 and 1,5 kGy. Irradiated and unirradiated fruits were stored at 1 to 2 Centigrade and 80 to 90% Rh. Weight loss and spoilage due to physiological disorders and fungal diseases were evaluated throughout the different storage periods. firmness, coloration and Ph values were estimated immediately after irradiation. The results showed that, in both varieties, gamma irradiation increased the weight loss after 45 days of storage in apples gathered in 1995 but not in the 1996 season. After 180 days of storage, gamma irradiation had different effects on weight loss depending on the growing year and variety, and increased fungal spoilage. Application of gamma irradiation prevented the growth of Aspergillus niger and the formation of skin scald in 'Golden Delicious' fruits. Immediately after treatment, gamma irradiation increased the softening of fruits, changed their color from green to yellow and decreased the Ph value of the juice. (author)

  13. Suppressing effect of low-dose gamma-ray irradiation on collagen-induced arthritis

    International Nuclear Information System (INIS)

    Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi; Ohshima, Yasuhiro; Tago, Fumitoshi; Masada, Ayako; Kojima, Shuji

    2008-01-01

    We previously reported attenuation of autoimmune disease by low-dose gamma-ray irradiation in MRL-lpr/lpr mice. Here, we studied the effect of low-dose gamma-ray irradiation on collagen-induced arthritis (CIA) in DBA/1J mice. Mice were immunized with type II collagen, and exposed to low-dose gamma-rays (0.5 Gy per week for 5 weeks). Paw swelling, redness, and bone degradation were suppressed by irradiation, which also delayed the onset of pathological change and reduced the severity of the arthritis. Production of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6, which play important roles in the onset of CIA, was suppressed by the irradiation. The level of anti-type II collagen antibody, which is essential for the onset of CIA, was also lower in irradiated CIA mice. The population of plasma cells was increased in CIA mice, but irradiation blocked this increase. Since regulatory T cells are known to be involved in suppression of autoimmune disease, the population of CD4 + CD25 + Foxp3 + regulatory T cells was measured. Intriguingly, a significant increase of these regulatory T cells was found in irradiated CIA mice. Overall, our data suggest that low-dose gamma-ray irradiation could attenuate CIA through suppression of pro-inflammatory cytokines and autoantibody production, and induction of regulatory T cells. (author)

  14. Effect of Gamma and Electron Beam Irradiation on Textile Waste Water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, T.M.

    2011-01-01

    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water was done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy, was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation. (author)

  15. Selection of male-sterile and dwarfism genetically modified zoysia japonica through gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Tae Woong; Song, In Ja; Kang, Hong Gyu; Jeong, Ok Cheol; Sun, Hyeon Jin; Ko, Suk Min; Lim, Pyung Ok; Song, Pill Soon; Song, Sung Jun; Lee, Hyo Yeon [Jeju National University, Jeju (Korea, Republic of)

    2010-09-15

    The aim of this study is selection of the male-sterile plant for inhibiting transgene flow through gamma-irradiation ({sup 60}Co) at the pollination and fertilization cycle of herbicide-tolerant genetically modified (GM) zoysiagrass (Zoysia japonica Steud.). High frequencies of plant mutations were obtained about 18% from M{sub 1} generation at the doses (10 to 50 Gy). We also found that some M{sub 1} plants showed male-sterile plants using de-husked seeds and comparison of stainable pollen using KI-I{sub 2} solution. Besides the effects of irradiation on pollination and fertilization cycle, various other mutation like dwarf, cold tolerance, increasing grains and mass were observed. Four of dwarfism plants were selected through comparison of morphological characteristic between control and mutants during 4 years. These results demonstrated that the gamma-irradiation on pollination and fertilization cycle is very effective to induce the various mutations, and the male-sterile mutants are useful for controlling transgene flow and developing of high quality turfgasses.

  16. Induced chlorophyll variation in pineapple c v. 'queen' by gamma irradiation (60Cobalt)

    International Nuclear Information System (INIS)

    Valencia, Lolita DC.

    2012-01-01

    Irradiation using gamma rays ( 60 Cobalt) coupled with in vitro culture techniques was undertaken to induce variation or mutation in pineapple. Calli from crown meristem tips of pineapple cv 'Queen' [Ananas comosus (L.) Merr.] were initiated using Murashiege and Skoog's basal meduim supplemented with 10mg/liter 4-amino-3,5,6-trichloro-2-pyrodinecarboxylic acid (Picloram). High percentage of growth and shoot proliferation was observed in basal medium supplemented with 50 μM benzene adenine purine (BAP) and 10 μM gibberrelic acid (GA) after 8 weeks in vitro. Regenerants derived from shoots using different doses of gamma rays (0, 5, 10, 15, 20, 25 and 30 Gy) were evaluated under laboratory conditions. Of the different doses, 15 Gy produced the most variegation in young shoots (chlorophyll variants) maintained in vitro. The variants appeared to have yellow and green color combinations of the young leaves of pineapple 'Queen' variety. When transplanted inside the greenhouse, high percentage of plantlets survival was observed, ranging from 90-95%. Of the different irradiation doses, variegation in young leaves was observed at 15, 20, 25 and 30 Gy. Further assessment on the effect of irradiation is currently being unertaken under screen house conditions. The variants produced could serve a basis for selection of ornamental-type pineapple. In addition, protocols developed on the use of in vitro culture techniques could be utilized as a tool for induced mutation breeding in pineapple. (author)

  17. The radiation field in the Gamma Irradiation Facility GIF++ at CERN

    Science.gov (United States)

    Pfeiffer, Dorothea; Gorine, Georgi; Reithler, Hans; Biskup, Bartolomej; Day, Alasdair; Fabich, Adrian; Germa, Joffrey; Guida, Roberto; Jaekel, Martin; Ravotti, Federico

    2017-09-01

    The high-luminosity LHC (HL-LHC) upgrade is setting now a new challenge for particle detector technologies. The increase in luminosity will produce a particle background in the gas-based muon detectors that is ten times higher than under conditions at the LHC. The detailed knowledge of the detector performance in the presence of such a high background is crucial for an optimized design and efficient operation after the HL-LHC upgrade. A precise understanding of possible aging effects of detector materials and gases is of extreme importance. To cope with these challenging requirements, a new Gamma Irradiation Facility (GIF++) was designed and built at the CERN SPS North Area as successor of the Gamma Irradiation Facility (GIF) during the Long Shutdown 1 (LS1) period. It features an intense source of 662 keV photons with adjustable intensity, to simulate continuous background over large areas, and, combined with a high energy muon beam, to measure detector performance in the presence of the background. The new GIF++ facility has been operational since spring 2015. In addition to describing the facility and its infrastructure, the goal of this work is to provide an extensive characterization of the GIF++ photon field with different configurations of the absorption filters in both the upstream and downstream irradiation areas. Moreover, the measured results are benchmarked with Geant4 simulations to enhance the knowledge of the radiation field. The absorbed dose in air in the facility may reach up to 2.2 Gy/h directly in front of the irradiator. Of special interest is the low-energy photon component that develops due to the multiple scattering of photons within the irradiator and from the concrete walls of the bunker.

  18. Gamma irradiation testing of prototype ITER in-vessel magnetic pick-up coils

    International Nuclear Information System (INIS)

    Vermeeren, Ludo; Leysen, Willem

    2013-01-01

    Highlights: ► We tested five prototype ITER in-vessel coils up to a gamma dose of 72 MGy. ► Before and after irradiation thermal tests were also performed from 30 °C till 130 °C. ► The continuity resistances and the insulation resistances were continuously monitored. ► The observed behavior of all coils was satisfactory in all conditions. ► For the further design the mechanical robustness should be taken into account. -- Abstract: To fulfill the requirements for ITER in-vessel magnetic diagnostics, several coil prototypes have been developed, aiming at minimizing the disturbing effects of temperature gradients and radiation induced phenomena. As a first step in the radiation resistance testing of these prototypes, an in-situ high dose rate gamma radiation test on a selection of prototypes was performed. The aim of this test was to get a first experimental feedback regarding the behavior of the pick-up coil prototypes under radiation. Five prototypes (a coil wound with glass-insulated copper wire, two LTCC coils and two HTCC coils) were irradiated at a dose rate of 46 kGy/h up to a total dose of 72 MGy and at a temperature of 50 °C. During the irradiation, the continuity resistances and the insulation resistances were continuously measured. Before and after irradiation reference data were recorded as a function of temperature (from 30 °C to 130 °C). This paper includes the results of the temperature and irradiation tests and a discussion of the behavior of the prototype coils in terms of electrical and mechanical properties

  19. Impairment of liver and kidney functions in gamma irradiated rats suffering from pesticide toxicity

    International Nuclear Information System (INIS)

    Roushdy, H. M.; Abdel-Hamid, F. M.; Abu-Ghadir, A. R.

    1997-01-01

    The effect of exposure to a single whole body gamma irradiation dose at 6.5 Gy and/or either oral administration of 50 or 100 mg kelthane/kg body weight/day for 3 consecutive days, or daily feeding with 200 mg kelthane/kg body weight for 3, 6, and 12 weeks has been studied on relative liver and kidney weights, serum and liver enzymes, creatinine and inorganic phosphorous clearance, as well as percentage tubular phosphorous reabsorption in male animals. The data obtained revealed that exposure to gamma irradiation alone or combined with kelthane treatment caused significant increase in the relative liver weight besides significant decrease in serum and liver alkaline phosphatase and serum cholinesterase. Exposure to gamma irradiation after oral administration of 100 mg or feeding dietary kelthane kelthane caused significant decrease in liver glucose-6- phosphatase. Non-significant changes in aspartic and alanine transaminases could be recorded due to gamma irradiation and/or kelthane treatment

  20. Effect of gamma irradiation on nutrient digestibility in SPF mini-pig

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeob [College of Animal Life Sciences , Kangwon National University, 192-1 Kangwon Avenue 1, Chuncheon, Gangwon-do 200-701 (Korea, Republic of); Cho, Sung-Back [Swine Science Division, National Institute of Animal Science, Cheonan, Chungcheongnam-do 330-801 (Korea, Republic of); Kim, Yoo-Yong [College of Agriculture and Life Science, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Ohh, Sang-Jip, E-mail: sjohh@kangwon.ac.k [College of Animal Life Sciences , Kangwon National University, 192-1 Kangwon Avenue 1, Chuncheon, Gangwon-do 200-701 (Korea, Republic of)

    2011-01-15

    This study was carried out to evaluate the effect of gamma irradiation on nutrient digestibility of either soy-based or milk-based diet for specific pathogen-free (SPF) mini-pigs. Gamma irradiation of the diets was done at dosage of 10 kGy with {sup 60}Co whereas autoclaving was executed at 121 {sup o}C for 20 min. Apparent crude protein digestibilities of gamma irradiated diets were higher (p<0.05) than those of autoclaved diets regardless of diet type. Digestibilities of dry matter, gross energy and total carbohydrate in the irradiated diet were higher than those of the autoclaved diet. From the results of nutrient digestibility of mini-pig diets in this study, 10 kGy gamma radiation was suggested as a convenient diet radicidation method that can minimize the decrease in nutrient digestibility on feeding to SPF mini-pigs.