WorldWideScience

Sample records for gamma camera systems

  1. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.

    1977-01-01

    A gamma camera system having control components operating in conjunction with a solid state detector is described. The detector is formed of a plurality of discrete components which are associated in geometrical or coordinate arrangement defining a detector matrix to derive coordinate signal outputs. These outputs are selectively filtered and summed to form coordinate channel signals and corresponding energy channel signals. A control feature of the invention regulates the noted summing and filtering performance to derive data acceptance signals which are addressed to further treating components. The latter components include coordinate and enery channel multiplexers as well as energy-responsive selective networks. A sequential control is provided for regulating the signal processing functions of the system to derive an overall imaging cycle

  2. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.; Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  3. Gamma camera display system

    International Nuclear Information System (INIS)

    Stout, K.J.

    1976-01-01

    A gamma camera having an array of photomultipliers coupled via pulse shaping circuitry and a resistor weighting circuit to a display for forming an image of a radioactive subject is described. A linearizing circuit is coupled to the weighting circuit, the linearizing circuit including a nonlinear feedback circuit with diode coupling to the weighting circuit for linearizing the correspondence between points of the display and points of the subject. 4 Claims, 5 Drawing Figures

  4. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.

    1982-01-01

    The invention provides a composite solid state detector for use in deriving a display, by spatial coordinate information, of the distribution or radiation emanating from a source within a region of interest, comprising several solid state detector components, each having a given surface arranged for exposure to impinging radiation and exhibiting discrete interactions therewith at given spatially definable locations. The surface of each component and the surface disposed opposite and substantially parallel thereto are associated with impedence means configured to provide for each opposed surface outputs for signals relating the given location of the interactions with one spatial coordinate parameter of one select directional sense. The detector components are arranged to provide groupings of adjacently disposed surfaces mutually linearly oriented to exhibit a common directional sense of the spatial coordinate parameter. Means interconnect at least two of the outputs associated with each of the surfaces within a given grouping for collecting the signals deriving therefrom. The invention also provides a camera system for imaging the distribution of a source of gamma radiation situated within a region of interest

  5. Control system for gamma camera

    International Nuclear Information System (INIS)

    Miller, D.W.

    1977-01-01

    An improved gamma camera arrangement is described which utilizing a solid state detector, formed of high purity germanium. the central arrangement of the camera operates to effect the carrying out of a trapezoidal filtering operation over antisymmetrically summed spatial signals through gated integration procedures utilizing idealized integrating intervals. By simultaneously carrying out peak energy evaluation of the input signals, a desirable control over pulse pile-up phenomena is achieved. Additionally, through the use of the time derivative of incoming pulse or signal energy information to initially enable the control system, a low level information evaluation is provided serving to enhance the signal processing efficiency of the camera

  6. [Analog gamma camera digitalization computer system].

    Science.gov (United States)

    Rojas, G M; Quintana, J C; Jer, J; Astudillo, S; Arenas, L; Araya, H

    2004-01-01

    Digitalization of analogue gamma cameras systems, using special acquisition boards in microcomputers and appropriate software for acquisition and processing of nuclear medicine images is described in detail. Microcomputer integrated systems interconnected by means of a Local Area Network (LAN) and connected to several gamma cameras have been implemented using specialized acquisition boards. The PIP software (Portable Image Processing) was installed on each microcomputer to acquire and preprocess the nuclear medicine images. A specialized image processing software has been designed and developed for these purposes. This software allows processing of each nuclear medicine exam, in a semiautomatic procedure, and recording of the results on radiological films. . A stable, flexible and inexpensive system which makes it possible to digitize, visualize, process, and print nuclear medicine images obtained from analogue gamma cameras was implemented in the Nuclear Medicine Division. Such a system yields higher quality images than those obtained with analogue cameras while keeping operating costs considerably lower (filming: 24.6%, fixing 48.2% and developing 26%.) Analogue gamma camera systems can be digitalized economically. This system makes it possible to obtain optimal clinical quality nuclear medicine images, to increase the acquisition and processing efficiency, and to reduce the steps involved in each exam.

  7. Gamma camera

    International Nuclear Information System (INIS)

    Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  8. Advanced system for Gamma Cameras modernization

    International Nuclear Information System (INIS)

    Osorio Deliz, J. F.; Diaz Garcia, A.; Arista Romeu, E. J.

    2015-01-01

    Analog and digital gamma cameras still largely used in developing countries. Many of them rely in old hardware electronics, which in many cases limits their use in actual nuclear medicine diagnostic studies. Consequently, there are different worldwide companies that produce medical equipment engaged into a partial or total Gamma Cameras modernization. Present work has demonstrated the possibility of substitution of almost entire signal processing electronics placed at inside a Gamma Camera detector head by a digitizer PCI card. this card includes four 12 Bits Analog-to-Digital-Converters of 50 MHz speed. It has been installed in a PC and controlled through software developed in Lab View. Besides, there were done some changes to the hardware inside the detector head including redesign of the Orientation Display Block (ODA card). Also a new electronic design was added to the Microprocessor Control Block (MPA card) which comprised a PIC micro controller acting as a tuning system for individual Photomultiplier Tubes. The images, obtained by measurement of 99m Tc point radioactive source, using modernized camera head demonstrate its overall performance. The system was developed and tested in an old Gamma Camera ORBITER II SIEMENS GAMMASONIC at National Institute of Oncology and Radiobiology (INOR) under CAMELUD project supported by National Program PNOULU and IAEA . (Author)

  9. New nuclear medicine gamma camera systems

    International Nuclear Information System (INIS)

    Villacorta, Edmundo V.

    1997-01-01

    The acquisition of the Open E.CAM and DIACAM gamma cameras by Makati Medical Center is expected to enhance the capabilities of its nuclear medicine facilities. When used as an aid to diagnosis, nuclear medicine entails the introduction of a minute amount of radioactive material into the patient; thus, no reaction or side-effect is expected. When it reaches the particular target organ, depending on the radiopharmaceutical, a lesion will appear as a decrease (cold) area or increase (hot) area in the radioactive distribution as recorded byu the gamma cameras. Gamma camera images in slices or SPECT (Single Photon Emission Computer Tomography), increase the sensitivity and accuracy in detecting smaller and deeply seated lesions, which otherwise may not be detected in the regular single planar images. Due to the 'open' design of the equipment, claustrophobic patients will no longer feel enclosed during the procedure. These new gamma cameras yield improved resolution and superb image quality, and the higher photon sensitivity shortens imaging acquisition time. The E.CAM, which is the latest generation gamma camera, is featured by its variable angle dual-head system, the only one available in the Philipines, and the excellent choice for Myocardial Perfusion Imaging (MPI). From the usual 45 minutes, the acquisition time for gated SPECT imaging of the heart has now been remarkably reduced to 12 minutes. 'Gated' infers snap-shots of the heart in selected phases of its contraction and relaxation as triggered by ECG. The DIACAM is installed in a room with access outside the main entrance of the department, intended specially for bed-borne patients. Both systems are equipped with a network of high performance Macintosh ICOND acquisition and processing computers. Added to the hardware is the ICON processing software which allows total simultaneous acquisition and processing capabilities in the same operator's terminal. Video film and color printers are also provided. Together

  10. Quality assessment of gamma camera systems

    International Nuclear Information System (INIS)

    Kindler, M.

    1985-01-01

    There are methods and equipment in nuclear medical diagnostics that allow selective visualisation of the functioning of organs or organ systems, using radioactive substances for labelling and demonstration of metabolic processes. Following a previous contribution on fundamentals and systems components of a gamma camera system, the article in hand deals with the quality characteristics of such a system and with practical quality control and its significance for clinical applications. [de

  11. An imaging system for a gamma camera

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.

    1980-01-01

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  12. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, Ul; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is replaceably mounted in the ray inlet opening of the camera, while the others are placed on separate supports. Supports are swingably mounted upon a column one above the other

  13. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, U.; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is mounted in the ray inlet opening of the camera, while the others are placed on separate supports. The supports are swingably mounted upon a column one above the other through about 90 0 to a collimator exchange position. Each of the separate supports is swingable to a vertically aligned position, with limiting of the swinging movement and positioning of the support at the desired exchange position. The collimators are carried on the supports by means of a series of vertically disposed coil springs. Projections on the camera are movable from above into grooves of the collimator at the exchange position, whereupon the collimator is turned so that it is securely prevented from falling out of the camera head

  14. Gamma camera

    International Nuclear Information System (INIS)

    Berninger, W.H.

    1975-01-01

    The light pulse output of a scintillator, on which incident collimated gamma rays impinge, is detected by an array of photoelectric tubes each having a convexly curved photocathode disposed in close proximity to the scintillator. Electronic circuitry connected to outputs of the phototubes develops the scintillation event position coordinate electrical signals with good linearity and with substantial independence of the spacing between the scintillator and photocathodes so that the phototubes can be positioned as close to the scintillator as is possible to obtain less distortion in the field of view and improved spatial resolution as compared to conventional planar photocathode gamma cameras

  15. Gamma camera

    International Nuclear Information System (INIS)

    Reiss, K.H.; Kotschak, O.; Conrad, B.

    1976-01-01

    A gamma camera with a simplified setup as compared with the state of engineering is described permitting, apart from good localization, also energy discrimination. Behind the usual vacuum image amplifier a multiwire proportional chamber filled with trifluorine bromium methane is connected in series. Localizing of the signals is achieved by a delay line, energy determination by means of a pulse height discriminator. With the aid of drawings and circuit diagrams, the setup and mode of operation are explained. (ORU) [de

  16. Gamma camera image processing and graphical analysis mutual software system

    International Nuclear Information System (INIS)

    Wang Zhiqian; Chen Yongming; Ding Ailian; Ling Zhiye; Jin Yongjie

    1992-01-01

    GCCS gamma camera image processing and graphical analysis system is a special mutual software system. It is mainly used to analyse various patient data acquired from gamma camera. This system is used on IBM PC, PC/XT or PC/AT. It consists of several parts: system management, data management, device management, program package and user programs. The system provides two kinds of user interfaces: command menu and command characters. It is easy to change and enlarge this system because it is best modularized. The user programs include almost all the clinical protocols used now

  17. Development and evaluation of a Gamma Camera tuning system

    International Nuclear Information System (INIS)

    Arista Romeu, E. J.; Diaz Garcia, A.; Osorio Deliz, J. F.

    2015-01-01

    Correct operation of conventional analogue Gamma Cameras implies a good conformation of the position signals that correspond to a specific photo-peak of the radionuclide of interest. In order to achieve this goal the energy spectrum from each photo multiplier tube (PMT) has to be set within the same energy window. For this reason a reliable tuning system is an important part of all gamma cameras processing systems. In this work is being tested and evaluated a new prototype of tuning card that was developed and setting up for this purpose. The hardware and software of the circuit allow the regulation if each PMT high voltage. By this means a proper gain control for each of them is accomplished. The Tuning Card prototype was simulated in a virtual model and its satisfactory operation was proven in a Siemens Orbiter Gamma Camera. (Author)

  18. Programmable electronic system for analog and digital gamma cameras modernization

    International Nuclear Information System (INIS)

    Osorio Deliz, J. F.; Diaz Garcia, A.; Arista Omeu, E. J.

    2013-01-01

    At present the use of analog and digital gamma cameras is continuously increasing in developing countries. Many of them still largely rely in old hardware electronics, which in many cases limits their use in actual nuclear medicine diagnostic studies. For this reason worldwide there are different medical equipment manufacturing companies engaged into partial or total Gamma Cameras modernization. Nevertheless in several occasions acquisition prices are not affordable for developing countries. This work describes the basic features of a programmable electronic system that allows improving acquisitions functions and processing of analog and digital gamma cameras. This system is based on an electronic board for the acquisition and digitization of nuclear pulses which have been generated by gamma camera detector. It comprises a hardware interface with PC and the associated software to fully signal processing. Signal shaping and image processing are included. The extensive use of reference tables in the processing and signal imaging software allowed the optimization of the processing speed. Time design and system cost were also decreased. (Author)

  19. Gamma camera

    International Nuclear Information System (INIS)

    Conrad, B.; Heinzelmann, K.G.

    1975-01-01

    A gamma camera is described which obviates the distortion of locating signals generally caused by the varied light conductive capacities of the light conductors in that the flow of light through each light conductor may be varied by means of a shutter. A balancing of the flow of light through each of the individual light conductors, in effect, collective light conductors may be balanced on the basis of their light conductive capacities or properties, so as to preclude a distortion of the locating signals caused by the varied light conductive properties of the light conductors. Each light conductor has associated therewith two, relative to each other, independently adjustable shutters, of which one forms a closure member and the other an adjusting shutter. In this embodiment of the invention it is thus possible to block all of the light conductors leading to a photoelectric transducer, with the exception of those light conductors which are to be balanced. The balancing of the individual light conductors may then be obtained on the basis of the output signals of the photoelectric transducer. (auth)

  20. Gamma camera investigations using an on-line computer system

    International Nuclear Information System (INIS)

    Vikterloef, K.J.; Beckman, K.-W.; Berne, E.; Liljenfors, B.

    1974-01-01

    A computer system for use with a gamma camera has been developed by Oerebro Regional Hospital and Nukab AB using a PDP 8/e with a 12K core memory connected to a Selektronik gamma camera. It is possible to register, without loss, pictures of high (5kcps) pulse frequency, two separate channels with identical coordinates, fast dynamic functions down to 5 pictures/second, and to perform statistical smoothing and subtraction of two separate pictures. Experience has shown these possibilities to be so valuable that one has difficulty in thinking of a scanning system without them. This applies not only to sophisticated investigations, e.g. dual isotope registration, but also in conventional scanning for avoiding false positive interpretations and increasing the precision. It is possible at relatively low cost to add a dosage planning system. (JIW)

  1. Biomedical image acquisition system using a gamma camera

    International Nuclear Information System (INIS)

    Jara B, A.T.; Sevillano, J.; Del Carpio S, J.A.

    2003-01-01

    A gamma camera images PC acquisition board has been developed. The digital system has been described using VHDL and has been synthesized and implemented in a Altera Max7128S CPLD and two PALs 16L8. The use of programmable-logic technologies has afforded a higher scale integration and a reduction of the digital delays and also has allowed us to modify and bring up to date the entire digital design easily. (orig.)

  2. Upgrading of analogue gamma cameras with PC based computer system

    International Nuclear Information System (INIS)

    Fidler, V.; Prepadnik, M.

    2002-01-01

    Full text: Dedicated nuclear medicine computers for acquisition and processing of images from analogue gamma cameras in developing countries are in many cases faulty and technologically obsolete. The aim of the upgrading project of International Atomic Energy Agency (IAEA) was to support the development of the PC based computer system which would cost 5.000 $ in total. Several research institutions from different countries (China, Cuba, India and Slovenia) were financially supported in this development. The basic demands for the system were: one acquisition card an ISA bus, image resolution up to 256x256, SVGA graphics, low count loss at high count rates, standard acquisition and clinical protocols incorporated in PIP (Portable Image Processing), on-line energy and uniformity correction, graphic printing and networking. The most functionally stable acquisition system tested on several international workshops and university clinics was the Slovenian one with a complete set of acquisition and clinical protocols, transfer of scintigraphic data from acquisition card to PC through PORT, count loss less than 1 % at count rate of 120 kc/s, improvement of integral uniformity index by a factor of 3-5 times, reporting, networking and archiving solutions for simple MS network or server oriented network systems (NT server, etc). More than 300 gamma cameras in 52 countries were digitized and put in the routine work. The project of upgrading the analogue gamma cameras yielded a high promotion of nuclear medicine in the developing countries by replacing the old computer systems, improving the technological knowledge of end users on workshops and training courses and lowering the maintenance cost of the departments. (author)

  3. Energy independent uniformity improvement for gamma camera systems

    International Nuclear Information System (INIS)

    Lange, K.

    1979-01-01

    In a gamma camera system having an array of photomultiplier tubes for detecting scintillation events and preamplifiers connecting each tube to a weighting resistor matrix for determining the position coordinates of the events, means are provided for summing the signals from all photomultipliers to obtain the total energy of each event. In one embodiment, at least two different percentages of the summed voltage are developed and used to change the gain of the preamplifiers as a function of total energy when energies exceed specific levels to thereby obtain more accurate correspondence between the true coordinates of the event and its coordinates in a display

  4. Gamma camera system with improved means for correcting nonuniformity

    International Nuclear Information System (INIS)

    Lange, K.; Jeppesen, J.

    1979-01-01

    In a gamma camera system, means are provided for correcting nonuniformity or lack of correspondence between the positions of scintillations and their calculated and displayed by x-y coordinates. In an accumulation mode, pulse counts corresponding with scintillations in various areas of the radiation field are stored in memory locations corresponding with their locations in the radiation field. A uniform radiation source is presented to the detectors during the accumulation is interrupted at which time other locations have fewer counts in them. In the run mode, counts are stored in corresponding locations of a memory and these counts are compared continuously with those stored in the accumulation mode. Means are provided for injecting a number of counts during the run mode proportional to the difference between the counts accumulated during the accumulation mode in a given area increment and the counts that should have been obtained from a uniform source

  5. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  6. Design of gamma camera data acquisition system based on PCI9810

    International Nuclear Information System (INIS)

    Zhao Yuanyuan; Zhao Shujun; Liu Yang

    2004-01-01

    This paper describe the design of gamma camera's data acquisition system, which is based on PCI9810 data acquisition card of ADLink Technology Inc. The main function of PCI9810 and the program of data acquisition system are described. (authors)

  7. Gamma camera system with composite solid state detector

    International Nuclear Information System (INIS)

    Gerber, M.S.; Miller, D.W.

    1977-01-01

    A composite solid-state detector is described for utilization within gamma cameras. The detector's formed of an array of detector crystals, the opposed surfaces of each of which are formed incorporating an impedance-derived configuration for determining one coordinate of the location of discrete impinging photons upon the detector. A combined read-out for all detectors within the composite array is achieved through a row and column interconnection of the impedance configurations. Utilizing the read-outs for respective sides of the discrete crystals, a resultant time-constant characteristic for the composite detector crystal array remains essentially that of individual crystal detectors

  8. Fully integrated digital GAMMA camera-computer system

    International Nuclear Information System (INIS)

    Berger, H.J.; Eisner, R.L.; Gober, A.; Plankey, M.; Fajman, W.

    1985-01-01

    Although most of the new non-nuclear imaging techniques are fully digital, there has been a reluctance in nuclear medicine to abandon traditional analog planar imaging in favor of digital acquisition and display. The authors evaluated a prototype digital camera system (GE STARCAM) in which all of the analog acquisition components are replaced by microprocessor controls and digital circuitry. To compare the relative effects of acquisition matrix size on image quality and to ascertain whether digital techniques could be used in place of analog imaging, Tc-99m bone scans were obtained on this digital system and on a comparable analog camera in 10 patients. The dedicated computer is used for camera setup including definition of the energy window, spatial energy correction, and spatial distortion correction. The display monitor, which is used for patient positioning and image analysis, is 512/sup 2/ non-interlaced, allowing high resolution imaging. Data acquisition and processing can be performed simultaneously. Thus, the development of a fully integrated digital camera-computer system with optimized display should allow routine utilization of non-analog studies in nuclear medicine and the ultimate establishment of fully digital nuclear imaging laboratories

  9. Gamma camera correction system and method for using the same

    International Nuclear Information System (INIS)

    Inbar, D.; Gafni, G.; Grimberg, E.; Bialick, K.; Koren, J.

    1986-01-01

    A gamma camera is described which consists of: (a) a detector head that includes photodetectors for producing output signals in response to radiation stimuli which are emitted by a radiation field and which interact with the detector head and produce an event; (b) signal processing circuitry responsive to the output signals of the photodetectors for producing a sum signal that is a measure of the total energy of the event; (c) an energy discriminator having a relatively wide window for comparison with the sum signal; (d) the signal processing circuitry including coordinate computation circuitry for operating on the output signals, and calculating an X,Y coordinate of an event when the sum signal lies within the window of the energy discriminator; (e) an energy correction table containing spatially dependent energy windows for producing a validation signal if the total energy of an event lies within the window associated with the X,Y coordinates of the event; (f) the signal processing circuitry including a dislocation correction table containing spatially dependent correction factors for converting the X,Y coordinates of an event to relocated coordinates in accordance with correction factors determined by the X,Y coordinates; (g) a digital memory for storing a map of the radiation field; and (h) means for recording an event at its relocated coordinates in the memory if the energy correction table produces a validation signal

  10. Analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Osorio Deliz, J. F.; Diaz Garcia, A.

    2013-01-01

    This research work was carried out to develop an analyzer for gamma cameras diagnostic. It is composed of an electronic system that includes hardware and software capabilities, and operates from the acquisition of the 4 head position signals of a gamma camera detector. The result is the spectrum of the energy delivered by nuclear radiation coming from the camera detector head. This system includes analog processing of position signals from the camera, digitization and the subsequent processing of the energy signal in a multichannel analyzer, sending data to a computer via a standard USB port and processing of data in a personal computer to obtain the final histogram. The circuits are composed of an analog processing board and a universal kit with micro controller and programmable gate array. (Author)

  11. Gamma ray camera

    International Nuclear Information System (INIS)

    Wang, S.-H.; Robbins, C.D.

    1979-01-01

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  12. Gamma camera computer system quality control for conventional and tomographic use

    International Nuclear Information System (INIS)

    Laird, E.E.; Allan, W.; Williams, E.D.

    1983-01-01

    The proposition that some of the proposed measurements of gamma camera performance parameters for routine quality control are redundant and that only the uniformity requires daily monitoring was examined. To test this proposition, measurements of gamma camera performance were carried out under normal operating conditions and also with the introduction of faults (offset window, offset PM tube). Results for the uniform flood field are presented for non-uniformity, intrinsic spatial resolution, linearity and relative system sensitivity. The response to introduced faults revealed that while the non-uniformity response pattern of the gamma camera was clearly affected, both measurements and qualitative indications of the other performance parameters did not necessarily show any deterioration. (U.K.)

  13. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  14. Characteristics of a single photon emission tomography system with a wide field gamma camera

    International Nuclear Information System (INIS)

    Mathonnat, F.; Soussaline, F.; Todd-Pokropek, A.E.; Kellershohn, C.

    1979-01-01

    This text summarizes a work study describing the imagery possibilities of a single photon emission tomography system composed of a conventional wide field gamma camera, connected to a computer. The encouraging results achieved on the various phantoms studied suggest a significant development of this technique in clinical work in Nuclear Medicine Departments [fr

  15. Gamma camera with an original system of scintigraphic image printing incorporated

    International Nuclear Information System (INIS)

    Roux, G.

    A new gamma camera has been developed, using Anger's Principle to localise the scintillations and incorporating the latest improvements which give a standard of efficiency at present competitive for this kind of apparatus. In the general design of the system special care was devoted to its ease of employment and above all to the production of high-quality scintigraphic images, the recording of images obtained from the gamma camera posing a problem to which a solution is proposed. This consists in storing all the constituent data of an image in a cell matrix of format similar to the scope of the object, the superficial information density of the image being represented by the cell contents. When the examination is finished a special printer supplies a 35x43 cm 2 document in colour on paper, or in black and white on radiological film, at 2:1 or 1:1 magnifications. The laws of contrast representation by the colours or shades of grey are chosen a posteriori according to the organ examined. Documents of the same quality as those so far supplied by a rectilinear scintigraph are then obtained with the gamma camera, which offers its own advantages in addition. The first images acquired in vivo with the whole system, gamma camera plus printer, are presented [fr

  16. Development of Camera Electronics for the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Tajima, Hiroyasu

    2009-05-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. We have developed test systems for some of these concepts and are testing their performance. Here we present test results of the test systems.

  17. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  18. Gamma camera performance: technical assessment protocol

    Energy Technology Data Exchange (ETDEWEB)

    Bolster, A.A. [West Glasgow Hospitals NHS Trust, London (United Kingdom). Dept. of Clinical Physics; Waddington, W.A. [University College London Hospitals NHS Trust, London (United Kingdom). Inst. of Nuclear Medicine

    1996-12-31

    This protocol addresses the performance assessment of single and dual headed gamma cameras. No attempt is made to assess the performance of any associated computing systems. Evaluations are usually performed on a gamma camera commercially available within the United Kingdom and recently installed at a clinical site. In consultation with the manufacturer, GCAT selects the site and liaises with local staff to arrange a mutually convenient time for assessment. The manufacturer is encouraged to have a representative present during the evaluation. Three to four days are typically required for the evaluation team to perform the necessary measurements. When access time is limited, the team will modify the protocol to test the camera as thoroughly as possible. Data are acquired on the camera`s computer system and are subsequently transferred to the independent GCAT computer system for analysis. This transfer from site computer to the independent system is effected via a hardware interface and Interfile data transfer. (author).

  19. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    Science.gov (United States)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  20. Gamma camera performance: technical assessment protocol

    International Nuclear Information System (INIS)

    Bolster, A.A.; Waddington, W.A.

    1996-01-01

    This protocol addresses the performance assessment of single and dual headed gamma cameras. No attempt is made to assess the performance of any associated computing systems. Evaluations are usually performed on a gamma camera commercially available within the United Kingdom and recently installed at a clinical site. In consultation with the manufacturer, GCAT selects the site and liaises with local staff to arrange a mutually convenient time for assessment. The manufacturer is encouraged to have a representative present during the evaluation. Three to four days are typically required for the evaluation team to perform the necessary measurements. When access time is limited, the team will modify the protocol to test the camera as thoroughly as possible. Data are acquired on the camera's computer system and are subsequently transferred to the independent GCAT computer system for analysis. This transfer from site computer to the independent system is effected via a hardware interface and Interfile data transfer. (author)

  1. Gamma cameras - a method of evaluation

    International Nuclear Information System (INIS)

    Oates, L.; Bibbo, G.

    2000-01-01

    Full text: With the sophistication and longevity of the modern gamma camera it is not often that the need arises to evaluate a gamma camera for purchase. We have recently been placed in the position of retiring our two single headed cameras of some vintage and replacing them with a state of the art dual head variable angle gamma camera. The process used for the evaluation consisted of five parts: (1) Evaluation of the technical specification as expressed in the tender document; (2) A questionnaire adapted from the British Society of Nuclear Medicine; (3) Site visits to assess gantry configuration, movement, patient access and occupational health, welfare and safety considerations; (4) Evaluation of the processing systems offered; (5) Whole of life costing based on equally configured systems. The results of each part of the evaluation were expressed using a weighted matrix analysis with each of the criteria assessed being weighted in accordance with their importance to the provision of an effective nuclear medicine service for our centre and the particular importance to paediatric nuclear medicine. This analysis provided an objective assessment of each gamma camera system from which a purchase recommendation was made. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  2. Small Field of View Scintimammography Gamma Camera Integrated to a Stereotactic Core Biopsy Digital X-ray System

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Weisenberger; Fernando Barbosa; T. D. Green; R. Hoefer; Cynthia Keppel; Brian Kross; Stanislaw Majewski; Vladimir Popov; Randolph Wojcik

    2002-10-01

    A small field of view gamma camera has been developed for integration with a commercial stereotactic core biopsy system. The goal is to develop and implement a dual-modality imaging system utilizing scintimammography and digital radiography to evaluate the reliability of scintimammography in predicting the malignancy of suspected breast lesions from conventional X-ray mammography. The scintimammography gamma camera is a custom-built mini gamma camera with an active area of 5.3 cm /spl times/ 5.3 cm and is based on a 2 /spl times/ 2 array of Hamamatsu R7600-C8 position-sensitive photomultiplier tubes. The spatial resolution of the gamma camera at the collimator surface is < 4 mm full-width at half-maximum and a sensitivity of /spl sim/ 4000 Hz/mCi. The system is also capable of acquiring dynamic scintimammographic data to allow for dynamic uptake studies. Sample images of preliminary clinical results are presented to demonstrate the performance of the system.

  3. Performance assessment of gamma cameras. Part 1

    International Nuclear Information System (INIS)

    Elliot, A.T.; Short, M.D.; Potter, D.C.; Barnes, K.J.

    1980-11-01

    The Dept. of Health and Social Security and the Scottish Home and Health Dept. has sponsored a programme of measurements of the important performance characteristics of 15 leading types of gamma cameras providing a routine radionuclide imaging service in hospitals throughout the UK. Measurements have been made of intrinsic resolution, system resolution, non-uniformity, spatial distortion, count rate performance, sensitivity, energy resolution and shield leakage. The main aim of this performance assessment was to provide sound information to the NHS to ease the task of those responsible for the purchase of gamma cameras. (U.K.)

  4. Development of the monitoring system of plasma behavior using a CCD camera in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Kawano, Hirokazu; Nakashima, Yousuke; Higashizono, Yuta

    2007-01-01

    In the central-cell of the GAMMA 10 tandem mirror, a medium-speed camera (CCD camera, 400 frames per second, 216 x 640 pixel) has been installed for the observation of plasma behavior. This camera system is designed for monitoring the plasma position and movement in the whole discharge duration. The captured two-dimensional (2-D) images are automatically displayed just after the plasma shot and stored sequentially shot by shot. This system has been established as a helpful tool for optimizing the plasma production and heating systems by measuring the plasma behavior in several experimental conditions. The camera system shows that the intensity of the visible light emission on the central-cell limiter accompanied by central electron cyclotron heating (C-ECH) correlate with the wall conditioning and immersion length of a movable limiter (iris limiter) in the central cell. (author)

  5. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    Science.gov (United States)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  6. Toward standardising gamma camera quality control procedures

    International Nuclear Information System (INIS)

    Alkhorayef, M.A.; Alnaaimi, M.A.; Alduaij, M.A.; Mohamed, M.O.; Ibahim, S.Y.; Alkandari, F.A.; Bradley, D.A.

    2015-01-01

    Attaining high standards of efficiency and reliability in the practice of nuclear medicine requires appropriate quality control (QC) programs. For instance, the regular evaluation and comparison of extrinsic and intrinsic flood-field uniformity enables the quick correction of many gamma camera problems. Whereas QC tests for uniformity are usually performed by exposing the gamma camera crystal to a uniform flux of gamma radiation from a source of known activity, such protocols can vary significantly. Thus, there is a need for optimization and standardization, in part to allow direct comparison between gamma cameras from different vendors. In the present study, intrinsic uniformity was examined as a function of source distance, source activity, source volume and number of counts. The extrinsic uniformity and spatial resolution were also examined. Proper standard QC procedures need to be implemented because of the continual development of nuclear medicine imaging technology and the rapid expansion and increasing complexity of hybrid imaging system data. The present work seeks to promote a set of standard testing procedures to contribute to the delivery of safe and effective nuclear medicine services. - Highlights: • Optimal parameters for quality control of the gamma camera are proposed. • For extrinsic and intrinsic uniformity a minimum of 15,000 counts is recommended. • For intrinsic flood uniformity the activity should not exceed 100 µCi (3.7 MBq). • For intrinsic uniformity the source to detector distance should be at least 60 cm. • The bar phantom measurement must be performed with at least 15 million counts.

  7. A novel fully integrated handheld gamma camera

    International Nuclear Information System (INIS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-01-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  8. A novel fully integrated handheld gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Massari, R.; Ucci, A.; Campisi, C. [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy); Scopinaro, F. [University of Rome “La Sapienza”, S. Andrea Hospital, Rome (Italy); Soluri, A., E-mail: alessandro.soluri@ibb.cnr.it [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy)

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  9. Monitoring system for isolated limb perfusion based on a portable gamma camera

    International Nuclear Information System (INIS)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J.; Vidal-Sicart, S.; Pons, F.; Roe, N.; Rull, R.; Pavon, N.; Pavia, J.

    2009-01-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-α) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-α and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is ±1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-α and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-α and melphalan has been indicated. (orig.)

  10. Monitoring system for isolated limb perfusion based on a portable gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Vidal-Sicart, S.; Pons, F. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); Red Tematica de Investigacion Cooperativa en Cancer (RTICC), Barcelona (Spain); Roe, N. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Rull, R. [Servei de Cirurgia, Hospital Clinic, Barcelona (Spain); Pavon, N. [Inst. de Fisica Corpuscular, CSIC - UV, Valencia (Spain); Pavia, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain)

    2009-07-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-{alpha}) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-{alpha} and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is {+-}1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-{alpha} and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-{alpha} and melphalan has been indicated. (orig.)

  11. Decision about buying a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera 1 tab., 1 fig

  12. Decision about buying a gamma camera

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera

  13. Dual-head gamma camera system for intraoperative localization of radioactive seeds

    International Nuclear Information System (INIS)

    Arsenali, B; Viergever, M A; Gilhuijs, K G A; De Jong, H W A M; Beijst, C; Dickerscheid, D B M

    2015-01-01

    Breast-conserving surgery is a standard option for the treatment of patients with early-stage breast cancer. This form of surgery may result in incomplete excision of the tumor. Iodine-125 labeled titanium seeds are currently used in clinical practice to reduce the number of incomplete excisions. It seems likely that the number of incomplete excisions can be reduced even further if intraoperative information about the location of the radioactive seed is combined with preoperative information about the extent of the tumor. This can be combined if the location of the radioactive seed is established in a world coordinate system that can be linked to the (preoperative) image coordinate system. With this in mind, we propose a radioactive seed localization system which is composed of two static ceiling-suspended gamma camera heads and two parallel-hole collimators. Physical experiments and computer simulations which mimic realistic clinical situations were performed to estimate the localization accuracy (defined as trueness and precision) of the proposed system with respect to collimator-source distance (ranging between 50 cm and 100 cm) and imaging time (ranging between 1 s and 10 s). The goal of the study was to determine whether or not a trueness of 5 mm can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (these specifications were defined by a group of dedicated breast cancer surgeons). The results from the experiments indicate that the location of the radioactive seed can be established with an accuracy of 1.6 mm  ±  0.6 mm if a collimator-source distance of 50 cm and imaging time of 5 s are used (these experiments were performed with a 4.5 cm thick block phantom). Furthermore, the results from the simulations indicate that a trueness of 3.2 mm or less can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (this trueness was achieved for all 14 breast phantoms which

  14. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  15. Measurement of the iodine uptake by the thyroid: comparative analysis between the gamma camera system with 'pinhole' collimator and 13S002 system

    International Nuclear Information System (INIS)

    Silva, Carlos Borges da; Mello, Rossana Corbo R. de; Rebelo, Ana Maria O.

    2002-01-01

    The thyroid uptake measurements are common in medical uses and are considered a direct and precise form of diagnostic, however, different results have been observed as measurements of thyroid uptake are taken using distinct equipment. This study attempts to find the cause of the differences between a thyroid uptake probe and a gamma camera. These discrepancies can be associated to the different patients samples, equipment's problems or operator procedures errors. This work presents the results of comparative uptake measurements performed in a neck phantom and a 4-hour thyroid uptake study in 40 patients, using a Gamma Camera Ohio Nuclear model Sigma 410 with a pinhole collimator and Nuclear Medicine System model 13S002, developed by Instituto de Engenharia Nuclear. The results observed show that in spite of non satisfactory results commented in literature, both the System 13S002 and System Gamma Camera Ohio can be used in uptake thyroid diagnostic with statistical confidence degree of 99 %. (author)

  16. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    Science.gov (United States)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  17. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    International Nuclear Information System (INIS)

    Lewellen, T.K.; Miyaoka, R.S.; Kaplan, M.S.

    1996-01-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz

  18. PC-AT to gamma camera interface Anugami-S

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Sonalkar, S.Y.; Kataria, S.K.

    2000-01-01

    The gamma camera interface ANUGAMI-S is an image acquisition system used in nuclear medicine centres and hospitals. The state of the art design of the interface provides quality improvement in addition to image acquisition, by applying on-line uniformity correction which is very essential for gamma camera applications in nuclear medicine. The improvement in the quality of the image has been achieved by image acquisition in positionally varying and sliding energy window. It supports all acquisition modes viz. static, dynamic and gated acquisition modes with and without uniformity correction. The user interface provides the acquisition in various user selectable parameters with image display and related acquisition parameter display. It is a universal system which provides a modern, cost effective and easily maintainable solution for interfacing any gamma camera to PC or upgradation of analog gamma camera. The paper describes the system details and gated acquisition achieved on the present system. (author)

  19. Calibration of gamma camera systems for a multicentre European {sup 123}I-FP-CIT SPECT normal database

    Energy Technology Data Exchange (ETDEWEB)

    Tossici-Bolt, Livia [Southampton Univ. Hospitals NHS Trust, Dept. of Medical Physics and Bioengineering, Southampton (United Kingdom); Dickson, John C. [UCLH NHS Foundation Trust and Univ. College London, Institute of Nuclear Medicine, London (United Kingdom); Sera, Terez [Univ. of Szeged, Dept. of Nuclear Medicine and Euromedic Szeged, Szeged (Hungary); Nijs, Robin de [Rigshospitalet and Univ. of Copenhagen, Neurobiology Research Unit, Copenhagen (Denmark); Bagnara, Maria Claudia [Az. Ospedaliera Universitaria S. Martino, Medical Physics Unit, Genoa (Italy); Jonsson, Cathrine [Karolinska Univ. Hospital, Dept. of Nuclear Medicine, Medical Physics, Stockholm (Sweden); Scheepers, Egon [Univ. of Amsterdam, Dept. of Nuclear Medicine, Academic Medical Centre, Amsterdam (Netherlands); Zito, Felicia [Fondazione IRCCS Granda, Ospedale Maggiore Policlinico, Dept. of Nuclear Medicine, Milan (Italy); Seese, Anita [Univ. of Leipzig, Dept. of Nuclear Medicine, Leipzig (Germany); Koulibaly, Pierre Malick [Univ. of Nice-Sophia Antipolis, Nuclear Medicine Dept., Centre Antoine Lacassagne, Nice (France); Kapucu, Ozlem L. [Gazi Univ., Faculty of Medicine, Dept. of Nuclear Medicine, Ankara (Turkey); Koole, Michel [Univ. Hospital and K.U. Leuven, Nuclear Medicine, Leuven (Belgium); Raith, Maria [Medical Univ. of Vienna, Dept. of Nuclear Medicine, Vienna (Austria); George, Jean [Univ. Catholique Louvain, Nuclear Medicine Division, Mont-Godinne Medical Center, Mont-Godinne (Belgium); Lonsdale, Markus Nowak [Bispebjerg Univ. Hospital, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Muenzing, Wolfgang [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Tatsch, Klaus [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Municipal Hospital of Karlsruhe Inc., Dept. of Nuclear Medicine, Karlsruhe (Germany); Varrone, Andrea [Center for Psychiatric Research, Karolinska Inst., Dept. of Clinical Neuroscience, Stockholm (Sweden)

    2011-08-15

    A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [{sup 123}I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved. {sup 123}I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the ''Southampton'' methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV). The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69-89%, ACSC range 87-116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001). A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the

  20. ORIS: the Oak Ridge Imaging System program listings. [Nuclear medicine imaging with rectilinear scanner and gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. R.; Dougherty, J. M.

    1978-04-01

    The Oak Ridge Imaging System (ORIS) is a general purpose access, storage, processing and display system for nuclear medicine imaging with rectilinear scanner and gamma camera. This volume contains listings of the PDP-8/E version of ORIS Version 2. The system is designed to run under the Digital Equipment Corporation's OS/8 monitor in 16K or more words of core. System and image file mass storage is on RK8E disk; longer-time image file storage is provided on DECtape. Another version of this program exists for use with the RF08 disk, and a more limited version is for DECtape only. This latter version is intended for non-medical imaging.

  1. A SPECT demonstrator—revival of a gamma camera

    Science.gov (United States)

    Valastyán, I.; Kerek, A.; Molnár, J.; Novák, D.; Végh, J.; Emri, M.; Trón, L.

    2006-07-01

    A gamma camera has been updated and converted to serve as a demonstrator for educational purposes. The gantry and the camera head were the only part of the system that remained untouched. The main reason for this modernization was to increase the transparency of the gamma camera by partitioning the different logical building blocks of the system and thus providing access for inspection and improvements throughout the chain. New data acquisition and reconstruction software has been installed. By taking these measures, the camera is now used in education and also serves as a platform for tests of new hardware and software solutions. The camera is also used to demonstrate 3D (SPECT) imaging by collecting 2D projections from a rotatable cylindrical phantom. Since the camera head is not attached mechanically to the phantom, the effect of misalignment between the head and the rotation axis of the phantom can be studied.

  2. A SPECT demonstrator-revival of a gamma camera

    International Nuclear Information System (INIS)

    Valastyan, I.; Kerek, A.; Molnar, J.; Novak, D.; Vegh, J.; Emri, M.; Tron, L.

    2006-01-01

    A gamma camera has been updated and converted to serve as a demonstrator for educational purposes. The gantry and the camera head were the only part of the system that remained untouched. The main reason for this modernization was to increase the transparency of the gamma camera by partitioning the different logical building blocks of the system and thus providing access for inspection and improvements throughout the chain. New data acquisition and reconstruction software has been installed. By taking these measures, the camera is now used in education and also serves as a platform for tests of new hardware and software solutions. The camera is also used to demonstrate 3D (SPECT) imaging by collecting 2D projections from a rotatable cylindrical phantom. Since the camera head is not attached mechanically to the phantom, the effect of misalignment between the head and the rotation axis of the phantom can be studied

  3. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Park, C. H.

    2002-01-01

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based ( CB ) PET. CB PET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CB PET in operation than cPET in the USA. CB PET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  4. Imaging capabilities of germanium gamma cameras

    International Nuclear Information System (INIS)

    Steidley, J.W.

    1977-01-01

    Quantitative methods of analysis based on the use of a computer simulation were developed and used to investigate the imaging capabilities of germanium gamma cameras. The main advantage of the computer simulation is that the inherent unknowns of clinical imaging procedures are removed from the investigation. The effects of patient scattered radiation were incorporated using a mathematical LSF model which was empirically developed and experimentally verified. Image modifying effects of patient motion, spatial distortions, and count rate capabilities were also included in the model. Spatial domain and frequency domain modeling techniques were developed and used in the simulation as required. The imaging capabilities of gamma cameras were assessed using low contrast lesion source distributions. The results showed that an improvement in energy resolution from 10% to 2% offers significant clinical advantages in terms of improved contrast, increased detectability, and reduced patient dose. The improvements are of greatest significance for small lesions at low contrast. The results of the computer simulation were also used to compare a design of a hypothetical germanium gamma camera with a state-of-the-art scintillation camera. The computer model performed a parametric analysis of the interrelated effects of inherent and technological limitations of gamma camera imaging. In particular, the trade-off between collimator resolution and collimator efficiency for detection of a given low contrast lesion was directly addressed. This trade-off is an inherent limitation of both gamma cameras. The image degrading effects of patient motion, camera spatial distortions, and low count rate were shown to modify the improvements due to better energy resolution. Thus, based on this research, the continued development of germanium cameras to the point of clinical demonstration is recommended

  5. Gate Simulation of a Gamma Camera

    International Nuclear Information System (INIS)

    Abidi, Sana; Mlaouhi, Zohra

    2008-01-01

    Medical imaging is a very important diagnostic because it allows for an exploration of the internal human body. The nuclear imaging is an imaging technique used in the nuclear medicine. It is to determine the distribution in the body of a radiotracers by detecting the radiation it emits using a detection device. Two methods are commonly used: Single Photon Emission Computed Tomography (SPECT) and the Positrons Emission Tomography (PET). In this work we are interested on modelling of a gamma camera. This simulation is based on Monte-Carlo language and in particular Gate simulator (Geant4 Application Tomographic Emission). We have simulated a clinical gamma camera called GAEDE (GKS-1) and then we validate these simulations by experiments. The purpose of this work is to monitor the performance of these gamma camera and the optimization of the detector performance and the the improvement of the images quality. (Author)

  6. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    Stout, K.J.

    1980-01-01

    In accordance with the present invention there is provided a radiographic camera comprising: a scintillator; a plurality of photodectors positioned to face said scintillator; a plurality of masked regions formed upon a face of said scintillator opposite said photdetectors and positioned coaxially with respective ones of said photodetectors for decreasing the amount of internal reflection of optical photons generated within said scintillator. (auth)

  7. PC-AT to gamma camera interface ANUGAMI-S

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gopalakrishnan, K.R.

    1997-01-01

    PC-AT to gamma camera interface is an image acquisition system used in nuclear medicine centres and hospitals. The interface hardware and acquisition software have been designed and developed to meet most of the routine clinical applications using gamma camera. The state of the art design of the interface provides quality improvement in addition to image acquisition, by applying on-line uniformity correction which is very essential for gamma camera applications in nuclear medicine. The improvement in the quality of the image has been achieved by image acquisition in positionally varying and sliding energy window. It supports all acquisition modes viz. static, dynamic and gated acquisition modes with and without uniformity correction. The user interface provides the acquisition in various user selectable frame sizes, orientation and colour palettes. A complete emulation of camera console has been provided along with persistence scope and acquisition parameter display. It is a universal system which provides a modern, cost effective and easily maintainable solution for interfacing any gamma camera to PC or upgradation of analog gamma camera. (author). 4 refs., 3 figs

  8. Development of an Optical Fiber-Based MR Compatible Gamma Camera for SPECT/MRI Systems

    Science.gov (United States)

    Yamamoto, Seiichi; Watabe, Tadashi; Kanai, Yasukazu; Watabe, Hiroshi; Hatazawa, Jun

    2015-02-01

    Optical fiber is a promising material for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) PET/MRI systems. Because its material is plastic, it has no interference between MRI. However, it is unclear whether this material can also be used for a single photon emission tomography (SPECT)/MRI system. For this purpose, we developed an optical fiber-based block detector for a SPECT/MRI system and tested its performance by combining 1.2 ×1.2 ×6 mm Y2SiO5 (YSO) pixels into a 15 ×15 block and was coupled it to an optical fiber image guide that used was 0.5-mm in diameter with 80-cm long double clad fibers. The image guide had 22 ×22 mm rectangular input and an equal size output. The input of the optical fiber-based image guide was bent at 90 degrees, and the output was optically coupled to a 1-in square high quantum efficiency position sensitive photomultiplier tube (HQE-PSPMT). The parallel hole, 7-mm-thick collimator made of tungsten plastic was mounted on a YSO block. The diameter of the collimator holes was 0.8 mm which was positioned one-to-one coupled to the YSO pixels. We evaluated the intrinsic and system performances. We resolved most of the YSO pixels in a two-dimensional histogram for Co-57 gamma photons (122-keV) with an average peak-to-value ratio of 1.5. The energy resolution was 38% full-width at half-maximum (FWHM). The system resolution was 1.7-mm FWHM, 1.5 mm from the collimator surface, and the sensitivity was 0.06%. Images of a Co-57 point source could be successfully obtained inside 0.3 T MRI without serious interference. We conclude that the developed optical fiber-based YSO block detector is promising for SPECT/MRI systems.

  9. Portable mini gamma camera for medical applications

    CERN Document Server

    Porras, E; Benlloch, J M; El-Djalil-Kadi-Hanifi, M; López, S; Pavon, N; Ruiz, J A; Sánchez, F; Sebastiá, A

    2002-01-01

    A small, portable and low-cost gamma camera for medical applications has been developed and clinically tested. This camera, based on a scintillator crystal and a Position Sensitive Photo-Multiplier Tube, has a useful field of view of 4.6 cm diameter and provides 2.2 mm of intrinsic spatial resolution. Its mobility and light weight allow to reach the patient from any desired direction. This camera images small organs with high efficiency and so addresses the demand for devices of specific clinical applications. In this paper, we present the camera and briefly describe the procedures that have led us to choose its configuration and the image reconstruction method. The clinical tests and diagnostic capability are also presented and discussed.

  10. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Ser, H. K.; Choi, Y.; Yim, K. C.

    2001-01-01

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm 3 ). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  11. Dynamic gamma camera scintigraphy in primary hypoovarism

    International Nuclear Information System (INIS)

    Peshev, N.; Mladenov, B.; Topalov, I.; Tsanev, Ts.

    1988-01-01

    Twenty-seven patients with primary hypoovarism and 10 controls were examined. After intravenous injection of 111 to 175 MBq 99m Tc pertechnetate, dynamic gamma camera scintigraphy for 15 minutes was carried out. In the patients with primary amenorrhea no functioning ovarial tissue was visualized or the ovaries were diminished in size, strongly reduced and non-homogenous accumulation of the radionuclide with unclear and uneven delineation were observed. In the patients with primary infertility, the gamma camera investigation gave information not only about the presence of ovarial parenchyma, but about the extent of the inflammatory process, too. In the patients after surgical intervention, the dynamic radioisotope investigation gave information about the volume and the site of the surgical intervention, as well as about the conditions of the residual parenchyma

  12. Gamma camera scatter suppression unit WAM

    International Nuclear Information System (INIS)

    Kishi, Haruo; Shibahara, Noriyuki; Hirose, Yoshiharu; Shimonishi, Yoshihiro; Oumura, Masahiro; Ikeda, Hozumi; Hamada, Kunio; Ochi, Hironobu; Itagane, Hiroshi.

    1990-01-01

    In gamma camera imaging, scattered radiation is one of big factors to decrease image contrast. Simply, scatter suppression makes signal to noise ratio larger, but it makes statistics error because of radionuclide injection limit to the human body. EWA is a new method that suppresses scattered radiation and improves image contrast. In this article, WAM which is commercialized EWA method by Siemens Gammasonics Inc. is presented. (author)

  13. The making of analog module for gamma camera interface

    International Nuclear Information System (INIS)

    Yulinarsari, Leli; Rl, Tjutju; Susila, Atang; Sukandar

    2003-01-01

    The making of an analog module for gamma camera has been conducted. For computerization of planar gamma camera 37 PMT it has been developed interface hardware technology and software between the planar gamma camera with PC. With this interface gamma camera image information (Originally analog signal) was changed to digital single, therefore processes of data acquisition, image quality increase and data analysis as well as data base processing can be conducted with the help of computers, there are three gamma camera main signals, i.e. X, Y and Z . This analog module makes digitation of analog signal X and Y from the gamma camera that conveys position information coming from the gamma camera crystal. Analog conversion to digital was conducted by 2 converters ADC 12 bit with conversion time 800 ns each, conversion procedure for each coordinate X and Y was synchronized using suitable strobe signal Z for information acceptance

  14. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours

    International Nuclear Information System (INIS)

    Hillel, P.G.; Beek, E.J.R. van; Taylor, C.; Lorenz, E.; Bax, N.D.S.; Prakash, V.; Tindale, W.B.

    2006-01-01

    AIM: With a combined gamma camera/CT imaging system, CT images are obtained which are inherently registered to the emission images and can be used for the attenuation correction of SPECT and for mapping the functional information from these nuclear medicine tomograms onto anatomy. The aim of this study was to evaluate the clinical impact of SPECT/CT using such a system for somatostatin receptor imaging (SRI) of neuroendocrine tumours. MATERIALS AND METHODS: SPECT/CT imaging with 111 In-Pentetreotide was performed on 29 consecutive patients, the majority of whom had carcinoid disease. All SPECT images were first reported in isolation and then re-reported with the addition of the CT images for functional anatomical mapping (FAM). RESULTS: Fifteen of the 29 SPECT images were reported as abnormal, and in 11 of these abnormal images (73%) FAM was found to either establish a previously unknown location (7/11) or change the location (4/11) of at least one lesion. The revised location could be independently confirmed in 64% of these cases. Confirmation of location was not possible in the other patients due to either a lack of other relevant investigations, or the fact that lesions seen in the SPECT images were not apparent in the other investigations. FAM affected patient management in 64% of the cases where the additional anatomical information caused a change in the reported location of lesions. CONCLUSION: These results imply that FAM can improve the reporting accuracy for SPECT SRI with significant impact on patient management

  15. Waste reduction efforts through the evaluation and procurement of a digital camera system for the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Bray, T. S.; Cohen, A. B.; Tsai, H.; Kettman, W. C.; Trychta, K.

    1999-01-01

    The Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory-East is a research facility where sample examinations involve traditional photography. The AGHCF documents samples with photographs (both Polaroid self-developing and negative film). Wastes generated include developing chemicals. The AGHCF evaluated, procured, and installed a digital camera system for the Leitz metallograph to significantly reduce labor, supplies, and wastes associated with traditional photography with a return on investment of less than two years

  16. PC based simulation of gamma camera for training of operating and maintenance staff

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2000-01-01

    Gamma camera- a sophisticated imaging system is used for functional assessment of biological subsystems/organs in nuclear medicine. The radioactive tracer attached to the native substance is injected into the patient. The distribution of radioactivity in the patient is imaged by the gamma camera. This report describes a PC based package for simulation of gamma cameras and effect of malfunctioning of its subsystems on images of different phantoms

  17. Upgrade of the JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V; Syme, B.; Thompson, V.; Lengar, I.; Murari, A.; Bonheure, G.; Le Guern, F.

    2007-01-01

    Full text: The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion in JET plasmas. The applicability of gamma-ray imaging to high performance deuterium and deuterium-tritium JET discharges is strongly dependent on the fulfilment of rather strict requirements for the characterisation of the neutron and gamma-ray radiation fields. These requirements have to be satisfied within very stringent boundary conditions for the design, such as the requirement of minimum impact on the co-existing neutron camera diagnostics. The JET Gamma-Ray Cameras (GRC) upgrade project deals with these issues with particular emphasis on the design of appropriate neutron/gamma-ray filters ('neutron attenuators'). Several design versions have been developed and evaluated for the JET GRC neutron attenuators at the conceptual design level. The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). The second design solution has different attenuation lengths: a short version, to be used together with the horizontal attenuator for deuterium discharges, and a long version to be used for high performance deuterium and DT discharges. Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. The neutron attenuators will be steered in and out of the detector line-of-sight by means of an electro-pneumatic steering and control system. The MCNP code was used for neutron and gamma ray transport in order to evaluate the effect of the neutron attenuators on the neutron field of the

  18. New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, T., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Matsuoka, Y. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Mizumura, Y. [Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Tanimori, T. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Kubo, H.; Takada, A.; Iwaki, S.; Sawano, T.; Nakamura, K.; Komura, S.; Nakamura, S.; Kishimoto, T.; Oda, M.; Miyamoto, S.; Takemura, T.; Parker, J.D.; Tomono, D.; Sonoda, S. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Miuchi, K. [Department of Physics, Kobe University, 658-8501 Kobe (Japan); Kurosawa, S. [Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan)

    2015-11-11

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×10×15 cm{sup 3} TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm){sup 3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm){sup 3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from ~10% to ~100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.

  19. Acquisition of gamma camera and physiological data by computer

    International Nuclear Information System (INIS)

    Hack, S.N.; Chang, M.; Line, B.R.; Cooper, J.A.; Robeson, G.H.

    1986-01-01

    We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable

  20. Evaluation of efficiency of a semiconductor gamma camera

    CERN Document Server

    Otake, H; Takeuchi, Y

    2002-01-01

    We evaluation basic characteristics of a compact type semiconductor gamma camera (eZ-SCOPE AN) of Cadmium Zinc Telluride (CdZnTe). This new compact gamma camera has 256 semiconductors representing the same number of pixels. Each semiconductor is 2 mm square and is located in 16 lines and rows on the surface of the detector. The specific performance characteristics were evaluated in the study referring to National Electrical Manufactures Association (NEMA) standards; intrinsic energy resolution, intrinsic count rate performance, integral uniformity, system planar sensitivity, system spatial resolution, and noise to the neighboring pixels. The intrinsic energy resolution measured 5.7% as full width half maximum (FWHM). The intrinsic count rate performance ranging from 17 kcps to 1,285 kcps was evaluated, but the highest intrinsic count rate was not observed. Twenty percents count loss was recognized at 1,021 kcps. The integral uniformity was 1.3% with high sensitivity collimator. The system planar sensitivity w...

  1. Development of gamma camera and application to decontamination

    International Nuclear Information System (INIS)

    Yoshida, Akira; Moro, Eiji; Takahashi, Isao

    2013-01-01

    A gamma camera has been developed to support recovering from the contamination caused by the accident of Fukushima Dai-ichi Nuclear Power Plant of Tokyo Electric Power Company. The gamma camera enables recognition of the contamination by visualizing radioactivity. The gamma camera has been utilized for risk communication (explanation to community resident) at local governments in Fukushima. From now on, the gamma camera will be applied to solve decontaminations issues; improving efficiency of decontamination, visualizing the effect of decontamination work and reducing radioactive waste. (author)

  2. Performance characteristics of ZLC 37 Siemens gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Abdelgadir, Wafaa Abdelrahman [Department of Physics, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1994-04-01

    The relationships between the ZLC 37 Siemens {gamma} camera parameters (energy resolution, plane sensitivity, intrinsic uniformity, intrinsic resolution, system uniformity and system resolution) and diagnostic imaging performance was investigated. These parameters when computers when compared with internationally published data showed that the ZLC 37 Siemens {gamma} cameras is in good operative conditions. The effect of the scattering media and WW on the spatial resolution, when the distance is kept fixed were investigated. Comparison of resolution for the media (air, water, water + radioactivity) when using WW (10, 15,20%) showed that the resolution is best for air, better for water and worse for water + radioactivity up to a concentration of 8% for a 10% WW. (Author) 28 refs. , 10 tabs. , 22 figs. Also available from the Department of Physics, Faculty of Science, University of Khartoum, Khartoum (SD)

  3. A triple GEM gamma camera for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Anulli, F. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Balla, A. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Bencivenni, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Corradi, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); D' Ambrosio, C. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Domenici, D. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Felici, G. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Gatta, M. [Laboratori Nazionali di Frascati INFN, Frascati (Italy); Morone, M.C. [Dipartimento di Biopatologia e Diagnostica per immagini, Universita di Roma Tor Vergata (Italy); INFN - Sezione di Roma Tor Vergata (Italy); Murtas, F. [Laboratori Nazionali di Frascati INFN, Frascati (Italy)]. E-mail: fabrizio.murtas@lnf.infn.it; Schillaci, O. [Dipartimento di Biopatologia e Diagnostica per immagini, Universita di Roma Tor Vergata (Italy)

    2007-03-01

    A Gamma Camera for medical applications 10x10cm{sup 2} has been built using a triple GEM chamber prototype. The photon converters placed in front of the three GEM foils, has been realized with different technologies. The chamber, High Voltage supplied with a new active divider made in Frascati, is readout through 64 pads, 1mm{sup 2} wide, organized in a row of 8cm long, with LHCb ASDQ chip. This Gamma Camera can be used both for X-ray movie and PET-SPECT imaging; this chamber prototype is placed in a scanner system, creating images of 8x8cm{sup 2}. Several measurements have been performed using phantom and radioactive sources of Tc99m(140keV) and Na22(511keV). Results on spatial resolution and image reconstruction are presented.

  4. Performance of the gamma-ray camera based on GSO(Ce) scintillator array and PSPMT with the ASIC readout system

    International Nuclear Information System (INIS)

    Ueno, Kazuki; Hattori, Kaori; Ida, Chihiro; Iwaki, Satoru; Kabuki, Shigeto; Kubo, Hidetoshi; Kurosawa, Shunsuke; Miuchi, Kentaro; Nagayoshi, Tsutomu; Nishimura, Hironobu; Orito, Reiko; Takada, Atsushi; Tanimori, Toru

    2008-01-01

    We have studied the performance of a readout system with ASIC chips for a gamma-ray camera based on a 64-channel multi-anode PSPMT (Hamamatsu flat-panel H8500) coupled to a GSO(Ce) scintillator array. The GSO array consists of 8x8 pixels of 6x6x13 mm 3 with the same pixel pitch as the anode of the H8500. This camera is intended to serve as an absorber of an electron tracking Compton gamma-ray camera that measures gamma rays up to ∼1 MeV. Because we need a readout system with low power consumption for a balloon-borne experiment, we adopted a 32-channel ASIC chip, IDEAS VA32 H DR11, which has one of the widest dynamic range among commercial chips. However, in the case of using a GSO(Ce) crystal and the H8500, the dynamic range of VA32 H DR11 is narrow, and therefore the H8500 has to be operated with a low gain of about 10 5 . If the H8500 is operated with a low gain, the camera has a narrow incident-energy dynamic range from 100 to 700 keV, and a bad energy resolution of 13.0% (FWHM) at 662 keV. We have therefore developed an attenuator board in order to operate the H8500 with the typical gain of 10 6 , which can measure up to ∼1 MeV gamma ray. The board makes the variation of the anode gain uniform and widens the dynamic range of the H8500. The system using the new attenuator board has a good uniformity of min:max∼1:1.6, an incident-energy dynamic range from 30 to 900 keV, a position resolution of less than 6 mm, and a typical energy resolution of 10.6% (FWHM) at 662 keV with a low power consumption of about 1.7 W/64ch

  5. Development of a tomographic system adapted to 3D measurement of contaminated wounds based on the Cacao concept (Computer aided collimation Gamma Camera)

    International Nuclear Information System (INIS)

    Douiri, A.

    2002-03-01

    The computer aided collimation gamma camera (CACAO in French) is a gamma camera using a collimator with large holes, a supplementary linear scanning motion during the acquisition and a dedicated reconstruction program taking full account of the source depth. The CACAO system was introduced to improve both the sensitivity and the resolution in nuclear medicine. This thesis focuses on the design of a fast and robust reconstruction algorithm in the CACAO project. We start by an overview of tomographic imaging techniques in nuclear medicine. After modelling the physical CACAO system, we present the complete reconstruction program which involves three steps: 1) shift and sum 2) deconvolution and filtering 3) rotation and sum. The deconvolution is the critical step that decreases the signal to noise ratio of the reconstructed images. We propose a regularized multi-channel algorithm to solve the deconvolution problem. We also present a fast algorithm based on Splines functions and preserving the high quality of the reconstructed images for the shift and the rotation steps. Comparisons of simulated reconstructed images in 2D and 3D for the conventional system (CPHC) and CACAO demonstrate the ability of CACAO system to increase the quality of the SPECT images. Finally, this study concludes with an experimental approach with a pixellated detector conceived for a 3D measurement of contaminated wounds. This experimentation proves the possible advantages of coupling the CACAO project with pixellated detectors. Moreover, a variety of applications could fully benefit from the CACAO system, such as low activity imaging, the use of high-energy gamma isotopes and the visualization of deep organs. Moreover the combination of the CACAO system with a pixels detector may open up further possibilities for the future of nuclear medicine. (author)

  6. Diagnostic performance of a novel cadmium-zinc-telluride gamma camera system assessed using fractional flow reserve.

    Science.gov (United States)

    Tanaka, Hirokazu; Chikamori, Taishiro; Tanaka, Nobuhiro; Hida, Satoshi; Igarashi, Yuko; Yamashita, Jun; Ogawa, Masashi; Shiba, Chie; Usui, Yasuhiro; Yamashina, Akira

    2014-01-01

    Although the novel cadmium-zinc-telluride (CZT) camera system provides excellent image quality, its diagnostic value using thallium-201 as assessed on coronary angiography (CAG) and fractional flow reserve (FFR) has not been validated. METHODS AND RESULTS: To evaluate the diagnostic accuracy of the CZT ultrafast camera system (Discovery NM 530c), 95 patients underwent stress thallium-201 single-photon emission computed tomography (SPECT) and then CAG within 3 months. Image acquisition was performed in the supine and prone positions after stress for 5 and 3 min, respectively, and in the supine position at rest for 10 min. Significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or a lesion with <90% and ≥50% stenosis and FFR ≤0.75. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 90%, 64%, and 78% for left anterior descending coronary artery stenosis, 78%, 84%, and 81% for left circumflex stenosis, and 83%, 47%, and 60% for right coronary artery (RCA) stenosis. The combination of prone and supine imaging had a higher specificity for RCA disease than supine imaging alone (65% vs. 47%), with an improvement in accuracy from 60% to 72%. Using thallium-201 with short acquisition time, combined with prone imaging, CZT SPECT had a high diagnostic yield in detecting significant coronary stenosis as assessed using FFR.

  7. Dynamic imaging with coincidence gamma camera

    International Nuclear Information System (INIS)

    Elhmassi, Ahmed

    2008-01-01

    In this paper we develop a technique to calculate dynamic parameters from data acquired using gamma-camera PET (gc PET). Our method is based on an algorithm development for dynamic SPECT, which processes all decency projection data simultaneously instead of reconstructing a series of static images individually. The algorithm was modified to account for the extra data that is obtained with gc PET (compared with SPEC). The method was tested using simulated projection data for both a SPECT and a gc PET geometry. These studies showed the ability of the code to reconstruct simulated data with a varying range of half-lives. The accuracy of the algorithm was measured in terms of the reconstructed half-life and initial activity for the simulated object. The reconstruction of gc PET data showed improvement in half-life and activity compared to SPECT data of 23% and 20%, respectively (at 50 iterations). The gc PET algorithm was also tested using data from an experimental phantom and finally, applied to a clinical dataset, where the algorithm was further modified to deal with the situation where the activity in certain pixels decreases and then increases during the acquisition. (author)

  8. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design

    Science.gov (United States)

    Lai, Xiaochun; Meng, Ling-Jian

    2018-02-01

    In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.

  9. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Sicart, Sergi; Paredes, Pilar [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain); Institut d' Investigacio Biomedica Agusti Pi Sunyer (IDIBAPS), Barcelona (Spain); Vermeeren, Lenka; Valdes-Olmos, Renato A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Nuclear Medicine Department, Amsterdam (Netherlands); Sola, Oriol [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain)

    2011-04-15

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ({sup 99m}Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  10. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    International Nuclear Information System (INIS)

    Vidal-Sicart, Sergi; Paredes, Pilar; Vermeeren, Lenka; Valdes-Olmos, Renato A.; Sola, Oriol

    2011-01-01

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ( 99m Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  11. Quality control of plane and tomographic gamma cameras

    International Nuclear Information System (INIS)

    Moretti, J.L.; Roussi, A.

    1993-01-01

    In this article, the authors present different methods of gamma camera quality control in matters of uniformity, spatial resolution, spatial linearity, sensitivity, energy resolution, counting rate performance, SPECT parameters. The authors refer mainly to NEMA standards. 14 figs., 8 tabs

  12. Dual photon absorptiometry for bone mineral measurements using a gamma camera

    International Nuclear Information System (INIS)

    Valkema, R.; Prpic, H.; Blokland, J.A.K.; Camps, J.A.J.; Papapoulos, S.E.; Bijvoet, O.L.M.; Pauwels, E.K.J.

    1994-01-01

    A gamma camera was equipped with a special collimator and arm assembly for bone mineral measurements with dual photon absorptiometry (DPA). The system was evaluated in vitro and in vivo and compared both with a rectilinear DPA and a dual energy X-ray (DEXA) system. All 3 systems showed a linear response in measurements of 4 vials, containing different amounts of hydroxyapatite. Phantom measurements with the gamma camera system showed a precision of 1.6% to 2.8%. Results obtained in 8 healthy volunteers with rectilinear and gamma camera systems were well correlated (R 2 = 0.78). With the photon beam directed from posterior to anterior, the separation of vertebrae was easy with the gamma camera system. We conclude that bone mineral measurements can be made with a gamma camera for assessment of fracture risk and in the decision process whether a patient needs treatment or not. For follow-up, the precision of DPA with a gamma camera is inadequate. (orig.)

  13. Standardization of test conditions for gamma camera performance measurement

    International Nuclear Information System (INIS)

    Jordan, K.

    1982-02-01

    The way of measuring gamma camera performance is to use point sources or flood sources in air, often in combination with bar phantoms. This method has nothing in common with the use of a camera in clinical practice. Particularly in the case of low energy emitters, like Tc-99m, the influence of scattered radiation over the performance of cameras is very high. The IEC document 'Characteristics and test conditions of radionuclide imaging devices' is discussed

  14. A study on the performance evaluation of small gamma camera collimators using detective quantun efficiency

    International Nuclear Information System (INIS)

    Jeon, Ho Sang

    2008-02-01

    The anger-type gamma camera and novel marker compound using Tc-99m were firstly introduced in 1963. The gamma camera systems have being improved and applied to various fields, for example, medical, industrial, and environmental fields. Gamma camera is mainly composed of collimator, detector, and signal processor. And the radiative source is namely the imaging object. The collimator is essential component of gamma camera system because the imaging performance of system is mainly dependent on the collimator. The performance evaluation of collimators can be done by using evaluating factors. In this study, the novel factors for gamma camera evaluation are suggested. The established evaluating factors by NEMA are FWHM, sensitivity, and uniformity. They have some limitations in spite of their usefulness. Firstly, performance evaluation by those factors give insensitive and indirect results only. Secondly, the evaluation of noise property is ambiguous. Thirdly, there is no synthetic evaluation of system performance. Simulation with Monte Carlo code and experiment with a small camera camera were simultaenuously performed to verify novel evaluating factors. For the evaluation of spatial resolution, MTF was applied instead of FWHM. The MTF values presents excellent linear relationship with FWHM values. The NNPS was applied instead of uniformity and sensitivity for the evaluation of noise fluctuation. The NNPS values also presents linear relationship with sensitivity and unifomity. Moreover, these novel factors give quantities as the function of spatial frequencies. Finally, the DQE values were given by calculations with MTF, NNPS, and input SNR. DQE effectively presents the synthetic evaluation of gamma camera performance. It is the conclusion that MTF, NNPS, and DQE can be novel evaluating factors for gamma camera systems and the new factor for synthetic evaluation is derived

  15. Design and tests of a portable mini gamma camera

    International Nuclear Information System (INIS)

    Sanchez, F.; Benlloch, J.M.; Escat, B.; Pavon, N.; Porras, E.; Kadi-Hanifi, D.; Ruiz, J.A.; Mora, F.J.; Sebastia, A.

    2004-01-01

    Design optimization, manufacturing, and tests, both laboratory and clinical, of a portable gamma camera for medical applications are presented. This camera, based on a continuous scintillation crystal and a position-sensitive photomultiplier tube, has an intrinsic spatial resolution of ≅2 mm, an energy resolution of 13% at 140 keV, and linearities of 0.28 mm (absolute) and 0.15 mm (differential), with a useful field of view of 4.6 cm diameter. Our camera can image small organs with high efficiency and so it can address the demand for devices of specific clinical applications like thyroid and sentinel node scintigraphy as well as scintimammography and radio-guided surgery. The main advantages of the gamma camera with respect to those previously reported in the literature are high portability, low cost, and weight (2 kg), with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the minigamma camera, and no external electronic devices are required. The camera is only connected through the universal serial bus port to a portable personal computer (PC), where a specific software allows to control both the camera parameters and the measuring process, by displaying on the PC the acquired image on 'real time'. In this article, we present the camera and describe the procedures that have led us to choose its configuration. Laboratory and clinical tests are presented together with diagnostic capabilities of the gamma camera

  16. Centering mount for a gamma camera

    International Nuclear Information System (INIS)

    Mirkhodzhaev, A.Kh.; Kuznetsov, N.K.; Ostryj, Yu.E.

    1988-01-01

    A device for centering a γ-camera detector in case of radionuclide diagnosis is described. It permits the use of available medical coaches instead of a table with a transparent top. The device can be used for centering a detector (when it is fixed at the low end of a γ-camera) on a required area of the patient's body

  17. Gamma camera image acquisition, display, and processing with the personal microcomputer

    International Nuclear Information System (INIS)

    Lear, J.L.; Pratt, J.P.; Roberts, D.R.; Johnson, T.; Feyerabend, A.

    1990-01-01

    The authors evaluated the potential of a microcomputer for direct acquisition, display, and processing of gamma camera images. Boards for analog-to-digital conversion and image zooming were designed, constructed, and interfaced to the Macintosh II (Apple Computer, Cupertino, Calif). Software was written for processing of single, gated, and time series images. The system was connected to gamma cameras, and its performance was compared with that of dedicated nuclear medicine computers. Data could be acquired from gamma cameras at rates exceeding 200,000 counts per second, with spatial resolution exceeding intrinsic camera resolution. Clinical analysis could be rapidly performed. This system performed better than most dedicated nuclear medicine computers with respect to speed of data acquisition and spatial resolution of images while maintaining full compatibility with the standard image display, hard-copy, and networking formats. It could replace such dedicated systems in the near future as software is refined

  18. Spectroscopic gamma camera for use in high dose environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro, E-mail: yuichiro.ueno.bv@hitachi.com [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Fujishima, Yasutake; Kometani, Yutaka [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd., Hitachi-shi, Ibaraki-ken (Japan); Suzuki, Yasuhiko [Measuring Systems Engineering Dept., Hitachi Aloka Medical, Ltd., Ome-shi, Tokyo (Japan); Umegaki, Kikuo [Faculty of Engineering, Hokkaido University, Sapporo-shi, Hokkaido (Japan)

    2016-06-21

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  19. Fabrication of a phantom and its application for checking gamma camera performance

    International Nuclear Information System (INIS)

    Yesmin, S; Ahmad, G. U.; Afroz, S.; Hossain, S.; Rashid, H.

    2004-01-01

    The primary aim of the present work is to fabricate a total performance phantom, which could be used for checking the performance characteristics of gamma camera. The phantom was locally fabricated at machine shop of Bangladesh University of Engineering and Technology (BUET) and used for checking the performance characteristics of gamma camera LF-61 of Centre for Nuclear Medicine and Ultrasound, Dhaka. With 10 mCi of Tc-99m, imaging of the phantom acquired with a reasonable counts. The image was inspected physically for evaluation of the camera performances. The visual inspection of the phantom image revealed that the performance characteristics like: spatial resolution, linearity, uniformity and lesion detection capability of the gamma camera could clearly be evaluated with reasonable acceptance level. This phantom is expected to be useful for checking performance characteristics of SPECT system as well. (author)

  20. What about getting physiological information into dynamic gamma camera studies

    International Nuclear Information System (INIS)

    Kiuru, A.; Nickles, R. J.; Holden, J. E.; Polcyn, R. E.

    1976-01-01

    A general technique has been developed for the multiplexing of time dependent analog signals into the individual frames of a gamma camera dynamic function study. A pulse train, frequency-modulated by the physiological signal, is capacitively coupled to the preamplifier servicing anyone of the outer phototubes of the camera head. These negative tail pulses imitate photoevents occuring at a point outside of the camera field of view, chosen to occupy a data cell in an unused corner of the computer-stored square image. By defining a region of interest around this cell, the resulting time-activity curve displays the physiological variable in temporal synchrony with the radiotracer distribution. (author)

  1. Recent developments in gamma camera technology for myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Bengel, Frank M.

    2010-01-01

    Economic pressure, competition from alternative modalities and an increasing awareness of patient radiation exposure have triggered a rapid development of novel technology for cardiac single-photon emission computed tomography (SPECT) in recent years. The trend clearly goes towards systems with higher sensitivity and resolution, and towards faster acquisition protocols. Those goals are achieved by various measures: On the one hand, several manufacturers have integrated novel semiconductor detector materials together with innovative collimators into dedicated cardiac scanners. On the other hand, new collimators and reconstruction algorithms have lead to increased speed and accuracy of conventional gamma cameras. Imaging times now can be reduced to as much as 10% of that of previous standard protocols, and/or injected activity can be reduced. This is achieved without loss of diagnostic accuracy. These novel developments are still in early phases of clinical implementation. Their potential for a profound change of the clinical practice of myocardial perfusion scintigraphy, however, becomes increasingly obvious. (orig.)

  2. A panoramic coded aperture gamma camera for radioactive hotspots localization

    Science.gov (United States)

    Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.

    2017-11-01

    A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.

  3. ISPA - a high accuracy X-ray and gamma camera Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    ISPA offers ... Ten times better resolution than Anger cameras High efficiency single gamma counting Noise reduction by sensitivity to gamma energy ...for Single Photon Emission Computed Tomography (SPECT)

  4. Miniature gamma-ray camera for tumor localization

    International Nuclear Information System (INIS)

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E.

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display

  5. Optimization of gamma-ray cameras of Anger type

    International Nuclear Information System (INIS)

    Jatteau, Michel; Lelong, Pierre; Normand, Gerard; Ott, Jean; Pauvert, Joseph; Pergrale, Jean

    1979-01-01

    Most of the radionuclide imaging equipments used for the diagnosis in nuclear medicine include a scintillation camera of the Anger type. Following a period of camera improvements connected to pure technological advances, perfecting the camera can only result nowadays from more thorough studies based on numerical approaches and computer simulations. Two important contributions to an optimization study of Anger gamma-ray cameras are presented, the first one being related to the light collection by the photomultiplier tubes, i.e. one of the processes which determine for a large part the performance parameters; the second one being connected to the computation of the intrinsic geometrical and spectral resolutions, which are two of the main characteristics acting on the image quality. The validity of computer simulation is shown by comparison between theoretical and experimental results before the simulation programmes to study the influence of various parameters are used [fr

  6. Standardization of test conditions for gamma camera performance measurement

    International Nuclear Information System (INIS)

    Jordan, K.

    1980-01-01

    The actual way of measuring gamma camera performance is to use point sources or flood sources in air, often in combination with bar phantoms. This method mostly brings best performance parameters for cameras but it has nothing in common with the use of a camera in clinical practice. Particular in the case of low energy emitters, like Tc-99m, the influence of scattered radiation over the performance of cameras is very high. Therefore it is important to have test conditions of radionuclide imaging devices, that will approach as best as practicable the measuring conditions in clinical applications. It is therefore a good news that the International Electrochemical Commission IEC has prepared a draft 'Characteristics and test conditions of radionuclide imaging devices' which is now submitted to the national committees for formal approval under the Six Months' Rule. Some essential points of this document are discussed in the paper. (orig.) [de

  7. Rapid objective measurement of gamma camera resolution using statistical moments.

    Science.gov (United States)

    Hander, T A; Lancaster, J L; Kopp, D T; Lasher, J C; Blumhardt, R; Fox, P T

    1997-02-01

    An easy and rapid method for the measurement of the intrinsic spatial resolution of a gamma camera was developed. The measurement is based on the first and second statistical moments of regions of interest (ROIs) applied to bar phantom images. This leads to an estimate of the modulation transfer function (MTF) and the full-width-at-half-maximum (FWHM) of a line spread function (LSF). Bar phantom images were acquired using four large field-of-view (LFOV) gamma cameras (Scintronix, Picker, Searle, Siemens). The following factors important for routine measurements of gamma camera resolution with this method were tested: ROI placement and shape, phantom orientation, spatial sampling, and procedural consistency. A 0.2% coefficient of variation (CV) between repeat measurements of MTF was observed for a circular ROI. The CVs of less than 2% were observed for measured MTF values for bar orientations ranging from -10 degrees to +10 degrees with respect to the x and y axes of the camera acquisition matrix. A 256 x 256 matrix (1.6 mm pixel spacing) was judged sufficient for routine measurements, giving an estimate of the FWHM to within 0.1 mm of manufacturer-specified values (3% difference). Under simulated clinical conditions, the variation in measurements attributable to procedural effects yielded a CV of less than 2% in newer generation cameras. The moments method for determining MTF correlated well with a peak-valley method, with an average difference of 0.03 across the range of spatial frequencies tested (0.11-0.17 line pairs/mm, corresponding to 4.5-3.0 mm bars). When compared with the NEMA method for measuring intrinsic spatial resolution, the moments method was found to be within 4% of the expected FWHM.

  8. Is it practical to use the gamma camera dead time

    International Nuclear Information System (INIS)

    Morin, P.P.; Morin, J.F.; Caroff, J.; Lahellec, M.; Savina, A.

    1975-01-01

    The linearity of gamma camera counting is an essential feature for users engaged in quantitative dynamic studies. Instead of defining this quality by the usual dead time, the disadvantages of which are reported, it is proposed to use the experimental count rate giving 10% loss. It is shown that by proceeding in this way all ambiguity would be abolished, where both the counting linearity itself and its relation to sensitivity are concerned [fr

  9. Defective organification of iodine in an infant demonstrated with 123J and gamma camera

    International Nuclear Information System (INIS)

    Goebel, R.; Leb, G.; Sulzer, M.; Graz Univ.

    1979-01-01

    A defective organification of iodine is demonstrated in a two year old male infant. The availability and a relatively simple radiation detector and storage system (gamma camera and 1600 word memory) gives a reasonable low radiation dose, allows correction for extrathyroid neck activity and obviates problems of collimation. (orig.) [de

  10. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    NARCIS (Netherlands)

    Koppert, Wilco J C; van der Velden, Sandra; Steenbergen, J H Leo; de Jong, Hugo W A M

    2018-01-01

    INTRODUCTION: In SPECT/CT systems X-ray and -ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high X-ray doses and deteriorate its functioning. We studied the NaI(Tl)

  11. A compact gamma camera for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  12. Assessment of peripheral vessels and of the lymphatic system by means of gamma-camera scintiscan (gamma-scintigraphy of the whole body)

    Energy Technology Data Exchange (ETDEWEB)

    Ennis, J T

    1981-01-01

    For diagnosing pathologies of the peripheric vessels or of the lymphatic system, albumin aggregates marked with sup(99m) technetium (MAA) or antimonocolloids were used. The radionuclide venography is useful in diagnosing thrombosis, venous insufficiency, and permits a high degree of accuracy, comparable with that of phlebography. In the most cases the radionuclide lymphoscintigraphy is required for the diagnosis of lymphoedema and allows by distribution analysis an adequate morphological representation of the lymphatic ducts and glands. Contrary to lymphography, lymphoscintigraphy presents a completely physiological radionuclide transport and does not cause any reactive lymphatic node hyperplasia by contrast media. Increased capillary perfusion is found in collateral vessel formation in cases of arterial obstruction and ischaemic ulcus, whereas hypoperfusion is seen in obstructions of the larger arteries having no collateral vessels, and in bad circulatory states. Particularly in diabetics with microangiopathy, a peripheral distribution with hyperfusion of the skon presents itself as piece-meal necrosis. The importance and relevance of the perfusion scans of the extremities for the diagnostic assessment within the field of resection surgery is explained.

  13. A flexible geometry Compton camera for industrial gamma ray imaging

    International Nuclear Information System (INIS)

    Royle, G.J.; Speller, R.D.

    1996-01-01

    A design for a Compton scatter camera is proposed which is applicable to gamma ray imaging within limited access industrial sites. The camera consists of a number of single element detectors arranged in a small cluster. Coincidence circuitry enables the detectors to act as a scatter camera. Positioning the detector cluster at various locations within the site, and subsequent reconstruction of the recorded data, allows an image to be obtained. The camera design allows flexibility to cater for limited space or access simply by positioning the detectors in the optimum geometric arrangement within the space allowed. The quality of the image will be limited but imaging could still be achieved in regions which are otherwise inaccessible. Computer simulation algorithms have been written to optimize the various parameters involved, such as geometrical arrangement of the detector cluster and the positioning of the cluster within the site, and to estimate the performance of such a device. Both scintillator and semiconductor detectors have been studied. A prototype camera has been constructed which operates three small single element detectors in coincidence. It has been tested in a laboratory simulation of an industrial site. This consisted of a small room (2 m wide x 1 m deep x 2 m high) into which the only access points were two 6 cm diameter holes in a side wall. Simple images of Cs-137 sources have been produced. The work described has been done on behalf of BNFL for applications at their Sellafield reprocessing plant in the UK

  14. A versatile calibration procedure for portable coded aperture gamma cameras and RGB-D sensors

    Science.gov (United States)

    Paradiso, V.; Crivellaro, A.; Amgarou, K.; de Lanaute, N. Blanc; Fua, P.; Liénard, E.

    2018-04-01

    The present paper proposes a versatile procedure for the geometrical calibration of coded aperture gamma cameras and RGB-D depth sensors, using only one radioactive point source and a simple experimental set-up. Calibration data is then used for accurately aligning radiation images retrieved by means of the γ-camera with the respective depth images computed with the RGB-D sensor. The system resulting from such a combination is thus able to retrieve, automatically, the distance of radioactive hotspots by means of pixel-wise mapping between gamma and depth images. This procedure is of great interest for a wide number of applications, ranging from precise automatic estimation of the shape and distance of radioactive objects to Augmented Reality systems. Incidentally, the corresponding results validated the choice of a perspective design model for a coded aperture γ-camera.

  15. Positron emission tomography with gamma camera in coincidence mode

    International Nuclear Information System (INIS)

    Hertel, A.; Hoer, G.

    1999-01-01

    Positron emission tomography using F-18 FDG has been estbalished in clinical diagnostics with first indications especially in oncology. To install a conventional PET tomography (dedicated PET) is financially costly and restricted to PET examinations only. Increasing demand for PET diagnostics on one hand and restricted financial resources in the health system on the other hand led industry to develop SPECT cameras to be operated in coincidence mode (camera PET) in order to offer nuclear medicine physicians cost-effective devices for PET diagnostic. At the same time camera PET is inferior to conventional PET regarding sensitivity and detection-efficiency for 511 keV photons. Does camera-PET offer a reliable alternative to conventional PET? The first larger comparative studies are now available, so a first apraisal about the technical clinical performance of camera-PET can be done. (orig.) [de

  16. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  17. The fly's eye camera system

    Science.gov (United States)

    Mészáros, L.; Pál, A.; Csépány, G.; Jaskó, A.; Vida, K.; Oláh, K.; Mezö, G.

    2014-12-01

    We introduce the Fly's Eye Camera System, an all-sky monitoring device intended to perform time domain astronomy. This camera system design will provide complementary data sets for other synoptic sky surveys such as LSST or Pan-STARRS. The effective field of view is obtained by 19 cameras arranged in a spherical mosaic form. These individual cameras of the device stand on a hexapod mount that is fully capable of achieving sidereal tracking for the subsequent exposures. This platform has many advantages. First of all it requires only one type of moving component and does not include unique parts. Hence this design not only eliminates problems implied by unique elements, but the redundancy of the hexapod allows smooth operations even if one or two of the legs are stuck. In addition, it can calibrate itself by observed stars independently from both the geographical location (including northen and southern hemisphere) and the polar alignment of the full mount. All mechanical elements and electronics are designed within the confines of our institute Konkoly Observatory. Currently, our instrument is in testing phase with an operating hexapod and reduced number of cameras.

  18. Development and evaluation of a portable CZT coded aperture gamma-camera

    Energy Technology Data Exchange (ETDEWEB)

    Montemont, G.; Monnet, O.; Stanchina, S.; Maingault, L.; Verger, L. [CEA, LETI, Minatec Campus, Univ. Grenoble Alpes, 38054 Grenoble, (France); Carrel, F.; Lemaire, H.; Schoepff, V. [CEA, LIST, 91191 Gif-sur-Yvette, (France); Ferrand, G.; Lalleman, A.-S. [CEA, DAM, DIF, 91297 Arpajon, (France)

    2015-07-01

    We present the design and the evaluation of a CdZnTe (CZT) based gamma camera using a coded aperture mask. This camera, based on a 8 cm{sup 3} detection module, is small enough to be portable and battery-powered (4 kg weight and 4 W power dissipation). As the detector has spectral capabilities, the gamma camera allows isotope identification and colored imaging, by affecting one color channel to each identified isotope. As all data processing is done at real time, the user can directly observe the outcome of an acquisition and can immediately react to what he sees. We first present the architecture of the system, how the detector works, and its performances. After, we focus on the imaging technique used and its strengths and limitations. Finally, results concerning sensitivity, spatial resolution, field of view and multi-isotope imaging are shown and discussed. (authors)

  19. Development and evaluation of a portable CZT coded aperture gamma-camera

    International Nuclear Information System (INIS)

    Montemont, G.; Monnet, O.; Stanchina, S.; Maingault, L.; Verger, L.; Carrel, F.; Lemaire, H.; Schoepff, V.; Ferrand, G.; Lalleman, A.-S.

    2015-01-01

    We present the design and the evaluation of a CdZnTe (CZT) based gamma camera using a coded aperture mask. This camera, based on a 8 cm 3 detection module, is small enough to be portable and battery-powered (4 kg weight and 4 W power dissipation). As the detector has spectral capabilities, the gamma camera allows isotope identification and colored imaging, by affecting one color channel to each identified isotope. As all data processing is done at real time, the user can directly observe the outcome of an acquisition and can immediately react to what he sees. We first present the architecture of the system, how the detector works, and its performances. After, we focus on the imaging technique used and its strengths and limitations. Finally, results concerning sensitivity, spatial resolution, field of view and multi-isotope imaging are shown and discussed. (authors)

  20. Realization of a gamma emission tomography by a servo-controlled camera and bed

    International Nuclear Information System (INIS)

    Parmentier, M.; Gunzman, D.; Bidet, R.

    1979-01-01

    A gamma-camera and a whole-body bed were connected to a minicomputer which controlled automatically their movements. By combining horizontal displacement of the bed with vertical displacement and rotation of the camera we were able to obtain the equivalent of camera rotation around the bed. This method provides an inexpensive way of realizing gamma emission tomography [fr

  1. Gastric emptying of liquid meals: validation of the gamma camera technique

    Energy Technology Data Exchange (ETDEWEB)

    Lawaetz, Otto; Dige-Petersen, Harriet

    1989-05-01

    To assess the extent of errors and to provide correction factors for gamma camera gastric emptying studies of liquid meals labelled with radionuclides (/sup 99/Tc/sup m/ or /sup 113/In/sup m/), phantom studies were performed with different gastric emptying procedures, gamma cameras and data handling systems. To validate the overall accuracy of the method, 24 combined aspiration and gamma camera gastric emptying studies were carried out in three normal volunteers. Gastric meal volume was underestimated due to scattered radiation from the stomach. The underestimation was 7-20% varying with the size of the gastric region of interest (ROI), the energy of the nuclide and the fraction of meal in the stomach. The overestimation, due to scattered radiation from the gut, was negligible (1-3%) for any of the procedures. The gamma camera technique eliminated much of the error due to variations of stomach geometry and produced accurate quantitative gastric emptying data comparable to those obtained by evacuation (P > 0.10), when the entire field maximum 1-min count achieved within the first 20 min of a study was taken as representing the original volume of the meal ingested, and when corrections for area related errors due to scattered radiation from the stomach were performed. (author).

  2. A study on the optimization of optical guide of gamma camera detector

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Cho, Gyu Seong; Kim, Ho Kyung; Lee, Wan No; Kim, Young Soo

    2000-01-01

    An optical guide, which is a light guide located between NaI(Tl) scintillation-crystal and array of photo-multiplier tubes (PMTs) in the gamma camera detector system, is an essential component to deliver the spatial information recorded in scintillator to the PMTs. Without the optical guide, the spatial information within the range of a single PMT could not be obtained. For the design of the optimal optical guide, it is necessary to characterize its properties, especially sensitivity and spatial resolution of detector. In this study, the thickness and the refractive index of optical guide, which affect not only on the sensitivity but also on the spatial resolution of gamma-camera detector, were investigated by using Monte Carlo simulation. A 12'x12'x3/8' NaI(Tl) and 23 PMTs with each 5' diameter were considered as a gamma-camera detector components. Interactions of optical photons in the scintillator and the optical guide were simulated using a commercial code DETECT97, and the spatial resolution, mainly interfered by the intrinsic inward distortion within the PMT, was investigated using our own ANGER program, which was developed to calculate positions of incident photons in the gamma camera. From the simulation results, it was found that an optical guide with 1.6 of refractive index and 10 mm of thickness give maximum sensitivity and minimum spatial distortion, respectively

  3. Clinical significance of gamma camera renography in chronic renal insufficiency

    International Nuclear Information System (INIS)

    Dudczak, R.; Frischauf, H.; Kletter, K.

    1980-01-01

    Gamma camera renography allows, together with renal imaging, an evaluation of individual renal function. For these examinations, I 123 orthoiodohippurate is preferred and most widely used. The results on patients with chronic renal insufficiency, including urologic and posttransplantation patients, are reported. Whereas the method is of clinical significance in evaluating posttransplantation complications and in assessing individual kidney function preoperatively in urology, as well as in monitoring therapeutic effects in the early period of renal disease, it is of limited diagnostic value in chronic renal insufficiency. In this latter regard, clinical and laboratory examinations are of primary importance. (author)

  4. A fast algorithm for computer aided collimation gamma camera (CACAO)

    Science.gov (United States)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.

    2000-08-01

    The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.

  5. Europe's space camera unmasks a cosmic gamma-ray machine

    Science.gov (United States)

    1996-11-01

    The new-found neutron star is the visible counterpart of a pulsating radio source, Pulsar 1055-52. It is a mere 20 kilometres wide. Although the neutron star is very hot, at about a million degrees C, very little of its radiant energy takes the form of visible light. It emits mainly gamma-rays, an extremely energetic form of radiation. By examining it at visible wavelengths, astronomers hope to figure out why Pulsar 1055-52 is the most efficient generator of gamma-rays known so far, anywhere the Universe. The Faint Object Camera found Pulsar 1055-52 in near ultraviolet light at 3400 angstroms, a little shorter in wavelength than the violet light at the extremity of the human visual range. Roberto Mignani, Patrizia Caraveo and Giovanni Bignami of the Istituto di Fisica Cosmica in Milan, Italy, report its optical identification in a forthcoming issue of Astrophysical Journal Letters (1 January 1997). The formal name of the object is PSR 1055-52. Evading the glare of an adjacent star The Italian team had tried since 1988 to spot Pulsar 1055-52 with two of the most powerful ground-based optical telescopes in the Southern Hemisphere. These were the 3.6-metre Telescope and the 3.5-metre New Technology Telescope of the European Southern Observatory at La Silla, Chile. Unfortunately an ordinary star 100,000 times brighter lay in almost the same direction in the sky, separated from the neutron star by only a thousandth of a degree. The Earth's atmosphere defocused the star's light sufficiently to mask the glimmer from Pulsar 1055-52. The astronomers therefore needed an instrument in space. The Faint Object Camera offered the best precision and sensitivity to continue the hunt. Devised by European astronomers to complement the American wide field camera in the Hubble Space Telescope, the Faint Object Camera has a relatively narrow field of view. It intensifies the image of a faint object by repeatedly accelerating electrons from photo-electric films, so as to produce

  6. Optical camera system for radiation field

    International Nuclear Information System (INIS)

    Maki, Koichi; Senoo, Makoto; Takahashi, Fuminobu; Shibata, Keiichiro; Honda, Takuro.

    1995-01-01

    An infrared-ray camera comprises a transmitting filter used exclusively for infrared-rays at a specific wavelength, such as far infrared-rays and a lens used exclusively for infrared rays. An infrared ray emitter-incorporated photoelectric image converter comprising an infrared ray emitting device, a focusing lens and a semiconductor image pick-up plate is disposed at a place of low gamma-ray dose rate. Infrared rays emitted from an objective member are passed through the lens system of the camera, and real images are formed by way of the filter. They are transferred by image fibers, introduced to the photoelectric image converter and focused on the image pick-up plate by the image-forming lens. Further, they are converted into electric signals and introduced to a display and monitored. With such a constitution, an optical material used exclusively for infrared rays, for example, ZnSe can be used for the lens system and the optical transmission system. Accordingly, it can be used in a radiation field of high gamma ray dose rate around the periphery of the reactor container. (I.N.)

  7. Monte Carlo simulation for dual head gamma camera

    International Nuclear Information System (INIS)

    Osman, Yousif Bashir Soliman

    2015-12-01

    Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The

  8. Planar gamma camera imaging and quantitation of Yttrium-90 bremsstrahlung

    International Nuclear Information System (INIS)

    Shen, S.; DeNardo, G.L.; Yuan, A.

    1994-01-01

    Yttrium-90 is a promising radionuclide for radioimmunotherapy of cancer because of its energetic beta emissions. Therapeutic management requires quantitative imaging to assess the pharmacokinetics and radiation dosimetry of the 90 Y-labeled antibody. Conventional gamma photon imaging methods cannot be easily applied to imaging of 90 Y-bremsstrahlung because of its continuous energy spectrum. The sensitivity, resolution and source-to-background signal ratio (S/B) of the detector system for 90 Y-bremsstrahlung were investigated for various collimators and energy windows in order to determine optimum conditions for quantitative imaging. After these conditions were determined, the accuracy of quantitation of 90 Y activity in an Alderson abdominal phantom was examined. When the energy-window width was increased, the benefit of increased sensitivity outweighed degradation in resolution and S/B ratio until the manufacturer's energy specifications for the collimator were exceeded. Using the same energy window, the authors improved resolution and S/B for the medium-energy (ME) collimator when compared to the low-energy, all-purpose (LEAP) collimator, and there was little additional improvement using the high-energy (HE) collimator. Camera sensitivity under tissue equivalent conditions was 4.2 times greater for the LEAP and 1.7 times greater for the ME collimators when compared to the HE collimator. Thus, the best, most practical selections were found to be the ME collimator and an energy window of 55-285 keV. When they used these optimal conditions for image acquisition, the estimation of 90 Y activity in organs and tumors was within 15% of the true activities. The results for this study suggest that reasonable accuracy can be achieved in clinical radioimmunotherapy using 90 Y-bremsstrahlung quantitation. 28 refs., 5 figs., 7 tabs

  9. Development of gamma camera display phantom for quality control in developing countries

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    1981-08-01

    A special phantom suitable for the routine evaluation of ''end-to-end'' gamma camera system performance, that is, system performance from input to output, is described. The design finally adopted, called the ''strip-wedge phantom'' and consisting of an array of copper or aluminium wedges of various thicknesses, permits the evaluation of contrast along one axis and resolution along the other. It is proposed that on acceptance testing of a gamma camera system a series of progressively degraded images should be obtained from the best possible with the system to very poor. An ''action threshold'' should then be defined such that image quality below this threshold would warrant such action as calling in the service engineer. Daily routine images should then be examined with reference to this threshold. Experience with the phantom is summarized

  10. Development of a tomographic system adapted to 3D measurement of contaminated wounds based on the Cacao concept (Computer aided collimation Gamma Camera); Developpement a partir du concept CACAO (Camera A Collimation Assistee par Ordinateur) d'un systeme tomographique adapte a la mesure 3D de plaies contaminees

    Energy Technology Data Exchange (ETDEWEB)

    Douiri, A

    2002-03-01

    The computer aided collimation gamma camera (CACAO in French) is a gamma camera using a collimator with large holes, a supplementary linear scanning motion during the acquisition and a dedicated reconstruction program taking full account of the source depth. The CACAO system was introduced to improve both the sensitivity and the resolution in nuclear medicine. This thesis focuses on the design of a fast and robust reconstruction algorithm in the CACAO project. We start by an overview of tomographic imaging techniques in nuclear medicine. After modelling the physical CACAO system, we present the complete reconstruction program which involves three steps: 1) shift and sum 2) deconvolution and filtering 3) rotation and sum. The deconvolution is the critical step that decreases the signal to noise ratio of the reconstructed images. We propose a regularized multi-channel algorithm to solve the deconvolution problem. We also present a fast algorithm based on Splines functions and preserving the high quality of the reconstructed images for the shift and the rotation steps. Comparisons of simulated reconstructed images in 2D and 3D for the conventional system (CPHC) and CACAO demonstrate the ability of CACAO system to increase the quality of the SPECT images. Finally, this study concludes with an experimental approach with a pixellated detector conceived for a 3D measurement of contaminated wounds. This experimentation proves the possible advantages of coupling the CACAO project with pixellated detectors. Moreover, a variety of applications could fully benefit from the CACAO system, such as low activity imaging, the use of high-energy gamma isotopes and the visualization of deep organs. Moreover the combination of the CACAO system with a pixels detector may open up further possibilities for the future of nuclear medicine. (author)

  11. An alternate way for image documentation in gamma camera processing units

    International Nuclear Information System (INIS)

    Schneider, P.

    1980-01-01

    For documentation of images and curves generated by a gamma camera processing system a film exposure tool from a CT system was linked to the video monitor by use of a resistance bridge. The machine has a stock capacity of 100 plane films. For advantage there is no need for an interface, the complete information on the monitor is transferred to the plane film and compared to software controlled data output on printer or plotter the device is tremendously time saving. (orig.) [de

  12. Ectomography - a tomographic method for gamma camera imaging

    International Nuclear Information System (INIS)

    Dale, S.; Edholm, P.E.; Hellstroem, L.G.; Larsson, S.

    1985-01-01

    In computerised gamma camera imaging the projections are readily obtained in digital form, and the number of picture elements may be relatively few. This condition makes emission techniques suitable for ectomography - a tomographic technique for directly visualising arbitrary sections of the human body. The camera rotates around the patient to acquire different projections in a way similar to SPECT. This method differs from SPECT, however, in that the camera is placed at an angle to the rotational axis, and receives two-dimensional, rather than one-dimensional, projections. Images of body sections are reconstructed by digital filtration and combination of the acquired projections. The main advantages of ectomography - a high and uniform resolution, a low and uniform attenuation and a high signal-to-noise ratio - are obtained when imaging sections close and parallel to a body surface. The filtration eliminates signals representing details outside the section and gives the section a certain thickness. Ectomographic transverse images of a line source and of a human brain have been reconstructed. Details within the sections are correctly visualised and details outside are effectively eliminated. For comparison, the same sections have been imaged with SPECT. (author)

  13. Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2012-06-01

    A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.

  14. Design of a Compton camera for 3D prompt-{gamma} imaging during ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Roellinghoff, F., E-mail: roelling@ipnl.in2p3.fr [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Richard, M.-H., E-mail: mrichard@ipnl.in2p3.fr [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Chevallier, M.; Constanzo, J.; Dauvergne, D. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Freud, N. [INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Henriquet, P.; Le Foulher, F. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Letang, J.M. [INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Montarou, G. [LPC, CNRS/IN2P3, Clermont-F. University (France); Ray, C.; Testa, E.; Testa, M. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Walenta, A.H. [Uni-Siegen, FB Physik, Emmy-Noether Campus, D-57068 Siegen (Germany)

    2011-08-21

    We investigate, by means of Geant4 simulations, a real-time method to control the position of the Bragg peak during ion therapy, based on a Compton camera in combination with a beam tagging device (hodoscope) in order to detect the prompt gamma emitted during nuclear fragmentation. The proposed set-up consists of a stack of 2 mm thick silicon strip detectors and a LYSO absorber detector. The {gamma} emission points are reconstructed analytically by intersecting the ion trajectories given by the beam hodoscope and the Compton cones given by the camera. The camera response to a polychromatic point source in air is analyzed with regard to both spatial resolution and detection efficiency. Various geometrical configurations of the camera have been tested. In the proposed configuration, for a typical polychromatic photon point source, the spatial resolution of the camera is about 8.3 mm FWHM and the detection efficiency 2.5x10{sup -4} (reconstructable photons/emitted photons in 4{pi}). Finally, the clinical applicability of our system is considered and possible starting points for further developments of a prototype are discussed.

  15. Analysis of dark current images of a CMOS camera during gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Czifrus, Szabolcs, E-mail: czifrus@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Kocsis, Gábor, E-mail: kocsis.gabor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Szepesi, Tamás, E-mail: szepesi.tamas@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2013-12-15

    Highlights: • Radiation tolerance of a fast framing CMOS camera EDICAM examined. • We estimate the expected gamma dose and spectrum of EDICAM with MCNP. • We irradiate EDICAM by 23.5 Gy in 70 min in a fission rector. • Dose rate normalised average brightness of frames grows linearly with the dose. • Dose normalised average brightness of frames follows the dose rate time evolution. -- Abstract: We report on the behaviour of the dark current images of the Event Detection Intelligent Camera (EDICAM) when placed into an irradiation field of gamma rays. EDICAM is an intelligent fast framing CMOS camera operating in the visible spectral range, which is designed for the video diagnostic system of the Wendelstein 7-X (W7-X) stellarator. Monte Carlo calculations were carried out in order to estimate the expected gamma spectrum and dose for an entire year of operation in W7-X. EDICAM was irradiated in a pure gamma field in the Training Reactor of BME with a dose of approximately 23.5 Gy in 1.16 h. During the irradiation, numerous frame series were taken with the camera with exposure times 20 μs, 50 μs, 100 μs, 1 ms, 10 ms, 100 ms. EDICAM withstood the irradiation, but suffered some dynamic range degradation. The behaviour of the dark current images during irradiation is described in detail. We found that the average brightness of dark current images depends on the total ionising dose that the camera is exposed to and the dose rate as well as on the applied exposure times.

  16. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  17. Feasibility study of a lens-coupled charge-coupled device gamma camera

    International Nuclear Information System (INIS)

    Lee, Hakjae; Jung, Youngjun; Kim, Jungmin; Bae, Seungbin; Lee, Kisung; Kang, Jungwon

    2011-01-01

    A charge-coupled device (CCD) is generally used in a digital camera as a light-collecting device such as a photomultiplier tube (PMT). Because of its low sensitivity and very high dark current, CCD have not been popularly used for gamma imaging systems. However, a recent CCD technological breakthrough has improved CCD sensitivity, and the use of a Peltier cooling system can significantly minimize the dark current. In this study, we investigated the feasibility of a prototype CCD gamma camera consisting of a CsI scintillator, optical lenses, and a CCD module. Despite electron-multiplying (EM) CCDs having higher performance, in this study, we built a cost-effective system consisted of low-cost components compared to EMCCDs. Our prototype detector consists of a CsI scintillator, two optical lenses, and a conventional Peltier-cooled CCD. The performance of this detector was evaluated by acquiring the sensitivity, resolution, and the modulation transfer function (MTF). The sensitivity of the prototype detector showed excellent linearity. With a 1 mm-diameter pinhole collimator, the full width at half-maximum (FWHM) of a 1.1 mm Tc-99m line source image was 2.85 mm. These results show that the developed prototype camera is feasible for small animal gamma imaging.

  18. NUKAB system use with the PICKER DYNA CAMERA II

    International Nuclear Information System (INIS)

    Collet, H.; Faurous, P.; Lehn, A.; Suquet, P.

    Present-day data processing units connected to scintillation gamma cameras can make use of cabled programme or recorded programme systems. The NUKAB system calls on the latter technique. The central element of the data processing unit, connected to the PICKER DYNA CAMERA II output, consists of a DIGITAL PDP 8E computer with 12-bit technological words. The use of a 12-bit technological format restricts the possibilities of digitalisation, 64x64 images representing the practical limit. However the NUKAB system appears well suited to the processing of data from gamma cameras at present in service. The addition of output terminals of the tracing panel type should widen the possibilities of the system. It seems that the 64x64 format is not a handicap in view of the resolution power of the detectors [fr

  19. A new gamma camera for positron emission tomography

    International Nuclear Information System (INIS)

    Schotanus, P.

    1988-01-01

    This thesis describes the detection of annihiliation radiation employing a new principle: radiation is absorbed in a barium fluoride (BaF 2) crystal and the resulting scintillation light is detected in a multiwire proportional chamber filled with a photsensitive vapour. The application of such a detector for PET is new; the use of a high density fast scintillator in combination with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. In this work, the physical background of the above detection mechanism is explored and the performance parameters of a gamma camera using this new principle, are determined. Furthermore, a comprehensive research on the scintillation mechanism and physical characteristics of the increasingly popular BaF 2 scintillator is presented. Also, a new class of ultraviolet (UV) scintillation materials, consisting of rare earth doped fluorides, is introduced. (author). 211 refs.; 30 figs.; 17 tabs

  20. Quality control of the gamma camera/computer interface

    International Nuclear Information System (INIS)

    Busemann-Sokole, E.

    1983-01-01

    Reporting on the conference mentioned, the author indicates that technical inspection of the gamma camera and the attached computer each by themselves is not sufficient. The parts of the interface and the hardware or software can contain sources of error. In order to obtain the best diagnostic image a number of control measurements are recommended dealing with image intensifying, intensifier offset, linearity of transformation, exclusion of 'data drop' or 'bit drop', 2-pulse timing, correct response with different counting rates, and response to triggers (electrocardiogram). The last and most important recommendation is to record in writing particulars of each inspection and control measurement, particulars and solutions of problems and modifications in hardware and software. (Auth.)

  1. Inter-laboratory comparison study of gamma cameras in Pakistan

    International Nuclear Information System (INIS)

    Shahid, M.A.; Mumtaz-ul-Haq

    1988-01-01

    The evaluation of the performance of both instrument and the physician are important in any quality assurance programme in nuclear medicine imaging. The IAEA launched a similar program in 1984 under its Regional Cooperation Agreement program in South Asian Countries. The first part of the study consisted of the evaluation of imaging equipment by imaging IAEA-WHO Simulated Anatomic Liver Phantom (SALP) and its interpretation by the physician. From Pakistan, 8 gamma cameras from 7 laboratories were used for the study and 16 physician interpreted in the SALP images. This paper reports the results of SALP images from Pakistan and shows the efficacy of 80 to 100% as regards the quality of image obtained and the interpretation done by the physicians. (author)

  2. 131I activity quantification of gamma camera planar images

    Science.gov (United States)

    Barquero, Raquel; Garcia, Hugo P.; Incio, Monica G.; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-01

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq-1) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0. The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131I in air. Values of G and S for two GC systems—Philips Skylight and Siemens e-cam—are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq-1 to 35 cps MBq-1, and from 6 cps MBq-1 to 29 cps MBq-1, respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.

  3. A gamma camera method for quantitation of split renal function in children followed for vesicoureteric reflux

    International Nuclear Information System (INIS)

    Tamminen, T.E.; Riihimaeki, E.J.; Taehti, E.E.; Helsinki Univ. Central Hospital

    1978-01-01

    A method for quantitative estimation of split renal function using a computerized gamma camera system is described. 42 children and adolescents with existing or preexisting vesicouretric reflux and recurrent urinary tract infection were investigated. Total renal clearance of DTPA was calculated with a disapperarance curve derived from the largest extrarenal area in the field of view of a gamma camera with diverging collimator. Split renal function was estimated with the slopes of second phase renograms. The plasma disaapearance clearance of DTPA, calculated using one compartement model with two late blood samples, gave similar resusults with the clearance estimated from the body disappearance curves. The proportional planimetric renal parenchymal areas had good correlation with the split clearance estimated from renogram slopes. The method offers data on renal function and urinary tract dynamics which is very valuable in the follow-up of children with recurrent urinary tract infection and vesicoureteric reflux. (orig.) [de

  4. Process simulation in digital camera system

    Science.gov (United States)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  5. Two dimensional spatial distortion correction algorithm for scintillation GAMMA cameras

    International Nuclear Information System (INIS)

    Chaney, R.; Gray, E.; Jih, F.; King, S.E.; Lim, C.B.

    1985-01-01

    Spatial distortion in an Anger gamma camera originates fundamentally from the discrete nature of scintillation light sampling with an array of PMT's. Historically digital distortion correction started with the method based on the distortion measurement by using 1-D slit pattern and the subsequent on-line bi-linear approximation with 64 x 64 look-up tables for X and Y. However, the X, Y distortions are inherently two-dimensional in nature, and thus the validity of this 1-D calibration method becomes questionable with the increasing distortion amplitude in association with the effort to get better spatial and energy resolutions. The authors have developed a new accurate 2-D correction algorithm. This method involves the steps of; data collection from 2-D orthogonal hole pattern, 2-D distortion vector measurement, 2-D Lagrangian polynomial interpolation, and transformation to X, Y ADC frame. The impact of numerical precision used in correction and the accuracy of bilinear approximation with varying look-up table size have been carefully examined through computer simulation by using measured single PMT light response function together with Anger positioning logic. Also the accuracy level of different order Lagrangian polynomial interpolations for correction table expansion from hole centroids were investigated. Detailed algorithm and computer simulation are presented along with camera test results

  6. A gamma cammera image processing system

    International Nuclear Information System (INIS)

    Chen Weihua; Mei Jufang; Jiang Wenchuan; Guo Zhenxiang

    1987-01-01

    A microcomputer based gamma camera image processing system has been introduced. Comparing with other systems, the feature of this system is that an inexpensive microcomputer has been combined with specially developed hardware, such as, data acquisition controller, data processor and dynamic display controller, ect. Thus the process of picture processing has been speeded up and the function expense ratio of the system raised

  7. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera

    International Nuclear Information System (INIS)

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest 99m Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time. (author)

  8. Performance characteristics of ZLC 37 Siemens gamma camera

    International Nuclear Information System (INIS)

    Abdelgadir, Wafaa Abdelrahman

    1994-04-01

    The relationships between the ZLC 37 Siemens γ camera parameters (energy resolution, plane sensitivity, intrinsic uniformity, intrinsic resolution, system uniformity and system resolution) and diagnostic imaging performance was investigated. These parameters when computers when compared with internationally published data showed that the ZLC 37 Siemens γ cameras is in good operative conditions. The effect of the scattering media and WW on the spatial resolution, when the distance is kept fixed were investigated. Comparison of resolution for the media (air, water, water + radioactivity when using WW (10, 15,20%) showed that the resolution is best for air, better for water and worse for water + radioactivity up to a concentration of 8% for a 10% WW. (Author)

  9. A Compton camera prototype for prompt gamma medical imaging

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2016-01-01

    Full Text Available Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  10. NEMA NU-1 2007 based and independent quality control software for gamma cameras and SPECT

    International Nuclear Information System (INIS)

    Vickery, A; Joergensen, T; De Nijs, R

    2011-01-01

    A thorough quality assurance of gamma and SPECT cameras requires a careful handling of the measured quality control (QC) data. Most gamma camera manufacturers provide the users with camera specific QC Software. This QC software is indeed a useful tool for the following of day-to-day performance of a single camera. However, when it comes to objective performance comparison of different gamma cameras and a deeper understanding of the calculated numbers, the use of camera specific QC software without access to the source code is rather avoided. Calculations and definitions might differ, and manufacturer independent standardized results are preferred. Based upon the NEMA Standards Publication NU 1-2007, we have developed a suite of easy-to-use data handling software for processing acquired QC data providing the user with instructive images and text files with the results.

  11. Standardization of the intrinsic uniformity control of the gamma cameras

    International Nuclear Information System (INIS)

    Solsona Harster, Lluis; Llopis Gonzalez, David; Pavia Segura, Javier

    2001-01-01

    Objective: To verify the Intrinsic Uniformity (Iu) results using different acquisition parameters in the weekly gamma camera Quality Control (Qc). Material And Methods: We made 4 experiments using Tc99 sources and modifying the orientation, distance, activity an volume parameters of a source in ten detectors with I Na photomultipliers applying the following acquisition conditions: 4000 Kc, the source 2 m far from the geometrical centre of the detectors, 0.1 ml into 1 ml syringe, and 150 Tc99m ?Ci. Results: We found better results when the distance between detector/source is getting longer, but the better point we found between 1,5 and 2 m. We also found necessary the collimator position was parallel respect to the geometrical centre field of view, because a little deviation of only two degrees can offer a bad result between +0.5%. We study the dose that we should use, and the results show us that better results are not in the highest or smallest values of activity into the source. In volume parameters, we can see that if we use a source highest than 1 ml we obtained better results. Conclusion: Following our results in the variation of IU values as for as the distance, rotation detector/source, dose and source activity, we recommend to perform this QC applying NEMA rules in same conditions every week and using the different parameters of our study to obtain better IU (Au)

  12. Preliminary study for pixel identification on a modular gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Soluri, A., E-mail: soluri@isib.cnr.it; Atzeni, G.; Ucci, A.; Cusanno, F.; Massari, R.

    2014-02-01

    Our group has recently investigated and produced new scintigraphic prototypes based on advanced scintillation structure. The aim of this study is to demonstrate the use of scintillation matrices with size equal to the overall area of the Position Sensitive Photomultiplier Tube (PSPMT), to design a modular gamma camera and study the solution of the dead area problems optimizing the overall pixel identification. In this paper we investigate the response of different combinations with crystals integrated within tungsten structure, coupled with H8500, R8900-C12 and R11265-M64 Hamamatsu PSPMTs. Several scintillation matrices, whose dimensions match to the physical area of the PSPMT, have been analysed so that we have also studied limits of detection for the elements of the matrix in the critical zones of the PSPMT, i.e. corners and borders. In order to enhance the detectability of scintillation elements we improved the light collection by depositing metallic layers or treating the tungsten structure with different coating materials, and shaping the external elements of the scintillation matrices. The results have shown good energy resolution and the proposed method can be applied in medical imaging for obtaining high efficiency scintillation devices.

  13. Assessment of gamma camera performance at some Sudanese hospitals

    International Nuclear Information System (INIS)

    Ibrahim, Nour El huda Ibrahim Ali

    2016-05-01

    The study aims to investigate the performance quality of the gamma cameras used in three public hospitals in Sudan. It is widely recognized that the attainment of high standards of efficiency and reliability in the practice of nuclear medicine, as in other specialties based on advanced technology, requires an appropriate quality assurance program. In this study we have focused on four of the main tests in order to assess the performance of the three units in question, such as uniformity, resolution/ linearity, center of rotation, photopeak. The values were within the acceptable range (according to the adopted protocols). Overall performance of the units was acceptable. Although all the results were within the acceptable range, some of them were at border, thus an action of preventive maintenance should be considered. It is noticed that a minor to negligible co-operation exists between the centers experts and /or equipment. The establishment of an external and internal auditing program is recommended. More co-operation between the centers should be considered.(Author)

  14. Evaluation of tomographic ISOCAM Park II gamma camera parameters using Monte Carlo method

    International Nuclear Information System (INIS)

    Oramas Polo, Ivón

    2015-01-01

    In this paper the evaluation of tomographic ISOCAM Park II gamma camera parameters was performed using the Monte Carlo code SIMIND. The parameters uniformity, resolution and contrast were evaluated by Jaszczak phantom simulation. In addition the qualitative assessment of the center of rotation was performed. The results of the simulation are compared and evaluated against the specifications of the manufacturer of the gamma camera and taking into account the National Protocol for Quality Control of Nuclear Medicine Instruments of the Cuban Medical Equipment Control Center. A computational Jaszczak phantom model with three different distributions of activity was obtained. They can be used to perform studies with gamma cameras. (author)

  15. Study of the feasibility of a compact gamma camera for real-time cancer assessment

    CERN Document Server

    Caballero Ontanaya, Luis

    2017-01-01

    Results from the simulations of a Compton gamma camera based on compact configuration of detectors consisting in two detection modules, each of them having two stages of high-resolution position- and energy sensitive radiation detectors operated in time-coincidence are presented. Monolithic scintillation crystals instead of pixelated crystals in order to reduce dead areas have been simulated. In order to study the system feasibility to produce real-time images, different setups are considered. Performance in terms of acquisition times have been calculated to determine the real-time capabilities and limitations of such a system.

  16. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals

    CERN Document Server

    Loudos, G K; Giokaris, N D; Styliaris, E; Archimandritis, S C; Varvarigou, A D; Papanicolas, C N; Majewski, S; Weisenberger, D; Pani, R; Scopinaro, F; Uzunoglu, N K; Maintas, D; Stefanis, K

    2003-01-01

    The results of studies conducted with a small field of view tomographic gamma camera based on a Position Sensitive Photomultiplier Tube are reported. The system has been used for the evaluation of radiopharmaceuticals in small animals. Phantom studies have shown a spatial resolution of 2 mm in planar and 2-3 mm in tomographic imaging. Imaging studies in mice have been carried out both in 2D and 3D. Conventional radiopharmaceuticals have been used and the results have been compared with images from a clinically used system.

  17. Experience with dedicated ultra fast solid state cardiac gamma camera: technologist perspective

    International Nuclear Information System (INIS)

    Parab, Anil; Gaikar, Anil; Patil, Kashinath; Lele, V.

    2010-01-01

    Full text: To describe technologist perspective of working with ultra fast solid state gamma camera and comparison with conventional dual head gamma camera. Material and Methods: 900 Myocardial Perfusion scan were carried out on dedicated solid state detector cardiac camera between 1st February 2010 till 29th August 2010. 27 studies were done back to back on a conventional dual head gamma camera. In 2 cases dual head isotope imaging was done (Thallium+ 99m Tc-tetrofosmin). Rest stress protocol was used in 600 patients and stress - rest protocol was used in 300. 1:3 ratio of injected activity was maintained for both protocols (5 mCi for 1st study and 15 mCi for second study). For Rest - Stress protocol, 5 mCi of 99m Tc - Tetrofosmin was injected at rest, 40 minutes later, 5 min image was acquired on the solid state detector. Patient was then stressed. 15 mCi 99m Tc - Tetrofosmin was injected at peak stress. Images were acquired 20 minutes later for 3 minutes (total duration of study 90-100 min). For stress rest protocol, 5 mCi 99m Tc - Tetrofosmin was injected at peak stress. 5 mCi images were acquired 20 minutes later. Rest injection of 15 mCi was given 1 hour post stress injection. Rest images were acquired 40 minutes after rest injection (total duration of study 110-120 min). Results: We observed even with lesser amount activity and acquisition time of 5 min/cardiac scan it showed high sensitivity count rate over 2.2-4.7 kcps (10 times more counts than standard gamma camera). System gives better energy resolution < 7%. Better image contrast. Dual isotope imaging can be possible. Spatial resolution 4.3-4.9 mm. Excellent quality images were obtained using low activities (5 mCi/15 mCi) using 1/3rd the acquisition time compared to conventional dual head gamma camera Even in obese patients 7 mCi/21 mCi activity yielded excellent images at 1/3 rd acquisition time Quick acquisition resulted in greater patient comfort and no motion artifact also due to non rotation of

  18. Principle of some gamma cameras (efficiencies, limitations, development)

    International Nuclear Information System (INIS)

    Allemand, R.; Bourdel, J.; Gariod, R.; Laval, M.; Levy, G.; Thomas, G.

    1975-01-01

    The quality of scintigraphic images is shown to depend on the efficiency of both the input collimator and the detector. Methods are described by which the quality of these images may be improved by adaptations to either the collimator (Fresnel zone camera, Compton effect camera) or the detector (Anger camera, image amplification camera). The Anger camera and image amplification camera are at present the two main instruments whereby acceptable space and energy resolutions may be obtained. A theoretical comparative study of their efficiencies is carried out, independently of their technological differences, after which the instruments designed or under study at the LETI are presented: these include the image amplification camera, the electron amplifier tube camera using a semi-conductor target CdTe and HgI 2 detector [fr

  19. Performances evaluation of the coincidence detection on a gamma-camera

    International Nuclear Information System (INIS)

    Dreuille, O. de; Gaillard, J.F.; Brasse, D.; Bendriem, B.; Groiselle, C.; Rocchisani, J.M.; Moretti, J.L.

    2000-01-01

    The performance of the VERTEX gamma-camera (ADAC) working in coincidence mode are investigated using a protocol derived from the NEMA and IEC recommendations. With a field of view determined by two rectangular detectors (50.8 cm x 40 cm) composed of NaI crystal, this camera allows a 3-D acquisition with different energy window configurations: photopeak-photopeak only (PP) and photopeak-photopeak + photopeak-Compton (PC). An energy resolution of 11% and a scatter fraction of 27% and 33% for the 3D-PP and 3D-PC mode respectively are the main significant results of our study. The spatial resolution equals 5.9 mm and the limit of the detectability ranges from 16 mm to 13 mm for a contrast of 2.5: as a function of the random estimation, the maximum of the Noise Equivalent Count rate varies from 3 kcps to 4.5 kcps for the PP mode and from 3.85 kcps to 6.1 kcps for the PC mode. These maxima are reached for a concentration of 8 kBq/ml for the PP mode and 5 kBq/ml for the PC mode. These values are compared with the results obtained by other groups for the VERTEX gamma camera and several dedicated PET systems. (authors)

  20. A specially designed cut-off gamma camera for high resolution SPECT of the brain

    International Nuclear Information System (INIS)

    Larsson, S.A.; Bergstrand, G.; Bergstedt, H.; Berg, J.; Flygare, O.; Schnell, P.O.; Anderson, N.; Lagergren, C.

    1984-01-01

    A modern gamma camera system for Single Photon Emission Computed Tomography (SPECT) has been modified in order to optimize examinations of the head. By cutting off a part of the detector housing at one edge, it has been possible to rotate the camera close to the skull, still covering the entire brain and the skull base. The minimum radius of rotation used was thereby reduced, in the mean, from 21.2 cm to 13.0 cm in examination of 18 patients. In combination with an adjustment of the 64 x 64 acquisition matrix to a field of view of 26x26 cm/sup 2/, the spatial resolution improved from 18.6 mm (FWHM) to 12.6 +- 0.3 mm (FWHM) using the conventional LEGP-collimator and to 10.4 +- 0.3 mm (FWHM) using the LEHR-collimator. No other modification than a slight cut of the light guide was made in the internal construction of the camera. Thus, the physical properties of the detector head are not essentially changed from those of a non-modified unit. The improved spatial resolution of the cut-off camera SPECT-system implies certain clinical advantages in studies of the brain, the cerebrospinal fluid (CSF)-space and the skull base

  1. TU-H-206-01: An Automated Approach for Identifying Geometric Distortions in Gamma Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Mann, S; Nelson, J [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Samei, E [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2016-06-15

    Purpose: To develop a clinically-deployable, automated process for detecting artifacts in routine nuclear medicine (NM) quality assurance (QA) bar phantom images. Methods: An artifact detection algorithm was created to analyze bar phantom images as part of an ongoing QA program. A low noise, high resolution reference image was acquired from an x-ray of the bar phantom with a Philips Digital Diagnost system utilizing image stitching. NM bar images, acquired for 5 million counts over a 512×512 matrix, were registered to the template image by maximizing mutual information (MI). The MI index was used as an initial test for artifacts; low values indicate an overall presence of distortions regardless of their spatial location. Images with low MI scores were further analyzed for bar linearity, periodicity, alignment, and compression to locate differences with respect to the template. Findings from each test were spatially correlated and locations failing multiple tests were flagged as potential artifacts requiring additional visual analysis. The algorithm was initially deployed for GE Discovery 670 and Infinia Hawkeye gamma cameras. Results: The algorithm successfully identified clinically relevant artifacts from both systems previously unnoticed by technologists performing the QA. Average MI indices for artifact-free images are 0.55. Images with MI indices < 0.50 have shown 100% sensitivity and specificity for artifact detection when compared with a thorough visual analysis. Correlation of geometric tests confirms the ability to spatially locate the most likely image regions containing an artifact regardless of initial phantom orientation. Conclusion: The algorithm shows the potential to detect gamma camera artifacts that may be missed by routine technologist inspections. Detection and subsequent correction of artifacts ensures maximum image quality and may help to identify failing hardware before it impacts clinical workflow. Going forward, the algorithm is being

  2. Driving with head-slaved camera system

    NARCIS (Netherlands)

    Oving, A.B.; Erp, J.B.F. van

    2001-01-01

    In a field experiment, we tested the effectiveness of a head-slaved camera system for driving an armoured vehicle under armour. This system consists of a helmet-mounted display (HMD), a headtracker, and a motion platform with two cameras. Subjects performed several driving tasks on paved and in

  3. Improving the spatial resolution of the multiple multiwire proportional chamber gamma camera

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-03-01

    Results are presented showing how the spatial resolution of the multiple multiwire proportional chamber (MMPC) gamma camera may be improved. Under the best conditions 1.6 mm bars can be resolved. (author)

  4. Computer assisted collimation gamma camera: A new approach to imaging contaminated tissues

    International Nuclear Information System (INIS)

    Quartuccio, M.; Franck, D.; Pihet, P.; Begot, S.; Jeanguillaume, C.

    2000-01-01

    Measurement systems with the capability of imaging tissues contaminated with radioactive materials would find relevant applications in medical physics research and possibly in health physics. The latter in particular depends critically on the performance achieved for sensitivity and spatial resolution. An original approach of computer assisted collimation gamma camera (French acronym CACAO) which could meet suitable characteristics has been proposed elsewhere. CACAO requires detectors with high spatial resolution. The present work was aimed at investigating the application of the CACAO principle on a laboratory testing bench using silicon detectors made of small pixels. (author)

  5. Computer assisted collimation gamma camera: A new approach to imaging contaminated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Quartuccio, M.; Franck, D.; Pihet, P.; Begot, S.; Jeanguillaume, C

    2000-07-01

    Measurement systems with the capability of imaging tissues contaminated with radioactive materials would find relevant applications in medical physics research and possibly in health physics. The latter in particular depends critically on the performance achieved for sensitivity and spatial resolution. An original approach of computer assisted collimation gamma camera (French acronym CACAO) which could meet suitable characteristics has been proposed elsewhere. CACAO requires detectors with high spatial resolution. The present work was aimed at investigating the application of the CACAO principle on a laboratory testing bench using silicon detectors made of small pixels. (author)

  6. A new collimator for measurement of rCBF by means of gamma camera

    International Nuclear Information System (INIS)

    Zechmann, W.; Oberladstaetter, M.; Raccabona, G.; Vogl, G.; Gerstenbrand, F.

    1982-01-01

    Atraumatic measurement of rCBF by means of gamma camera and conventional collimators requires high doses of 133 Xenon to obtain high count rates over the cerebral ROI's. The input of time-activity curve of breathing air by means of a probe measurement is not possible on line without difficulties. A new collimator, developed by ours, which is comparable with standard rCBF-Multiprobe systems, which allows high countrates and low dose of 133 Xenon is presented. A special air bypass enables to get the breathing curve with simple ROI technique. The collimator can easily be adapted to the camera by means of an insert adapter ring. With this collimator the rCBF measurement with conventional equipment of a nuclear medicine department is possible. (Author)

  7. Design study of a Compton camera for prompts-gamma imaging during ion beam therapy

    International Nuclear Information System (INIS)

    Richard, Marie-Helene

    2012-01-01

    Ion beam therapy is an innovative radiotherapy technique using mainly carbon ion and proton irradiations. Its aim is to improve the current treatment modalities. Because of the sharpness of the dose distributions, a control of the dose if possible in real time is highly desirable. A possibility is to detect the prompt gamma rays emitted subsequently to the nuclear fragmentations occurring during the treatment of the patient. In a first time two different Compton cameras (double and single scattering) have been optimised by means of Monte Carlo simulations. The response of the camera to a photon point source with a realistic energy spectrum was studied. Then, the response of the camera to the irradiation of a water phantom by a proton beam was simulated. It was first compared with measurement performed with small-size detectors. Then, using the previous measurements, we evaluated the counting rates expected in clinical conditions. In the current set-up of the camera, these counting rates are pretty high. Pile up and random coincidences will be problematic. Finally we demonstrate that the detection system is capable to detect a longitudinal shift in the Bragg peak of ± 5 mm, even with the current reconstruction algorithm. (author)

  8. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    Energy Technology Data Exchange (ETDEWEB)

    Halama, J. [Loyola Univ. Medical Center (United States)

    2016-06-15

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Be able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images

  9. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    International Nuclear Information System (INIS)

    Halama, J.

    2016-01-01

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Be able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images

  10. Hydra phantom applicability for carrying out tests of field uniformity in gamma cameras

    International Nuclear Information System (INIS)

    Aragao Filho, Geraldo L.; Oliveira, Alex C.H.

    2014-01-01

    Nuclear Medicine is a medical modality that makes use of radioactive material 'in vivo' in humans, making them a temporary radioactive source. The radiation emitted by the patient's body is detected by a specific equipment, called a gamma camera, creates an image showing the spatial and temporal biodistribution of radioactive material administered to the patient. Therefore, it's of fundamental importance a number of specific measures to make sure that procedure be satisfactory, called quality control. To Nuclear Medicine, quality control of gamma camera has the purpose of ensuring accurate scintillographic imaging, truthful and reliable for the diagnosis, guaranteeing visibility and clarity of details of structures, and also to determine the frequency and the need for preventive maintenance of equipment. To ensure the quality control of the gamma camera it's necessary to use some simulators, called phantom, used in Nuclear Medicine to evaluate system performance, system calibration and simulation of injuries. The goal of this study was to validate a new simulator for nuclear medicine, the Hydra phantom. The phantom was initially built for construction of calibration curves used in radiotherapy planning and quality control in CT. It has similar characteristics to specific phantoms in nuclear medicine, containing inserts and water area. Those inserts are regionally sourced materials, many of them are already used in the literature and based on information about density and interaction of radiation with matter. To verify its efficiency in quality control in Nuclear Medicine, was performed a test for uniformity field, one of the main tests performed daily, so we can verify the ability of the gamma camera to reproduce a uniform distribution of the administered activity in the phantom, been analysed qualitatively, through the image, and quantitatively, through values established for Central Field Of View (CFOV) and Useful Field Of View (UFOV). Also, was evaluated their

  11. Use of calibration methodology of gamma cameras for the workers surveillance using a thyroid simulator

    International Nuclear Information System (INIS)

    Alfaro, M.; Molina, G.; Vazquez, R.; Garcia, O.

    2010-09-01

    In Mexico there are a significant number of nuclear medicine centers in operation. For what the accidents risk related to the transport and manipulation of open sources used in nuclear medicine can exist. The National Institute of Nuclear Research (ININ) has as objective to establish a simple and feasible methodology for the workers surveillance related with the field of the nuclear medicine. This radiological surveillance can also be applied to the public in the event of a radiological accident. To achieve this it intends to use the available equipment s in the nuclear medicine centers, together with the neck-thyroid simulators elaborated by the ININ to calibrate the gamma cameras. The gamma cameras have among their component elements that conform spectrometric systems like the employees in the evaluation of the internal incorporation for direct measurements, reason why, besides their use for diagnostic for image, they can be calibrated with anthropomorphic simulators and also with punctual sources for the quantification of the radionuclides activity distributed homogeneously in the human body, or located in specific organs. Inside the project IAEA-ARCAL-RLA/9/049-LXXVIII -Procedures harmonization of internal dosimetry- where 9 countries intervened (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru, Uruguay and Spain). It was developed a protocol of cameras gamma calibration for the determination in vivo of radionuclides. The protocol is the base to establish and integrated network in Latin America to attend in response to emergencies, using nuclear medicine centers of public hospitals of the region. The objective is to achieve the appropriate radiological protection of the workers, essential for the sure and acceptable radiation use, the radioactive materials and the nuclear energy. (Author)

  12. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  13. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera

    CERN Document Server

    Abe, A; Lee, J; Oka, T; Shizukuishi, K; Kikuchi, T; Inoue, T; Jimbo, M; Ryuo, H; Bickel, C

    2003-01-01

    We have designed and developed a small field of view gamma camera, the eZ SCOPE, based on use of a CdZnTe semiconductor. This device utilises proprietary signal processing technology and an interface to a computer-based imaging system. The purpose of this study was to evaluate the performance of the eZ scope in comparison with currently employed gamma camera technology. The detector is a single wafer of 5-mm-thick CdZnTe that is divided into a 16 x 16 array (256 pixels). The sensitive area of the detector is a square of dimension 3.2 cm. Two parallel-hole collimators are provided with the system and have a matching (256 hole) pattern to the CdZnTe detector array: a low-energy, high-resolution parallel-hole (LEHR) collimator fabricated of lead and a low-energy, high-sensitivity parallel-hole (LEHS) collimator fabricated of tungsten. Performance measurements and the data analysis were done according to the procedures of the NEMA standard. We also studied the long-term stability of the system with continuous use...

  14. SiPM-MAROC gamma-camera prototype with monolithic NaI(Tl) scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Dmitry; Ilyin, Andrey; Belyaev, Vladimir; Popova, Elan [National Research Nuclear University, Moscow Engineering Physics Institute (Russian Federation); Buzhan, Pavel; Stifutkin, Alexei [Moscow Engineering Physics Institute (Russian Federation)

    2015-05-18

    A full-body gamma-camera based on SiPM readout is currently under development as a part of MEPHI R activity supported in the framework of Russian Megagrants program. A goal of this development is a fast upgrade of existing medical equipment with minor changes in a system design and construction in order to combine SPECT and MR instruments. A monolithic NaI(Tl) scintillator commonly used for conventional PMT-based gamma cameras has been chosen for this study. SiPMs will be coupled with the scintillator via an optical guide. To cover scintillator surface thousands of SiPMs are required, together with multichannel front-end electronics. That means that readout electronics have to be very compact, with low power consumption and low cost. 64 – channel ASIC MAROC from Weeroc provides individual readout of each SiPM and has been considered as the best choice among electronics solutions available on the market. As the photodetector parameters are the key issues here, KETEK SiPMs with high detection efficiency, low crosstalk and low noise have been chosen for this study. In order to study the proposed detection system in detail and obtain detector module parameters, required for MC simulation, a 64-channel small prototype with 6x6mm{sup 2} SiPMs has been constructed and tested. SiPMs in SMD packages have been assembled as a matrix of 8x8 elements and readout by MAROC-based board. Prototype has been tested with different shape NaI(Tl) scintillators and gammas with different energy. Dedicated algorithms for extraction of gamma-event’s energy and position are under development. They are based on fitting a matrix of individual SiPMs responses by an analytical function F(x,y). They will be tested with GEANT-simulated events and experimental data. Development of the next (engineering) prototype of SiPM’s module for gamma-camera will be started soon.

  15. SiPM-MAROC gamma-camera prototype with monolithic NaI(Tl) scintillator

    International Nuclear Information System (INIS)

    Philippov, Dmitry; Ilyin, Andrey; Belyaev, Vladimir; Popova, Elan; Buzhan, Pavel; Stifutkin, Alexei

    2015-01-01

    A full-body gamma-camera based on SiPM readout is currently under development as a part of MEPHI R activity supported in the framework of Russian Megagrants program. A goal of this development is a fast upgrade of existing medical equipment with minor changes in a system design and construction in order to combine SPECT and MR instruments. A monolithic NaI(Tl) scintillator commonly used for conventional PMT-based gamma cameras has been chosen for this study. SiPMs will be coupled with the scintillator via an optical guide. To cover scintillator surface thousands of SiPMs are required, together with multichannel front-end electronics. That means that readout electronics have to be very compact, with low power consumption and low cost. 64 – channel ASIC MAROC from Weeroc provides individual readout of each SiPM and has been considered as the best choice among electronics solutions available on the market. As the photodetector parameters are the key issues here, KETEK SiPMs with high detection efficiency, low crosstalk and low noise have been chosen for this study. In order to study the proposed detection system in detail and obtain detector module parameters, required for MC simulation, a 64-channel small prototype with 6x6mm 2 SiPMs has been constructed and tested. SiPMs in SMD packages have been assembled as a matrix of 8x8 elements and readout by MAROC-based board. Prototype has been tested with different shape NaI(Tl) scintillators and gammas with different energy. Dedicated algorithms for extraction of gamma-event’s energy and position are under development. They are based on fitting a matrix of individual SiPMs responses by an analytical function F(x,y). They will be tested with GEANT-simulated events and experimental data. Development of the next (engineering) prototype of SiPM’s module for gamma-camera will be started soon.

  16. Initial clinical experience with dedicated ultra fast solid state cardiac gamma camera

    International Nuclear Information System (INIS)

    Aland, Nusrat; Lele, V.

    2010-01-01

    Full text: To analyze the imaging and diagnostic performance of new dedicated ultra fast solid state detector gamma camera and compare it with standard dual detector gamma camera in myocardial perfusion imaging. Material and Methods: In total 900 patients underwent myocardial perfusion imaging between 1st February 2010 and 29th August 2010 either stress/rest or rest/stress protocol. There was no age or gender bias (there were 630 males and 270 females). 5 and 15 mCi of 99m Tc - Tetrofosmin/MIBI was injected for 1st and 2nd part of the study respectively. Waiting period after injection was 20 min for regular stress and 40 min for pharmacological stress and 40 min after rest injection. Acquisition was performed on solid state detector gamma camera for a duration of 5 min and 3 min for 1st and 2nd part respectively. Interpretation of myocardial perfusion was done and QGS/QPS protocol was used for EF analysis. Out of these, 20 random patients underwent back to back myocardial perfusion SPECT imaging on standard dual detector gamma camera on same day. There was no age or gender bias (there were 9 males, 11 females). Acquisition time was 20 min for each part of the study. Interpretation was done using Autocard and EF analyses with 4 DM SPECT. Images obtained were then compared with those of solid state detector gamma camera. Result: Good quality and high count myocardial perfusion images were obtained with lesser amount of tracer activity on solid state detector gamma camera. Obese patients also showed good quality images with less tracer activity. As compared to conventional dual detector gamma camera images were brighter and showed better contrast with solid state gamma camera. Right ventricular imaging was better seen. Analyses of diastolic dysfunction was possible with 16 frame gated studies with solid state gamma camera. Shorter acquisition time with comfortable position reduced possibility of patient motion. All cardiac views were obtained with no movement of the

  17. Compact CdZnTe-Based Gamma Camera For Prostate Cancer Imaging

    International Nuclear Information System (INIS)

    Cui, Y.; Lall, T.; Tsui, B.; Yu, J.; Mahler, G.; Bolotnikov, A.; Vaska, P.; DeGeronimo, G.; O'Connor, P.; Meinken, G.; Joyal, J.; Barrett, J.; Camarda, G.; Hossain, A.; Kim, K.H.; Yang, G.; Pomper, M.; Cho, S.; Weisman, K.; Seo, Y.; Babich, J.; LaFrance, N.; James, R.B.

    2011-01-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high false-positive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integrated-circuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  18. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    Science.gov (United States)

    Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.

    2018-03-01

    In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.

  19. Two-dimensional diced scintillator array for innovative, fine-resolution gamma camera

    International Nuclear Information System (INIS)

    Fujita, T.; Kataoka, J.; Nishiyama, T.; Ohsuka, S.; Nakamura, S.; Yamamoto, S.

    2014-01-01

    We are developing a technique to fabricate fine spatial resolution (FWHM<0.5mm) and cost-effective photon counting detectors, by using silicon photomultipliers (SiPMs) coupled with a finely pixelated scintillator plate. Unlike traditional X-ray imagers that use a micro-columnar CsI(Tl) plate, we can pixelate various scintillation crystal plates more than 1 mm thick, and easily develop large-area, fine-pitch scintillator arrays with high precision. Coupling a fine pitch scintillator array with a SiPM array results in a compact, fast-response detector that is ideal for X-ray, gamma-ray, and charged particle detection as used in autoradiography, gamma cameras, and photon counting CTs. As the first step, we fabricated a 2-D, cerium-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) scintillator array of 0.25 mm pitch, by using a dicing saw to cut micro-grooves 50μm wide into a 1.0 mm thick Ce:GAGG plate. The scintillator plate is optically coupled with a 3.0×3.0mm pixel 4×4 SiPM array and read-out via the resistive charge-division network. Even when using this simple system as a gamma camera, we obtained excellent spatial resolution of 0.48 mm (FWHM) for 122 keV gamma-rays. We will present our plans to further improve the signal-to-noise ratio in the image, and also discuss a variety of possible applications in the near future

  20. Realisation of a gamma emission tomograph by a servo-controlled camera and bed

    International Nuclear Information System (INIS)

    Guzman-Torres, D.R.

    1980-07-01

    We took part in the building of a transverse axial emission tomograph intended for nuclear medicine. The following three points were dealt with: mathematical, choice of processing algorithm; electronic, development of equipment; experimental, testing of the system built. On the mathematical side, following a survey of reconstruction methods, we studied the use of a reconstruction algorithm after filtering of the projections by convolution which gives a good spatial resolution. We also proposed a means to solve the computing time/quality of image problem, leading to a satisfactory result within a shorter total investigation time. In this way the computing time has been reduced by a factor three. In the electronics field we built an interface between the bed, the gamma camera and the computer already in the laboratory. The present instrument corresponds to version no. 2. The system control the bed and gamma camera which are operated from the computer. Experimentally we were able on checking the calculations with a phantom made up of small emitting sources, to prove by finding the exact spot our ability to locate active foci on the patient. While the results obtained are encouraging from the image restitution viewpoint, the study of problems related to self-absorption inside the organ and those of statistical noise have still to be continued [fr

  1. SiPM arrays and miniaturized readout electronics for compact gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, N., E-mail: dinu@lal.in2p3.fr [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Imando, T. Ait; Nagai, A. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Pinot, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Puill, V. [Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay (France); Callier, S. [Omega Microelectronics Group, CNRS, Palaiseau (France); Janvier, B.; Esnault, C.; Verdier, M.-A. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France); Raux, L. [Omega Microelectronics Group, CNRS, Palaiseau (France); Vandenbussche, V.; Charon, Y.; Menard, L. [Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay (France)

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m{sup 2}. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm{sup 2} sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  2. Expanding of FOV of NaI(Tl) gamma camera detectors-Is it possible?

    International Nuclear Information System (INIS)

    Gayshan, Vadim L.; Gektin, A.V.; Boyarintsev, A.; Pedash, V.

    2006-01-01

    Every gamma camera detector used for medical imaging of conventional design faces the problem of distorted or no information readout at the areas closer to the edge of detectors. Obtaining position and energy information becomes almost impossible at distance 0-12 of PMT size from the edge. Therefore, in some designs were proposed losing of edge energy resolution while improving in spatial uniformity when it comes to imaging at the edges. This work is dedicated to understanding of the problem, mathematical simulations, practical tests and recommendations to build detectors with larger usable FOV without increasing in dimensions. To study the problem we built the test jig with linear motion source and readout electronics to simulate gamma cameras of PMTs. Based on simulation results the idea of modifying of crystal shape combined with specific light redirection system of baffles was tested and allowed to expand usable FOV. The results are presented and showed that for traditional NaI(Tl) scintillators using 2'' PMT may be possible to obtain relatively good spatial resolution starting from 4-5mm from the edge of a detector. The question of economical efficiency of proposed method is being investigated and a special detector manufacturing technology must be developed to accommodate this. While we believe that achieved results are very important for small size detectors (<20cm) they could be beneficial even for larger detectors used in whole body imaging systems

  3. IMEF gamma scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs.

  4. IMEF gamma scanning system

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun; Jeon, Yong Bum.

    1997-06-01

    The gamma scanning system which is installed in IMEF is the equipment obtaining the gamma ray spectrum from irradiated fuels. This equipment could afford the useful data relating spent fuels like as burn-up measurements. We describe the specifications of the equipment and its accessories, and also described its operation procedure so that an operator can use this report as the operation procedure. (author). 1 tab., 11 figs., 11 refs

  5. Geant4 simulation of a 3D high resolution gamma camera

    International Nuclear Information System (INIS)

    Akhdar, H.; Kezzar, K.; Aksouh, F.; Assemi, N.; AlGhamdi, S.; AlGarawi, M.; Gerl, J.

    2015-01-01

    The aim of this work is to develop a 3D gamma camera with high position resolution and sensitivity relying on both distance/absorption and Compton scattering techniques and without using any passive collimation. The proposed gamma camera is simulated in order to predict its performance using the full benefit of Geant4 features that allow the construction of the needed geometry of the detectors, have full control of the incident gamma particles and study the response of the detector in order to test the suggested geometries. Three different geometries are simulated and each configuration is tested with three different scintillation materials (LaBr3, LYSO and CeBr3)

  6. Performance of the prototype LaBr{sub 3} spectrometer developed for the JET gamma-ray camera upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rigamonti, D., E-mail: davide.rigamonti@mib.infn.it; Nocente, M.; Gorini, G. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica del Plasma “P. Caldirola,” CNR, Milano (Italy); Muraro, A.; Giacomelli, L.; Cippo, E. P.; Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola,” CNR, Milano (Italy); Perseo, V. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Boltruczyk, G.; Gosk, M.; Korolczuk, S.; Mianowski, S.; Zychor, I. [Narodowe Centrum Badań Jądrowych (NCBJ), 05-400 Otwock-Swierk (Poland); Fernandes, A.; Pereira, R. C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Figueiredo, J. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); EUROfusion Programme Management Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Kiptily, V. [Culham Science Centre for Fusion Energy, Culham (United Kingdom); Murari, A. [EUROfusion Programme Management Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Consorzio RFX (CNR, ENEA, INFN, Universita’ di Padova, Acciaierie Venete SpA), Padova (Italy); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-15

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr{sub 3} crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at E{sub γ} = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  7. A digital variable persistence oscilloscope for gamma cameras

    International Nuclear Information System (INIS)

    Fenwick, J.D.; Thompson, A.

    1981-01-01

    The system briefly described is intended as a direct replacement for the analogue persistence oscilloscope, particularly in systems without a computer processor. It uses digital and video techniques to produce an image quality suitable for use in positioning patients under the camera at a low cost (total cost of materials used, Pound500). The performance is superior to the analogue oscilloscope in that the image is displayed with 16 shades of grey. It incorporates an automatic brightness control which ensures that the image does not saturate at high count density, and the saturation can be changed manually allowing areas of low counts to be examined in the presence of high counts. The digital inability to store each single event as a dot which fades exponentially with time has been solved by adding each event into the appropriate cell of a digital display matrix, and then periodically dividing the contents of each image cell by two. The cells are addressed and divided in a pseudo-random pattern so that, to the observer, the whole image appears to fade smoothly and evenly. (U.K.)

  8. The use of a Micromegas as a detector for gamma camera

    International Nuclear Information System (INIS)

    Barbouchi, Asma; Trabelsi, Adel

    2008-01-01

    The micromegas (Micro Mesh Gaseaous) is a gas detector; it was developed by I.Giomattaris and G.Charpak for application in the field of experimental particle physics. But the polyvalence of this detector makes it to be used in several areas such as medical imaging. This detector has an X-Y readout capability of resolution less than 100μm, an energy resolution down to 14% for energy range 1-10 keV and an overall efficiency of 70%. Monte carlo simulation is widely used in nuclear medicine. It allows predicting the behaviour of system. Gate (Geant4 for Application Tomography Emission) is a platform for monte carlo simulation. It is dedicated to PET/SPECT (Position Emission Tomography / single Photon Emission Tomography) applications. Our goal is to model a gamma camera that use a Micromegas as a detector and to compare their performances (energy resolution, point spread function...) with those of a scintillated gamma camera by using Gate

  9. Modular gamma systems

    International Nuclear Information System (INIS)

    Millegan, D.R.; Nixon, K.V.

    1982-01-01

    Nuclear safeguards requires sensitive, easily operated instruments for rapid inspection of personnel and vehicles to ensure that no uranium or plutonium is being diverted. Two portable gamma-ray detection systems have been developed. The Modular Gamma System (MGS) is very sensitive and two or more systems can be connected for even better performance. The multiunit configuration can be deployed by motor vehicle for search of large areas too extensive to search on foot. The Programmable Rate Monitor (PRM) is less sensitive but much smaller and therefore is more suitable for search of vehicles, personnel, or smaller areas. The PRM is programmable, which implements measurement and alarm algorithms for individual applications

  10. A study of effects of scattered reaction on physical parameters of a new gamma camera used in nuclear medicine

    International Nuclear Information System (INIS)

    Maury, Martine.

    1979-01-01

    This work is devoted to the analysis of the performance of a new gamma camera. This camera is characterized by the introduction of an image amplifier between the crystal detector and the localization system which compound four photomultipliers. The appreciation of performances of this new instrument is based on the measure of the physical parameters usually studied in this purpose: energy resolution, spatial resolution, modulation transfert fonction and contrast, sensitivity and deadtime. Furthermore, we have studied the influence of scattered radiation on the value of these parameters. Two studies complete this work: the artificial deterioration of the energy resolution of the camera inserting a noise, to estimate the importance of the energy resolution on the image contrast; the scanning of pulse amplitude spectra obtained from brain of patients in order to evaluate the participation of scattered radiation in the peak's constitution. We present, at last, a quality control programm for scintillation camera [fr

  11. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Domke, M.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Krumm, B.; Lorenz, E.

    2011-01-01

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  12. New camera systems for fuel services

    International Nuclear Information System (INIS)

    Hummel, W.; Beck, H.J.

    2010-01-01

    AREVA NP Fuel Services have many years of experience in visual examination and measurements on fuel assemblies and associated core components by using state of the art cameras and measuring technologies. The used techniques allow the surface and dimensional characterization of materials and shapes by visual examination. New enhanced and sophisticated technologies for fuel services f. e. are two shielded color camera systems for use under water and close inspection of a fuel assembly. Nowadays the market requirements for detecting and characterization of small defects (lower than the 10th of one mm) or cracks and analyzing surface appearances on an irradiated fuel rod cladding or fuel assembly structure parts have increased. Therefore it is common practice to use movie cameras with higher resolution. The radiation resistance of high resolution CCD cameras is in general very low and it is not possible to use them unshielded close to a fuel assembly. By extending the camera with a mirror system and shielding around the sensitive parts, the movie camera can be utilized for fuel assembly inspection. AREVA NP Fuel Services is now equipped with such kind of movie cameras. (orig.)

  13. Quantitative studies with the gamma-camera: correction for spatial and energy distortion

    International Nuclear Information System (INIS)

    Soussaline, F.; Todd-Pokropek, A.E.; Raynaud, C.

    1977-01-01

    The gamma camera sensitivity distribution is an important source of error in quantitative studies. In addition, spatial distortion produces apparent variations in count density which degrades quantitative studies. The flood field image takes into account both effects and is influenced by the pile-up of the tail distribution. It is essential to measure separately each of these parameters. These were investigated using a point source displaced by a special scanning table with two X, Y stepping motors of 10 micron precision. The spatial distribution of the sensitivity, spatial distortion and photopeak in the field of view were measured and compared for different setting-up of the camera and PM gains. For well-tuned cameras, the sensitivity is fairly constant, while the variations appearing in the flood field image are primarily due to spatial distortion, the former more dependent than the latter on the energy window setting. This indicates why conventional flood field uniformity correction must not be applied. A correction technique to improve the results in quantitative studies has been tested using a continuously matched energy window at every point within the field. A method for correcting spatial distortion is also proposed, where, after an adequately sampled measurement of this error, a transformation can be applied to calculate the true position of events. The knowledge of the magnitude of these parameters is essential in the routine use and design of detector systems

  14. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  15. Camera Based Navigation System with Augmented Reality

    Directory of Open Access Journals (Sweden)

    M. Marcu

    2012-06-01

    Full Text Available Nowadays smart mobile devices have enough processing power, memory, storage and always connected wireless communication bandwidth that makes them available for any type of application. Augmented reality (AR proposes a new type of applications that tries to enhance the real world by superimposing or combining virtual objects or computer generated information with it. In this paper we present a camera based navigation system with augmented reality integration. The proposed system aims to the following: the user points the camera of the smartphone towards a point of interest, like a building or any other place, and the application searches for relevant information about that specific place and superimposes the data over the video feed on the display. When the user moves the camera away, changing its orientation, the data changes as well, in real-time, with the proper information about the place that is now in the camera view.

  16. Utilization of a gamma camera in research of the concentration in marine products

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi

    1981-01-01

    A gamma camera was used for the study of the metabolism of micro elements in marine products. Hexagrammos otakii (rock trout) was put under anesthesia with MS-222. By cutting partly the abdomen, the internal organs were exposed. 1 - 2 mCi of technetium-99m was injected into the bulbus arteriosus. From immediately after the injection, photographs were taken consecutively, one picture every 0.5 second for 30 seconds, to a total of 60 pictures. Since the gamma camera has been developed solely for human beings, there is some inconvenience when it is applied to marine products. The advantages of using a gamma camera are the observation on the behavior of substances in a body while a marine product is alive, and the grasping of the variation in substance behavior at extremely brief intervals. The disadvantages are the low resolution of about 5 mm - 7 mm, and the difficulty in differentiating overlapping organs. (J.P.N.)

  17. Integration of gamma cameras and PET devices of multiple vendors in several locations

    International Nuclear Information System (INIS)

    Dresel, S.; Vollmar, C.; Sengupta, S.; Hahn, K.

    2002-01-01

    Full text: The Department of Nuclear Medicine of the University of Munich consists of four independently operated locations with a total of 18 gamma cameras (of three vendors), one PET scanner and one coincidence gamma camera. Recent hardware improvements, the installation and development of fast networks and new technologies for storage of large data volumes all contribute to the propagation of digital reading and reporting of nuclear medicine studies. Thus, the vision of a fully digitized nuclear medicine department becomes reality. In 1997 the department started with a strategy to fully integrate the entire number of imaging devices into one network for filmless reading, archiving and distributing nuclear medicine studies throughout the hospitals. The decision was made to use HERMES workstations (Nuclear Diagnostics, Sweden) to connect all primary imaging modalities. The purpose of the workstations located in the Nuclear Medicine departments is threefold: postprocessing, reading and archiving of all data. The workstations are networked throughout the different hospitals and are able to read the proprietary or DICOM data of the vendors of the gamma camera and PET equipment. The HERMES system is connected via DICOM interface to a long term storage device (AGFA, Germany). Additionally a JAVA (SUN Microsystems, USA) based software (JARVIS, Nuclear Diagnostics) is available to view all data from any computer using a web browser. Furthermore all data is linked to the hospital information system and selected imaging data are distributed throughout the hospitals. After commencement of full service of the network in 2000 the department is over 95 % filmfree. The high costs of purchasing hardware- and software-components are compensated for by saving costs of films and by the improvement of the work flow. Independently from these issues, filmless reporting proves to be advantageous over conventional film reading in many facts that justify to switch to a digital department

  18. Gamma ray calibration system

    International Nuclear Information System (INIS)

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  19. Feasibility of the gamma camera acceptance testing procedure introduced by the Swiss Federal Office of public health

    International Nuclear Information System (INIS)

    Baechler, S.; Bochud, F.; Verdun, F.R.; Corminboeuf, F.; Linder, R.; Trueb, Ph.; Malterre, J.; Bischof Delaloye, A.

    2006-01-01

    Like in the field of radiology, digital systems are also becoming the standard in the field of nuclear medicine. This offers not only the possibility to process, transmit and archive data from patients more easily but also to introduce quantitative measurements for quality controls. In this framework, standards concerning the qualification of gamma camera systems have been updated and appeared to be useful to set legal requirements, in spite of the fact, that this is not their goals. The aim of this study was first to choose a set of tests described in standards to define measurements to be performed at the acceptance of the systems and after the regular maintenance (at least once every six months). Reference values are then established to control the stability of the system. To verify the feasibility, from a technical and a time requirements points of view, the tests proposed for the quality assurance programme have been applied on three gamma camera systems. The results of this study show that new requirements concerning the quality assurance of gamma camera of the Swiss Federal Office of Public Health based on international standards required to slightly modify some procedures to reduce the time necessary for the acceptance and status tests. (authors)

  20. Gamma camera based Positron Emission Tomography: a study of the viability on quantification

    International Nuclear Information System (INIS)

    Pozzo, Lorena

    2005-01-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  1. Star camera aspect system suitable for use in balloon experiments

    International Nuclear Information System (INIS)

    Hunter, S.D.; Baker, R.G.

    1985-01-01

    A balloon-borne experiment containing a star camera aspect system was designed, built, and flown. This system was designed to provide offset corrections to the magnetometer and inclinometer readings used to control an azimuth and elevation pointed experiment. The camera is controlled by a microprocessor, including commendable exposure and noise rejection threshold, as well as formatting the data for telemetry to the ground. As a background program, the microprocessor runs the aspect program to analyze a fraction of the pictures taken so that aspect information and offset corrections are available to the experiment in near real time. The analysis consists of pattern recognition of the star field with a star catalog in ROM memory and a least squares calculation. The performance of this system in ground based tests is described. It is part of the NASA/GSFC High Energy Gamma-Ray Balloon Instrument (2)

  2. Patient restraining device for the pinhole collimator and gamma scintillation camera

    International Nuclear Information System (INIS)

    Kay, T.D.

    1977-01-01

    A patient restraining device for use with the pinhole collimator of a conventional Gamma Scintillation Camera, the restraining device being made of an adapter ring and a patient holder. The adapter ring is secured directly to the pinhole collimator while the holder is adjustably mounted on the adapter. The adapter ring is so designed to accommodate a variety of holders so as to enable the scanning of many different areas of a patient's anatomy by the scintillation camera

  3. Gamma Camera with Image Amplifier: Application in Nuclear Medicine; Camera Gamma a Amplificateur d'Image: Application en Medecine Nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Kellershohn, C.; Vernejoul, P. de; Desgrez, A. [CEA, Service Hospitalier Frederic Joliot, Orsay (France); Lequais, J.; Roux, G.; Lansiart, A. [CEA, Centre d' Etudes Nucleaires de Saclay, Gif-Sur-Yvette (France)

    1969-05-15

    The camera described has an optical system consisting of a lead grid collimator with 649 cylindrical channels 130 mm long and 5.5 mm in diameter; a detector consisting of a mosaic of 700 NaI(Tl) crystals with an effective diameter of 5.5 mm, length 20 mm, and a distance of 7.5 mm between the axes; and a light amplification device consisting of an initial image amplifier (No. 9463 of the French Thomson-Houston Company), the photocathode of which is in optical contact with the detector and is itself optically coupled to a second, high-gain light amplifier (P 829A, from English Electric Valve). In accordance with a principle first laid down during the preceding Conference on Medical Isotope Scanning organized by the International Atomic Energy Agency, this second amplifier may also be used as an electronic shutter operated by a photomultiplier which selects the light originating in the radio active source under examination. This device very effectively suppresses the background from the first amplifier tube. With reference to applications, the camera is used for two types of operation: firstly for the activation of the electronic shutter device, the rate of whose opening and shutting may reach 10 kHz; the background is almost entirely eliminated and it is possible with trace doses of conventional radionuclides to obtain images of such organs as the thyroid, liver, kidney, etc., in very short exposure times by comparison with customary scanning; secondly, by utilizing radionuclides of very short half-life with very high activities (of the order of several mCi), it is no longer necessary to effect suppression of the background whose repetition frequency is limited to 10 kHz. One can thus obtain ultrashort exposure times, e.g., about 1/20th of a second for an amount of 10 mCi of {sup 99m}Tc; such exposure times make cinematography possible. Various examples are supplied of applications making use of {sup 99m}Tc, {sup 137m}Ba and {sup 133}Xe in the field of vascular and

  4. A technique for the absolute measurement of activity using a gamma camera and computer

    International Nuclear Information System (INIS)

    Fleming, J.S.

    1979-01-01

    The quantity of activity of an isotope in an organ is of interest in gamma camera studies. There are problems in correcting the regional gamma camera counts for varying absorption in body tissue, particularly for thick organs. A description is given of a general method, based on anterior, posterior and lateral views. The method has been applied to liver 99 Tcsup(m) sulphur colloid imaging. Phantom measurements showed that the smallest error to be expected was 3.2%. In practice errors would be 5 to 10%, although lower errors would be associated with estimates of liver/spleen ratios. (U.K.)

  5. Bullet scintigraphy: can gamma camera be used for depleted uranium accident measurements?

    International Nuclear Information System (INIS)

    Spaic, R.; Markovic, S.; Pavlovic, S.; Radic, Z.; Pavlovic, R.; Ajdinovic, B.; Baskot, B.; Djurovic, B.

    2002-01-01

    The aim of this study was to see could gamma cameras be used for measurement of internal contamination with depleted uranium. Radioactive waste depleted uranium, which is by-product from the production of enriched fuel for nuclear rectors and weapons now, is used for manufacture bullets, which are used in Iraq, Republic of Srpska and Yugoslavia. In this paper is measured minimum detectable activity (MDA) of gamma cameras for depleted uranium, iodine and technetium. For detection of the depleted uranium are used low energy X-rays, energy of 100 keV with 20% windows width. About 40% of gamma emissions of the depleted uranium are in these limits. Measured MDA activities 50-100 Bq for depleted uranium, iodine and technetium are about then times more then same for WBC (5 Bq). Gamma cameras can be used for relatively measurement of depleted uranium activity, what can be used for absorbed dose estimation. Detection of low level internal contamination with depleted uranium can be done with gamma cameras. (authors)

  6. Development of the neutron filters for JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Popovichev, S.; Riccardo, V.; Syme, B; Thompson, V.; Murari, A.; Zoita, V.; Bonheure, G.; Le Guern

    2007-01-01

    The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion evaluation in JET plasmas. The JET Gamma-Ray Cameras (GRC) upgrade project deals with the design of appropriate neutron/gamma-ray filters ('neutron attenuaters').The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. FEA methods used to evaluate the behaviour of the filter casings under the loadings (internal hydrostatic pressure, torques) have proven the stability of the structure. (authors)

  7. Evaluation of intrinsic uniformity of gamma camera in the Servicio de Medicina Nuclear at the Hospital San Juan de Dios

    International Nuclear Information System (INIS)

    Mora Ramirez, Erick

    2007-01-01

    The quality assurance program in a nuclear medicine department aims to minimize errors and artifacts that cover all aspects of clinical practice. The quality control can be seen such as one particular procedure used to meet measurements that can be followed along the time. The intrinsic flood-field uniformity is one of the quality control procedures to evaluate the response of a gamma camera to a spatially uniform flux of an incident gamma radiation over the field of view. The gamma cameras, recording the integral and differential uniformity figures of the intrinsic uniformity during the 2007, were evaluated in order to establish how well the instruments were working. An evaluation of the acquisition protocol which implies the variation of the acquired counts, the energy window width and its placement was performed at the beginning. After that the recorded data were analyzed creating plots which were showing the performance of the systems. Using an energy window placed at 140 keV at 20 %, with matrix size of 512 x 512, acquiring 15 million counts and the source activity close to 700 μC; it was thought that good enough images and uniformities are obtained. Both are within the manufactures requirements; however, increasing the number of acquired counts, images are much better and an improvement in the evaluated parameters can be seen. The performance evaluation of the three gamma cameras was taking into account for approximately 240 days, showing an integral uniformity range of 1.04 - 3.5 % and the range for differential uniformity vary from 0.88 up to 2.7 %. It concludes that the gamma cameras were working quite well, no need to vary the acquisition protocol because it is good enough to perform this test. Also, factors affecting the quality of the images are radioactive waste material not very well shielded and temperature room variations, especially at the beginning of the workday. (author) [es

  8. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    Science.gov (United States)

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. An Imaging Camera for Biomedical Application Based on Compton Scattering of Gamma Rays

    OpenAIRE

    Fontana, Cristiano Lino

    2013-01-01

    In this thesis we present the R&D of a Compton Camera (CC) for small object imaging. The CC concept requires two detectors to obtain the incoming direction of the gamma ray. This approach, sometimes named ``Electronic Collimation,'' differs from the usual technique that employs collimators for physically selecting gamma-rays of a given direction. This solution offers the advantage of much greater sensitivity and hence smaller doses. We propose a novel design, which uses two simila...

  10. New detection modules for gamma, beta and X-ray cameras

    International Nuclear Information System (INIS)

    Azman, S.; Bolle, E.; Dang, K.Q.; Dang, W.; Dietzel, K.I.; Froberg, T.; Gaarder, P.E.; Gjaerum, J.A.; Haugen, S.H.; Hellum, G.; Henriksen, J.R.; Johanson, T.M.; Kobbevik, A.; Maehlum, G.; Meier, D.; Mikkelsen, S.; Ninive, I.; Oya, P.; Pavlov, N.; Pettersen, D.M.; Sundal, B.M.; Talebi, J.; Yoshioka, K.

    2003-01-01

    Full text: Ideas ASA is developing new detection modules for gamma, beta and X-ray cameras. Recent developments focus on modules using various semi-conductor materials (CZT, HgI, Si). The development includes ASIC design, detector module development, and implementation in camera heads. In this presentation we describe the characteristics of important ASICs and its properties in terms of electronic noise, and the modes for measuring signals (switched current modes, sparsified modes, self triggered modes). The ASICs are specific for detectors and applications. We describe recent developments using various semi - conductor materials. We describe important design aspects for medical applications and in life science (SPECT, beta, X-ray cameras)

  11. Risks assessment associated with the use of an analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Figueroa del Valle, D. G.

    2013-01-01

    Technological development experienced by the industrialized countries has been accompanied by a significant improvement in living standards. Likewise, the proliferation of facilities and transportation of certain materials have involved the emergence of new risks, which could cause accidents with a strong impact on people and the environment. The paper makes a risk assessment associated with the use of an analyzer for Gamma Cameras diagnostic. The method is bases on determining the number of risks HRN (Hazard Rating Number). As a result of the methodology used was obtained the risks that have more implications in the use of this system and sets safety rules for their use and an action plan for managing them. (Author)

  12. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.A.M. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)], E-mail: a.miranda@portugalmail.pt; Sarmento, S. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Alves, P.; Torres, M.C. [Departamento de Fisica da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bastos, A.L. [Servico de Medicina Nuclear, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Ponte, F. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2008-01-15

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector.

  13. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    International Nuclear Information System (INIS)

    Santos, J.A.M.; Sarmento, S.; Alves, P.; Torres, M.C.; Bastos, A.L.; Ponte, F.

    2008-01-01

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector

  14. Risk analysis for working with an analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, Ivon; Figueroa del Valle, Diana G.

    2014-01-01

    In this work, an analysis of the risks for working with an analyzer for gamma cameras diagnostic was made. The method employed is based on determining the Hazard Rating Number (HRN). The results showed that the risks with higher value of HRN are electrocution with 100 and touch source container with hands with 75. These risks were classified as 'Very High' and 'High' respectively. The following risks were classified as 'Important': Fall of the source container (HRN = 25), high dose of the sample in the container (HRN = 20) and fracture of glass detector (HRN = 30). The wrong shielding of the source container (HRN = 10) is a risk that was classified as L ow . Safety rules for use of the system are indicated. An action plan for risk management is also presented. (author)

  15. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  16. Performance tests of two portable mini gamma cameras for medical applications

    International Nuclear Information System (INIS)

    Sanchez, F.; Fernandez, M. M.; Gimenez, M.; Benlloch, J. M.; Rodriguez-Alvarez, M. J.; Garcia de Quiros, F.; Lerche, Ch. W.; Pavon, N.; Palazon, J. A.; Martinez, J.; Sebastia, A.

    2006-01-01

    We have developed two prototypes of portable gamma cameras for medical applications based on a previous prototype designed and tested by our group. These cameras use a CsI(Na) continuous scintillation crystal coupled to the new flat-panel-type multianode position-sensitive photomultiplier tube, H8500 from Hamamatsu Photonics. One of the prototypes, mainly intended for intrasurgical use, has a field of view of 44x44 mm 2 , and weighs 1.2 kg. Its intrinsic resolution is better than 1.5 mm and its energy resolution is about 13% at 140 keV. The second prototype, mainly intended for osteological, renal, mammary, and endocrine (thyroid, parathyroid, and suprarenal) scintigraphies, weighs a total of 2 kg. Its average spatial resolution is 2 mm; it has a field of view of 95x95 mm 2 , with an energy resolution of about 15% at 140 keV. The main advantages of these gamma camera prototypes with respect to those previously reported in the literature are high portability and low weight, with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the mini gamma cameras, and no external electronic devices are required. The cameras are only connected through the universal serial bus port to a portable PC. In this paper, we present the design of the cameras and describe the procedures that have led us to choose their configuration together with the most important performance features of the cameras. For one of the prototypes, clinical tests on melanoma patients are presented and images are compared with those obtained with a conventional camera

  17. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    International Nuclear Information System (INIS)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D.; Rebelo, A.M.O.; Teran, M.; Paolino, A.; Hermida, J.C.; Rojo, A.M.; Puerta, J.A.; Morales, J.; Bejerano, G.M.L.; Alfaro, M.; Ruiz, M.A.; Videla, R.; Pinones, O.; Gonzalez, S.; Navarro, T.; Cruz-Suarez, R.

    2007-01-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of 131 I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  18. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D. [Instituto de Radioprotecao e Dosimetria, CNEN, Av. Salvador Allende s/n, Rio de Janeiro (Brazil); Rebelo, A.M.O. [University Hospital, Nuclear Medicine Center, Rio de Janeiro (Brazil); Teran, M.; Paolino, A. [Facultad de Quimica, Montevideo (Uruguay); Hermida, J.C. [Hospital de Clinicas, Facultad de Medicina, Montevideo (Uruguay); Rojo, A.M. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Puerta, J.A.; Morales, J. [Universidad Nacional de Colombia, Medellin (Colombia); Bejerano, G.M.L. [Centro de Proteccion e Higiene de las Radiaciones, Ciudad de la Habana (Cuba); Alfaro, M.; Ruiz, M.A. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac (Mexico); Videla, R.; Pinones, O. [Comision Chilena de Energia Nuclear, Santiago (Chile); Gonzalez, S. [Instituto Peruano de Energia Nuclear, Lima (Peru); Navarro, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Cruz-Suarez, R. [International Atomic Energy Agency, Vienna (Austria)

    2007-07-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of {sup 131}I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  19. A new method for elimination of artifacts produced by collimator septum effect in gamma-camera images

    International Nuclear Information System (INIS)

    Uchida, Isao; Onai, Yoshio; Tomaru, Teizo; Irifune, Toraji; Kakegawa, Makoto.

    1978-01-01

    Collimator artifacts may be present within the images produced by collimators whose septal width approaches the inherent resolution of the gamma-camera system. As the inherent resolution of the gamma-camera is improved, collimator artifacts become more prominent. The purpose of this study is to eliminate collimator artifacts from gamma-camera images. To eliminate the septum effect produced by high-energy parallel-hole collimators with thick septa, the following method was used: X and Y signals from the detector are made to ride on the triangular waves changing periodically, and resultant position signals obtained by this processing are applied to the corresponding deflection circuits in the CRT display. The oscillation amplitude of processed position signals can be regulated by the frequency and amplitude of the triangular waves. Regulation of the oscillation amplitude of position signals, which would produce maximum reduction of collimator artifacts, was to approach the spatial frequency responses of the overall processed line spread functions obtained experimentally to those of the Gaussian functions with FWHM equal to the geometric resolution calculated from the equation given by Gerber and Miller. In images of a pancreas phantom containing 131 I, collimator artifacts were clearly seen in the unprocessed case, but were eliminated in the processed case. (auth.)

  20. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M; Spiro, A [Loyola University Maryland, Baltimore, Maryland (United States); Vogel, R [Iowa Doppler Products, Iowa City, Iowa (United States); Donaldson, N; Gosselin, C [Rockhurst University, Kansas City, MO (United States)

    2015-06-15

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.

  1. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    International Nuclear Information System (INIS)

    Lowe, M; Spiro, A; Vogel, R; Donaldson, N; Gosselin, C

    2015-01-01

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images

  2. Annihilation gamma ray background characterization and rejection for a positron camera

    International Nuclear Information System (INIS)

    Levin, C.S.; Tornai, M.P.; MacDonald, L.R.

    1996-01-01

    We have developed a miniature (1.2 cm 2 ) beta-ray camera prototype to assist a surgeon in locating and removing the margins of a resected tumor. When imaging positron emitting radiopharmaceuticals, annihilation gamma ray interactions in the detector can mimic those of the betas. The extent of the background contamination depends on the detector, geometry and tumor specificity of the radiopharmaceutical. We have characterized the effects that annihilation gamma rays have on positron imaging with the camera. We studied beta and gamma ray detection rates and imaging using small positron or electron sources directly exposed to the detector to simulate hot tumor remnants and a cylinder filled with 18 F to simulate annihilation background from the brain. For various ratios of phantom brain/tumor activity, a annihilation gamma rate of 1.8 cts/sec/gCi was measured in the CaF 2 (Eu) detector. We present two gamma-ray background rejection schemes that use a β-γ coincidence. Results show that the coincidence methods works with ∼99% gamma ray rejection efficiency

  3. Design and realization of an AEC&AGC system for the CCD aerial camera

    Science.gov (United States)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  4. Use of gamma camera for measurement of the internal contamination with depleted uranium

    International Nuclear Information System (INIS)

    Spaic, R.; Markovic, S.; Pavlovic, S.; Pavlovic, R.; Ajdinovic, B.; Baskot, B.; Djurovic, B.

    2000-01-01

    Depleted uranium from radioactive wastes is used for manufacturing bullets used in Iraq, Republic of Serbia and Yugoslavia. These bullets are extremely dense and capable of penetrating heavily armored vehicles. Their medical importance lies in the fact that the bullets contain seventy percent depleted uranium which creates aerosolized particles less than five microns in diameter, small enough to be inhaled, after spontaneous bullet burn at impact. Nuclear medicine scientists must be aware of this and be prepared to measure internal contamination of persons exposed to this radioactive material. Whole body counters (WBC) represent appropriate equipment for this purpose but their availability in developing countries is not sufficient. Gamma camera is an alternative. The minimum detectable activity (MDA) of depleted uranium, iodine and technetium for gamma cameras was measured in this paper. Low energy X-ray 100 KeV with 20% windows are used for the depleted uranium detection. About 40% gamma emissions from depleted uranium fall within these limits. The activities measured (50-100 Bq) are about ten times higher then on WBC (5 Bq). This does not limit the use of gamma cameras for measurement of lung or whole body internal contamination with depleted uranium. (author)

  5. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    Science.gov (United States)

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.

    Science.gov (United States)

    Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F

    1980-01-01

    Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.

  7. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera.

    Science.gov (United States)

    Jones, Elizabeth A; Phan, Trinh D; Blanchard, Deborah A; Miley, Abbe

    2009-12-01

    Breast-specific gamma-imaging (BSGI), also known as molecular breast imaging, is breast scintigraphy using a small-field-of-view gamma-camera and (99m)Tc-sestamibi. There are many different types of breast cancer, and many have characteristics making them challenging to detect by mammography and ultrasound. BSGI is a cost-effective, highly sensitive and specific technique that complements other imaging modalities currently being used to identify malignant lesions in the breast. Using the current Society of Nuclear Medicine guidelines for breast scintigraphy, Legacy Good Samaritan Hospital began conducting BSGI, breast scintigraphy with a breast-optimized gamma-camera. In our experience, optimal imaging has been conducted in the Breast Center by a nuclear medicine technologist. In addition, the breast radiologists read the BSGI images in correlation with the mammograms, ultrasounds, and other imaging studies performed. By modifying the current Society of Nuclear Medicine protocol to adapt it to the practice of breast scintigraphy with these new systems and by providing image interpretation in conjunction with the other breast imaging studies, our center has found BSGI to be a valuable adjunctive procedure in the diagnosis of breast cancer. The development of a small-field-of-view gamma-camera, designed to optimize breast imaging, has resulted in improved detection capabilities, particularly for lesions less than 1 cm. Our experience with this procedure has proven to aid in the clinical work-up of many of our breast patients. After reading this article, the reader should understand the history of breast scintigraphy, the pharmaceutical used, patient preparation and positioning, imaging protocol guidelines, clinical indications, and the role of breast scintigraphy in breast cancer diagnosis.

  8. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [NTI, BME, EURATOM Association, H-1111 Budapest (Hungary); Lampert, Máté, E-mail: lampert.mate@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Un Nam, Yong, E-mail: yunam@nfri.re.kr [NFRI, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2015-01-11

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  9. Multiwire proportional gamma camera for imaging /sup 99/Tcsup(m) radionuclide distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J E; Connolly, J F [Science Research Council, Chilton (UK). Rutherford Lab.

    1978-05-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of /sup 99/Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m/sup 2/, a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77.

  10. A multiwire proportional gamma camera for imaging 99Tcsup(m) radionuclide distributions

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-01-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of 99 Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m 2 , a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77. (author)

  11. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Ballongue, P

    2000-07-01

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10{sup -2} seems possible in the near future. (author)

  12. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    International Nuclear Information System (INIS)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Ballongue, P.

    2000-01-01

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10 -2 seems possible in the near future. (author)

  13. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    Czech Academy of Sciences Publication Activity Database

    Heller, M.; Schioppa, E.jr.; Porcelli, A.; Pujadas, I.T.; Zietara, K.; della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Aguilar, J.A.; Christov, A.; Prandini, E.; Rajda, P.; Rameez, M.; Bilnik, W.; Blocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idzkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandát, Dušan; Marszalek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Pasko, P.; Pech, Miroslav; Schovánek, Petr; Seweryn, K.; Sliusar, V.; Skowron, K.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Walter, R.; Wiecek, M.; Zagdanski, A.

    2017-01-01

    Roč. 77, č. 1 (2017), s. 1-31, č. článku 47. ISSN 1434-6044 R&D Projects: GA MŠk LE13012; GA MŠk LG14019 Institutional support: RVO:68378271 Keywords : silicon photomultiplier * digitizing camera * gamma-ray astronomy Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  14. Development of a Compton camera for prompt-gamma medical imaging

    Science.gov (United States)

    Aldawood, S.; Thirolf, P. G.; Miani, A.; Böhmer, M.; Dedes, G.; Gernhäuser, R.; Lang, C.; Liprandi, S.; Maier, L.; Marinšek, T.; Mayerhofer, M.; Schaart, D. R.; Lozano, I. Valencia; Parodi, K.

    2017-11-01

    A Compton camera-based detector system for photon detection from nuclear reactions induced by proton (or heavier ion) beams is under development at LMU Munich, targeting the online range verification of the particle beam in hadron therapy via prompt-gamma imaging. The detector is designed to be capable to reconstruct the photon source origin not only from the Compton scattering kinematics of the primary photon, but also to allow for tracking of the secondary Compton-scattered electrons, thus enabling a γ-source reconstruction also from incompletely absorbed photon events. The Compton camera consists of a monolithic LaBr3:Ce scintillation crystal, read out by a multi-anode PMT acting as absorber, preceded by a stacked array of 6 double-sided silicon strip detectors as scatterers. The detector components have been characterized both under offline and online conditions. The LaBr3:Ce crystal exhibits an excellent time and energy resolution. Using intense collimated 137Cs and 60Co sources, the monolithic scintillator was scanned on a fine 2D grid to generate a reference library of light amplitude distributions that allows for reconstructing the photon interaction position using a k-Nearest Neighbour (k-NN) algorithm. Systematic studies were performed to investigate the performance of the reconstruction algorithm, revealing an improvement of the spatial resolution with increasing photon energy to an optimum value of 3.7(1)mm at 1.33 MeV, achieved with the Categorical Average Pattern (CAP) modification of the k-NN algorithm.

  15. The role of the gamma camera in the study of gastric function

    International Nuclear Information System (INIS)

    Esser, J.D.; Mannell, A.; Hinder, R.A.

    1984-01-01

    With the gamma camera food labelled with radioactive tracers can be visualized as it enters and leaves the stomach. Radiopharmaceuticals such as technetium-99m di-isopropyl iminodiacetic acid simulate the bile pathway and can be used to demonstrate duodenogastric reflux. Duodenogastric reflux and gastric emptying of solid or liquid meals can be quantitated when the gamma camera is linked to a microprocessor. The test meal used at the Johannesburg and Hillbrow Hospitals consists of a 99 (sup m)Tc-labelled chicken liver weighing 30 g mixed with 70 g cooked ground beef. These studies are valuable for investigating symptomatic postgastrectomy patients and patients who have neurogenic or metabolic diseases which result in abnormal gastric function. The efficacy of drugs given to relieve these symptoms can also be assessed. In this paper we discuss the nuclear medicine techniques used to study gastric function. Examples are given of abnormalities which may not be diagnosed on gastroscopy or barium meal examination but which can be clearly identified by gamma camera techniques

  16. Preliminary Experience with Small Animal SPECT Imaging on Clinical Gamma Cameras

    Directory of Open Access Journals (Sweden)

    P. Aguiar

    2014-01-01

    Full Text Available The traditional lack of techniques suitable for in vivo imaging has induced a great interest in molecular imaging for preclinical research. Nevertheless, its use spreads slowly due to the difficulties in justifying the high cost of the current dedicated preclinical scanners. An alternative for lowering the costs is to repurpose old clinical gamma cameras to be used for preclinical imaging. In this paper we assess the performance of a portable device, that is, working coupled to a single-head clinical gamma camera, and we present our preliminary experience in several small animal applications. Our findings, based on phantom experiments and animal studies, provided an image quality, in terms of contrast-noise trade-off, comparable to dedicated preclinical pinhole-based scanners. We feel that our portable device offers an opportunity for recycling the widespread availability of clinical gamma cameras in nuclear medicine departments to be used in small animal SPECT imaging and we hope that it can contribute to spreading the use of preclinical imaging within institutions on tight budgets.

  17. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.

    Science.gov (United States)

    Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  18. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimochi, Makoto; Hayama, Kazuhide [Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Dentistry at Niigata, 1-8 Hamaura-cho, 951-8580, Niigata (Japan); Sakahara, Harumi [Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu (Japan); Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi [Acrorad Co. Ltd., Tokyo (Japan); Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar [Integrated Detector and Electronics A.S (IDE AS), Hovik (Norway)

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mm x 166 mm x 65 mm. The effective visual field was 44.8 mm x 44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV ({sup 99m}Tc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56{+-}0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and

  19. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications

    International Nuclear Information System (INIS)

    Tsuchimochi, Makoto; Hayama, Kazuhide; Sakahara, Harumi; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-01-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mm x 166 mm x 65 mm. The effective visual field was 44.8 mm x 44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV ( 99m Tc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56±0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  20. Design and implementation of a quality assurance program for gamma cameras

    International Nuclear Information System (INIS)

    Montoya M, A.; Rodriguez L, A.; Trujillo Z, F. E.

    2010-09-01

    In nuclear medicine more than 90% of the carried out procedures are diagnostic. To assure an appropriate diagnostic quality of the images and the doses optimization received by the patients originated in the radioactive material, it is indispensable the periodic surveillance of the operation and performance of the equipment s by means of quality assurance tests. This work presents a proposal of a quality assurance program for gamma cameras based on recommendations of the IAEA, the American Association of Medical Physics and the National Electrical Manufacturers Association. Some tests of the program were applied to an e.cam gamma camera (Siemens) of the Nuclear Medicine Department of the National Institute of Cancer. The intrinsic and extrinsic uniformity, the intrinsic spatial resolution and the extrinsic sensibility were verified. For intrinsic uniformity the average daily values of the integral uniformity and differential uniformity in the useful vision field were 2.61% and 1.58% respectively, the average monthly values of intrinsic uniformity for the integral and differential uniformity in the useful vision field were 4.10% and 1.66% respectively. The used acceptance criterions were respectively of 3.74% and 2.74%. The average values of extrinsic uniformity for the useful vision field were of 7.65% (intrinsic uniformity) and 2.69% (extrinsic uniformity), in this case the acceptance criterion is a value of 6.00%. The average value of intrinsic spatial resolution went 4.67 mm superior to 4.4. mm that is the acceptance limit. Finally, maximum variations of 1.8% were observed (minors than 2% that is the acceptance criterion) for the extrinsic sensibility measured in different regions of the detector. Significant variations of extrinsic sensibility were not observed among the monthly lectures. Of the realized measurements was concluded that the system requires of a maintenance service by part of the manufacturer, which one carries out later on to this work. The

  1. An operative gamma camera for sentinel lymph node procedure in case of breast cancer

    CERN Document Server

    Salvador, S; Mathelin, C; Guyonne, J; Huss, D

    2007-01-01

    Large field of view gamma cameras are widely used to perform lymphoscintigraphy in the sentinel lymph nodes (SLN) procedure in case of breast cancer. However, they are not specified for this application and their sizes do not enable their use in the operative room to control the excision of the all SLN. We present the results obtained with a prototype of a new mini gamma camera developed especially for the operative lymphoscintigraphy of the axillary area in case of breast cancer. This prototype is composed of 10 mm thick parallel lead collimator, a 2 mm thick GSO:Ce inorganic scintillating crystal from Hitachi and a Hamamatsu H8500 flat panel multianode (64 channels) photomultiplier tube (MAPMT) equipped with a dedicated electronics. Its actual field of view is 50 × 50mm2. The gamma interaction position in the GSO scintillating plate is obtained by calculating the center of gravity of the fired MAPMT channels. The measurements performed with this prototype demonstrate the usefulness of this mini gamma camer...

  2. Advanced HEDL gamma scan system

    International Nuclear Information System (INIS)

    Smith, F.C.; Olson, R.N.

    1983-01-01

    The design of an advanced state-of-the-art gamma scan system built for the purpose of measuring the point-by-point gamma activity of irradiated fuel rods is described. The emphasis of the system design was to achieve the highest rate of throughput with the minimum per rod cost while maintaining system accuracy and reliability. Preliminary tests demonstrate that all system requirements were met or exceeded. The system provides improved throughput, precision, automation, flexibility, and data processing capability over previous gamma scan systems

  3. A real-time networked camera system : a scheduled distributed camera system reduces the latency

    NARCIS (Netherlands)

    Karatoy, H.

    2012-01-01

    This report presents the results of a Real-time Networked Camera System, com-missioned by the SAN Group in TU/e. Distributed Systems are motivated by two reasons, the first reason is the physical environment as a requirement and the second reason is to provide a better Quality of Service (QoS). This

  4. Notes on the IMACON 500 streak camera system

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1985-01-01

    The notes provided are intended to supplement the instruction manual for the IMACON 500 streak camera system. The notes cover the streak analyzer, instructions for timing the streak camera, and calibration

  5. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  6. Evaluation of different physical parameters that affect the clinical image quality for gamma camera by using different radionuclides

    International Nuclear Information System (INIS)

    Salah, F.A.; Ziada, G.; Hejazy, M.A.; Khalil, W.A.

    2008-01-01

    Some scintillation camera manufactures adhere to standard code of performance specification established by National Electric Manufactures Association (NEMA). Items such as differential and integral uniformity, spatial resolution energy resolution, etc. are all calculated with reproducible methodology that allows the user reliable technique for creation of these standards to avoid any lack of clinical service that may violate the ethics of patient care. Because 99m Tc is the most frequently used radionuclide in nuclear medicine, many clinics perform the daily uniformity and weekly resolution checks using this radionuclide. But when other commonly used radionuclide such as Tl-201,Ga-67 and I-131 are used, no standardized quality control is performed. So in these study we perform to evaluate the response of ADAC(digital) gamma camera and SELO(analogue) gamma camera to four radionuclide (Tl-201,Ga-67, I-131, and 99m Tc) flood image acquired using different non-uniformity correction tables. In the planer study uniformity and resolution images were obtained using ADAC and SELO cameras, linearity was obtained only by ADAC camera, while in the SPECT study uniformity and contrast images were obtained using ADAC camera only. The response for using different non-uniformity correction tables acquired using different isotopes was different from gamma camera model to another. We can conclude that the most of the gamma camera quality control parameters (uniformity, resolution and contrast) are influenced by variation in the correction tables, while other parameters not affected by this variation like linearity. (author)

  7. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  8. Acceptance/Operational Test Report for Tank 241-AN-104 camera and camera purge control system

    International Nuclear Information System (INIS)

    Castleberry, J.L.

    1995-11-01

    This Acceptance/Operational Test Procedure (ATP/OTP) will document the satisfactory operation of the camera purge panel, purge control panel, color camera system and associated control components destined for installation. The final acceptance of the complete system will be performed in the field. The purge panel and purge control panel will be tested for its safety interlock which shuts down the camera and pan-and-tilt inside the tank vapor space during loss of purge pressure and that the correct purge volume exchanges are performed as required by NFPA 496. This procedure is separated into seven sections. This Acceptance/Operational Test Report documents the successful acceptance and operability testing of the 241-AN-104 camera system and camera purge control system

  9. Detection of mixed-range proton pencil beams with a prompt gamma slit camera

    International Nuclear Information System (INIS)

    Priegnitz, M; Helmbrecht, S; Fiedler, F; Janssens, G; Smeets, J; Vander Stappen, F; Perali, I; Sterpin, E

    2016-01-01

    With increasing availability of proton and particle therapy centers for tumor treatment, the need for in vivo range verification methods comes more into the focus. Imaging of prompt gamma rays emitted during the treatment is one of the possibilities currently under investigation. A knife-edge shaped slit camera was recently proposed for this task and measurements proved the feasibility of range deviation detection in homogeneous and inhomogeneous targets. In the present paper, we concentrate on laterally inhomogeneous materials, which lead to range mixing situations when crossed by one pencil beam: different sections of the beam have different ranges. We chose exemplative cases from clinical irradiation and assembled idealized tissue equivalent targets. One-dimensional emission profiles were obtained by measuring the prompt gamma emission with the slit camera. It could be shown that the resulting range deviations can be detected by evaluation of the measured data with a previously developed range deviation detection algorithm. The retrieved value, however, strongly depends on the target composition, and is not necessarily in direct relation to the ranges of both parts of the beam. By combining the range deviation detection with an analysis of the slope of the distal edge of the measured prompt gamma profile, the origin of the detected range deviation, i.e. the mixed range of the beam, is also identified. It could be demonstrated that range mixed prompt gamma profiles exhibit less steep distal slopes than profiles from beams traversing laterally homogeneous material. For future application of the slit camera to patient irradiation with double scattered proton beams, situations similar to the range mixing cases are present and results could possibly apply. (paper)

  10. Evaluation of efficiency of a semiconductor gamma camera eZ-SCOPE AN

    International Nuclear Information System (INIS)

    Wang Xinqiang; Wang Wei; Zhu Jiarui; Zhao Wenrui

    2004-01-01

    Objective: To study the basic performance of a compact semiconductor gamma camera (eZ-SCOPE AN) which is constructed using cadmium zinc telluride (CdZnTe) detectors with identical numbers of pixels. Each of the semiconductors sized 2 mm x 2 mm is located in 16 matrix x 16 matrix. The view field is 32 mm x 32 mm. Methods: Using a quality-control phantom, the eZ-SCOPE AN was evaluated. The specific performance characteristics were evaluated as shown below referring to National Electrical Manufacturers Association (NEMA) standards. 1) Intrinsic energy resolution. 2) Intrinsic count rate performance 3) Integral uniformity. 4) System planar sensitivity. 5) Special system resolution. Results: The intrinsic energy resolution [full width at half maximum (FWHM)] was 5.07%. It was failed to determine the maximal intrinsic count rate and the 20% count loss rate with a point source of 37 MBq because the plateau was not reached while using the solutions measured. The integral uniformity was 3.84% with the high sensitivity collimator. The system planer sensitivity was 20 988 counts·min -1 ·MBq -1 with high resolution collimator and 61 090 counts·min -1 ·MBq -1 with high sensitivity collimator. The special system resolution (FWHM) was 2.2 mm when the distance between the source and the collimator was 0 mm and it was 5.7 mm when the distance was 30 mm. Conclusion: This device is of high resolution and high sensitivity and is a reliable tool to investigate radioactivity biodistribution in small organs and small animals. (authors)

  11. Automatic multi-camera calibration for deployable positioning systems

    Science.gov (United States)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  12. Realization and study of spectral properties of the ISGRI gamma-ray camera; Mise en oeuvre et etude des proprietes spectrales de la gamma-camera ISGRI

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, O

    2001-11-01

    This work evaluates spectroscopic and physical properties of CdTe detectors in view of assembling a large number on a new generation spectro-imager for space gamma-ray astronomy. Study, optimization, realization and calibration of modular detection units of the ISGRI camera are described. After a description of the experimental context of the INTEGRAL program and a review of the physical processes involved in gamma-ray photon detectors, we present an analysis of the properties of CdTe detectors attempting to be so exhaustive as possible. We propose the base point of a global model, which relates charge transport properties, spectral response and possible instabilities in the detectors. We propose a new formulation of the Hecht relation that describes charge loss as a function of the detector charge transport properties. We discuss at length the method of charge loss correction and its consequences on the associated integrated electronics definition. Finally, we illustrate our instrument capabilities using as an example the observation of titanium 44 lines in historical supernovae. (author)

  13. Development of an LYSO based gamma camera for positron and scinti-mammography

    Science.gov (United States)

    Liang, H.-C.; Jan, M.-L.; Lin, W.-C.; Yu, S.-F.; Su, J.-L.; Shen, L.-H.

    2009-08-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 × 90 mm2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  14. Development of an LYSO based gamma camera for positron and scinti-mammography

    International Nuclear Information System (INIS)

    Liang, H-C; Jan, M-L; Lin, W-C; Yu, S-F; Shen, L-H; Su, J-L

    2009-01-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 x 90 mm 2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176 Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  15. A micro-machined retro-reflector for improving light yield in ultra-high-resolution gamma cameras

    NARCIS (Netherlands)

    Heemskerk, J.W.T.; Korevaar, M.A.N.; Kreuger, R.; Ligtvoet, C.M.; Schotanus, P.; Beekman, F.J.

    2009-01-01

    High-resolution imaging of x-ray and gamma-ray distributions can be achieved with cameras that use charge coupled devices (CCDs) for detecting scintillation light flashes. The energy and interaction position of individual gamma photons can be determined by rapid processing of CCD images of

  16. A pixellated gamma-camera based on CdTe detectors clinical interests and performances

    CERN Document Server

    Chambron, J; Eclancher, B; Scheiber, C; Siffert, P; Hage-Ali, M; Regal, R; Kazandjian, A; Prat, V; Thomas, S; Warren, S; Matz, R; Jahnke, A; Karman, M; Pszota, A; Németh, L

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the gamma-camera performances. But their use as gamma detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed ...

  17. Kernel integration scatter model for parallel beam gamma camera and SPECT point source response

    International Nuclear Information System (INIS)

    Marinkovic, P.M.

    2001-01-01

    Scatter correction is a prerequisite for quantitative single photon emission computed tomography (SPECT). In this paper a kernel integration scatter Scatter correction is a prerequisite for quantitative SPECT. In this paper a kernel integration scatter model for parallel beam gamma camera and SPECT point source response based on Klein-Nishina formula is proposed. This method models primary photon distribution as well as first Compton scattering. It also includes a correction for multiple scattering by applying a point isotropic single medium buildup factor for the path segment between the point of scatter an the point of detection. Gamma ray attenuation in the object of imaging, based on known μ-map distribution, is considered too. Intrinsic spatial resolution of the camera is approximated by a simple Gaussian function. Collimator is modeled simply using acceptance angles derived from the physical dimensions of the collimator. Any gamma rays satisfying this angle were passed through the collimator to the crystal. Septal penetration and scatter in the collimator were not included in the model. The method was validated by comparison with Monte Carlo MCNP-4a numerical phantom simulation and excellent results were obtained. The physical phantom experiments, to confirm this method, are planed to be done. (author)

  18. Camera System MTF: combining optic with detector

    Science.gov (United States)

    Andersen, Torben B.; Granger, Zachary A.

    2017-08-01

    MTF is one of the most common metrics used to quantify the resolving power of an optical component. Extensive literature is dedicated to describing methods to calculate the Modulation Transfer Function (MTF) for stand-alone optical components such as a camera lens or telescope, and some literature addresses approaches to determine an MTF for combination of an optic with a detector. The formulations pertaining to a combined electro-optical system MTF are mostly based on theory, and assumptions that detector MTF is described only by the pixel pitch which does not account for wavelength dependencies. When working with real hardware, detectors are often characterized by testing MTF at discrete wavelengths. This paper presents a method to simplify the calculation of a polychromatic system MTF when it is permissible to consider the detector MTF to be independent of wavelength.

  19. Permanent automatic recalibration system for scintillation camera

    International Nuclear Information System (INIS)

    Auphan, Michel.

    1974-01-01

    A permanent automatic recalibration system for a scintillation camera, of the type consisting chiefly of a collimator if necessary, a scintillator, a light guide and a network of n photomultipliers coupled to a display system, is described. It uses a device to form a single reference light signal common to all the photomultiplication lines, integrated to these latter and associated with a periodic calibration control generator. By means of associated circuits governed by the control generator the gain in each line is brought to and/or maintained at a value between fixed upper and lower limits. Steps are taken so that any gain variation in a given line is adjusted with respect to the reference light signal common to all the lines. The light signal falls preferably in the same part of the spectrum as the scintillations formed in the scintillator [fr

  20. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    Science.gov (United States)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99 m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  1. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera.

    Science.gov (United States)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G; Nagarkar, Vivek V

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional "straight-cut" (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  2. Value of coincidence gamma camera PET for diagnosing head and neck tumors: functional imaging and image coregistration

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Hahn, K.

    2001-01-01

    54 patients suffering from head and neck tumors (30 m, 24 f, age: 32-67 years) were examined using dedicated PET and coincidence gamma camera PET after injection of 185-350 MBq [ 18 F]FDG. Examinations were carried out on the dedicated PET first (Siemens ECAT Exact HR+) followed by a scan on the coincidence gamma camera PET (Picker Prism 2000 XP-PCD, Marconi Axis g-PET 2 AZ). Dedicated PET was acquired in 3D mode, coincidence gamma camera PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and coincidence gamma camera PET. All patients received a CT scan in multislice technique (Siemens Somatom Plus 4, Marconi MX 8000). Image coregistration was performed on an Odyssey workstation (Marconi). All findings have been verified by the gold standard histology or in case of negative histology by follow-up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using coincidence gamma camera PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with coincidence gamma camera PET and in 15/18 with CT. False-positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and hybrid PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastatic lesions were seen with dedicated PET and with coincidence gamma camera PET elsewhere in the body (lung: n = 7, bone: n = 3, liver: n = 1). Additional malignant disease other than the head and neck tumor was found in 4 patients. (orig.) [de

  3. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera

    International Nuclear Information System (INIS)

    Cardarelli, J.A.; Slingerland, D.W.; Burrows, B.A.; Miller, A.

    1985-01-01

    Previously described techniques for the measurement of the absorption of [ 57 Co]vitamin B 12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room

  4. Easy method to measure radioactive waste with a gamma-camera detector

    International Nuclear Information System (INIS)

    Murat, C.; Barrau, C.

    2007-01-01

    The aim of this technical note is to evaluate an easy method to measure 99m Tc samples with an activity of 1000, 100 and 10 Bq/L. This study is performed with a gamma camera detector in two departments of nuclear medicine in Avignon and in Nimes. We develop a procedure to measure 99m Tc radioactive waste at the two hospitals output in accordance with the D.G.S./D.H.O.S. no. 2001/323 circular requests of the Ministry for Employment and Solidarity. (authors)

  5. Approaches to contamination problems of agricultural land using Na(I) Tl spectrometer and gamma camera

    International Nuclear Information System (INIS)

    Yin, Yong-Gen; Suzui, Nobuo; Kawachi, Naoki; Ishii, Satomi; Fujimaki, Shu; Yamaguchi, Mitsutaka; Tanoi, Keitaro; Nakanishi, Tomoko M.; Chino, Mitsuo; Nakamura, Shin-ichi; Watabe, Hiroshi; Yamamoto, Seiichi

    2012-01-01

    The severe accident of Fukushima Daiichi Nuclear Power Plant made a large area of agricultural land contaminated with radioactive cesium (Cs-134 and 137). Quantitative analysis for radioactivity (discriminating for Cs-134 and Cs-137) taken in vegetables from the land was carried out using NaI (Tl) scintillation spectrometer. Development of gamma camera for their imaging due to Cs 137 was performed. The shape of the peaks in the spectrum, baseline suppression, a solution of lines overlapping, enhancement of high-resolution were studied. Furthermore, the effect of water on cesium absorbing and transferring process from the root to the tissue was studied. (S. Ohno)

  6. Single photon emission computed tomography of the brain with a rotating gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H J; Knopp, R; Winkler, C; Wappenschmidt, J

    1981-08-01

    In 471 patients SPECT of the brain was performed in addition to conventional serial brain scintigraphy using a rotating gamma camera (GAMMATOME T 9000). 23 patients had tumorous lesions, 26 had vascular lesions, and 422 patients revealed normal brain findings. 5 of the 23 patients with tumorous lesion and 5 of the 12 patients with vascular lesion (anamnesis shorter than 4 weeks) showed positive SPECT results but false negative conventional brain scans. Specificity could be improved up to 98% (412 out of 422 patients) using SPECT and conventional scintigraphy.

  7. Survey of potential use of dynamic line phantom for quality control of Gamma camera

    International Nuclear Information System (INIS)

    Trindev, P.; Ozturk, N.

    2004-01-01

    Different phantoms, used to evaluate the essential for image quality parameters of gamma cameras in order to avoid artefacts, are presented. The prices are significant and it is a sensible approach to optimise the type and number of phantoms necessary for quality control. Among all phantoms the price of 'Dynamic Line Phantom' (DLP) is impressive, but it is announced to substitute several 'passive' and 'active' phantoms. The goal of this paper is to justify this statement. The programs, based on image profile are discussed in the paper and the practical uses of the different programs are given

  8. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  9. Investigation of high resolution compact gamma camera module based on a continuous scintillation crystal using a novel charge division readout method

    International Nuclear Information System (INIS)

    Dai Qiusheng; Zhao Cuilan; Qi Yujin; Zhang Hualin

    2010-01-01

    The objective of this study is to investigate a high performance and lower cost compact gamma camera module for a multi-head small animal SPECT system. A compact camera module was developed using a thin Lutetium Oxyorthosilicate (LSO) scintillation crystal slice coupled to a Hamamatsu H8500 position sensitive photomultiplier tube (PSPMT). A two-stage charge division readout board based on a novel subtractive resistive readout with a truncated center-of-gravity (TCOG) positioning method was developed for the camera. The performance of the camera was evaluated using a flood 99m Tc source with a four-quadrant bar-mask phantom. The preliminary experimental results show that the image shrinkage problem associated with the conventional resistive readout can be effectively overcome by the novel subtractive resistive readout with an appropriate fraction subtraction factor. The response output area (ROA) of the camera shown in the flood image was improved up to 34%, and an intrinsic spatial resolution better than 2 mm of detector was achieved. In conclusion, the utilization of a continuous scintillation crystal and a flat-panel PSPMT equipped with a novel subtractive resistive readout is a feasible approach for developing a high performance and lower cost compact gamma camera. (authors)

  10. Study of a new architecture of gamma cameras with Cd/ZnTe/CdTe semiconductors; Etude d'une nouvelle architecture de gamma camera a base de semi-conducteurs CdZnTe /CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, L

    2007-11-15

    This thesis studies new semi conductors for gammas cameras in order to improve the quality of image in nuclear medicine. The chapter 1 reminds the general principle of the imaging gamma, by describing the radiotracers, the channel of detection and the types of Anger gamma cameras acquisition. The physiological, physical and technological limits of the camera are then highlighted, to better identify the needs of future gamma cameras. The chapter 2 is dedicated to a bibliographical study. At first, semi-conductors used in imaging gamma are presented, and more particularly semi-conductors CDTE and CdZnTe, by distinguishing planar detectors and monolithic pixelated detectors. Secondly, the classic collimators of the gamma cameras, used in clinical routine for the most part of between them, are described. Their geometry is presented, as well as their characteristics, their advantages and their inconveniences. The chapter 3 is dedicated to a state of art of the simulation codes dedicated to the medical imaging and the methods of reconstruction in imaging gamma. These states of art allow to introduce the software of simulation and the methods of reconstruction used within the framework of this thesis. The chapter 4 presents the new architecture of gamma camera proposed during this work of thesis. It is structured in three parts. The first part justifies the use of semiconducting detectors CdZnTe, in particular the monolithic pixelated detectors, by bringing to light their advantages with regard to the detection modules based on scintillator. The second part presents gamma cameras to base of detectors CdZnTe (prototypes or commercial products) and their associated collimators, as well as the interest of an association of detectors CdZnTe in the classic collimators. Finally, the third part presents in detail the HiSens architecture. The chapter 5 describes both software of simulation used within the framework of this thesis to estimate the performances of the Hi

  11. Three-layer GSO depth-of-interaction detector for high-energy gamma camera

    International Nuclear Information System (INIS)

    Yamamoto, S.; Watabe, H.; Kawachi, N.; Fujimaki, S.; Kato, K.; Hatazawa, J.

    2014-01-01

    Using Ce-doped Gd 2 SiO 5 (GSO) of different Ce concentrations, three-layer DOI block detectors were developed to reduce the parallax error at the edges of a pinhole gamma camera for high-energy gamma photons. GSOs with Ce concentrations of 1.5 mol% (decay time ∼40 ns), 0.5 mol% crystal (∼60 ns), 0.4 mol% (∼80 ns) were selected for the depth of interaction (DOI) detectors. These three types of GSOs were optically coupled in the depth direction, arranged in a 22×22 matrix and coupled to a flat panel photomultiplier tube (FP-PMT, Hamamatsu H8500). Sizes of these GSO cells were 1.9 mm×1.9 mm×4 mm, 1.9 mm×1.9 mm×5 mm, and 1.9 mm×1.9 mm×6 mm for 1.5 mol%, 0.5 mol%, and 0.4 mol%, respectively. With these combinations of GSOs, all spots corresponding to GSO cells were clearly resolved in the position histogram. Pulse shape spectra showed three peaks for these three decay times of GSOs. The block detector was contained in a 2-cm-thick tungsten shield, and a pinhole collimator with a 0.5-mm aperture was mounted. With pulse shape discrimination, we separated the point source images of the Cs-137 for each DOI layer. The point source image of the lower layer was detected at the most central part of the field-of-view, and the distribution was the smallest. The point source image of the higher layer was detected at the most peripheral part of the field-of-view, and the distribution was widest. With this information, the spatial resolution of the pinhole gamma camera can be improved. We conclude that DOI detection is effective for pinhole gamma cameras for high energy gamma photons

  12. Radionuclide examination of the cerebral circulation with the 'Fucks-Knipping Gamma-Camera'

    International Nuclear Information System (INIS)

    Arnim, W.H. von; Schicha, H.; Becker, V.; Vyska, K.; Feinendegen, L.E.

    1976-01-01

    In order to analyze cerebral blood flow for diagnostic purposes, Indium 113m-DTPA was i.v. injected into seated patients, and time-activity curves were registered by a multifacet gamma camera (Fucks-Knipping) form 8 regions of interest, from the median area and from the right and left side of the head: 3 from the hemisphere, 3 from the brain stem, 2 from the large arteries of the neck. The results from 14 patients with chronic impairment of cerebral blood flow were compared with normal data from 20 healthy individuals. The time activity curves were analyzed for peak-height, mean transit time, and ratio peak to plateau height. The individual parameters were investigated for the degree of their correlation in a multiparameter system. The results from the patients indicated for the different single parameters a non-uniform response. There was also no correlation between the deviation of different parameters, between single pathological parameters and the degree and the site of blood flow impairment. On the other hand, a positive correlation was found between the number of pathological parameters and the degree of blood flow impairment irrespective of the site of its localization. Reason for this result probably is the variable location and degree of blood flow compensation by collaterals, which predominantly are expected at the cerebral base. The data indicate the potential usefulness of the application of the multiparameter analysis to quantitatively detect the degree of impairment of cerebral blood flow without regard to its topography. In this respect, the method, here described, promises to be of clinical value for non-invasive and non-hazardous diagnostic screening of cerebral blood flow. (orig.) [de

  13. Evaluation of a high-resolution, breast-specific, small-field-of-view gamma camera for the detection of breast cancer

    International Nuclear Information System (INIS)

    Brem, R.F.; Kieper, D.A.; Rapelyea, J.A.; Majewski, S.

    2003-01-01

    Purpose: The purpose of our study is to review the state of the art in nuclear medicine imaging of the breast (scintimammography) and to evaluate a novel, high-resolution, breast-specific gamma camera (HRBGC) for the detection of suspicious breast lesions. Materials and Methods: Fifty patients with 58 breast lesions in whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a HRBGC prototype. Nuclear studies were prospectively classified as negative (normal/benign) or positive (suspicious/malignant) by two radiologists, blinded to mammographic and histologic results with both the conventional and high-resolution. All lesions were confirmed by pathology. Results: Included in this study were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. Specificity of both systems was 93.3% (28/30). In the 18 nonpalpable cancers, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and HRBGC, respectively. In cancers ≤ 1cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four of the cancers (median size, 8.5 mm) detected with the HRBGC were missed by the conventional camera Conclusion: Evaluation of indeterminate breasts lesions with a high resolution, breast-specific gamma camera results in improved sensitivity for the detection of cancer with greater improvement demonstrated in nonpalpable and ≤1 cm cancers

  14. Gamma counter calibration system

    International Nuclear Information System (INIS)

    1977-01-01

    A method and apparatus are described for the calibration of a gamma radiation measurement instrument to be used over any of a number of different absolute energy ranges. The method includes the steps of adjusting the overall signal gain associated with pulses which are derived from detected gamma rays, until the instrument is calibrated for a particular absolute energy range; then storing parameter settings corresponding to the adjusted overall signal gain, and repeating the process for other desired absolute energy ranges. The stored settings can be subsequently retrieved and reapplied so that test measurements can be made using a selected one of the absolute energy ranges. Means are provided for adjusting the overall signal gain and a specific technique is disclosed for making coarse, then fine adjustments to the signal gain, for rapid convergence of the required calibration settings. (C.F.)

  15. PET with a coincidence gamma camera: results in selected oncological questions

    International Nuclear Information System (INIS)

    Lauer, I.; Haase, A; Adam, S.; Prueter, I.; Richter, E.; Baehre, M.

    2001-01-01

    Since early 1997, about 1660 investigations with coincidence gamma camera PET (CGC-PET) have been performed in our department, mostly undertaken for oncological questions. Based on these data, several retrospective and prospective studies were performed. In the following, the results in CUP (cancer of unknown primary) syndrome, melanoma and malignant lymphoma are presented. Methods: CGC-PET was performed after application of 250-350 MBq [ 18 F]FDG using a coincidence double head gamma camera with 19 mm Nal cristal. CUP-Syndrome: After completing conventional diagnostic procedures, 32 patients have been examined in a prospective study, including 25 patients with recently detected CUP and 7 patients undergoing restaging after therapy. Localization of the primary tumor was successful in 12 (38%) cases. Melanoma: We evaluated 50 studies in 41 patients suffering from melanoma, retrospectively. CGC-PET showed a sensitivity of 76%, and a specificity of 94%. In comparison to conventional diagnostic methods, CGC-PET delineated important additional information in 16%. CGC-PET was superior to morphological diagnostic tools in the differentiation between residual scar tissue and active tumor following immunochemotherapy. Malignant lymphoma: 29 CGC-PET in 29 patients were performed for staging of malignant lymphoma, sensitivity was 86% versus 88% for CT. Overall CGC-PET showed additional information to conventional diagnostic methods, but revealed problems in detecting small infiltrations of organs. In restaging malignant melanoma (26 patients, 33 studies), specificity of CGC-PET was superior to conventional diagnostics (92% versus 35%). (orig.) [de

  16. F-18 FDG PET with coincidence detection, dual-head gamma camera, initial experience in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.M.G.; Pocock, N.; Quach, T.; Camden, B.M.C. [Liverpool Health Services, Liverpool, NSW (Australia). Department of Nuclear Medicine and Clinical Ultrasound

    1998-06-01

    Full text: The development of Co-incidence Detection (CD) in gamma camera technology has allowed the use of positron radiopharmaceuticals in clinical practice without dedicated PET facilities. We report our initial experience of this technology in Oncological applications. All patients were administered 200 MBq of F- 18 FDG intravenously in a fasting state, with serum glucose below 8.9 mmol/L., and hydration well maintained. Tomography was performed using an ADAC Solus Molecular Co-incidence Detection (MCD) dual-head gamma camera, 60 minutes after administration and immediately after voiding. Tomography of the torso required up to three collections depending on the length of the patient, with each collection requiring 32 steps of 40 second duration, and a 50% overlap. Tomography of the brain required a single collection with 32 steps of 80 seconds. Patients were scanned in the supine position. An iterative reconstruction algorithm was employed without attenuation correction. All patients had histologically confirmed malignancy. Scan findings were correlated with results of all conventional diagnostic imaging procedures that were pertinent to the evaluation and management of each individual patient`s disease. Correlation with tumour type and treatment status was also undertaken. F-18 FDG uptake as demonstrated by CD-PET was increased in tumour bearing sites. The degree of increased uptake varied with tumour type and with treatment status. Our initial experience with CD-PET has been very encouraging, and has led us to undertake prospective short and long term studies to define its role in oncology

  17. Defining the lung outline from a gamma camera transmission attenuation map

    International Nuclear Information System (INIS)

    Fleming, John S; Pitcairn, Gary; Newman, Stephen

    2006-01-01

    Segmentation of the lung outline from gamma camera transmission images of the thorax is useful in attenuation correction and quantitative image analysis. This paper describes and compares two threshold-based methods of segmentation. Simulated gamma camera transmission images of test objects were used to produce a knowledge base of the variation of threshold defining the lung outline with image resolution and chest wall thickness. Two segmentation techniques based on global (GT) and context-sensitive (CST) thresholds were developed and evaluated in simulated transmission images of realistic thoraces. The segmented lung volumes were compared to the true values used in the simulation. The mean distances between segmented and true lung surface were calculated. The techniques were also applied to three real human subject transmission images. The lung volumes were estimated and the segmentations were compared visually. The CST segmentation produced significantly superior segmentations than the GT technique in the simulated data. In human subjects, the GT technique underestimated volumes by 13% compared to the CST technique. It missed areas that clearly belonged to the lungs. In conclusion, both techniques segmented the lungs with reasonable accuracy and precision. The CST approach was superior, particularly in real human subject images

  18. Survey of Current Status of Quality Control of Gamma Cameras in Republic of Korea

    International Nuclear Information System (INIS)

    Choe, Jae Gol; Joh, Cheol Woo

    2008-01-01

    It is widely recognized that good quality control (QC) program is essential for adequate imaging diagnosis using gamma camera. The purpose of this study is to survey the current status of QC of gamma cameras in Republic of Korea for implementing appropriate nationwide quality control guidelines and programs. A collection of data is done for personnel, equipment and appropriateness of each nuclear medicine imaging laboratory's' quality control practice. This survey is done by collection of formatted questionnaire by mails, e mails or interviews. We also reviewed the current recommendations concerning quality assurance by international societies. This survey revealed that practice of quality control is irregular and not satisfactory. The irregularity of the QC practice seems due partly to the lack of trained personnel, equipment, budget, time and hand-on guidelines. The implementation of QC program may cause additional burden to the hospitals, patients and nuclear medicine laboratories. However, the benefit of a good QC program is obvious that the hospitals can provide good quality nuclear medicine imaging studies to the patients. It is important to use least cumbersome QC protocol, to educate the nuclear medicine and hospital administrative personnel concerning QC, and to establish national QC guidelines to help each individual nuclear medicine laboratory

  19. Radioimmunological determination of alphafetoprotein and gamma camera scintigraphy in patients with tumours of the testes

    International Nuclear Information System (INIS)

    Milkov, V.; Sultanov, S.

    1989-01-01

    By means of radioimmunological method the blood serum concentrations of alphafetoprotein (AFP) were investigated in 35 patients with histologically confirmed tumours of the testes prior to surgical intervention. Parallely in all patients gamma camera scintigraphy of the testes was performed. Seven of all investigated 15 patients with seminoma of the testes had increased concentrations of AFP in the blood serum. In 7 of the examinated 10 patients with diagnosis teratoma of the testes increased blood serum concentrations of AFP were established, while 6 of the examined patients with embryonic tumour of the testis had increased blood serum concentrations of AFP. In comparison with the results established in the control group of 30 healthy males, this increase of AFP was statistically reliable. All examined patients showed positive scintigraphic findings, which confirmed the diagnosis of tumour of the testes. It is concluded that the parallel determination of blood serum AFP and gamma camera investigation of the testes could be successfully apllied in the diagnosis of these malignant diseases

  20. Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5

    International Nuclear Information System (INIS)

    Saripan, M. I.; Mashohor, S.; Adnan, W. A. Wan; Marhaban, M. H.; Hashim, S.

    2008-01-01

    This paper describes the characteristics of the multihole collimator gamma camera that is simulated using the combination of the Monte Carlo N-Particles Code (MCNP) version 5 and in-house software. The model is constructed based on the GCA-7100A Toshiba Gamma Camera at the Royal Surrey County Hospital, Guildford, Surrey, UK. The characteristics are analyzed based on the spatial resolution of the images detected by the Sodium Iodide (NaI) detector. The result is recorded in a list-mode file referred to as a PTRAC file within MCNP5. All pertinent nuclear reaction mechanisms, such as Compton and Rayleigh scattering and photoelectric absorption are undertaken by MCNP5 for all materials encountered by each photon. The experiments were conducted on Tl-201, Co-57, Tc-99 m and Cr-51 radio nuclides. The comparison of full width half maximum value of each datasets obtained from experimental work, simulation and literature are also reported in this paper. The relationship of the simulated data is in agreement with the experimental results and data obtained in the literature. A careful inspection at each of the data points of the spatial resolution of Tc-99 m shows a slight discrepancy between these sets. However, the difference is very insignificant, i.e. less than 3 mm only, which corresponds to a size of less than 1 pixel only (of the segmented detector)

  1. Gamma camera imaging of bilateral adrenocartical hyperplasia and adrenal tumors in the dog

    International Nuclear Information System (INIS)

    Mulnix, J.A.; Van den Brom, W.E.; Lubberink, A.A.; de Bruijne, J.J.; Rijnberk, A.

    1976-01-01

    Gamma camera imaging of the adrenal glands was done in 8 dogs with hyperadrenocorticism and 4 normal dogs given intravenous injections of 131I-19-iodocholesterol. In normal dogs, both adrenal glands could be visualized separately, and there was no difficulty in distinguishing among the images of normal glands, hyperplastic glands, and functional adrenal tumors. In addition, gamma camera imaging enabled the correct surgical site to be selected for removal of adrenal tumors. Hyperadrenocorticism was diagnosed in 8 dogs by evaluation of urinary 17-hydroxycorticosteroid (OHCS) excretion rates, urinary 17-OHCS and plasma 11 beta-OHCS responses to dexamethasone suppression of endogenous adrenocorticotropin (ACTH) secretion, and plasma 11 beta-OHCS response to intravenous administration of ACTH. Base line 17-OHCS excretion increased in 5 of the 8 dogs. Plasma 11 beta-OHCS concentrations were not decreased by dexamethasone administration in the 4 dogs subsequently found to have adrenal tumors; however, there was an exaggerated increase in plasma 11 beta-OHCS concentration after administration of ACTH in 3 of the 4 dogs which had bilateral adrenocortical hyperplasia

  2. Comparison of the barium test meal and the gamma camera scanning technic in measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Perkel, M.S.; Fajman, W.A.; Hersh, T.

    1981-09-01

    In 21 patients with nonresected stomachs and symptoms of delayed gastric emptying, obstruction was excluded by upper gastrointestinal series and upper endoscopy; all had abnormal results of barium test meal (BTM) study. Each had repeat BTM after the administration of 10 mg of metoclopramide. Each patient also had two gamma camera studies after a technetium Tc 99m sulfur colloid labeled meal; normal saline or metoclopramide was administered before each test in a blinded and random manner. Half-time (T 1/2) and percentage of isotope remaining at six hours (GC6) were recorded. Ten asymptomatic controls had a gamma camera scanning study, and seven of these had a BTM. Nine of 19 patients had a T 1/2 in the normal range, and in 12 of 19 patients the GC6 was in the normal range. The magnitude of retention of barium at six hours on the BTM did not correlate with the T 1/2 (r = 0.076) or the GC6 (r = 0.296). Thus, these tests were not comparable in this study. By regression analysis, a significant reduction was shown in the amount of retained food and barium (P < .01), the T 1/2 (P < .01), and the GC6 (P < .01) after intramuscular administration of metoclopramide, indicating that both tests were able to evaluate the effects of this drug.

  3. Comparison of the barium test meal and the gamma camera scanning technic in measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Perkel, M.S.; Fajman, W.A.; Hersh, T.; Moore, C.; Davidson, E.D.; Haun, C.

    1981-09-01

    In 21 patients with nonresected stomachs and symptoms of delayed gastric emptying, obstruction was excluded by upper gastrointestinal series and upper endoscopy; all had abnormal results of barium test meal (BTM) study. Each had repeat BTM after the administration of 10 mg of metoclopramide. Each patient also had two gamma camera studies after a technetium Tc 99m sulfur colloid labeled meal; normal saline or metoclopramide was administered before each test in a blinded and random manner. Half-time (T1/2) and percentage of isotope remaining at six hours (GC6) were recorded. Ten asymptomatic controls had a gamma camera scanning study, and seven of these had a BTM. Nine of 19 patients had a T1/2 in the normal range, and in 12 of 19 patients the GC6 was in the normal range. The magnitude of retention of barium at six hours on the BTM did not correlate with the T1/2 (r . 0.076) or the GC6 (r. 0.296). Thus, these tests were not comparable in this study. By regression analysis, a significant reduction was shown in the amount of retained food and barium (P less than .01), the T1/2 (P less than .01), and the GC6 (P less than .01) after intramuscular administration of metoclopramide, indicating that both tests were able to evaluate the effects of this drug.

  4. LAMOST CCD camera-control system based on RTS2

    Science.gov (United States)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  5. Compton camera study for high efficiency SPECT and benchmark with Anger system

    Science.gov (United States)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application

  6. System for gamma-gamma formation density logging while drilling

    International Nuclear Information System (INIS)

    Paske, W.C.

    1991-01-01

    The patent relates to a system for logging subterranean formations for the determination of formation density by using gamma radiation. Gamma ray source and detection means are disposed within a housing adapted for positioning within a borehole for the emission and detection of gamma rays propagating through earth formations and borehole drilling fluid. The gamma ray detection means comprises first and second gamma radiation sensors geometrically disposed within the housing, the same longitudinal distance from the gamma ray source and diametrically opposed in a common plane. A formation matrix density output signal is produced in proportion to the output signal from each of the gamma ray sensors and in conjunction with certain constants established by the geometrical configuration of the sensors relative to the gamma ray source and the borehole diameter. Formation density is determined without regard to the radial position of the logging probe within the borehole in a measuring while drilling mode. 6 figs

  7. Values of tumor markers (AFP, β-HCG and CEA) and gamma-camera scintigraphy in patients with testicular tumors

    International Nuclear Information System (INIS)

    Milkov, V.; Sultanov, S.; Tsvetkov, D.

    1989-01-01

    Complex gamma-camera and radioimmunologic study of the tumor markers AFP, β-HCG and CEA was performed in 7 patients with testicular tumors. In all tested patients gamma-camera scintigraphy of the testes clearly delineated the zone of the pathological process. Gamma-camera examination very well differentiates malignant from nonmalignant processes in the testes. The serum levels of the tumor markers AFP and β-HCG proved elevated in 3 of the tested patients during the preoperative period. The histological types of the tumors in these patients were: teratocarcinoma in one and embryonal carcinoma in the other two. It is believed that investigation of the three tumor markers may gain acceptance as additonal method in the complex diagnosis of these diseases

  8. The implementation of quality controls of gamma camera functioning and simulation of tomography techniques by Gate and GEANT4

    International Nuclear Information System (INIS)

    Ben Ameur, Narjes

    2011-01-01

    The reliability of medical devices is directly linked to the services quality offered to the patient. For this reason, quality control tests should be regularly conducted in every nuclear medicine service according to international norms. Our approach consists on realizing different quality control tests recommended by the Nema norm on a gamma-camera in order to evaluate its performance. The obtained data allowed us to study the different physical phenomena happening during a SPECT exam. It also allowed us to identify those affecting the image quality based on the simulation programmes: GEANT 4 and Gate. The obtained results of the quality control showed that the Gamma-camera has a high performance in terms of spatial resolution, linearity, uniformity and rotational center. The establishment of a model for a gamma-camera Symbia E (Siemens) using a Gate platform confirms the reliability of this platform in the conception and the optimization of the detectors.

  9. Intraoperative radioguidance with a portable gamma camera: a novel technique for laparoscopic sentinel node localisation in urological malignancies

    International Nuclear Information System (INIS)

    Vermeeren, L.; Valdes Olmos, R.A.; Vogel, W.V.; Sivro, F.; Hoefnagel, C.A.; Meinhardt, W.; Bex, A.; Poel, H.G. van der; Horenblas, S.

    2009-01-01

    Our aim was to assess the feasibility of intraoperative radioguidance with a portable gamma camera during laparoscopic sentinel node (SN) procedures in urological malignancies. We evaluated the use of the intraoperative portable gamma camera in 20 patients: 16 patients with prostate carcinoma (PCC), 2 patients with renal cell carcinoma (RC) and 2 patients with testicular cancer (TC). Intra/peritumoural injection of 99m Tc-nanocolloid ( 99m Tc) was followed by planar lymphoscintigraphy, SPECT/CT and marking of SN levels. Before laparoscopy a 125 I seed was fixed on the laparoscopic gamma probe as a pointer of SN seeking. The portable gamma camera was set to display the 99m Tc signal for SN localisation and the 125 I signal for SN seeking. Matching of these signals on screen indicated exact SN localisation, and consequently this SN was removed. The mean injected dose was 218 MBq in PCC, 228 MBq in RC and 88 MBq in TC. Pelvic SN were visualised in all PCC patients, with uncommonly located SN in seven patients. SN metastases were found in seven patients (one in a uncommonly located SN). Both RC patients and TC patients had para-aortic SN, which were all tumour free. A total of 59 SN were removed. The portable gamma camera enabled real-time SN display/identification in 18 patients (90%). The use of a portable gamma camera in combination with a laparoscopic gamma probe incorporates intraoperative real-time imaging with improved SN identification in urological malignancies. This procedure might also be useful for SN identification of other deep draining malignancies. (orig.)

  10. Intraoperative radioguidance with a portable gamma camera: a novel technique for laparoscopic sentinel node localisation in urological malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L.; Valdes Olmos, R.A.; Vogel, W.V.; Sivro, F.; Hoefnagel, C.A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Meinhardt, W.; Bex, A.; Poel, H.G. van der; Horenblas, S. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands)

    2009-07-15

    Our aim was to assess the feasibility of intraoperative radioguidance with a portable gamma camera during laparoscopic sentinel node (SN) procedures in urological malignancies. We evaluated the use of the intraoperative portable gamma camera in 20 patients: 16 patients with prostate carcinoma (PCC), 2 patients with renal cell carcinoma (RC) and 2 patients with testicular cancer (TC). Intra/peritumoural injection of {sup 99m}Tc-nanocolloid ({sup 99m}Tc) was followed by planar lymphoscintigraphy, SPECT/CT and marking of SN levels. Before laparoscopy a {sup 125}I seed was fixed on the laparoscopic gamma probe as a pointer of SN seeking. The portable gamma camera was set to display the {sup 99m}Tc signal for SN localisation and the {sup 125}I signal for SN seeking. Matching of these signals on screen indicated exact SN localisation, and consequently this SN was removed. The mean injected dose was 218 MBq in PCC, 228 MBq in RC and 88 MBq in TC. Pelvic SN were visualised in all PCC patients, with uncommonly located SN in seven patients. SN metastases were found in seven patients (one in a uncommonly located SN). Both RC patients and TC patients had para-aortic SN, which were all tumour free. A total of 59 SN were removed. The portable gamma camera enabled real-time SN display/identification in 18 patients (90%). The use of a portable gamma camera in combination with a laparoscopic gamma probe incorporates intraoperative real-time imaging with improved SN identification in urological malignancies. This procedure might also be useful for SN identification of other deep draining malignancies. (orig.)

  11. The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images.

    Science.gov (United States)

    Perez-Garcia, H; Barquero, R

    The correct determination and delineation of tumor/organ size is crucial in 2-D imaging in 131 I therapy. These images are usually obtained using a system composed of a Gamma camera and high-energy collimator, although the system can produce artifacts in the image. This article analyses these artifacts and describes a correction filter that can eliminate those collimator artifacts. Using free software, ImageJ, a central profile in the image is obtained and analyzed. Two components can be seen in the fluctuation of the profile: one associated with the stochastic nature of the radiation, plus electronic noise and the other periodically across the position in space due to the collimator. These frequencies are analytically obtained and compared with the frequencies in the Fourier transform of the profile. A specially developed filter removes the artifacts in the 2D Fourier transform of the DICOM image. This filter is tested using a 15-cm-diameter Petri dish with 131 I radioactive water (big object size) image, a 131 I clinical pill (small object size) image, and an image of the remainder of the lesion of two patients treated with 3.7GBq (100mCi), and 4.44GBq (120mCi) of 131 I, respectively, after thyroidectomy. The artifact is due to the hexagonal periodic structure of the collimator. The use of the filter on large-sized images reduces the fluctuation by 5.8-3.5%. In small-sized images, the FWHM can be determined in the filtered image, while this is impossible in the unfiltered image. The definition of tumor boundary and the visualization of the activity distribution inside patient lesions improve drastically when the filter is applied to the corresponding images obtained with HE gamma camera. The HURRA filter removes the artifact of high-energy collimator artifacts in planar images obtained with a Gamma camera without reducing the image resolution. It can be applied in any study of patient quantification because the number of counts remains invariant. The filter makes

  12. SU-C-201-07: Validation of a GATE Gamma Camera Model for the Siemens Symbia

    International Nuclear Information System (INIS)

    Mikell, J; Siman, W; Kappadath, S; Mourtada, F

    2015-01-01

    Purpose: To develop a simulation model of a clinical gamma camera/SPECT system and to validate the model using experimental and published measurements from the clinical system. Methods: Geant4 Application for Tomographic Emission (GATE) was used to create a model of the Siemens Symbia gamma camera. A modular model was implemented that allows specifying combinations of crystal thickness (3/8”, 5/8”) and collimator (LEHR, MELP, HE). Shielding, energy resolution, intrinsic resolution, crystal thickness, and collimator properties were set based on manufacturer specifications. Validation of the model was performed by simulating NEMA 2007 gamma camera tests including spatial resolution and sensitivity for Tc99; these were compared with experimental and published data for the scanner. The simulated energy spectra of a Tc99 line source in acrylic blocks was visually compared with the corresponding experimental acquisition. For a 4 cm diameter sphere filled with Tc99, the attenuation maps were generated from simulation data, and the photopeak and scatter window were extracted from GATE output using ROOT to create DICOM files to use in the clinical reconstruction. Results: Simulated spatial resolutions for LEHR 3/8” crystal at 0, 10 cm, 10 cm (with scatter), and 30 cm were 4, 6.7, 7.9, and 14.5 mm FWHM; these were 9% less than published data. For 5/8” crystal the spatial resolutions were 4.5, 7.0, 8.5, and 14.7 mm FWHM; these were 4% to 10% less than published data. Simulated sensitivity was within 3.5% of published data for both LEHR 3/8” and 5/8”. The simulated energy spectra matched the photopeak and scatter window well, but did overestimate the counts below 90 keV. The simulated attenuation map and projection data were successfully reconstructed with the clinical software, and the passed visual inspection. Conclusions: Validation of a specific clinical scanner allows future studies of quantification accuracy for both planar and SPECT imaging. Research

  13. SU-C-201-07: Validation of a GATE Gamma Camera Model for the Siemens Symbia

    Energy Technology Data Exchange (ETDEWEB)

    Mikell, J; Siman, W; Kappadath, S [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Mourtada, F [Christiana Care Hospital, Newark, DE (United States); Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston TX (United States); Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To develop a simulation model of a clinical gamma camera/SPECT system and to validate the model using experimental and published measurements from the clinical system. Methods: Geant4 Application for Tomographic Emission (GATE) was used to create a model of the Siemens Symbia gamma camera. A modular model was implemented that allows specifying combinations of crystal thickness (3/8”, 5/8”) and collimator (LEHR, MELP, HE). Shielding, energy resolution, intrinsic resolution, crystal thickness, and collimator properties were set based on manufacturer specifications. Validation of the model was performed by simulating NEMA 2007 gamma camera tests including spatial resolution and sensitivity for Tc99; these were compared with experimental and published data for the scanner. The simulated energy spectra of a Tc99 line source in acrylic blocks was visually compared with the corresponding experimental acquisition. For a 4 cm diameter sphere filled with Tc99, the attenuation maps were generated from simulation data, and the photopeak and scatter window were extracted from GATE output using ROOT to create DICOM files to use in the clinical reconstruction. Results: Simulated spatial resolutions for LEHR 3/8” crystal at 0, 10 cm, 10 cm (with scatter), and 30 cm were 4, 6.7, 7.9, and 14.5 mm FWHM; these were 9% less than published data. For 5/8” crystal the spatial resolutions were 4.5, 7.0, 8.5, and 14.7 mm FWHM; these were 4% to 10% less than published data. Simulated sensitivity was within 3.5% of published data for both LEHR 3/8” and 5/8”. The simulated energy spectra matched the photopeak and scatter window well, but did overestimate the counts below 90 keV. The simulated attenuation map and projection data were successfully reconstructed with the clinical software, and the passed visual inspection. Conclusions: Validation of a specific clinical scanner allows future studies of quantification accuracy for both planar and SPECT imaging. Research

  14. Progress towards a semiconductor Compton camera for prompt gamma imaging during proton beam therapy for range and dose verification

    Science.gov (United States)

    Gutierrez, A.; Baker, C.; Boston, H.; Chung, S.; Judson, D. S.; Kacperek, A.; Le Crom, B.; Moss, R.; Royle, G.; Speller, R.; Boston, A. J.

    2018-01-01

    The main objective of this work is to test a new semiconductor Compton camera for prompt gamma imaging. Our device is composed of three active layers: a Si(Li) detector as a scatterer and two high purity Germanium detectors as absorbers of high-energy gamma rays. We performed Monte Carlo simulations using the Geant4 toolkit to characterise the expected gamma field during proton beam therapy and have made experimental measurements of the gamma spectrum with a 60 MeV passive scattering beam irradiating a phantom. In this proceeding, we describe the status of the Compton camera and present the first preliminary measurements with radioactive sources and their corresponding reconstructed images.

  15. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Taya, T., E-mail: taka48138@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kataoka, J.; Kishimoto, A.; Iwamoto, Y.; Koide, A. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Nishio, T. [Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima (Japan); Kabuki, S. [School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa (Japan); Inaniwa, T. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba (Japan)

    2016-09-21

    The use of real-time gamma imaging for cancer treatment in particle therapy is expected to improve the accuracy of the treatment beam delivery. In this study, we demonstrated the imaging of gamma rays generated by the nuclear interactions during proton irradiation, using a handheld Compton camera (14 cm×15 cm×16 cm, 2.5 kg) based on scintillation detectors. The angular resolution of this Compton camera is ∼8° at full width at half maximum (FWHM) for a {sup 137}Cs source. We measured the energy spectra of the gamma rays using a LaBr{sub 3}(Ce) scintillator and photomultiplier tube, and using the handheld Compton camera, performed image reconstruction when using a 70 MeV proton beam to irradiate a water, Ca(OH){sub 2}, and polymethyl methacrylate (PMMA) phantom. In the energy spectra of all three phantoms, we found an obvious peak at 511 keV, which was derived from annihilation gamma rays, and in the energy spectrum of the PMMA phantom, we found another peak at 718 keV, which contains some of the prompt gamma rays produced from {sup 10}B. Therefore, we evaluated the peak positions of the projection from the reconstructed images of the PMMA phantom. The differences between the peak positions and the Bragg peak position calculated using simulation are 7 mm±2 mm and 3 mm±8 mm, respectively. Although we could quickly acquire online gamma imaging of both of the energy ranges during proton irradiation, we cannot arrive at a clear conclusion that prompt gamma rays sufficiently trace the Bragg peak from these results because of the uncertainty given by the spatial resolution of the Compton camera. We will develop a high-resolution Compton camera in the near future for further study. - Highlights: • Gamma imaging during proton irradiation by a handheld Compton camera is demonstrated. • We were able to acquire the online gamma-ray images quickly. • We are developing a high resolution Compton camera for range verification.

  16. Head-coupled remote stereoscopic camera system for telepresence applications

    Science.gov (United States)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  17. Measuring of main parameters of blood circulation at small laboratory animals in chronic experiment by means of computerized gamma-camera

    International Nuclear Information System (INIS)

    Rutskij, A.V.; Kovalenko, Yu.D.; Rudenko, F.V.; Ioda, G.I.; Kaminskij, M.P.

    1996-01-01

    Technique for studding of a state systemic and regional hemodynamics at small laboratory animals (rats) by using short-lived isotopes (technetium 99 m) and computerized gamma-camera are described. One gives possibility to make the repeated measuring in condition long-tome experiment. The proposed technique of radiocardiocirculography gives possibility simultaneously to measure linear parameters of both arterial and vein blood circulation too. 3 refs., 1 tab., 2 figs

  18. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    Holslin, Daniel; Armstrong, A.W.; Hagan, William; Shreve, David; Smith, Scott

    1994-01-01

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  19. Camera systems for crash and hyge testing

    Science.gov (United States)

    Schreppers, Frederik

    1995-05-01

    Since the beginning of the use of high speed cameras for crash and hyge- testing substantial changements have taken place. Both the high speed cameras and the electronic control equipment are more sophisticated nowadays. With regard to high speed equipment, a short historical retrospective view will show that concerning high speed cameras, the improvements are mainly concentrated in design details, where as the electronic control equipment has taken full advantage of the rapid progress in electronic and computer technology in the course of the last decades. Nowadays many companies and institutes involved in crash and hyge-testing wish to perform this testing, as far as possible, as an automatic computer controlled routine in order to maintain and improve security and quality. By means of several in practice realize solutions, it will be shown how their requirements could be met.

  20. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    Science.gov (United States)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  1. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    International Nuclear Information System (INIS)

    Hueso-González, F; Golnik, C; Berthel, M; Dreyer, A; Enghardt, W; Kormoll, T; Rohling, H; Pausch, G; Fiedler, F; Heidel, K; Schöne, S; Schwengner, R; Wagner, A

    2014-01-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu 2 SiO 5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  2. CCD camera system for use with a streamer chamber

    International Nuclear Information System (INIS)

    Angius, S.A.; Au, R.; Crawley, G.C.; Djalali, C.; Fox, R.; Maier, M.; Ogilvie, C.A.; Molen, A. van der; Westfall, G.D.; Tickle, R.S.

    1988-01-01

    A system based on three charge-coupled-device (CCD) cameras is described here. It has been used to acquire images from a streamer chamber and consists of three identical subsystems, one for each camera. Each subsystem contains an optical lens, CCD camera head, camera controller, an interface between the CCD and a microprocessor, and a link to a minicomputer for data recording and on-line analysis. Image analysis techniques have been developed to enhance the quality of the particle tracks. Some steps have been made to automatically identify tracks and reconstruct the event. (orig.)

  3. Proposal of secure camera-based radiation warning system for nuclear detection

    International Nuclear Information System (INIS)

    Tsuchiya, Ken'ichi; Kurosawa, Kenji; Akiba, Norimitsu; Kakuda, Hidetoshi; Imoto, Daisuke; Hirabayashi, Manato; Kuroki, Kenro

    2016-01-01

    Counter-terrorisms against radiological and nuclear threat are significant issues toward Tokyo 2020 Olympic and Paralympic Games. In terms of cost benefit, it is not easy to build a warning system for nuclear detection to prevent a Dirty Bomb attack (dispersion of radioactive materials using a conventional explosive) or a Silent Source attack (hidden radioactive materials) from occurring. We propose a nuclear detection system using the installed secure cameras. We describe a method to estimate radiation dose from noise pattern in CCD images caused by radiation. Some dosimeters under neutron and gamma-ray irradiations (0.1mSv-100mSv) were taken in CCD video camera. We confirmed amount of noise in CCD images increased in radiation exposure. The radiation detection using CMOS in secure cameras or cell phones has been implemented. However, in this presentation, we propose a warning system including neutron detection to search shielded nuclear materials or radiation exposure devices using criticality. (author)

  4. An integrated port camera and display system for laparoscopy.

    Science.gov (United States)

    Terry, Benjamin S; Ruppert, Austin D; Steinhaus, Kristen R; Schoen, Jonathan A; Rentschler, Mark E

    2010-05-01

    In this paper, we built and tested the port camera, a novel, inexpensive, portable, and battery-powered laparoscopic tool that integrates the components of a vision system with a cannula port. This new device 1) minimizes the invasiveness of laparoscopic surgery by combining a camera port and tool port; 2) reduces the cost of laparoscopic vision systems by integrating an inexpensive CMOS sensor and LED light source; and 3) enhances laparoscopic surgical procedures by mechanically coupling the camera, tool port, and liquid crystal display (LCD) screen to provide an on-patient visual display. The port camera video system was compared to two laparoscopic video systems: a standard resolution unit from Karl Storz (model 22220130) and a high definition unit from Stryker (model 1188HD). Brightness, contrast, hue, colorfulness, and sharpness were compared. The port camera video is superior to the Storz scope and approximately equivalent to the Stryker scope. An ex vivo study was conducted to measure the operative performance of the port camera. The results suggest that simulated tissue identification and biopsy acquisition with the port camera is as efficient as with a traditional laparoscopic system. The port camera was successfully used by a laparoscopic surgeon for exploratory surgery and liver biopsy during a porcine surgery, demonstrating initial surgical feasibility.

  5. Renal scintiscanning: Methodology and normal findings using 131I hippurane and a gamma camera

    International Nuclear Information System (INIS)

    Ruppik, G.

    1982-01-01

    The methodological and mathematical fundamentals of renal functional scintiscanning using a gamma camera and 131 I-hippurane are described for ING, whole-body clearance, plasma clearance, and unilateral clearance. Methods are compared introducing the Tuebingen method of unilateral clearance with tolerance limits. The data of the patients are presented as standard values with a limit of two standard deviations for whole-body clearance unilateral clearance, the parenchymal phase and the excretion phase including a percentage of excretion. Comparative studies are presented for the main parameters of clearance and unilateral clearance, and the data obtained are documented in tables and graphs together with the initial data and the standard values. The results and problems of the method are gone into. (orig./MG) [de

  6. A new approach to the evaluation of peripheral vascular disease using the gamma camera

    International Nuclear Information System (INIS)

    Gerritsen, H.A.M.

    1976-01-01

    To estimate the degree of impaired perfusion in legs, and the extent of improvement after treatment, a functional test was developed using a gamma camera to follow the perfusion of intravenously injected sup(99m)Tc-pertechnetate. An analysis is given of normal and pathologic curve patterns. The influence of the severity of occlusive arterial disease on the arrival and distribution of radioactivity in the leg is demonstrated. After vascular surgery, changes in the curve pattern and the imaging of activity distribution reflected the function of the inserted bypass grafts. The test proved to be useful in the differentiation between patients with false claudication complaints due to non-arterial disease and patients with true claudication. It is concluded that the technique presented in this thesis can serve as a useful, non-invasive, screening test prior to arteriography and as a functional assessment of vascular reconstruction

  7. Measurement of spleen size using gamma camera scintigraphy in essential thrombocythaemia

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, P. (Department of Medicine, Oestra Hospital, University of Goeteborg, Goeteborg (Sweden)); Carneskog, J.; Wadenvik, H.; Kutti, J. (Haematology Section, Department of Medicine, Sahlgrenska Hospital, University of Goeteborg, Goeteborg (Sweden)); Jarneborn, L. (Department of Clinical Physiology, Oestra Hospital, University of Goeteborg, Goeteborg (Sweden))

    1993-09-01

    By using gamma camera imaging the spleen size was determined in 33 consecutive patients with essential thrombocythaemia (ET) and in 33 consecutive patients with reactive thrombocytosis (RT). All ET patients were newly diagnosed and had not received myelosuppressive treatment prior to study; they all fulfilled the criteria for ET as established by the Polycythemia Vera Study Group. In both posterior and lateral projections, the spleen area in the group of ET patients was significantly larger than in the RT patients. The present study has shown that 39% of ET patients at diagnosis have splenic enlargement. Evaluation of Spleen size is therefore a useful diagnostic test in patients presenting with unexplained thrombocytosis. (au) (15 refs.).

  8. PET with coincidence gamma cameras - clinical benefit from the radiooncologists' point of view

    International Nuclear Information System (INIS)

    Richter, E.; Feyerabend, T.; Stallmann, C.; Lauer, I.; Baehre, M.

    2001-01-01

    Positron emission tomography with FDG (FDG-PET) is a new technique, which displays the cellular metabolic activity. Since tumors exhibit an increased metabolic activity when compared to normal tissue, this imaging modality has a particularly high importance. FDG-PET is not only useful for localizing and staging of malignant tumors, but also to evaluate therapy response. In this context, PET is superior to morphologically orientated modalities, because therapeutically induced changes in glucose metabolism precede morphologic alterations. Numerous studies indicate, that PET will play an important role in radiooncology concerning therapy planning and monitoring the effects of therapy during and after treatment. Further clinical studies are necessary to evaluate the information provided by FDG-PET more precisely. Coincidence gamma cameras with adequate imaging characteristics will gain enhanced importance to meet these increasing demands. (orig.) [de

  9. Gastric emptying time in normal subjects using /sup 51/Cr and a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Claure, H [Hospital del Salvador, Santiago de Chile; Calderon, C; Braunschweig, T; Diaz, G

    1974-12-01

    Gastric emptying time of a meal consisting of 2 eggs, 50 g of white bread, and 300 ml of milk, was measured in 10 normal subjects, 5 males and 5 females, with an average age of 34.7 years. 200 uCi of Cr-51 were added to the meal and external counting was performed using a ..gamma.. camera. The rate of gastric emptying was estimated by the decrease in radiation counts over the gastric area. In 68.6 percent of the subjects the mean gastric emptying time was 60 min. The average curve showed a complex exponential slope with 2 distinct phases: a fast one between 0 and 35 min and a slow one between 40 and 60 min. These results suggest that a normal gastric emptying time consists of 2 different rate phases when a meal of mixed consistency (liquid and solid) is ingested.

  10. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    Science.gov (United States)

    Simpson, D. R.

    1981-06-01

    Multi-pinhole gamma camera collimation was introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. A possible method for improving the images obtained by this technique by combining two multi-pinhole views taken 90 deg apart was investigated. Collimators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 sq mm, while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration.

  11. A study of quantitative scale display of the organ uptake with gamma-camera

    Energy Technology Data Exchange (ETDEWEB)

    Ishigami, K; Matsumoto, M [Kumamoto Univ. (Japan) School of Medicine

    1975-05-01

    The fundamental study of quantitative scale display of the organ uptake with ..gamma..-camera was performed in special respect of the thyroid gland and the pancreas. As one of the measurements on certain dimension of the organ, an optical progression outside the digital image was expressed, and was subjected to the quantitative scale with the use of the threshold level. And a rather satisfactory correlation was clinically obtained between the scale display and the thyroidal /sup 131/I uptake. For the purpose of revising the above scale display, the organ depth was measured with RI by the aid of the phantom. Then the pancreas depth determined by the count rate ratio curve of 140 and 270 keV peak of /sup 75/Se energies. However, the body background and the radioactive rays from the neighboring organs interfered with this curve.

  12. FDG scan on an ordinary coincidence gamma camera (CDET) -preliminary data in pulmonary or colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Montravers, F.; Grahek, D.; Ghazzar, N.; Younsi, N.; Kerrou, K.; Talbot, J.N. [Hopital Tenon, 75 - Paris (France). Services de Medecine Nucleaire; Wartski, M.; Zerbib, E. [Hopital Marie Lannelongue Le Plessis Robinson (France); Lumbroso, J. [Institut Gustave Roussy Villejuif (France)

    1997-12-31

    Full text. The purpose of this study to evaluate the impact of FDG scan performed on an ordinary CDET gamma camera on the therapeutic management of patients with pulmonary nodules or with suspicion of recurrent colorectal carcinoma. Methods: two tomoscintigrams (thorax and abdomen) were acquired, using a PICKER Prism XP 2000 coincidence gamma camera, 45 m after i.v. injection of 100-150 MBq of {sup 18} F-FDG in fasting patients. The 21 pts were explored in July or August 1997. Preliminary results: among 12 patients with pulmonary nodules, the planed surgery was replaced by chemotherapy after visualization of unknown metastases accumulating FDG in 3 patients. In another one, the high uptake of FDG by a lung nodule which has been known for 6 years, led to surgery and objectivation of an adenocarcinoma. In one case, the absence of FDG uptake corresponded to an abscess (true negative result). In the other 7 patients, the indication of surgery was confirmed but the procedure was modified in 2 cases. In case of suspicion of recurrent colorectal carcinoma (9 patients), the finding of a single focus of FDG uptake whereas CT scan was negative or inconclusive let do the decision of surgery in 3 patients. In one patient with pelvic pain without increase of tumor markers levels and with normal CT scan, a normal FDG scan confirmed the physician`s hypothesis of pain due to the previous therapy but do not recurrence. In one patient, the finding of 3 foci of uptake of FDG whereas CT scan was inconclusive confirmed the indication of chemotherapy. In 2 patients with FDG abdominal foci without morphologic abnormalities, the therapeutic strategy is not yet decided in 2 patients, no foci could be found. In conclusion, these preliminary results show that FDG scan has provided a help to the physician indecision-making for therapeutic strategy in 8 patients on 21 (38%) and a help to the surgeon in 2 more cases (48% as a whole)

  13. FDG scan on an ordinary coincidence gamma camera (CDET) -preliminary data in pulmonary or colorectal cancer

    International Nuclear Information System (INIS)

    Montravers, F.; Grahek, D.; Ghazzar, N.; Younsi, N.; Kerrou, K.; Talbot, J.N.; Lumbroso, J.

    1997-01-01

    Full text. The purpose of this study to evaluate the impact of FDG scan performed on an ordinary CDET gamma camera on the therapeutic management of patients with pulmonary nodules or with suspicion of recurrent colorectal carcinoma. Methods: two tomoscintigrams (thorax and abdomen) were acquired, using a PICKER Prism XP 2000 coincidence gamma camera, 45 m after i.v. injection of 100-150 MBq of 18 F-FDG in fasting patients. The 21 pts were explored in July or August 1997. Preliminary results: among 12 patients with pulmonary nodules, the planed surgery was replaced by chemotherapy after visualization of unknown metastases accumulating FDG in 3 patients. In another one, the high uptake of FDG by a lung nodule which has been known for 6 years, led to surgery and objectivation of an adenocarcinoma. In one case, the absence of FDG uptake corresponded to an abscess (true negative result). In the other 7 patients, the indication of surgery was confirmed but the procedure was modified in 2 cases. In case of suspicion of recurrent colorectal carcinoma (9 patients), the finding of a single focus of FDG uptake whereas CT scan was negative or inconclusive let do the decision of surgery in 3 patients. In one patient with pelvic pain without increase of tumor markers levels and with normal CT scan, a normal FDG scan confirmed the physician's hypothesis of pain due to the previous therapy but do not recurrence. In one patient, the finding of 3 foci of uptake of FDG whereas CT scan was inconclusive confirmed the indication of chemotherapy. In 2 patients with FDG abdominal foci without morphologic abnormalities, the therapeutic strategy is not yet decided in 2 patients, no foci could be found. In conclusion, these preliminary results show that FDG scan has provided a help to the physician indecision-making for therapeutic strategy in 8 patients on 21 (38%) and a help to the surgeon in 2 more cases (48% as a whole)

  14. Gabor zone-plate apertures for imaging with the mercuric iodide gamma-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E [EG and G Energy Measurements, Inc., Goleta, CA (USA); Meyyappan, A; Cai, A; Wade, G [California Univ., Santa Barbara (USA). Dept. of Electrical and Computer Engineering

    1990-12-20

    Gabor zone-plate (GZP) apertures have been developed for use in EG and G EM's mercuric iodide (HgI{sub 2}) gamma-ray camera. The purpose of such an aperture is to increase efficiency, while maintaining good resolution. The GZP is similar to the Fresnel zone plate (FZP) but it has continuous transitions between opaque and transparent regions. Because there are no sharp transitions in the transmission, the inherent interference noise in GZP imaging is lower than that in FZP imaging. GZP parameters were chosen by considering the effects of constraints such as detector pixel size, number of pixels, minimum field of view required, maximum angle of incidence tolerated, and the Nyquist criterion for the minimum sampling rate. As a result an aperture was designed and fabricated with eight zones and a diameter of 3 cm. Lead was chosen as the aperture medium due to its high attenuation coefficient. Experimental data were obtained from the camera with the above GZP aperture. The point-spread function was determined and compared to the calculated response. Excellent agreement was obtained. The reconstruction process involves simulating, by computer, planar-wave illumination of a scaled transparency of the image and recording the intensity pattern at the focal plane. (orig.).

  15. Methodology for Gamma cameras calibration for I-131 uptake quantification in Hyperthyroidism diseases

    International Nuclear Information System (INIS)

    Lopez Diaz, A.; Palau San Pedro, A.; Martin Escuela, J. M.; Reynosa Montejo, R.; Castillo, J.; Torres Aroche, L.

    2015-01-01

    Optimization and verification of Patient-Specific Treatment Planning with unsealed I-131 sources is a desirable goal from medical and radiation protection point of view. To obtain a practical protocol to combine the estimation of the related parameters with patient's specific treatment dose in hyperthyroidism disease, 3 equipment were studied (Iodine Probe, a Philips Forte Camera with pin-hole collimators and a Mediso Nucline with HEGP for planar and SPECT techniques) and crossed calibrated. The linear behaviour on diagnostic and therapeutic activity range was verified, showing a linear correlation fitting factor R 2 > 0.99. The differences between thyroid uptake determinations in all equipment were less than 6% for therapeutic activities and less than 1.1% in the diagnostic range. The combined protocol to calculate, with only one administration of I 131 , all the necessary parameters to the treatment dose estimation in 2D or 3D, avoiding wasting time with gamma cameras, was established and verified. Following this protocol the difference between apparent and calculated activities were less than 3%. (Author)

  16. The camera of the fifth H.E.S.S. telescope. Part I: System description

    Energy Technology Data Exchange (ETDEWEB)

    Bolmont, J., E-mail: bolmont@in2p3.fr [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Corona, P.; Gauron, P.; Ghislain, P.; Goffin, C.; Guevara Riveros, L.; Huppert, J.-F.; Martineau-Huynh, O.; Nayman, P.; Parraud, J.-M.; Tavernet, J.-P.; Toussenel, F.; Vincent, D.; Vincent, P. [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Bertoli, W.; Espigat, P.; Punch, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Besin, D.; Delagnes, E.; Glicenstein, J.-F. [CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex (France); and others

    2014-10-11

    In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m{sup 2} reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.

  17. A basic component for ISGRI, the CdTe gamma camera on board the INTEGRAL satellite

    International Nuclear Information System (INIS)

    Arques, M.; Baffert, N.; Lattard, D.

    1999-01-01

    A basic component, called Polycell, has been developed for the ISGRI (INTEGRAL Soft Gamma Ray Imager) CdTe camera on board the INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) satellite. Operating at room temperature, it covers the 20 keV--1 MeV energy range. It features a sub-ensemble of 16 CdTe detectors and their associated front end electronics. This electronics is based on 4-channel analog-digital ASICs. Their analog part features a low noise preamplifier, allowing a threshold below 20 keV and a pulse rise-time measurement which permits a charge loss correction. The digital part ensures the internal acquisition timing sequence as well as the dialogue with external electronics. Two versions of the ISGRI ASIC have been developed in a collaboration of two CEA microelectronics teams from CEA/DTA/LETI/DSYS and CEA/DSM/DAPNIA/SEI, respectively on a standard CMOS AMS process hardened against radiation by lay-out, and on a Silicon On Insulator process (DMILL MHS), the latter being latch-up free. This paper presents the ASIC and polycell architecture as well as experimental results obtained with polycells equipped with AMS ASICs

  18. Realization and study of spectral properties of the ISGRI gamma-ray camera

    International Nuclear Information System (INIS)

    Limousin, O.

    2001-11-01

    This work evaluates spectroscopic and physical properties of CdTe detectors in view of assembling a large number on a new generation spectro-imager for space gamma-ray astronomy. Study, optimization, realization and calibration of modular detection units of the ISGRI camera are described. After a description of the experimental context of the INTEGRAL program and a review of the physical processes involved in gamma-ray photon detectors, we present an analysis of the properties of CdTe detectors attempting to be so exhaustive as possible. We propose the base point of a global model, which relates charge transport properties, spectral response and possible instabilities in the detectors. We propose a new formulation of the Hecht relation that describes charge loss as a function of the detector charge transport properties. We discuss at length the method of charge loss correction and its consequences on the associated integrated electronics definition. Finally, we illustrate our instrument capabilities using as an example the observation of titanium 44 lines in historical supernovae. (author)

  19. Nema tests in gamma-cameras. Independent implementation of manufacturer; Pruebas Nema en gammacamaras. Implementacion independiente del fabricante

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Pacho, J. A.; Montes Fuentes, C.; Verde Velasco, J. M.; Perez Alvarez, M. E.; Delgado Aparicio, J. M.; Cons Perez, N.; Gomez Gonzalez, N.; Garcia Repiso, S.; Saez Beltran, M.; Gomez Llorente, P. L.

    2013-07-01

    The analysis of test results of quality control in gamma cameras, as extrinsic planar uniformity and the spatial resolution is often limited by intrinsic equipment tools and procedures. With the objective of an independent assessment of such evidence and better management and monitoring of the data obtained are made two separate programs in Matlab. (Author)

  20. Statistical pixelwise inference models for planar data analysis: an application to gamma-camera uniformity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kalemis, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Bailey, D L [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Flower, M A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Lord, S K [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Ott, R J [Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2004-07-21

    In this paper two tests based on statistical models are presented and used to assess, quantify and provide positional information of the existence of bias and/or variations between planar images acquired at different times but under similar conditions. In the first test a linear regression model is fitted to the data in a pixelwise fashion, using three mathematical operators. In the second test a comparison using z-scoring is used based on the assumption that Poisson statistics are valid. For both tests the underlying assumptions are as simple and few as possible. The results are presented as parametric maps of either the three operators or the z-score. The z-score maps can then be thresholded to show the parts of the images which demonstrate change. Three different thresholding methods (naive, adaptive and multiple) are presented: together they cover almost all the needs for separating the signal from the background in the z-score maps. Where the expected size of the signal is known or can be estimated, a spatial correction technique (referred to as the reef correction) can be applied. These tests were applied to flood images used for the quality control of gamma camera uniformity. Simulated data were used to check the validity of the methods. Real data were acquired from four different cameras from two different institutions using a variety of acquisition parameters. The regression model found the bias in all five simulated cases and it also found patterns of unstable regions in real data where visual inspection of the flood images did not show any problems. In comparison the z-map revealed the differences in the simulated images from as low as 1.8 standard deviations from the mean, corresponding to a differential uniformity of 2.2% over the central field of view. In all cases studied, the reef correction increased significantly the sensitivity of the method and in most cases the specificity as well. The two proposed tests can be used either separately or in

  1. Statistical pixelwise inference models for planar data analysis: an application to gamma-camera uniformity monitoring

    International Nuclear Information System (INIS)

    Kalemis, A; Bailey, D L; Flower, M A; Lord, S K; Ott, R J

    2004-01-01

    In this paper two tests based on statistical models are presented and used to assess, quantify and provide positional information of the existence of bias and/or variations between planar images acquired at different times but under similar conditions. In the first test a linear regression model is fitted to the data in a pixelwise fashion, using three mathematical operators. In the second test a comparison using z-scoring is used based on the assumption that Poisson statistics are valid. For both tests the underlying assumptions are as simple and few as possible. The results are presented as parametric maps of either the three operators or the z-score. The z-score maps can then be thresholded to show the parts of the images which demonstrate change. Three different thresholding methods (naive, adaptive and multiple) are presented: together they cover almost all the needs for separating the signal from the background in the z-score maps. Where the expected size of the signal is known or can be estimated, a spatial correction technique (referred to as the reef correction) can be applied. These tests were applied to flood images used for the quality control of gamma camera uniformity. Simulated data were used to check the validity of the methods. Real data were acquired from four different cameras from two different institutions using a variety of acquisition parameters. The regression model found the bias in all five simulated cases and it also found patterns of unstable regions in real data where visual inspection of the flood images did not show any problems. In comparison the z-map revealed the differences in the simulated images from as low as 1.8 standard deviations from the mean, corresponding to a differential uniformity of 2.2% over the central field of view. In all cases studied, the reef correction increased significantly the sensitivity of the method and in most cases the specificity as well. The two proposed tests can be used either separately or in

  2. Characterizing the detection module paving the ECLAIRs camera for the SVOM gamma-ray buts mission

    International Nuclear Information System (INIS)

    Nasser, Guillaume

    2015-01-01

    Gamma-ray bursts (GRBs) are short and very intense flashes of X-gamma-ray photons lasting from few milliseconds to hundreds of seconds appearing randomly over the sky. These cosmological events are thought to be due to the catastrophic formation of newly formed black holes following the collapse of some massive stars or after the coalescence of two compact objects and resulting in the launch of powerful ultra-relativistic jets orientated towards the Earth. The Sino-French mission SVOM (Space-based multi-band Variable Object Monitor) is dedicated to the study of these extreme and fascinating transient events and expected to be launched in 2020's. The satellite will implement a multi-wavelength science payload amongst which the core will be the large-field coded-mask camera ECLAIRs in charge of the detection and the localisation of GRBs in the 4-150 keV range. The ECLAIRs detection plane, DPIX, is made of 80x80 Schottky CdTe semi-conductor detectors and the front-end electronics. During my PhD, I mainly worked on the characterization of the scientific performance of the elementary detection modules called XRDPIX (i.e. a hybrid made of 8*4 detectors coupled with a low-noise ASIC) that will paved the DPIX. The main goal is then to derive the best suitable choice of the instrumental parameters in order to optimize the camera in-flight performance. In the manuscript, I discuss the methodology I used to explore the instrument parameter space. I describe the various testing protocols that I created and the different tests that I performed using several XRDPIX modules in a thermal-vacuum chamber and irradiated with radioactive sources. I discuss in detail the results and the various observables that I used to define the optimal in-flight operating zone of the detection plane. I also study the contribution of the different noise sources coming from the detectors and the electronic chain with a model I designed in order to control the quality of the hybridization process. I

  3. Simulation-based evaluation and optimization of a new CdZnTe gamma-camera architecture (HiSens)

    International Nuclear Information System (INIS)

    Robert, Charlotte; Montemont, Guillaume; Rebuffel, Veronique; Guerin, Lucie; Verger, Loick; Buvat, Irene

    2010-01-01

    A new gamma-camera architecture named HiSens is presented and evaluated. It consists of a parallel hole collimator, a pixelated CdZnTe (CZT) detector associated with specific electronics for 3D localization and dedicated reconstruction algorithms. To gain in efficiency, a high aperture collimator is used. The spatial resolution is preserved thanks to accurate 3D localization of the interactions inside the detector based on a fine sampling of the CZT detector and on the depth of interaction information. The performance of this architecture is characterized using Monte Carlo simulations in both planar and tomographic modes. Detective quantum efficiency (DQE) computations are then used to optimize the collimator aperture. In planar mode, the simulations show that the fine CZT detector pixelization increases the system sensitivity by 2 compared to a standard Anger camera without loss in spatial resolution. These results are then validated against experimental data. In SPECT, Monte Carlo simulations confirm the merits of the HiSens architecture observed in planar imaging.

  4. Effects of use of the lodine contrast medium on gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Sung Jae; Cho, Yun Ho [Dept. of Nuclear Medicine, Inha University hospital, Incheon (Korea, Republic of); Choi, Jae Ho [Dept. of Radiological Technology, Ansan College, Ansan (Korea, Republic of)

    2016-12-15

    Effects of Gamma camera imaging on gamma ray counting rates as a function of use and density of the iodine contrast medium currently in primary use for clinics, and changes in gamma ray counting rates as a function of the contrast medium status upon attenuation correction using a CT absorption coefficientin an SPECT/CT attenuation correction will be considered herein. For experimental materials used 99mTcO4 370 MBq and Pamiray 370 mg, Iomeron 350 mg, Visipaque 320 mg, Bonorex 300 mg of iodine contrast medium. For image acquisition, planar imaging was consecutively filmed for 1, 2, 3, 4, 5 min, respectively, 30 min after administration of 99mTcO4. while 60 views were filmed per frame for 20 min at 55 min for the SPECT/CT imaging. In planar imaging, the gamma ray counting rates as a function of filming time were reduced showing a statistically significant difference when mixed according to the type of contrast medium density rather than when the radioactive isotope 99mTcO4 and the saline solution were mixed. In the tomography for mixing of the radioactive isotope 99mTcO4 and saline solution, the mean counting rate without correction by the CT absorption coefficient is 182±26 counts, while the counting rate with correction by the CT absorption coefficient is 531.3±34 counts. In the tomography for mixing of the radioactive isotope 99mTcO4 and the saline solution with the contrast medium, the mean values before attenuation correction by CT absorption coefficient were 166±29, 158.3±17, 154±36, and 150±33 counts depending on the densities of the contrast medium, while the mean values after attenuation correction were 515±03, 503±10, 496±31, and 488.7±33 counts, showing significant differences in both cases when comparatively evaluated with the imaging for no mixing of the contrast medium. Iodine contrast medium affects the rate of gamma ray. Therefore, You should always be preceded before another test on the day of diagnosis.

  5. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Joaquin; Lledo, Salvador [University of Valencia, Clinic University Hospital, Department of Surgery, Valencia (Spain); Ferrer-Rebolleda, Jose [Clinic University Hospital, Department of Nuclear Medicine, Valencia (Spain); Cassinello, Norberto [Clinic University Hospital, Unit of Endocrinologic and Bariatric Surgery, Valencia (Spain)

    2007-02-15

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  6. Potential role of a new hand-held miniature gamma camera in performing minimally invasive parathyroidectomy

    International Nuclear Information System (INIS)

    Ortega, Joaquin; Lledo, Salvador; Ferrer-Rebolleda, Jose; Cassinello, Norberto

    2007-01-01

    Sestamibi scans have increased the use of minimally invasive parathyroidectomy (MIP) to treat primary hyperparathyroidism (PHPT) when caused by a parathyroid single adenoma. The greatest concern for surgeons remains the proper identification of pathological glands in a limited surgical field. We have studied the usefulness of a new hand-held miniature gamma camera (MGC) when used intraoperatively to locate parathyroid adenomas. To our knowledge this is the first report published on this subject in the scientific literature. Five patients with PHPT secondary to a single adenoma, positively diagnosed by preoperative sestamibi scans, underwent a MIP. A gamma probe for radioguided surgery and the new hand-held MGC were used consecutively to locate the pathological glands. This new MGC has a module composed of a high-resolution interchangeable collimator and a CsI(Na) scintillating crystal. It has dimensions of around 15 cm x 8 cm x 9 cm and weighs 1 kg. The intraoperative assay of PTH (ioPTH) was used to confirm the complete resection of pathological tissue. All cases were operated on successfully by a MIP. The ioPTH confirmed the excision of all pathological tissues. The MGC proved its usefulness in all patients, even in a difficult case in which the first attempt with the gamma probe failed. In all cases it offered real-time accurate intraoperative images. The hand-held MGC is a useful instrument in MIP for PHPT. It may be used to complement the standard tools used to date, or may even replace them, at least in selected cases of single adenomas. (orig.)

  7. Whole body scan system based on γ camera

    International Nuclear Information System (INIS)

    Ma Tianyu; Jin Yongjie

    2001-01-01

    Most existing domestic γ cameras can not perform whole body scan protocol, which is of important use in clinic. The authors designed a set of whole body scan system, which is made up of a scan bed, an ISA interface card controlling the scan bed and the data acquisition software based on a data acquisition and image processing system for γ cameras. The image was obtained in clinical experiment, and the authors think it meets the need of clinical diagnosis. Application of this system in γ cameras can provide whole body scan function at low cost

  8. Control system for several rotating mirror camera synchronization operation

    Science.gov (United States)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  9. Advanced EVA Suit Camera System Development Project

    Science.gov (United States)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  10. Physical assessment of the GE/CGR Neurocam and comparison with a single rotating gamma-camera

    International Nuclear Information System (INIS)

    Kouris, K.; Jarritt, P.H.; Costa, D.C.; Ell, P.J.

    1992-01-01

    The GE/CGR Neurocam is a triple-headed single photon emission tomography (SPET) system dedicated to multi-slice brain tomography. We have assessed its physical performance in terms of sensitivity and resolution, and its clinical efficacy in comparison with a modern, single, rotating gamma-camera (GE 400XCT). Using a water-filled cylinder containing TC-99m, the tomographic volume sensitivity of the Neurocam was 30.0 and 50.7 kcps/MBq.ml.cm for the high-resolution and general-purpose collimators, respectively; the corresponding values for the single rotating camera were 7.6 and 12.8 kcps/MBq.ml.cm. Tomographic resolution was measured in air and in water. In air, the Neurocam resolution at the centre of the field-of-view is 9.0 and 10.7 mm full width at half-maximum (FWHM) with the collimators, respectively, and is isotropic in the three orthogonal planes; the resolution of the GE 400XCT with its 13-cm radius of rotation is 10.3 and 11.7 mm, respectively. For the Neurocam with the HR collimator, the transaxial FWHM values in water were 9.7 mm at the centre and 9.5 mm radial (6.6 mm tangential) at 8 cm from the centre. The physical characteristics of the Neurocam enable the routine acquisition of brain perfusion data with Tc-99m hexamethyl-propylene amine oxime in about 14 min, yielding better image quality than with a single rotating camera in 40 min. (orig./HP)

  11. Prism-based single-camera system for stereo display

    Science.gov (United States)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  12. BENCHMARKING THE OPTICAL RESOLVING POWER OF UAV BASED CAMERA SYSTEMS

    Directory of Open Access Journals (Sweden)

    H. Meißner

    2017-08-01

    Full Text Available UAV based imaging and 3D object point generation is an established technology. Some of the UAV users try to address (very highaccuracy applications, i.e. inspection or monitoring scenarios. In order to guarantee such level of detail and accuracy high resolving imaging systems are mandatory. Furthermore, image quality considerably impacts photogrammetric processing, as the tie point transfer, mandatory for forming the block geometry, fully relies on the radiometric quality of images. Thus, empirical testing of radiometric camera performance is an important issue, in addition to standard (geometric calibration, which normally is covered primarily. Within this paper the resolving power of ten different camera/lens installations has been investigated. Selected systems represent different camera classes, like DSLRs, system cameras, larger format cameras and proprietary systems. As the systems have been tested in wellcontrolled laboratory conditions and objective quality measures have been derived, individual performance can be compared directly, thus representing a first benchmark on radiometric performance of UAV cameras. The results have shown, that not only the selection of appropriate lens and camera body has an impact, in addition the image pre-processing, i.e. the use of a specific debayering method, significantly influences the final resolving power.

  13. Realising the SPECT capability of a rotating gamma camera: an alternative approach

    International Nuclear Information System (INIS)

    Morris, P.B.; Sloboda, R.S.; Malik, M.H.

    1984-01-01

    The present paper demonstrates that the SPECT capability of the GE 400T and DEC Gamma-11 combination can be realised without any additional hardware. It is shown that projection data can be collected using acquisition software which already exists as an integral part of the Gamma-11 system. A description of the software which was developed to perform the image reconstruction is also given. The results of two phantom studies verify the validity of the method, which is currently being used regularly in non-routine clinical investigations of the brain and liver. (author)

  14. Estimated GFR (eGFR by prediction equation in staging of chronic kidney disease compared to gamma camera GFR

    Directory of Open Access Journals (Sweden)

    Mohammad Masum Alam

    2016-07-01

    Full Text Available Background: Glomerular filtration rate is an effective tool for diagnosis and staging of chronic kidney disease. The effect ofrenal insufficiency by different method of this tool among patients with CKD is controversial.Objective: The objec­tive of this study was to evaluate the performance of eGFR in staging of CKD compared to gamma camera based GFR.Methods: This cross sectional analytical study was conducted in the Department of Biochemistry Bangabandhu Sheikh Mujib Medical University (BSMMU with the collaboration with National Institute of Nuclear Medicine and Allied Sciences, BSMMU during the period of January 2011 to December 2012. Gama camera based GFR was estimated from DTP A reno gram and eGFR was estimated by three prediction equations. Comparison was done by Bland Altman agree­ment test to see the agreement on the measurement of GFR between three equation based eGFR method and gama camera based GFR method. Staging comparison was done by Kappa analysis to see the agreement between the stages identified by those different methods.Results: Bland-Altman agreement analysis between GFR measured by gamma camera, CG equation ,CG equation corrected by BSA and MDRD equation shows statistically significant. CKD stages determined by CG GFR, CG GFR corrected by BSA , MDRD GFR and gamma camera based GFR was compared by Kappa statistical analysis .The kappa value was 0.66, 0.77 and 0.79 respectively.Conclusions: This study findings suggest that GFR estimation by MDRD equation in CKD patients shows good agreement with gamma camera based GFR and for staging of CKD patients, eGFR by MDRD formula may be used as very effective tool in Bangladeshi population.

  15. Applications of a shadow camera system for energy meteorology

    Science.gov (United States)

    Kuhn, Pascal; Wilbert, Stefan; Prahl, Christoph; Garsche, Dominik; Schüler, David; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Blanc, Philippe; Pitz-Paal, Robert

    2018-02-01

    Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras directly image shadows on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and can help to optimize plant operations. In this publication, two key applications of shadow cameras are briefly presented.

  16. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  17. Reading and comparative quantification of perfusion myocardium tomo-scintigraphy realised by gamma camera and semiconductors camera

    International Nuclear Information System (INIS)

    Merlin, C.; Gauthe, M.; Bertrand, S.; Kelly, A.; Veyre, A.; Mestas, D.; Cachin, F.; Motreff, P.

    2010-01-01

    By offering high quality images, semiconductor cameras represent an undeniable technological progress. The interpretation of examinations, however, requires a learning phase. The optimization of quantification software should confirm the superiority of the D-SPECT for the measurement of kinetic parameters. (N.C.)

  18. Imaging of radiocesium uptake dynamics in a plant body using a newly developed high-resolution gamma camera for radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Fujimaki, Shu [Radiotracer Imaging Gr., Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Toshihiro [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Watabe, Hiroshi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2014-07-01

    Vast agricultural and forest areas around the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station in Japan were contaminated with radiocesium (Cs-134 and Cs-137) after the accident following the earthquake and tsunami in March 2011. A variety of agricultural studies, such as fertilizer management and plant breeding, have been undertaken intensively for reduction of radiocesium uptake in crops, or, enhancement of uptake in phyto-remediation. In this study, we newly developed a gamma camera specific for plant nutritional research, and performed quantitative analyses on uptake and partitioning of radiocesium in intact plant bodies. In general, gamma camera is a common technology in medical imaging, but it is not applicable to high-energy gamma rays such as emissions from Cs-137 (662 keV). Therefore, we designed our new gamma camera to prevent the penetration and scattering of the high-energy gamma rays. A single-crystal scintillator, Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG), was employed, which has a relatively high density, a large light output, no natural radioactivity and no hygroscopicity. A 44 x 44 matrix of the Ce:GAGG pixels, with dimensions of 0.85 mm x 0.85 mm x 10 mm for each pixel, was coupled to a high-quantum efficiency position sensitive photomultiplier tube. This gamma detector unit was encased in a 20-mm-thick tungsten container with a tungsten pinhole collimator on the front. By using this gamma camera, soybean plants (Glycine max), grown in hydroponic solutions and fed with 1-2 MBq of Cs-137, were imaged for 6.5 days in maximum to investigate and visualize the uptake dynamics into/within the areal part. As a result, radiocesium gradually appeared in the shoot several hours after feeding of Cs-137, and then accumulated intensively in the maturing pods and seeds in a characteristic pattern. Our results also demonstrated that this gamma-camera method enables quantitative evaluation of plant ability to absorb, transport

  19. A cooperative control algorithm for camera based observational systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  20. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    Science.gov (United States)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  1. Iterative reconstruction of SiPM light response functions in a square-shaped compact gamma camera

    Science.gov (United States)

    Morozov, A.; Alves, F.; Marcos, J.; Martins, R.; Pereira, L.; Solovov, V.; Chepel, V.

    2017-05-01

    Compact gamma cameras with a square-shaped monolithic scintillator crystal and an array of silicon photomultipliers (SiPMs) are actively being developed for applications in areas such as small animal imaging, cancer diagnostics and radiotracer guided surgery. Statistical methods of position reconstruction, which are potentially superior to the traditional centroid method, require accurate knowledge of the spatial response of each photomultiplier. Using both Monte Carlo simulations and experimental data obtained with a camera prototype, we show that the spatial response of all photomultipliers (light response functions) can be parameterized with axially symmetric functions obtained iteratively from flood field irradiation data. The study was performed with a camera prototype equipped with a 30  ×  30  ×  2 mm3 LYSO crystal and an 8  ×  8 array of SiPMs for 140 keV gamma rays. The simulations demonstrate that the images, reconstructed with the maximum likelihood method using the response obtained with the iterative approach, exhibit only minor distortions: the average difference between the reconstructed and the true positions in X and Y directions does not exceed 0.2 mm in the central area of 22  ×  22 mm2 and 0.4 mm at the periphery of the camera. A similar level of image distortions is shown experimentally with the camera prototype.

  2. A simple neutron-gamma discriminating system

    International Nuclear Information System (INIS)

    Liu Zhongming; Xing Shilin; Wang Zhongmin

    1986-01-01

    A simple neutron-gamma discriminating system is described. A detector and a pulse shape discriminator are suitable for the neutron-gamma discriminating system. The influence of the constant fraction discriminator threshold energy on the neutron-gamma resolution properties is shown. The neutron-gamma timing distributions from an 241 Am-Be source, 2.5 MeV neutron beam and 14 MeV neutron beam are presented

  3. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy

    International Nuclear Information System (INIS)

    Frandes, M.

    2010-09-01

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  4. Radioguided Parathyroidectomy with Portable Mini Gamma-Camera for the Treatment of Primary Hyperparathyroidism

    Directory of Open Access Journals (Sweden)

    Claudio Casella

    2015-01-01

    Full Text Available Background. A proper localisation of pathological parathyroid glands is essential for a minimally invasive approach in the surgical treatment of primary hyperparathyroidism (PHP. The recent introduction of portable mini gamma-cameras (pMGCs enabled intraoperative scintigraphic scanning. The aim of our study is to evaluate the efficacy of this new method and compare it with the preoperative localisation surveys. Methods. 20 patients were studied; they were evaluated preoperatively by neck ultrasound and Tc-sestaMIBI-scintigraphy and intraoperatively with the pMGC IP Guardian 2. The results obtained from the three evaluations were compared. Results. The pMGC presented a sensitivity of 95%, a specificity of 98.89%, and a diagnostic accuracy of 98.18%, which were higher than those of preoperative ultrasound (sensitivity 55%; specificity 95%; diagnostic accuracy 87% and scintigraphy with Tc-sestaMIBI (sensitivity 73.68%; specificity 96.05%; diagnostic accuracy 91.58%. Conclusions. The pMGC can be used effectively as an intraoperative method to find the correct location of the pathological parathyroid glands. The pMGC is more reliable than the currently used preoperative and intraoperative localisation techniques.

  5. 3D tomographic imaging with the γ-eye planar scintigraphic gamma camera

    Science.gov (United States)

    Tunnicliffe, H.; Georgiou, M.; Loudos, G. K.; Simcox, A.; Tsoumpas, C.

    2017-11-01

    γ-eye is a desktop planar scintigraphic gamma camera (100 mm × 50 mm field of view) designed by BET Solutions as an affordable tool for dynamic, whole body, small-animal imaging. This investigation tests the viability of using γ-eye for the collection of tomographic data for 3D SPECT reconstruction. Two software packages, QSPECT and STIR (software for tomographic image reconstruction), have been compared. Reconstructions have been performed using QSPECT’s implementation of the OSEM algorithm and STIR’s OSMAPOSL (Ordered Subset Maximum A Posteriori One Step Late) and OSSPS (Ordered Subsets Separable Paraboloidal Surrogate) algorithms. Reconstructed images of phantom and mouse data have been assessed in terms of spatial resolution, sensitivity to varying activity levels and uniformity. The effect of varying the number of iterations, the voxel size (1.25 mm default voxel size reduced to 0.625 mm and 0.3125 mm), the point spread function correction and the weight of prior terms were explored. While QSPECT demonstrated faster reconstructions, STIR outperformed it in terms of resolution (as low as 1 mm versus 3 mm), particularly when smaller voxel sizes were used, and in terms of uniformity, particularly when prior terms were used. Little difference in terms of sensitivity was seen throughout.

  6. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Tohru [Tokyo Univ. (Japan). Faculty of Medicine

    1998-04-01

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by {sup 11}C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical {sup 18}F-FTHA was reported. Oxygen metabolism has been estimated by {sup 11}C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs.

  7. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼.05 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels

  8. A gamma camera method to monitor the use of degradable starch microspheres in hepatic arterial chemotherapy

    International Nuclear Information System (INIS)

    Britten, A.; Fleming, J.; Flowerdew, A.; Hunt, T.; Taylor, I.; Ackery, D.

    1989-01-01

    A gamma camera method to quantify the haemodynamic effects of degradable starch microspheres (DSM) in intra arterial hepatic therapy is described. Results are presented from ten patients with colorectal liver metastases. Intra hepatic arterio venous shunting was present in 1 patient prior to DSM and in 2 subjects after three 300 mg DSM fractions. DSM reduced the rate of flow of injectate to the lung in all cases. Conversely, an increased rate of flow of injectate to gut or spleen occurred with 300 mg fractions of DSM in 7/9 cases. Lower dose DSM fractions are indicated. At 2-3 min after DSM injection the mean fraction of the activity retained in the liver was 0.22. A DSM induced enhancement of tumour relative to normal tissue perfusion was obtained in four out of five tumour regions identified. All indices showed a wide variation between patients and between individual DSM doses, and the high incidence of extra hepatic shunting confirms the need for monitoring when using intra arterial microspheres. (orig.)

  9. Relationship between image quality and changes in spatial resolution for the gamma camera

    International Nuclear Information System (INIS)

    Ikeda, Hozumi; Kishimoto, Kenji; Shimonishi, Yoshihiro; Ohmura, Masahiro; Kosakai, Kazuhisa; Hamada, Kunio; Ochi, Hironobu.

    1989-01-01

    The purpose of this study is to examine quantitatively the relationship between visual image quality and degradation in spatial resolution for a gamma camera by the increase in distance from collimator. The relationship between the proportion (p) of images identified the difference of image quality and the difference (δFWHM) in FWHM between paired images was showed in a sigmoid curve. Using Dendy's method, minimum level to be correctly identified the difference of image quality on three out of four occasions (p=0.75) was corresponded to 0.4 mm in δFWHM. Using fuzzy theory, the level to be identified the difference of image quality was examind under various conditions. The truth-value of fuzzy sets-degraded or slightly degraded and not-degraded in image quality between paired images-was gained the peak at 0.5 mm of δFWHM. It was founded that changes of 0.4-0.5 mm in FWHM-corresponding about 2 cm distance from collimator-could be sufficiently identified in the difference of image quality. (author)

  10. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    International Nuclear Information System (INIS)

    Simpson, D.R.

    1981-01-01

    Recently, multi-pinhole gamma camera collimation has been introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. This study has investigated a possible method for improving the images obtained by this technique by two multi-pinhole views taken 90 0 apart. During the course of this work, multi-pinhole collimation was also applied to in vivo imaging of the disintegration of tablets. Collimmators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 mm 2 , while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration. Further experiments are planned using this technique to measure gastric emptying times disintegration times of various tablet formulations. Limitations of multi-pinhole technique included problems such as limited ranges of viewing and artifacts introduced due to incomplete sampling

  11. A gamma beam profile imager for ELI-NP Gamma Beam System

    Science.gov (United States)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  12. Correction of dynamic time-activity curves for gamma-camera dead time, radiotracer delivery, and radioactive decay: special considerations with ultrashort-lived radioisotopes

    International Nuclear Information System (INIS)

    Kuruc, A.; Zimmerman, R.E.; Treves, S.

    1985-01-01

    Time-vs.-activity curves obtained by using ultrashort-lived radioisotopes often need to be corrected for the effects of gamma-camera dead time and physical decay. Count loss due to gamma-camera dead time can be monitored by using an electronic oscillator incorporated into the gamma camera. Two algorithms that use this information to correct time-activity curves are discussed. It is also shown that the effect of physical decay on a time-activity curve is dependent on the time course of delivery of the radioisotope to the organ of interest. A mathematical technique that corrects physical decay is described

  13. Assessment of right ventricular function with nonimaging first pass ventriculography and comparison of results with gamma camera studies.

    Science.gov (United States)

    Zhang, Z; Liu, X J; Liu, Y Z; Lu, P; Crawley, J C; Lahiri, A

    1990-08-01

    A new technique has been developed for measuring right ventricular function by nonimaging first pass ventriculography. The right ventricular ejection fraction (RVEF) obtained by non-imaging first pass ventriculography was compared with that obtained by gamma camera first pass and equilibrium ventriculography. The data has demonstrated that the correlation of RVEFs obtained by the nonimaging nuclear cardiac probe and by gamma camera first pass ventriculography in 15 subjects was comparable (r = 0.93). There was also a good correlation between RVEFs obtained by the nonimaging nuclear probe and by equilibrium gated blood pool studies in 33 subjects (r = 0.89). RVEF was significantly reduced in 15 patients with right ventricular and/or inferior myocardial infarction compared to normal subjects (28 +/- 9% v. 45 +/- 9%). The data suggests that nonimaging probes may be used for assessing right ventricular function accurately.

  14. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan); Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan)

    2016-09-11

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  15. Monitoring of the internal contamination of occupationally exposure personnel in services of nuclear medicine through the use of gamma cameras

    International Nuclear Information System (INIS)

    Teran, M.; Paolino, A.; Savio, E.; Hermida, J.C.; Dantas, B.M.

    2006-01-01

    The radionuclides incorporation can happen as a result of diverse activities; these include the work associated with the different stadiums of the nuclear fuel cycle, the use of radioactive sources in medicine, the scientific research, the agriculture and the industry. In Uruguay the main activities linked to the manipulation of open sources correspond those of Nuclear Medicine and from 2004, in the mark of the Project Arcal RLA 049 and being based on the Safety Guides of the IAEA it is implementing a program of internal monitoring in combined form the Nuclear Medicine Center of the Hospital of and the Radiochemistry class of the Faculty of Chemistry. In accordance with the publication of the ICRP 75 the emphasis of any monitoring program should be in the formal study of the doses in the workers to who are considered commendable of to receive in routine form an outstanding fraction of the dose limits or who work in areas where the exposures can be significant in the accident event. From April 2004, to the date has started a pilot plan by means of in that were established appropriate conditions of procedures and of safety in a reduced group of workers of the Nuclear Medicine area. In that period the first work limits, equipment adjustment, calibrations and registration systems were determined. The monitoring system implemented until the moment is carried out with a thyroid caption equipment. However these measurements are carried out in the university hospital embracing 40% of the involved workers of our country, with the purpose of reaching the covering of the biggest quantity of occupationally exposed personnel of private clinics. Also it was developed a new work proposal that allows to have an alternative measure method, in the event of not having the equipment habitually used. Among the conclusions of this work are that for the before exposed are considered the measure conditions but appropriate the following ones: Gamma Camera without collimator; Measurement

  16. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    Science.gov (United States)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  17. ACCURACY POTENTIAL AND APPLICATIONS OF MIDAS AERIAL OBLIQUE CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Madani

    2012-07-01

    Full Text Available Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm and (50 mm/50 mm were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining

  18. Radiotracer study of wash load movement in a drum-type fabric washing machine using a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Balt, A.P.; Brekel, L.D.M. van den; Vandecasteele, C.; Kolar, Z.

    1987-01-01

    A study was made of the movement of the wash loads in a drum-type washing machine. For this purpose a sup(99m)Tc source was attached to one or two separate textile pieces and the subsequent source positions were determined by means of a gamma-camera. The wash load movement pattern appears to depend on the type of textile material and its amount, as well as on the volume of water present in the washing machine.

  19. Radiotracer study of wash load movement in a drum-type fabric washing machine using a gamma camera

    International Nuclear Information System (INIS)

    Balt, A.P.; Brekel, L.D.M. van den; Vandecasteele, C.; Kolar, Z.

    1987-01-01

    A study was made of the movement of the wash loads in a drum-type washing machine. For this purpose a sup(99m)Tc source was attached to one or two separate textile pieces and the subsequent source positions were determined by means of a gamma-camera. The wash load movement pattern appears to depend on the type of textile material and its amount, as well as on the volume of water present in the washing machine. (author)

  20. Design and implementation of a quality assurance program for gamma cameras; Diseno e implementacion de un programa de aseguramiento de calidad para camaras gamma

    Energy Technology Data Exchange (ETDEWEB)

    Montoya M, A.; Rodriguez L, A. [Instituto Nacional de Cancerologia, Departamento de Medicina Nuclear, Av. San Fernando No. 22, Col. Seccion XVI, 14080 Mexico D. F. (Mexico); Trujillo Z, F. E., E-mail: montoya-moreno@hotmail.co [Hospital Regional de Alta Especialidad de Oaxaca, Area de Fisica Medica, Aldama s/n, Paraje El Tule, 71256 San Bartolo Coyotepec, Oaxaca (Mexico)

    2010-09-15

    In nuclear medicine more than 90% of the carried out procedures are diagnostic. To assure an appropriate diagnostic quality of the images and the doses optimization received by the patients originated in the radioactive material, it is indispensable the periodic surveillance of the operation and performance of the equipment s by means of quality assurance tests. This work presents a proposal of a quality assurance program for gamma cameras based on recommendations of the IAEA, the American Association of Medical Physics and the National Electrical Manufacturers Association. Some tests of the program were applied to an e.cam gamma camera (Siemens) of the Nuclear Medicine Department of the National Institute of Cancer. The intrinsic and extrinsic uniformity, the intrinsic spatial resolution and the extrinsic sensibility were verified. For intrinsic uniformity the average daily values of the integral uniformity and differential uniformity in the useful vision field were 2.61% and 1.58% respectively, the average monthly values of intrinsic uniformity for the integral and differential uniformity in the useful vision field were 4.10% and 1.66% respectively. The used acceptance criterions were respectively of 3.74% and 2.74%. The average values of extrinsic uniformity for the useful vision field were of 7.65% (intrinsic uniformity) and 2.69% (extrinsic uniformity), in this case the acceptance criterion is a value of 6.00%. The average value of intrinsic spatial resolution went 4.67 mm superior to 4.4. mm that is the acceptance limit. Finally, maximum variations of 1.8% were observed (minors than 2% that is the acceptance criterion) for the extrinsic sensibility measured in different regions of the detector. Significant variations of extrinsic sensibility were not observed among the monthly lectures. Of the realized measurements was concluded that the system requires of a maintenance service by part of the manufacturer, which one carries out later on to this work. The

  1. Development of a prototype gamma camera (Aladin) for use in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Imbard, G.; Carcreff, H.

    1995-01-01

    Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. This operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This paper summarizes the work carried out develop a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. (authors). 8 refs., 7 figs., 3 tabs

  2. The multi-camera optical surveillance system (MOS)

    International Nuclear Information System (INIS)

    Otto, P.; Wagner, H.; Richter, B.; Gaertner, K.J.; Laszlo, G.; Neumann, G.

    1991-01-01

    The transition from film camera to video surveillance systems, in particular the implementation of high capacity multi-camera video systems, results in a large increase in the amount of recorded scenes. Consequently, there is a substantial increase in the manpower requirements for review. Moreover, modern microprocessor controlled equipment facilitates the collection of additional data associated with each scene. Both the scene and the annotated information have to be evaluated by the inspector. The design of video surveillance systems for safeguards necessarily has to account for both appropriate recording and reviewing techniques. An aspect of principal importance is that the video information is stored on tape. Under the German Support Programme to the Agency a technical concept has been developed which aims at optimizing the capabilities of a multi-camera optical surveillance (MOS) system including the reviewing technique. This concept is presented in the following paper including a discussion of reviewing and reliability

  3. Development of advanced sensing system for antipersonnel mines with neutron capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    2006-01-01

    Neutron induced prompt gamma-ray analysis (NPGA) for survey of antipersonnel landmines is developed. A concept of sensor system with compact strong accelerator neutron source, simulation of detection and simulation results by trial examinations are stated. The measurement principles, objects, system construction, development of compact accelerator neutron source and high performance neutron capture gamma-ray detector, simulation of detection of landmine are reported. It can detect 10.8 MeV gamma-rays and estimate the incident angle of gamma-ray. Schematic layouts of the compact accelerator neutron resource, the compact Compton gamma camera and sensor unit, the estimation principle of incident angle of gamma-ray, experiments and comparison between the experimental results and the estimation results, a preliminary trial experiment system for sensing antipersonnel mines with neutron capture gamma-ray analysis are illustrated. (S.Y.)

  4. Simulation of a multi-detector gamma camera for validation protocols of quantification the activity from SPECT images

    International Nuclear Information System (INIS)

    Lozano Sanchez, A.; Calderon Marin, C.; Gonzalez Gonzalez, J.

    2015-01-01

    The main sources that decreasing accuracy in the estimation of internal absorbed dose has been identified in the methods for the quantification of cumulated activity from scintigraphic imaging, likes the corrections required by the physical and instrumental phenomena related to the formation of those images. The results of the simulation of a dual detector gamma camera E.cam SIEMENS using the Monte Carlo code SIMIND to obtain tomographic SPECT projections are presented here. SIMIND will allow dealing with the contribution of physical interactions and instrumental effects during simulations. Energy resolution, spatial resolution and sensitivity planar were determined with real and simulated systems. The relative differences did not exceed 10%. Energy spectra simulated under different conditions (source in air and water) with the inclusion of interactions in the collimator and phantom were compared. The tomographic sensitivity of a volumetric phantom containing radioactive solutions of 99m Tc and 131 I were determined from real and simulated SPECT images. Two processing protocols were considered: with scatter correction ( 99m Tc dual energy window method and 131 I were calculated after corrections. The results, expressed in terms of the differences relative to the well-know activity value in the phantom inserts improves when attenuation and scattering corrections are applied, obtaining good agreement between the results for real and simulated systems. (Author)

  5. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    Science.gov (United States)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  6. Double and triple isotope gamma camera studies with energy selection after data collection

    International Nuclear Information System (INIS)

    Soussaline, F.; Raynaud, C.; Kacperek, A.; Kellershohn, C.; Sauce, M.; Zadje, C.

    1974-01-01

    A system comprising a Toshiba camera and a Informatek data processing system has been used to perform multiple isotope studies. A large window (30-550KeV) is used and the data can be manipulated after data collection, to form sets of dynamic frames for various energies. Linear combinations of matrices have been used to correct for scattering. Double isotope studies using 197Hg/198Au have been used to determine Hg renal uptake in man, and are compared to a previous technique requiring two separate data acquisitions. Animal (pig) renal experiments have been performed using 169 Yb/sup(99m)Tc/ 197 Hg. This pilot study gave good results and indicates the utility of the system for multiple isotope function studies in man [fr

  7. Delay line clipping in a scintillation camera system

    International Nuclear Information System (INIS)

    Hatch, K.F.

    1979-01-01

    The present invention provides a novel base line restoring circuit and a novel delay line clipping circuit in a scintillation camera system. Single and double delay line clipped signal waveforms are generated for increasing the operational frequency and fidelity of data detection of the camera system by base line distortion such as undershooting, overshooting, and capacitive build-up. The camera system includes a set of photomultiplier tubes and associated amplifiers which generate sequences of pulses. These pulses are pulse-height analyzed for detecting a scintillation having an energy level which falls within a predetermined energy range. Data pulses are combined to provide coordinates and energy of photopeak events. The amplifiers are biassed out of saturation over all ranges of pulse energy level and count rate. Single delay line clipping circuitry is provided for narrowing the pulse width of the decaying electrical data pulses which increase operating speed without the occurrence of data loss. (JTA)

  8. Users' guide to the positron camera DDP516 computer system

    International Nuclear Information System (INIS)

    Bracher, B.H.

    1979-08-01

    This publication is a guide to the operation, use and software for a DDP516 computer system provided by the Data Handling Group primarily for the development of a Positron Camera. The various sections of the publication fall roughly into three parts. (1) Sections forming the Operators Guide cover the basic operation of the machine, system utilities and back-up procedures. Copies of these sections are kept in a 'Nyrex' folder with the computer. (2) Sections referring to the software written particularly for Positron Camera Data Collection describe the system in outline and lead to details of file formats and program source files. (3) The remainder of the guide, describes General-Purpose Software. Much of this has been written over some years by various members of the Data Handling Group, and is available for use in other applications besides the positron camera. (UK)

  9. Radiation Dose-Rate Extraction from the Camera Image of Quince 2 Robot System using Optical Character Recognition

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Jeong, Kyung Min

    2012-01-01

    In the case of the Japanese Quince 2 robot system, 7 CCD/CMOS cameras were used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. The Quince 2 robot measured radiation in the unit 2 reactor building refueling floor of the Fukushima nuclear power plant. The CCD camera with wide field-of-view (fisheye) lens reads indicator of the dosimeter loaded on the Quince 2 robot, which was sent to carry out investigating the unit 2 reactor building refueling floor situation. The camera image with gamma ray dose-rate information is transmitted to the remote control site via VDSL communication line. At the remote control site, the radiation information in the unit 2 reactor building refueling floor can be perceived by monitoring the camera image. To make up the radiation profile in the surveyed refueling floor, the gamma ray dose-rate information in the image should be converted to numerical value. In this paper, we extract the gamma ray dose-rate value in the unit 2 reactor building refueling floor using optical character recognition method

  10. Radiation Dose-Rate Extraction from the Camera Image of Quince 2 Robot System using Optical Character Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In the case of the Japanese Quince 2 robot system, 7 CCD/CMOS cameras were used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. The Quince 2 robot measured radiation in the unit 2 reactor building refueling floor of the Fukushima nuclear power plant. The CCD camera with wide field-of-view (fisheye) lens reads indicator of the dosimeter loaded on the Quince 2 robot, which was sent to carry out investigating the unit 2 reactor building refueling floor situation. The camera image with gamma ray dose-rate information is transmitted to the remote control site via VDSL communication line. At the remote control site, the radiation information in the unit 2 reactor building refueling floor can be perceived by monitoring the camera image. To make up the radiation profile in the surveyed refueling floor, the gamma ray dose-rate information in the image should be converted to numerical value. In this paper, we extract the gamma ray dose-rate value in the unit 2 reactor building refueling floor using optical character recognition method

  11. A universal multiprocessor system for the fast acquisition and processing of positron camera data

    International Nuclear Information System (INIS)

    Deluigi, B.

    1982-01-01

    In this study the main components of a suitable detection system were worked out, and their properties were examined. For the measurement of the three-dimensional distribution of radiopharmaka marked by positron emitters in animal-experimental studies first a positron camera was constructed. For the detection of the annihilation quanta serve two opposite lying position-sensitive gamma detectors which are derived in coincidence. Two commercial camera heads working according to the Anger principle were reconstructed for these purposes and switched together by a special interface to the positron camera. By this arrangement a spatial resolution of 0.8 cm FWHM for a line source in the symmetry plane and a coincidence resolution time 2T of 16ns FW0.1M was reached. For the three-dimensional image reconstruction with the data of a positron camera a maximum-likelihood procedure was developed and tested by a Monte Carlo procedure. In view of this application an at most flexible multi-microprocessor system was developed. A high computing capacity is reached owing to the fact that several partial problems are distributed to different processors and are processed parallely. The architecture was so scheduled that the system possesses a high error tolerance and that the computing capacity can be extended without a principal limit. (orig./HSI) [de

  12. BrachyView: Proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy

    International Nuclear Information System (INIS)

    Petasecca, M.; Loo, K. J.; Safavi-Naeini, M.; Han, Z.; Metcalfe, P. E.; Lerch, M. L. F.; Qi, Y.; Rosenfeld, A. B.; Meikle, S.; Pospisil, S.; Jakubek, J.; Bucci, J. A.; Zaider, M.

    2013-01-01

    Purpose: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. Methods: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. Results: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5–3 mm for a 10–60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for

  13. BrachyView: proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy.

    Science.gov (United States)

    Petasecca, M; Loo, K J; Safavi-Naeini, M; Han, Z; Metcalfe, P E; Meikle, S; Pospisil, S; Jakubek, J; Bucci, J A; Zaider, M; Lerch, M L F; Qi, Y; Rosenfeld, A B

    2013-04-01

    The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real-time imaging (using a 3 s

  14. Neutron imaging system based on a video camera

    International Nuclear Information System (INIS)

    Dinca, M.

    2004-01-01

    The non-destructive testing with cold, thermal, epithermal or fast neutrons is nowadays more and more useful because the world-wide level of industrial development requires considerably higher standards of quality of manufactured products and reliability of technological processes especially where any deviation from standards could result in large-scale catastrophic consequences or human loses. Thanks to their properties, easily obtained and very good discrimination of the materials that penetrate, the thermal neutrons are the most used probe. The methods involved for this technique have advanced from neutron radiography based on converter screens and radiological films to neutron radioscopy based on video cameras, that is, from static images to dynamic images. Many neutron radioscopy systems have been used in the past with various levels of success. The quality of an image depends on the quality of the neutron beam and the type of the neutron imaging system. For real time investigations there are involved tube type cameras, CCD cameras and recently CID cameras that capture the image from an appropriate scintillator through the agency of a mirror. The analog signal of the camera is then converted into digital signal by the signal processing technology included into the camera. The image acquisition card or frame grabber from a PC converts the digital signal into an image. The image is formatted and processed by image analysis software. The scanning position of the object is controlled by the computer that commands the electrical motors that move horizontally, vertically and rotate the table of the object. Based on this system, a lot of static image acquisitions, real time non-destructive investigations of dynamic processes and finally, tomographic investigations of the small objects are done in a short time. A system based on a CID camera is presented. Fundamental differences between CCD and CID cameras lie in their pixel readout structure and technique. CIDs

  15. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  16. Performance assessment of a slat gamma camera collimator for 511 keV imaging. Corrigendum. Phys. Med. Biol., v. 44, p. 1735-1741

    International Nuclear Information System (INIS)

    Britten, A.J.; Klie, R.

    1999-01-01

    Further to the recent work on slat gamma camera collimators by Britten and Klie (see above), the authors would like to add some references on the early work in gamma camera slat collimators, which should have been included for completeness. These papers are the original publication by Keyes (1975), and the work carried out by Webb et al (1992, 1993) deriving equations for geometric sensitivity and showing Monte Carlo modelling of performance. (author)

  17. A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy

    Science.gov (United States)

    Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih

    2017-08-01

    In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.

  18. Optomechanical System Development of the AWARE Gigapixel Scale Camera

    Science.gov (United States)

    Son, Hui S.

    Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.

  19. Gamma-camera 18F-FDG PET in diagnosis and staging of patients presenting with suspected lung cancer and comparison with dedicated PET

    DEFF Research Database (Denmark)

    Oturai, Peter S; Mortensen, Jann; Enevoldsen, Henriette

    2004-01-01

    It is not clear whether high-quality coincidence gamma-PET (gPET) cameras can provide clinical data comparable with data obtained with dedicated PET (dPET) cameras in the primary diagnostic work-up of patients with suspected lung cancer. This study focuses on 2 main issues: direct comparison...

  20. Quality assurance procedure for a gamma guided stereotactic breast biopsy system.

    Science.gov (United States)

    Welch, Benjamin L; Brem, Rachel; Black, Rachel; Majewski, Stan

    2006-01-01

    A quality assurance procedure has been developed for a prototype gamma-ray guided stereotactic biopsy system. The system consists of a compact small-field-of-view gamma-ray camera mounted to the rotational arm of a Lorad stereotactic biopsy system. The small-field-of-view gamma-ray camera has been developed for clinical applications where mammographic X-ray localization is not possible. Marker sources that can be imaged with the gamma-camera have been designed and built for quality assurance testing and to provide a fiducial reference mark. An algorithm for determining the three dimensional location of a region of interest, such as a lesion, relative to the fiducial mark has been implemented into the software control of the camera. This system can be used to determine the three-dimensional location of a region of interest from a stereo pair of images and that information can be used to guide a biopsy needle to that site. Point source phantom tests performed with the system have demonstrated that the camera can be used to localize a point of interest to within 1 mm, which is satisfactory for its use in needle localization.

  1. Design of a Day/Night Star Camera System

    Science.gov (United States)

    Alexander, Cheryl; Swift, Wesley; Ghosh, Kajal; Ramsey, Brian

    1999-01-01

    This paper describes the design of a camera system capable of acquiring stars during both the day and night cycles of a high altitude balloon flight (35-42 km). The camera system will be filtered to operate in the R band (590-810 nm). Simulations have been run using MODTRAN atmospheric code to determine the worse case sky brightness at 35 km. With a daytime sky brightness of 2(exp -05) W/sq cm/str/um in the R band, the sensitivity of the camera system will allow acquisition of at least 1-2 stars/sq degree at star magnitude limits of 8.25-9.00. The system will have an F2.8, 64.3 mm diameter lens and a 1340X1037 CCD array digitized to 12 bits. The CCD array is comprised of 6.8 X 6.8 micron pixels with a well depth of 45,000 electrons and a quantum efficiency of 0.525 at 700 nm. The camera's field of view will be 6.33 sq degree and provide attitude knowledge to 8 arcsec or better. A test flight of the system is scheduled for fall 1999.

  2. Target-Tracking Camera for a Metrology System

    Science.gov (United States)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  3. Gamma tomography apparatus

    International Nuclear Information System (INIS)

    Span, F.J.

    1988-01-01

    The patent concerns a gamma tomography apparatus for medical diagnosis. The apparatus comprises a gamma scintillation camera head and a suspension system for supporting and positioning the camera head with respect for the patient. Both total body scanning and single photon emission tomography can be carried out with the apparatus. (U.K.)

  4. Contribution to the development of a gamma radiation camera for use in scintigraphy

    International Nuclear Information System (INIS)

    Felix, J.

    1969-10-01

    This report constitutes an attempt to study systematically the properties of the detection head of a multichannel collimating grid camera. The object has been to show the disadvantages of present equipment, and to propose possible solutions for overcoming them: firstly by improving the methods used for collecting data, and the performances of the equipment doing the collecting; secondly by devising methods for processing the data so as to reduce image distortion and, first of all, the astigmatism due to the collimator. The first part deals with the study of the formation of the image by means of the collimating grid, the second with the examination of many systems which could be used for acquiring data. The last part summarizes the experiments carried out and proposes an experimental programme for the development of a prototype. (author) [fr

  5. Design of microcontroller based system for automation of streak camera

    International Nuclear Information System (INIS)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.; Sharma, M. L.; Navathe, C. P.

    2010-01-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  6. Design of microcontroller based system for automation of streak camera.

    Science.gov (United States)

    Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P

    2010-08-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  7. Design of microcontroller based system for automation of streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.; Sharma, M. L.; Navathe, C. P. [Laser Electronics Support Division, RRCAT, Indore 452013 (India)

    2010-08-15

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  8. Hydra phantom applicability for carrying out tests of field uniformity in gamma cameras; Aplicabilidade do fantoma hydra para realizacao dos testes de uniformidade de campo em gama camaras

    Energy Technology Data Exchange (ETDEWEB)

    Aragao Filho, Geraldo L., E-mail: geraldo_lemos10@hotmail.com [Centro de Medicina Nuclear de Pernambuco (CEMUPE), Recife, PE (Brazil); Oliveira, Alex C.H., E-mail: oliveira_ach@yahoo.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Lopes Filho, Ferdinand J.; Vieira, Jose W., E-mail: ferdinand.lopes@oi.com.br, E-mail: jose-wilson59@live.com [Instituto Federal de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    Nuclear Medicine is a medical modality that makes use of radioactive material 'in vivo' in humans, making them a temporary radioactive source. The radiation emitted by the patient's body is detected by a specific equipment, called a gamma camera, creates an image showing the spatial and temporal biodistribution of radioactive material administered to the patient. Therefore, it's of fundamental importance a number of specific measures to make sure that procedure be satisfactory, called quality control. To Nuclear Medicine, quality control of gamma camera has the purpose of ensuring accurate scintillographic imaging, truthful and reliable for the diagnosis, guaranteeing visibility and clarity of details of structures, and also to determine the frequency and the need for preventive maintenance of equipment. To ensure the quality control of the gamma camera it's necessary to use some simulators, called phantom, used in Nuclear Medicine to evaluate system performance, system calibration and simulation of injuries. The goal of this study was to validate a new simulator for nuclear medicine, the Hydra phantom. The phantom was initially built for construction of calibration curves used in radiotherapy planning and quality control in CT. It has similar characteristics to specific phantoms in nuclear medicine, containing inserts and water area. Those inserts are regionally sourced materials, many of them are already used in the literature and based on information about density and interaction of radiation with matter. To verify its efficiency in quality control in Nuclear Medicine, was performed a test for uniformity field, one of the main tests performed daily, so we can verify the ability of the gamma camera to reproduce a uniform distribution of the administered activity in the phantom, been analysed qualitatively, through the image, and quantitatively, through values established for Central Field Of View (CFOV) and Useful Field Of View (UFOV

  9. A survey of camera error sources in machine vision systems

    Science.gov (United States)

    Jatko, W. B.

    In machine vision applications, such as an automated inspection line, television cameras are commonly used to record scene intensity in a computer memory or frame buffer. Scene data from the image sensor can then be analyzed with a wide variety of feature-detection techniques. Many algorithms found in textbooks on image processing make the implicit simplifying assumption of an ideal input image with clearly defined edges and uniform illumination. The ideal image model is helpful to aid the student in understanding the principles of operation, but when these algorithms are blindly applied to real-world images the results can be unsatisfactory. This paper examines some common measurement errors found in camera sensors and their underlying causes, and possible methods of error compensation. The role of the camera in a typical image-processing system is discussed, with emphasis on the origination of signal distortions. The effects of such things as lighting, optics, and sensor characteristics are considered.

  10. Two New Types of Detector for X- or Gamma-Ray Cameras

    International Nuclear Information System (INIS)

    Kellershohn, C.; Desgrez, A.; Lansiart, A.

    1964-01-01

    X- or γ-ray cameras consist essentially of a hole-type or grid-type lens system together with a detector. The authors propose two kinds of detector quite different from the Anger device, which so far has been the only one in practical use. The first consists of a self-triggering spark chamber. This chamber, about 20 cm in diam. and filled with a rare gas (argon or xenon), forms a cathode and two grids. The cathode and the second grid are subjected to a potential difference of several kilovolts, somewhat lower than the breakdown voltage. The first cathode-grid space serves as an electron source under the action of the low-energy X- or γ-ray photons. The cathode can also be plated with a metal of high Z, or a crystal scintillator connected to a photocathode can be used. After suitable amplification, the sudden burst of charges due to electron multiplication in the Townsend avalanche produces a well localized spark with a delay of a fraction of a microsecond. The image is obtained with the aid of a camera whose shutter is permanently open. The second type of detector consists of a Csl (Tl) crystal connected to the photocathode of a Thomson tube, 20 cm in diam. and with electrostatic focusing. The image on the secondary screen of this tube is transferred by an optical device to the photocathode of a tube with parallel electric and magnetic field (manufactured by the English Electric Valve Company) and serving as shutter. Some of the light entering the optical device is received by a photomultiplier, which controls the opening of the shutter tube through an amplitude selector. This arrangement makes it possible to distinguish between the light due to the signal and that due to the noise of the Thomson tube. The shutter tube is opened only by the former. Since the shutter tube remains open for only an extremely short time, the signal-noise ratio of this detector arrangement is high enough to give an image on the end screen of the shutter tube using a permanently open

  11. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation

    International Nuclear Information System (INIS)

    Priegnitz, M; Helmbrecht, S; Fiedler, F; Janssens, G; Smeets, J; Vander Stappen, F; Perali, I; Sterpin, E

    2015-01-01

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation. (paper)

  12. The design of software system of intelligentized γ-camera

    International Nuclear Information System (INIS)

    Zhao Shujun; Li Suxiao; Wang Jing

    2006-01-01

    The software system of γ-camera adopts visualizing and interactive human-computer interface, collecting and displaying the data of patients in real time. Through a series of dealing with the collected data then it put out the medical record in Chinese. This system also can retrieve and backup the data of patients. Besides, it can assist the doctor to diagnose the illness by applying the clinical quantitative analysis function of the system. (authors)

  13. AMIE Camera System on board SMART-1

    Science.gov (United States)

    Josset, J. L.; Beauvivre, S.; Amie Team

    The Advanced Moon micro-Imager Experiment AMIE on board ESA SMART-1 the first European mission to the Moon launched on 27th September 2003 is an imaging system with scientific technical and public outreach oriented objectives The science objectives are to image the Lunar Poles permanent shadow areas ice deposit eternal light crater rims ancient Lunar Non-mare volcanism local spectro-photometry and physical state of the lunar sur-face and to map high latitudes regions south mainly at far side South Pole Aitken basin The technical objectives are to perform a laserlink experiment detec-tion of laser beam emitted by ESA Tenerife ground station flight demonstration of new technologies and on-board autonomy navigation The public outreach and educational objectives are to promote planetary exploration We present the AMIE instrument and perfomances with respect to the first results

  14. Implementation of test for quality assurance in nuclear medicine gamma camera

    Science.gov (United States)

    Moreno, A. Montoya; Laguna, A. Rodríguez; Zamudio, Flavio E. Trujillo

    2012-10-01

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexico (INCan). The results were: (1) The average intrinsic spatial resolution (Rin) was 4.67 ± 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (Sext), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (Urot), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 ± 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (Utomo), UI values (%) and percentage noise level (rms%) were 7.54 ± 1.53 and 4.18 ± 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of the service. This proposal can be used to

  15. Electronics for the camera of the First G-APD Cherenkov Telescope (FACT) for ground based gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, V; Djambazov, L; Dorner, D; Gendotti, A; Grimm, O; Gunten, H P von; Hildebrand, D; Horisberger, U; Huber, B; Kim, K-S; Krähenbühl, T; Backes, M; Köhne, J-H; Krumm, B; Bretz, T; Farnier, C

    2012-01-01

    Within the FACT project, we construct a new type of camera based on Geiger-mode avalanche photodiodes (G-APDs). Compared to photomultipliers, G-APDs are more robust, need a lower operation voltage and have the potential of higher photon-detection efficiency and lower cost, but were never fully tested in the harsh environments of Cherenkov telescopes. The FACT camera consists of 1440 G-APD pixels and readout channels, based on the DRS4 (Domino Ring Sampler) analog pipeline chip and commercial Ethernet components. Preamplifiers, trigger system, digitization, slow control and power converters are integrated into the camera.

  16. Quantitative investigation of a novel small field of view hybrid gamma camera (HGC) capability for sentinel lymph node detection

    Science.gov (United States)

    Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C

    2016-01-01

    Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant

  17. Scintillation camera-computer systems: General principles of quality control

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Scintillation camera-computer systems are designed to allow the collection, digital analysis and display of the image data from a scintillation camera. The components of the computer in such a system are essentially the same as those of a computer used in any other application, i.e. a central processing unit (CPU), memory and magnetic storage. Additional hardware items necessary for nuclear medicine applications are an analogue-to-digital converter (ADC), which converts the analogue signals from the camera to digital numbers, and an image display. It is possible that the transfer of data from camera to computer degrades the information to some extent. The computer can generate the image for display, but it also provides the capability of manipulating the primary data to improve the display of the image. The first function of conversion from analogue to digital mode is not within the control of the operator, but the second type of manipulation is in the control of the operator. These type of manipulations should be done carefully without sacrificing the integrity of the incoming information

  18. Regional cerebral blood flow measurement using N-isopropyl-p-[123I] iodoamphetamine and rotating gamma camera emission computed tomography

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Seki, Hiroyasu; Ishida, Hiroko

    1985-01-01

    Thirty-one regional cerebral blood flow (rCBF) measurements were performed on 26 patients with cerebrovascular accidents using N-Isopropyl-p-[ 123 I] Iodoamphetamine ( 123 I-IMP) and rotating gamma camera emission computed tomography (ECT). The equation for determining rCBF is as follows: F=100.R.Cb/(N.A), where F is rCBF in ml/100 g/min., R is the constant withdrawal rate of arterial blood in ml/min., Cb is the brain activity concentration in μCi/g, A is the total activity (5 min.) in the withdrawal arterial whole blood in μCi and N is the fraction of A that is true tracer activity (0.75). In determining Cb at 5 min. after injection, reconstructed counts from 35 min. to 59 min. were corrected to represent those from 4 min. to 5 min. with the use of time activity curve for the entire brain immediately after injection to 30 min. Reconstructed counts of central region in tomographic image were corrected 118% of the obtained values from the result of the countingrate ratio between peripheral and central regions of interests obtained from phantom study. Brain mean blood flow values were distributed from 11 to 39 ml/100 g/min. In 119 cortical regions obtained from 11 measurements in 9 patients, there was a significant correlation (r=0.41, p 123 I-IMP and rotating gamma camera ECT and those from 133 Xe inhalation method. rCBF measurement using 123 I-IMP and rotating gamma camera ECT is not only relatively noninvasive measurement for the entire brain but also three-dimensional evaluation. Besides, it is superior in spatial resolution and accuracy to conventional 133 Xe clearance method. (author)

  19. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    OpenAIRE

    Orts-Escolano, Sergio; Garcia-Rodriguez, Jose; Morell, Vicente; Cazorla, Miguel; Azorin-Lopez, Jorge; García-Chamizo, Juan Manuel

    2014-01-01

    In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mob...

  20. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    Science.gov (United States)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  1. RELATIVE AND ABSOLUTE CALIBRATION OF A MULTIHEAD CAMERA SYSTEM WITH OBLIQUE AND NADIR LOOKING CAMERAS FOR A UAS

    Directory of Open Access Journals (Sweden)

    F. Niemeyer

    2013-08-01

    Full Text Available Numerous unmanned aerial systems (UAS are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis“ software and will give an overview of the results and experiences of test flights.

  2. Computer aided collimation gamma (Cacao): a new approach in measuring and visualizing the distribution of X and gamma ray emitters in contaminate wounds; Cacao (camera a collimation assistee par ordinateur): une nouvelle approche pour reconstruire et visualiser des contaminations d'emetteurs X et gamma dans les blessures

    Energy Technology Data Exchange (ETDEWEB)

    Douiri, A. [Hopital Pitie-Salpetriere (LENA), 75 - Paris (France); Jeanguillaume, C. [Centre Hospitalier Universitaire de Larrey, Service de Medecine Nucleaire, 49 - Angers (France); Franck, D.; Carlan, L. de [Institut de Radioprotection et de Surete Nucleaire, IRSN, Dept. de Protection de la Sante de l' Homme et de Dosimetrie, 92 - Fontenay aux Roses (France); Quartuccio, M.; Begot, S. [Faculte des Sciences d' Orsay (LPS), 91 - Orsay (France)

    2003-07-01

    The treatment of contaminated wounds can be greatly improved by visualizing the distribution of the radioactivity that is present. The low sensitivity of the conventional Anger camera means that it can only be used where there is a high level of activity. Moreover, these gamma cameras cannot make full use of the recent progress made in high spatial resolution semi-conductor detectors. In order to increase sensitivity while at the same time maintaining a sufficient resolution of the reconstructed image, the principle of the Computer aided collimation gamma camera (CACAO in French) was proposed as a possible means of using gamma cameras in intern dosimetry. This principle is based on the combined use of collimators with holes that are wider- than the intrinsic resolution of the detector, circular and linear scanning movements, a detector sensitive to the source depth and a specific reconstruction algorithm. This article presents the recent developments of the CACAO system and illustrates by a theoretical and experimental study, its performances compared with the classic tomography system. We start with a general overview of the CACAO system and its reconstruction algorithm. First of all, the superiority of the CACAO system is demonstrated by a simulation ,study. Then, an experimental bench was developed using an implanted silicon pixel detector specifically designed to allow the visualization of a subject contaminated with low energy X and gamma emitters. The study presented here shows images obtained from a phantom composed of three sources of Americium {sup 341}Am. Although the comparison between the conventional and CACAO approaches were not carried out with optimal parameters, especially for CACAO, the initial results show that CACAO has an improved sensitivity and a superior resolution. Finally, the transposition of this system to the practical study of contaminated wounds is discussed. (authors)

  3. Acceptance/operational test procedure 101-AW tank camera purge system and 101-AW video camera system

    International Nuclear Information System (INIS)

    Castleberry, J.L.

    1994-01-01

    This procedure will document the satisfactory operation of the 101-AW Tank Camera Purge System (CPS) and the 101-AW Video Camera System. The safety interlock which shuts down all the electronics inside the 101-AW vapor space, during loss of purge pressure, will be in place and tested to ensure reliable performance. This procedure is separated into four sections. Section 6.1 is performed in the 306 building prior to delivery to the 200 East Tank Farms and involves leak checking all fittings on the 101-AW Purge Panel for leakage using a Snoop solution and resolving the leakage. Section 7.1 verifies that PR-1, the regulator which maintains a positive pressure within the volume (cameras and pneumatic lines), is properly set. In addition the green light (PRESSURIZED) (located on the Purge Control Panel) is verified to turn on above 10 in. w.g. and after the time delay (TDR) has timed out. Section 7.2 verifies that the purge cycle functions properly, the red light (PURGE ON) comes on, and that the correct flowrate is obtained to meet the requirements of the National Fire Protection Association. Section 7.3 verifies that the pan and tilt, camera, associated controls and components operate correctly. This section also verifies that the safety interlock system operates correctly during loss of purge pressure. During the loss of purge operation the illumination of the amber light (PURGE FAILED) will be verified

  4. Uteroplacental blood flow in diabetic pregnancy: measurements with indium 113m and a computer-linked gamma camera

    International Nuclear Information System (INIS)

    Nylund, L.; Lunell, N.O.; Lewander, R.; Persson, B.; Sarby, B.

    1982-01-01

    The uteroplacental blood flow index in the last trimester of pregnancy in 26 women with diabetes mellitus was compared to that in 41 healthy control subjects. After an intravenous injection of 1 mCi of indium 113m, the radiation over the placenta was recorded with a computer-linked gamma camera. From time-activity analysis of the isotope accumulation curve, a uteroplacental blood flow index could be calculated. In the diabetic pregnant women, the maternal-placental blood flow index was reduced 35% to 45% compared to that in healthy women. The blood flow index tended to be further impaired in those diabetic women who had higher blood glucose values

  5. Use of calibration methodology of gamma cameras for the workers surveillance using a thyroid simulator; Uso de una metodologia de calibracion de camaras gamma para la vigilancia de trabajadores usando un simulador de tiroides

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, M.; Molina, G.; Vazquez, R.; Garcia, O., E-mail: mercedes.alfaro@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    In Mexico there are a significant number of nuclear medicine centers in operation. For what the accidents risk related to the transport and manipulation of open sources used in nuclear medicine can exist. The National Institute of Nuclear Research (ININ) has as objective to establish a simple and feasible methodology for the workers surveillance related with the field of the nuclear medicine. This radiological surveillance can also be applied to the public in the event of a radiological accident. To achieve this it intends to use the available equipment s in the nuclear medicine centers, together with the neck-thyroid simulators elaborated by the ININ to calibrate the gamma cameras. The gamma cameras have among their component elements that conform spectrometric systems like the employees in the evaluation of the internal incorporation for direct measurements, reason why, besides their use for diagnostic for image, they can be calibrated with anthropomorphic simulators and also with punctual sources for the quantification of the radionuclides activity distributed homogeneously in the human body, or located in specific organs. Inside the project IAEA-ARCAL-RLA/9/049-LXXVIII -Procedures harmonization of internal dosimetry- where 9 countries intervened (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru, Uruguay and Spain). It was developed a protocol of cameras gamma calibration for the determination in vivo of radionuclides. The protocol is the base to establish and integrated network in Latin America to attend in response to emergencies, using nuclear medicine centers of public hospitals of the region. The objective is to achieve the appropriate radiological protection of the workers, essential for the sure and acceptable radiation use, the radioactive materials and the nuclear energy. (Author)

  6. The Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  7. Oblique Multi-Camera Systems - Orientation and Dense Matching Issues

    Science.gov (United States)

    Rupnik, E.; Nex, F.; Remondino, F.

    2014-03-01

    The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  8. Determination of in vivo behavior of mitomycin C-loaded o/w soybean oil microemulsion and mitomycin C solution via gamma camera imaging.

    Science.gov (United States)

    Kotmakçı, Mustafa; Kantarcı, Gülten; Aşıkoğlu, Makbule; Ozkılıç, Hayal; Ertan, Gökhan

    2013-09-01

    In this study, a microemulsion system was evaluated for delivery of mitomycin C (MMC). To track the distribution of the formulated drug after intravenous administration, radiochemical labeling and gamma scintigraphy imaging were used. The aim was to evaluate a microemulsion system for intravenous delivery of MMC and to compare its in vivo behavior with that of the MMC solution. For microemulsion formulation, soybean oil was used as the oil phase. Lecithin and Tween 80 were surfactants and ethanol was the cosurfactant. To understand the whole body localization of MMC-loaded microemulsion, MMC was labeled with radioactive technetium and gamma scintigraphy was applied for visualization of drug distribution. Radioactivity in the bladder 30 minutes after injection of the MMC solution was observed, according to static gamma camera images. This shows that urinary excretion of the latter starts very soon. On the other hand, no radioactivity appeared in the urinary bladder during the 90 minutes following the administration of MMC-loaded microemulsion. The unabated radioactivity in the liver during the experiment shows that the localization of microemulsion formulation in the liver is stable. In the light of the foregoing, it is suggested that this microemulsion formulation may be an appropriate carrier system for anticancer agents by intravenous delivery in hepatic cancer chemotherapy.

  9. ATR/OTR-SY Tank Camera Purge System and in Tank Color Video Imaging System

    International Nuclear Information System (INIS)

    Werry, S.M.

    1995-01-01

    This procedure will document the satisfactory operation of the 101-SY tank Camera Purge System (CPS) and 101-SY in tank Color Camera Video Imaging System (CCVIS). Included in the CPRS is the nitrogen purging system safety interlock which shuts down all the color video imaging system electronics within the 101-SY tank vapor space during loss of nitrogen purge pressure

  10. Complete system for portable gamma spectroscopy

    International Nuclear Information System (INIS)

    Fuess, D.A.

    1978-01-01

    The report described a system built around the Computing Gamma Spectrometer (PSA) LEA 74-008. The software primarily supports high-resolution gamma-ray spectroscopy using either a high-purity intrinsic germanium detector (HPGe) or a lithium-drifted germanium detector [Ge(Li)

  11. A new high-speed IR camera system

    Science.gov (United States)

    Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.

    1994-01-01

    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.

  12. Cerebral emission computer tomography with a rotating gamma camera: clinic results with J-123 Isopropylamphetamin and J-123-Fenetyllin

    International Nuclear Information System (INIS)

    Biersack, H.J.; Hartmann, A.; Froescher, W.; Reske, S.-N.; Reichmann, K.; Knopp, R.; Winkler, C.

    1984-01-01

    Many amines can pass the blood brain barrier and accumulate in relatively large amounts in the brain tissue. For about 2 years 123-J amphetamines have, therefore, been used for brain imaging by several teams. Our experience sofar is based on 28 patients. Of these, 14 were epileptics, 10 had cerebrovascular diseases, 2 suffered from migraine and another 2 had brain tumors. In 3 patients with vascular lesions studies were repeated twice or three times. Amphetamine uptake in the brain was measured with a rotating gamma camera system (Gammatome T9000/CGR). At an examination time of 20 minutes 64 frames were acquired during one full rotation. The pulse rate was about 3000 second after injecting 6.5 mCi of 123-J amphetamine. Of the epileptics, 8 showed defects both on CT and SPECT, in 3 cases both studies were normal. While 1 patient with CT positivity had a normal SPECT, 2 cases were found to have lesions on SPECT inspite of a normal CT. The size of the lesion seen on amphetamine SPECT was lager than on CT in 3 of 9 patients. In the 10 patients with cerebrovascular lesions the 2 procedures showed concordant normal patterns in 1 and concordant abnormal patterns in 7 instances. 2 patients with normal CT were found to have a lesion on amphetamine scanning which corresponded to the neurologic findings. Regarding the size of the lesions, SPECT showed a more extensive involvement than CT in 2 cases. This again was in good agreement with the neurologic findings. Inspite of repeat studies cerebellar diaschisis was only seen in a single case with healed cerebral infarction and hemiplegia of some years' standing. Two patients suffered from migraine and compromised blood flow was identified as suggested by the neurologic findings inspite of a normal CT. (Author)

  13. Mechanically assisted liquid lens zoom system for mobile phone cameras

    Science.gov (United States)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.

    2006-08-01

    Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).

  14. A simple data loss model for positron camera systems

    International Nuclear Information System (INIS)

    Eriksson, L.; Dahlbom, M.

    1994-01-01

    A simple model to describe data losses in PET cameras is presented. The model is not intended to be used primarily for dead time corrections in existing scanners, although this is possible. Instead the model is intended to be used for data simulations in order to determine the figures of merit of future camera systems, based on data handling state-of-art solutions. The model assumes the data loss to be factorized into two components, one describing the detector or block-detector performance and the other the remaining data handling such as coincidence determinations, data transfer and data storage. Two modern positron camera systems have been investigated in terms of this model. These are the Siemens-CTI ECAT EXACT and ECAT EXACT HR systems, which both have an axial field-of-view (FOV) of about 15 cm. They both have retractable septa and can acquire data from the whole volume within the FOV and can reconstruct volume image data. An example is given how to use the model for live time calculation in a futuristic large axial FOV cylindrical system

  15. Distributing functionality in the Drift Scan Camera System

    International Nuclear Information System (INIS)

    Nicinski, T.; Constanta-Fanourakis, P.; MacKinnon, B.; Petravick, D.; Pluquet, C.; Rechenmacher, R.; Sergey, G.

    1993-11-01

    The Drift Scan Camera (DSC) System acquires image data from a CCD camera. The DSC is divided physically into two subsystems which are tightly coupled to each other. Functionality is split between these two subsystems: the front-end performs data acquisition while the host subsystem performs near real-time data analysis and control. Yet, through the use of backplane-based Remote Procedure Calls, the feel of one coherent system is preserved. Observers can control data acquisition, archiving to tape, and other functions from the host, but, the front-end can accept these same commands and operate independently. The DSC meets the needs for such robustness and cost-effective computing

  16. System Architecture of the Dark Energy Survey Camera Readout Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Theresa; /FERMILAB; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; /Barcelona, IFAE; Chappa, Steve; /Fermilab; de Vicente, Juan; /Madrid, CIEMAT; Holm, Scott; Huffman, Dave; Kozlovsky, Mark; /Fermilab; Martinez, Gustavo; /Madrid, CIEMAT; Moore, Todd; /Madrid, CIEMAT /Fermilab /Illinois U., Urbana /Fermilab

    2010-05-27

    The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.

  17. A normalisation for the four - detector system for gamma - gamma angular correlation studies

    International Nuclear Information System (INIS)

    Kiang, G.C.; Chen, C.H.; Niu, W.F.

    1994-01-01

    A normalisation method for the multiple - HPGe - detector system is described. The system consists of four coaxial HPGe detectors with a CAMAC event - by - event data acquisition system, enabling to measure six gamma -gamma coincidences of angles simultaneously. An application for gamma - gamma correlation studies of Kr 82 is presented and discussed. 3 figs., 6 refs. (author)

  18. Calibration of gamma cameras for the evaluation of accidental intakes of high-energy photon emitting radionuclides by humans based on urine samples

    Energy Technology Data Exchange (ETDEWEB)

    Degenhardt, A.L.; Lucena, E.A.; Reis, A.A. dos; Souza, W.O.; Dantas, A.L.A.; Dantas, B.M., E-mail: bmdantas@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Dosimetria

    2017-07-01

    The prompt response to emergency situations involving suspicion of intakes of radionuclides requires the use of simple and rapid methods of internal monitoring of the exposed individuals. The use of gamma cameras to estimate intakes and committed doses was investigated by the Centers for Disease Control and Preventions (CDC) of the USA in 2010.The present study aims to develop a calibration protocol for gamma cameras to be applied on internal monitoring based on urine samples to evaluate the incorporation of high-energy photon emitting radionuclides in emergency situations. A gamma camera available in a public hospital located in the city of Rio de Janeiro was calibrated using a standard liquid source of {sup 152}Eu supplied by the LNMRI of the IRD.'Efficiency vs Energy' curves at 10 and 30 cm were obtained. Calibration factors, Minimum Detectable Activities and Minimum Detectable Effective Doses of the gamma camera were calculated for {sup 137}Cs and {sup 60}Co. The gamma camera evaluated in this work presents enough sensitivity to detect activities of such radionuclides at dose levels suitable to assess suspected accidental intakes. (author)

  19. Use of dual-head gamma camera in radionuclide internal contamination monitoring on radiation workers from a nuclear medicine department

    International Nuclear Information System (INIS)

    Rodriguez-Laguna, A.; Brandan, M.E.

    2008-01-01

    As a part of an internal dosimetry program that is performed at the Mexican National Institute of Cancerology - Nuclear Medicine Department, in the present work we suggest a procedure for the routinely monitoring of internal contamination on radiation workers and nuclear medicine staff. The procedure is based on the identification and quantification of contaminating radionuclides in human body by using a dual-head whole-body gamma camera. The results have shown that the procedures described in this study can be used to implement a method to quantify minimal accumulated activity in the main human organs to evaluate internal contamination with radionuclides. The high sensitivity of the uncollimated gamma camera is advantageous for the routinely detection and identification of small activities of internal contamination. But, the null spatial resolution makes impossible the definition of contaminated region of interest. Then, the use of collimators is necessary to the quantification of incorporated radionuclides activities in the main human organs and for the internal doses assessment. (author)

  20. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    Science.gov (United States)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  1. A luminescence imaging system based on a CCD camera

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Markey, B.G.

    1997-01-01

    Stimulated luminescence arising from naturally occurring minerals is likely to be spatially heterogeneous. Standard luminescence detection systems are unable to resolve this variability. Several research groups have attempted to use imaging photon detectors, or image intensifiers linked...... to photographic systems, in order to obtain spatially resolved data. However, the former option is extremely expensive and it is difficult to obtain quantitative data from the latter. This paper describes the use of a CCD camera for imaging both thermoluminescence and optically stimulated luminescence. The system...

  2. Problems involved in quantitative gamma camera scintigraphy. C. Sensitivity and homogeneity

    International Nuclear Information System (INIS)

    Erbsmann, F.; Paternot, J.; Piepsz, A.; Dobbeleire, A.; Froideville, J.L.

    1976-01-01

    A constant sensitivity of the scintillation camera is an important feature of quantitative digital scintigraphy and must be controlled as much as other factors. The phantom distribution is an excellent test of the camera adjusment but according to present knowledge cannot be used to make corrections of any kind. The best way to reduce the effect of spatial sensitivity variations is to use the same part of the detector constantly to measure the standard as well as the two successive kidneys. Users who wish to measure the uptake of both kidneys simultaneously are advised to measure the standard in the approximate position of the two kidneys and to check that the count rate difference is not more than 5% for example, a higher value requiring a camera adjustment [fr

  3. Localization of the placenta in the 3 trimester of gestation with the use of a gamma-camera and radioactive sup(113m)In indium isotope

    Energy Technology Data Exchange (ETDEWEB)

    Brudnik, A.; Chromy, G.; Ulfik, A.; Bielawski, J.; Wasylewski, A. (Slaska Akademia Medyczna, Katowice (Poland))

    1980-01-01

    In 56 women, treated because of uterine bleedings in the 3 trimester of gestation the localization of the placenta was looked for with use of a gamma camera (Toshiba Co.) and indium radioisotope 113-In. The methodic procedures were elaborated for the application of the gamma-camera and the utilization of radioactive marker /sup 125/Sb in the anatomic reference areas. Full conformity of results with findings at cesarean section was met. Isotope placentography with the application of gamma camera gives a high percentage of adequate diagnoses, least dose of exposition, uncomplicated procedures. The negative diagnosis in suspected cases of placenta previa permitted to decrease the time of hospital stay in a number of cases observed because of uterine bleedings in the 3 trimester of pregnancy.

  4. Localization of the placenta in the 3 trimester of gestation with the use of a gamma-camera and radioactive sup(113m)In indium isotope

    International Nuclear Information System (INIS)

    Brudnik, A.; Chromy, G.; Ulfik, A.; Bielawski, J.; Wasylewski, A.

    1980-01-01

    In 56 women, treated because of uterine bleedings in the 3 trimester of gestation the localization of the placenta was looked for with use of a gamma camera (Toshiba Co.) and indium radioisotope 113-In. The methodic procedures were elaborated for the application of the gamma-camera and the utilization of radioactive marker 125 Sb in the anatomic reference areas. Full conformity of results with findings at cesarean section was met. Isotope placentography with the application of gamma camera gives a high percentage of adequate diagnoses, least dose of exposition, uncomplicated procedures. The negative diagnosis in suspected cases of placenta previa permitted to decrease the time of hospital stay in a number of cases observed because of uterine bleedings in the 3 trimester of pregnancy. (author)

  5. Video Sharing System Based on Wi-Fi Camera

    OpenAIRE

    Qidi Lin; Hewei Yu; Jinbin Huang; Weile Liang

    2015-01-01

    This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition, it is able to send commands to camera and control the camera's holder to rotate. The platform can be applied to interactive teaching and dangerous area's monitoring and so on. Testing results show that the platform can share ...

  6. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Heller, M. [DPNC-Universite de Geneve, Geneva (Switzerland); Schioppa, E. Jr; Porcelli, A.; Pujadas, I.T.; Della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Christov, A.; Rameez, M.; Miranda, L.D.M. [DPNC-Universite de Geneve, Geneva (Switzerland); Zietara, K.; Idzkowski, B.; Jamrozy, M.; Ostrowski, M.; Stawarz, L.; Zagdanski, A. [Jagellonian University, Astronomical Observatory, Krakow (Poland); Aguilar, J.A. [DPNC-Universite de Geneve, Geneva (Switzerland); Universite Libre Bruxelles, Faculte des Sciences, Brussels (Belgium); Prandini, E.; Lyard, E.; Neronov, A.; Walter, R. [Universite de Geneve, Department of Astronomy, Geneva (Switzerland); Rajda, P.; Bilnik, W.; Kasperek, J.; Lalik, K.; Wiecek, M. [AGH University of Science and Technology, Krakow (Poland); Blocki, J.; Mach, E.; Michalowski, J.; Niemiec, J.; Skowron, K.; Stodulski, M. [Instytut Fizyki Jadrowej im. H. Niewodniczanskiego Polskiej Akademii Nauk, Krakow (Poland); Bogacz, L. [Jagiellonian University, Department of Information Technologies, Krakow (Poland); Borkowski, J.; Frankowski, A.; Janiak, M.; Moderski, R. [Polish Academy of Science, Nicolaus Copernicus Astronomical Center, Warsaw (Poland); Bulik, T.; Grudzinska, M. [University of Warsaw, Astronomical Observatory, Warsaw (Poland); Mandat, D.; Pech, M.; Schovanek, P. [Institute of Physics of the Czech Academy of Sciences, Prague (Czech Republic); Marszalek, A.; Stodulska, M. [Instytut Fizyki Jadrowej im. H. Niewodniczanskiego Polskiej Akademii Nauk, Krakow (Poland); Jagellonian University, Astronomical Observatory, Krakow (Poland); Pasko, P.; Seweryn, K. [Centrum Badan Kosmicznych Polskiej Akademii Nauk, Warsaw (Poland); Sliusar, V. [Universite de Geneve, Department of Astronomy, Geneva (Switzerland); Taras Shevchenko National University of Kyiv, Astronomical Observatory, Kyiv (Ukraine)

    2017-01-15

    The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented reflector dish and an innovative fully digital camera based on silicon photo-multipliers. Since the SST sub-array will consist of up to 70 telescopes, the challenge is not only to build telescopes with excellent performance, but also to design them so that their components can be commissioned, assembled and tested by industry. In this paper we review the basic steps that led to the design concepts for the SST-1M camera and the ongoing realization of the first prototype, with focus on the innovative solutions adopted for the photodetector plane and the readout and trigger parts of the camera. In addition, we report on results of laboratory measurements on real scale elements that validate the camera design and show that it is capable of matching the CTA requirements of operating up to high moonlight background conditions. (orig.)

  7. SFR test fixture for hemispherical and hyperhemispherical camera systems

    Science.gov (United States)

    Tamkin, John M.

    2017-08-01

    Optical testing of camera systems in volume production environments can often require expensive tooling and test fixturing. Wide field (fish-eye, hemispheric and hyperhemispheric) optical systems create unique challenges because of the inherent distortion, and difficulty in controlling reflections from front-lit high resolution test targets over the hemisphere. We present a unique design for a test fixture that uses low-cost manufacturing methods and equipment such as 3D printing and an Arduino processor to control back-lit multi-color (VIS/NIR) targets and sources. Special care with LED drive electronics is required to accommodate both global and rolling shutter sensors.

  8. Pothole Detection System Using a Black-box Camera

    Directory of Open Access Journals (Sweden)

    Youngtae Jo

    2015-11-01

    Full Text Available Aging roads and poor road-maintenance systems result a large number of potholes, whose numbers increase over time. Potholes jeopardize road safety and transportation efficiency. Moreover, they are often a contributing factor to car accidents. To address the problems associated with potholes, the locations and size of potholes must be determined quickly. Sophisticated road-maintenance strategies can be developed using a pothole database, which requires a specific pothole-detection system that can collect pothole information at low cost and over a wide area. However, pothole repair has long relied on manual detection efforts. Recent automatic detection systems, such as those based on vibrations or laser scanning, are insufficient to detect potholes correctly and inexpensively owing to the unstable detection of vibration-based methods and high costs of laser scanning-based methods. Thus, in this paper, we introduce a new pothole-detection system using a commercial black-box camera. The proposed system detects potholes over a wide area and at low cost. We have developed a novel pothole-detection algorithm specifically designed to work with the embedded computing environments of black-box cameras. Experimental results are presented with our proposed system, showing that potholes can be detected accurately in real-time.

  9. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    Directory of Open Access Journals (Sweden)

    Sergio Orts-Escolano

    2014-04-01

    Full Text Available In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units. It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.

  10. Development of a gamma camera based on a multiwire proportional counter

    International Nuclear Information System (INIS)

    Anisimov, Yu.S.; Zanevskij, Yu.V.; Ivanov, A.B.

    1981-01-01

    The developed high-pressure gamma-chamber based on a gas multiwire detector is discussed. The main characteristics of the detector for a gamma-ray energy of up to 100 keV are given. The chamber operation is possible at a pressure of up to 10 atm. The detector is filled with a Xe-CH 4 (90-10) mixture. The detector efficiency is about 50%, the space resolution is better than 2 mm at a working region of 280x280 mm [ru

  11. A quality control atlas for scintillation camera systems

    International Nuclear Information System (INIS)

    Busemann Sokole, E.; Graham, L.S.; Todd-Pokropek, A.; Wegst, A.; Robilotta, C.C.

    2002-01-01

    Full text: The accurate interpretation of quality control and clinical nuclear medicine image data is coupled to an understanding of image patterns and quantitative results. Understanding is gained by learning from different examples, and knowledge of underlying principles of image production. An Atlas of examples has been created to assist with interpreting quality control tests and recognizing artifacts in clinical examples. The project was initiated and supported by the International Atomic Energy Agency (IAEA). The Atlas was developed and written by Busemann Sokole from image examples submitted from nuclear medicine users from around the world. The descriptive text was written in a consistent format to accompany each image or image set. Each example in the atlas finally consisted of the images; a brief description of the data acquisition, radionuclide/radiopharmaceutical, specific circumstances under which the image was produced; results describing the images and subsequent conclusions; comments, where appropriate, giving guidelines for follow-up strategies and trouble shooting; and occasional literature references. Hardcopy images required digitizing into JPEG format for inclusion into a digital document. Where possible, an example was contained on one page. The atlas was reviewed by an international group of experts. A total of about 250 examples were compiled into 6 sections: planar, SPECT, whole body, camera/computer interface, environment/radioactivity, and display/hardcopy. Subtle loss of image quality may be difficult to detect. SPECT examples, therefore, include simulations demonstrating effects of deterioration in camera performance (e.g. center-of-rotation offset, non-uniformity) or suboptimal clinical performance. The atlas includes normal results, results from poor adjustment of the camera system, poor results obtained at acceptance testing, artifacts due to system malfunction, and artifacts due to environmental situations. Some image patterns are

  12. Usability of a Wearable Camera System for Dementia Family Caregivers

    Directory of Open Access Journals (Sweden)

    Judith T. Matthews

    2015-01-01

    Full Text Available Health care providers typically rely on family caregivers (CG of persons with dementia (PWD to describe difficult behaviors manifested by their underlying disease. Although invaluable, such reports may be selective or biased during brief medical encounters. Our team explored the usability of a wearable camera system with 9 caregiving dyads (CGs: 3 males, 6 females, 67.00 ± 14.95 years; PWDs: 2 males, 7 females, 80.00 ± 3.81 years, MMSE 17.33 ± 8.86 who recorded 79 salient events over a combined total of 140 hours of data capture, from 3 to 7 days of wear per CG. Prior to using the system, CGs assessed its benefits to be worth the invasion of privacy; post-wear privacy concerns did not differ significantly. CGs rated the system easy to learn to use, although cumbersome and obtrusive. Few negative reactions by PWDs were reported or evident in resulting video. Our findings suggest that CGs can and will wear a camera system to reveal their daily caregiving challenges to health care providers.

  13. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  14. [F18]-FDG imaging of experimental animal tumours using a hybrid gamma-camera

    International Nuclear Information System (INIS)

    Lausson, S.; Maurel, G.; Kerrou, K.; Montravers, F.; Petegnief, Y.; Talbot, J.N.; Fredelizi, D.

    2001-01-01

    Positron emission tomography (PET) has been widely used in clinical studies. This technology permits detection of compounds labelled with positron emitting radionuclides and in particular, [F18]-fluorodeoxyglucose ([F18]-FDG).[F18]-FDG uptake and accumulation is generally related to malignancy; some recent works have suggested the usefulness of PET camera dedicated to small laboratory animals (micro-PET). Our study dealt with the feasibility of [F18]-FDG imaging of malignant tumours in animal models by means of an hybrid camera dedicated for human scintigraphy. We evaluated the ability of coincidence detection emission tomography (CDET) using this hybrid camera to visualize in vivo subcutaneous tumours grafted to mice or rats. P815 murine mastocytoma grafted in syngeneic DBA/2 mice resulted with foci of very high FDG uptake. Tumours with a diameter of only 3 mm were clearly visualized. Medullary thyroid cancer provoked by rMTC 6/23 and CA77 lines in syngeneic Wag/Rij rat was also detected. The differentiated CA77 tumours exhibited avidity for [F18]-FDG and a tumour, which was just palpable (diameter lower than 2 mm), was identified. In conclusion, CDET-FDG is a non-invasive imaging tool which can be used to follow grafted tumours in the small laboratory animal, even when their size is smaller than 1 cm. It has the potential to evaluate experimental anticancer treatments in small series of animals by individual follow-up. It offers the opportunity to develop experimental PET research within a nuclear medicine or biophysics department, the shift to a dedicated micro-PET device being subsequently necessary. It is indeed compulsory to strictly follow the rules for non contamination and disinfection of the hybrid camera. (authors)

  15. A machine learning method for fast and accurate characterization of depth-of-interaction gamma cameras

    DEFF Research Database (Denmark)

    Pedemonte, Stefano; Pierce, Larry; Van Leemput, Koen

    2017-01-01

    to impose the depth-of-interaction in an experimental set-up. In this article we introduce a machine learning approach for extracting accurate forward models of gamma imaging devices from simple pencil-beam measurements, using a nonlinear dimensionality reduction technique in combination with a finite...

  16. A gamma camera count rate saturation correction method for whole-body planar imaging

    Science.gov (United States)

    Hobbs, Robert F.; Baechler, Sébastien; Senthamizhchelvan, Srinivasan; Prideaux, Andrew R.; Esaias, Caroline E.; Reinhardt, Melvin; Frey, Eric C.; Loeb, David M.; Sgouros, George

    2010-02-01

    Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating

  17. Performance of gamma spectrometry counting system

    International Nuclear Information System (INIS)

    Yii Mei Wo; Maziah Mahmud

    2007-01-01

    Gamma spectrometry counting system widely used as tool to measure qualitative and quantitative gamma-ray emitters in a sample. Container size, sample to detector distance, sample volume are well known factors that affecting the quality of measurement. However, factor such as the age of the system was not been reported. Therefore, the objective of this study is to find out how the age factor affecting the quality of the measurement. From this study, it is found that when the age of the system increased, the system tends to have higher lower limit of detection and poorer linearity showing that age factor do affecting the quality of measurement. (Author)

  18. Multiaxial tomography of heart chambers by gated blood-pool emission computed tomography using a rotating gamma camera

    International Nuclear Information System (INIS)

    Tamaki, N.; Mukai, T.; Ishii, Y.; Yonekura, Y.; Yamamoto, K.; Kadota, K.; Kambara, H.; Kawai, C.; Torizuka, K.

    1983-01-01

    Fifteen patients and three volunteers underwent radionuclide blood-pool cardiac studies with electrocardiographic gating. Following conventional planar-gated imaging (anterior and left anterior oblique projections), emission computed tomography (ECT), using a rotating gamma camera, was performed.A series of transaxial tomograms of the cardiac chambers was obtained. The left ventricular short-axis plane, long-axis plane, and four-chamber-view plane were then reorganized; each chamber was visualized separately. Compared to gated planar imaging, this technique showed regional asynergy more clearly in patients with myocardial infarction and demonstrated dilatation of the atria and ventricles more accurately in patients with an atrial septal defect and valvular heart diseases. In addition, when a section of the heart is otained at any angle with gated blood pool ECT, three-dimensional assessment of cardiac chambers in motion is more precise; mutual superimposition becomes unnecessary

  19. High resolution gamma spectroscopy well logging system

    International Nuclear Information System (INIS)

    Giles, J.R.; Dooley, K.J.

    1997-01-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porosity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions

  20. Experimental evaluation of an online gamma-camera imaging of permanent seed implantation (OGIPSI) prototype for partial breast irradiation

    International Nuclear Information System (INIS)

    Ravi, Ananth; Caldwell, Curtis B.; Pignol, Jean-Philippe

    2008-01-01

    Previously, our team used Monte Carlo simulation to demonstrate that a gamma camera could potentially be used as an online image guidance device to visualize seeds during permanent breast seed implant procedures. This could allow for intraoperative correction if seeds have been misplaced. The objective of this study is to describe an experimental evaluation of an online gamma-camera imaging of permanent seed implantation (OGIPSI) prototype. The OGIPSI device is intended to be able to detect a seed misplacement of 5 mm or more within an imaging time of 2 min or less. The device was constructed by fitting a custom built brass collimator (16 mm height, 0.65 mm hole pitch, 0.15 mm septal thickness) on a 64 pixel linear array CZT detector (eValuator-2000, eV Products, Saxonburg, PA). Two-dimensional projection images of seed distributions were acquired by the use of a digitally controlled translation stage. Spatial resolution and noise characteristics of the detector were measured. The ability and time needed for the OGIPSI device to image the seeds and to detect cold spots was tested using an anthropomorphic breast phantom. Mimicking a real treatment plan, a total of 52 103 Pd seeds of 65.8 MBq each were placed on three different layers at appropriate depths within the phantom. The seeds were reliably detected within 30 s with a median error in localization of 1 mm. In conclusion, an OGIPSI device can potentially be used for image guidance of permanent brachytherapy applications in the breast and, possibly, other sites

  1. In vivo quantification of {sup 177}Lu with planar whole-body and SPECT/CT gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Faculty of Health Sciences, University of Sydney, Cumberland, NSW (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Hennessy, Thomas M.; Willowson, Kathy P.; Henry, E. Courtney [Institute of Medical Physics, University of Sydney, Camperdown, NSW (Australia); Chan, David L.H. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Aslani, Alireza [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Roach, Paul J. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia)

    2015-09-17

    Advances in gamma camera technology and the emergence of a number of new theranostic radiopharmaceutical pairings have re-awakened interest in in vivo quantification with single-photon-emitting radionuclides. We have implemented and validated methodology to provide quantitative imaging of {sup 177}Lu for 2D whole-body planar studies and for 3D tomographic imaging with single-photon emission computed tomography (SPECT)/CT. Whole-body planar scans were performed on subjects to whom a known amount of [{sup 177}Lu]-DOTA-octreotate had been administered for therapy. The total radioactivity estimated from the images was compared with the known amount of the radionuclide therapy administered. In separate studies, venous blood samples were withdrawn from subjects after administration of [{sup 177}Lu]-DOTA-octreotate while a SPECT acquisition was in progress and the concentration of the radionuclide in the venous blood sample compared with that estimated from large blood pool structures in the SPECT reconstruction. The total radioactivity contained within an internal SPECT calibration standard was also assessed. In the whole-body planar scans (n = 28), the estimated total body radioactivity was accurate to within +4.6 ± 5.9 % (range −17.1 to +11.2 %) of the correct value. In the SPECT reconstructions (n = 12), the radioactivity concentration in the cardiac blood pool was accurate to within −4.0 ± 7.8 % (range −16.1 to +7.5 %) of the true value and the internal standard measurements (n = 89) were within 2.0 ± 8.5 % (range −16.3 to +24.2 %) of the known amount of radioactivity contained. In our hands, state-of-the-art hybrid SPECT/CT gamma cameras were able to provide accurate estimates of in vivo radioactivity to better than, on average, ±10 % for use in biodistribution and radionuclide dosimetry calculations.

  2. A double photomultiplier Compton camera and its readout system for mice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, Cristiano Lino [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Padova, Via Marzolo 8, Padova 35131 (Italy); Atroshchenko, Kostiantyn [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Baldazzi, Giuseppe [Physics Department, University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy and INFN Bologna, Viale Berti Pichat 6/2, Bologna 40127 (Italy); Bello, Michele [INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Uzunov, Nikolay [Department of Natural Sciences, Shumen University, 115 Universitetska str., Shumen 9712, Bulgaria and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Di Domenico, Giovanni [Physics Department, University of Ferrara, Via Saragat 1, Ferrara 44122 (Italy) and INFN Ferrara, Via Saragat 1, Ferrara 44122 (Italy)

    2013-04-19

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the 'electronic collimation', i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a 'cone' of possible incident directions are obtained (event with 'incomplete geometry'). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  3. Measurement of glomerular filtration rate using technetium-99m-DTPA and the gamma camera: A comparison of methods

    International Nuclear Information System (INIS)

    Russell, C.D.; Bischoff, P.G.; Kontzen, F.; Rowell, K.L.; Yester, M.V.; Lloyd, L.K.; Tauxe, W.N.; Dubovsky, E.V.

    1984-01-01

    A variety of methods has been proposed to estimate glomerular filtration rate (GFR) from renal uptake of Tc-99m-DTPA using a gamma camera. To compare alternative methods, the authors have calculated GFR in several different ways from measurements in 33 patients, and compared the results with an independent GFR measurement based on 8-point plasma clearance of Yb-169-DTPA. The best agreement was obtained using an algorithm that has not been described previously. This was a modification of a method used previously in which correction was made for overlap of kidneys by liver and spleen. The correlation coefficient was 0.958 and the residual standard deviation was 12.1 ml/min. This method required a single 20-min blood sample as well as the camera data. The best method not requiring a blood sample was significantly less accurate, with correlation coefficient 0.866 and residual standard deviation 21.1 ml/min. The accuracy of these methods was comparable to that reported for the creatinine clearance, the most commonly used estimate of GFR in current clinical practice

  4. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kabuki, Shigeto, E-mail: kabuki@cr.scphys.kyoto-u.ac.j [Department of Physics, Gradulate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kimura, Hiroyuki; Amano, Hiroo [Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Nakamoto, Yuji [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki [Department of Physics, Gradulate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kawashima, Hidekazu [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ueda, Masashi [Radioisotopes Research Labaoratory, Kyoto University Hospital, Kyoto 606-8507 (Japan); Okada, Tomohisa [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki [Department of Radiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji [Application Development Office, Hitachi Medical Corporation, Chiba 277-0804 (Japan); Ogawa, Koichi [Department of Electronic Informatics, Faculty of Engineering, Hosei University, Tokyo 184-8584 (Japan)

    2010-11-01

    We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.

  5. Development and application of an automatic system for measuring the laser camera

    International Nuclear Information System (INIS)

    Feng Shuli; Peng Mingchen; Li Kuncheng

    2004-01-01

    Objective: To provide an automatic system for measuring imaging quality of laser camera, and to make an automatic measurement and analysis system. Methods: On the special imaging workstation (SGI 540), the procedure was written by using Matlab language. An automatic measurement and analysis system of imaging quality for laser camera was developed and made according to the imaging quality measurement standard of laser camera of International Engineer Commission (IEC). The measurement system used the theories of digital signal processing, and was based on the characteristics of digital images, as well as put the automatic measurement and analysis of laser camera into practice by the affiliated sample pictures of the laser camera. Results: All the parameters of imaging quality of laser camera, including H-D and MTF curve, low and middle and high resolution of optical density, all kinds of geometry distort, maximum and minimum density, as well as the dynamic range of gray scale, could be measured by this system. The system was applied for measuring the laser cameras in 20 hospitals in Beijing. The measuring results showed that the system could provide objective and quantitative data, and could accurately evaluate the imaging quality of laser camera, as well as correct the results made by manual measurement based on the affiliated sample pictures of the laser camera. Conclusion: The automatic measuring system of laser camera is an effective and objective tool for testing the quality of the laser camera, and the system makes a foundation for the future research

  6. A Quality Evaluation of Single and Multiple Camera Calibration Approaches for an Indoor Multi Camera Tracking System

    Directory of Open Access Journals (Sweden)

    M. Adduci

    2014-06-01

    Full Text Available Human detection and tracking has been a prominent research area for several scientists around the globe. State of the art algorithms have been implemented, refined and accelerated to significantly improve the detection rate and eliminate false positives. While 2D approaches are well investigated, 3D human detection and tracking is still an unexplored research field. In both 2D/3D cases, introducing a multi camera system could vastly expand the accuracy and confidence of the tracking process. Within this work, a quality evaluation is performed on a multi RGB-D camera indoor tracking system for examining how camera calibration and pose can affect the quality of human tracks in the scene, independently from the detection and tracking approach used. After performing a calibration step on every Kinect sensor, state of the art single camera pose estimators were evaluated for checking how good the quality of the poses is estimated using planar objects such as an ordinate chessboard. With this information, a bundle block adjustment and ICP were performed for verifying the accuracy of the single pose estimators in a multi camera configuration system. Results have shown that single camera estimators provide high accuracy results of less than half a pixel forcing the bundle to converge after very few iterations. In relation to ICP, relative information between cloud pairs is more or less preserved giving a low score of fitting between concatenated pairs. Finally, sensor calibration proved to be an essential step for achieving maximum accuracy in the generated point clouds, and therefore in the accuracy of the produced 3D trajectories, from each sensor.

  7. Gamma ray observations of the solar system

    International Nuclear Information System (INIS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed

  8. Gamma ray observations of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  9. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  10. Quality control of gamma radiation measuring systems

    International Nuclear Information System (INIS)

    Surma, M.J.

    2002-01-01

    The problem of quality control and assurance of gamma radiation measuring systems has been described in detail. The factors deciding of high quality of radiometric measurements as well as statistical testing and calibration of measuring systems have been presented and discussed

  11. Acceptance/operational test procedure 241-AN-107 Video Camera System

    International Nuclear Information System (INIS)

    Pedersen, L.T.

    1994-01-01

    This procedure will document the satisfactory operation of the 241-AN-107 Video Camera System. The camera assembly, including camera mast, pan-and-tilt unit, camera, and lights, will be installed in Tank 241-AN-107 to monitor activities during the Caustic Addition Project. The camera focus, zoom, and iris remote controls will be functionally tested. The resolution and color rendition of the camera will be verified using standard reference charts. The pan-and-tilt unit will be tested for required ranges of motion, and the camera lights will be functionally tested. The master control station equipment, including the monitor, VCRs, printer, character generator, and video micrometer will be set up and performance tested in accordance with original equipment manufacturer's specifications. The accuracy of the video micrometer to measure objects in the range of 0.25 inches to 67 inches will be verified. The gas drying distribution system will be tested to ensure that a drying gas can be flowed over the camera and lens in the event that condensation forms on these components. This test will be performed by attaching the gas input connector, located in the upper junction box, to a pressurized gas supply and verifying that the check valve, located in the camera housing, opens to exhaust the compressed gas. The 241-AN-107 camera system will also be tested to assure acceptable resolution of the camera imaging components utilizing the camera system lights

  12. An electronic pan/tilt/magnify and rotate camera system

    International Nuclear Information System (INIS)

    Zimmermann, S.; Martin, H.L.

    1992-01-01

    A new camera system has been developed for omnidirectional image-viewing applications that provides pan, tilt, magnify, and rotational orientation within a hemispherical field of view (FOV) without any moving parts. The imaging device is based on the fact that the image from a fish-eye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high-speed electronic circuitry. More specifically, an incoming fish-eye image from any image acquisition source is captured in the memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment. As a result, this device can accomplish the functions of pan, tilt, rotation, and magnification throughout a hemispherical FOV without the need for any mechanical devices. Multiple images, each with different image magnifications and pan-tilt-rotate parameters, can be obtained from a single camera

  13. Candid camera : video surveillance system can help protect assets

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2009-11-15

    By combining closed-circuit cameras with sophisticated video analytics to create video sensors for use in remote areas, Calgary-based IntelliView Technologies Inc.'s explosion-proof video surveillance system can help the oil and gas sector monitor its assets. This article discussed the benefits, features, and applications of IntelliView's technology. Some of the benefits include a reduced need for on-site security and operating personnel and its patented analytics product known as the SmrtDVR, where the camera's images are stored. The technology can be used in temperatures as cold as minus 50 degrees Celsius and as high as 50 degrees Celsius. The product was commercialized in 2006 when it was used by Nexen Inc. It was concluded that false alarms set off by natural occurrences such as rain, snow, glare and shadows were a huge problem with analytics in the past, but that problem has been solved by IntelliView, which has its own source code, and re-programmed code. 1 fig.

  14. Factors affecting the repeatability of gamma camera calibration for quantitative imaging applications using a sealed source

    International Nuclear Information System (INIS)

    Anizan, N; Wahl, R L; Frey, E C; Wang, H; Zhou, X C

    2015-01-01

    Several applications in nuclear medicine require absolute activity quantification of single photon emission computed tomography images. Obtaining a repeatable calibration factor that converts voxel values to activity units is essential for these applications. Because source preparation and measurement of the source activity using a radionuclide activity meter are potential sources of variability, this work investigated instrumentation and acquisition factors affecting repeatability using planar acquisition of sealed sources. The calibration factor was calculated for different acquisition and geometry conditions to evaluate the effect of the source size, lateral position of the source in the camera field-of-view (FOV), source-to-camera distance (SCD), and variability over time using sealed Ba-133 sources. A small region of interest (ROI) based on the source dimensions and collimator resolution was investigated to decrease the background effect. A statistical analysis with a mixed-effects model was used to evaluate quantitatively the effect of each variable on the global calibration factor variability. A variation of 1 cm in the measurement of the SCD from the assumed distance of 17 cm led to a variation of 1–2% in the calibration factor measurement using a small disc source (0.4 cm diameter) and less than 1% with a larger rod source (2.9 cm diameter). The lateral position of the source in the FOV and the variability over time had small impacts on calibration factor variability. The residual error component was well estimated by Poisson noise. Repeatability of better than 1% in a calibration factor measurement using a planar acquisition of a sealed source can be reasonably achieved. The best reproducibility was obtained with the largest source with a count rate much higher than the average background in the ROI, and when the SCD was positioned within 5 mm of the desired position. In this case, calibration source variability was limited by the quantum

  15. Fast amplification system for gamma spectroscopy

    International Nuclear Information System (INIS)

    Jesus, E.F.O.; Lopes, R.T.

    1992-01-01

    An amplification system for gamma spectroscopy with high counting rates was developed. The system was constructed with operational amplifiers, and tested and compared with ORTEC conventional system, using Iridium-192 as source of 9,25 x 10 1 0 Bq of activity and NaI (Tl) detector. The constructed system showed a better performance in relation to efficiency and resolution parameters, tested before. (C.G.C.)

  16. CamOn: A Real-Time Autonomous Camera Control System

    DEFF Research Database (Denmark)

    Burelli, Paolo; Jhala, Arnav Harish

    2009-01-01

    This demonstration presents CamOn, an autonomous cam- era control system for real-time 3D games. CamOn employs multiple Artificial Potential Fields (APFs), a robot motion planning technique, to control both the location and orienta- tion of the camera. Scene geometry from the 3D environment...... contributes to the potential field that is used to determine po- sition and movement of the camera. Composition constraints for the camera are modelled as potential fields for controlling the view target of the camera. CamOn combines the compositional benefits of constraint- based camera systems, and improves...

  17. Digital subtraction angiography with an Isocon camera system: clinical applications

    International Nuclear Information System (INIS)

    Barbaric, Z.L.; Gomes, A.S.; Deckard, M.E.; Nelson, R.S.; Moler, C.L.

    1984-01-01

    A new imaging system for digital subtraction angiography (DSA) was evaluated in 30 clinical studies. The image receptor is a 25 X 25 cm, 12 par gadolinium oxysulfate rare-earth screen whose light output is focused to a low-light-level Isocon camera. The video signal is digitized and processed by an image-array processor containing 31 512 X 512 memories 8 bits deep. In most patients, intraarterial DSA studies were done in conjunction with conventional arteriography. In these arterial studies, images adequate to make a specific diagnosis were obtained using half the radiation dose and half the amount of contrast material needed for conventional angiography. In eight intravenous studies performed either to identify renal artery stenosis or for evaluation of congenital heart anomalies, the images were diagnostic but objectionably noisy

  18. Two New Types of Detector for X- or Gamma-Ray Cameras; Deux Nouveaux Types de Detecteurs pour Camera a Rayons X ou {gamma}; O dvukh novykh tipov detektorov dlya rentgenovskikh ili gamma-kamer; Dos Nuevos Tipos de Detector para Camaras de Rayos X o Gamma

    Energy Technology Data Exchange (ETDEWEB)

    Kellershohn, C.; Desgrez, A. [Departement de Biologie, Service Hospitalier Frederic Joliot (France); Lansiart, A. [Departement d' Electronique, Centre d' Etudes Nucleaires de Saclay (France)

    1964-10-15

    X- or {gamma}-ray cameras consist essentially of a hole-type or grid-type lens system together with a detector. The authors propose two kinds of detector quite different from the Anger device, which so far has been the only one in practical use. The first consists of a self-triggering spark chamber. This chamber, about 20 cm in diam. and filled with a rare gas (argon or xenon), forms a cathode and two grids. The cathode and the second grid are subjected to a potential difference of several kilovolts, somewhat lower than the breakdown voltage. The first cathode-grid space serves as an electron source under the action of the low-energy X- or {gamma}-ray photons. The cathode can also be plated with a metal of high Z, or a crystal scintillator connected to a photocathode can be used. After suitable amplification, the sudden burst of charges due to electron multiplication in the Townsend avalanche produces a well localized spark with a delay of a fraction of a microsecond. The image is obtained with the aid of a camera whose shutter is permanently open. The second type of detector consists of a Csl (Tl) crystal connected to the photocathode of a Thomson tube, 20 cm in diam. and with electrostatic focusing. The image on the secondary screen of this tube is transferred by an optical device to the photocathode of a tube with parallel electric and magnetic field (manufactured by the English Electric Valve Company) and serving as shutter. Some of the light entering the optical device is received by a photomultiplier, which controls the opening of the shutter tube through an amplitude selector. This arrangement makes it possible to distinguish between the light due to the signal and that due to the noise of the Thomson tube. The shutter tube is opened only by the former. Since the shutter tube remains open for only an extremely short time, the signal-noise ratio of this detector arrangement is high enough to give an image on the end screen of the shutter tube using a

  19. Actively shielded low level gamma - spectrometric system

    International Nuclear Information System (INIS)

    Mrdja, D.; Bikit, I.; Forkapic, S.; Slivka, J.; Veskovic, M.

    2005-01-01

    The results of the adjusting and testing of the actively shielded low level gamma-spectrometry system are presented. The veto action of the shield reduces the background in the energy region of 50 keV to the 2800 keV for about 3 times. (author) [sr

  20. Cartogram: A portable system for gamma cartography

    International Nuclear Information System (INIS)

    Leveque, C.; Huver, M.; Gal, O.

    1999-01-01

    The Cartogram system has been specially designed for measurements and control of gamma rays during dismantling and/or maintenance of nuclear sites. It performs real time and accurate diagnosis on localisation of radionuclides, thus reducing time of radiation exposure for personnel in accordance with ALARA principles

  1. Technology Development for AGIS (Advanced Gamma-ray Imaging System).

    Science.gov (United States)

    Krennrich, Frank

    2008-04-01

    Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.

  2. Design and development of pixel size calibration phantom for gamma camera

    International Nuclear Information System (INIS)

    Khokhar, S.B.; Manan, A.; Chaudary, M.A.; Pervaiz, T.

    2005-01-01

    The purpose of the study is to make pixel calibration phantom, to measure pixel size for different zoom factors and matrix sizes and to compare the pixel size with the values of provided by the vendor. For this purpose pixel size calibration phantom (rectangular in shape) made up of acrylic material having dimension 43 x 10 square cm was prepared. Seven circular holes at exact known distance with whole diameter 1.5 mm were born. High specific activity was filled in the holes of the phantom, acquired the image by fixing the number of counts at all available matrices and zoom factors. Pixel size was calculated by counting the number of pixels between focused points and divided the distance thereof by the number of pixels. Mean pixel size was calculated and compared it with reference value provided by the manufacturer of the camera. P- value was calculated which showed that most results lie in the acceptable limit. The calculated values agreed very well. However there exist some deviation at larger matrix sizes, which might be due to scattering of radiation that overlaps nearest pixels, and due to human error. (author)

  3. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy; Detection des rayons gamma et reconstruction d'images pour la camera Compton: Application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frandes, M.

    2010-09-15

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  4. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  5. Development and characterization of a CCD camera system for use on six-inch manipulator systems

    International Nuclear Information System (INIS)

    Logory, L.M.; Bell, P.M.; Conder, A.D.; Lee, F.D.

    1996-01-01

    The Lawrence Livermore National Laboratory has designed, constructed, and fielded a compact CCD camera system for use on the Six Inch Manipulator (SIM) at the Nova laser facility. The camera system has been designed to directly replace the 35 mm film packages on all active SIM-based diagnostics. The unit's electronic package is constructed for small size and high thermal conductivity using proprietary printed circuit board technology, thus reducing the size of the overall camera and improving its performance when operated within the vacuum environment of the Nova laser target chamber. The camera has been calibrated and found to yield a linear response, with superior dynamic range and signal-to-noise levels as compared to T-Max 3200 optic film, while providing real-time access to the data. Limiting factors related to fielding such devices on Nova will be discussed, in addition to planned improvements of the current design

  6. A real-time camera calibration system based on OpenCV

    Science.gov (United States)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  7. Video Surveillance using a Multi-Camera Tracking and Fusion System

    OpenAIRE

    Zhang , Zhong; Scanlon , Andrew; Yin , Weihong; Yu , Li; Venetianer , Péter L.

    2008-01-01

    International audience; Usage of intelligent video surveillance (IVS) systems is spreading rapidly. These systems are being utilized in a wide range of applications. In most cases, even in multi-camera installations, the video is processed independently in each feed. This paper describes a system that fuses tracking information from multiple cameras, thus vastly expanding its capabilities. The fusion relies on all cameras being calibrated to a site map, while the individual sensors remain lar...

  8. Emission computed tomography using rotating gamma cameras for stress 201Tl myocardial imaging

    International Nuclear Information System (INIS)

    Takeda, Kan; Maeda, Hisato; Nakagawa, Tsuyoshi; Yamaguchi, Nobuo; Taguchi, Mitsuo

    1983-01-01

    The purpose of this study is to evaluate the efficacy of emission computed tomography (ECT) for stress 201 Tl myocardial imaging to localize coronary artery disease (CAD) in comparison with planar (PL) images. In a series of 14 normal subjects and 53 patients with CAD proved coronary arteriography, ECT and PL imaging were performed successively. ECT data were collected for 90 projections in a 64 x 64 matrix form with a total aquisition time of 6 munutes over 180 0 of opposed dual cameras ratation and tomographic sections oriented perpendicular and parallel to the long axis of left ventricle were reconstructed. PL images were obtained for left lateral, left anterior oblique (30 0 and 45 0 ) and anterior projections. Both ECT and PL myocardial images were divided into 8 segments and segmental analysis was performed by visual interpretation. The ECT images remarkably increased sensitivity over the PL images in left anterior descending (LAD) artery (from 56% to 76%), right coronary artery (RCA) (from 50% to 96%), and circumflex artery (CX) (from 56% to 69%) lesions. The specificity for ECT images, as compared with PL images, was higher in LAD (88% against 85%) but slightly lower in RCA (70% ag ainst 72%) and CX (84% against 88%). Overall accuracy, therefore, was improved in LAD (from 67% to 81%) and RCA (from 64% to 79%) but equal in CX (81%). We conclude that stress 201 Tl ECT imaging result in a remarkable improvement in the localization of CAD, especially in patients with RCA lesions and multi-vessel disease. (author)

  9. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    International Nuclear Information System (INIS)

    Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, Francois; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagra, Roberto; Bucerius, Jan; Verberne, Hein J.; Slart, Riemer H.J.A.; Lindner, Oliver

    2016-01-01

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  10. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Denis [CHU Caen and Normandy University, Department of Nuclear Medicine, Caen (France); Normandy University, Caen (France); Marie, Pierre-Yves [University of Lorraine, Faculty of Medicine, Nancyclotep Experimental Imaging Platform, Nancy (France); University of Lorraine, Faculty of Medicine, CHU Nancy, Department of Nuclear Medicine, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Ben-Haim, Simona [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Ramat Gan (Israel); Rouzet, Francois [University Hospital of Paris-Bichat, UMR 1148, Inserm et Paris Diderot-Paris 7 University Paris, Department of Nuclear Medicine, Paris (France); UMR 1148, Inserm and Paris Diderot-Paris 7 University Paris, Paris (France); Songy, Bernard [Centre Cardiologique du Nord, Saint-Denis (France); Giordano, Alessandro [Institute of Nuclear Medicine, Catholic University of Sacred Heart, Largo A. Gemelli, Department of Bioimages and Radiological Sciences, Rome (Italy); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hyafil, Fabien [Bichat University Hospital, Assistance Publique - Hopitaux de Paris, UMR 1148, Inserm and Paris Diderot-Paris 7 University, Department of Nuclear Medicine, Paris (France); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Bucerius, Jan [Maastricht University Medical Center, Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Verberne, Hein J. [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Faculty of Science and Technology, Department of Biomedical Photonic Imaging, Enschede (Netherlands); Lindner, Oliver [Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, Bad Oeynhausen (Germany); Collaboration: Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-12-15

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  11. Gamma, x-ray reduction system. Volume I: gamma

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1976-01-01

    The starting premises for this data reduction system were (a) the individual researcher needs all the accuracy that can be achieved but he has neither the time nor the inclination to learn how to achieve it, and (b) if the data reduction system is to be centralized the people operating it will want to minimize conversation with the computer. This is a working system. All spectral data are stored on Data General 4234 discs after background normalization and strip. Storage is initiated from magnetic tapes loaded by detached pulse height analyzers or directly from Scorpio pulse height analyzers. The only restrictions placed on the individual researchers are that the pulse height analyzer energy scale be set up consistently, that a recovery standard be run at least once every day of use, and the total acquisition system be calibrated to its range of use. In many instances, and if desirable, the latter is provided as a service. At the time of writing this gamma data reduction system is actively being used to calculate net peak areas, activities with or without time correction, activations analysis results, counting precisions, and dynamic limits of detection for the spectral data output of 17 detached pulse height analyzers. To all modes of data reduction are applied background subtraction, random summing correction, detector recovery factor correction, peak interfernce correction (second-order product interference for activation analysis), geometry function correction, acquisition time decay corrections, external and internal sorber correction. All of this is accomplished and a customer report typed in a readable format after a halfline of noninteractive instruction

  12. The readout system for the ArTeMis camera

    Science.gov (United States)

    Doumayrou, E.; Lortholary, M.; Dumaye, L.; Hamon, G.

    2014-07-01

    During ArTeMiS observations at the APEX telescope (Chajnantor, Chile), 5760 bolometric pixels from 20 arrays at 300mK, corresponding to 3 submillimeter focal planes at 450μm, 350μm and 200μm, have to be read out simultaneously at 40Hz. The read out system, made of electronics and software, is the full chain from the cryostat to the telescope. The readout electronics consists of cryogenic buffers at 4K (NABU), based on CMOS technology, and of warm electronic acquisition systems called BOLERO. The bolometric signal given by each pixel has to be amplified, sampled, converted, time stamped and formatted in data packets by the BOLERO electronics. The time stamping is obtained by the decoding of an IRIG-B signal given by APEX and is key to ensure the synchronization of the data with the telescope. Specifically developed for ArTeMiS, BOLERO is an assembly of analogue and digital FPGA boards connected directly on the top of the cryostat. Two detectors arrays (18*16 pixels), one NABU and one BOLERO interconnected by ribbon cables constitute the unit of the electronic architecture of ArTeMiS. In total, the 20 detectors for the tree focal planes are read by 10 BOLEROs. The software is working on a Linux operating system, it runs on 2 back-end computers (called BEAR) which are small and robust PCs with solid state disks. They gather the 10 BOLEROs data fluxes, and reconstruct the focal planes images. When the telescope scans the sky, the acquisitions are triggered thanks to a specific network protocol. This interface with APEX enables to synchronize the acquisition with the observations on sky: the time stamped data packets are sent during the scans to the APEX software that builds the observation FITS files. A graphical user interface enables the setting of the camera and the real time display of the focal plane images, which is essential in laboratory and commissioning phases. The software is a set of C++, Labview and Python, the qualities of which are respectively used

  13. Automated TLD system for gamma radiation monitoring

    International Nuclear Information System (INIS)

    Nyberg, P.C.; Ott, J.D.; Edmonds, C.M.; Hopper, J.L.

    1979-01-01

    A gamma radiation monitoring system utilizing a commercially available TLD reader and unique microcomputer control has been built to assess the external radiation exposure to the resident population near a nuclear weapons testing facility. Maximum use of the microcomputer was made to increase the efficiency of data acquisition, transmission, and preparation, and to reduce operational costs. The system was tested for conformance with an applicable national standard for TLD's used in environmental measurements

  14. Reliability of single kidney glomerular filtration rate measured by a 99mTc-DTPA gamma camera technique

    International Nuclear Information System (INIS)

    Rehling, M.; Moller, M.L.; Jensen, J.J.; Thamdrup, B.; Lund, J.O.; Trap-Jensen, J.

    1986-01-01

    The reliability of a previously published method for determination of single kidney glomerular filtration rate (SKGFR) by means of technetium-99m-diethylenetriaminepenta-acetate (99mTc-DTPA) gamma camera renography was evaluated. The day-to-day variation in the calculated SKGFR values was earlier found to be 8.8%. The technique was compared to the simultaneously measured renal clearance of inulin in 19 unilaterally nephrectomized patients with GFR varying from 11 to 76 ml/min. The regression line (y = 1.04 X -2.5) did not differ significantly from the line of identity. The standard error of estimate was 4.3 ml/min. In 17 patients the inter- and intraobserver variation of the calculated SKGFR values was 1.2 ml/min and 1.3 ml/min, respectively. In 21 of 25 healthy subjects studied (age range 27-29 years), total GFR calculated from the renograms was within an established age-dependent normal range of GFR

  15. Non-invasive estimation of the human pulmonary blood volume with gamma camera and RI-angiocardiography

    International Nuclear Information System (INIS)

    Goto, Koshi; Hirano, Akihiko; Hirakawa, Senri

    1981-01-01

    A new, non-invasive method for the estimation of the human pulmonary blood volume (PBV), existing between the pulmonary artery bifurcation (PAB) and the left atrium (LA), has been developed in this laboratory, in the form of PBV = PPT sub(RCG) x 0.77 x CO, equation (6), given in Appendix. This was an extension of the classical Stewart-Hamilton method of indicator dilution, applied to radioisotope angiocardiography. Using a gamma-camera, the radio-isotope (99 m Tc-albumin) dilution curves were recorded externally at the region of PAB, LA and LV (left ventricle), among other things, in human subjects in supine position. The mean transit time (MTT) was determined for each region, and the difference in MTT, e.g., ΔMTT sub(PAB-LA), was measured. We calculated PBV between PAB and LA as PBV = ΔMTT sub(PAB-LA) x CO, equation (1) given in Appendix. Empirical time relations between ΔMTT sub(PAB-LA) and PPT sub(RCG) were examined in mechanical models and human subjects, through several steps represented by equations (2) to (5), given in Appendix, and our tentatively final formula was equation (6). The values of PBV estimated in this way were in good agreement with those of PBV measured invasively in the past, using two injection sites (PA and LA) and one sampling site (artery). (author)

  16. Functional studies of the oesophagus with sulfur-colloid of sup(99m)Tc and gamma-camera

    International Nuclear Information System (INIS)

    Veiga-Fernandes, F.; Costa, P.M.; Pinheiro, M.F.; Guerreiro, D.

    1982-01-01

    A scintiscanning technique which allows sequential detection and quantification of gastro-oesophageal reflux (GER), and study of the oesophageal emptying of a liquid and semi-solid food is presented. At first patients swallowed 5 ml of water containing 1 mCi sup(99m)Tc sulfur-colloid and oesophageal activity is recorded from an anterior view by a gamma-camera. Then, patients ingest 300 ml of water that clear the oesophagus and fill up the stomach. GER index is calculated according to the formula GER = (Ae - Ab)/Ag) x 100, where Ae is the activity in the oesophagus; Ab, is the background activity; and Ag is the gastric activity. GER index presented corresponds to a median of three determinations in upright, supine and supine position with abdominal pressure of 4 kilos. The oesophageal transit time of a semi-solid food in upright and supine position is registered 5 minutes after GER studies through two areas of interest which are positioned: one in the superior third and the other in the inferior third of the oesophagus. Normal GER reflux index was, 0.84 +- 0.37 in the upright position; 0.87 +- 0.43 in the supine position; and 0.90 +- 0.56 in the supine position plus abdominal pressure

  17. Assessment of spleen size using gamma camera scintigraphy in newly diagnosed patients with essential thrombocythaemia and polycythaemia vera

    International Nuclear Information System (INIS)

    Carneskog, J.; Wadenvik, H.; Kutti, J.; Fjaeelling, M.

    1996-01-01

    By using gamma camera imaging the spleen size was assessed in 18 consecutive patients with essential thrombocythaemia (ET) and in 18 consecutive patients with polycythaemia vera (PV). All ET and PV patients were newly diagnosed and had not received any myelosuppressive therapy prior to study. The spleen areas in both posterior and left lateral projections were determined. Eighteen consecutive patients with idiopathic thrombocytopenic purpura (ITP) served as a control group since by definition they do not present with splenic enlargement; in these latter subjects the mean posterior and left lateral splenic areas were almost identical (48 ± 15 and 47 ± 17 cm 2 , respectively). In comparison with this control group patients with ET an dPV had significantly larger spleens. In both ET and in PV patients the left lateral spleen scan area exceeded the posterior one. Patients with PV had larger splenic areas in both projections than did patients with ET, but the differences were not statistically significant. Compared to the ITP patients it was found that at least 50% of the ET patients and at least 61% of the PV patients at diagnosis presented with splenomegaly. (au) 35 refs

  18. Assessment of spleen size using gamma camera scintigraphy in newly diagnosed patients with essential thrombocythaemia and polycythaemia vera

    Energy Technology Data Exchange (ETDEWEB)

    Carneskog, J.; Wadenvik, H.; Kutti, J. [Univ. of Goeteborg, Sahlgrenska Univ. Hospital, Dept. of Medicine, Haematology Section, Goeteborg (Sweden); Fjaeelling, M. [Univ. of Goeteborg, Sahlgrenska Univ. Hospital, Dept. of Clinical Physiology, Section of Nuclear Med., Goeteborg (Sweden)

    1996-03-01

    By using gamma camera imaging the spleen size was assessed in 18 consecutive patients with essential thrombocythaemia (ET) and in 18 consecutive patients with polycythaemia vera (PV). All ET and PV patients were newly diagnosed and had not received any myelosuppressive therapy prior to study. The spleen areas in both posterior and left lateral projections were determined. Eighteen consecutive patients with idiopathic thrombocytopenic purpura (ITP) served as a control group since by definition they do not present with splenic enlargement; in these latter subjects the mean posterior and left lateral splenic areas were almost identical (48 {+-} 15 and 47 {+-} 17 cm{sup 2}, respectively). In comparison with this control group patients with ET an dPV had significantly larger spleens. In both ET and in PV patients the left lateral spleen scan area exceeded the posterior one. Patients with