WorldWideScience

Sample records for gamma band synchronization

  1. Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music.

    Science.gov (United States)

    Ruiz, María Herrojo; Koelsch, Stefan; Bhattacharya, Joydeep

    2009-04-01

    The present study investigated the neural correlates associated with the processing of music-syntactical irregularities as compared with regular syntactic structures in music. Previous studies reported an early ( approximately 200 ms) right anterior negative component (ERAN) by traditional event-related-potential analysis during music-syntactical irregularities, yet little is known about the underlying oscillatory and synchronization properties of brain responses which are supposed to play a crucial role in general cognition including music perception. First we showed that the ERAN was primarily represented by low frequency (music-syntactical irregularities as compared with music-syntactical regularities, were associated with (i) an early decrease in the alpha band (9-10 Hz) phase synchronization between right fronto-central and left temporal brain regions, and (ii) a late ( approximately 500 ms) decrease in gamma band (38-50 Hz) oscillations over fronto-central brain regions. These results indicate a weaker degree of long-range integration when the musical expectancy is violated. In summary, our results reveal neural mechanisms of music-syntactic processing that operate at different levels of cortical integration, ranging from early decrease in long-range alpha phase synchronization to late local gamma oscillations. 2008 Wiley-Liss, Inc.

  2. Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization.

    Science.gov (United States)

    Ursino, Mauro; Magosso, Elisa; Cuppini, Cristiano

    2009-02-01

    Synchronization of neural activity in the gamma band is assumed to play a significant role not only in perceptual processing, but also in higher cognitive functions. Here, we propose a neural network of Wilson-Cowan oscillators to simulate recognition of abstract objects, each represented as a collection of four features. Features are ordered in topological maps of oscillators connected via excitatory lateral synapses, to implement a similarity principle. Experience on previous objects is stored in long-range synapses connecting the different topological maps, and trained via timing dependent Hebbian learning (previous knowledge principle). Finally, a downstream decision network detects the presence of a reliable object representation, when all features are oscillating in synchrony. Simulations performed giving various simultaneous objects to the network (from 1 to 4), with some missing and/or modified properties suggest that the network can reconstruct objects, and segment them from the other simultaneously present objects, even in case of deteriorated information, noise, and moderate correlation among the inputs (one common feature). The balance between sensitivity and specificity depends on the strength of the Hebbian learning. Achieving a correct reconstruction in all cases, however, requires ad hoc selection of the oscillation frequency. The model represents an attempt to investigate the interactions among topological maps, autoassociative memory, and gamma-band synchronization, for recognition of abstract objects.

  3. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions

    Science.gov (United States)

    Vinck, Martin; Bosman, Conrado A.

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that

  4. Enhanced phase synchrony in the electroencephalograph gamma band for musicians while listening to music.

    Science.gov (United States)

    Bhattacharya, J; Petsche, H

    2001-07-01

    Multichannel electroencephalograph signals from two broad groups, 10 musicians and 10 nonmusicians, recorded in different states (in resting states or no task condition, with eyes opened and eyes closed, and with two musical tasks, listening to two different pieces of music) were studied. Degrees of phase synchrony in various frequency bands were assessed. No differences in the degree of synchronization in any frequency band were found between the two groups in resting conditions. Yet, while listening to music, significant increases of synchronization were found only in the gamma-frequency range (>30 Hz) over large cortical areas for the group of musicians. This high degree of synchronization elicited by music in the group of musicians might be due to their ability to host long-term memory representations of music and mediate access to these stored representations.

  5. Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging

    Directory of Open Access Journals (Sweden)

    Qian eLuo

    2014-02-01

    Full Text Available Neuronal oscillations in the theta and gamma bands have been shown to be important for cognition. Here we examined the temporal and spatial relationship between the two frequency bands in emotional processing using Magnetoencephalography and an advanced dynamic beamformer source imaging method called Synthetic Aperture Magnetometry. We found that areas including the amygdala, visual and frontal cortex showed significant event-related synchronization (ERS in both bands, suggesting a functional association of neuronal oscillations in the same areas in the two bands. However, while the temporal profile in both bands was similar in the amygdala, the peak in gamma band power was much earlier within both visual and frontal areas. Our results do not support a traditional view that the localizations of lower and higher frequencies are spatially distinct. Instead, they suggest that in emotional processing, neuronal oscillations in the gamma and theta bands may reflect, at least in visual and frontal cortex either different but related functional processes or, perhaps more probably, different computational components of the same functional process.

  6. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  7. Hippocampal gamma-band Synchrony and pupillary responses index memory during visual search.

    Science.gov (United States)

    Montefusco-Siegmund, Rodrigo; Leonard, Timothy K; Hoffman, Kari L

    2017-04-01

    Memory for scenes is supported by the hippocampus, among other interconnected structures, but the neural mechanisms related to this process are not well understood. To assess the role of the hippocampus in memory-guided scene search, we recorded local field potentials and multiunit activity from the hippocampus of macaques as they performed goal-directed search tasks using natural scenes. We additionally measured pupil size during scene presentation, which in humans is modulated by recognition memory. We found that both pupil dilation and search efficiency accompanied scene repetition, thereby indicating memory for scenes. Neural correlates included a brief increase in hippocampal multiunit activity and a sustained synchronization of unit activity to gamma band oscillations (50-70 Hz). The repetition effects on hippocampal gamma synchronization occurred when pupils were most dilated, suggesting an interaction between aroused, attentive processing and hippocampal correlates of recognition memory. These results suggest that the hippocampus may support memory-guided visual search through enhanced local gamma synchrony. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Identical gamma-vibrational bands in {sup 165}Ho

    Energy Technology Data Exchange (ETDEWEB)

    Radford, D.C.; Galindo-Uribarri, A.; Janzen, V.P. [Chalk River Labs., Ontario (Canada)] [and others

    1996-12-31

    The structure of {sup 165}Ho at moderate spins has been investigated by means of Coulomb excitation. Two {gamma}-vibrational bands (K{sup {pi}} = 11/2{sup {minus}} and K{sup {pi}} = 3/2{sup {minus}}) are observed, with very nearly identical in-band {gamma}-ray energies. Gamma-ray branching ratios are analyzed to extract information on Coriolis mixing, and the role of the K quantum number in identical bands is discussed.

  9. Top-Down Beta Enhances Bottom-Up Gamma.

    Science.gov (United States)

    Richter, Craig G; Thompson, William H; Bosman, Conrado A; Fries, Pascal

    2017-07-12

    Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this possibility, we investigated Granger-causal influences among awake macaque primary visual area V1, higher visual area V4, and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was spatially specific and largest when beta-band activity preceded gamma-band activity by ∼0.1 s, suggesting a causal effect of top-down processes on bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the attentional control of stimulus selection. SIGNIFICANCE STATEMENT Contemporary research indicates that the alpha-beta frequency band underlies top-down control, whereas the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up gamma frequency influences from V1 to area V4, in a spatially specific manner, and that this correlation is maximal when top-down activity precedes bottom-up activity. These results show that for top-down processes such as spatial attention, elevated top-down beta-band influences directly enhance feedforward stimulus-induced gamma-band processing, leading to enhancement of the selected stimulus. Copyright © 2017 Richter, Thompson et al.

  10. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  11. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  12. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

    Science.gov (United States)

    Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin

    2014-05-28

    Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.

  13. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex.

    Science.gov (United States)

    Wittenberg, Marc André; Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2018-04-01

    Neuronal oscillations are a ubiquitous phenomenon in the human nervous system. Alpha-band oscillations (8-12 Hz) have been shown to correlate negatively with attention and performance, whereas gamma-band oscillations (40-150 Hz) correlate positively. Here, we studied the relation between prestimulus alpha-band power and poststimulus gamma-band power in a suprathreshold tactile discrimination task. Participants received two electrical stimuli to their left index finger with different SOAs (0 msec, 100 msec, intermediate SOA, intermediate SOA ± 10 msec). The intermediate SOA was individually determined so that stimulation was bistable, and participants perceived one stimulus in half of the trials and two stimuli in the other half. We measured neuronal activity with magnetoencephalography (MEG). In trials with intermediate SOAs, behavioral performance correlated inversely with prestimulus alpha-band power but did not correlate with poststimulus gamma-band power. Poststimulus gamma-band power was high in trials with low and high prestimulus alpha-band power and low for intermediate prestimulus alpha-band power (i.e., U-shaped). We suggest that prestimulus alpha activity modulates poststimulus gamma activity and subsequent perception: (1) low prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that two stimuli were perceived; (2) intermediate prestimulus alpha-band power leads to low gamma-band power (interpreted as inefficient stimulus processing), consequently, perception was not biased in either direction; and (3) high prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that only one stimulus was perceived.

  14. gamma-induced modification on optical band gap of CR-39 SSNTD

    International Nuclear Information System (INIS)

    Zaki, M.F.

    2010-01-01

    effect of gamma irradiation on optical absorption of nuclear track detectors like CR-39 was studied at different absorbed doses using ultraviolet-visible (UV-VIS)spectroscopy. the existence of the peaks, their shifting and broadening as a result of gamma irradiation has been discussed. the width of the tail of localized states in the band gap (E u )was evaluated using the Urbach edge method. finally the indirect and direct band gap in pristine and gamma irradiated CR-39 have been determined. the values of indirect band gap have been found to be lower than the corresponding values of direct band gap. a decrease in the optical energy gap with increasing the gamma absorbed dose can be discussed on the basis of gamma-irradiation-induced defects in the CR-39. the correlation between optical band gap and the number of carbon atoms in a cluster with modified Tauc's equation has been discussed in case of CR-39.

  15. Graph properties of synchronized cortical networks during visual working memory maintenance.

    Science.gov (United States)

    Palva, Satu; Monto, Simo; Palva, J Matias

    2010-02-15

    Oscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance. Inter-areal phase-synchrony was quantified as a function of time and frequency by single-trial phase-difference estimates of cortical patches covering the entire cortical surfaces. The resulting networks were characterized with a number of network metrics that were then compared between delta/theta- (3-6 Hz), alpha- (7-13 Hz), beta- (16-25 Hz), and gamma- (30-80 Hz) frequency bands. We found several salient differences between frequency bands. Alpha- and beta-band networks were more clustered and small-world like but had smaller global efficiency than the networks in the delta/theta and gamma bands. Alpha- and beta-band networks also had truncated-power-law degree distributions and high k-core numbers. The data converge on showing that during the VWM-retention period, human cortical alpha- and beta-band networks have a memory-load dependent, scale-free small-world structure with densely connected core-like structures. These data further show that synchronized dynamic networks underlying a specific cognitive state can exhibit distinct frequency-dependent network structures that could support distinct functional roles. Copyright 2009 Elsevier Inc. All rights reserved.

  16. On a Possible Relationship between Linguistic Expertise and EEG Gamma Band Phase Synchrony

    Science.gov (United States)

    Reiterer, Susanne; Pereda, Ernesto; Bhattacharya, Joydeep

    2011-01-01

    Recent research has shown that extensive training in and exposure to a second language can modify the language organization in the brain by causing both structural and functional changes. However it is not yet known how these changes are manifested by the dynamic brain oscillations and synchronization patterns subserving the language networks. In search for synchronization correlates of proficiency and expertise in second language acquisition, multivariate EEG signals were recorded from 44 high and low proficiency bilinguals during processing of natural language in their first and second languages. Gamma band (30–45 Hz) phase synchronization (PS) was calculated mainly by two recently developed methods: coarse-graining of Markov chains (estimating global phase synchrony, measuring the degree of PS between one electrode and all other electrodes), and phase lag index (PLI; estimating bivariate phase synchrony, measuring the degree of PS between a pair of electrodes). On comparing second versus first language processing, global PS by coarse-graining Markov chains indicated that processing of the second language needs significantly higher synchronization strength than first language. On comparing the proficiency groups, bivariate PS measure (i.e., PLI) revealed that during second language processing the low proficiency group showed stronger and broader network patterns than the high proficiency group, with interconnectivities between a left fronto-parietal network. Mean phase coherence analysis also indicated that the network activity was globally stronger in the low proficiency group during second language processing. PMID:22125542

  17. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.

    Science.gov (United States)

    Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L

    2013-02-01

    Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain.

  19. Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.

    Science.gov (United States)

    Lowet, E; Roberts, M J; Bosman, C A; Fries, P; De Weerd, P

    2016-05-01

    Neuronal gamma-band synchronization (25-80 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. However, recent studies in macaque visual cortex have used single-trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment-by-moment variation. This has raised the question of whether these apparently random variations might limit the functional role of gamma-band synchronization for neural processing. Here, we studied the moment-by-moment variation in gamma oscillation power and frequency, as well as inter-areal gamma synchronization, by simultaneously recording local field potentials in V1 and V2 of two macaque monkeys. We additionally analyzed electrocorticographic V1 data from a third monkey. Our analyses confirm that gamma-band synchronization is not stationary and sustained but undergoes moment-by-moment variations in power and frequency. However, those variations are neither random and nor a possible obstacle to neural communication. Instead, the gamma power and frequency variations are highly structured, shared between areas and shaped by a microsaccade-related 3-4-Hz theta rhythm. Our findings provide experimental support for the suggestion that cross-frequency coupling might structure and facilitate the information flow between brain regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance.

    Science.gov (United States)

    Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu

    2016-09-26

    Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.

  1. Decrease in gamma-band activity tracks sequence learning

    Science.gov (United States)

    Madhavan, Radhika; Millman, Daniel; Tang, Hanlin; Crone, Nathan E.; Lenz, Fredrick A.; Tierney, Travis S.; Madsen, Joseph R.; Kreiman, Gabriel; Anderson, William S.

    2015-01-01

    Learning novel sequences constitutes an example of declarative memory formation, involving conscious recall of temporal events. Performance in sequence learning tasks improves with repetition and involves forming temporal associations over scales of seconds to minutes. To further understand the neural circuits underlying declarative sequence learning over trials, we tracked changes in intracranial field potentials (IFPs) recorded from 1142 electrodes implanted throughout temporal and frontal cortical areas in 14 human subjects, while they learned the temporal-order of multiple sequences of images over trials through repeated recall. We observed an increase in power in the gamma frequency band (30–100 Hz) in the recall phase, particularly in areas within the temporal lobe including the parahippocampal gyrus. The degree of this gamma power enhancement decreased over trials with improved sequence recall. Modulation of gamma power was directly correlated with the improvement in recall performance. When presenting new sequences, gamma power was reset to high values and decreased again after learning. These observations suggest that signals in the gamma frequency band may play a more prominent role during the early steps of the learning process rather than during the maintenance of memory traces. PMID:25653598

  2. Interneuron Deficit Associates Attenuated Network Synchronization to Mismatch of Energy Supply and Demand in Aging Mouse Brains

    DEFF Research Database (Denmark)

    Jessen, Sanne Barsballe; Mathiesen, Claus; Lind, Barbara Lykke

    2017-01-01

    Higher cognitive functions depend critically on synchronized network activity in the gamma range (30-100 Hz), which results from activity of fast-spiking parvalbumin-positive (PV) interneurons. Here, we examined synaptic activity in the gamma band in relation to PV interneuron activity, stimulati...

  3. Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex.

    Science.gov (United States)

    Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B

    2008-04-02

    Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.

  4. Search for two-{gamma} sum-energy peaks in the decay out of superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, D.; Khoo, T.L.; Lauritsen, T. [and others

    1995-08-01

    The spectrum of {gamma}rays decaying out of the superdeformed (SD) band in {sup 192}Hg has a quasicontinuous distribution. Whereas methods to construct level schemes from discrete lines in coincidence spectra are well established, new techniques must still be developed to extract information from coincidences involving quasicontinuous {gamma}rays. From an experiment using Eurogam, we obtained impressively clean 1- and 2-dimensional {gamma} spectra from pairwise or single gates, respectively, on the transitions of the SD band in {sup 192}Hg. We investigated methods to exploit the 2-dimensional quasicontinuum spectra coincident with the SD band to determine the excitation energy of the SD band above the normal yrast line. No strong peaks were observed in the 2-{gamma} sum spectra; only candidates of peaks at a 2-3 {sigma} level were found. This suggests that 2-{gamma} decay is not the dominant decay branch out of SD bands, consistent with the observed multiplicity of 3.2. We shall next search for peaks in sum-spectra of 3 {gamma}s.

  5. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia.

    Science.gov (United States)

    Noh, Kyungchul; Shin, Kyung Soon; Shin, Dongkwan; Hwang, Jae Yeon; Kim, June Sic; Jang, Joon Hwan; Chung, Chun Kee; Kwon, Jun Soo; Cho, Kwang-Hyun

    2013-04-10

    Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia.

  6. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  7. Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area v4.

    NARCIS (Netherlands)

    Vinck, M.; Womelsdorf, T.; Buffalo, E.A.; Desimone, R.; Fries, P.

    2013-01-01

    Selective visual attention is subserved by selective neuronal synchronization, entailing precise orchestration among excitatory and inhibitory cells. We tentatively identified these as broad (BS) and narrow spiking (NS) cells and analyzed their synchronization to the local field potential in two

  8. Modulation of induced gamma band activity in the human EEG by attention and visual information processing.

    Science.gov (United States)

    Müller, M M; Gruber, T; Keil, A

    2000-12-01

    Here we present a series of four studies aimed to investigate the link between induced gamma band activity in the human EEG and visual information processing. We demonstrated and validated the modulation of spectral gamma band power by spatial selective visual attention. When subjects attended to a certain stimulus, spectral power was increased as compared to when the same stimulus was ignored. In addition, we showed a shift in spectral gamma band power increase to the contralateral hemisphere when subjects shifted their attention to one visual hemifield. The following study investigated induced gamma band activity and the perception of a Gestalt. Ambiguous rotating figures were used to operationalize the law of good figure (gute Gestalt). We found increased gamma band power at posterior electrode sites when subjects perceived an object. In the last experiment we demonstrated a differential hemispheric gamma band activation when subjects were confronted with emotional pictures. Results of the present experiments in combination with other studies presented in this volume are supportive for the notion that induced gamma band activity in the human EEG is closely related to visual information processing and attentional perceptual mechanisms.

  9. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    Directory of Open Access Journals (Sweden)

    Francisco J Urbano

    2014-10-01

    Full Text Available The pedunculopontine nucleus (PPN is a major component of the reticular activating system (RAS that regulates waking and REM sleep, states of high frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine pedunculopontine nucleus (PPN, intralaminar parafascicular nucleus (Pf, and pontine Subcoeruleus nucleus dorsalis (SubCD. Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that, 1 the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, 2 neuronal calcium sensor (NCS-1 protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, 3 leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and 4 following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high frequency activity related to waking and REM sleep by elements of the RAS.

  10. Perceptual Integration Deficits in Autism Spectrum Disorders Are Associated with Reduced Interhemispheric Gamma-Band Coherence.

    Science.gov (United States)

    Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K

    2015-12-16

    details had to be integrated across both visual hemifields. We found enhanced interhemispheric gamma-band coherence in typically developed participants when communication between cortical hemispheres was required by the task. Importantly, participants with ASD failed to show this enhanced coherence between bilateral posterior superior temporal sulci. The findings suggest that visual integration is disturbed at the local and global synchronization scale, which might bear implications for object recognition in ASD. Copyright © 2015 the authors 0270-6474/15/3516352-10$15.00/0.

  11. Beta, but not gamma, band oscillations index visual form-motion integration.

    Directory of Open Access Journals (Sweden)

    Charles Aissani

    Full Text Available Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajou's figure (bound percept or as pairs of bars oscillating independently along cardinal axes (unbound percept. We found that beta (15-25 Hz, but not gamma (55-85 Hz oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level.

  12. Gamma bands in doubly odd rhenium and iridium nuclei

    Directory of Open Access Journals (Sweden)

    Balodis M.

    2015-01-01

    Full Text Available Structure of the |K ± 2| bands in doubly-odd nuclei belonging to the transitional deformation region at A∼190 is discussed. Relation of these quasi gamma-bands with the non-axial deformation of the parent two-quasiparticle configurations is studied. Using available experimental information, new tentative |K ± 2| bands are proposed in 188Re, and 192,194Ir nuclei. Coexistence of two-quasiparticle states with different deformation modes is considered in the case of 188Re and 194Ir.

  13. Selective Interareal Synchronization through Gamma Frequency Differences and Slower-Rhythm Gamma Phase Reset.

    Science.gov (United States)

    Burwick, Thomas; Bouras, Alexandros

    2017-03-01

    The communication-through-coherence (CTC) hypothesis states that a sending group of neurons will have a particularly strong effect on a receiving group if both groups oscillate in a phase-locked ("coherent") manner (Fries, 2005 , 2015 ). Here, we consider a situation with two visual stimuli, one in the focus of attention and the other distracting, resulting in two sites of excitation at an early cortical area that project to a common site in a next area. Taking a modeler's perspective, we confirm the workings of a mechanism that was proposed by Bosman et al. ( 2012 ) in the context of providing experimental evidence for the CTC hypothesis: a slightly higher gamma frequency of the attended sending site compared to the distracting site may cause selective interareal synchronization with the receiving site if combined with a slow-rhythm gamma phase reset. We also demonstrate the relevance of a slightly lower intrinsic frequency of the receiving site for this scenario. Moreover, we discuss conditions for a transition from bottom-up to top-down driven phase locking.

  14. Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome

    NARCIS (Netherlands)

    Arbab, Tara; Battaglia, Francesco P.; Pennartz, Cyriel M. A.; Bosman, Conrado A.

    2018-01-01

    Neuronal networks can synchronize their activity through excitatory and inhibitory connections, which is conducive to synaptic plasticity. This synchronization is reflected in rhythmic fluctuations of the extracellular field. In the hippocampus, theta and gamma band LFP oscillations are a hallmark

  15. Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.

    Science.gov (United States)

    Samonds, Jason M; Bonds, A B

    2005-01-01

    Visual cortical cells demonstrate both oscillation and synchronization, although the underlying causes and functional significance of these behaviors remain uncertain. We simultaneously recorded single-unit activity with microelectrode arrays in supragranular layers of area 17 of cats paralyzed and anesthetized with propofol and N(2)O. Rate-normalized autocorrelograms of 24 cells reveal bursting (100%) and gamma oscillation (63%). Renewal density analysis, used to explore the source of oscillation, suggests a contribution from extrinsic influences such as feedback. However, a bursting refractory period, presumably membrane-based, could also encourage oscillatory firing. When we investigated the source of synchronization for 60 cell pairs we found only moderate correlation of synchrony with bursts and oscillation. We did, nonetheless, discover a possible functional role for oscillation. In all cases of cross-correlograms that exhibited oscillation, the strength of the synchrony was maintained throughout the stimulation period. When no oscillation was apparent, 75% of the cell pairs showed decay in their synchronization. The synchrony between cells is strongly dependent on similar response onset latencies. We therefore propose that structured input, which yields tight organization of latency, is a more likely candidate for the source of synchronization than oscillation. The reliable synchrony at response onset could be driven by spatial and temporal correlation of the stimulus that is preserved through the earlier stages of the visual system. Oscillation then contributes to maintenance of the synchrony to enhance reliable transmission of the information for higher cognitive processing.

  16. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    Science.gov (United States)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  17. GAMMA BAND PLASTICITY IN SENSORY CORTEX IS A SIGNATURE OF THE STRONGEST MEMORY RATHER THAN MEMORY OF THE TRAINING STIMULUS

    Science.gov (United States)

    Weinberger, Norman M.; Miasnikov, Alexandre A.; Bieszczad, Kasia M.; Chen, Jemmy C.

    2013-01-01

    Gamma oscillations (~30–120 Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n = 16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4–15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. PMID:23669065

  18. Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus.

    Science.gov (United States)

    Weinberger, Norman M; Miasnikov, Alexandre A; Bieszczad, Kasia M; Chen, Jemmy C

    2013-09-01

    Gamma oscillations (∼30-120Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n=16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4-15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.

    Science.gov (United States)

    Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y

    2010-02-01

    Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Disrupted Gamma Synchrony after Mild Traumatic Brain Injury and Its Correlation with White Matter Abnormality

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-10-01

    Full Text Available Mild traumatic brain injury (mTBI has been firmly associated with disrupted white matter integrity due to induced white matter damage and degeneration. However, comparatively less is known about the changes of the intrinsic functional connectivity mediated via neural synchronization in the brain after mTBI. Moreover, despite the presumed link between structural and functional connectivity, no existing studies in mTBI have demonstrated clear association between the structural abnormality of white matter axons and the disruption of neural synchronization. To investigate these questions, we recorded resting state EEG and diffusion tensor imaging (DTI from a cohort of military service members. A newly developed synchronization measure, the weighted phase lag index was applied on the EEG data for estimating neural synchronization. Fractional anisotropy was computed from the DTI data for estimating white matter integrity. Fifteen service members with a history of mTBI within the past 3 years were compared to 22 demographically similar controls who reported no history of head injury. We observed that synchronization at low-gamma frequency band (25–40 Hz across scalp regions was significantly decreased in mTBI cases compared with controls. The synchronization in theta (4–7 Hz, alpha (8–13 Hz, and beta (15–23 Hz frequency bands were not significantly different between the two groups. In addition, we found that across mTBI cases, the disrupted synchronization at low-gamma frequency was significantly correlated with the white matter integrity of the inferior cerebellar peduncle, which was also significantly reduced in the mTBI group. These findings demonstrate an initial correlation between the impairment of white matter integrity and alterations in EEG synchronization in the brain after mTBI. The results also suggest that disruption of intrinsic neural synchronization at low-gamma frequency may be a characteristic functional pathology

  1. Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm.

    Science.gov (United States)

    Doesburg, Sam M; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Poskitt, Kenneth J; Moiseev, Alexander; Whitfield, Michael F; Synnes, Anne; Grunau, Ruth E

    2011-02-01

    Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Induction of self awareness in dreams through frontal low current stimulation of gamma activity.

    Science.gov (United States)

    Voss, Ursula; Holzmann, Romain; Hobson, Allan; Paulus, Walter; Koppehele-Gossel, Judith; Klimke, Ansgar; Nitsche, Michael A

    2014-06-01

    Recent findings link fronto-temporal gamma electroencephalographic (EEG) activity to conscious awareness in dreams, but a causal relationship has not yet been established. We found that current stimulation in the lower gamma band during REM sleep influences ongoing brain activity and induces self-reflective awareness in dreams. Other stimulation frequencies were not effective, suggesting that higher order consciousness is indeed related to synchronous oscillations around 25 and 40 Hz.

  3. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    Science.gov (United States)

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  4. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    Science.gov (United States)

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  5. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    Science.gov (United States)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  6. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    Science.gov (United States)

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  7. Gamma band oscillations under influence of bromazepam during a sensorimotor integration task: an EEG coherence study.

    Science.gov (United States)

    Minc, Daniel; Machado, Sergio; Bastos, Victor Hugo; Machado, Dionis; Cunha, Marlo; Cagy, Mauricio; Budde, Henning; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro

    2010-01-18

    The goal of the present study was to explore the dynamics of the gamma band using the coherence of the quantitative electroencephalography (qEEG) in a sensorimotor integration task and the influence of the neuromodulator bromazepam on the band behavior. Our hypothesis is that the needs of the typewriting task will demand the coupling of different brain areas, and that the gamma band will promote the binding of information. It is also expected that the neuromodulator will modify this coupling. The sample was composed of 39 healthy subjects. We used a randomized double-blind design and divided subjects into three groups: placebo (n=13), bromazepam 3mg (n=13) and bromazepam 6 mg (n=13). The two-way ANOVA analysis demonstrated a main effect for the factors condition (i.e., C4-CZ electrode pair) and moment (i.e., C3-CZ, C3-C4 and C4-CZ pairs of electrodes). We propose that the gamma band plays an important role in the binding among several brain areas in complex motor tasks and that each hemisphere is influenced in a different manner by the neuromodulator. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Gamma band odd-even staggering in some deformed nuclei

    International Nuclear Information System (INIS)

    Khairy, M.K.; Talaat, SH.M.; Morsy, M.

    2005-01-01

    A complete investigation was carried out in studying the odd-even staggering (OES) of gamma bands energy levels in some deformed nuclei up to angular momentum L=13 . With the help of Minkov treatment in the framework of a collective Vector Boson Model (VBM) with broken SU (3) symmetry. The OES behavior of deformed isotopes 162 E r, 164 E r, 166 E r, 156 G d, 170 Y b and 232 T h was studied and discussed

  9. Specific or nonspecific? Evaluation of band, baseline, and cognitive specificity of sensorimotor rhythm- and gamma-based neurofeedback.

    Science.gov (United States)

    Kober, Silvia Erika; Witte, Matthias; Neuper, Christa; Wood, Guilherme

    2017-10-01

    Neurofeedback (NF) is often criticized because of the lack of empirical evidence of its specificity. Our present study thus focused on the specificity of NF on three levels: band specificity, cognitive specificity, and baseline specificity. Ten healthy middle-aged individuals performed ten sessions of SMR (sensorimotor rhythm, 12-15Hz) NF training. A second group (N=10) received feedback of a narrow gamma band (40-43Hz). Effects of NF on EEG resting measurements (tonic EEG) and cognitive functions (memory, intelligence) were evaluated using a pre-post design. Both training groups were able to linearly increase the target training frequencies (either SMR or gamma), indicating the trainability of these EEG frequencies. Both NF training protocols led to nonspecific changes in other frequency bands during NF training. While SMR NF only led to concomitant changes in slower frequencies, gamma training affected nearly the whole power spectrum. SMR NF specifically improved memory functions. Gamma training showed only marginal effects on cognitive functions. SMR power assessed during resting measurements significantly increased after SMR NF training compared to a pre-assessment, indicating specific effects of SMR NF on baseline/tonic EEG. The gamma group did not show any pre-post changes in their EEG resting activity. In conclusion, SMR NF specifically affects cognitive functions (cognitive specificity) and tonic EEG (baseline specificity), while increasing SMR during NF training nonspecifically affects slower EEG frequencies as well (band non-specificity). Gamma NF was associated with nonspecific effects on the EEG power spectrum during training, which did not lead to considerable changes in cognitive functions or baseline EEG activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mixing of ground-state rotational and gamma and beta vibrational bands in the region A>=228

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, R; Sahota, H S [Punjabi Univ., Patiala (India). Dept. of Physics

    1983-06-21

    The mixing of beta, gamma and ground-state bands has been investigated through the experimental determination of mixing parameters Zsub(..gamma..) and Zsub(..beta gamma..). These Zsub(..gamma..) values have been compared with the theoretical calculations of this parameter from the solutions of time-dependent HFB equations on the adiabatic and nonadiabatic assumptions. The experimental values are in better agreement with the results obtained under the nonadiabatic assumption, valid for small deviations from the spherical symmetry.

  11. In sync: gamma oscillations and emotional memory.

    Science.gov (United States)

    Headley, Drew B; Paré, Denis

    2013-11-21

    Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35-120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory.

  12. Increased gamma band power during movement planning coincides with motor memory retrieval.

    Science.gov (United States)

    Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten

    2016-01-15

    The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  14. The effect of gamma-enhancing binaural beats on the control of feature bindings.

    Science.gov (United States)

    Colzato, Lorenza S; Steenbergen, Laura; Sellaro, Roberta

    2017-07-01

    Binaural beats represent the auditory experience of an oscillating sound that occurs when two sounds with neighboring frequencies are presented to one's left and right ear separately. Binaural beats have been shown to impact information processing via their putative role in increasing neural synchronization. Recent studies of feature-repetition effects demonstrated interactions between perceptual features and action-related features: repeating only some, but not all features of a perception-action episode hinders performance. These partial-repetition (or binding) costs point to the existence of temporary episodic bindings (event files) that are automatically retrieved by repeating at least one of their features. Given that neural synchronization in the gamma band has been associated with visual feature bindings, we investigated whether the impact of binaural beats extends to the top-down control of feature bindings. Healthy adults listened to gamma-frequency (40 Hz) binaural beats or to a constant tone of 340 Hz (control condition) for ten minutes before and during a feature-repetition task. While the size of visuomotor binding costs (indicating the binding of visual and action features) was unaffected by the binaural beats, the size of visual feature binding costs (which refer to the binding between the two visual features) was considerably smaller during gamma-frequency binaural beats exposure than during the control condition. Our results suggest that binaural beats enhance selectivity in updating episodic memory traces and further strengthen the hypothesis that neural activity in the gamma band is critically associated with the control of feature binding.

  15. Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis.

    Science.gov (United States)

    Balconi, Michela; Lucchiari, Claudio

    2008-01-01

    It remains an open question whether it is possible to assign a single brain operation or psychological function for facial emotion decoding to a certain type of oscillatory activity. Gamma band activity (GBA) offers an adequate tool for studying cortical activation patterns during emotional face information processing. In the present study brain oscillations were analyzed in response to facial expression of emotions. Specifically, GBA modulation was measured when twenty subjects looked at emotional (angry, fearful, happy, and sad faces) or neutral faces in two different conditions: supraliminal (10 ms) vs subliminal (150 ms) stimulation (100 target-mask pairs for each condition). The results showed that both consciousness and significance of the stimulus in terms of arousal can modulate the power synchronization (ERD decrease) during 150-350 time range: an early oscillatory event showed its peak at about 200 ms post-stimulus. GBA was enhanced by supraliminal more than subliminal elaboration, as well as more by high arousal (anger and fear) than low arousal (happiness and sadness) emotions. Finally a left-posterior dominance for conscious elaboration was found, whereas right hemisphere was discriminant in emotional processing of face in comparison with neutral face.

  16. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas Maling

    Full Text Available Tourette syndrome (TS is an idiopathic, childhood-onset neuropsychiatric disorder, which is marked by persistent multiple motor and phonic tics. The disorder is highly disruptive and in some cases completely debilitating. For those with severe, treatment-refractory TS, deep brain stimulation (DBS has emerged as a possible option, although its mechanism of action is not fully understood. We performed a longitudinal study of the effects of DBS on TS symptomatology while concomitantly examining neurophysiological dynamics. We present the first report of the clinical correlation between the presence of gamma band activity and decreased tic severity. Local field potential recordings from five subjects implanted in the centromedian nucleus (CM of the thalamus revealed a temporal correlation between the power of gamma band activity and the clinical metrics of symptomatology as measured by the Yale Global Tic Severity Scale and the Modified Rush Tic Rating Scale. Additional studies utilizing short-term stimulation also produced increases in gamma power. Our results suggest that modulation of gamma band activity in both long-term and short-term DBS of the CM is a key factor in mitigating the pathophysiology associated with TS.

  17. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    Science.gov (United States)

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  19. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    Science.gov (United States)

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  20. In sync: gamma oscillations and emotional memory

    Directory of Open Access Journals (Sweden)

    Drew Battenfield Headley

    2013-11-01

    Full Text Available Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35-120 Hz. Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory.

  1. Direct transitions from high-K isomers to low-K bands -- {gamma} softness or coriolis coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R.; Narimatsu, Kanako; Ohtsubo, Shin-Ichi [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-12-31

    Recent measurements of direct transitions from high-K isomers to low-K bands reveal severe break-down of the K-selection rule and pose the problem of how to understand the mechanism of such K-violation. The authors recent systematic calculations by using a simple {gamma}-tunneling model reproduced many of the observed hindrances, indicating the importance of the {gamma} softness. However, there are some data which cannot be explained in terms of the {gamma}-degree of freedom. In this talk, the authors also discuss the results of conventional Coriolis coupling calculations, which is considered to be another important mechanism.

  2. Time course of gamma-band oscillation associated with face processing in the inferior occipital gyrus and fusiform gyrus: A combined fMRI and MEG study.

    Science.gov (United States)

    Uono, Shota; Sato, Wataru; Kochiyama, Takanori; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi

    2017-04-01

    Debate continues over whether the inferior occipital gyrus (IOG) or the fusiform gyrus (FG) represents the first stage of face processing and what role these brain regions play. We investigated this issue by combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in normal adults. Participants passively observed upright and inverted faces and houses. First, we identified the IOG and FG as face-specific regions using fMRI. We applied beamforming source reconstruction and time-frequency analysis to MEG source signals to reveal the time course of gamma-band activations in these regions. The results revealed that the right IOG showed higher gamma-band activation in response to upright faces than to upright houses at 100 ms from the stimulus onset. Subsequently, the right FG showed greater gamma-band response to upright faces versus upright houses at around 170 ms. The gamma-band activation in the right IOG and right FG was larger in response to inverted faces than to upright faces at the later time window. These results suggest that (1) the gamma-band activities occurs rapidly first in the IOG and next in the FG and (2) the gamma-band activity in the right IOG at later time stages is involved in configuration processing for faces. Hum Brain Mapp 38:2067-2079, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Differences in MEG gamma oscillatory power during performance of a prosaccade task in adolescents with FASD

    Directory of Open Access Journals (Sweden)

    Julia M. Stephen

    2013-12-01

    Full Text Available Fetal alcohol spectrum disorder (FASD is characterized by a broad range of behavioral and cognitive deficits that impact the long-term quality of life for affected individuals. However, the underlying changes in brain structure and function associated with these cognitive impairments are not well understood. Previous studies identified deficits in behavioral performance of prosaccade tasks in children with FASD. In this study, we investigated group differences in gamma oscillations in response to a prosaccade task. We collected MEG data from 15 adolescents with FASD and 20 age-matched healthy controls (HC with a mean age of 15.9 ± 0.4 years. During the prosaccade task, the participants began each trial by gazing at a centrally-placed fixation point. After a variable delay, a peripheral target appeared along the horizontal meridian in left or right visual field. The participants were instructed to saccade to the target as quickly and accurately as possible. Eye movement was recorded and synchronized to the MEG data using an MEG compatible eye-tracker. The MEG data were analyzed relative to the onset of the visual saccade. Time frequency analysis was performed using Fieldtrip with a focus on group differences in gamma-band oscillations. Following left target presentation, we identified 4 clusters over right frontal, right parietal and left temporal/occipital cortex, with significantly different gamma-band (30-50 Hz power between FASD and HC. Furthermore, visual M100 latencies described in Coffman et al. (2012 corresponded with increased gamma power over right central cortex in FASD only, which may represent compensatory activity in this group. Gamma-band differences were not identified for stimulus-averaged responses implying that these gamma-band differences were related to differences in saccade network functioning. These gamma-band differences in power may provide indicators of atypical development of cortical networks in individuals with FASD.

  4. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  5. Comparative Analysis Electroencephalographic of Alpha, Beta and Gamma Bands of a Healthy Individual and One with Hemiparesis

    Science.gov (United States)

    Machado, Dionis de Castro Dutra; Lima, Glenda Crispim; Souza dos Santos, Rodrigo; Ramos, Amanda Júlia Bezerra; Menezes de Sousa, Cáio César; Moreira dos Santos, Rayele Pricila; Coelho, Karyna Kelly Oliveira; Cagy, Mauricio; Orsini, Marco; Bastos, Victor Hugo

    2014-01-01

    [Purpose] The study analyzed the electroencephalographic (EEG) data of the central cortical areas, during execution of the motor gestures of feeding, activation of the system of mirror neurons, and imagery between a right hemiparetic volunteer (RHV) and a healthy volunteer (HV). [Subjects and Methods] The volunteers’ EEG data were recorded with their eyes open for 4 minutes while they performed five experimental tasks. [Results] The alpha band, absolute power value of HV was lower than that of RHV. In the beta band, during the practice condition, there was an increase in the magnitude of the absolute power value of HV at T3, possibly because T3 is representative of secondary motor areas that work with cortical neurons related to planning and organizing sequence of movements performed by the hands. The gamma band is related to the state of preparation for movement and memory. The results of this study indicate that there was increased activation of the gamma frequency band of HV. [Conclusion] The findings of this study have revealed the changes in pattern characteristics of each band which may be associated with the brain injury of the hemiparetic patient. PMID:25013270

  6. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  7. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.

    Science.gov (United States)

    Daume, Jonathan; Gruber, Thomas; Engel, Andreas K; Friese, Uwe

    2017-01-11

    It has been suggested that cross-frequency phase-amplitude coupling (PAC), particularly in temporal brain structures, serves as a neural mechanism for coordinated working memory storage. In this magnetoencephalography study, we show that during visual working memory maintenance, temporal cortex regions, which exhibit enhanced PAC, interact with prefrontal cortex via enhanced low-frequency phase synchronization. Healthy human participants were engaged in a visual delayed match-to-sample task with pictures of natural objects. During the delay period, we observed increased spectral power of beta (20-28 Hz) and gamma (40-94 Hz) bands as well as decreased power of theta/alpha band (7-9 Hz) oscillations in visual sensory areas. Enhanced PAC between the phases of theta/alpha and the amplitudes of beta oscillations was found in the left inferior temporal cortex (IT), an area known to be involved in visual object memory. Furthermore, the IT was functionally connected to the prefrontal cortex by increased low-frequency phase synchronization within the theta/alpha band. Together, these results point to a mechanism in which the combination of PAC and long-range phase synchronization subserves enhanced large-scale brain communication. They suggest that distant brain regions might coordinate their activity in the low-frequency range to engage local stimulus-related processing in higher frequencies via the combination of long-range, within-frequency phase synchronization and local cross-frequency PAC. Working memory maintenance, like other cognitive functions, requires the coordinated engagement of brain areas in local and large-scale networks. However, the mechanisms by which spatially distributed brain regions share and combine information remain primarily unknown. We show that the combination of long-range, low-frequency phase synchronization and local cross-frequency phase-amplitude coupling might serve as a mechanism to coordinate memory processes across distant brain areas

  8. U and Pu Gamma-Ray Measurements of Spent Fuel Using a Gamma-Ray Mirror Band-Pass Filter

    International Nuclear Information System (INIS)

    Ziock, K.-P.; Kisner, R.; Melin, A.; Patton, B.; Alameda, J.; Brejnhold, N.; Decker, T.; Descalle, M.-A.; Fernandez-Perea, M.; Hill, R.; Ruz Armendariz, J.; Soufli, R.

    2015-01-01

    We report the use of grazing incidence gamma-ray mirrors as narrow band-pass filters for advanced non-destructive analysis of spent nuclear fuel. The mirrors limit radiation reaching an HPGe detector to narrow spectral bands around characteristic emission lines from fissile isotopes in the fuel. Ideally, these emissions could be used to determine the fuel's fissile content, but they are normally masked by the overwhelming radiation emitted by short-lived fission by-products. These latter emissions raise the overall background, making direct observation of the fuel with HPGe detectors virtually impossible. Such observations can only be performed using precise collimators that restrict the detector's field of view to very small solid angles. This results in impracticably long dwell times for safeguards measurements targeting the weak isotopic lines of interest. In a proof-ofconcept experiment, a set of simple flat gamma-ray mirrors was used to observe the atomic florescence lines from U and Pu from a spent nuclear fuel pin. For the measurements, the mirrors were placed at the egress of an access port in a hot cell wall. A coarse collimator in the port restricted radiation from a fuel pin placed in front of the port to fully illuminate the front surface of the mirror assembly (0:5 x 3:8 cm2). The mirrors, consisting of highly polished silicon substrates deposited with WC/SiC multilayer coatings, were successfully used to deflect the lines of interest onto an HPGe detector while the intense primary radiation from the spent fuel was blocked by a lead beam stop. The gamma-ray mirror multilayer coatings used here at ∼100 keV, have been experimentally tested at energies as high as 645 keV, indicating that direct observation of nuclear emission lines from 239Pu should be possible with an appropriately designed optic. (author)

  9. Right frontal gamma and beta band enhancement while solving a spatial puzzle with insight.

    Science.gov (United States)

    Rosen, A; Reiner, M

    2017-12-01

    Solving a problem with an "a-ha" effect is known as insight. Unlike incremental problem solving, insight is sudden and unique, and the question about its distinct brain activity, intrigues many researchers. In this study, electroencephalogram signals were recorded from 12 right handed, human participants before (baseline) and while they solved a spatial puzzle known as the '10 coin puzzle' that could be solved incrementally or by insight. Participants responded as soon as they reached a solution and reported whether the process was incremental or by sudden insight. EEG activity was recorded from 19 scalp locations. We found significant differences between insight and incremental solvers in the Gamma and Beta 2 bands in frontal areas (F8) and in the alpha band in right temporal areas (T6). The right-frontal gamma indicates a process of restructuring which leads to an insight solution, in spatial problems, further suggesting a universal role of gamma in restructuring. These results further suggest that solving a spatial puzzle via insight requires exclusive brain areas and neurological-cognitive processes which may be important for meta-cognitive components of insight solutions, including attention and monitoring of the solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities.

    Science.gov (United States)

    McNally, James M; McCarley, Robert W

    2016-05-01

    We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.

  11. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  12. Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI.

    Science.gov (United States)

    Kottlow, Mara; Jann, Kay; Dierks, Thomas; Koenig, Thomas

    2012-08-01

    Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Preliminary measurements of gamma ray effects on characteristics of broad-band GaAs field-effect transistor preamplifiers

    International Nuclear Information System (INIS)

    Jackson, H.G.; Shimizu, T.T.; Leskovar, B.

    1985-01-01

    The effect of gamma radiation on electrical characteristics of cryogenically cooled broad-band low-noise microwave preamplifiers has been preliminarily evaluated. The change in the gain and noise figure of a 1-2 GHz preamplifier using GaAs microwave transistors was determined at gamma doses between 10 5 rad to 5 /times/ 10 8 rad. The gain and noise figure was measured at ambient temperatures of 300 K and 80 K. 8 refs., 2 figs

  14. Long-range synchronization and local desynchronization of alpha oscillations during visual short-term memory retention in children.

    Science.gov (United States)

    Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Cheung, Teresa; Moiseev, Alexander; Weinberg, Hal; Liotti, Mario; Weeks, Daniel; Grunau, Ruth E

    2010-04-01

    Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.

  15. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: Evidence for an altered maturational trajectory in ASD.

    Science.gov (United States)

    Port, Russell G; Gaetz, William; Bloy, Luke; Wang, Dah-Jyuu; Blaskey, Lisa; Kuschner, Emily S; Levy, Susan E; Brodkin, Edward S; Roberts, Timothy P L

    2017-04-01

    Autism spectrum disorder (ASD) is hypothesized to arise from imbalances between excitatory and inhibitory neurotransmission (E/I imbalance). Studies have demonstrated E/I imbalance in individuals with ASD and also corresponding rodent models. One neural process thought to be reliant on E/I balance is gamma-band activity (Gamma), with support arising from observed correlations between motor, as well as visual, Gamma and underlying GABA concentrations in healthy adults. Additionally, decreased Gamma has been observed in ASD individuals and relevant animal models, though the direct relationship between Gamma and GABA concentrations in ASD remains unexplored. This study combined magnetoencephalography (MEG) and edited magnetic resonance spectroscopy (MRS) in 27 typically developing individuals (TD) and 30 individuals with ASD. Auditory cortex localized phase-locked Gamma was compared to resting Superior Temporal Gyrus relative cortical GABA concentrations for both children/adolescents and adults. Children/adolescents with ASD exhibited significantly decreased GABA+/Creatine (Cr) levels, though typical Gamma. Additionally, these children/adolescents lacked the typical maturation of GABA+/Cr concentrations and gamma-band coherence. Furthermore, children/adolescents with ASD additionally failed to exhibit the typical GABA+/Cr to gamma-band coherence association. This altered coupling during childhood/adolescence may result in Gamma decreases observed in the adults with ASD. Therefore, individuals with ASD exhibit improper local neuronal circuitry maturation during a childhood/adolescence critical period, when GABA is involved in configuring of such circuit functioning. Provocatively a novel line of treatment is suggested (with a critical time window); by increasing neural GABA levels in children/adolescents with ASD, proper local circuitry maturation may be restored resulting in typical Gamma in adulthood. Autism Res 2017, 10: 593-607. © 2016 International Society for

  16. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  17. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    Science.gov (United States)

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R. A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, G. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, S. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Gibson, D. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Barty, C. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  19. Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans.

    Science.gov (United States)

    Bola, Michał; Barrett, Adam B; Pigorini, Andrea; Nobili, Lino; Seth, Anil K; Marchewka, Artur

    2018-02-15

    Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Band mixing in /sup 160/Dy

    Energy Technology Data Exchange (ETDEWEB)

    Hasiza, M L; Singh, K; Sahota, H S [Punjabi Univ., Patiala (India). Dept. of Physics

    1982-11-01

    The intensities of the gamma transitions in /sup 160/Dy have been measured precisely by a 45 cc Ge(Li) detector. Unequal quadrupole moments for the ground and gamma vibrational bands have been proposed in order to remove the inconsistencies in the values of band mixing parameter Z sub(gamma) for this doubly even deformed nucleus of /sup 160/Dy.

  1. Sense of agency is related to gamma band coupling in an inferior parietal-preSMA circuitry

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Nielsen, Jens Bo; Christensen, Mark Schram

    2014-01-01

    with no SoA in the late task phase, but the test of the early task phase did not reveal any differences between presence and absence of SoA. We show that SoA is associated with a directionally specific between frequencies coupling from IPC to preSMA in the higher gamma (ɣ) band in the late task phase...

  2. Gamma--gamma directional correlations and coincidence studies in /sup 154/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, J B; Gupta, S L; Hamilton, J H; Ramayya, A V [Vanderbilt Univ., Nashville, Tenn. (USA). Dept. of Physics; Delhi Univ. (India). Ramjas Coll.)

    1977-06-01

    The intensities, placements and E2/M1 mixing ratios of transitions in the decay of /sup 154/Eu have been carefully studied to provide accurate data for microscopic calculations. Coincidence relationships in thhe decay of /sup 154/Eu have been studied extensively with a multiparameter ..gamma..-..gamma.. coincidence system with two large volume Ge(Li) detectors. Spectra in coincidence with twenty energy gates were analyzed. Twenty-nine new coincidence relationships were established and confirmed most, but not all, of several levels previously assigned by energy fits only. From an analysis of coincidence spectra and singles spectra with a 18% efficiency Ge(Li) detector new information on the gamma-ray intensities were obtained. Precise values of the E2/M1 mixing ratios of transitions from the gamma- and beta-vibrational bands to the g.s. band have been determined from ..gamma..-..gamma.. directional correlation measurements with a NaI(Tl)-Ge(Li) detector coincidence system. Mixing ratios were obtained for a number of other transitions including those from KPI = 0/sup -/ and 2+ bands from direct and skipped cascade correlations.

  3. The fast detection of rare auditory feature conjunctions in the human brain as revealed by cortical gamma-band electroencephalogram.

    Science.gov (United States)

    Ruusuvirta, T; Huotilainen, M

    2005-01-01

    Natural environments typically contain temporal scatters of sounds emitted from multiple sources. The sounds may often physically stand out from one another in their conjoined rather than simple features. This poses a particular challenge for the brain to detect which of these sounds are rare and, therefore, potentially important for survival. We recorded gamma-band (32-40 Hz) electroencephalographic (EEG) oscillations from the scalp of adult humans who passively listened to a repeated tone carrying frequent and rare conjunctions of its frequency and intensity. EEG oscillations that this tone induced, rather than evoked, differed in amplitude between the two conjunction types within the 56-ms analysis window from tone onset. Our finding suggests that, perhaps with the support of its non-phase-locked synchrony in the gamma band, the human brain is able to detect rare sounds as feature conjunctions very rapidly.

  4. The quasi-continuum of gamma rays following the decay of superdeformed bands in the Hg region

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Janssens, R.V.F. [Argonne National Lab., IL (United States)] [and others

    1996-12-31

    The quasi-continuum part of the spectrum associated with the decay-out of the yrast superdeformed band in {sup 194}Hg has been extracted. It has for the first time been possible to compare the spin and excitation energy determined from the analysis of the quasi-continuum {gamma} rays to the exact result obtained from the one-step linking transitions.

  5. Potential mechanisms for imperfect synchronization in parkinsonian basal ganglia.

    Directory of Open Access Journals (Sweden)

    Choongseok Park

    Full Text Available Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN neuron. We show how external globus pallidus (GPe neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson's disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson's disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties may be one of the potential mechanisms responsible for the generation of the intermittent synchronization

  6. Cortical layers, rhythms and BOLD signals.

    Science.gov (United States)

    Scheeringa, René; Fries, Pascal

    2017-11-03

    This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Behavioral relevance of gamma-band activity for short-term memory-based auditory decision-making.

    Science.gov (United States)

    Kaiser, Jochen; Heidegger, Tonio; Lutzenberger, Werner

    2008-06-01

    Oscillatory activity in the gamma-band range has been established as a correlate of cognitive processes, including perception, attention and memory. Only a few studies, however, have provided evidence for an association between gamma-band activity (GBA) and measures of behavioral performance. Here we focused on the comparison between sample and test stimuli S1 and S2 during an auditory spatial short-term memory task. Applying statistical probability mapping to magnetoencephalographic recordings from 28 human subjects, we identified GBA components distinguishing nonidentical from identical S1-S2 pairs. This activity was found at frequencies between 65 and 90 Hz and was localized over posterior cortical regions contralateral to the hemifield in which the stimuli were presented. The 10 best task performers showed higher amplitudes of this GBA component than the 10 worst performers. This group difference was most pronounced between about 150 and 300 ms after stimulus onset. Apparently the decision about whether test stimuli matched the stored representation of previously presented sample sounds relied partly on the oscillatory activation of networks representing differences between both stimuli. This result could be replicated by reanalyzing the combined data from two previous studies assessing short-term memory for sound duration and sound lateralization, respectively. Similarly to our main study, GBA amplitudes to nonmatching vs. matching S1-S2 pairs were higher in good performers than poor performers. The present findings demonstrate the behavioral relevance of GBA.

  8. Excited negative parity bands in 160Yb

    Science.gov (United States)

    Saha, A.; Bhattacharjee, T.; Curien, D.; Dedes, I.; Mazurek, K.; Banerjee, S. R.; Rajbanshi, S.; Bisoi, A.; de Angelis, G.; Bhattacharya, Soumik; Bhattacharyya, S.; Biswas, S.; Chakraborty, A.; Das Gupta, S.; Dey, B.; Goswami, A.; Mondal, D.; Pandit, D.; Palit, R.; Roy, T.; Singh, R. P.; Saha Sarkar, M.; Saha, S.; Sethi, J.

    2018-03-01

    Negative parity rotational bands in {} 70160Yb{}90 nucleus have been studied. They were populated in the 148Sm(16O, 4n)160Yb reaction at 90 MeV. The gamma-coincidence data have been collected using Indian National Gamma Array composed of twenty Compton suppressed clover germanium (Ge) detectors. Double gating on triple gamma coincidence data were selectively used to develop the decay scheme for these negative parity bands by identifying and taking care of the multiplet transitions. The even- and odd-spin negative parity bands in 160Yb have been studied by comparing the reduced transition probability ratios with the similar bands in neighbouring even-even rare earth nuclei. It is concluded that the concerned odd-spin and even-spin bands are not signature partners and that their structures are compatible with those of the ‘pear-shape’ and ‘pyramid-shape’ oscillations, respectively, the octupole shapes superposed with the quadrupole shape of the ground-state.

  9. Neurofeedback Effects on Evoked and Induced EEG Gamma Band Reactivity to Drug-related Cues in Cocaine Addiction

    Science.gov (United States)

    Horrell, Timothy; El-Baz, Ayman; Baruth, Joshua; Tasman, Allan; Sokhadze, Guela; Stewart, Christopher; Sokhadze, Estate

    2010-01-01

    in a lower EEG gamma reactivity to drug-related images in a post-neurofeedback cue reactivity test. In particular, evoked gamma showed decreases in power to non-target and to a lesser extent target drug-related cues at all topographies (left, right, frontal, parietal, medial, inferior); while induced gamma power decreased globally to both target and non-target drug cues. Our findings supported our hypothesis that gamma band cue reactivity measures are sufficiently sensitive functional outcomes of neurofeedback treatment. Both evoked and induced gamma measures were found capable to detect changes in responsiveness to both target and non-target drug cues. Conclusion Our study emphasizes the utility of cognitive neuroscience methods based on EEG gamma band measures for the assessment of the functional outcomes of neurofeedback-based biobehavioral interventions for cocaine use disorders. This approach may have significant potential for identifying both physiological and clinical markers of treatment progress. The results confirmed our prediction that EEG changes achieved with neurofeedback training will be accompanied by positive EEG outcomes in a cue reactivity and clinical improvements. PMID:20976131

  10. Oscillations and Episodic Memory: Addressing the Synchronization/Desynchronization Conundrum

    OpenAIRE

    Hanslmayr, Simon; Staresina, Bernhard P.; Bowman, Howard

    2016-01-01

    Trends Data from rodent as well as human studies suggest that theta/gamma synchronization in the hippocampus (i.e., theta phase to gamma power cross-frequency coupling) mediates the binding of different elements in episodic memory. In vivo and in vitro animal studies suggest that theta provides selective time windows for fast-acting synaptic modifications and recent computational models have implemented these mechanisms to explain human memory formation and retrieval. Recent data from human e...

  11. Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans.

    Science.gov (United States)

    Cortes-Briones, Jose; Skosnik, Patrick D; Mathalon, Daniel; Cahill, John; Pittman, Brian; Williams, Ashley; Sewell, R Andrew; Ranganathan, Mohini; Roach, Brian; Ford, Judith; D'Souza, Deepak Cyril

    2015-08-01

    Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol (Δ(9)-THC) on the auditory steady-state response (ASSR) were studied in humans (n=20) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ(9)-THC (0.03 mg/kg) reduced intertrial coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence of Δ(9)-THC. Δ(9)-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed blunted Δ(9)-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids and the behavioral and psychophysiological alterations observed in psychotic disorders.

  12. Corticomuscular synchronization with small and large dynamic force output

    Science.gov (United States)

    Andrykiewicz, Agnieszka; Patino, Luis; Naranjo, Jose Raul; Witte, Matthias; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2007-01-01

    Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study [1] that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC

  13. Corticomuscular synchronization with small and large dynamic force output

    Directory of Open Access Journals (Sweden)

    Witte Matthias

    2007-11-01

    Full Text Available Abstract Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study 1 that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic generated by a manipulandum. The CMC, the cortical EEG spectral power (SP, the EMG SP and the errors in motor performance (as the difference between target and exerted force were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no

  14. Experimental Investigation of Chaos Synchronization in DFB Diode Lasers with Unsymmetrical Scheme

    International Nuclear Information System (INIS)

    Ling-Zhen, Yang; Xiu-Juan, Zhang; An-Bang, Wang; Dong-Ming, Guo; Yun-Cai, Wang

    2008-01-01

    We experimentally generate high dimension chaotic waveforms with smooth spectrum using a distributed feedback (DFB) semiconductor laser with unidirectional fibre ring long-cavity feedback, and implement the stable chaos synchronization when the chaotic light is injected into a solitary DFB laser diode. The synchronization quality is investigated by time-domain and frequency-domain analysis separately. The frequency-domain analysis indicates that the synchronization has higher quality in the high frequency band. The influences of the injection strength and the frequency detuning on the synchronization are measured. Our experimental results show that the robust synchronization can be maintained with the optical frequency detuning from -UGHz to 40 GHz. (general)

  15. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation.

    Science.gov (United States)

    Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has long-term facilitative effects on spatial and temporal memory processes in the offspring. To further delineate the impact of early nutritional status on brain and behavior, we examined effects of prenatal-choline availability on hippocampal oscillatory frequency bands in 12 month-old male and female rats. Adult offspring of time-pregnant dams that were given a deficient level of choline (DEF=0.0 g/kg), sufficient choline (CON=1.1 g/kg) or supplemental choline (SUP=3.5 g/kg) in their chow during embryonic days (ED) 12-17 were implanted with an electroencephalograph (EEG) electrode in the hippocampal dentate gyrus in combination with an electromyograph (EMG) electrode patch implanted in the nuchal muscle. Five consecutive 8-h recording sessions revealed differential patterns of EEG activity as a function of awake, slow-wave sleep (SWS) and rapid-eye movement (REM) sleep states and prenatal choline status. The main finding was that SUP rats displayed increased power levels of gamma (30-100 Hz) band oscillations during all phases of the sleep/wake cycle. These findings are discussed within the context of a general review of neuronal oscillations (e.g., delta, theta, and gamma bands) and synchronization across multiple brain regions in relation to sleep-dependent memory consolidation in the hippocampus.

  16. Inter-brain synchronization during social interaction.

    Directory of Open Access Journals (Sweden)

    Guillaume Dumas

    Full Text Available During social interaction, both participants are continuously active, each modifying their own actions in response to the continuously changing actions of the partner. This continuous mutual adaptation results in interactional synchrony to which both members contribute. Freely exchanging the role of imitator and model is a well-framed example of interactional synchrony resulting from a mutual behavioral negotiation. How the participants' brain activity underlies this process is currently a question that hyperscanning recordings allow us to explore. In particular, it remains largely unknown to what extent oscillatory synchronization could emerge between two brains during social interaction. To explore this issue, 18 participants paired as 9 dyads were recorded with dual-video and dual-EEG setups while they were engaged in spontaneous imitation of hand movements. We measured interactional synchrony and the turn-taking between model and imitator. We discovered by the use of nonlinear techniques that states of interactional synchrony correlate with the emergence of an interbrain synchronizing network in the alpha-mu band between the right centroparietal regions. These regions have been suggested to play a pivotal role in social interaction. Here, they acted symmetrically as key functional hubs in the interindividual brainweb. Additionally, neural synchronization became asymmetrical in the higher frequency bands possibly reflecting a top-down modulation of the roles of model and imitator in the ongoing interaction.

  17. A superdeformed band in {sup 142}Sm

    Energy Technology Data Exchange (ETDEWEB)

    Hackman, G; Mullins, J M; Kuehner, J A; Prevost, D; Waddington, J C [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics; Galindo-Uribarri, A; Janzen, V P; Radford, D C; Schmeing, N; Ward, D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1992-08-01

    Observation of {gamma}-{gamma} coincidences from the reaction {sup 124}Sn({sup 24}Mg,6n){sup 142}Sm at 145 MeV indicates the existence of a rotational band with dynamic moment of inertia J{sup (2)} similar to that of the superdeformed band in the isotone {sup 143}Eu. This result is consistent with calculations predicting superdeformed structures in N = 80, Z {approx} 64 nuclei. (author). 8 refs., 4 figs.

  18. Theory of frequency synchronization in a ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Radina, Tatiana V., E-mail: tatiana.radina@gmail.com

    2015-09-25

    The self-consistent problem of the frequency synchronization of counter-propagating waves in a ring laser is rigorously solved. An intrinsic nonlinear mechanism of the phase coupling between the waves is considered for the first time. This ineradicable coupling is provided by modulation of the population difference of the energy levels of the active medium atoms in the electromagnetic field of two counter-propagating waves. The theoretical limit for the range of phase locking between the counter-propagating waves is established. The general equation of phase synchronization is obtained from the solution of a self-consistent problem. The frequency-dependent boundaries of the synchronization band calculated in the framework of this approach show good agreement with experimental results published in the literature.

  19. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  20. Theta–gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts

    Science.gov (United States)

    Voloh, Benjamin; Valiante, Taufik A.; Everling, Stefan; Womelsdorf, Thilo

    2015-01-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5–10 Hz (theta) to 35–55 Hz (gamma) phase–amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta–gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC. PMID:26100868

  1. Synchronized brain activity during rehearsal and short-term memory disruption by irrelevant speech is affected by recall mode.

    Science.gov (United States)

    Kopp, Franziska; Schröger, Erich; Lipka, Sigrid

    2006-08-01

    EEG coherence as a measure of synchronization of brain activity was used to investigate effects of irrelevant speech. In a delayed serial recall paradigm 21 healthy participants retained verbal items over a 10-s delay with and without interfering irrelevant speech. Recall after the delay was varied in two modes (spoken vs. written). Behavioral data showed the classic irrelevant speech effect and a superiority of written over spoken recall mode. Coherence, however, was more sensitive to processing characteristics and showed interactions between the irrelevant speech effect and recall mode during the rehearsal delay in theta (4-7.5 Hz), alpha (8-12 Hz), beta (13-20 Hz), and gamma (35-47 Hz) frequency bands. For gamma, a rehearsal-related decrease of the duration of high coherence due to presentation of irrelevant speech was found in a left-lateralized fronto-central and centro-temporal network only in spoken but not in written recall. In theta, coherence at predominantly fronto-parietal electrode combinations was indicative for memory demands and varied with individual working memory capacity assessed by digit span. Alpha coherence revealed similar results and patterns as theta coherence. In beta, a left-hemispheric network showed longer high synchronizations due to irrelevant speech only in written recall mode. EEG results suggest that mode of recall is critical for processing already during the retention period of a delayed serial recall task. Moreover, the finding that different networks are engaged with different recall modes shows that the disrupting effect of irrelevant speech is not a unitary mechanism.

  2. Band mixing and electric monopole contribution in 2sub(. gamma. ). -->. 2sub(g) transition in /sup 168/Er

    Energy Technology Data Exchange (ETDEWEB)

    Sahota, H S; Hasiza, M L; Mittal, R [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-06-01

    The 2sub(..gamma..)..-->..2sub(g) transition in /sup 168/Er has been examined for the presence of electric monopole contribution. The experimental E0/E2 reduced transition probabilities and monopole matrix element have been found to be somewhat larger than the theoretical predictions of the Bohr-Mottelson model but the ratio rhosup(2)/X has been found to agree well with the theoretical value. The band mixing parameters have also been evaluated and found to be sizeable.

  3. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  4. Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Rojas Donald C

    2011-07-01

    Full Text Available Abstract Background Stimulus-related γ-band oscillations, which may be related to perceptual binding, are reduced in people with autism spectrum disorders (ASD. The purpose of this study was to examine auditory transient and steady-state γ-band findings in first-degree relatives of people with ASD to assess the potential familiality of these findings in ASD. Methods Magnetoencephalography (MEG recordings in 21 parents who had a child with an autism spectrum disorder (pASD and 20 healthy adult control subjects (HC were obtained. Gamma-band phase locking factor (PLF, and evoked and induced power to 32, 40 and 48 Hz amplitude-modulated sounds were measured for transient and steady-state responses. Participants were also tested on a number of behavioral and cognitive assessments related to the broad autism phenotype (BAP. Results Reliable group differences were seen primarily for steady-state responses. In the left hemisphere, pASD subjects exhibited lower phase-locked steady-state power in all three conditions. Total γ-band power, including the non-phase-locked component, was also reduced in the pASD group. In addition, pASD subjects had significantly lower PLF than the HC group. Correlations were seen between MEG measures and BAP measures. Conclusions The reduction in steady-state γ-band responses in the pASD group is consistent with previous results for children with ASD. Steady-state responses may be more sensitive than transient responses to phase-locking errors in ASD. Together with the lower PLF and phase-locked power in first-degree relatives, correlations between γ-band measures and behavioral measures relevant to the BAP highlight the potential of γ-band deficits as a potential new autism endophenotype.

  5. Synchronous atmospheric radiation correction of GF-2 satellite multispectral image

    Science.gov (United States)

    Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan

    2018-02-01

    GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.

  6. Prospective Identification of Oligoclonal/Abnormal Band of the Same Immunoglobulin Type as the Malignant Clone by Differential Location of M-Spike and Oligoclonal Band.

    Science.gov (United States)

    Vyas, Shikhar G; Singh, Gurmukh

    2017-10-01

    Serum and urine protein electrophoreses and immunofixation electrophoreses are the gold standards in diagnosing monoclonal gammopathy. Identification of oligoclonal bands in post-treatment patients has emerged as an important issue and recording the location of the malignant monoclonal peak may facilitate prospective identification of a new "monoclonal" spike as being distinct from the malignant peak. We recorded the locations of monoclonal spikes in descriptive terms, such as being in the cathodal region, mid-gamma region, anodal region, and beta region. The location of monoclonal or restricted heterogeneity bands in subsequent protein electrophoreses was compared to the location of the original malignant spike. In a patient with plasma cell myeloma, the original monoclonal IgG kappa band was located at the anodal end of gamma region. Post-treatment, an IgG kappa band was noted in mid-gamma region and the primary malignant clone was not detectable by serum protein immunofixation electrophoresis (SIFE) in post-treatment sample. Even though the κ/λ ratio remained abnormal, we were able to recognize stringent complete response by noting the different location of the new IgG kappa band as a benign regenerative process. Recording the location of the malignant monoclonal spike facilitates the identification of post-treatment oligoclonal bands, prospectively. Recognizing the regenerative, benign, bands in post-transplant patients facilitates the determination of stringent complete response despite an abnormal κ/λ ratio.

  7. Gamma-gamma directional correlations and coincidence studies in 154Gd

    International Nuclear Information System (INIS)

    Gupta, J.B.; Gupta, S.L.; Hamilton, J.H.; Ramayya, A.V.; Delhi Univ.

    1977-01-01

    The intensities, placements and E2/M1 mixing ratios of transitions in the decay of 154 Eu have been carefully studied to provide accurate data for microscopic calculations. Coincidence relationships in thhe decay of 154 Eu have been studied extensively with a multiparameter γ-γ coincidence system with two large volume Ge(Li) detectors. Spectra in coincidence with twenty energy gates were analyzed. Twenty-nine new coincidence relationships were established and confirmed most, but not all, of several levels previously assigned by energy fits only. From an analysis of coincidence spectra and singles spectra with a 18% efficiency Ge(Li) detector new information on the gamma-ray intensities were obtained. Precise values of the E2/M1 mixing ratios of transitions from the gamma- and beta-vibrational bands to the g.s. band have been determined from γ-γ directional correlation measurements with a NaI(Tl)-Ge(Li) detector coincidence system. Mixing ratios were obtained for a number of other transitions including those from KPI = 0 - and 2+ bands from direct and skipped cascade correlations. (orig.) [de

  8. Decay from the superdeformed bands in {sup 194}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R.G.; Khoo, T.L.; Carpenter, M.P. [and others

    1995-08-01

    Superdeformed bands in {sup 194}H g were studied using the early implementation of Gammasphere. The response functions for the Ge detectors were measured for the first time as part of this experiment. Experiments were performed with both a backed target (where the residue stopped in the Au backing) and a thin target (where the residue recoiled into vacuum). This will permit measurements of the decay times of the quasicontinuum {gamma}rays. The spectrum in coincidence with the yrast SD band in {sup 194}Hg reveals the same features as found in the quasicontinuum structure in {sup 192}Hg. These features include: statistical {gamma}rays feeding the SD band, a pronounced E2 peak from transitions feeding the SD band, a Ml/E2 bump at low energies that is associated with the last stages of feeding of the superdeformed band, and a quasicontinuous distribution from {gamma}rays linking SD and normal states, including a sizable clustering of strength around 1.7 MeV. The remarkable similarity of the spectra coincident with SD bands in {sup 192,194}Hg provides additional support for a statistical process for decay out of the SD states. This similarity contrasts with differences observed in the spectrum coincident with the SD band in the odd-even {sup 191}Hg, confirming the predictions about the role of pairing (in normal states) in influencing the shape of the decay-out spectrum.

  9. Determination of valence band parameters in ZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, D.; Noethe, A.; Reimann, K. (Duesseldorf Univ. (Germany, F.R.). Physikalisches Inst. - Lehrstuhl 2)

    1984-10-01

    The fine structure of the 2P exciton in ZnTe is studied by two-photon-absorption. The energy splitting into four states, caused by the envelope-hole coupling, allows the determination of the Luttinger parameters ..gamma../sub 2/ and ..gamma../sub 3/, which describe the complex valence band. ..gamma../sub 2/ = 0.8 and ..gamma../sub 3/ = 1.7 are obtained. These values are compared to results of other experiments mainly on 1S excitons.

  10. Automated and angular time-synchronized directional gamma-ray scintillation sensor

    International Nuclear Information System (INIS)

    Kronenberg, S.; Brucker, G.J.

    1998-01-01

    The authors' previous research resulted in directional sensors for gamma rays and X rays that have a 4π solid angle of acceptance and, at the same time, a high angular resolution that is limited only by their ability to measure small angles. Angular resolution of ∼1 s of arc was achieved. These sensors are capable of operating and accurately detecting high and very low intensity radiation patterns. Such a system can also be used to image broad area sources and their scattering patterns. The principle of operation and design of directional sensors used in this study was described elsewhere; however, for convenience, a part of that text is repeated here. It was shown analytically that the angular distribution of radiation incident on the sensor is proportional to the first derivative of the scan data, that is, of the events' count rate versus orientation of the detector. The previously published results were obtained with a annual operating system. The detector assembly was set at a specific angle, and a pulse rate count was made. This was repeated at numerous other angles of orientation, a time-consuming and labor-intensive process. Recently, the authors automated this system, which is based on the detection of scintillations. The detector, which consists of a stack of plates of Lucite, plastic scintillator, and lead foils, rotates by means of a motor in front of a stationary photomultiplier tube (PMT). One revolution per second was chosen for the motor. At time zero, a trigger indicates that a revolution has started. The angle of orientation of the detector in the laboratory system is proportional to the time during one revolution. The process repeats itself a desired number of times. The trigger signal initiates a scan of a multichannel scalar (MCS). The detector assembly is allowed to rotate in the radiation field, and the MCS scans are repeated in an accumulated mode of operation until enough events are collected for the location of the radiation source to be

  11. Frequency and function in the basal ganglia: the origins of beta and gamma band activity.

    Science.gov (United States)

    Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin

    2017-07-01

    movement, respectively, consistent with experimental local field potentials. This new model predicts that the pallido-striatum connection has a key role in the generation of beta band activity, and that the gamma band activity associated with motor task performance has its origins in the pallido-subthalamic feedback loop. The network's functionality as a selection mechanism also occurs as an emergent property, and closer fits to the data gave better selection properties. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the BG and therefore lays the foundation for an integrated approach to study BG pathologies such as Parkinson's disease in silico. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  12. Table of members of quasi-bands

    International Nuclear Information System (INIS)

    Sakai, Mitsuo.

    1984-04-01

    The probable members of the quasi-bands in even-even nuclei for Z between 6 and 100 are listed in this table. The terms quasi-bands have been introduced in the so-called spherical regions as the counter parts of the collective bands in the deformed regions. In the present compilation, the data for deformed nuclei are classified for convenience under the same titles, Quasi-Ground Band, Quasi-Beta Band and Quasi-Gamma Band, as are used for other nuclear regions. The present edition covers the literature through September, 1983. Fifteen newly discovered nuclides are included. The classification of energy level into quasi-bands is made on the basis of the systematic trend in the data over large groups of nuclei. (Kato, T.)

  13. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    Science.gov (United States)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  14. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  15. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    Science.gov (United States)

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music

    Science.gov (United States)

    Bhattacharya, Joydeep; Petsche, Hellmuth

    2001-07-01

    Multichannel electroencephalograph signals from two broad groups, 10 musicians and 10 nonmusicians, recorded in different states (in resting states or no task condition, with eyes opened and eyes closed, and with two musical tasks, listening to two different pieces of music) were studied. Degrees of phase synchrony in various frequency bands were assessed. No differences in the degree of synchronization in any frequency band were found between the two groups in resting conditions. Yet, while listening to music, significant increases of synchronization were found only in the γ-frequency range (>30 Hz) over large cortical areas for the group of musicians. This high degree of synchronization elicited by music in the group of musicians might be due to their ability to host long-term memory representations of music and mediate access to these stored representations.

  17. The making of analog module for gamma camera interface

    International Nuclear Information System (INIS)

    Yulinarsari, Leli; Rl, Tjutju; Susila, Atang; Sukandar

    2003-01-01

    The making of an analog module for gamma camera has been conducted. For computerization of planar gamma camera 37 PMT it has been developed interface hardware technology and software between the planar gamma camera with PC. With this interface gamma camera image information (Originally analog signal) was changed to digital single, therefore processes of data acquisition, image quality increase and data analysis as well as data base processing can be conducted with the help of computers, there are three gamma camera main signals, i.e. X, Y and Z . This analog module makes digitation of analog signal X and Y from the gamma camera that conveys position information coming from the gamma camera crystal. Analog conversion to digital was conducted by 2 converters ADC 12 bit with conversion time 800 ns each, conversion procedure for each coordinate X and Y was synchronized using suitable strobe signal Z for information acceptance

  18. Effect of caffeine on gamma-ray induced G2 arrest in well-synchronized Chinese hamster ovary cells in vitro

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Keng, P.C.

    1996-01-01

    G1-rich cells were separated from exponentially growing asynchronous cultured Chinese hamster ovary (CHO-K1) cells by centrifugal elutriation and a Coulter Counter. The G1-rich cells were incubated in medium that contained hydroxyurea (HU) to kill S phase cells and obtain the purest G1/S boundary cells possible. The HU-treated cells were washed, and were again incubated, in medium without HU, to allow these well-synchronized G1/S boundary cells to progress to S and G2/M phases. At various times after release from G1/S boundary, 4 Gy of gamma-ray and/or caffeine was administered to the cells. Eight hours after the removal of HU, cell-cycle analysis was performed with a flow cytometer. G2 arrest induced by gamma-rays was clearly shown when radiation was given earlier than 6.5 hours after HU removal. G2 arrest induced by radiation given 0.5-6.5 hours after HU removal was reduced by caffeine treatment given 6.0-6.5 hours after HU removal. Caffeine released radiation-induced G2 arrest when the radiation was given before the cultured cells entered G2/M phase and when caffeine was applied to the irradiated cells at the time when G1/S boundary cells not treated by radiation or with caffeine entered G2/M phase. Our method of centrifugal elutriation combined with incubation with HU was useful for isolating pure G1/S boundary cells from in vitro asynchronous cultures. (author)

  19. Effect of caffeine on gamma-ray induced G2 arrest in well-synchronized Chinese hamster ovary cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Keng, P.C.

    1996-11-01

    G1-rich cells were separated from exponentially growing asynchronous cultured Chinese hamster ovary (CHO-K1) cells by centrifugal elutriation and a Coulter Counter. The G1-rich cells were incubated in medium that contained hydroxyurea (HU) to kill S phase cells and obtain the purest G1/S boundary cells possible. The HU-treated cells were washed, and were again incubated, in medium without HU, to allow these well-synchronized G1/S boundary cells to progress to S and G2/M phases. At various times after release from G1/S boundary, 4 Gy of gamma-ray and/or caffeine was administered to the cells. Eight hours after the removal of HU, cell-cycle analysis was performed with a flow cytometer. G2 arrest induced by gamma-rays was clearly shown when radiation was given earlier than 6.5 hours after HU removal. G2 arrest induced by radiation given 0.5-6.5 hours after HU removal was reduced by caffeine treatment given 6.0-6.5 hours after HU removal. Caffeine released radiation-induced G2 arrest when the radiation was given before the cultured cells entered G2/M phase and when caffeine was applied to the irradiated cells at the time when G1/S boundary cells not treated by radiation or with caffeine entered G2/M phase. Our method of centrifugal elutriation combined with incubation with HU was useful for isolating pure G1/S boundary cells from in vitro asynchronous cultures. (author)

  20. Induced Gamma-Band Activity and Fixational Eye Movements are Differentially Influenced by Low-and High-Level Factors in a Visual Object Classification Task

    Directory of Open Access Journals (Sweden)

    J Martinovic

    2011-04-01

    Full Text Available Until recently induced high frequency oscillatory activity (gamma-band activity; >30 Hz was considered a neural marker of cortical object representation. However, Yuval-Greenberg et al (2008; Neuron demonstrated that induced gamma-band activity (GBA in the elecetroencephalogram (EEG is susceptible to artifacts caused by miniature eye movements, which account for the major part of the signal in the crucial time window of 200-400 ms after stimulus onset. Is there an underlying cortical-induced gamma-band response that is obscured by ocular artifacts but can still be recorded with EEG? Furthermore, if object-specific modulations of induced GBA in previous studies were caused by ocular artifacts, should we instead study fixational eye movements as a response that can reflect higher-level representational processes in vision? In order to investigate this, we conducted an eye tracking experiment and an EEG experiment using the same design. Participants were asked to classify line drawings of objects or non-objects. To introduce low-level differences, their contours were defined along different directions in cardinal colour space: 1 S-cone-isolating (S, or 2 intermediate isoluminant (S and L-M, or 3 a full-colour stimulus, containing an additional achromatic component (S; L-M; L+M+S. In both experiments, behavioural performance was optimal for full-colour stimuli. In the eye tracking experiment, fixational eye movement rates 200-400 ms after stimulus onset depended on low-level factors, with no difference between objects and non-objects. In the EEG experiment, miniature eye movements were identified and removed using the saccadic filter approach. The artifact-free induced GBA exhibited a lateralised distribution, with enhancements at left and right posterior sites. Activity was higher for full-colour objects on the left, with the opposite effect observed on the right. We conclude that induced GBA can be observed in the EEG. While it showed high

  1. Octupole correlations in neutron-rich {sup 143,145}Ba and a type of superdeformed band in {sup 145}Ba

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.J.; Wang, M.G.; Long, G.L.; Zhu, L.Y.; Gan, C.Y.; Yang, L.M.; Sakhaee, M.; Li, M.; Deng, J.K. [Physics Department, Tsinghua University, Beijing 100084, Peoples Republic of (China); Zhu, S.J.; Hamilton, J.H.; Ramayya, A.V.; Jones, E.F.; Hwang, J.K.; Zhang, X.Q.; Gore, P.M.; Peker, L.K.; Drafta, G.; Babu, B.R.; Deng, J.K.; Ginter, T.N.; Beyer, C.J.; Kormicki, J.; Ter-Akopian, G.M.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville, Tennessee 37235 (United States); Zhu, S.J.; Ter-Akopian, G.M.; Daniel, A.V. [Joint Institute for Heavy Ion Research, Oak Ridge, Tennessee 37831 (United States); Ma, W.C. [Physics Department, Mississippi State University, Mississippi 39762 (United States); Cole, J.D.; Aryaeinejad, R.; Drigert, M.W. [Idaho National Engineering Laboratory, Idaho Falls, Idaho 83415 (United States); Rasmussen, J.O.; Asztalos, S.; Lee, I.Y.; Macchiavelli, A.O.; Chu, S.Y.; Gregorich, K.E.; Mohar, M.F. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russia); Donangelo, R. [Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RG (Brazil); Stoyer, M.A.; Lougheed, R.W.; Moody, K.J.; Wild, J.F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Prussin, S.G. [Nuclear Engineering Department, University of California at Berkeley, Berkeley, California 94720 (United States); Kliman, J. [Institute of Physics, SASc, Dubravskacesta 9, 84228 Bratislava (Slovakia); Griffin, H.C. [University of Michigan, Ann Arbor, Michigan 48104 (United States)

    1999-11-01

    High spin states in neutron-rich odd-{ital Z} {sup 143,145}Ba nuclei have been investigated from the study of prompt {gamma} rays in the spontaneous fission of {sup 252}Cf by using {gamma}-{gamma}- and {gamma}-{gamma}-{gamma}- coincidence techniques. Alternating parity bands are identified for the first time in {sup 145}Ba and extended in {sup 143}Ba. A new side band, with equal, constant dynamic, and kinetic moments of inertia equal to the rigid body value, as found in superdeformed bands, is discovered in {sup 145}Ba. Enhanced E1 transitions between the negative- and positive-parity bands in these nuclei give evidence for strong octupole deformation in {sup 143}Ba and in {sup 145}Ba. These collective bands show competition and coexistence between symmetric and asymmetric shapes in {sup 145}Ba. Evidence is found for crossing M1 and E1 transitions between the s=+i and s={minus}i doublets in {sup 143}Ba. {copyright} {ital 1999} {ital The American Physical Society}

  2. When long-range zero-lag synchronization is feasible in cortical networks

    Directory of Open Access Journals (Sweden)

    Atthaphon eViriyopase

    2012-07-01

    Full Text Available Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the gamma-band with frequencies in the range of 40-80 Hz. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, e.g., for neuronal communication in attention, memory and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization occurs with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions.We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo-Strogatz neurons and type II Hodgkin-Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin-Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.

  3. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    Science.gov (United States)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  4. Superdeformed bands in sub 64 sup 147 Gd sub 83 , a possible test of the existence of octupole correlations in superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, K.; Balouka, D.; Beck, F.A.; Byrski, T.; Curien, D.; Duchene, G.; Gehringer, C.; Haas, B.; Merdinger, J.C.; Romain, P.; Santos, D.; Styczen, J.; Vivien, J.P.; Dudek, J.; Szymanski, Z.; Werner, T. (Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires)

    1990-12-24

    Two discrete superdeformed bands (SD) have been identified in the nucleus {sup 147}Gd. The transitions energies of the SD yrast band lie halfway between the {gamma}-ray energies of the yrast SD band in {sup 146}Gd while the transition energies of the excited band lie half way between the transition energies of the yrast SD band in {sup 148}Gd. These two bands are shown to exhibit the presence of the pseudo SU(3) symmetry and also indicate the possible existence of octupole correlations at large elongations and high spins. (orig.).

  5. Experience drives synchronization

    DEFF Research Database (Denmark)

    Pallesen, Karen Johanne; Bailey, Christopher J; Brattico, Elvira

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical...... and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength...

  6. Valence band photoemission studies of clean metals

    International Nuclear Information System (INIS)

    Wehner, P.S.

    1978-04-01

    The application of Angle-Resolved Photoelectron Spectroscopy (ARPES) to crystalline solids and the utilization of such studies to illuminate several questions concerning the detailed electronic structure of such materials, are discussed. Specifically, by construction of a Direct Transition (DT) model and the utilization of energy-dependent angle-resolved normal photoemission in the photon energy range 32 eV < or = hν < or = 200 eV, the bulk band structure of copper is experimentally mapped out along three different directions in the Brillouin Zone; GAMMA to K, GAMMA to L, and GAMMA to X. In addition, various effects which influence the obtainable resolution in vector k-space, namely, thermal disorder, momentum broadening, and band mixing, are discussed and are shown to place severe limitations on the applicability of the DT model. Finally, a model for Angle-Resolved X-ray Photoelectron Spectroscopy (ARXPS) based on the symmetry of the initial-state wavefunctions is presented and compared to experimental results obtained from copper single crystals

  7. Gamma decay and band structures in 46Ti

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Radford, D.C.; Poletti, A.R.

    1978-03-01

    The states of 46 Ti have been studied using the 43 Ca(α,nγ) reaction. The level and decay scheme of 46 Ti was deduced from γ-γ coincidence, γ-ray energy and intensity measurements. Spins are suggested on the basis of the γ-ray angular distribution, supported by relative excitation functions. The ground state band has been extended to spin 10 + , and about 20 new states are observed. Some of these can be grouped into rotational-like bands based on the 3 - state at 3.059 MeV and other excited states

  8. Shuttle bit rate synchronizer. [signal to noise ratios and error analysis

    Science.gov (United States)

    Huey, D. C.; Fultz, G. L.

    1974-01-01

    A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.

  9. Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems

    International Nuclear Information System (INIS)

    Chen, J.-H.; Chen, H.-K.; Lin, Y.-K.

    2009-01-01

    This study demonstrates that synchronization and anti-synchronization can coexist in Chen-Lee chaotic systems by direct linear coupling. Based on Lyapunov's direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen-Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.

  10. Programmer for automatic gamma spectrometry; Ordonnateur de sequence pour spectrometrie gamma automatique

    Energy Technology Data Exchange (ETDEWEB)

    Romanetti, R [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-04-01

    With this apparatus, which is constructed of logical integrated circuits, it is possible both to synchronize an automatic gamma spectrometry assembly and to record the spectra on punched cards. An IBM terminal will make it possible with the help of analysis by the least squares method and by a direct dialogue with an IBM 360 computer to obtain analytical results almost instantaneously. (author) [French] Cet appareil, realise en circuits integres logiques, permet d'une part de synchroniser un ensemble automatique de spectrometrie gamma et d'autre part d'enregistrer les spectres sur cartes perforees. Un terminal IBM permettra, a l'aide d'un programme d'analyse par la methode des moindres carres et par un dialogue direct avec un ordinateur IBM 360, de disposer presque intanstanement des resultats des analyses. (auteur)

  11. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.

    Science.gov (United States)

    Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.

  12. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson's disease.

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S Elizabeth; Worth, Robert M; Witt, Thomas; Rubchinsky, Leonid L

    2015-09-01

    Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (non-invasively obtained) time course of the synchrony strength between EEG electrodes and the (invasively obtained) time course of the synchrony between spiking units and LFP in STN to be weakly, but significantly, correlated with each other. This correlation is largest for the bilateral motor EEG synchronization, followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson's disease: not only may synchronization be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially a more global functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way, causing correlations between changes in synchrony strength in the two regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    International Nuclear Information System (INIS)

    Bellato, M; Isocrate, R; Rampazzo, G; Bazzacco, D; Bortolato, D; Triossi, A; Chavas, J; Mengoni, D; Recchia, F

    2013-01-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors

  14. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    Science.gov (United States)

    Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.

    2013-07-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.

  15. Gamma oscillations: precise temporal coordination without a metronome.

    Science.gov (United States)

    Nikolić, Danko; Fries, Pascal; Singer, Wolf

    2013-02-01

    Gamma oscillations in the brain should not be conceptualized as a sine wave with constant oscillation frequency. Rather, these oscillations serve to concentrate neuronal discharges to particular phases of the oscillation cycle and thereby provide the substrate for various, functionally relevant synchronization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liang-Yu; Chen, Lien-Wen, E-mail: chenlw@mail.ncku.edu.t [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-02-02

    This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the {Gamma}-X and {Gamma}-X' directions are also presented. The calculated results are compared with the experimental results.

  17. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance

    Directory of Open Access Journals (Sweden)

    Marieke Karlijn Van Vugt

    2014-09-01

    Full Text Available Working memory (WM is central to human cognition as it allows information to be kept online over brief periods of time and facilitates its usage in cognitive operations (Luck & Vogel, 2013. How this information maintenance actually is implemented is still a matter of debate. Several independent theories of WM, derived, respectively, from behavioral studies and neural considerations, advance the idea that items in WM decay over time and must be periodically reactivated. In this proposal, we show how recent data from intracranial EEG and attention research naturally leads to a simple model of such reactivation in the case of sensory memories. Specifically, in our model the amplitude of high-frequency activity (>50 Hz, in the gamma-band underlies the representation of items in high-level visual areas. This activity decreases to noise-levels within 500 ms, unless it is reactivated. We propose that top-down attention, which targets multiple sensory items in a cyclical or rhythmic fashion at around 6 to 10 Hz, reactivates these decaying gamma-band representations. Therefore, working memory capacity is essentially the number of representations that can simultaneously be kept active by a rhythmically sampling attentional spotlight given the known decay rate. Since attention samples at 6-10 Hz, the predicted WM capacity is 3-5 items, in agreement with empirical findings.

  18. For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance.

    Science.gov (United States)

    Van Vugt, Marieke Karlijn; Chakravarthi, Ramakrishna; Lachaux, Jean-Philippe

    2014-01-01

    Working memory (WM) is central to human cognition as it allows information to be kept online over brief periods of time and facilitates its usage in cognitive operations (Luck and Vogel, 2013). How this information maintenance actually is implemented is still a matter of debate. Several independent theories of WM, derived, respectively, from behavioral studies and neural considerations, advance the idea that items in WM decay over time and must be periodically reactivated. In this proposal, we show how recent data from intracranial EEG and attention research naturally leads to a simple model of such reactivation in the case of sensory memories. Specifically, in our model the amplitude of high-frequency activity (>50 Hz, in the gamma-band) underlies the representation of items in high-level visual areas. This activity decreases to noise-levels within 500 ms, unless it is reactivated. We propose that top-down attention, which targets multiple sensory items in a cyclical or rhythmic fashion at around 6-10 Hz, reactivates these decaying gamma-band representations. Therefore, working memory capacity is essentially the number of representations that can simultaneously be kept active by a rhythmically sampling attentional spotlight given the known decay rate. Since attention samples at 6-10 Hz, the predicted WM capacity is 3-5 items, in agreement with empirical findings.

  19. Combined effect of solvents and gamma irradiation on the infrared absorption spectra of polyethylene terephthalate

    International Nuclear Information System (INIS)

    Rabie, S.M.; ElBially, A.; Elshourbaguie, S.

    1991-01-01

    The combined effect of solvents and gamma irradiation on the intensities of infrared absorption bands of polyethylene terephthalate, particularly the bands sensitive to conformational changes, were studied. The results revealed that solvent treatment of PET results in significant changes in the intensities of its infrared absorption bands and the exposure of PET to gamma radiation in the presence of solvents helps in the appearance of the two bands at 1550 and 1630 cm . Also, the combined effect of solvents and gamma irradiation on the intensities of the absorption bands is greater than the effect of each agent alone. The extent of the induced changes depends on the nature of solvent and the applied dosage. Further more, for any given solvent or dosage, the rate of change of the intensities of the trans band is not equal to that of the gauche bands.3 fig

  20. Neural networks engaged in short-term memory rehearsal are disrupted by irrelevant speech in human subjects.

    Science.gov (United States)

    Kopp, Franziska; Schröger, Erich; Lipka, Sigrid

    2004-01-02

    Rehearsal mechanisms in human short-term memory are increasingly understood in the light of both behavioural and neuroanatomical findings. However, little is known about the cooperation of participating brain structures and how such cooperations are affected when memory performance is disrupted. In this paper we use EEG coherence as a measure of synchronization to investigate rehearsal processes and their disruption by irrelevant speech in a delayed serial recall paradigm. Fronto-central and fronto-parietal theta (4-7.5 Hz), beta (13-20 Hz), and gamma (35-47 Hz) synchronizations are shown to be involved in our short-term memory task. Moreover, the impairment in serial recall due to irrelevant speech was preceded by a reduction of gamma band coherence. Results suggest that the irrelevant speech effect has its neural basis in the disruption of left-lateralized fronto-central networks. This stresses the importance of gamma band activity for short-term memory operations.

  1. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    Science.gov (United States)

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  2. What's that sound? Matches with auditory long-term memory induce gamma activity in human EEG.

    Science.gov (United States)

    Lenz, Daniel; Schadow, Jeanette; Thaerig, Stefanie; Busch, Niko A; Herrmann, Christoph S

    2007-04-01

    In recent years the cognitive functions of human gamma-band activity (30-100 Hz) advanced continuously into scientific focus. Not only bottom-up driven influences on 40 Hz activity have been observed, but also top-down processes seem to modulate responses in this frequency band. Among the various functions that have been related to gamma activity a pivotal role has been assigned to memory processes. Visual experiments suggested that gamma activity is involved in matching visual input to memory representations. Based on these findings we hypothesized that such memory related modulations of gamma activity exist in the auditory modality, as well. Thus, we chose environmental sounds for which subjects already had a long-term memory (LTM) representation and compared them to unknown, but physically similar sounds. 21 subjects had to classify sounds as 'recognized' or 'unrecognized', while EEG was recorded. Our data show significantly stronger activity in the induced gamma-band for recognized sounds in the time window between 300 and 500 ms after stimulus onset with a central topography. The results suggest that induced gamma-band activity reflects the matches between sounds and their representations in auditory LTM.

  3. Impact of Gamma Irradiation on The Metabolism of Some Seed Borne Fungi

    International Nuclear Information System (INIS)

    Afifi, M.A.; Ahmad, S.M.; Moussa, H.R.; Ismael, M.A.

    2014-01-01

    The influence of gamma irradiation on the metabolism of some seed born fungi isolated from maize and wheat grains, collected from different localities of El-Gharbia Governorate, Egypt, was the target of this study. The most common fungi isolated are Aspergillus terricola and Aspergillus fumigatus. Mostly all doses of gamma irradiation applied decreased carbohydrates and total lipids. Meanwhile, certain doses increased total proteins which suggested that protein might play a part in protection against the harmful effect of radiation. Application of gamma irradiation treatment inhibited α-amylase activities but increased cellulase, protease and organic acids production by Aspergillus terricola and Aspergillus fumigatus. The present data showed a pronounced reduction in total free amino acids upon increasing the gamma radiation doses. The results showed that 69 protein bands of molecular weights from 11.5 to 178 kDa were observed. Aspergillus fumigatus contains 31 protein bands from 15 to 120 kDa and Aspergillus terricola contains 27 protein bands from 12 to 91 kDa. According to the results from SDS-PAGE, 5 common bands could be seen between A. fumigatus and A. terricola while SDS-PAGE electrophoresis demonstrated emphasis of 2 new bands under influence of gamma irradiation with molecular weights of 60.4 kDa identified as phytochelatin synthase in Aspergillus fumigatus treated with 1 kGy and 66.7 kDa as protein from chaperone family in Aspergillus terricola treated with 1 kGy. It could be concluded that the major advantages of gamma irradiation treatment to maize and wheat seeds before storage can reduce the pathogenic fungi and preserve the quality and quantity of processed d seeds

  4. Adaptive response of yeast cultures (Saccharomyces Cerevisiae) exposed to low dose of gamma radiation

    International Nuclear Information System (INIS)

    Kulcsar, Agnes; Savu, D.; Petcu, I.; Gherasim, Raluca

    2003-01-01

    The present study was planned as follows: (i) setting up of standard experimental conditions for investigation of radio-induced adaptive response in lower Eucaryotes; (ii) developing of procedures for synchronizing Saccharomyces cerevisiae X 310 D cell cultures and cell cycle stages monitoring; (iii) investigation of gamma (Co-60) and UV irradiation effects on the viability of synchronized and non-synchronized cell cultures of Saccharomyces cerevisiae; the effects were correlated with the cell density and cell cycle stage; (iv) study of the adaptive response induced by irradiation and setting up of the experimental conditions for which this response is optimized. The irradiations were performed by using a Co-60 with doses of 10 2 - 10 4 Gy and dose rates ranging from 2.2 x 10 2 Gy/h to 8.7 x 10 3 Gy/h. The study of radioinduced adaptive response was performed by applying a pre-irradiation treatment of 100-500 Gy, followed by challenge doses of 2-4 kGy delivered at different time intervals, ranging from 1 h to 4 h. The survival rate of synchronized and non-synchronized cultures as a function of exposure dose shows an exponential decay shape. No difference in viability of the cells occurred between synchronized and non-synchronized cultures. The pre-irradiation of cells with 100 and 200 Gy were most efficient to induce an adaptive response for the yeast cells. In this stage of work we proved the occurrence of the adaptive response in the case of synchronized yeast cultures exposed to gamma radiation. The results will be used in the future to investigate the dependence of this response on the cell cycle and the possibility to induce such a response by a low level electromagnetic field. (authors)

  5. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  6. The use of combined three-dimensional electron backscatter diffraction and energy dispersive X-ray analysis to assess the characteristics of the gamma/gamma-prime microstructure in alloy 720Li Trade-Mark-Sign

    Energy Technology Data Exchange (ETDEWEB)

    Child, D.J., E-mail: d.child@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); West, G.D., E-mail: g.west@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Thomson, R.C., E-mail: r.c.thomson@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2012-03-15

    Multiple three-dimensional reconstructions of a {gamma}/{gamma} Prime phase structure in Alloy 720Li have been carried out by employing a serial milling technique with simultaneous electron backscatter diffraction (EBSD) and energy dispersive x-ray (EDX) analysis data collection. Combining EBSD data with EDX is critical in obtaining maps to distinguish between the chemically differing, but crystallographically similar {gamma} and {gamma} Prime phases present in the alloy studied. EDX is shown to allow the differentiation of {gamma} and {gamma} Prime phases, with EBSD providing increased grain shape accuracy. The combination of data sources also allowed identification of coherent {gamma}/{gamma} Prime phase interfaces that would not be identified using solely EBSD or EDX. The study identifies a region of grain banding within the alloy, which provides the basis for a three-dimensional comparison and discussion of {gamma} Prime phase size between coarse and fine grain regions, whilst also identifying coherent {gamma} Prime phase interfaces, possible only using both EDX and EBSD systems simultaneously. The majority of the {gamma} Prime phase lies in the range of 1-10 {mu}m in non-banded regions, with a detectable particle size limit of 500 nm being established. The validity of the reconstruction has been demonstrated using an electron interaction volumes model, and an assessment of the validity of EBSD and EDX data sources is discussed showing {gamma} Prime phase connectivity in all dimensions. -- Highlights: Black-Right-Pointing-Pointer Use of combined EBSD/EDX for the 3D analysis of gamma prime in a Ni-based alloy. Black-Right-Pointing-Pointer Assessment of 3D reconstruction accuracy using CASINO. Black-Right-Pointing-Pointer Observation and validation of gamma prime phase connectivity throughout the alloy. Black-Right-Pointing-Pointer Identification and characterisation of grain banding in gamma prime. Black-Right-Pointing-Pointer Distinction of phase coherency

  7. Gamma power is phase-locked to posterior alpha activity.

    Directory of Open Access Journals (Sweden)

    Daria Osipova

    Full Text Available Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30-70 Hz is phase-locked to alpha oscillations (8-13 Hz in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs reflects a window of excitability.

  8. Study of the relation of the band at 3595 CM-1 in FTIR spectrum of natural quartz with color development by gamma irradiation

    International Nuclear Information System (INIS)

    Silva, Helena Cristina M.; Lameiras, Fernando S.

    2015-01-01

    Brazil is a major producer of gemological quartz as smoky quartz, morion, citrine, amethyst, and prasiolite. Due to its abundance, hardness, and color varieties, quartz is used in jewelry industry. However, very often quartz is found in nature colorless or with faint colors, which requires exposure to ionizing radiation for color enhancement or development. Not all quartz can develop color. Chromophore chemical elements must be present in suitable proportions for color development after irradiation and heating. Infrared spectrometry is used to separate the quartz that can develop colors from the ones that cannot. Bands in infrared spectrum can indicate the presence and relative contents of chromophore chemical elements, such as aluminum, iron, lithium, sodium, and hydrogen. Some samples of colorless quartz show a band at 3595 cm -1 whose origin is yet not assigned. Samples of quartz with a prominent band at 3595 cm -1 were exposed to gamma rays and heating to observe its behavior. From the statistical point of view, no modification was observed on the position and amplitude of this band after irradiation up 75 kGy and heating to 300-330 deg C. This study should be completed with samples of different origins and higher doses, as well as chemical analyses of trace chemical elements in the samples. (author)

  9. Study of band structure in 78,80Sr using Triaxial Projected Shell Model

    International Nuclear Information System (INIS)

    Behera, N.; Naik, Z.; Bhat, G.H.; Sheikh, J.A.; Palit, R.; Sun, Y.

    2017-01-01

    The purpose of present work is to carry out a systematic study of the yrast-band and gamma-band structure for the even-even 78-80 Sr nuclei using Triaxial Projected Shell Model (TPSM) approach. These nuclei were chosen because 78 Sr has well developed side band(unassigned configuration) and 80 Sr has well developed band observed experimentally

  10. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  11. Effects of twenty-minute 3G mobile phone irradiation on event related potential components and early gamma synchronization in auditory oddball paradigm.

    Science.gov (United States)

    Stefanics, G; Thuróczy, G; Kellényi, L; Hernádi, I

    2008-11-19

    We investigated the potential effects of 20 min irradiation from a new generation Universal Mobile Telecommunication System (UMTS) 3G mobile phone on human event related potentials (ERPs) in an auditory oddball paradigm. In a double-blind task design, subjects were exposed to either genuine or sham irradiation in two separate sessions. Before and after irradiation subjects were presented with a random series of 50 ms tone burst (frequent standards: 1 kHz, P=0.8, rare deviants: 1.5 kHz, P=0.2) at a mean repetition rate of 1500 ms while electroencephalogram (EEG) was recorded. The subjects' task was to silently count the appearance of targets. The amplitude and latency of the N100, N200, P200 and P300 components for targets and standards were analyzed in 29 subjects. We found no significant effects of electromagnetic field (EMF) irradiation on the amplitude and latency of the above ERP components. In order to study possible effects of EMF on attentional processes, we applied a wavelet-based time-frequency method to analyze the early gamma component of brain responses to auditory stimuli. We found that the early evoked gamma activity was insensitive to UMTS RF exposition. Our results support the notion, that a single 20 min irradiation from new generation 3G mobile phones does not induce measurable changes in latency or amplitude of ERP components or in oscillatory gamma-band activity in an auditory oddball paradigm.

  12. Hydrostatic pressure effects on the {gamma}-X conduction band mixing and the binding energy of a donor impurity in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62210, Cuernavaca (Mexico)

    2007-06-15

    Mixing between {gamma} and X valleys of the conduction band in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated taken into account the effect of applied hydrostatic pressure. This effect is introduced via the pressure-dependent values of the corresponding energy gaps and the main band parameters. The mixing is considered along the lines of a phenomenological model. Variation of the confined ground state in the well as a function of the pressure is reported. The dependencies of the variationally calculated binding energy of a donor impurity with the hydrostatic pressure and well width are also presented. It is shown that the inclusion of the {gamma}-X mixing explains the non-linear behavior in the photoluminescence peak of confined exciton states that has been observed for pressures above 20 kbar. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Reduced beta band connectivity during number estimation in autism

    Directory of Open Access Journals (Sweden)

    Katrin A. Bangel

    2014-01-01

    Full Text Available Recent evidence suggests that disruption of integrative processes in sensation and perception may play a critical role in cognitive and behavioural atypicalities characteristic of ASD. In line with this, ASD is associated with altered structural and functional brain connectivity and atypical patterns of inter-regional communication which have been proposed to contribute to cognitive difficulties prevalent in this group. The present MEG study used atlas-guided source space analysis of inter-regional phase synchronization in ASD participants, as well as matched typically developing controls, during a dot number estimation task. This task included stimuli with globally integrated forms (animal shapes as well as randomly-shaped stimuli which lacked a coherent global pattern. Early task-dependent increases in inter-regional phase synchrony in theta, alpha and beta frequency bands were observed. Reduced long-range beta-band phase synchronization was found in participants with ASD at 70–145 ms during presentation of globally coherent dot patterns. This early reduction in task-dependent inter-regional connectivity encompassed numerous areas including occipital, parietal, temporal, and frontal lobe regions. These results provide the first evidence for inter-regional phase synchronization during numerosity estimation, as well as its alteration in ASD, and suggest that problems with communication among brain areas may contribute to difficulties with integrative processes relevant to extraction of meaningful ‘Gestalt’ features in this population.

  14. Synchronization of metronomes

    Science.gov (United States)

    Pantaleone, James

    2002-10-01

    Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.

  15. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    Science.gov (United States)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  16. Gamma power and cognition in patients with schizophrenia and their first-degree relatives.

    Science.gov (United States)

    Díez, Álvaro; Suazo, Vanessa; Casado, Pilar; Martín-Loeches, Manuel; Molina, Vicente

    2014-01-01

    Gamma oscillations are essential for functional neural assembly formation underlying higher cerebral functions. Previous studies concerning gamma band power in schizophrenia have yielded diverse results. In this study, we assessed gamma band power in minimally treated patients with schizophrenia, their first-degree relatives and healthy controls during an oddball paradigm performance, as well as the relation between gamma power and cognitive performance. We found a higher gamma power in the patient group than in the healthy controls at the P3, P4, Fz, Pz and T5 sites. Compared with their relatives, gamma power in the patients was only marginally higher over P3 and P4. We found a nearly significant inverse association between gamma power at F4 and Tower of London performance in the patients, as well as a significant inverse association between gamma power at T5 and verbal memory and working memory scores in the relatives. These results support higher total gamma power in association with schizophrenia and its inverse association with cognitive performance in patients and their first-degree relatives.

  17. Synchronization of femtosecond laser pulses and RF signal by using a Sagnac loop Mach-Zehnder interferometer

    International Nuclear Information System (INIS)

    Dai Hui; Hajima, Ryoichi

    2008-11-01

    For future advanced energy recovery linac to generate femtosecond X-ray pulses, precise synchronization between sub-systems is highly desired. Typical synchronization methods based on direct photo detection are limited by detector nonlinearities, which lead to amplitude-to-phase conversion and introduce excess timing jitter. In this paper, we experimentally demonstrate an optical-electronic mixed phase lock loop to synchronize the RF signal and laser pulses. In this synchronism setup, a Sagnac-loop Mach-Zehnder interferometer has been used to suppress the excess noise of direct photo detection. This scheme transfers the timing information into a intensity imbalance between the two output beams of the interferometer. As experimental demonstration, the single side-band phase noise of RF signal from the VCO is locked to the mode-locked Ti:Sapphire laser in the spectrum covering the range of 10 kHz to 1 MHz. This synchronization scheme greatly reduces the phase noise and timing jitter of the RF signal. (author)

  18. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  19. AGILE: A gamma-ray mission

    International Nuclear Information System (INIS)

    Tavani, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Vercellone, S.; Barbiellini, G.; Budini, G.; Longo, F.; Prest, M.; Vallazza, E.; Cocco, V.; Morselli, A.; Picozza, P.; Pittori, C.; Costa, E.; Feroci, M.; Lapshov, I.; Morelli, E.; Rubini, A.; Soffitta, P.

    2000-01-01

    AGILE is an innovative, cost-effective gamma-ray mission selected by the Italian Space Agency for a Program of Small Scientific Missions. The AGILE gamma-ray imaging detector (GRID, made of a Silicon tracker and CsI Mini-Calorimeter) is designed to detect and image photons in the 30 MeV-50 GeV energy band with good sensitivity and very large field of view (FOV ∼3 sr). The X-ray detector, Super-AGILE, sensitive in the 10-40 keV band and integrated on top of the GRID gamma-ray tracker will provide imaging (1-3 arcmin) and moderate spectroscopy. For selected sky areas, AGILE might achieve a flux sensitivity (above 100 MeV) better than 5x10 -8 ph cm 2 s -1 at the completion of its scientific program. AGILE will operate as an Observatory open to the international community and is planned to be operational during the year 2002 for a nominal 2-year mission. It will be an ideal 'bridge' between EGRET and GLAST, and the only mission entirely dedicated to high-energy astrophysics above 30 MeV during that period

  20. Period concatenation underlies interactions between gamma and beta rhythms in neocortex

    Directory of Open Access Journals (Sweden)

    Anita K Roopun

    2008-04-01

    Full Text Available The neocortex generates rhythmic electrical activity over a frequency range covering many decades. Specific cognitive and motor states are associated with oscillations in discrete frequency bands within this range, but it is not known whether interactions and transitions between distinct frequencies are of functional importance. When coexpressed rhythms have frequencies that differ by a factor of two or more interactions can be seen in terms of phase synchronization. Larger frequency differences can result in interactions in the form of nesting of faster frequencies within slower ones by a process of amplitude modulation. It is not known how coexpressed rhythms, whose frequencies differ by less than a factor of two may interact. Here we show that two frequencies (gamma – 40 Hz and beta2 – 25 Hz, coexpressed in superficial and deep cortical laminae with low temporal interaction, can combine to generate a third frequency (beta1 – 15 Hz showing strong temporal interaction. The process occurs via period concatenation, with basic rhythm-generating microcircuits underlying gamma and beta2 rhythms forming the building blocks of the beta1 rhythm by a process of addition. The mean ratio of adjacent frequency components was a constant – approximately the golden mean – which served to both minimize temporal interactions, and permit multiple transitions, between frequencies. The resulting temporal landscape may provide a framework for multiplexing – parallel information processing on multiple temporal scales.

  1. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    The problem of asynchronous direct-sequence code division multiple access (DS-CDMA) detection over the ultra-wideband (UWB) multipath channel is considered. A joint synchronization, channel-estimation and multi-user detection scheme based on the adaptive linear minimum mean-square error (LMMSE...

  2. Study of the relation of the band at 3595 CM{sup -1} in FTIR spectrum of natural quartz with color development by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Helena Cristina M.; Lameiras, Fernando S., E-mail: helenacrisms@gmail.com, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Brazil is a major producer of gemological quartz as smoky quartz, morion, citrine, amethyst, and prasiolite. Due to its abundance, hardness, and color varieties, quartz is used in jewelry industry. However, very often quartz is found in nature colorless or with faint colors, which requires exposure to ionizing radiation for color enhancement or development. Not all quartz can develop color. Chromophore chemical elements must be present in suitable proportions for color development after irradiation and heating. Infrared spectrometry is used to separate the quartz that can develop colors from the ones that cannot. Bands in infrared spectrum can indicate the presence and relative contents of chromophore chemical elements, such as aluminum, iron, lithium, sodium, and hydrogen. Some samples of colorless quartz show a band at 3595 cm{sup -1} whose origin is yet not assigned. Samples of quartz with a prominent band at 3595 cm{sup -1} were exposed to gamma rays and heating to observe its behavior. From the statistical point of view, no modification was observed on the position and amplitude of this band after irradiation up 75 kGy and heating to 300-330 deg C. This study should be completed with samples of different origins and higher doses, as well as chemical analyses of trace chemical elements in the samples. (author)

  3. PET System Synchronization and Timing Resolution Using High-Speed Data Links

    OpenAIRE

    Aliaga Varea, Ramón José; Monzó Ferrer, José María; SPAGGIARI, MICHELE; Ferrando Jódar, Néstor; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2011-01-01

    Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this e...

  4. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information

  5. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.

    Directory of Open Access Journals (Sweden)

    Eric Lowet

    Full Text Available Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT preceded by Singular Spectrum Decomposition (SSD of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization

  6. Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Andrey Dovzhenok

    Full Text Available Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS. This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.

  7. Human mediotemporal EEG characteristics during propofol anesthesia.

    NARCIS (Netherlands)

    Fell, J.; Widman, G.; Rehberg, B.; Elger, C.E.; Fernandez, G.S.E.

    2005-01-01

    Evidence for a response-control-related kind of declarative memory during deep propofol anesthesia has recently been reported. Connectivity within the mediotemporal lobe (MTL), and in particular rhinal-hippocampal synchronization within the gamma band, has been shown to be crucial for declarative

  8. Defect formation in oxygen- and boron- implanted MOS structures after gamma irradiation

    CERN Document Server

    Kaschieva, S; Skorupa, W

    2003-01-01

    The effect of gamma irradiation on the interface states of ion-implanted MOS structures is studied by means of the thermally stimulated charge method. 10-keV oxygen- or boron- (O sup + or B sup +) implanted samples are gamma-irradiated with sup 6 sup 0 Co. Gamma irradiation creates electron levels at the SiSiO sub 2 interface of the samples in a different way depending on the type of the previously implanted atoms (O sup + or B sup +). The results demonstrate that the concentration of the shallower levels (in the silicon band gap) of oxygen-implanted samples increases more effectively after gamma irradiation. The same irradiation conditions increase more intensively the concentration of the deeper levels (in the silicon band gap) of boron-implanted samples. (orig.)

  9. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  10. A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy

    Science.gov (United States)

    Veiga, Alejandro; Grunfeld, Christian

    2016-02-01

    The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.

  11. Gamma ray interaction with vanadyl ions in barium metaphosphate glasses; spectroscopic and ESR studies

    Science.gov (United States)

    Abdelghany, A. M.; ElBatal, H. A.; EzzElDin, F. M.

    2017-11-01

    Optical, FTIR, ESR investigations of prepared undoped barium metaphosphate glass and other samples with the same basic composition containing varying V2O5 contents (0.5, 1, 2, 3%) were carried out before and after gamma irradiation. The undoped glass shows a strong UV optical absorption which is correlated with unavoidable contaminated trace iron impurities. The V2O5-doped samples reveal two additional strong broad visible bands centered at 450 and 680 nm. Such extra peculiar and strong two broad visible bands are related to both tetravalent and trivalent vanadium ions in measurable percent due to the reducing behavior of barium phosphate host glass. Gamma irradiation on the undoped glass results in the generation of collective induced UV and visible bands which are originating from positive hole and electron centers. Glasses containing V2O5 reveal upon gamma irradiation induced defects in the UV as the undoped sample together with distinct splitting within the first broad visible band while the second broad band remains unchanged. This behavior is related to limited photoionization upon the addition of V2O5 indicating specific shielding effect of the vanadium ions towards gamma irradiation. It was noticed that irradiation causes no distinct variations in the FTIR spectra due to the presence of 50% of heavy metal oxide (BaO) and some shielding effect of vanadium ions.

  12. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  13. Analysis of a phase synchronized functional network based on the rhythm of brain activities

    International Nuclear Information System (INIS)

    Li Ling; Jin Zhen-Lan; Li Bin

    2011-01-01

    Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4–7 Hz), alpha (8–13 Hz) and beta (14–30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coefficient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm. (interdisciplinary physics and related areas of science and technology)

  14. The role of gamma-band activity in the representation of faces: reduced activity in the fusiform face area in congenital prosopagnosia.

    Directory of Open Access Journals (Sweden)

    Christian Dobel

    2011-05-01

    Full Text Available Congenital prosopagnosia (CP describes an impairment in face processing that is presumably present from birth. The neuronal correlates of this dysfunction are still under debate. In the current paper, we investigate high-frequent oscillatory activity in response to faces in persons with CP. Such neuronal activity is thought to reflect higher-level representations for faces.Source localization of induced Gamma-Band Responses (iGBR measured by magnetoencephalography (MEG was used to establish the origin of oscillatory activity in response to famous and unknown faces which were presented in upright and inverted orientation. Persons suffering from congenital prosopagnosia (CP were compared to matched controls.Corroborating earlier research, both groups revealed amplified iGBR in response to upright compared to inverted faces predominately in a time interval between 170 and 330 ms and in a frequency range from 50-100 Hz. Oscillatory activity upon known faces was smaller in comparison to unknown faces, suggesting a "sharpening" effect reflecting more efficient processing for familiar stimuli. These effects were seen in a wide cortical network encompassing temporal and parietal areas involved in the disambiguation of homogenous stimuli such as faces, and in the retrieval of semantic information. Importantly, participants suffering from CP displayed a strongly reduced iGBR in the left fusiform area compared to control participants.In sum, these data stress the crucial role of oscillatory activity for face representation and demonstrate the involvement of a distributed occipito-temporo-parietal network in generating iGBR. This study also provides the first evidence that persons suffering from an agnosia actually display reduced gamma band activity. Finally, the results argue strongly against the view that oscillatory activity is a mere epiphenomenon brought fourth by rapid eye-movements (micro saccades.

  15. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Directory of Open Access Journals (Sweden)

    Ouannas Adel

    2018-04-01

    Full Text Available In this paper, a new type of synchronization for chaotic (hyperchaotic maps with different dimensions is proposed. The novel scheme is called F – M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F with the matrix projective synchronization (based on a matrix M. In particular, the proposed approach enables F – M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F – M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  16. New type of chaos synchronization in discrete-time systems: the F-M synchronization

    Science.gov (United States)

    Ouannas, Adel; Grassi, Giuseppe; Karouma, Abdulrahman; Ziar, Toufik; Wang, Xiong; Pham, Viet-Thanh

    2018-04-01

    In this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F - M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F - M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F - M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.

  17. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.

    Science.gov (United States)

    Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K

    2018-01-30

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.

  18. Table of superdeformed nuclear bands and fission isomers

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R.B. [Lawrence Berkeley Lab., CA (United States); Singh, B. [McMaster Univ., Hamilton, ON (Canada)

    1994-06-01

    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.

  19. Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex

    Directory of Open Access Journals (Sweden)

    Philipp Berens

    2008-12-01

    Full Text Available Extra-cellular voltage fluctuations (local field potentials; LFPs reflecting neural mass action are ubiquitous across species and brain regions. Numerous studies have characterized the properties of LFP signals in the cortex to study sensory and motor computations as well as cognitive processes like attention, perception and memory. In addition, its extracranial counterpart – the electroencelphalogram (EEG – is widely used in clinical applications. However, the link between LFP signals and the underlying activity of local populations of neurons remains largely elusive. Here, we review recent work elucidating the relationship between spiking activity of local neural populations and LFP signals. We focus on oscillations in the gamma-band (30-90Hz of the local field potential in the primary visual cortex (V1 of the macaque that dominate during visual stimulation. Given that in area V1 much is known about the properties of single neurons and the cortical architecture, it provides an excellent opportunity to study the mechanisms underlying the generation of the local field potential.

  20. Evidence for Human Fronto-Central Gamma Activity during Long-Term Memory Encoding of Word Sequences

    Science.gov (United States)

    Meeuwissen, Esther Berendina; Takashima, Atsuko; Fernández, Guillén; Jensen, Ole

    2011-01-01

    Although human gamma activity (30–80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM) maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG) we identified significant differences in the gamma and beta activity. Robust gamma activity (55–65 Hz) in left BA6 (supplementary motor area (SMA)/pre-SMA) was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions. PMID:21738641

  1. Evidence for human fronto-central gamma activity during long-term memory encoding of word sequences.

    Directory of Open Access Journals (Sweden)

    Esther Berendina Meeuwissen

    Full Text Available Although human gamma activity (30-80 Hz associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG we identified significant differences in the gamma and beta activity. Robust gamma activity (55-65 Hz in left BA6 (supplementary motor area (SMA/pre-SMA was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions.

  2. Effects of Gamma Irradiation on Polyvinylidene Fluoride Thin Films

    Science.gov (United States)

    Madivalappa, Shivaraj; Jali, V. M.

    2018-02-01

    Polyvinylidene fluoride thin films were synthesized by Sol-Gel method with spin rate of 3000 rpm for 30 sec on ITO glass substrates and were annealed at 170 C. The films were irradiated by Gamma radiation with different doses (10, 30, 40 and 50 kGy). XRD and FTIR spectra have been obtained to identify the presence of α / β phases. Mean crystallite size was calculated by Scherer’s equation. Different vibrational bands were identified and percentage of β phase was determined by FTIR analysis. Optical properties like band gap, refractive index, optical activation energy have been determined. Surface morphology and compositions of pristine and gamma irradiated PVDF thin films were confirmed respectively, by SEM and Energy dispersive X-ray analysis. The comparison of the structural and optical optical properties of pristine PVDF polymer film has been made with those of the Gamma irradiated films.

  3. On Synchronization Primitive Systems.

    Science.gov (United States)

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  4. Role of synchronized oscillatory brain activity for human pain perception.

    Science.gov (United States)

    Hauck, Michael; Lorenz, Jürgen; Engel, Andreas K

    2008-01-01

    The understanding of cortical pain processing in humans has significantly improved since the development of modern neuroimaging techniques. Non-invasive electrophysiological approaches such as electro- and magnetoencephalography have proven to be helpful tools for the real-time investigation of neuronal signals and synchronous communication between cortical areas. In particular, time-frequency decomposition of signals recorded with these techniques seems to be a promising approach because different pain-related oscillatory changes can be observed within different frequency bands, which are likely to be linked to specific sensory and motor functions. In this review we discuss the latest evidence on pain-induced time-frequency signals and propose that changes in oscillatory activity reflect an essential communication mechanism in the brain that is modulated during pain processing. The importance of synchronization processes for normal and pathological pain processing, such as chronic pain states, is discussed.

  5. Spins of superdeformed band in {sup 192}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    Determination of the spins of SD states is the most important challenge in the study of superdeformation. Knowledge of the spin will provide crucial information on SD bands, in particular on the fascinating phenomenon of bands with identical energies and moments of inertia. Angular distribution coefficients of the {gamma}rays decaying out of the {sup 192}Hg SD band were determined using Eurogam data. These coefficients, as well as the spectral shape and multiplicity of the spectrum, are compared with the results of calculations, thereby providing a check on these calculations. From the measured decay multiplicity and the calculated average spin removed per photon (0.3 h), we deduce the average spin {bar I}{sub decay} removed by the {gamma} rays connecting SD and normal states. The spin I{sub SD} of the SD band from which the decay occurs is given by I{sub SD} = {bar I} decay + {bar I} ND, where {bar I} ND is the average spin removed by the normal yrast states. The state from which the major decay out of the SD band occurs is found to have spin 9.5 {plus_minus} 0.8 h. Since angular momentum is (quantized), this leads to a spin assignment of 9 or 10 h. The latter value is favored since the yrast band in the SD well must have only even spin values. This constitutes the first deduction of spin from data in the mass 150 and 190 regions. The spin of 10 h agrees with the spin which is inferred from a model, using the observed moment of inertia (Im){sup (2)}{omega}.

  6. Oxygen enhancement ratios in synchronous HeLa cells exposed to low-LET radiation

    International Nuclear Information System (INIS)

    Sapozink, M.D.

    1977-01-01

    HeLa cells were synchronized by the mitotic selection method and rendered hypoxic by coincubation with an excess of heavily irradiated, but metabolically active, feeder cells. An oxygen enhancement ratio (OER) of about 3 was obtained in interphase HeLa cells irradiated with x or gamma rays. A significantly lower OER was obtained with cells in, or close to, mitosis. The significance of this decrease in the oxygen effect in mitotic cells is discussed

  7. Induction of cell death in the testis of Heteracris littoralis by gamma rays

    International Nuclear Information System (INIS)

    Al-Taweel, A.A.; Shawkit, M.A.

    1983-01-01

    Cell killing by gamma rays was studied in Heteracris littoralis. Primary spermatocytes, which are encysted and have cytoplasmic connection, show unusual dose-response kinetics with no shoulder at low doses. Also, the spermatocytes do not die independently but in groups, usually with whole cysts degenerating synchronously. (author)

  8. The gamma oscillation: master or slave?

    Science.gov (United States)

    Schroeder, Charles E; Lakatos, Peter

    2009-06-01

    The idea that gamma enhancement reflects a state of high neuronal excitability and synchrony, critical for active brain operations, sets gamma up as a "master" or executor process that determines whether an input is effectively integrated and an effective output is generated. However, gamma amplitude is often coupled to the phase of lower frequency delta or theta oscillations, which would make gamma a "slave" to lower frequency activity. Gamma enslavement is productive and typical during rhythmic mode brain operations; when a predictable rhythm is in play, low and mid-frequency oscillations can be entrained and their excitability fluctuations of put to work in sensory and motor functions. When there is no task relevant rhythm that the system can entrain to, low frequency oscillations become detrimental to processing. Then, a continuous (vigilance) mode of operation is implemented; the system's sensitivity is maximized by suppressing lower frequency oscillations and exploiting continuous gamma band oscillations. Each mode has costs and benefits, and the brain shifts dynamically between them in accord with task demands.

  9. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    Science.gov (United States)

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Stages of chaotic synchronization.

    Science.gov (United States)

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  11. Identical and shifted identical bands

    International Nuclear Information System (INIS)

    Dodder, R.S; Jones, E.F.; Hamilton, J.H.

    1997-01-01

    Spontaneous fission of 252 Cm was studied with 72 large Compton suppressed Ge detectors in Gamma sphere. New isotopes 160 Sm and 162 Gd were identified. Through X-ray-γ and γ-γ-γ) coincidence measurements, level energies were established to spins 14 + to 20 + in 152 , 154 156 60 Nd 92 94 96 , 156 , 158 , 160 62 Sm 94 , 96 , 98 , and 160 , 162 64 Gd 96 , 98 . These nuclei exhibit a remarkable variety of identical bands and bands where the energies and moments of inertia are shifted by the same constant amount for every spin state from 2 + to 12 + for various combinations of nuclei differing by 2n, 4n, 2p, 4p, and α

  12. Odd - even staggering, a result of γ - band split

    International Nuclear Information System (INIS)

    Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Varshney, Mani

    2011-01-01

    The structure of low - lying K = 2+ gamma band in even - even nuclei represents quadrupole vibration breaking axial symmetry in unified collective model of Bohr-Mottelson. In the group theoretical approach of the Interacting boson model (IBM) the band structure can belong to one of the three limiting symmetries of U (6) algebra viz. U (5), SU (3) and O (6), corresponding to the anharmonic vibrator, deformed rotor and γ - unstable respectively

  13. Rotational band structure in 132La

    International Nuclear Information System (INIS)

    Oliveira, J.R.B.; Emediato, L.G.R.; Rizzutto, M.A.; Ribas, R.V.; Seale, W.A.; Rao, M.N.; Medina, N.H.; Botelho, S.; Cybulska, E.W.

    1989-01-01

    '3'2La was studied using on-line gamma-spectroscopy through the reactions '1 24,126 Te( 11,10 B, 3, 4n) 132 La. The excitation function was obtained with 10 B(E lab =41.4; 45.4 and 48 MeV) in order to identify 132 La gamma-transitions. Gamma-gamma coincidences and angular distributions were performed for the 126 Te( 10 B, 4n) 132 La reaction. From the experimental results a rotational band with strongest M1 transitions and less intense 'cross-overs' E2 transitions was constructed. Using the methods of Bengtsson and Frauendorf the alignment (ix) and the Routhian (e') as a function of the angular velocity (ω) were also obtained from the experimental data. It was observed a constant alignment up to ω≅0.4 MeV, and a signature-splitting Δe'=25keV. Preliminary triaxial Cranking-Shell Model calculations indicate that a γ=-8deg deformation is consistent with the signature-splitting value of 25 keV experimentally observed. (Author) [es

  14. Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks

    CERN Document Server

    2013-01-01

    This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...

  15. Wakefield Band Partitioning in LINAC Structures

    International Nuclear Information System (INIS)

    Jones, Roger M

    2003-01-01

    In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures

  16. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    Directory of Open Access Journals (Sweden)

    Lars Michels

    Full Text Available In humans, theta band (5-7 Hz power typically increases when performing cognitively demanding working memory (WM tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and

  17. Fluorescence of irradiated hydrocarbons. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Gulis, I G; Evdokimenko, V M; Lapkovskii, M P; Petrov, P T; Gulis, I M; Markevich, S V [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1977-01-01

    A visible fluorescence has been found out in ..gamma..-irradiated aqueous solutions of carbohydrates. Two bands have been distinguished in fluorescence spectra of the irradiated solution of dextran: a short-wave band lambdasub(max)=140 nm (where lambda is a wave length) at lambdasub(..beta..)=380 nm and a long-wave band with lambdasub(max)=540 nm at lambdasub(..beta..)=430 nm. A similar form of the spectrum has been obtained for irradiated solutions of starch, amylopectin, low molecular glucose. It has been concluded that a macromolecule of polysaccharides includes fluorescent centers. A relation between fluorescence and ..cap alpha..-oxiketon groups formed under irradiation has been pointed out.

  18. Divisive Normalization and Neuronal Oscillations in a Single Hierarchical Framework of Selective Visual Attention

    OpenAIRE

    Montijn, Jorrit Steven; Klink, P. Christaan; van Wezel, Richard J. A.

    2012-01-01

    Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25–100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to inte...

  19. Increased overall cortical connectivity with syndrome specific local decreases suggested by atypical sleep-EEG synchronization in Williams syndrome.

    Science.gov (United States)

    Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona

    2017-07-21

    Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.

  20. Solid state Ka-band pulse oscillator with frequency electronic switching

    Directory of Open Access Journals (Sweden)

    Dvornichenko V. P.

    2015-08-01

    Full Text Available Transmitting devices for small radars in the millimeter wavelength range with high resolution on range and noise immunity. The work presents the results of research and development of compact pulse oscillators with digital frequency switching from pulse to pulse. The oscillator consists of a frequency synthesizer and a synchronized amplifier on the IMPATT diode. Reference oscillator of synthesizer is synchronized by crystal oscillator with digital PLL system and contains a frequency multiplier and an amplifier operating in pulse mode. Small-sized frequency synthesizer of 8 mm wave lengths provides an output power of ~1.2 W per pulse with a frequency stability of no worse than 2•10–6. Radiation frequency is controlled by three-digit binary code in OOL levels. Synchronized amplifier made on IMPATT diodes provides microwave power up to 20 W in oscillator output with microwave pulse duration of 100—300 ns in an operating band. The oscillator can be used as a driving source for the synchronization of semiconductor and electro-vacuum devices of pulsed mode, and also as a transmitting device for small-sized radar of millimeter wave range.

  1. Impulsive Synchronization and Adaptive-Impulsive Synchronization of a Novel Financial Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Xiuli Chai

    2013-01-01

    Full Text Available The impulsive synchronization and adaptive-impulsive synchronization of a novel financial hyperchaotic system are investigated. Based on comparing principle for impulsive functional differential equations, several sufficient conditions for impulsive synchronization are derived, and the upper bounds of impulsive interval for stable synchronization are estimated. Furthermore, a nonlinear adaptive-impulsive control scheme is designed to synchronize the financial system using invariant principle of impulsive dynamical systems. Moreover, corresponding numerical simulations are presented to illustrate the effectiveness and feasibility of the proposed methods.

  2. For things needing your attention: the role of neocortical gamma in sensory perception.

    Science.gov (United States)

    Pritchett, Dominique L; Siegle, Joshua H; Deister, Christopher A; Moore, Christopher I

    2015-04-01

    Two general classes of hypotheses for the role for gamma oscillations in sensation are those that predict gamma facilitates signal amplification through local synchronization of a distinct ensemble, and those that predict gamma modulates fine temporal relationships between neurons to represent information. Correlative evidence has been offered for and against these hypotheses. A recent study in which gamma was optogenetically entrained by driving fast-spiking interneurons showed enhanced sensory detection of harder-to-perceive stimuli, those that benefit most from attention, in agreement with the amplification hypotheses. These findings are supported by similar studies employing less specific optogenetic patterns or single neuron stimulation, but contrast with findings based on direct optogenetic stimulation of pyramidal neurons. Key next steps for this topic are described. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Method and apparatus for neutron induced gamma ray logging for lithology identification

    International Nuclear Information System (INIS)

    Oliver, D.W.; Culver, R.B.

    1981-01-01

    The patent describes a neutron-gamma well logging technique which can distinguish between sandstone and limestone formations irrespective of water salinity in the formation. The formation surrounding a borehole is irradiated by fast neutrons and the resulting gamma rays are counted. The gamma rays are converted to electrical signals in three distinct steps; the first two signals result from gamma rays associated with calcium content of the formation and the third signal from gamma rays associated with silicon content. Gamma rays resulting from irradiation of calcium are counted at two non-contiguous energy bands. (O.T.)

  4. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697 (United States); Figotin, Alexander [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  5. Fault-Tolerant Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R. (Inventor)

    2014-01-01

    A self-stabilizing network in the form of an arbitrary, non-partitioned digraph includes K nodes having a synchronizer executing a protocol. K-1 monitors of each node may receive a Sync message transmitted from a directly connected node. When the Sync message is received, the logical clock value for the receiving node is set to between 0 and a communication latency value (gamma) if the clock value is less than a minimum event-response delay (D). A new Sync message is also transmitted to any directly connected nodes if the clock value is greater than or equal to both D and a graph threshold (T(sub S)). When the Sync message is not received the synchronizer increments the clock value if the clock value is less than a resynchronization period (P), and resets the clock value and transmits a new Sync message to all directly connected nodes when the clock value equals or exceeds P.

  6. Nuclear structure studies on 178Hf by means of neutron induced gamma and electron spectroscopy

    International Nuclear Information System (INIS)

    Al Mamun Imtiazul Haque.

    1985-01-01

    By means of thermal and epithermal neutron captures the nucleus 178 Hf was studied. With high-resolution spectrometers the gamma transitions and conversion electrons were measured. By the found energies, intensities, and multipolarities the level scheme of 178 Hf could be essentially improved and extended. Totally 270 secondary (from 600 gamma lines) and 39 primary gamma transitions were used in order to establish the level scheme with 66 levels in 18 rotational bands. For this 92% of all gamma intensities were used. Several new rotational bands were established. By improved gamma energies the level scheme below 2 MeV for spins between 0 and 6 is well confirmed. Moreover by the resolution of several multiplets the decay structure of the levels could be explained. The thermal neutron capture state results from the primary gamma transitions to Q n =7626.34 (23) keV. Electrical monopole transitions from several states were studied in order to determine the X(E0/E2) values. (orig./HSI) [de

  7. Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions

    International Nuclear Information System (INIS)

    Yan-Li, Zou; Guan-Rong, Chen

    2009-01-01

    This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value. (general)

  8. Study of multi-quasiparticle band structures in 197Tl using α beam

    International Nuclear Information System (INIS)

    Mukherjee, G.; Nandi, S.; Pai, H.

    2016-01-01

    Study of the multi-quasiparticle (qp) states and the band structures built on them in the neutron deficient Tl nuclei in A ∼ 190 mass region provides useful information on particle-hole interaction in the heavy nuclei. In order to investigate the multi-qp band structures we have studied the excited states in 197 Tl by gamma ray spectroscopy

  9. Analysis of synchronized regimes for injection-locked spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Napoli ' Parthenope' , 80143 Napoli (Italy); Serpico, C. [Department of Engineering, University of Napoli Federico II, 80125 Napoli (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica, 10135 Torino (Italy); Mayergoyz, I.D. [ECE Dept. and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The large-angle magnetization dynamics of an injection-locked spin-transfer nano-oscillator (STNO) is studied. The magnetic system is subject to the action of time-varying spin-polarized currents and external magnetic fields. The uniform mode theory is developed and describes the hysteretic synchronization mechanism in terms of bifurcations of equilibria and limit cycles of appropriate dynamical systems. Analytical predictions of control parameters for the synchronization between the magnetization self-oscillation and the external microwave excitations (current, field) are provided. The effect of temperature on the locking band and the hysteretic character of the oscillation response is analyzed. An analytical approach is developed to determine the thermally induced sidebands in the power spectral density of phase-locked oscillations as a function of control parameters. The analytical predictions are in good agreement with the results of numerical simulations.

  10. Gamma ray irradiation induced optical band gap variations in silica sol-gel doped sucrose

    International Nuclear Information System (INIS)

    Marzouki, F.; Farah, K.; Hamzaoui, A.H; Ben Ouada, H

    2015-01-01

    The silica xerogels doped sucrose was prepared via sol-gel process and exposed at room temperature to different doses of high energy ("6"0Co) gamma irradiation. Changes in the UV-visible and FTIR spectra of pristine and irradiated xerogels with varying of gamma doses rays show variation in the gap energy. It was found that energy gap of the investigated silica xerogels decreases with increasing the gamma irradiation doses. Thereby the irradiated samples reveal behaviour changes, from an insulator (Eg ∼5,8 eV) towards a semiconductor with (Eg ∼ 3.5 eV).

  11. Synchronization on effective networks

    International Nuclear Information System (INIS)

    Zhou Tao; Zhao Ming; Zhou Changsong

    2010-01-01

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  12. Synchronization on effective networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Changsong, E-mail: cszhou@hkbu.edu.h [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-04-15

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  13. Genetic Diversity in Haploid Nicotiana alata Induced by Gamma Irradiation, Salt Tolerance and Detection of These Differences by RAPD

    Directory of Open Access Journals (Sweden)

    Ayman EL-FIKI

    2016-03-01

    Full Text Available Haploid plants of Nicotiana alata were cultured in vitro on MS medium with IAA + KIN. The resulting plantlets were irradiated using gamma radiation doses of 10, 15, 20 and 25 Gy. Single node pieces were cut and transferred onto fresh MS medium. Gamma radiation doses caused the death of 9% and up to 28% of explants. NaCl concentrations caused the death of 8% up to 36% of explants, while the combined effect between gamma radiation doses and salinity had an impact suffused on the percentage of survival. The combined effect of gamma radiation doses 20 Gy and 25 Gy on NaCl concentrations of 100, 150 and 200 mM were deadly. Even more, the combined effect of gamma radiation doses and salinity had a severe negative impact on both the proline content and total soluble protein. Random amplified polymorphic DNA (RAPD analysis was used to determine the degree of genetic variation in treated haploid Nicotiana alata plants. Total genomic DNAs from different haploid plantlets treated were amplified using five arbitrary primers. Two hundred and seventy bands were detected from plantlets irradiated with doses of 15, 20 and 25 Gy, with polymorphic band number 226 (83.7%. The total number of bands resulted from plant grew on 150 mM and 200 mM NaCl were 260 bands with polymorphic bands 185 (85.6%. However, the total number of bands produced from combined effects between gamma rays and salinity (20 Gy X 50 mM NaCl, 20 Gy X 100 mM NaCl and 25 Gy X 50 mM NaCl were 270, with polymorphic band number 231 (85.5%. High similarity between treatments was revealed. Treatments relationships were estimated through cluster analysis (UPGMA based on RAPD data.

  14. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    Science.gov (United States)

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. ''Identical'' bands in normally-deformed nuclei

    International Nuclear Information System (INIS)

    Garrett, J.D.; Baktash, C.; Yu, C.H.

    1990-01-01

    Gamma-ray transitions energies in neighboring odd- and even-mass nuclei for normally-deformed nuclear configurations are analyzed in a manner similar to recent analyses for superdeformed states. The moment of inertia is shown to depend on pair correlations and the aligned angular momentum of the odd nucleon. The implications of this analysis for ''identical'' super-deformed bands are discussed. 26 refs., 9 figs

  16. Synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-01-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators

  17. Content-based intermedia synchronization

    Science.gov (United States)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  18. Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms.

    Science.gov (United States)

    Ahn, Sungwoo; Rubchinsky, Leonid L

    2013-03-01

    Neural synchronization is believed to be critical for many brain functions. It frequently exhibits temporal variability, but it is not known if this variability has a specific temporal patterning. This study explores these synchronization/desynchronization patterns. We employ recently developed techniques to analyze the fine temporal structure of phase-locking to study the temporal patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by electroencephalograms in α and β frequency bands in healthy human subjects at rest and during the execution of a task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The transition matrix between synchronized and desynchronized states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the stationary distribution between these states is perturbed, the system converges back to the stationary distribution very fast. The qualitative similarity of this patterning across different subjects, brain states and electrode locations suggests that this may be a general type of dynamics for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but potentially frequent) desynchronization events (length of one cycle of oscillations) may have important functional implications for the brain. Numerous short desynchronizations (as opposed to infrequent, but long desynchronizations) may allow for a quick and efficient formation and break-up of functionally significant neuronal assemblies.

  19. Genetic influences on functional connectivity associated with feedback processing and prediction error: Phase coupling of theta-band oscillations in twins.

    Science.gov (United States)

    Demiral, Şükrü Barış; Golosheykin, Simon; Anokhin, Andrey P

    2017-05-01

    Detection and evaluation of the mismatch between the intended and actually obtained result of an action (reward prediction error) is an integral component of adaptive self-regulation of behavior. Extensive human and animal research has shown that evaluation of action outcome is supported by a distributed network of brain regions in which the anterior cingulate cortex (ACC) plays a central role, and the integration of distant brain regions into a unified feedback-processing network is enabled by long-range phase synchronization of cortical oscillations in the theta band. Neural correlates of feedback processing are associated with individual differences in normal and abnormal behavior, however, little is known about the role of genetic factors in the cerebral mechanisms of feedback processing. Here we examined genetic influences on functional cortical connectivity related to prediction error in young adult twins (age 18, n=399) using event-related EEG phase coherence analysis in a monetary gambling task. To identify prediction error-specific connectivity pattern, we compared responses to loss and gain feedback. Monetary loss produced a significant increase of theta-band synchronization between the frontal midline region and widespread areas of the scalp, particularly parietal areas, whereas gain resulted in increased synchrony primarily within the posterior regions. Genetic analyses showed significant heritability of frontoparietal theta phase synchronization (24 to 46%), suggesting that individual differences in large-scale network dynamics are under substantial genetic control. We conclude that theta-band synchronization of brain oscillations related to negative feedback reflects genetically transmitted differences in the neural mechanisms of feedback processing. To our knowledge, this is the first evidence for genetic influences on task-related functional brain connectivity assessed using direct real-time measures of neuronal synchronization. Copyright © 2016

  20. Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms.

    Science.gov (United States)

    Cona, Filippo; Zavaglia, Melissa; Ursino, Mauro

    2012-04-01

    Synchronization of neural activity in the gamma band, modulated by a slower theta rhythm, is assumed to play a significant role in binding and segmentation of multiple objects. In the present work, a recent neural mass model of a single cortical column is used to analyze the synaptic mechanisms which can warrant synchronization and desynchronization of cortical columns, during an autoassociation memory task. The model considers two distinct layers communicating via feedforward connections. The first layer receives the external input and works as an autoassociative network in the theta band, to recover a previously memorized object from incomplete information. The second realizes segmentation of different objects in the gamma band. To this end, units within both layers are connected with synapses trained on the basis of previous experience to store objects. The main model assumptions are: (i) recovery of incomplete objects is realized by excitatory synapses from pyramidal to pyramidal neurons in the same object; (ii) binding in the gamma range is realized by excitatory synapses from pyramidal neurons to fast inhibitory interneurons in the same object. These synapses (both at points i and ii) have a few ms dynamics and are trained with a Hebbian mechanism. (iii) Segmentation is realized with faster AMPA synapses, with rise times smaller than 1 ms, trained with an anti-Hebbian mechanism. Results show that the model, with the previous assumptions, can correctly reconstruct and segment three simultaneous objects, starting from incomplete knowledge. Segmentation of more objects is possible but requires an increased ratio between the theta and gamma periods.

  1. Deqi Induction by HT7 Acupuncture Alters Theta and Alpha Band Coherence in Human Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Go-Eun Lee

    2017-01-01

    Full Text Available The aim of this preliminary study is to investigate the changes in phase synchronization in the theta and alpha bands before and during the performance of classical acupuncture on the Sinmun (HT7. The electroencephalogram (EEG signals from nine healthy young subjects were recorded before and during acupuncture in the “closed-eye” state. The EEG signals were acquired from 19 surface scalp electrodes (FP1, FP2, F7, F3, Fz F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. Needles were inserted into the HT7 bilaterally and were then manipulated to induce deqi and retained for 15 minutes. Phase synchronization was measured by phase coherence. In the theta band, coherence significantly increased between the temporal (T5, T6 and occipital areas (O1, O2 during the acupuncture stimulation. In the alpha band, coherence significantly increased between the left temporal area (T5 and other areas (frontal, parietal, and occipital. Phase coherence in the theta and alpha bands tended to increase during the retention of the acupuncture needles after deqi. Therefore, it can be concluded that acupuncture stimulation with deqi is clinically effective via the central nervous system (CNS.

  2. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  3. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    Science.gov (United States)

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  4. Fast Self-Synchronization between LowVoltage Microgrid and Inverter using Virtual Synchronous Converter

    Directory of Open Access Journals (Sweden)

    Md Ruhul Amin

    2017-12-01

    Full Text Available In this paper, a fast self-synchronization known as virtual synchronous converter (VSCon between single-phase microgrid and inverter in low-voltage microgrid, has been developed in Matlab/Simulink. The idea is to any phase locked loop (PLL circuit for inverter-microgrid synchronization in order to improve the synchronization time. As known, it is difficult and lengthy process to tune the PLL gain parameters to reach suitable performance for synchronizing among the voltage, phase-angle and frequency between them. Due to this problem, a fast self synchronization technique is needed in order to minimize the time losses at the microgrid connection. Therefore, the VSCon has been developed which is based on the synchronous generator mathematical model but in virtual environment representation. It has been applied in the inverter control for generating switching pattern to the inverter switches in order to respond to the grid voltage for improve the synchronization. For a prove of concept, several simulation tests in MATLAB models have been conducted, in order to see the effectiveness of this VSCon. First test has been conducted, when a 240V, 50Hz frequency grid source is used for observing the self-synchronization the system with the power flows output. Furthermore, the next test is conducted when the grid frequency is changed from the rated frequency at 50Hz to 51Hz and the result shows the VSCon in inverter control takes nearly 40ms to synchronize to this new frequency value. The test on grid phase-angle delay also been tested when ac grid voltage has 150 phase delay. As from all the results, the improved inverter control with VSCon structure is able to have fast and self-synchronized between the invertergrid connection before the power from the inverter can be transferred.

  5. Fuzzy correlations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Linder, E.V.; Blumenthal, G.R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated. 16 refs

  6. Effects of gamma radiation on faba bean seed beetle Bruchus Dentipes Bande

    International Nuclear Information System (INIS)

    Mansour, Mohammed; Al-Bachir, Mahfouz

    1993-04-01

    Faba bean, Vivia bata, is one of the most important agricultural legume plants in Syria. Like any other crop, it is attacked by several insect pests. The most important of these is the faba bean seed beetle, Bruchus Dentipes Baudi. Infestation occurs only in the field and the major source of infestation is infested seed used for planting. The average infestation rate is about 45% and this reduces the economic value of the seeds to less than 50%. Chemical control in the field is effective but too expensive. Treating seeds in storage with fumigants is not as effective as it used to be, probably because of the pest developing resistance. Biological control has been investigated but their is no practically acceptable biological control agent at present. The lack of an effective biological control agent and/or economically acceptable and environmentally sound chemical control has led us to investigate the possibility of using gamma radiation to disinfest faba bean seeds as soon as possible after harvest when the insect is still in its early development stages. Infested faba bean seeds were treated immediately after harvest with 4 levels of gamma radiation ranged from 30 to 120 Gy with 30 Gy intervals. Treatment was repeated 15 and 30 days later and the effect of gamma radiation on larval survival was evaluated. The results showed that 90 Gy was sufficient to stop larval development and cause a 100% mortality. This dose, however, affected negatively seed germination. These results indicate that it is possible to disinfest faba bean seeds stored for human consumption with 90 Gy of gamma radiation. However, seeds destined for planting can not be treated with this dose. (author). 35 refs., 6 tabs., 2 figs

  7. The Coupling between Gamma and Theta Oscillation and Visuotactile Integration Process

    Directory of Open Access Journals (Sweden)

    Noriaki Kanayama

    2011-10-01

    Full Text Available Some researches revealed the relationship between multisensory integration and EEG oscillations. Previous studies revealed that the visuotactile integration process could be explained by gamma and theta band oscillation. In addition, recent studies have showed the possibility that a coupling between oscillations at the different frequency bands plays an important role on the multisensory integration system. This study aimed to investigate whether the gamma and theta oscillations show the coupling during the visuotactile integration. Using congruency effect paradigm only for left hand, we measured scalp EEG during simultaneous presentation of “spatially congruent” or “spatially incongruent” visuotactile stimuli. In Experiment 1, the proportion of the spatially congruent trials (80% vs 20% was changed across the experimental blocks. The results showed that the relationship between gamma power and theta phase at the parietal area was modulated by the proportion. In Experiment 2, the saliency of the vibration stimulus (0dB vs −20dB was changed across trials. The results showed that the relationship between gamma power and theta phase was immune to the saliency. These results suggest that multisensory integration process has a plasticity, which is modulated by the proportion of congruent trial, and the process could be explained by the coupling between gamma/theta oscillations.

  8. Synchronization of Multipoint Hoists

    Science.gov (United States)

    A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll

  9. Donor impurity-related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells: hydrostatic pressure and {gamma}-X conduction band mixing effects

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, MOR (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Lopez, S.Y. [Fac. de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2007-07-01

    Using a variational procedure within the effective mass approximation, the mixing between the {gamma} and X conduction band valleys in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated by taking into account the effect of applied hydrostatic pressure. Some optical properties such as donor and/or acceptor binding energy and impurity-related transition energies are calculated and comparisons with available experimental data are presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Trainham, R., E-mail: trainhcp@nv.doe.gov; Tinsley, J. [Special Technologies Laboratory of National Security Technologies, LLC, 5520 Ekwill Street, Santa Barbara, California 93111 (United States)

    2014-06-15

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware.

  11. Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback

    Science.gov (United States)

    Tiberkevich, Vasil S.; Khymyn, Roman S.; Tang, Hong X.; Slavin, Andrei N.

    2014-01-01

    For auto-oscillators of different nature (e.g. active cells in a human heart under the action of a pacemaker, neurons in brain, spin-torque nano-oscillators, micro and nano-mechanical oscillators, or generating Josephson junctions) a critically important property is their ability to synchronize with each other. The synchronization properties of an auto oscillator are directly related to its sensitivity to external signals. Here we demonstrate that a non-isochronous (having generation frequency dependent on the amplitude) auto-oscillator with delayed feedback can have an extremely high sensitivity to external signals and unusually large width of the phase-locking band near the boundary of the stable auto-oscillation regime. This property could be used for the development of synchronized arrays of non-isochronous auto-oscillators in physics and engineering, and, for instance, might bring a better fundamental understanding of ways to control a heart arrythmia in medicine.

  12. Genetic Changes in Stevia rebaudiana after Gamma Irradiation

    International Nuclear Information System (INIS)

    Aly, A.A.

    2005-01-01

    In vitro propagated plantlets of Stevia rebaudiana Bertoni J.were irradiated with doses 0, 5, 10 and 20 Gy. Irradiated plantlets exhibited changes in electrophoretic profile of proteins, there were some new bands induced with molecular weight of 100, 45, 32, and 30 kDa. In some treatments and some other bands disappeared such as the 205 and 100 kDa bands form plantlets treated with 10 Gy. Isoenzyme were also examined, esterase isozyme, isopolyphenol oxidase, alkaline phosphatase, catalse, acid phosphatase and peroxidase isozyme also altered by treatments. RAPD analysis was performed to determine the effect of gamma-irradiation on DNA changes. Polymorphisms between regenerates from non-irradiated and irradiated plantlets were found. The scope of variation spectrum by gamma-irradiation was larger than that by tissue culture. All the primers used produced polymorphic bands. Six primers generated 129.0 RAPD markers, among which 49.0 (37.98%) were polymorphic, with a mean of 8.17 pol morphisms per primer. The results showed that gamma-irradiation induced changes in plantlets that can be detected by molecular and biochemical markers. Stevia rebaudiana Bertoni. Stevia is a member of the Compositae family and native to the valley of the Rio Monday in the highlands of Paraguay, where it has been used by aboriginal people as a sweetener for centuries. It is one of 154 members of the genus Stevia and one of only two that produce sweet steviol glycosides. Stevioside has a sweetening potency of 200-300 times that of sucrose and it is stable to heat (Soejarto et a/., 1982 and 1983 and Lewis, 1992). The leaves were used either to sweeten mate or as a general sweetening agent. Currently Stevia production is centred in China and there is a major market in Japan (Kinghorn and Soejarto 1985)

  13. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    International Nuclear Information System (INIS)

    Gomez, Jorge A.; Kinoshita, Angela; Leonor, Sergio J.; Belmonte, Gustavo C.; Baffa, Oswaldo

    2011-01-01

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  14. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jorge A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Kinoshita, Angela [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Leonor, Sergio J. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Belmonte, Gustavo C. [Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Baffa, Oswaldo, E-mail: baffa@usp.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2011-09-15

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  15. Resting-state beta and gamma activity in Internet addiction.

    Science.gov (United States)

    Choi, Jung-Seok; Park, Su Mi; Lee, Jaewon; Hwang, Jae Yeon; Jung, Hee Yeon; Choi, Sam-Wook; Kim, Dai Jin; Oh, Sohee; Lee, Jun-Young

    2013-09-01

    Internet addiction is the inability to control one's use of the Internet and is related to impulsivity. Although a few studies have examined neurophysiological activity as individuals with Internet addiction engage in cognitive processing, no information on spontaneous EEG activity in the eyes-closed resting-state is available. We investigated resting-state EEG activities in beta and gamma bands and examined their relationships with impulsivity among individuals with Internet addiction and healthy controls. Twenty-one drug-naïve patients with Internet addiction (age: 23.33 ± 3.50 years) and 20 age-, sex-, and IQ-matched healthy controls (age: 22.40 ± 2.33 years) were enrolled in this study. Severity of Internet addiction was identified by the total score on Young's Internet Addiction Test. Impulsivity was measured with the Barratt Impulsiveness Scale-11 and a stop-signal task. Resting-state EEG during eyes closed was recorded, and the absolute/relative power of beta and gamma bands was analyzed. The Internet addiction group showed high impulsivity and impaired inhibitory control. The generalized estimating equation showed that the Internet-addiction group showed lower absolute power on the beta band than did the control group (estimate = -3.370, p Internet-addiction group showed higher absolute power on the gamma band than did the control group (estimate = 0.434, p Internet addiction as well as with the extent of impulsivity. The present study suggests that resting-state fast-wave brain activity is related to the impulsivity characterizing Internet addiction. These differences may be neurobiological markers for the pathophysiology of Internet addiction. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  17. Gamma-Ray Instrument for Polarimetry, Spectroscopy and Imaging (GIPSI)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Inderhees, S. E; Phlips, B. F; Graham, B. L

    1996-01-01

    .... Gamma-ray polarimetry in the energy band around 60-300 keV is an interesting area of high energy astrophysics where observations have not been possible with the technologies employed in current and past space missions...

  18. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    Directory of Open Access Journals (Sweden)

    Christensen Lars PB

    2005-01-01

    Full Text Available The problem of asynchronous direct-sequence code-division multiple-access (DS-CDMA detection over the ultra-wideband (UWB multipath channel is considered. A joint synchronization, channel-estimation, and multiuser detection scheme based on the adaptive linear minimum mean square error (LMMSE receiver is presented and evaluated. Further, a novel nonrecursive least-squares algorithm capable of reducing the complexity of the adaptation in the receiver while preserving the advantages of the recursive least-squares (RLS algorithm is presented.

  19. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  20. FPGA based fast synchronous serial multi-wire links synchronization

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  1. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  2. Gamma and Beta Oscillations in Human MEG Encode the Contents of Vibrotactile Working Memory

    Directory of Open Access Journals (Sweden)

    Alexander H. von Lautz

    2017-12-01

    Full Text Available Ample evidence suggests that oscillations in the beta band represent quantitative information about somatosensory features during stimulus retention. Visual and auditory working memory (WM research, on the other hand, has indicated a predominant role of gamma oscillations for active WM processing. Here we reconciled these findings by recording whole-head magnetoencephalography during a vibrotactile frequency comparison task. A Braille stimulator presented healthy subjects with a vibration to the left fingertip that was retained in WM for comparison with a second stimulus presented after a short delay. During this retention interval spectral power in the beta band from the right intraparietal sulcus and inferior frontal gyrus (IFG monotonically increased with the to-be-remembered vibrotactile frequency. In contrast, induced gamma power showed the inverse of this pattern and decreased with higher stimulus frequency in the right IFG. Together, these results expand the previously established role of beta oscillations for somatosensory WM to the gamma band and give further evidence that quantitative information may be processed in a fronto-parietal network.

  3. Biologically Inspired Intercellular Slot Synchronization

    Directory of Open Access Journals (Sweden)

    Alexander Tyrrell

    2009-01-01

    Full Text Available The present article develops a decentralized interbase station slot synchronization algorithm suitable for cellular mobile communication systems. The proposed cellular firefly synchronization (CelFSync algorithm is derived from the theory of pulse-coupled oscillators, common to describe synchronization phenomena in biological systems, such as the spontaneous synchronization of fireflies. In order to maintain synchronization among base stations (BSs, even when there is no direct link between adjacent BSs, some selected user terminals (UTs participate in the network synchronization process. Synchronization emerges by exchanging two distinct synchronization words, one transmitted by BSs and the other by active UTs, without any a priori assumption on the initial timing misalignments of BSs and UTs. In large-scale networks with inter-BS site distances up to a few kilometers, propagation delays severely affect the attainable timing accuracy of CelFSync. We show that by an appropriate combination of CelFSync with the timing advance procedure, which aligns uplink transmission of UTs to arrive simultaneously at the BS, a timing accuracy within a fraction of the inter-BS propagation delay is retained.

  4. Exploiting Schemas in Data Synchronization

    DEFF Research Database (Denmark)

    Foster, J. Nathan; Greenwald, Michael B.; Kirkegaard, Christian

    2005-01-01

    Increased reliance on optimistic data replication has led to burgeoning interest in tools and frameworks for disconnected updates to replicated data.We have implemented a generic synchronization framework, called HARMONY, that can be used to build state-based synchronizers for a wide variety...... of tree-structureddata formats. A novel feature of this framework is that the synchronization process - in particular, the recognition of conflicts - is driven by the schema of the structures being synchronized.We formalize HARMONY's synchronization algorithm, state a simple and intuitive specification......, and illustrate, using simple address books as a case study, how it can be used to synchronize trees representing a variety of specific forms of applicationdata, including sets, records, tuples, and relations....

  5. Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in a supra-biomolecular host-protein assembly.

    Science.gov (United States)

    Patra, Digambara

    2010-01-15

    A synchronous fluorescence probe based biosensor for estimation of albumin with high sensitivity and selectivity was developed. Unlike conventional fluorescence emission or excitation spectral measurements, synchronous fluorescence measurement offered exclusively a new synchronous fluorescence peak in the shorter wavelength range upon binding of chrysene with protein making it an easy identification tool for albumin determination. The cooperative binding of a fluorescence probe, chrysene, in a supramolecular host-protein assembly during various albumin assessments was investigated. The presence of supramolecular host molecules such as beta-cyclodextrin, curucurbit[6]uril or curucurbit[7]uril have little influence on sensitivity or limit of detection during albumin determination but reduced dramatically interference from various coexisting metal ion quenchers/enhancers. Using the present method the limit of detection for BSA and gamma-Globulin was found to be 0.005 microM which is more sensitive than reported values. Copyright 2009 Elsevier B.V. All rights reserved.

  6. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Directory of Open Access Journals (Sweden)

    Meeri Eeva-Liisa Mäkinen

    2018-03-01

    Full Text Available The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging and temporal resolution microelectrode array (MEA. We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.

  7. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    Science.gov (United States)

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  8. Opto-structural characterization of gamma irradiated Bayfol polymer track detector

    Energy Technology Data Exchange (ETDEWEB)

    Tayel, A. [Physics Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Zaki, M.F., E-mail: moha1016@yahoo.com [Experimental Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Abu Zaabal, Cairo (Egypt); El Basaty, A.B. [Physics Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Hegazy, Tarek M. [Physics Department, College of Women for Arts, Science and Education, Ain Shams University, Cairo (Egypt)

    2013-11-15

    Bayfol CR 1-4 is one of polymeric solid state nuclear track detector which has numerous applications due to its outstanding optical, mechanical, thermal and electrical properties. In the present study, Bayfol polymer is irradiated with different doses of gamma rays ranging from 0 to 1000 KGy. The effects of gamma irradiations on the optical, structural and chemical properties of Bayfol were studied using Ultraviolet and visible (UV/Vis) spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The UV–Vis spectra of irradiated samples show that the absorption edge is shifted towards longer wavelength comparing to pristine sample spectrum. This behavior indicates that there is a decrease in the band gap after irradiation. The maximum decrease in the band gap is about 0.8 eV. The XRD patterns of amorphous halo of pristine and irradiated samples show a fluctuation of integrated intensity of amorphous halo. This indicates a change in the structure due to gamma irradiation. In order to understand that structure change mechanism, we used the FTIR spectroscopy.

  9. Effect of neon ions on synchronized Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Carpenter, S.G.; Tokita, N. (Los Alamos National Lab., NM (USA)); Howard, J. (Lawrence Berkeley Lab., CA (USA))

    1985-08-01

    The variation in radiosensitivity across the cell cycle after exposure to neon ions and /sup 60/Co ..gamma..-rays is reported for cultured hamster cells. The cells were first synchronized by mitotic selection, then resynchronized in the region of the G/sub 1//S boundary by treatment with 10/sup -3/ M hydroxyurea. Although the use of hydroxyurea improves the synchrony, it does sensitize cells at the G/sub 1//S boundary to some degree. The cells were exposed at the plateau and the distal peak position of a neon ion beam modified by a 10 cm wide ridge filter. The results indicate that the variation (ratio of maximum to minimum survival after fixed doses of radiation that are approximately matched to produce similar cell killing) was approximately 80 to 100-fold for /sup 60/Co ..gamma..-rays and neon ions at the plateau, and 25-fold for distal peak neon ions. While the r.b.e. of distal peak neon ions decreased rapidly with increasing dose for cells in late S-phase, the r.b.e. is independent of dose for cells at the G/sub 1//S boundary.

  10. Irradiation damage in gamma lithium aluminate - LiAlO2

    International Nuclear Information System (INIS)

    Auvray-Gely, M.H.

    1989-01-01

    Single crystals of gamma lithium aluminate (of tetragonal structure) are irradiated) with various projectiles (electrons, He ions, protons, X and gamma photons) and we used (i) electronic paramagnetic resonance (EPR) and optical absorption to detect the defects produced, and (ii) transmission electron microscopy (TEM). The lithium aluminate single crystals irradiated with electrons or ions contain five different paramagnetic defects. Each of them has several anisotropic configurations whose EPR signals (i) have a Lande factor close to 2, (ii) exhibit a resolved hyperfine structure and (iii) are identical only when the static magnetic field is along /001/. In addition, four optical absorption bands appear in the range 1-6 eV in the same irradiation conditions. But only three among the five paramagnetic defects and one of the optical bands appear in X-and gamma-ray irradiated samples. Using these observations, we discuss the nature of the detected defects and we conclude about the type of their production mechanism. Particularly, we assign a six-line EPR signal and an optical band in the ultraviolet range to the F + -centre. We compare this hypothesis to a defect model based on the computation of approximate electronic wave functions using the variational method. Our TEM study shows that when gamma-LiAlO 2 single crystals are irradiated with 1 MeV electrons (fluence: 10 20 electrons/sqcm), tridimensional defects (of mean dimension 100 nm) appear. At lower energies, the defect production is hidden by a thermal effect that is sufficient to induce the evaporation of lithium oxyde and the formation of LiAl 5 0 8 [fr

  11. New bands and spin-parity assignments in 111Ru

    International Nuclear Information System (INIS)

    Urban, W.; Rzaca-Urban, T.; Droste, C.; Rohozinski, S.G.; Durell, J.L.; Phillips, W.R.; Smith, A.G.; Varley, B.J.; Schulz, N.; Ahmad, I.; Pinston, J.A.

    2004-01-01

    The 111 Ru nucleus, populated in the spontaneous fission of 248 Cm has been studied by means of prompt gamma spectroscopy using the EUROGAM2 array. Spin and parity assignments, based on angular correlations, linear polarization, and conversion coefficient measurements differ from those available in the literature. New bands are reported, which incorporate γ transitions seen previously but not placed in the scheme of 111 Ru or placed incorrectly. The bands are interpreted as neutron excitations into subshells originating predominantly from the h 11/2 , g 7/2 and s 1/2 spherical orbitals. The s 1/2 band, strongly mixed with the d 3/2 , d 5/2 and g 7/2 configurations, is observed for the first time in this region. (orig.)

  12. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  13. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    Science.gov (United States)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  14. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  15. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  16. Anti-synchronization of chaotic oscillators

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai

    2003-01-01

    We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation

  17. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects.

    Directory of Open Access Journals (Sweden)

    Jae Joon Han

    Full Text Available Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC and left orbitofrontal cortex (OFC, between the left AC and left subgenual anterior cingulate cortex (sgACC for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of "circuit-breaker" activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.

  18. The quasicontinuum of gamma rays from the feeding and decay of the superdeformed in 194Pb

    International Nuclear Information System (INIS)

    Lauritsen, T.; Ahmad, I.; Carpenter, M.P.

    1995-01-01

    Over the last year we developed techniques for the study of the quasicontinuum of gamma-rays from both the feeding and especially the decay of the superdeformed (SD) bands in the Hg nuclei, most notably 192 Hg. From this analysis we could extract both the spin and energy of some of the SD bands. The quasicontinuum analysis is the only technique so far that could extract these two fundamental properties of the now more than 100 SD bands found in the A = 150 and A = 190 regions. We based our understanding of the feeding and decay on comparisons of the data with extensive Monte Carlo simulations of the emission of gamma rays, both from the entry distribution toward the SD minimum, and, at lower spins, from the decay out of the SD band back to the states in the normal well

  19. Coexistence and switching of anticipating synchronization and lag synchronization in an optical system

    International Nuclear Information System (INIS)

    Wu, Liang; Zhu, Shiqun

    2003-01-01

    The chaotic synchronization between two bi-directionally coupled external cavity single-mode semiconductor lasers is investigated. Numerical simulation shows that anticipating synchronization and lag synchronization coexist and switch between each other in certain parameter regime. The anticipating time with different effects that were discussed quite differently in the previous theoretical analysis and experimental observation is determined by the involved parameters in the system

  20. A New Adaptive Gamma Correction Based Algorithm Using DWT-SVD for Non-Contrast CT Image Enhancement.

    Science.gov (United States)

    Kallel, Fathi; Ben Hamida, Ahmed

    2017-12-01

    The performances of medical image processing techniques, in particular CT scans, are usually affected by poor contrast quality introduced by some medical imaging devices. This suggests the use of contrast enhancement methods as a solution to adjust the intensity distribution of the dark image. In this paper, an advanced adaptive and simple algorithm for dark medical image enhancement is proposed. This approach is principally based on adaptive gamma correction using discrete wavelet transform with singular-value decomposition (DWT-SVD). In a first step, the technique decomposes the input medical image into four frequency sub-bands by using DWT and then estimates the singular-value matrix of the low-low (LL) sub-band image. In a second step, an enhanced LL component is generated using an adequate correction factor and inverse singular value decomposition (SVD). In a third step, for an additional improvement of LL component, obtained LL sub-band image from SVD enhancement stage is classified into two main classes (low contrast and moderate contrast classes) based on their statistical information and therefore processed using an adaptive dynamic gamma correction function. In fact, an adaptive gamma correction factor is calculated for each image according to its class. Finally, the obtained LL sub-band image undergoes inverse DWT together with the unprocessed low-high (LH), high-low (HL), and high-high (HH) sub-bands for enhanced image generation. Different types of non-contrast CT medical images are considered for performance evaluation of the proposed contrast enhancement algorithm based on adaptive gamma correction using DWT-SVD (DWT-SVD-AGC). Results show that our proposed algorithm performs better than other state-of-the-art techniques.

  1. Adaptive Backoff Synchronization Techniques

    Science.gov (United States)

    1989-07-01

    Percentage of synchronization and non- synchronisation references that cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers...processors to arrive. The slight relative increase of synchronisation overhead in all cases when going from two to five pointers is because synchronization ...MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS q~JU VLSI Memo No. 89-547 It July 1989 Adaptive Backoff Synchronization Techniques Anant

  2. Synchronicity and Leadership

    NARCIS (Netherlands)

    Merry, Philip

    2017-01-01

    LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have

  3. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    International Nuclear Information System (INIS)

    Yan Sen-Lin

    2014-01-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range. (general)

  4. Influence of Lateral Muscle Loading in the Proximal Femur after Fracture Stabilization with a Trochanteric Gamma Nail (TGN)

    Science.gov (United States)

    Sitthiseripratip, Kriskrai; Mahaisavariya, Banchong; Suwanprateeb, Jintamai; Bohez, Erik; Vander Sloten, Jos

    The purpose of this study was to investigate the influence of lateral muscle loading on the stress/strain distributions of the trochanteric Gamma nail (TGN) fixation within the healed, trochanteric and subtrochanteric femoral fractures by means of a finite element method. The effect of three muscle groups, the abductors (ABD), the vastus lateralis (VL) and the iliotibial band (ITB), were investigated. The analytical results showed that addition of lateral muscle forces, iliotibial band and vastus lateralis, produced compensation of forces and reduction of bending moments in the bone and in the trochanteric Gamma nail especially in the lateral aspect. The iliotibial band produced a higher impact as compared to the vastus lateralis. Therefore in the finite element analysis of the proximal femur with the trochanteric Gamma nail fracture fixation should include the lateral muscle forces to simulate load condition with maximal physiological relevance to the closed nailing technique.

  5. AGIS: A Next-generation TeV Gamma-ray Observatory

    Science.gov (United States)

    Vandenbroucke, Justin

    2010-05-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation array of imaging atmospheric Cherenkov telescopes for gamma-ray astronomy in the 100 GeV to 100 TeV band. TeV astronomy has flourished in the last few years. Together with the extremely successful first year of the Fermi LAT telescope for GeV gamma-ray astronomy, we are now in a golden age of gamma-ray astronomy. AGIS seeks to continue the success of gamma-ray astronomy by discovering hundreds of new TeV sources and improving our understanding of known sources, as well as searching for signals from dark matter annihilation. AGIS will feature 36 Schwarzschild-Couder (SC) telescopes spanning 1 km2. The two-mirror SC design allows a wide field of view (8 deg diameter) and high-resolution (0.05 deg diameter) pixellation. I will present the science capabilities of the AGIS observatory as well as the technical design and current status of the project.

  6. The right hippocampus leads the bilateral integration of gamma-parsed lateralized information

    Science.gov (United States)

    Benito, Nuria; Martín-Vázquez, Gonzalo; Makarova, Julia; Makarov, Valeri A; Herreras, Oscar

    2016-01-01

    It is unclear whether the two hippocampal lobes convey similar or different activities and how they cooperate. Spatial discrimination of electric fields in anesthetized rats allowed us to compare the pathway-specific field potentials corresponding to the gamma-paced CA3 output (CA1 Schaffer potentials) and CA3 somatic inhibition within and between sides. Bilateral excitatory Schaffer gamma waves are generally larger and lead from the right hemisphere with only moderate covariation of amplitude, and drive CA1 pyramidal units more strongly than unilateral waves. CA3 waves lock to the ipsilateral Schaffer potentials, although bilateral coherence was weak. Notably, Schaffer activity may run laterally, as seen after the disruption of the connecting pathways. Thus, asymmetric operations promote the entrainment of CA3-autonomous gamma oscillators bilaterally, synchronizing lateralized gamma strings to converge optimally on CA1 targets. The findings support the view that interhippocampal connections integrate different aspects of information that flow through the left and right lobes. DOI: http://dx.doi.org/10.7554/eLife.16658.001 PMID:27599221

  7. Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Santarnecchi, Emiliano [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Polizzotto, Nicola Riccardo [Univ. of Pittsburgh, PA (United States). Dept. of Psychiatry; Godone, Marco [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Giovannelli, Fabio [San Giovanni di Dio Hospital, Florence (Italy). Complex Unit of Neurology; Feurra, Matteo [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Matzen, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rossi, Alessandro [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Rossi, Simone [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience

    2013-08-05

    Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven’s matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The finding presented here supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.

  8. Instructor's guide : - synchronized skating school

    OpenAIRE

    Mokkila, Eveliina

    2011-01-01

    The starting point to the Instructor’s guide for synchronized skating school was the situation that Turun Riennon Taitoluistelu figure skating club constantly struggles to get enough skaters to the Beginner team in synchronized skating. The guidebook was written to guide the skating school instructors towards providing more synchronized skating teaching in their lessons. As a result from introducing synchronized skating more in the skating school, it is expected to have more children conti...

  9. Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems

    Science.gov (United States)

    Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian

    2014-09-01

    In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.

  10. The Study of the Cosmic Gamma-Emission Nonstationary Fluxes Characteristics by the AVS-F Apparatus Data

    Science.gov (United States)

    Kotov, Yu. D.; Arkhangelskaja, I. V.; Arkhangelsky, A. I.; Kuznetsov, S. N.; Glyanenko, A. S.; Kalmykov, P. A.; Amandzholova, D. B.; Samoylenko, V. T.; Yurov, V. N.; Pavlov, A. V.; Chervyakova, O. I.; Afonina, I. V.

    The AVS-F apparatus (Russian abbreviation for Amplitude-Time Spectrometry of the Sun) is intended for the solar flares' hard X-ray and gamma-ray emission characteristic studies and for the search and detection of the gamma-ray bursts (GRB). At present over 1,100 events with duration more than 2 s without any coordinate relations to Earth Radiation Belts and South Atlantic Anomaly were separated on the results of preliminary analysis of AVS-F experiment database.About 68 % of the identified events were associated with quasistationary equatorial precipitations-15-30 % count rate increases in the low-energy gamma-band of the AVS-F apparatus over its average value obtained by approximation of these parts with polynomials discovered on some equatorial segments in the ranges of geographic latitude of 25∘ up to +30∘. Several short events with duration of 1-16 ms associated with terrestrial gamma-ray flashes were registered during the experiment. These events were detected above the powerful thunderstorm formations.Solar flares with classes stronger than M1.0 according to the GOES classification were about 7 % of the detected events. Solar flares' hard X-rays and γ-emission were mainly observed during the rise or maximum phases of the emission in the soft X-rays band according to the detectors on board the GOES series satellites data and duration of their registration is less than of the soft X-ray bands. According to the preliminary data analysis gamma-emission with energy over 10 MeV was registered during 12 % of the observed flares. The emission in the energy band E ¿ 100 keV was registered during over 60 faint solar flares (of B and C classes according to the GOES and from several ones γ-quanta with energy up to several tens of MeV were observed.Several spectral line complexes were observed in the spectra of some solar flares stronger than M1.0 in the low-energy gamma-range. Registered spectral features were corresponded to α α-lines, annihilation line

  11. Optical study of gamma irradiated sodium metaphosphate glasses containing divalent metal oxide MO (ZnO or CdO

    Directory of Open Access Journals (Sweden)

    E. Nabhan

    Full Text Available Sodium metaphosphate glasses containing divalent metal oxide, ZnO or CdO with composition 50 P2O5 – (50 − x Na2O – x MO (ZnO, or CdO where x = 0, 10, 20 (mol% were prepared by conventional melt method. UV/visible spectroscopy and FTIR spectroscopy are measured before and after exposing to successive gamma irradiation doses (5–80 kGy. The optical absorption spectra results of the samples before irradiation reveal a strong UV absorption band at (∼230 nm which is related to unavoided iron impurities. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. From the optical absorption spectral data, the optical band gap is evaluated. The main structural groups and the influence of both divalent metal oxide and gamma irradiation effect on the structural vibrational groups are realized through IR spectroscopy. The FTIR spectra of γ-irradiated samples are characterized by the stability of the number and position for the main characteristic band of phosphate groups. To better understood the structural changes during γ-irradiation, a deconvolution of FTIR spectra in the range 650–1450 cm−1 is made. The FTIR deconvolution results found evidence that, the changes occurring after gamma irradiation have been related to irradiation induced structural defects and compositional changes. Keywords: Sodium metaphosphate glass, UV–visible spectra, IR spectra, Deconvolution, Optical band gap, Gamma ray

  12. Synchronization of Concurrent Processes

    Science.gov (United States)

    1975-07-01

    Pettersen Stanford Ur.iversity Artificial Intelligence Laboratory ABSTRACT Th oaoer gives an overview of commonly used synchronization primitives and...wr.ters . ut.l.z.ng the DroDo4d synchronization primitive . The solution is simpler and shorter than other known S’ms The first sections of the paper...un reicr»» side il nrcttaary and Identity by block number) Scheduling, process scheduling, synchronization , mutual exclusion, semaphores , critical

  13. The use of combined three-dimensional electron backscatter diffraction and energy dispersive X-ray analysis to assess the characteristics of the gamma/gamma-prime microstructure in alloy 720Li™

    International Nuclear Information System (INIS)

    Child, D.J.; West, G.D.; Thomson, R.C.

    2012-01-01

    Multiple three-dimensional reconstructions of a γ/γ′ phase structure in Alloy 720Li have been carried out by employing a serial milling technique with simultaneous electron backscatter diffraction (EBSD) and energy dispersive x-ray (EDX) analysis data collection. Combining EBSD data with EDX is critical in obtaining maps to distinguish between the chemically differing, but crystallographically similar γ and γ′ phases present in the alloy studied. EDX is shown to allow the differentiation of γ and γ′ phases, with EBSD providing increased grain shape accuracy. The combination of data sources also allowed identification of coherent γ/γ′ phase interfaces that would not be identified using solely EBSD or EDX. The study identifies a region of grain banding within the alloy, which provides the basis for a three-dimensional comparison and discussion of γ′ phase size between coarse and fine grain regions, whilst also identifying coherent γ′ phase interfaces, possible only using both EDX and EBSD systems simultaneously. The majority of the γ′ phase lies in the range of 1–10 μm in non-banded regions, with a detectable particle size limit of 500 nm being established. The validity of the reconstruction has been demonstrated using an electron interaction volumes model, and an assessment of the validity of EBSD and EDX data sources is discussed showing γ′ phase connectivity in all dimensions. -- Highlights: ► Use of combined EBSD/EDX for the 3D analysis of gamma prime in a Ni-based alloy. ► Assessment of 3D reconstruction accuracy using CASINO. ► Observation and validation of gamma prime phase connectivity throughout the alloy. ► Identification and characterisation of grain banding in gamma prime. ► Distinction of phase coherency between gamma and gamma prime.

  14. Beam synchronous detection techniques for X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Goujon, Gérard; Rogalev, Andreï; Goulon, José; Feite, Serge; Wilhelm, Fabrice

    2013-01-01

    The Photo diode detectors combine a set of properties that make them most appropriate, in particular, for X-ray Magnetic Circular Dichroism (XMCD) experiments. Under standard operating conditions, the detection bandwidth is primarily limited by the transimpedance preamplifier that converts the very low ac photocurrent into a voltage. On the other hand, when the photodiode is reverse biased, its finite shunt resistance will cause an undesirable, temperature dependent DC dark current. The best strategy to get rid of it is to use synchronous detection techniques. A classical implementation is based on the use of a chopper modulating the X-ray beam intensity at rather low frequencies (typically below 1 kHz). Here we report on the recent development of a fast Xray detection which has the capability to fully exploit the frequency structure of the ESRF X-ray beam (355 KHz and its harmonics). The availability of new wide band preamplifiers allowed us to extend the working frequency range up to a few MHz. A beam synchronous data processing was implemented in large FPGAs. Performances of the new detection system implemented at the ESRF beamline ID12 are illustrated with detection of the Fe K-edge XMCD spectra in garnets, using 4 bunches operation mode with modulation frequency of 1.4 MHz.

  15. Cross-spectrum symbol synchronization

    Science.gov (United States)

    Mccallister, R. D.; Simon, M. K.

    1981-01-01

    A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.

  16. Unidirectional synchronization of Hodgkin-Huxley neurons

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo-Perez, Octavio [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: octavio@ipicyt.edu.mx; Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas, Computacionales, IPICYT, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi (Mexico)]. E-mail: rfemat@ipicyt.edu.mx

    2005-07-01

    Synchronization dynamics of two noiseless Hodgkin-Huxley (HH) neurons under the action of feedback control is studied. The spiking patterns of the action potentials evoked by periodic external modulations attain synchronization states under the feedback action. Numerical simulations for the synchronization dynamics of regular-irregular desynchronized spiking sequences are displayed. The results are discussed in context of generalized synchronization. It is also shown that the HH neurons can be synchronized in face of unmeasured states.

  17. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  18. Enhanced stimulus-induced gamma activity in humans during propofol-induced sedation.

    Directory of Open Access Journals (Sweden)

    Neeraj Saxena

    Full Text Available Stimulus-induced gamma oscillations in the 30-80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography, using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation generation in humans.

  19. UV-visible, Raman and E.S.R. studies of gamma-irradiated NiO-doped sodium metaphosphate glasses.

    Science.gov (United States)

    ElBatal, Fatma H; Morsi, Reham M; Ouis, Mona A; Marzouk, Samir Y

    2010-11-01

    UV-visible spectroscopic measurements of Ni-doped sodium phosphate glasses were carried out before and after successive gamma irradiation. The undoped glass reveals strong UV absorption originating from trace iron impurities. NiO-doped glasses show characteristic absorption bands due mainly to octahedral coordination of Ni(2+) ions. Gamma irradiation produces induced bands generated from intrinsic defects and extrinsic defects. The changes in the spectroscopic data are discussed in relation to the structural evolution caused by the changes in composition and coordination state of nickel ions. The change in the growth behaviour of the induced bands is related to the annihilation or approach saturation of these characteristic induced bands. Raman and E.S.R. spectroscopic measurements confirm the presence of nickel as Ni(2+) ions in octahedral state. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. The quasicontinuum of gamma rays from the feeding and decay of the superdeformed in {sup 194}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Ahmad, I.; Carpenter, M.P. [and others

    1995-08-01

    Over the last year we developed techniques for the study of the quasicontinuum of gamma-rays from both the feeding and especially the decay of the superdeformed (SD) bands in the Hg nuclei, most notably {sup 192}Hg. From this analysis we could extract both the spin and energy of some of the SD bands. The quasicontinuum analysis is the only technique so far that could extract these two fundamental properties of the now more than 100 SD bands found in the A = 150 and A = 190 regions. We based our understanding of the feeding and decay on comparisons of the data with extensive Monte Carlo simulations of the emission of gamma rays, both from the entry distribution toward the SD minimum, and, at lower spins, from the decay out of the SD band back to the states in the normal well.

  1. VELOCIRAPTOR: An X-band photoinjector and linear accelerator for the production of Mono-Energetic {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.G., E-mail: anderson131@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Albert, F.; Bayramian, A.J.; Beer, G.; Bonanno, R.E.; Cross, R.R.; Deis, G.; Ebbers, C.A.; Gibson, D.J.; Hartemann, F.V.; Houck, T.L.; Marsh, R.A.; McNabb, D.P.; Messerly, M.J.; Scarpetti, R.D.; Shverdin, M.Y.; Siders, C.W.; Wu, S.S.; Barty, C.P.J. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Adolphsen, C.E. [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025 (United States); and others

    2011-11-21

    The rf photoinjector and linear accelerator in the Mono-Energetic Gamma-ray (MEGa-ray) facility at LLNL is presented. This machine uses 11.4 GHz rf technology to accelerate a high-brightness electron beam up to 250 MeV to produce MeV {gamma}-rays through Compton scattering with a Joule-class laser pulse. Compton scattering-based generation of high flux, narrow bandwidth {gamma}-rays places stringent requirements on the performance of the accelerator. The component parts of the accelerator are presented and their requirements described. Simulations of expected electron beam parameters and the resulting light source properties are presented.

  2. Synchronous adenocarcinomas of the colon presenting as synchronous colocolic intussusceptions in an adult

    Directory of Open Access Journals (Sweden)

    Chen Chuang-Wei

    2012-12-01

    Full Text Available Abstract Intussusception is uncommon in adults. To our knowledge, synchronous colocolic intussusceptions have never been reported in the literature. Here we described the case of a 59-year-old female of synchronous colocolic intussusceptions presenting as acute abdomen that was diagnosed by CT preoperatively. Laparotomy with radical right hemicolectomy and sigmoidectomy was undertaken without reduction of the invagination due to a significant risk of associated malignancy. The final diagnosis was synchronous adenocarcinoma of proximal transverse colon and sigmoid colon without lymph nodes or distant metastasis. The patient had an uneventful recovery. The case also emphasizes the importance of thorough exploration during surgery for bowel invagination since synchronous events may occur.

  3. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    Science.gov (United States)

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    -cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to ‘stimulation off’. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with ‘stimulation on’ compared to ‘stimulation off’ could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. PMID:25558877

  4. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization

    International Nuclear Information System (INIS)

    Alvarez, G.; Li Shujun; Montoya, F.; Pastor, G.; Romera, M.

    2005-01-01

    This paper describes the security weaknesses of a recently proposed secure communication method based on chaotic masking using projective synchronization of two chaotic systems. We show that the system is insecure and how to break it in two different ways, by high-pass filtering and by generalized synchronization

  5. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  6. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    Science.gov (United States)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  7. Medical issues in synchronized skating.

    Science.gov (United States)

    Abbott, Kristin; Hecht, Suzanne

    2013-01-01

    Synchronized skating is a unique sport of team skating and currently represents the largest competitive discipline in U.S. Figure Skating. Synchronized skating allows skaters to compete as part of a team with opportunities to represent their country in international competitions. As the popularity of the sport continues to grow, more of these athletes will present to sports medicine clinics with injuries and illnesses related to participation in synchronized skating. The purpose of this article is to review the common injuries and medical conditions affecting synchronized skaters.

  8. The diverse broad-band light-curves of Swift GRBs reproduced with the cannonball model

    CERN Document Server

    Dado, Shlomo; De Rújula, A

    2009-01-01

    Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the cannonball (CB) model of long gamma ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows. Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early time until late time and well represent the entire diversity of the broad band light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of glory light. During their fast decline phase, ICS is taken over by SR which dominates their broad band afterglow. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical `humps' in XRFs, are correctly predicted. The canonical and non-canonical X-ra...

  9. New features of superdeformed bands in 194Hg

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Ahmad, I.; Carpenter, M.P.

    1995-01-01

    A striking difference between superdeformed (SD) nuclei near A = 190 and those in the other regions is the behavior of the dynamic moment of inertia (lm) with the rotational frequency hω. While the (lm) patterns of the SD bands near A = 130 and A = 150 show pronounced variations, the majority of the SD bands near A = 190 display the same large, smooth increase of (lm) within the frequency range 0.15 194 Hg were populated with the reaction 150 Nd( 48 Ca,4n) 194 Hg at a beam energy of 206 MeV. The gamma rays emitted in the reaction were detected with the Gammasphere detector array (32 detectors for this experiment)

  10. Machine for controlling band-type 'essuimatic' hand towels (1962); Machine a controler les essuie-mains en bande du type essuimatic (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cottignies, S; Ortiz, J [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1962-07-01

    This machine is designed to control the band-towels in the form of 40 meters bands equipping the 'Essuimatic' distributors. It controls automatically the {alpha} and {beta}-{gamma} activity. The towel is driven by motors and passes under Geiger-Muller counters and then between zinc sulphide scintillators in conjunction with photomultipliers. Two distinct counting systems measure the total activity deposited on the cloth and, in order to give an idea of the distribution of this activity, count also the number of marks, that is, the number of times that the counting rate of the probes is above a certain value. After the passage of the cloth it is thus possible to know whether the count corresponding to the whole band is greater than that due to just the counter movement, and also whether this counting rate has not occasionally been greater than the average rate; it is thus possible to detect weak local contamination which could have been missed in an overall measurement of the cloth. (authors) [French] Cette machine est destinee a controler les linges essuie-mains sous forme de bande de 40 metres de longueur equipant les distributeurs 'ESSUIMATIC'. Elle effectue automatiquement un controle en {alpha} et en {beta}-{gamma}. Le linge entraine par un moteur passe. sous des compteurs Geiger-Muller, puis entre des scintillateurs au sulfure de zinc associes a des photomultiplicateurs. Deux chaines de comptage distinctes comptent l'activite totale deposee sur le linge et, en outre, pour donner une idee de la repartition de cette activite, elles comptent le nombre de taches, c'est-a-dire le nombre de fois que le taux de comptage des sondes est superieur a une certaine valeur. A la fin du passage du linge, il est donc possible de connaitre si le comptage correspondant a toute la bande est superieur a celui du au mouvement propre seul des compteurs et egalement de savoir si parfois ce taux de comptage n'a pas ete superieur au taux de comptage moyen, ce qui permet de detecter de

  11. Determination of the gamma-ray flux of the stopped WWR-SM reactor by color center production in LiF

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Kalannov, M.U.; Ibragimova, E.M.; Karabaev, Kh.Kh.

    2004-01-01

    Full text: Gamma-radiation with a wide energy spectrum, accompanying neutron flux in the nuclear reactor, is known to result in radiation heating of materials. It is usually detected either by calorimetry or by an ionizing chamber maintained in the active zone while the reactor works and high-energy neutrons also contribute into ionization. The aim of this research was to separate the gamma-component from the neutron flux upon stopping the WWR-SM reactor and to determine the gamma-intensity both with the ionization chamber and the well-known dosimeter LiF crystal, and also by comparing with the effect of monochromatic 60 Co gamma-radiation of the known flux and dose. For LiF with small Z the photoelectric effect is weak, and Compton scattering prevails. Both the optical absorption and photo-luminescence techniques together with micro-hardness and X-ray diffraction analysis were used for measuring the structure defect generation rate in the irradiated crystals, which is proportional to the gamma-intensity. Fluorine vacancy trapping electron is the well-known stable F-center responsible for the isolated absorption band at 250 nm and induced by radiolysis mechanism. The sequential irradiations and measurements were done within 150 hours after the moment of the reactor quenching. The dose dependence of the absorption band was found to be linear up to the dose of 10 6 R. The F-center concentration as a measure of an accumulated dose was calculated by the Smakula formula. At higher doses another band at 440 nm appears like that for 60 Co irradiation, which is responsible for unstable F 2 and F 3 centers formed due to coagulation of F-centers. X-diffraction analysis revealed twin structure in (111) plane. Yet the micro-hardness of the gamma-irradiated samples did not change noticeably. For higher doses the photo-luminescence band at 650 nm was also used as a dosimetric item. The luminescence kinetics has a fast nanosecond scale component and a weak tail in a microsecond

  12. STUDYING BUSINESS CYCLES SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    N. Servetnyk

    2014-06-01

    Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.

  13. Impact of gamma rays on the Phaffia rhodozyma genome revealed by RAPD-PCR.

    Science.gov (United States)

    Najafi, N; Hosseini, Ramin; Ahmadi, Ar

    2011-12-01

    Phaffia rhodozyma is a red yeast which produces astaxanthin as the major carotenoid pigment. Astaxanthin is thought to reduce the incidence of cancer and degenerative diseases in man. It also enhances the immune response and acts as a free-radical quencher, a precursor of vitamin A, or a pigment involved in the visual attraction of animals as mating partners. The impact of gamma irradiation was studied on the Phaffia rhodozyma genome. Ten mutant strains, designated Gam1-Gam10, were obtained using gamma irradiation. Ten decamer random amplified polymorphic DNA (RAPD) primers were employed to assess genetic changes. Nine primers revealed scorable polymorphisms and a total of 95 band positions were scored; amongst which 38 bands (37.5%) were polymorphic. Primer F with 3 bands and primer J20 with 13 bands produced the lowest and the highest number of bands, respectively. Primer A16 produced the highest number of polymorphic bands (70% polymorphism) and primer F showed the lowest number of polymorphic bands (0% polymorphism). Genetic distances were calculated using Jaccard's coefficient and the UPGMA method. A dendrogram was created using SPSS (version 11.5) and the strains were clustered into four groups. RAPD markers could distinguish between the parental and the mutant strains of P. rhodozyma. RAPD technique showed that some changes had occurred in the genome of the mutated strains. This technique demonstrated the capability to differentiate between the parental and the mutant strains.

  14. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  15. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  16. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  17. Chaos synchronization of coupled hyperchaotic system

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng

    2009-01-01

    Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.

  18. The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred From Radio To High-Energy Gamma-Ray Observations in 2008-2010

    Science.gov (United States)

    2012-01-01

    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multiwavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of 'isolated' flares separated. by approx. 90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from approx. 1 pc to approx. 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.

  19. Gamma-Ray Pulsars: Beaming Evolution, Stats and Unident. EGRET Sources

    OpenAIRE

    Yadigaroglu, I. -A.; Romani, Roger W.

    1994-01-01

    We compute the variation of the beaming fraction with the efficiency of high energy gamma-ray production in the outer gap pulsar model of Romani and Yadigaroglu. This allows us to correct the fluxes observed for pulsars in the EGRET band and to derive a simple estimate of the variation of efficiency with age. Integration of this model over the population of young neutron stars gives the expected number of gamma-ray pulsars along with their distributions in age and distance. This model also sh...

  20. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  1. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Neural Synchronization and Cryptography

    Science.gov (United States)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  3. Targeting engineering synchronization in chaotic systems

    Science.gov (United States)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  4. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  5. Effect of gamma radiation on the structural and optical properties of Polyethyleneterephthalate (PET) polymer

    International Nuclear Information System (INIS)

    Siddhartha; Aarya, Suveda; Dev, Kapil; Raghuvanshi, Suresh Kumar; Krishna, J.B.M.; Wahab, M.A.

    2012-01-01

    Effect of 1.25 MeV gamma radiation on the structural and optical properties of virgin and gamma irradiated (0–2000 kGy) Polyethyleneterephthalate (PET) polymer samples are analyzed using powder X-ray diffractometer and UV–vis spectrophotometer. Diffraction pattern of PET polymer indicates the semi-crystalline in nature whereas the crystallinity increases with increasing dose of irradiation. The remarkable variation in crystallite size is also observed. The absorption and activation energy increase and the optical band gap (E g ) decreases with increasing dose in UV–vis studies. The existence of the maximum absorption, their shifting and broadening due to gamma irradiation in PET polymer are also discussed. - Highlights: ► PET is the transparent polymer and semi- crystalline. ► Crystallinity increases with increasing dose of irradiation of polymer. ► The remarkable variation in crystallite sizes was also observed in polymer. ► The absorption and activation energy increase and where as the optical band gap (E g ) decrease with increasing dose.

  6. Improving mental task classification by adding high frequency band information.

    Science.gov (United States)

    Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping

    2010-02-01

    Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.

  7. Nonlinear Dynamics of Controlled Synchronizations of Manipulator System

    Directory of Open Access Journals (Sweden)

    Qingkai Han

    2014-01-01

    Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

  8. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  9. Ways of making-sense: Local gamma synchronization reveals differences between semantic processing induced by music and language.

    Science.gov (United States)

    Barraza, Paulo; Chavez, Mario; Rodríguez, Eugenio

    2016-01-01

    Similar to linguistic stimuli, music can also prime the meaning of a subsequent word. However, it is so far unknown what is the brain dynamics underlying the semantic priming effect induced by music, and its relation to language. To elucidate these issues, we compare the brain oscillatory response to visual words that have been semantically primed either by a musical excerpt or by an auditory sentence. We found that semantic violation between music-word pairs triggers a classical ERP N400, and induces a sustained increase of long-distance theta phase synchrony, along with a transient increase of local gamma activity. Similar results were observed after linguistic semantic violation except for gamma activity, which increased after semantic congruence between sentence-word pairs. Our findings indicate that local gamma activity is a neural marker that signals different ways of semantic processing between music and language, revealing the dynamic and self-organized nature of the semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Integrated synchronous receiver channel for optical instrumentation applications

    Science.gov (United States)

    Benten, Harold G. P. H.; Ruotsalainen, Tarmo; Maekynen, Anssi J.; Rahkonen, Timo E.; Kopola, Harri K.

    1997-09-01

    A two-channel synchronous receiver circuit for optical instrumentation applications has been designed and implemented. Each receiver channel comprises a.o. transimpedance preamplifier, voltage amplifiers, programmable feedback networks, and a synchronous detector. The function of the channel is to extract the slowly varying information carrying signal from a modulated carrier which is accompanied by relatively high levels of noise. As a whole, the channel can be characterized as a narrow band filter around the frequency of interest. Medical applications include arterial oxygen saturation (SaO2) measurement and dental pulp vitality measurement. In both cases, two optical signals with different frequencies are received by a single photodiode. The measured performance of the optical receiver shows its suitability for the above mentioned applications. Therefore the circuit will be used in a small sized, battery-operated sensor prototype to test the sensing method in a clinical environment. Other applications include the signal processing of optical position-sensitive detectors. A summary of measured receiver channel performance: input reduced noise current spectral density between 0.20 and 0.30 pA/(root)Hz at all relevant frequencies, total programmable channel transimpedance between 7 M(Omega) and 500 M(Omega) , lower -3 dB frequency of at least 50 Hz, upper -3 dB frequency of 40 kHz, maximum voltage swing at the demodulator output of 2.4 V.

  11. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  12. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  13. Gamma synchrony: towards a translational biomarker for the treatment resistant symptoms of schizophrenia

    Science.gov (United States)

    Gandal, Michael J.; Edgar, J. Christopher; Klook, Kerstin; Siegel, Steven J.

    2011-01-01

    The lack of efficacy for antipsychotics with respect to negative symptoms and cognitive deficits is a significant obstacle for the treatment of schizophrenia. Developing new drugs to target these symptoms requires appropriate neural biomarkers that can be investigated in model organisms, be used to track treatment response, and provide insight into pathophysiological disease mechanisms. A growing body of evidence indicates that neural oscillations in the gamma frequency range (30–80 Hz) are disturbed in schizophrenia. Gamma synchrony has been shown to mediate a host of sensory and cognitive functions, including perceptual encoding, selective attention, salience, and working memory – neurocognitive processes that are dysfunctional in schizophrenia and largely refractory to treatment. This review summarizes the current state of clinical literature with respect to gamma band responses (GBRs) in schizophrenia, focusing on resting and auditory paradigms. Next, preclinical studies of schizophrenia that have investigated gamma band activity are reviewed to gain insight into neural mechanisms associated with these deficits. We conclude that abnormalities in gamma synchrony are ubiquitous in schizophrenia and likely reflect an elevation in baseline cortical gamma synchrony (‘noise’) coupled with reduced stimulus-evoked GBRs (‘signal’). Such a model likely reflects hippocampal and cortical dysfunction, as well as reduced glutamatergic signaling with downstream GABAergic deficits, but is probably less influenced by dopaminergic abnormalities implicated in schizophrenia. Finally, we propose that analogous signal-to-noise deficits in the flow of cortical information in preclinical models are useful targets for the development of new drugs that target the treatment-resistant symptoms of schizophrenia. PMID:21349276

  14. Cherenkov oscillator operating at the second band gap of leakage waveguide structures

    Directory of Open Access Journals (Sweden)

    Kyu-Ha Jang

    2016-10-01

    Full Text Available An electromagnetic wave source operating around second band gaps of metallic grating structures is presented. The considered metallic grating structures are not perfect periodic but inhomogeneously structured within a period to have a second band gap where the wavelength is equal to the period of the structures. The radiation mechanism by an electron beam in the structures is different from the well-known Smith-Purcell radiation occurring in perfect periodic grating structures. That is, the radiating wave has a single frequency and the radiation is unidirectional. When the energy of the electron beam is synchronized at the standing wave point in the dispersion curves, strong interaction happens and coherent radiation perpendicular to the grating surface is generated with relatively lower starting oscillation current.

  15. Generalized synchronization between chimera states

    Science.gov (United States)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  16. Outer Synchronization of Complex Networks by Impulse

    International Nuclear Information System (INIS)

    Sun Wen; Yan Zizong; Chen Shihua; Lü Jinhu

    2011-01-01

    This paper investigates outer synchronization of complex networks, especially, outer complete synchronization and outer anti-synchronization between the driving network and the response network. Employing the impulsive control method which is uncontinuous, simple, efficient, low-cost and easy to implement in practical applications, we obtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complex networks. Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme. (general)

  17. Light Curve and SED Modeling of the Gamma-Ray Binary 1FGL J1018.6–5856: Constraints on the Orbital Geometry and Relativistic Flow

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun; Romani, Roger W., E-mail: hjan@chungbuk.ac.kr [Department of Physics/KIPAC, Stanford University, Stanford, CA 94305-4060 (United States)

    2017-04-01

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6−5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explain the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. The model requires an inclination of ∼50° and an orbital eccentricity of ∼0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.

  18. A chimeric path to neuronal synchronization

    Science.gov (United States)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  19. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  20. A chimeric path to neuronal synchronization

    International Nuclear Information System (INIS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  1. THE IBIS SOFT GAMMA-RAY SKY AFTER 1000 INTEGRAL ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A. J.; Hill, A. B. [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Bazzano, A.; Fiocchi, M.; Ubertini, P. [IAPS/INAF (Italy); Malizia, A.; Sguera, V.; Bassani, L. [IASF/INAF, Bologna (Italy); Winkler, C. [ESA-ESTEC, Research and Scientific Support Dept., Keplerlaan 1, 2201 AZ, Noordwijk (Netherlands)

    2016-03-15

    Here we report an all-sky soft gamma-ray source catalog based on IBIS observations performed during the first 1000 orbits of INTEGRAL. The database for the construction of the source list consists of all good-quality data available, from the launch in 2002, up to the end of 2010. This corresponds to ∼110 Ms of scientific public observations, with a concentrated coverage on the Galactic Plane and extragalactic deep exposures. This new catalog includes 939 sources above a 4.5σ significance threshold detected in the 17–100 keV energy band, of which 120 sources represent previously undiscovered soft gamma-ray emitters. The source positions are determined, mean fluxes are provided in two main energy bands, and these are both reported together with the overall source exposure. Indicative levels of variability are provided, and outburst times and durations are given for transient sources. A comparison is made with previous IBIS catalogs and catalogs from other similar missions.

  2. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  3. Chaos synchronization between Chen system and Genesio system

    International Nuclear Information System (INIS)

    Wu Xianyong; Guan Zhihong; Wu Zhengping; Li Tao

    2007-01-01

    This Letter presents two synchronization schemes between two different chaotic systems. Active control synchronization and adaptive synchronization between Chen system and Genesio system are studied, different controllers are designed to synchronize the drive and response systems, active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes

  4. Gamma-induced defect production in ZrO2-Y2O3 crystals with different defectiveness

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Amonov, M.Z.; Rakov, A.F.

    2002-01-01

    Full text: The defectiveness degree of ZrO 2 -Y 2 O 3 crystals depends on stabilizer concentration. The work is aimed at study gamma-induced defect production in crystals with different concentration of stabilizer and defects generated by neutron irradiation. Absorption spectra were measured with Specord M-40. It was found, that after gamma-irradiation of as-grown crystals up to some dose the intensity of absorption band at 420 nm reaches the maximum level of saturation. The dose of saturation depends of the concentration of stabilizer. It means that gamma-radiation does not produce any additional defects of structure. The oxygen vacancies existing in as-grown crystals are filled by the radiation induced electrons. Since the number of oxygen vacancies depends on the stabilizer concentration, then all these vacancies can be occupied by electrons at different gamma-doses. In crystals pre-irradiated with different neutron fluences followed by gamma-irradiation, the intensity of absorption bands at 420 and 530 nm increases in two stages. The gamma-dose of the second stage beginning decreases as the neutron fluence grows. The first stage of the absorption increase is due to developing of vacancies existing in as-grown crystals. The second stage is caused by generation of additional vacancies as the result of non-radiative exciton decay near the existing structure damages. The decrease of the gamma-dose, when the second stage of vacancy accumulation begins, results from the neutron induced structure damage degree

  5. THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Rice University, Department of Physics and Astronomy, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Belfiore, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhattacharyya, B. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M., E-mail: hartog@stanford.edu [Dipartimento di Fisica ' ' M. Merlin' ' dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); and others

    2013-10-01

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  6. The second FERMI large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  7. The second fermi large area telescope catalog of gamma-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bhattacharyya, B.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgay, M.; Burnett, T. H.; Busetto, G.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Camilo, F.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chaty, S.; Chaves, R. C. G.; Chekhtman, A.; Chen, A. W.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cognard, I.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D' Ammando, F.; de Angelis, A.; DeCesar, M. E.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Desvignes, G.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Espinoza, C. M.; Falletti, L.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Freire, P. C. C.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gotthelf, E. V.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hessels, J.; Hewitt, J.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Janssen, G. H.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Johnston, S.; Kamae, T.; Kataoka, J.; Keith, M.; Kerr, M.; Knödlseder, J.; Kramer, M.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Lyne, A. G.; Manchester, R. N.; Marelli, M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; McLaughlin, M. A.; Mehault, J.; Michelson, P. F.; Mignani, R. P.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Pletsch, H. J.; Porter, T. A.; Possenti, A.; Rainò, S.; Rando, R.; Ransom, S. M.; Ray, P. S.; Razzano, M.; Rea, N.; Reimer, A.; Reimer, O.; Renault, N.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Rousseau, R.; Roy, J.; Ruan, J.; Sartori, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Shannon, R.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stappers, B. W.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Theureau, G.; Thompson, D. J.; Thorsett, S. E.; Tibaldo, L.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Venter, C.; Vianello, G.; Vitale, V.; Wang, N.; Weltevrede, P.; Winer, B. L.; Wolff, M. T.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  8. Synchronization of indirectly coupled Lorenz oscillators

    Indian Academy of Sciences (India)

    Synchronization of indirectly coupled Lorenz oscillators: An experimental study. Amit Sharma Manish Dev Shrimali. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 881-889 ... The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev ...

  9. Scientific prospects for spectroscopy of the gamma-ray burst prompt emission with SVOM

    Science.gov (United States)

    Bernardini, M. G.; Xie, F.; Sizun, P.; Piron, F.; Dong, Y.; Atteia, J.-L.; Antier, S.; Daigne, F.; Godet, O.; Cordier, B.; Wei, J.

    2017-10-01

    SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4-150 keV), and a gamma-ray spectrometer (GRM; 15-5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.

  10. A synchronous game for binary constraint systems

    Science.gov (United States)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  11. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    Science.gov (United States)

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  12. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation

    International Nuclear Information System (INIS)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-01-01

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase

  13. Comparative studies on PADC polymeric detector treated by gamma radiation and Ar ion beam

    International Nuclear Information System (INIS)

    El-Saftawy, A.A.; Abdel Reheem, A.M.; Kandil, S.A.; Abd El Aal, S.A.; Salama, S.

    2016-01-01

    Highlights: • The induced defects on PADC polymer by low energy Ar ions bombardments have been investigated and evaluated with respect to gamma rays. • Low energy ions in the range of 3 keV is not examined elsewhere. And offers a competitive irradiation tool to gamma. • The structure, hardness and wear resistance enhanced after irradiation. • The optical properties changed, the optical band gap decreased and the refractive index enhanced. • The used ion source proves efficiency in improving surface properties of PADC polymer in comparison to the obtained results by the powerful energy source, gamma rays. - Abstract: In the present study, a comparative analysis and evaluation of the induced defects in polyallyl diglycol carbonate (PADC) polymeric detector exposed to Ar+ and gamma radiation were made. To get insight into the structure defects due to irradiation, X-ray diffraction (XRD) technique was employed. The PADC surface structure changed after irradiation due to the reduction in the surface crystalline structure and the formation of disordered systems. Also, surface morphology changes were traced using scanning electron microscopy (SEM) and showed minor surface irregularities after gamma irradiation and large changes upon Ar+ irradiation. Additionally, micro-hardness and friction coefficient of the irradiated samples were investigated and found to increase after irradiation. UV–vis spectroscopy was used to estimate the optical band gap energy which considered as the basis for calculating the number of conjugated carbon atoms responsible for the blackening effect and color changes took place over the PADC surface. It was found that as the applied dose increased, the band gap decreased and the number of carbon clusters get larger. The refractive index and the dispersion parameters for the studied polymer were calculated and discussed. Also, the induced defects on the polymer surface which serve as a non-radiative centers resulting in reduced

  14. Comparative studies on PADC polymeric detector treated by gamma radiation and Ar ion beam

    Energy Technology Data Exchange (ETDEWEB)

    El-Saftawy, A.A., E-mail: aama1978@yahoo.com [Accelerators & Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Cairo (Egypt); Abdel Reheem, A.M. [Accelerators & Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Cairo (Egypt); Kandil, S.A. [Cyclotron project, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Cairo (Egypt); Abd El Aal, S.A. [Central Lab. for Elemental & Isotopic Analysis, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Cairo (Egypt); Salama, S. [Radiation Protection & Civil Defense Department, Nuclear Research Center, Atomic Energy Authority, P.O. 13759, Cairo (Egypt)

    2016-05-15

    Highlights: • The induced defects on PADC polymer by low energy Ar ions bombardments have been investigated and evaluated with respect to gamma rays. • Low energy ions in the range of 3 keV is not examined elsewhere. And offers a competitive irradiation tool to gamma. • The structure, hardness and wear resistance enhanced after irradiation. • The optical properties changed, the optical band gap decreased and the refractive index enhanced. • The used ion source proves efficiency in improving surface properties of PADC polymer in comparison to the obtained results by the powerful energy source, gamma rays. - Abstract: In the present study, a comparative analysis and evaluation of the induced defects in polyallyl diglycol carbonate (PADC) polymeric detector exposed to Ar+ and gamma radiation were made. To get insight into the structure defects due to irradiation, X-ray diffraction (XRD) technique was employed. The PADC surface structure changed after irradiation due to the reduction in the surface crystalline structure and the formation of disordered systems. Also, surface morphology changes were traced using scanning electron microscopy (SEM) and showed minor surface irregularities after gamma irradiation and large changes upon Ar+ irradiation. Additionally, micro-hardness and friction coefficient of the irradiated samples were investigated and found to increase after irradiation. UV–vis spectroscopy was used to estimate the optical band gap energy which considered as the basis for calculating the number of conjugated carbon atoms responsible for the blackening effect and color changes took place over the PADC surface. It was found that as the applied dose increased, the band gap decreased and the number of carbon clusters get larger. The refractive index and the dispersion parameters for the studied polymer were calculated and discussed. Also, the induced defects on the polymer surface which serve as a non-radiative centers resulting in reduced

  15. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  16. Efficiently Synchronized Spread-Spectrum Audio Watermarking with Improved Psychoacoustic Model

    Directory of Open Access Journals (Sweden)

    Xing He

    2008-01-01

    Full Text Available This paper presents an audio watermarking scheme which is based on an efficiently synchronized spread-spectrum technique and a new psychoacoustic model computed using the discrete wavelet packet transform. The psychoacoustic model takes advantage of the multiresolution analysis of a wavelet transform, which closely approximates the standard critical band partition. The goal of this model is to include an accurate time-frequency analysis and to calculate both the frequency and temporal masking thresholds directly in the wavelet domain. Experimental results show that this watermarking scheme can successfully embed watermarks into digital audio without introducing audible distortion. Several common watermark attacks were applied and the results indicate that the method is very robust to those attacks.

  17. Frame Synchronization Without Attached Sync Markers

    Science.gov (United States)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  18. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  19. Effect of neutron and gamma radiations on zeolite and zeotype materials

    International Nuclear Information System (INIS)

    Durrani, S.K.

    1994-01-01

    The influence of gamma and (n, gamma)-radiation on the cation exchange and the structure of zeolite and zeotype materials has been studied. Samples were subjected to different doses of gamma-irradiation varying between 0.5 and 10 MGy and Neutron irradiation flux varied from 1.14 x 10/sup 17/ to 3.88 x /sup 10/sup 17/n cm/sup -2/. Structural effects consequent to gamma irradiation were examined by x-ray diffraction, electron scanning micrographs and FTIR measurements. Neutron and gamma-irradiation and not lead by any appreciable change in the structure, however, the displacement cations to locked-in sites results partial reduced barium and caesium uptake. The decrease of the intensities of the absorption bands of the hydroxy-groups reveals that gamma-irradiation has a strong dehydrating influence. THe effects of gamma-radiation on (UO/sub 2/)/sup 2+/ and Am/sup 3+/ uptake into NH/sub 4/-L and NH/sub 4/-SAPO-34 was also observed. K alpha of the uranyl ions increased with increasing pH up to 6.3. At pH > 3.5, the uranyl ions were precipitated and consequently K alpha values were continued to increased. (author)

  20. Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses

    International Nuclear Information System (INIS)

    Elbatal, H.A.; Mandouh, Z.; Zayed, H.; Marzouk, S.Y.; Elkomy, G.; Hosny, A.

    2010-01-01

    Ultraviolet-visible absorption of undoped lithium disilicate glass reveals strong UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within raw materials used for the preparation of this glass. Optical absorption of the CuO-doped samples show an extra broad visible band centered at 780 nm and in high CuO contents samples obvious splitting to several component peaks are observed. This characteristic visible absorption of copper-doped samples is correlated with the presence of Cu +2 ions in octahedral coordination with tetragonal distortion. Gamma irradiation of the prepared samples produces radiation-induced defects, which are related to the sharing of host lithium disilicate glass, trace iron impurities and copper iron in their formation. The visible spectrum of the CuO samples shows shielding effect towards successive gamma irradiation.

  1. Vibrational and chiroptical spectroscopic characterization of gamma-turn model cyclic tetrapeptides containing two beta-Ala residues.

    Science.gov (United States)

    Vass, Elemér; Majer, Zsuzsa; Kohalmy, Krisztina; Hollósi, Miklós

    2010-08-01

    The optical spectroscopic characterization of gamma-turns in solution is uncertain and their distinction from beta-turns is often difficult. This work reports systematic ECD and vibrational circular dichroism (VCD) spectroscopic studies on gamma-turn model cyclic tetrapeptides cyclo(Ala-beta-Ala-Pro-beta-Ala) (1), cyclo(Pro-beta-Ala-Pro-beta-Ala) (2) and cyclo(Ala-beta-Ala-Ala-beta-Ala) (3). Conformational analysis performed at the 6-31G(d)/B3LYP level of theory using an adequate PCM solvent model predicted one predominant conformer for 1-3, featuring two inverse gamma-turns. The ECD spectra in ACN of 1 and 2 are characterized by a negative n-->pi* band near 230 nm and a positive pi-->pi* band below 200 nm with a long wavelength shoulder. The ECD spectra in TFE of 1-3 show similar spectra with blue-shifted bands. The VCD spectra in ACN-d(3) of 1 and 2 show a +/-/+/- amide I sign pattern resulting from four uncoupled vibrations in the case of 1 and a sequence of two positive couplets in the case of 2. A -/+/+/- amide I VCD pattern was measured for 3 in TFE-d(2). All three peptides give a positive couplet or couplet-like feature (+/-) in the amide II region. VCD spectroscopy, in agreement with theoretical calculations revealed that low frequency amide I vibrations (at approximately 1630 cm(-1) or below) are indicative of a C(7) H-bonded inverse gamma-turns with Pro in position 2, while gamma-turns encompassing Ala absorb at higher frequency (above 1645 cm(-1)). Copyright 2010 Wiley-Liss, Inc.

  2. RUN LENGTH SYNCHRONIZATION TECHNIQUES

    Science.gov (United States)

    An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .

  3. Properties of rotational bands at the spin limit in A {approximately} 50, A {approximately} 65 and A {approximately} 110 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Janzen, V.P.; Andrews, H.R.; Ball, G.C. [Chalk River Labs., Ontario (Canada)] [and others

    1996-12-31

    There is now widespread evidence for the smooth termination of rotational bands in A {approx_equal} 110 nuclei at spins of 40-to-50{Dirac_h}s. The characteristics of these bands are compared to those of bands recently observed to high spin in {sup 64}Zn and {sup 48}Cr, studied with the 8{pi} {gamma}-ray spectrometer coupled to the Chalk River miniball charged-particle-detector array.

  4. Complete synchronization of two Chen-Lee systems

    International Nuclear Information System (INIS)

    Sheu, L-J; Chen, J-H; Chen, H-K; Tam, L-M; Lao, S-K; Chen, W-C; Lin, K-T

    2008-01-01

    This study demonstrates that complete synchronization of two Chen-Lee chaotic systems can be easily achieved. The upper bound of the Chen-Lee chaotic system is estimated numerically. A controller is designed to synchronize two chaotic systems. Sufficient conditions for synchronization are obtained using Lyapunov's direct method. Two numerical examples are presented to verify the proposed synchronization approach

  5. Study on direct determination of uranium and efficient equilibrium factor by gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Liu Chunkui

    1990-01-01

    The test principle, test set and surveying methods for conducting gamma-ray spectrometry on conveyer are presented. The conversion coefficient of the spectrometer has been found by using duallinear regression analysis of uranium and radon and their higher and lower bands of gamma-ray spectra. The efficient equilibrium factor can be quickly determined, and the direct determination of uranium in the non-equilibrium condition of uranium and radium can be made

  6. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    Science.gov (United States)

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Synchronization in Quantum Key Distribution Systems

    Directory of Open Access Journals (Sweden)

    Anton Pljonkin

    2017-10-01

    Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.

  8. Characterization of WO3-doped borophosphate glasses by optical, IR and ESR spectroscopic techniques before and after subjecting to gamma irradiation

    International Nuclear Information System (INIS)

    Ouis, M.A.; EI-Batal, H.A.; Azooz, M.A.; Abdelghany, A.M.

    2013-01-01

    Borophosphate glasses containing increasing WO 3 within the doping level (0.16-1.33%) have been prepared and investigated by UV-visible, infrared spectral measurements. These glasses have been exposed to gamma rays with a dose of 8 Mrad for studying the effect of gamma radiation on the combined studied spectra of such glasses. The optical spectrum of undoped borophosphate glass reveals strong UV absorption but with no visible bands. This strong UV absorption is related to the presence of unavoidable trace iron impurities within the chemicals used for the preparation of this borophosphate glass. The WO 3 -doped samples show two additional UV and visible bands at about 380 and 740 nm due to the presence of both W 6+ and W 5+ ions in noticeable content. The calculated induced spectra reveal the appearance of an ultraviolet band at 320 nm and two visible bands centered at 390 and 540 nm which are related to the combined presence of W 6+ and W 5+ ions. The FTIR spectra show vibrational bands due to characteristic constitutional phosphate and borate groups but the phosphate groups are predominant due to the high P 2 O 5 content (50%). The effect of the addition of WO 3 with the dopant level reveals limited changes in the IR spectra. Electron spin resonance (ESR) spectra show specified signals in the high WO 3 content glass but on gamma irradiation the signals are disappeared. This result confirms the decrease of the W 5+ ions by photochemical oxidation to paired W 6+ ions. This result is also observed in optical absorption of WO 3 doped glasses after gamma irradiation through the disappearance of the visible band at 740 nm. (author)

  9. CALET UPPER LIMITS ON X-RAY AND GAMMA-RAY COUNTERPARTS OF GW151226

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M.; Castellini, G. [University of Florence, Via Sansone, 1, I-50019 Sesto, Fiorentino (Italy); Akaike, Y. [Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Asano, K. [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Asaoka, Y. [JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Bagliesi, M. G.; Bigongiari, G.; Bonechi, S.; Brogi, P.; Felice, V. Di [National Institute for Nuclear Physics (INFN), Piazza dei Caprettari, 70, I-00186 Rome (Italy); Binns, W. R.; Buckley, J. H. [Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130-4899 (United States); Cannady, N.; Cherry, M. L.; Guzik, T. G. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Checchia, C.; Collazuol, G. [Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, I-35131 Padova (Italy); Ebisawa, K.; Fuke, H., E-mail: nakahira@crab.riken.jp, E-mail: yoichi.asaoka@aoni.waseda.jp, E-mail: tsakamoto@phys.aoyama.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); and others

    2016-09-20

    We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope ( CALET ) observation. The main instrument of CALET , CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view of ∼2 sr. The CALET gamma-ray burst monitor (CGBM) views ∼3 sr and ∼2 π sr of the sky in the 7 keV–1 MeV and the 40 keV–20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV–1 MeV and 40 keV–20 MeV bands respectively. We place a 90% upper limit of 2 × 10{sup −7} erg cm{sup −2} s{sup −1} in the 1–100 GeV band where CAL reaches 15% of the integrated LIGO probability (∼1.1 sr). The CGBM 7 σ upper limits are 1.0 × 10{sup −6} erg cm{sup −2} s{sup −1} (7–500 keV) and 1.8 × 10{sup −6} erg cm{sup −2} s{sup −1} (50–1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3–5 × 10{sup 49} erg s{sup −1}, which is significantly lower than typical short GRBs.

  10. Cellular Molecular Changes in Nerium oleander (L.) Cell Culture Under Gamma Radiation Stress

    International Nuclear Information System (INIS)

    Salama, I.M.; Abd EL-Megid, M.H.M.

    2017-01-01

    This study was done to analyze the relationship between the various effects of five different doses of gamma ray treatments (control, 0, 100, 200, 300 and 400 rad) on cell suspension culture of Nerium oleander belonging to the family Apocynaceae, Plant samples were collected from Egyptian flora. The five treatments of the plants were characterized by analyzing variability in frozen biomass cell suspension culture of N. oleander through SDS PAGE and peroxidase is ozymes. The electrophorogram showed a total of 36 bands of proteins with molecular weight ranging from 10 to 225 KDa. The protein diversity analysis was done based on the presence or the absence of bands trhus interpreting their relevance. The his togram analysis clearly showed a high degree of diversity a long these five treatments of the plant. The results of electrophoretic patterns of peroxidase is ozymes that was extracted from frozen biomass cell suspension cultures after receiving the different gamma doses revealed remarkable molecular changes in all treatments. These changes in peroxidase isozymes and protein bands indicate the effect of the different irradiation treatments on the gene expiration

  11. Simulating GPS radio signal to synchronize network--a new technique for redundant timing.

    Science.gov (United States)

    Shan, Qingxiao; Jun, Yang; Le Floch, Jean-Michel; Fan, Yaohui; Ivanov, Eugene N; Tobar, Michael E

    2014-07-01

    Currently, many distributed systems such as 3G mobile communications and power systems are time synchronized with a Global Positioning System (GPS) signal. If there is a GPS failure, it is difficult to realize redundant timing, and thus time-synchronized devices may fail. In this work, we develop time transfer by simulating GPS signals, which promises no extra modification to original GPS-synchronized devices. This is achieved by applying a simplified GPS simulator for synchronization purposes only. Navigation data are calculated based on a pre-assigned time at a fixed position. Pseudo-range data which describes the distance change between the space vehicle (SV) and users are calculated. Because real-time simulation requires heavy-duty computations, we use self-developed software optimized on a PC to generate data, and save the data onto memory disks while the simulator is operating. The radio signal generation is similar to the SV at an initial position, and the frequency synthesis of the simulator is locked to a pre-assigned time. A filtering group technique is used to simulate the signal transmission delay corresponding to the SV displacement. Each SV generates a digital baseband signal, where a unique identifying code is added to the signal and up-converted to generate the output radio signal at the centered frequency of 1575.42 MHz (L1 band). A prototype with a field-programmable gate array (FPGA) has been built and experiments have been conducted to prove that we can realize time transfer. The prototype has been applied to the CDMA network for a three-month long experiment. Its precision has been verified and can meet the requirements of most telecommunication systems.

  12. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    Science.gov (United States)

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.

  13. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  14. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  15. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    Science.gov (United States)

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  16. Effects of frustration on explosive synchronization

    Science.gov (United States)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  17. Grid Synchronization of Wind Turbine Converters under Transient Grid Faults using a Double Synchronous Reference Frame PLL

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Rodriguez, P.

    2008-01-01

    This work employs the Double Synchronous Reference Frame PLL (DSRF-PLL) as an effective method for grid synchronization of WT's power converters in the presence of transient faults in the grid. The DSRF-PLL exploits a dual synchronous reference frame voltage characterization, adding a decoupling...... network to a standard SRF-PLL in order to effectively separate the positive- and negative-sequence voltage components in a fast and accurate way. Experimental evaluation of the proposed grid synchronization method and simulations regarding its application to ride through transient faults verify...

  18. 40 CFR 93.128 - Traffic signal synchronization projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Traffic signal synchronization... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented without... include such regionally significant traffic signal synchronization projects. ...

  19. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    OpenAIRE

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  20. Synchronous machines. General principles and structures; Machines synchrones. Principes generaux et structures

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, H.; Feld, G.; Multon, B. [Ecole Normale Superieure de Cachan, Lab. SATIE, Systemes et Applications des Technologies de l' Information et de l' Energie, UMR CNRS 8029, 94 (France); Bernard, N. [Institut Universitaire de Saint-Nazaire, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 44 - Nantes (France)

    2005-10-01

    Power generation is mainly performed by synchronous rotating machines which consume about a third of the world primary energy. Electric motors used in industrial applications convert about two thirds of this electricity. Therefore, synchronous machines are present everywhere at different scales, from micro-actuators of few micro-watts to thermo-mechanical production units of more than 1 GW, and represent a large variety of structures which have in common the synchronism between the frequency of the power supply currents and the relative movement of the fixed part with respect to the mobile part. Since several decades, these machines are more and more used as variable speed motors with permanent magnets. The advances in power electronics have contributed to the widening of their use in various applications with a huge range of powers. This article presents the general principle of operation of electromechanical converters of synchronous type: 1 - electromechanical conversion in electromagnetic systems: basic laws and elementary structures (elementary structure, energy conversion cycle, case of a system working in linear magnetic regime), rotating fields structure (magneto-motive force and Ferraris theorem, superficial air gap permeance, air gap magnetic induction, case of a permanent magnet inductor, magnetic energy and electromagnetic torque, conditions for reaching a non-null average torque, application to common cases); 2 - constitution, operation modes and efficiency: constitution and main types of synchronous machines, efficiency - analysis by similarity laws (other expression of the electromagnetic torque, thermal limitation in permanent regime, scale effects, effect of pole pairs number, examples of efficiencies and domains of use), operation modes. (J.S.)

  1. Chaos synchronization based on contraction principle

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2007-01-01

    This paper introduces contraction principle. Based on such a principle, a novel scheme is proposed to synchronize coupled systems with global diffusive coupling. A rigorous sufficient condition on chaos synchronization is derived. As an example, coupled Lorenz systems with nearest-neighbor diffusive coupling are investigated, and numerical simulations are given to validate the proposed synchronization approach

  2. Magnetic phase diagrams from non-collinear canonical band theory

    DEFF Research Database (Denmark)

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets....... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  3. Generalized synchronization in discrete maps. New point of view on weak and strong synchronization

    International Nuclear Information System (INIS)

    Koronovskii, Alexey A.; Moskalenko, Olga I.; Shurygina, Svetlana A.; Hramov, Alexander E.

    2013-01-01

    In the present Letter we show that the concept of the generalized synchronization regime in discrete maps needs refining in the same way as it has been done for the flow systems Koronovskii et al. [Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys Rev E 2011;84:037201]. We have shown that, in the general case, when the relationship between state vectors of the interacting chaotic maps are considered, the prehistory must be taken into account. We extend the phase tube approach to the systems with a discrete time coupled both unidirectionally and mutually and analyze the essence of the generalized synchronization by means of this technique. Obtained results show that the division of the generalized synchronization into the weak and the strong ones also must be reconsidered. Unidirectionally coupled logistic maps and Hénon maps coupled mutually are used as sample systems.

  4. Preparation and luminescence properties of Eu{sup 2+}doped {gamma}-aluminum oxynitride transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fang; Yuan, Xianyuan; Wang, Shaohua [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai (China); Wang, Shiwei, E-mail: swwang51@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai (China)

    2013-01-15

    Eu{sup 2+} doped {gamma}-AlON transparent ceramics have been prepared by the solid-state reaction sintering method. The influences of Eu concentration on both strength, transparency and luminescence properties of the as-prepared samples were discussed. The strength and transparency decreased as Eu content increased. Two bands were observed in the emission spectrum of each sample. One (B{sub 1}) was narrow and centered at around 401 nm, the other (B{sub 2}) was comparatively broader, and the location of its center as well as the intensity ratio of peak values of B{sub 2} to that of B{sub 1} varied with Eu content. - Highlights: Black-Right-Pointing-Pointer Eu{sub 2}O{sub 3} was an effective sintering aid in fabrication of transparent {gamma}-AlON ceramics. Black-Right-Pointing-Pointer Eu-doped transparent {gamma}-AlON ceramics exhibited broad emission spectra composed of two bands. Black-Right-Pointing-Pointer The relationship between crystal position of Eu{sup 2+} ions and luminescent properties was given.

  5. Injuries and medical issues in synchronized Olympic sports.

    Science.gov (United States)

    Mountjoy, Margo

    2009-01-01

    Spectators of the Olympic Games can enjoy a wide variety of sports, including strength, team, timed, endurance, and artistic sports. In the Olympic program, there are two synchronized events: synchronized diving and synchronized swimming. The precision of the synchronization of the athlete's movements and skills is an added feature of entertainment. Synchronized athletes have additional training requirements to perfect the synchronization of their skills. The physical demands on the athlete from the repetition of training required for the perfection of synchronization result in injuries unique to these sports. Although both traumatic and overuse injuries occur, overuse injuries are more common. As these disciplines are artistic, judged sports, these athletes also are susceptible to eating disorders and the female athlete triad. This article reviews the training regimen of these athletes and outlines the injuries and health concerns that are common in the synchronized sports.

  6. Traffic signal synchronization.

    Science.gov (United States)

    Huang, Ding-wei; Huang, Wei-neng

    2003-05-01

    The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.

  7. Injuries in synchronized skating.

    Science.gov (United States)

    Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M

    2006-06-01

    Synchronized skating is a relatively new competitive sport and data about injuries in this discipline are lacking. Therefore the purpose of this study was to investigate the frequency and pattern of acute and overuse injuries in synchronized skaters. Before and during the World Synchronized Skating Championship 2004, a questionnaire inquiring about the frequency of injuries in this skating discipline was given to 23 participating teams. A total of 514 women and 14 men senior skaters completed the questionnaires (100 % response). Two hundred and eighteen (42.4 %) female and 6 (42.9 %) male skaters had suffered from acute injuries during their synchronized skating career. As some skaters had suffered from more than one injury, the total number of acute injuries in females was 398 and in males 14. In female skaters 19.8 % of acute injuries were head injuries, 7.1 % trunk, 33.2 % upper, and 39.9 % lower extremity injuries. In male skaters 14.3 % were head injuries, 28.6 % upper, and 57.1 % lower extremity injuries, with no report of trunk injuries. Sixty-nine female and 2 male skaters had low back problems and 112 female and 2 male skaters had one or more overuse syndromes during their skating career. Of 155 overuse injuries in female skaters, 102 (65.8 %) occurred during their figure skating career, while 53 injuries (34.2 %) only occurred when they skated in synchronized skating teams. In male skaters, out of 5 overuse injuries, 4 (80 %) occurred in their figure skating career, while 1 (20 %) occurred during their synchronized skating career. Out of the total of 412 injuries, 338 (82 %) occurred during on-ice practice, while 74 (18 %) happened during off-ice training. Ninety-one (26.9 %) acute injures occurred while practicing individual elements, and 247 (73.1 %) on-ice injuries occurred while practicing different team elements. We conclude that injuries in synchronized skating should be of medical concern due to an increasing number of acute injuries, especially

  8. Measures of Quantum Synchronization in Continuous Variable Systems

    Science.gov (United States)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  9. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  10. Adaptive H∞ Chaos Anti-synchronization

    International Nuclear Information System (INIS)

    Ahn, Choon Ki

    2010-01-01

    A new adaptive H ∞ anti-synchronization (AHAS) method is proposed for chaotic systems in the presence of unknown parameters and external disturbances. Based on the Lyapunov theory and linear matrix inequality formulation, the AHAS controller with adaptive laws of unknown parameters is derived to not only guarantee adaptive anti-synchronization but also reduce the effect of external disturbances to an H ∞ norm constraint. As an application of the proposed AHAS method, the H ∞ anti-synchronization problem for Genesio–Tesi chaotic systems is investigated. (general)

  11. Occipital Alpha and Gamma Oscillations Support Complementary Mechanisms for Processing Stimulus Value Associations.

    Science.gov (United States)

    Marshall, Tom R; den Boer, Sebastiaan; Cools, Roshan; Jensen, Ole; Fallon, Sean James; Zumer, Johanna M

    2018-01-01

    Selective attention is reflected neurally in changes in the power of posterior neural oscillations in the alpha (8-12 Hz) and gamma (40-100 Hz) bands. Although a neural mechanism that allows relevant information to be selectively processed has its advantages, it may lead to lucrative or dangerous information going unnoticed. Neural systems are also in place for processing rewarding and punishing information. Here, we examine the interaction between selective attention (left vs. right) and stimulus's learned value associations (neutral, punished, or rewarded) and how they compete for control of posterior neural oscillations. We found that both attention and stimulus-value associations influenced neural oscillations. Whereas selective attention had comparable effects on alpha and gamma oscillations, value associations had dissociable effects on these neural markers of attention. Salient targets (associated with positive and negative outcomes) hijacked changes in alpha power-increasing hemispheric alpha lateralization when salient targets were attended, decreasing it when they were being ignored. In contrast, hemispheric gamma-band lateralization was specifically abolished by negative distractors. Source analysis indicated occipital generators of both attentional and value effects. Thus, posterior cortical oscillations support both the ability to selectively attend while at the same time retaining the ability to remain sensitive to valuable features in the environment. Moreover, the versatility of our attentional system to respond separately to salient from merely positively valued stimuli appears to be carried out by separate neural processes reflected in different frequency bands.

  12. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants.

    Science.gov (United States)

    Reyes, Zenaida C; Claure, Nelson; Tauscher, Markus K; D'Ugard, Carmen; Vanbuskirk, Silvia; Bancalari, Eduardo

    2006-10-01

    Prolonged mechanical ventilation is associated with lung injury in preterm infants. In these infants, weaning from synchronized intermittent mandatory ventilation may be delayed by their inability to cope with increased respiratory loads. The addition of pressure support to synchronized intermittent mandatory ventilation can offset these loads and may facilitate weaning. The purpose of this work was to compare synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in weaning from mechanical ventilation and the duration of supplemental oxygen dependency in preterm infants with respiratory failure. Preterm infants weighing 500 to 1000 g at birth who required mechanical ventilation during the first postnatal week were randomly assigned to synchronized intermittent mandatory ventilation or synchronized intermittent mandatory ventilation plus pressure support. In both groups, weaning followed a set protocol during the first 28 days. Outcomes were assessed during the first 28 days and until discharge or death. There were 107 infants enrolled (53 synchronized intermittent mandatory ventilation plus pressure support and 54 synchronized intermittent mandatory ventilation). Demographic and perinatal data, mortality, and morbidity did not differ between groups. During the first 28 days, infants in the synchronized intermittent mandatory ventilation plus pressure support group reached minimal ventilator settings and were extubated earlier than infants in the synchronized intermittent mandatory ventilation group. Total duration of mechanical ventilation, duration of oxygen dependency, and oxygen need at 36 weeks' postmenstrual age alone or combined with death did not differ between groups. However, infants in synchronized intermittent mandatory ventilation plus pressure support within the 700- to 1000-g birth weight strata had a shorter oxygen dependency. The results of this study suggest that the addition of

  13. Spontaneous group synchronization of movements and respiratory rhythms.

    Directory of Open Access Journals (Sweden)

    Erwan Codrons

    Full Text Available We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms.

  14. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  15. [Electroencephalographic characteristic of cognitive-specific alerting attention in verbal learning--III: Localized characteristics of EEG spatial synchronization].

    Science.gov (United States)

    Dan'ko, S G; Kachalova, L M; Solov'eva, M L

    2010-01-01

    Electroencephalograms (EEG) were recorder in 19 standard derivations in 88 healthy subjects, while they were in the states: rest with eyes open; memorization (learning) of verbal bilingual semantic pairs (Latin and Russian languages); the retrieval of the rote information from memory (control). We compared estimates of EEG coherence in these states for the frequency bands theta (4-7 Hz), alpha-1 (7-10 Hz), alpha-2 (10-13 Hz), beta-1 (13-18 Hz), beta-2 (18-30 Hz), gamma (30-40 Hz). When compared with the rest most strongly expressed: for memorization a decrease of coherence in the pairs of derivations from frontal and central areas of the cortex in the EEG frequency bands; for retrieval an increase of coherence in interhemispheric derivation pairs of pariental-occipital region in majority of the frequency bands. For the retrieval also increases of coherence in the beta2 and gamma bands, along with coherence decreases at low frequencies take place in pairs formed by derivations from the parieto-occipital region with derivations from the frontal and the central ones. Dynamics of EEG coherence in comparisons of memorization and retrieval from the rest and each are expressed significantly more in the interhemispheric and crosshemispheric pairs of derivations than in the intrahemispheric pairs. Revealed topographic specificity of the dynamics of EEG coherence by changing the states is considered in terms of ideas about cognitive-specific forms of sustained goal-directed mental attention.

  16. Vestibular hearing and neural synchronization.

    Science.gov (United States)

    Emami, Seyede Faranak; Daneshi, Ahmad

    2012-01-01

    Objectives. Vestibular hearing as an auditory sensitivity of the saccule in the human ear is revealed by cervical vestibular evoked myogenic potentials (cVEMPs). The range of the vestibular hearing lies in the low frequency. Also, the amplitude of an auditory brainstem response component depends on the amount of synchronized neural activity, and the auditory nerve fibers' responses have the best synchronization with the low frequency. Thus, the aim of this study was to investigate correlation between vestibular hearing using cVEMPs and neural synchronization via slow wave Auditory Brainstem Responses (sABR). Study Design. This case-control survey was consisted of twenty-two dizzy patients, compared to twenty healthy controls. Methods. Intervention comprised of Pure Tone Audiometry (PTA), Impedance acoustic metry (IA), Videonystagmography (VNG), fast wave ABR (fABR), sABR, and cVEMPs. Results. The affected ears of the dizzy patients had the abnormal findings of cVEMPs (insecure vestibular hearing) and the abnormal findings of sABR (decreased neural synchronization). Comparison of the cVEMPs at affected ears versus unaffected ears and the normal persons revealed significant differences (P < 0.05). Conclusion. Safe vestibular hearing was effective in the improvement of the neural synchronization.

  17. Effect of gamma irradiation on the microstructure and post-mortem anaerobic metabolism of bovine muscle

    International Nuclear Information System (INIS)

    Yook, H.-S.; Lee, J.-W.; Lee, K.-H.; Kim, M.-K.; Song, C.-W.; Byun, M.-W.

    2001-01-01

    Experiments were performed to study the effect of gamma irradiation on morphological properties and post-mortem metabolism in bovine M. sternomandibularis with special reference to ultrastructure, shear force, pH and ATP breakdown. The shortening of sarcomere was not observed in gamma-irradiated muscle, however, the disappearance of M-line and of A- and I-bands was perceptible. During cold storage, the destruction of muscle bundles was faster in the gamma-irradiated muscle than in the non-irradiated with a dose-dependent manner. The same is true for the post mortem pH drop and ATP breakdown. So, experimental results confirmed that the anaerobic metabolism and morphological properties are noticeably affected by gamma irradiation in beef

  18. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  19. Three types of generalized synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junzhong [School of Science, Beijing University of Posts and Telecomunications, Beijing 100876 (China)]. E-mail: jzyang@bupt.edu.cn; Hu Gang [China Center for Advanced Science and Technology (CCAST) (World Laboratory), PO Box 8730, Beijing 100080 (China) and Department of Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: ganghu@bnu.edu.cn

    2007-02-05

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated.

  20. Three types of generalized synchronization

    International Nuclear Information System (INIS)

    Yang Junzhong; Hu Gang

    2007-01-01

    The roles played by drive and response systems on generalized chaos synchronization (GS) are studied. And the generalized synchronization is classified, based on these roles, to three distinctive types: the passive GS which is mainly determined by the response system and insensitive to the driving signal; the resonant GS where phase synchronization between the drive and response systems is preceding GS; and the interacting GS where both the drive and response have influences on the status of GS. The features of these GS types and the possible changes from one types to others are investigated

  1. High-energy emission from gamma-ray bursts

    International Nuclear Information System (INIS)

    Nolan, P.L.; Share, G.H.; Matz, S.; Chupp, E.L.; Forrest, D.J.; Rieger, E.

    1984-01-01

    We discuss broad-band continuum spectroscopy of 17 gamma-ray bursts above 0.3 MeV. The spectra were fitted by 3 trial functions, none of which provided an adequate fit to all the spectra. Most were too hard for a thermal bremsstarhlung function. Harder functional forms, such as thermal synchrotron or power-law, provide better fits for most of the spectra. The strong emission observed above 1 MeV raises some interesting theoretical questions

  2. Dosimetry of mixed gamma - neutron fluxes in the active zone of working reactor and gamma-flux after quenching

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Zinov'ev, V.; Ibragimova, E.M.; Muminov, M.I.

    2006-01-01

    Full text: For carrying out experiments in the channels of nuclear reactor, it is necessary to know the distribution of neutron flux and the intensity of accompanying gamma-radiation both in the working and quenched regimes. Dosimetric parameter of transparent dielectrics is based on the effect of monotonous changing of optical absorption or luminescence under neutrons and/or gamma-radiation. While the radioactivity induced in an element monitor is proportional only to a neutron fluence beginning from a threshold energy. Therefore the aim of this work was to determine the values of neutron and gamma-component fluxes separately and evaluate the contribution of each into the defect production in dielectrics. We used very pure quartz glass of KU-1 type, produced in Russian State Optical Institute by fusion from SiCl 4 in the mixed flow of O 2 +H 2 (impurities of Cl and OH up to 10 -2 % and the rest - below 10 -4 %), SiO 2 glasses with 30 % Ba, and also pure Ni wire. Since under irradiation in the working reactor samples were undergone mixed neutron and gamma fluxes, we suggested determination of intensity of gamma-radiation from radio-nuclides (products of uranium fission) after quenching the reactor by the current of ionization chamber and glass dosimeters. Samples of SiO 2 -BaO together with Ni monitors were irradiated for 1 hour in 18 channels of the active zone of the working reactor both in the sealed ampoules and in the contact with water of the 1-st cooling circuit at 40 deg C. The linear dependence of the induced optical density on the absorbed dose of n 0 + γ-radiation was obtained. Ni -monitors not sensitive to γ-radiation gained the induced radioactivity proportional to the absorbed energy of neutron flux above 1 MeV. Neutron fluxes in the 18 channels varied from 9.53·10 11 to 1.21·10 13 cm -2 s -1 corresponding to fluences from 3.43·10 15 to 4.3·10 16 cm -2 . Optical density of band 215 nm ascertained to E ' - center, which is ≡ Si * near oxygen

  3. Synchronous Half-Wave Rectifier

    Science.gov (United States)

    Rippel, Wally E.

    1989-01-01

    Synchronous rectifying circuit behaves like diode having unusually low voltage drop during forward-voltage half cycles. Circuit particularly useful in power supplies with potentials of 5 Vdc or less, where normal forward-voltage drops in ordinary diodes unacceptably large. Fabricated as monolithic assembly or as hybrid. Synchronous half-wave rectifier includes active circuits to attain low forward voltage drop and high rectification efficiency.

  4. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    Science.gov (United States)

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The interactive effect of entomopathogenic nematode, Steinernema carpocapsae (Weiser) and gamma radiation ori callosobruchus maculatus (F.) and their biochemical Effects

    International Nuclear Information System (INIS)

    EI-Orabi, M.N.; Slwfei, D.M.Y.; Amer, A.M.

    2007-01-01

    Cowpea weevil, Callosobruchus maculatus (F.) adults were infected with entomopathogenic nematodes, Steinernema carpocapsae (Weiser) for evaluating their potential for suppressing this insect pest. Morality percentage of un-irradiated C. maculatus infected with irradiated nematodes decreased at higher doses of gamma irradiation. The results generally Indicated that the reduction of mortality was directly related to gamma irradiation. The results indicated that infestation intensity decreased at higher doses of gamma irradiation when irradiated nematodes infected the irradiated or non-irradiated C. maculatus. Protein content of irradiated C. maculatus adults infected with nematodes showed a slight decrease by increasing radiation dose and time elapsed from infection. Comparing the protein bands at different time intervals for all tested dosage used showed absence of some bands and reduction in the intensity of the others

  6. Introduction to media synchronization (Mediasync)

    NARCIS (Netherlands)

    M.A. Montagud Climent (Mario); P.S. Cesar Garcia (Pablo Santiago); F. Boronat (Fernando); A.J. Jansen (Jack)

    2018-01-01

    textabstractMedia synchronization is a core research area in multimedia systems. This chapter introduces the area by providing key definitions, classifications, and examples. It also discusses the relevance of different types of media synchronization to ensure satisfactory Quality of Experience

  7. Sensorless Control of Interior Permanent Magnet Synchronous Motor in Low-Speed Region Using Novel Adaptive Filter

    Directory of Open Access Journals (Sweden)

    Lisi Tian

    2016-12-01

    Full Text Available This paper presents a novel position and speed estimation method for low-speed sensorless control of interior permanent-magnet synchronous machines (IPMSMs. The parameter design of the position and speed estimator is based on the sampled current rather than the motor electrical parameters. The proposed method not only simplifies the parameter design, it enables the estimator to work normally even in the condition that the electrical parameters are uncertain or varied. The adaptive filters are adopted to extract the desired high frequency current. The structure and corresponding transfer function are analyzed. To address the shortage of insufficient stop-band attenuation, the structure of the adaptive filter is modified to provide suitable bandwidth and stop-band attenuation simultaneously. The effectiveness of the proposed sensorless control strategy has been verified by simulations and experiments.

  8. An Optimal Reactive Power Control Strategy for a DFIG-Based Wind Farm to Damp the Sub-Synchronous Oscillation of a Power System

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    2014-05-01

    Full Text Available This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.

  9. High-energy emissions from the gamma-ray binary LS 5039

    Energy Technology Data Exchange (ETDEWEB)

    Takata, J.; Leung, Gene C. K.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Tam, P. H. T.; Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y., E-mail: takata@hku.hk, E-mail: gene930@connect.hku.hk, E-mail: hrspksc@hku.hk [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of)

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1 GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.

  10. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line

    Directory of Open Access Journals (Sweden)

    Reda M. Gaafar

    2016-06-01

    Full Text Available Gamma radiation is a very effective tool for inducing genetic variation in characters of many plants. Black seeds of M2 mutant were obtained after exposure of an Egyptian cowpea cultivar (Kaha 1 to a low dose of gamma rays. Segregation of seed coat color, weight of 100 seeds and seed eye pattern of the black seeds of this mutant line were further examined in this study. Four colors were observed for seed coat in the M3 plants ranging from cream to reddish brown and three eye patterns were distinguished from each other. SDS–PAGE of the seed storage proteins showed 18 protein bands; five of these bands disappeared in the seeds of M3 plants compared to M2 and M0 controls while other 5 protein bands were specifically observed in seeds of M3 plants. PCR analysis using twelve ISSR primers showed 47 polymorphic and 8 unique amplicons. The eight unique amplicons were characteristic of the cream coat color and brown wide eye pattern (M03-G10 while the polymorphic bands were shared by 6 coat-color groups. A PCR fragment of 850 bp was amplified, using primer HB-12, in M3-G04 which showed high-100 seed weight. These results demonstrated the mutagenic effects of gamma rays on seed coat color, weight of 100 seeds and eye pattern of cowpea M3 mutant plants.

  11. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  12. Synchronization of ;light-sensitive; Hindmarsh-Rose neurons

    Science.gov (United States)

    Castanedo-Guerra, Isaac; Steur, Erik; Nijmeijer, Henk

    2018-04-01

    The suprachiasmatic nucleus is a network of synchronized neurons whose electrical activity follows a 24 h cycle. The synchronization phenomenon (among these neurons) is not completely understood. In this work we study, via experiments and numerical simulations, the phenomenon in which the synchronization threshold changes under the influence of an external (bifurcation) parameter in coupled Hindmarsh-Rose neurons. This parameter ;shapes; the activity of the individual neurons the same way as some neurons in the brain react to light. We corroborate this experimental finding with numerical simulations by quantifying the amount of synchronization using Pearson's correlation coefficient. In order to address the local stability problem of the synchronous state, Floquet theory is applied in the case where the dynamic systems show continuous periodic solutions. These results show how the sufficient coupling strength for synchronization between these neurons is affected by an external cue (e.g. light).

  13. Distributed Synchronization in Communication Networks

    Science.gov (United States)

    2018-01-24

    synchronization. Secondly, it is known that identical oscillators with sin() coupling functions are guaranteed to synchronize in phase on a complete...provide sufficient conditions for phase- locking , i.e., convergence to a stable equilibrium almost surely. We additionally find conditions when the

  14. Symbol Synchronization for Diffusion-Based Molecular Communications.

    Science.gov (United States)

    Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert

    2017-12-01

    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol

  15. Synchronization of coupled metronomes on two layers

    Science.gov (United States)

    Zhang, Jing; Yu, Yi-Zhen; Wang, Xin-Gang

    2017-12-01

    Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.

  16. Chaos synchronization based on intermittent state observer

    Institute of Scientific and Technical Information of China (English)

    Li Guo-Hui; Zhou Shi-Ping; Xu De-Ming

    2004-01-01

    This paper describes the method of synchronizing slave to the master trajectory using an intermittent state observer by constructing a synchronizer which drives the response system globally tracing the driving system asymptotically. It has been shown from the theory of synchronization error-analysis that a satisfactory result of chaos synchronization is expected under an appropriate intermittent period and state observer. Compared with continuous control method,the proposed intermittent method can target the desired orbit more efficiently. The application of the method is demonstrated on the hyperchaotic Rossler systems. Numerical simulations show that the length of the synchronization interval rs is of crucial importance for our scheme, and the method is robust with respect to parameter mismatch.

  17. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  18. Synchronization of Coupled Neurons Controlled by a Pacemaker

    International Nuclear Information System (INIS)

    Li Mei-Sheng; Zhang Hong-Hui; Zhao Yong; Shi Xia

    2011-01-01

    We investigate synchronization of Hindmarsh—Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh—Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system. (general)

  19. Small-world networks exhibit pronounced intermittent synchronization

    Science.gov (United States)

    Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen

    2017-11-01

    We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.

  20. Global chaos synchronization with channel time-delay

    International Nuclear Information System (INIS)

    Jiang Guoping; Zheng Weixing; Chen Guanrong

    2004-01-01

    This paper addresses a practical issue in chaos synchronization where there is a time-delay in the receiver as compared with the transmitter. A new synchronization scheme and a general criterion for global chaos synchronization are proposed and developed from the approach of unidirectional linear error feedback coupling with time-delay. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criterion under which the global chaos synchronization of the time-delay coupled systems is achieved

  1. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  2. X-ray emission from open star clusters with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Ojha, D.K.; Schnopper, H.W.

    1998-01-01

    The study of X-ray emission from co-evolving populations of stars in open dusters is extremely important for understanding the dynamo activity among the stars. With this objective, we propose to observe a number of open clusters in the X-ray and UV bands using SPECTRUM-Rontgen-Gamma. The high...... throughput of SPECTRUM-Rontgen-Gamma will help detect main sequence stars like Sun in middle-aged and old clusters. We will study the relationships between various parameters - age, rotation, abundance, UBV colors, X-ray luminosity, coronal temperature etc. X-ray spectra of younger and brighter populations...

  3. Full state hybrid projective synchronization in hyperchaotic systems

    International Nuclear Information System (INIS)

    Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei

    2009-01-01

    In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.

  4. Synchronizing noisy nonidentical oscillators by transient uncoupling

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  5. Synchronization in complex networks with a modular structure.

    Science.gov (United States)

    Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won

    2006-03-01

    Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.

  6. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Yao eWang

    2016-01-01

    Full Text Available Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism.Key word: Electroencephalography, Neurofeedback, Autism Spectrum Disorder, Gamma activity, EEG bands’ ratios

  7. Business cycle synchronization in Europe

    DEFF Research Database (Denmark)

    Bergman, Ulf Michael; Jonung, Lars

    2011-01-01

    In this paper we study business cycle synchronization in the three Scandinavian countries Denmark, Norway and Sweden prior to, during and after the Scandinavian Currency Union 1873–1913. We find that the degree of synchronization tended to increase during the currency union, thus supporting earlier...

  8. Digital synchronization and communication techniques

    Science.gov (United States)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  9. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan

    2007-01-01

    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  10. Structural damage detection robust against time synchronization errors

    International Nuclear Information System (INIS)

    Yan, Guirong; Dyke, Shirley J

    2010-01-01

    Structural damage detection based on wireless sensor networks can be affected significantly by time synchronization errors among sensors. Precise time synchronization of sensor nodes has been viewed as crucial for addressing this issue. However, precise time synchronization over a long period of time is often impractical in large wireless sensor networks due to two inherent challenges. First, time synchronization needs to be performed periodically, requiring frequent wireless communication among sensors at significant energy cost. Second, significant time synchronization errors may result from node failures which are likely to occur during long-term deployment over civil infrastructures. In this paper, a damage detection approach is proposed that is robust against time synchronization errors in wireless sensor networks. The paper first examines the ways in which time synchronization errors distort identified mode shapes, and then proposes a strategy for reducing distortion in the identified mode shapes. Modified values for these identified mode shapes are then used in conjunction with flexibility-based damage detection methods to localize damage. This alternative approach relaxes the need for frequent sensor synchronization and can tolerate significant time synchronization errors caused by node failures. The proposed approach is successfully demonstrated through numerical simulations and experimental tests in a lab

  11. Pilotless Frame Synchronization Using LDPC Code Constraints

    Science.gov (United States)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  12. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  13. Design and Performance of Soft Gamma-ray Detector for NeXT Mission

    Science.gov (United States)

    Tajima, H.; Kamae, T.; Madejski, G.; Takahashi, T.; Nakazawa, K.; Watanabe, S.; Mitani, T.; Tanaka, T.; Fukazawa, Y.; Kataoka, J.; Ikagawa, T.; Kokubun, M.; Makishima, K.; Terada, Y.; Nomachi, M.; Tashiro, M.

    The Soft Gamma-ray Detector (SGD) on board NeXT (Japanese future high energy astrophysics mission) is a Compton telescope with narrow field of view, which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and Cadmium Telluride (CdTe) detectors. It can detect photons in an energy band 0.05-1 MeV at a background level of 5×10-7 counts/s/cm2/keV; the silicon layers are required to improve the performance at a lower energy band (development of key technologies to realize the SGD; high quality CdTe, low noise front-end VLSI and bump bonding technology. Energy resolutions of 1.7 keV (FWHM) for CdTe pixel detectors and 1.1 keV for silicon strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD.

  14. Communicating via robust synchronization of chaotic lasers

    International Nuclear Information System (INIS)

    Lopez-Gutierrez, R.M.; Posadas-Castillo, C.; Lopez-Mancilla, D.; Cruz-Hernandez, C.

    2009-01-01

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  15. Communicating via robust synchronization of chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, R.M. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C. [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico); FIME, Autonomous University of Nuevo Leon (UANL), Pedro de Alba, S.N., Cd. Universitaria, San Nicolas de los Garza, NL (Mexico); Lopez-Mancilla, D. [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de los Lagos, Universidad de Guadalajara (CULagos-UdeG), Enrique Diaz de Leon s/n, 47460 Lagos de Moreno, Jal. (Mexico); Cruz-Hernandez, C. [Electronics and Telecommunications Department, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carret. Tij-Ens., 22860 Ensenada, B.C. (Mexico)], E-mail: ccruz@cicese.mx

    2009-10-15

    In this paper, the robust synchronization problem for coupled chaotic Nd:YAG lasers is addressed. We resort to complex systems theory to achieve chaos synchronization. Based on stability theory, it is shown that the state trajectories of the perturbed error synchronization are ultimately bounded, provided the unperturbed synchronization error system is exponentially stable, and some conditions on the bounds of the perturbation terms are satisfied. So that, encoding, transmission, and decoding in chaotic optical communications are presented. We analyze the transmission and recovery of encrypted information when parameter mismatches are considered. Computer simulations are provided to show the effectiveness of this robustness synchronization property, we present the encrypted transmission of image messages, and we show that, the transmitted image is faithfully recovered.

  16. Adaptive Synchronization of Robotic Sensor Networks

    OpenAIRE

    Yıldırım, Kasım Sinan; Gürcan, Önder

    2014-01-01

    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...

  17. DAMPE: A gamma and cosmic ray observatory in space

    Science.gov (United States)

    D'Urso, D.; Dampe Collaboration

    2017-05-01

    DAMPE (DArk Matter Particle Explorer) is one of the five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS). Launched on December 17th 2015 at 08:12 Beijing time, it is taking data into a sun-synchronous orbit, at the altitude of 500km. The main scientific objective of DAMPE is to detect electrons and photons in the range 5GeV-10TeV with unprecedented energy resolution, in order to identify possible Dark Matter signatures. It will also measure the flux of nuclei up to 100TeV with excellent energy resolution. The satellite is equipped with a powerful space telescope for high energy gamma-ray, electron and cosmic rays detection. It consists of a plastic scintillator strips detector (PSD) that serves as anti-coincidence detector, a silicon-tungsten tracker (STK), a BGO imaging calorimeter of about 32 radiation lengths, and a neutron detector. With its excellent photon detection capability and its detector performances (at 100GeV energy resolution ˜1% , angular resolution ˜0.1° , the DAMPE mission is well placed to make strong contributions to high-energy gamma-ray observations: it covers the gap between space and ground observation; it will allow to detect a line signature in the gamma-ray spectrum, if present, in the sub-TeV to TeV region; it will allow a high precision gamma-ray astronomy. A report on the mission goals and status will be discussed, together with in-orbit first data coming from space.

  18. Development of aerial gamma radiation survey system III

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Sakamoto, Ryuichi; Saito, Kimiaki; Tsutsumi, Masahiro; Moriuchi, Shigeru; Miyasaka, Satoshi.

    1985-01-01

    An aerial gamma-ray survey system using a helicopter has been developed since 1980 in order to perform quick gamma-ray survey covering a wide area. To form a line in the chain of the development, a series of flight measurements were conducted in Watarase reservoir, Tochigi prefecture, in which artificial gamma-ray fields were realized using 60 Co (100 and 400 mCi) and 137 Cs (100 and 300 mCi) point sources located on the ground. For the purpose of obtaining gamma-ray pulse height spectra in the field, 6 sets of NaI(Tl) scientillation detectors were prepared. These sets of detectors consist of ones for evaluation with high accuracy as the standard, for intercomparison with other authors' results, and for practical use. Two sets of them were boarded for each flight considering the exposure rate level and detector's sensitivity. The flight measurements were performed in a space of 20 m to 500 m in altitude, and 0 m to 500 m in horizontal distance from the source. The experimental results of the spatial gamma-ray distribution for each gamma-ray field satisfactorily agreed with calculational results by Monte Carlo method. Throughout this experiment, characteristics of this survey system and detectors were clarified, and versatile data processing and analysis code was completed. Also, a method for subtraction of background exposure rate in a field including artificial radiation component was discussed using energy band information, and the coefficients for this method were determined. These data obtained are expected to be used as widely applicable data not only for the interpretation of measured value, but also for analysis of environmental gamma-ray field. (author)

  19. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  20. Inter-band coincidences in the superdeformed well of {sup 190}Hg from gammasphere

    Energy Technology Data Exchange (ETDEWEB)

    Crowell, B.; Carpenter, M.P.; Janssens, R.V.F. [and others

    1995-08-01

    Very few experimental observables are ordinarily accessible for superdeformed (SD) states in the A {approximately} 150 and A {approximately} 190 regions. The gamma-decay out of the superdeformed bands usually proceeds directly to the normally deformed states, through highly fragmented pathways, making it difficult to determine the spins, parities and excitation energies of the SD states. The in-band E2 transitions are so collective (2 x 10{sup 3} single-particle units in the A {approximately} 190 region) that it is typically impossible to detect any of the competing M1 and E1 transitions between states in the SD well.

  1. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A.; Byun, Do-Young; Kang, Sincheol; Kim, Soon-Wook; Kino, Motoki [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Trippe, Sascha [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Miyazaki, Atsushi [Japan Space Forum, 3-2-1, Kandasurugadai, Chiyoda-ku, Tokyo 101-0062 Japan (Japan); Kim, Jeong-Sook, E-mail: sslee@kasi.re.kr [National Astronomical Observatory of Japan, 2211 Osawa, Mitaka, Tokyo 1818588 (Japan)

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).

  2. Perfect synchronization in networks of phase-frustrated oscillators

    Science.gov (United States)

    Kundu, Prosenjit; Hens, Chittaranjan; Barzel, Baruch; Pal, Pinaki

    2017-11-01

    Synchronizing phase-frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first- and second-order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase-frustrated environment.

  3. Synchronization Analysis of the Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth

    2009-01-01

    is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...... taken as an indication of the existence of chaos. It is used in the paper as a measure of performance for the tendency of the system to synchronize, that is, the higher value of the maximum Lyapunov exponent the lower risk for synchronization....

  4. Price synchronization in retailing: some empirical evidence

    Directory of Open Access Journals (Sweden)

    Marcelo Resende

    2014-06-01

    Full Text Available The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.

  5. Synchronization of Estrus in Cattle: A Review

    Directory of Open Access Journals (Sweden)

    R. Islam

    2011-06-01

    Full Text Available Numbers of estrus synchronization programmes are available in cattle based on the use of various hormones like progesterone, prostaglandin F2a and their various combinations with other hormones like estrogen and Gonadotrophin Releasing hormone (GnRH. Selection of appropriate estrus synchronization protocol should be made on the basis of management capabilities and expectations of the farmer. Synchronization of oestrus can be accomplished with the injection of prostaglandin F2a alone, but it needs proper detection of the ovarian status of the cows as prostaglandin F2a is active in only functional corpus luteum in between 8 to 17 days of estrous cycle. Progesterone may reduce fertility up to 14 percent, but short time progesterone exposure (less than 14 days is beneficial. Addition of GnRH in the Progesterone or Prostaglandin based synchronization programme is helpful for more synchrony in estrus as GnRH may be helpful to synchronize the oestrous cycle in delayed pubertal heifers and post partum cows (Post partum anoestrum and further a single, timed artificial insemination is possible with this method. New methods of synchronizing estrus in which the GnRH-PG protocol is preceded by progesterone treatment offer effective synchronization of estrus with high fertility. [Vet. World 2011; 4(3.000: 136-141

  6. Synchronization of coupled nonidentical multidelay feedback systems

    International Nuclear Information System (INIS)

    Hoang, Thang Manh; Nakagawa, Masahiro

    2007-01-01

    We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model

  7. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  8. Impulsive synchronization of Chen's hyperchaotic system

    International Nuclear Information System (INIS)

    Haeri, Mohammad; Dehghani, Mahsa

    2006-01-01

    In this Letter the impulsive synchronization of the Chen's hyperchaotic systems is discussed. Some new and sufficient conditions on varying impulsive distance are established in order to guarantee the synchronizabillity of the systems using the synchronization method. In particular, some simple conditions are derived in synchronizing the systems by equal impulsive distances. Two illustrative examples are provided to show the feasibility and the effectiveness of the proposed method. The boundaries of the stable regions are also estimated

  9. A True Open-Loop Synchronization Technique

    DEFF Research Database (Denmark)

    Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.

    2016-01-01

    Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....

  10. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    Science.gov (United States)

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small

  11. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria.

    Science.gov (United States)

    Michiels, Wim; Nijmeijer, Henk

    2009-09-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties

  12. Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings.

    Directory of Open Access Journals (Sweden)

    Youbo You

    Full Text Available As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36 and a nearby non-meridian point (NAP would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz, beta (13-30 Hz and gamma (30-48 Hz bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend

  13. Collective motions and band structures in A = 60 to 80, even--even nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.; Robinson, R.L.; Ramayya, A.V.

    1978-01-01

    Evidence for and the theoretical understanding of the richness of the collective band structures as illustrated by at least seven bands seen in levels of 68 Ge, 74 Se are reviewed. The experimental data on even-even nuclei in the A = 60 to 80 region have now revealed a wide variety of collective bands with different structures. The even parity yrast cascades alone are seen to involve multiple collective structures. In addition to the ground-state bands, strong evidence is presented for both neutron and proton rotation-aligned bands built on the same orbital, (g 9 / 2 ) 2 , in one nucleus. Several other nuclei also show the crossing of RAL bands around the 8 + level in this region. Evidence continues to be strong experimentally and supported theoretically that there is some type of shape transition and shape coexistence occurring now both in the Ge and Se isotopes around N = 40. Negative parity bands with odd and even spins with very collective nature are seen in several nuclei to high spin. These bands seem best understood in the RAL model. Very collective bands with ΔI = 1, extending from 2 + to 9 + are seen with no rotation-alignment. The purity of these bands and their persistence to such high spin establish them as an independent collective mode which is best described as a gamma-type vibration band in a deformed nucleus. In addition to all of the above bands, new bands are seen in 76 Kr and 74 Se. The nature of these bands is not presently known. 56 references

  14. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  15. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    Science.gov (United States)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  16. Synchronization of hyperchaotic oscillators via single unidirectional chaotic-coupling

    International Nuclear Information System (INIS)

    Zou Yanli; Zhu Jie; Chen Guanrong; Luo Xiaoshu

    2005-01-01

    In this paper, synchronization of two hyperchaotic oscillators via a single variable's unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism

  17. Two novel synchronization criterions for a unified chaotic system

    International Nuclear Information System (INIS)

    Tao Chaohai; Xiong Hongxia; Hu Feng

    2006-01-01

    Two novel synchronization criterions are proposed in this paper. It includes drive-response synchronization and adaptive synchronization schemes. Moreover, these synchronization criterions can be applied to a large class of chaotic systems and are very useful for secure communication

  18. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    Science.gov (United States)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  19. Synchronization of Rikitake chaotic attractor using active control

    International Nuclear Information System (INIS)

    Vincent, U.E.

    2005-01-01

    Using synchronization technique based on control theory, we design an active controller which enables the synchronization of two identical Rikitake two-disc dynamo systems. Numerical simulations are used to show the robustness of the active control scheme in synchronizing coupled Rikitake dynamical systems. On the sequential application of the active control, transitions from temporary phase locking (TPL) state to complete synchronization state were found

  20. Broad Band Observations of Gravitationally Lensed Blazar during a Gamma-Ray Outburst

    Directory of Open Access Journals (Sweden)

    Julian Sitarek

    2016-09-01

    Full Text Available QSO B0218+357 is a gravitationally lensed blazar located at a cosmological redshift of 0.944. In July 2014 a GeV flare was observed by Fermi-LAT, triggering follow-up observations with the MAGIC telescopes at energies above 100 GeV. The MAGIC observations at the expected time of arrival of the trailing component resulted in the first detection of QSO B0218+357 in Very-High-Energy (VHE, >100 GeV gamma rays. We report here the observed multiwavelength emission during the 2014 flare.

  1. Studies of P(VDF-HFP) copolymer applied to gamma dosimetry

    International Nuclear Information System (INIS)

    Liz, Otavio S.R.; Medeiros, Adriana S.

    2011-01-01

    When polymeric materials are irradiated by ionizing radiation, the effects are roughly divided into two types, degradation (chain scission) and chain link (crosslinking). These effects are normally identified by spectroscopic analysis in the UV-Vis and Infrared region. Recently, the intensities of optical absorption in the ultraviolet visible region (273 nm) due to radio-induction of conjugated C = C bonds in P(VDF-TrFE) copolymers have been successfully used for high dose gamma dosimetry, for doses ranging from 0.1 to 200 kGy. In this context, there is now an interest to conduct a similar systematic investigation of another fluorinated copolymer of PVDF, the poly(fluorovinylidene-co-hexafluoropropylene) [P(VDF-HFP)], not only in the UV-VIS region but also in the near and mid-infrared region. The copolymer used was obtained by randomly adding 10% molar of [CF2- CF-CF3] monomers in the [CH2-CF2]n main chain of PVDF homopolymer. Preliminary results have shown that the irradiated copolymer has characteristic absorption bands originated by irradiation in the FTIR spectrum. It was found that the 1852 cm -1 band, associated with C = O bonds, have a linear correlation with the absorbed dose for doses ranging from 10 to 750 kGy. The absorption band at 1729 cm -1 , associated to chain oxidation (C = O), has shown a similar behavior and can be used to measure doses from 100 to 1000 kGy. These results indicate that the FTIR absorption bands of gamma irradiated P (VDF-HFP) have great potential to be used in high dose dosimetry, without the addition of dyes. (author)

  2. Studies of P(VDF-HFP) copolymer applied to gamma dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Liz, Otavio S.R.; Medeiros, Adriana S. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    When polymeric materials are irradiated by ionizing radiation, the effects are roughly divided into two types, degradation (chain scission) and chain link (crosslinking). These effects are normally identified by spectroscopic analysis in the UV-Vis and Infrared region. Recently, the intensities of optical absorption in the ultraviolet visible region (273 nm) due to radio-induction of conjugated C = C bonds in P(VDF-TrFE) copolymers have been successfully used for high dose gamma dosimetry, for doses ranging from 0.1 to 200 kGy. In this context, there is now an interest to conduct a similar systematic investigation of another fluorinated copolymer of PVDF, the poly(fluorovinylidene-co-hexafluoropropylene) [P(VDF-HFP)], not only in the UV-VIS region but also in the near and mid-infrared region. The copolymer used was obtained by randomly adding 10% molar of [CF2- CF-CF3] monomers in the [CH2-CF2]n main chain of PVDF homopolymer. Preliminary results have shown that the irradiated copolymer has characteristic absorption bands originated by irradiation in the FTIR spectrum. It was found that the 1852 cm{sup -1} band, associated with C = O bonds, have a linear correlation with the absorbed dose for doses ranging from 10 to 750 kGy. The absorption band at 1729 cm{sup -1}, associated to chain oxidation (C = O), has shown a similar behavior and can be used to measure doses from 100 to 1000 kGy. These results indicate that the FTIR absorption bands of gamma irradiated P (VDF-HFP) have great potential to be used in high dose dosimetry, without the addition of dyes. (author)

  3. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    Science.gov (United States)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  4. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    Science.gov (United States)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  5. Mixed synchronization in chaotic oscillators using scalar coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sourav K.; Hens, Chittaranjan [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Ghosh, Dibakar, E-mail: drghosh_math@yahoo.co.in [Department of Mathematics, University of Kalyani, West Bengal 741235 (India); Dana, Syamal K. [CSIR – Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)

    2012-07-23

    We report experimental evidence of mixed synchronization in two unidirectionally coupled chaotic oscillators using a scalar coupling. In this synchronization regime, some of the state variables may be in complete synchronization while others may be in anti-synchronization state. We extended the theory by using an adaptive controller with an updating law based on Lyapunov function stability to include parameter fluctuation. Using the scheme, we implemented a cryptographic encoding for digital signal through parameter modulation. -- Highlights: ► We provided experimental evidence of the mixed synchronization scheme while other methods are mostly theoretical nature. ► We numerically studied adaptive mixed synchronization when the parameters are not completely known using scalar coupling. ► We proposed a secure communication system where three digital messages are transmitted using parameter modulation.

  6. Detection of generalized synchronization using echo state networks

    Science.gov (United States)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  7. Synchronization of delay-coupled nonlinear oscillators : an approach based on the stability analysis of synchronized equilibria

    NARCIS (Netherlands)

    Michiels, W.; Nijmeijer, H.

    2009-01-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the

  8. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  9. Synchronization and comparison of Lifelog audio recordings

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai

    2008-01-01

    as a preprocessing step to select and synchronize recordings before further processing. The two methods perform similarly in classification, but fingerprinting scales better with the number of recordings, while cross-correlation can offer sample resolution synchronization. We propose and investigate the benefits...... of combining the two. In particular we show that the combination allows sample resolution synchronization and scalability....

  10. The First FERMI-LAT Gamma-Ray Burst Catalog

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy great than (20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above approximately 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  11. A Spatiotemporal-Chaos-Based Cryptosystem Taking Advantage of Both Synchronous and Self-Synchronizing Schemes

    Science.gov (United States)

    Lü, Hua-Ping; Wang, Shi-Hong; Li, Xiao-Wen; Tang, Guo-Ning; Kuang, Jin-Yu; Ye, Wei-Ping; Hu, Gang

    2004-06-01

    Two-dimensional one-way coupled map lattices are used for cryptography where multiple space units produce chaotic outputs in parallel. One of the outputs plays the role of driving for synchronization of the decryption system while the others perform the function of information encoding. With this separation of functions the receiver can establish a self-checking and self-correction mechanism, and enjoys the advantages of both synchronous and self-synchronizing schemes. A comparison between the present system with the system of advanced encryption standard (AES) is presented in the aspect of channel noise influence. Numerical investigations show that our system is much stronger than AES against channel noise perturbations, and thus can be better used for secure communications with large channel noise.

  12. Matrix transformation of Fibonacci band matrix on generalized $bv$-space and its dual spaces

    Directory of Open Access Journals (Sweden)

    Anupam Das

    2018-07-01

    Full Text Available In this paper we introduce a new sequence space $bv(\\hat{F}$ by using the Fibonacci band matrix $\\hat{F}.$ We also establish a few inclusion relations concerning this space and determine its $\\alpha-,\\beta-,\\gamma-$duals. Finally we characterize some matrix classes on the space $bv(\\hat{F}.$

  13. Development of Compton gamma-ray sources at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Anderson, S. G.; Ebbers, C. A.; Gibson, D. J.; Hartemann, F. V.; Marsh, R. A.; Messerly, M. J.; Prantil, M. A.; Wu, S.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East avenue, Livermore, CA 94550 (United States)

    2012-12-21

    Compact Compton scattering gamma-ray sources offer the potential of studying nuclear photonics with new tools. The optimization of such sources depends on the final application, but generally requires maximizing the spectral density (photons/eV) of the gamma-ray beam while simultaneously reducing the overall bandwidth on target to minimize noise. We have developed an advanced design for one such system, comprising the RF drive, photoinjector, accelerator, and electron-generating and electron-scattering laser systems. This system uses a 120 Hz, 250 pC, 2 ps, 0.35 mm mrad electron beam with 250 MeV maximum energy in an X-band accelerator scattering off a 150 mJ, 10 ps, 532 nm laser to generate 5 Multiplication-Sign 10{sup 10} photons/eV/s/Sr at 0.5 MeV with an overall bandwidth of less than 1%. The source will be able to produce photons up to energies of 2.5 MeV. We also discuss Compton scattering gamma-ray source predictions given by numerical codes.

  14. Gamma irradiation effects on poly(vinylidene fluoride) films

    International Nuclear Information System (INIS)

    Ribeiro, Geise; Zen, Heloisa A.; Geraldes, Adriana N.; Souza, Camila P.; Parra, Duclerc F.; Lima, Luis Filipe C.P.; Lugao, Ademar B.

    2009-01-01

    In this work, the properties of Poly(vinylidene fluoride) PVDF films after exposing to gamma radiation at different doses (5, 10 and 15 kGy) were investigated. PVDF is a semicrystalline polymer that shows good properties in terms of chemical, thermal and electrical stabilities. The gamma radiation is a convenient and effective way of modification perfluorinated and partially fluorinated polymers such as PVDF. The properties of the pristine and irradiated PVDF films were studied by infrared spectroscopy, thermal analysis (TGA and DSC) and mechanical measurements at room temperature and at melting temperature of the PVDF. The infrared spectra of the irradiated PVDF samples do not present significant alterations in the absorption bands at all irradiated doses. The results obtained by thermal analysis indicate that the radiation does not alter significantly the decomposition temperature of the pristine PVDF film. Tensile strength measurements at room temperature before and after exposition to gamma radiation showed decrease of elongation at rupture in relation of pristine PVDF, suggesting that the radiation caused the crosslinking or chain scission of the PVDF film. (author)

  15. Guide to Synchronization of Video Systems to IRIG Timing

    Science.gov (United States)

    1992-07-01

    and industry. 1-2 CHAPTER 2 SYNCHRONISATION Before delving into the details of synchronization , a review is needed of the reasons for synchronizing ... Synchronization of Video Systems to IRIG Timing Optical Systems Group Range Commanders Council White Sands Missile Range, NM 88002-5110 RCC Document 456-92 Range...This document addresses a broad field of video synchronization to IRIG timing with emphasis on color synchronization . This document deals with

  16. Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia

    Directory of Open Access Journals (Sweden)

    Tao eZhang

    2013-04-01

    Full Text Available The theta-gamma cross-frequency coupling (CFC in hippocampus was reported to reflect memory process. In this study, we measured the CFC of hippocampal local field potentials (LFPs in a two-vessel occlusion (2VO rat model, combined with both amplitude and phase properties and associated with short and long-term plasticity indicating the memory function. Male Wistar rats were used and a 2VO model was established. STP and LTP were recorded in hippocampal CA3-CA1 pathway after LFPs were collected in both CA3 and CA1. Based on the data of relative power spectra and phase synchronization, it suggested that both the amplitude and phase coupling of either theta or gamma rhythm were involved in modulating the neural network in 2VO rats. In order to determine whether the CFC was also implicated in neural impairment in 2VO rats, the coupling of CA3 theta–CA1 gamma was measured by both phase-phase coupling (n:m phase synchronization and phase-amplitude coupling. The attenuated CFC strength in 2VO rats implied the impaired neural communication in the coordination of theta-gamma entraining process. Moreover, compared with modulation index (MI a novel algorithm named cross frequency conditional mutual information (CF-CMI, was developed to focus on the coupling between theta phase and the phase of gamma amplitude. The results suggest that the reduced CFC strength probably attributed to the disruption of the phase of CA1 gamma envelop. In conclusion, it implied that the phase coupling and CFC of hippocampal theta and gamma played an important role in supporting functions of neural network. Furthermore, synaptic plasticity on CA3-CA1 pathway was reduced in line with the decreased CFC strength from CA3 to CA1. It partly supported our hypothesis that directional CFC indicator might probably be used as a measure of synaptic plasticity.

  17. Quantum synchronization in an optomechanical system based on Lyapunov control.

    Science.gov (United States)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  18. A Semantics of Synchronization.

    Science.gov (United States)

    1980-09-01

    suggestion of having very hungry philosophers. One can easily imagine the complexity of the equivalent implementation using semaphores . Synchronization types...Edinburgh, July 1978. [STAR79] Stark, E.W., " Semaphore Primitives and Fair Mutual Exclusion," TM-158, Laboratory for Computer Science, M.I.T., Cambridge...AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION .(U) .C SEP 80 C A SEAQUIST N00015-75

  19. EEG theta and gamma responses to semantic violations in online sentence processing

    NARCIS (Netherlands)

    Hald, L.A.; Bastiaansen, M.C.M.; Hagoort, P.

    2006-01-01

    We explore the nature of the oscillatory dynamics in the EEG of subjects reading sentences that contain a semantic violation. More specifically, we examine whether increases in theta (≈3–7 Hz) and gamma (around 40 Hz) band power occur in response to sentences that were either semantically correct or

  20. Spontaneous Gamma Activity in Schizophrenia.

    Science.gov (United States)

    Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M

    2015-08-01

    A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30

  1. Protecting Clock Synchronization: Adversary Detection through Network Monitoring

    Directory of Open Access Journals (Sweden)

    Elena Lisova

    2016-01-01

    Full Text Available Nowadays, industrial networks are often used for safety-critical applications with real-time requirements. Such applications usually have a time-triggered nature with message scheduling as a core property. Scheduling requires nodes to share the same notion of time, that is, to be synchronized. Therefore, clock synchronization is a fundamental asset in real-time networks. However, since typical standards for clock synchronization, for example, IEEE 1588, do not provide the required level of security, it raises the question of clock synchronization protection. In this paper, we identify a way to break synchronization based on the IEEE 1588 standard, by conducting a man-in-the-middle (MIM attack followed by a delay attack. A MIM attack can be accomplished through, for example, Address Resolution Protocol (ARP poisoning. Using the AVISPA tool, we evaluate the potential to perform a delay attack using ARP poisoning and analyze its consequences showing both that the attack can, indeed, break clock synchronization and that some design choices, such as a relaxed synchronization condition mode, delay bounding, and using knowledge of environmental conditions, can make the network more robust/resilient against these kinds of attacks. Lastly, a Configuration Agent is proposed to monitor and detect anomalies introduced by an adversary performing attacks targeting clock synchronization.

  2. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    Ward, C.R.

    2002-01-01

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  3. Synchronicity, instant messaging, and performance among financial traders.

    Science.gov (United States)

    Saavedra, Serguei; Hagerty, Kathleen; Uzzi, Brian

    2011-03-29

    Successful animal systems often manage risk through synchronous behavior that spontaneously arises without leadership. In critical human systems facing risk, such as financial markets or military operations, our understanding of the benefits associated with synchronicity is nascent but promising. Building on previous work illuminating commonalities between ecological and human systems, we compare the activity patterns of individual financial traders with the simultaneous activity of other traders--an individual and spontaneous characteristic we call synchronous trading. Additionally, we examine the association of synchronous trading with individual performance and communication patterns. Analyzing empirical data on day traders' second-to-second trading and instant messaging, we find that the higher the traders' synchronous trading is, the less likely they are to lose money at the end of the day. We also find that the daily instant messaging patterns of traders are closely associated with their level of synchronous trading. This result suggests that synchronicity and vanguard technology may help traders cope with risky decisions in complex systems and may furnish unique prospects for achieving collective and individual goals.

  4. Chaos synchronizations of chaotic systems via active nonlinear control

    International Nuclear Information System (INIS)

    Huang, J; Xiao, T J

    2008-01-01

    This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective

  5. Early warning for VHE gamma-ray flares with the ARGO-YBJ detector

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B. [Dipartimento di Fisica dell' Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte Sant' Angelo, via Cinthia, 80126 Napoli (Italy); Bernardini, P. [Dipartimento di Fisica dell' Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Bi, X.J. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Bleve, C. [Dipartimento di Fisica dell' Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Bolognino, I. [Dipartimento di Fisica Nucleare e Teorica dell' Universita di Pavia, via Bassi 6, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, via della Vasca Navale 84, 00146 Roma (Italy); Calabrese Melcarne, A.K. [Istituto Nazionale di Fisica Nucleare - CNAF, Viale Berti-Pichat 6/2, 40127 Bologna (Italy); Camarri, P. [Dipartimento di Fisica dell' Universita di Roma ' Tor Vergata' , via della Ricerca Scientifica 1, 00133 Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Cao, Z. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); and others

    2011-12-11

    Detecting and monitoring emissions from flaring gamma-ray sources in the very-high-energy (VHE, > 100 GeV) band is a very important topic in gamma-ray astronomy. The ARGO-YBJ detector is characterized by a high duty cycle and a wide field of view. Therefore, it is particularly capable of detecting flares from extragalactic objects. Based on fast reconstruction and analysis, real-time monitoring of 33 selected VHE extragalactic sources is implemented. Flares exceeding a specific threshold are reported timely, hence enabling the follow-up observation of these objects using more sensitive detectors, such as Cherenkov telescopes.

  6. Quantum synchronization of a driven self-sustained oscillator.

    Science.gov (United States)

    Walter, Stefan; Nunnenkamp, Andreas; Bruder, Christoph

    2014-03-07

    Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.

  7. Synchronization of modified Colpitts oscillators with structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kammogne, Soup Tewa; Fotsin, H B, E-mail: hbfotsin@yahoo.fr [Laboratoire d' electronique, Departement de Physique, Faculte des sciences, Universite de Dschang, PO Box 067, Dschang (Cameroon)

    2011-06-01

    This paper deals with the problem of the synchronization of uncertain modified Colpitts oscillators. Considering the effect of external disturbances on the system parameters and nonlinear control inputs, a robust controller based on Lyapunov theory is designed for the output synchronization between a slave system and a master system in order to ensure the synchronization of uncertain modified Colpitts oscillator systems. This approach was chosen not only to guarantee a stable synchronization but also to reduce the effect of external perturbation. Nonadaptive feedback synchronization with only one controller for the system is investigated. Numerical simulations are performed to confirm the efficiency of the proposed control scheme.

  8. Stroboscope Based Synchronization of Full Frame CCD Sensors.

    Science.gov (United States)

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-04-07

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  9. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    Science.gov (United States)

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  10. Impulsive generalized function synchronization of complex dynamical networks

    International Nuclear Information System (INIS)

    Zhang, Qunjiao; Chen, Juan; Wan, Li

    2013-01-01

    This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results

  11. Stroboscope Based Synchronization of Full Frame CCD Sensors

    OpenAIRE

    Shen, Liang; Feng, Xiaobing; Zhang, Yuan; Shi, Min; Zhu, Dengming; Wang, Zhaoqi

    2017-01-01

    The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD) consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equi...

  12. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li Zan; Braun Torsten; Dimitrova Desislava

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper we are particularly interested in GPS based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Ou...

  13. Methodology for GPS Synchronization Evaluation with High Accuracy

    OpenAIRE

    Li, Zan; Braun, Torsten; Dimitrova, Desislava Cvetanova

    2015-01-01

    Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. O...

  14. Study of fission product {gamma} spectra in the band 2-500 keV; Etude du spectre {gamma} des produits de fission dans la bande 0-500 keV

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the study of the {gamma} spectrum of uranium fission products, particular attention has been given in this note to the part of the spectrum ranging between 0 and 500 keV after a given pile operating programme and the evolution of this spectrum with time after a pile shutdown has been followed. The study be related to the fission products which appear in the pile as a whole or on those produced in a uranium sample assumed to have been placed in the pile. The latter case has been envisaged here. The spectrum determination is based partly on theory and partly on experiment. The pile operating conditions are different in the two cases, which widens the range of validity of the spectra traced here. (author) [French] Dans l'etude du spectre {gamma} des produits de fission de l'uranium, on s'est plus particulierement interesse dans la presente note a determiner la partie du spectre qui s'etend entre 0 et 500 keV, au bout d'un fonctionnement donne de pile, et a suivre l'evolution de ce spectre dans le temps apres un arret de pile. L'etude peut porter sur les produits de fission apparus dans toute la pile ou sur ceux apparus dans un echantillon d'uranium suppose place en pile. C'est ce dernier cas que nous avons envisage. La determination du spectre s'appuie sur une partie theorique et sur une partie experimentale. Les fonctionnements de pile choisis sont differents dans les deux cas, ce qui permet d'etendre la gamme de validite des spectres traces ici. (auteur)

  15. Study of fission product {gamma} spectra in the band 2-500 keV; Etude du spectre {gamma} des produits de fission dans la bande 0-500 keV

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the study of the {gamma} spectrum of uranium fission products, particular attention has been given in this note to the part of the spectrum ranging between 0 and 500 keV after a given pile operating programme and the evolution of this spectrum with time after a pile shutdown has been followed. The study be related to the fission products which appear in the pile as a whole or on those produced in a uranium sample assumed to have been placed in the pile. The latter case has been envisaged here. The spectrum determination is based partly on theory and partly on experiment. The pile operating conditions are different in the two cases, which widens the range of validity of the spectra traced here. (author) [French] Dans l'etude du spectre {gamma} des produits de fission de l'uranium, on s'est plus particulierement interesse dans la presente note a determiner la partie du spectre qui s'etend entre 0 et 500 keV, au bout d'un fonctionnement donne de pile, et a suivre l'evolution de ce spectre dans le temps apres un arret de pile. L'etude peut porter sur les produits de fission apparus dans toute la pile ou sur ceux apparus dans un echantillon d'uranium suppose place en pile. C'est ce dernier cas que nous avons envisage. La determination du spectre s'appuie sur une partie theorique et sur une partie experimentale. Les fonctionnements de pile choisis sont differents dans les deux cas, ce qui permet d'etendre la gamme de validite des spectres traces ici. (auteur)

  16. $\\gamma$-$\\gamma$ and $\\gamma$-p events at high energies

    CERN Document Server

    Schuler, Gerhard A.; Gerhard A Schuler; Torbjorn Sjostrand

    1994-01-01

    A real photon has a complicated nature, whereby it may remain unresolved or fluctuate into a vector meson or a perturbative q-qbar pair. Based on this picture, we previously presented a model for gamma-p events that is based on the presence of three main event classes: direct, VMD and anomalous. In gamma-gamma events, a natural generalization gives three-by-three combinations of the nature of the two incoming photons, and thus six distinct event classes. The properties of these classes are constrained by the choices already made, in the gamma-p model, of cut-off procedures and other aspects. It is therefore possible to predict the energy-dependence of the cross section for each of the six components separately. The total cross section thus obtained is in good agreement with data, and also gives support to the idea that a simple factorized ansatz with a pomeron and a reggeon term can be a good approximation. Event properties undergo a logical evolution from p-p to gamma-p to gamma-gamma events, with larger cha...

  17. Gamma power in rural Pakistani children: Links to executive function and verbal ability

    Directory of Open Access Journals (Sweden)

    Amanda R. Tarullo

    2017-08-01

    Full Text Available Children in low- and middle-income countries are at high risk of cognitive deficits due to environmental deprivation that compromises brain development. Despite the high prevalence of unrealized cognitive potential, very little is known about neural correlates of cognition in this population. We assessed resting EEG power and cognitive ability in 105 highly disadvantaged 48-month-old children in rural Pakistan. An increase in EEG power in gamma frequency bands (21–30 Hz and 31–45 Hz was associated with better executive function. For girls, EEG gamma power also related to higher verbal IQ. This study identifies EEG gamma power as a neural marker of cognitive function in disadvantaged children in low- and middle-income countries. Elevated gamma power may be a particularly important protective factor for girls, who may experience greater deprivation due to gender inequality.

  18. OMEGA SYSTEM SYNCHRONIZATION.

    Science.gov (United States)

    TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES

  19. Synchronization of mobile chaotic oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  20. Synchronization of mobile chaotic oscillator networks

    International Nuclear Information System (INIS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-01-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  1. Synchronization of mobile chaotic oscillator networks.

    Science.gov (United States)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  2. Bodily Synchronization Underlying Joke Telling

    Directory of Open Access Journals (Sweden)

    R. C. Schmidt

    2014-08-01

    Full Text Available Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock-knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily dance occurs during structured conversation interactions and that this dance is constructed from a set of rhythms associated with the nested behavioral structure of the interaction.

  3. Multivalued synchronization by Poincaré coupling

    Science.gov (United States)

    Ontañón-García, L. J.; Campos-Cantón, E.; Femat, R.; Campos-Cantón, I.; Bonilla-Marín, M.

    2013-10-01

    This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master-slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed.

  4. On synchronized regions of discrete-time complex dynamical networks

    International Nuclear Information System (INIS)

    Duan Zhisheng; Chen Guanrong

    2011-01-01

    In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.

  5. Evidence for octupole softness of the superdeformed shape from band interactions in sup 193,4 Hg

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D.M.; Riley, M.A.; Alderson, A.; Ali, I.; Fallon, P.; Forsyth, P.D.; Hanna, F.; Mullins, S.M.; Roberts, J.W.; Sharpey-Schafer, J.F.; Twin, P.J. (Liverpool Univ. (UK). Oliver Lodge Lab.); Bengtsson, T. (Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics); Bentley, M.A.; Bruce, A.M.; Simpson, J. (Science and Engineering Research Council, Daresbury (UK). Daresbury Lab.); Nazarewicz, W. (Liverpool Univ. (UK). Oliver Lodge Lab. Politechnika Warszawska (Poland). Inst. Fizyki); Poynter, R.; Regan, P.; Wadsworth, R. (York Univ. (UK). Dept. of Physics); Satula, W. (Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej); Sletten, G. (Niels Bohr Inst., Roskilde (Denmark). Tandem Accelerator Lab.); Wyss, R. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden))

    1990-12-24

    Three superdeformed (SD) bands have been observed in {sup 194}Hg and four (or five ) SD bands in {sup 193}Hg using the {sup 150}Nd+{sup 48}Ca reaction. All bands except for two in {sup 193}Hg show a steady increase in dynamical moment of inertia J{sup (2)} with rotational frequency. The two exceptional bands form a classical pair of strongly interacting bands. It is suggested that the strong interaction between the bands is caused by a softness to octupole deformation. Evidence is found for the existence of dipole transitions connecting bands of opposite signature in {sup 193}Hg. The strengths of these transitions suggest that they are probably E1 supporting the importance of the role of octupole vibrations. These data suggest the wider importance of octupole softness in enhancing E1 transitions in the SD feeding and decay mechanisms. The spectroscopy of the observed SD bands in {sup 193,4}Hg are discussed in detail and attention is drawn to the 'identical' energies of {gamma}-rays in these isotopes with those in lighter isotopes. The similarities in bands relate to the neutron sub-shell closure for SD nuclei at N=112. (orig.).

  6. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.

    Science.gov (United States)

    Craig, Michael T; McBain, Chris J

    2015-02-25

    Information processing in neuronal networks relies on the precise synchronization of ensembles of neurons, coordinated by the diverse family of inhibitory interneurons. Cortical interneurons can be usefully parsed by embryonic origin, with the vast majority arising from either the caudal or medial ganglionic eminences (CGE and MGE). Here, we examine the activity of hippocampal interneurons during gamma oscillations in mouse CA1, using an in vitro model where brief epochs of rhythmic activity were evoked by local application of kainate. We found that this CA1 KA-evoked gamma oscillation was faster than that in CA3 and, crucially, did not appear to require the involvement of fast-spiking basket cells. In contrast to CA3, we also found that optogenetic inhibition of pyramidal cells in CA1 did not significantly affect the power of the oscillation, suggesting that excitation may not be essential for gamma genesis in this region. We found that MGE-derived interneurons were generally more active than CGE interneurons during CA1 gamma, although a group of CGE-derived interneurons, putative trilaminar cells, were strongly phase-locked with gamma oscillations and, together with MGE-derived axo-axonic and bistratified cells, provide attractive candidates for being the driver of this locally generated, predominantly interneuron-driven model of gamma oscillations. Copyright © 2015 the authors 0270-6474/15/353616-09$15.00/0.

  7. Size and strain tunable band alignment of black-blue phosphorene lateral heterostructures.

    Science.gov (United States)

    Li, Yan; Ma, Fei

    2017-05-17

    Single-element lateral heterostructures composed of black and blue phosphorene are not only free from lattice mismatch but also exhibit rich physical properties related to the seamlessly stitched interfaces, providing the building blocks for designing atomically thin devices. Using first-principles calculations, we investigate the influence of interface structure, size effect and strain engineering on the electronic structure, effective masses and band alignment of black-blue phosphorene lateral heterostructures. The lateral heterostructure with an octatomic-ring interface presents a strong metallic feature due to the interface states, while a metal-semiconductor transition takes place in the system with a hexatomic-ring interface upon hydrogen passivation. Following a reciprocal scaling law, the band gap is tuned in a wide energy range by synchronously increasing the widths of black and blue phosphorene or by only widening that of black phosphorene. Moreover, type-II band alignment is observed in the width ranges of 2.0-3.1 nm and 3.7-4.2 nm, out of which it is type-I. However, the band gap and effective masses show small changes if only the width of blue phosphorene is altered. When the lateral heterostructure is tensile loaded, the effective mass ratio of hole to electron is enlarged by an order of magnitude at a strain of 4% along the zigzag direction. Meanwhile, the band alignment undergoes a crossover from type-I to type-II at a strain of 2%, facilitating efficient electron-hole separation for light detection and harvesting.

  8. Usability of synchronization for cognitive modeling

    International Nuclear Information System (INIS)

    Diebner, Hans H.; Grond, Florian

    2005-01-01

    We discuss the synchronization features of a previously introduced adaptive system for dynamics recognition in more detail. We investigate the usability of synchronization for modeling and parameter estimations. It is pointed out inhowfar the adaptive system based on synchronization can become a powerful tool in modeling. The adaptive system can store modules of pre-adapted dynamics and is potentially capable of undergoing self-modification. We compare the stored modules with pre-knowledge that a modeler puts into his or her models. In this sense the adaptive system functions like an expert system

  9. Modelling gamma-ray light curves of phase-aligned millisecond pulsars

    Science.gov (United States)

    Chang, Shan; Zhang, Li; Li, Xiang; Jiang, Zejun

    2018-04-01

    Three gamma-ray millisecond pulsars (MSPs), PSR J1939+2134, PSR J1959+2048, and PSR J0034-0534, have been confirmed to have a common feature of phase-aligned in radio and gamma-ray bands. With a geometric (two-pole caustic) model and a physical outer gap model (revised 3D outer gap model) in a three dimensional (3D) retarded magnetic dipole with a perturbation magnetic field, the observed features of these MSPs are studied. In order to obtained the best-fitting model parameters, the Markov chain Monte Carlo technique is used and reasonable GeV band light curves for three MSPs are given. Our calculations indicate that MSPs emit high energy photons with smaller inclination angles (α ≈ 10°-50°), larger view angles (ζ ≈ 65°-100°), and smaller perturbation factor (ɛ ≈ -0.15-0.1). Note that the factor ɛ, describing the strength of the perturbed magnetic field, is all less than zero in these two models, so the magnetic field caused by current-induced play a leading role in the pulsed location of MSPs.

  10. Effects of gamma-ray irradiation on the optical properties of amorphous Se100-xHgx thin films

    Science.gov (United States)

    Ahmad, Shabir; Islam, Shama; Nasir, Mohd.; Asokan, K.; Zulfequar, M.

    2018-06-01

    In this study, the thermal quenching technique was employed to prepare bulk samples of Se100-xHgx (x = 0, 5, 10, 15). Thin films with a thickness of ∼250 nm were deposited on glass substrates using the thermal evaporation technique. These films were irradiated with gamma rays at doses of 25-100 kGy. The elemental compositions of the as-deposited thin films were confirmed by energy dispersive X-ray analysis and Rutherford backscattering spectrometry. X-ray diffraction analysis confirmed the crystalline nature of these thin films upto the dose of 75 kGy. Fourier transform-infrared spectroscopy showed that the concentration of defects decreased after gamma irradiation. Microstructural analysis by field emission scanning electron microscopy indicated that the grain size increases after irradiation. Optical study based on spectrophotometry showed that the optical band gap values of these films increase after the addition of Hg whereas they decrease after gamma irradiation. We found that the absorption coefficient increases with doses up to 75 kGy but decreases at higher doses. These remarkable shifts in the optical band gap and absorption coefficient values are interpreted in terms of the creation and annihilation of defects, which are the main effects produced by gamma irradiation.

  11. Precise measurement of {gamma}(K{yields}e {nu}({gamma}))/{gamma}(K{yields}{mu} {nu}({gamma})) and study of K{yields}e {nu} {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosino, F.; Massarotti, P.; Meola, S.; Napolitano, M. [Dipartimento di Scienze Fisiche dell' Universita ' ' Federico II' ' , Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bloise, C.; Bossi, F.; Capon, G.; Capussela, T.; Ciambrone, P.; De Lucia, E.; De Simone, P.; Dreucci, M.; Felici, G.; Gatti, C.; Giovannella, S.; Jacewicz, M.; Lanfranchi, G.; Miscetti, S.; Moulson, M.; Murtas, F.; Palutan, M.; Santangelo, P.; Sciascia, B.; Sibidanov, A.; Spadaro, T.; Venanzoni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Archilli, F. [Dipartimento di Fisica dell' Universita ' ' Tor Vergata' ' , Rome (Italy); INFN Sezione di Roma Tor Vergata, Rome (Italy); Beltrame, P.; Denig, A.; Mueller, S. [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik, Mainz (Germany); Bini, C.; De Santis, A.; De Zorzi, G.; Di Domenico, A.; Fiore, S.; Franzini, P.; Gauzzi, P. [Dipartimento di Fisica dell' Universita ' ' La Sapienza' ' , Rome (Italy); INFN Sezione di Roma, Rome (Italy); Bocchetta, S.; Ceradini, F.; Di Micco, B.; Nguyen, F. [Dipartimento di Fisica dell' Universita ' ' Roma Tre' ' , Rome (Italy); INFN Sezione di Roma Tre, Rome (Italy); Branchini, P.; Graziani, E.; Passeri, A.; Tortora, L. [INFN Sezione di Roma Tre, Rome (Italy); Capriotti, D. [Dipartimento di Fisica dell' Universita ' ' Roma Tre' ' , Rome (Italy); Di Donato, C. [INFN Sezione di Napoli, Napoli (Italy); Kulikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lee-Franzini, J. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); State University of New York, Physics Department, Stony Brook (United States); Martini, M.; Patera, V.; Versaci, R. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Energetica dell' Universita ' ' La Sapienza' ' , Rome (Italy); Valente, P. [INFN Sezione di Roma, Rome (Italy)

    2009-12-15

    We present a precise measurement of the ratio R{sub K}={gamma}(K{yields}e{nu}({gamma}))/{gamma}(K{yields}{mu}{nu}({gamma})) and a study of the radiative process K{yields}e{nu}{gamma}, performed with the KLOE detector. The results are based on data collected at the Frascati e{sup +}e{sup -} collider DA {phi}NE for an integrated luminosity of 2.2 fb{sup -1}. We find R{sub K}=(2.493{+-}0.025{sub stat}{+-}0.019{sub syst}) x 10{sup -5}, in agreement with the Standard Model expectation. This result is used to improve constraints on parameters of the Minimal Supersymmetric Standard Model with lepton flavor violation. We also measured the differential decay rate d {gamma}(K{yields}e{nu}{gamma})/dE{sub {gamma}} for photon energies 10gamma}}<250 MeV. Results are compared with predictions from theory. (orig.)

  12. Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems

    International Nuclear Information System (INIS)

    Zhou Jin; Lu Junan; Wu Xiaoqun

    2007-01-01

    To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems

  13. Stroboscope Based Synchronization of Full Frame CCD Sensors

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-04-01

    Full Text Available The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  14. Effect on the properties of ITO thin films in Gamma environment

    Science.gov (United States)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2018-04-01

    The present study reports the effect of gamma irradiation of varying doses (0-200 kGy) on the physical properties of the indium tin oxide (ITO) thin films. The films were fabricated by thermal evaporation method using indium-tin (InSn) ingots followed by an oxidation in atmosphere at a temperature of 550 °C. X-ray diffraction analysis confirmed the body-centered cubic (BCC) structure corresponds to the ITO thin films, high phase purity and a variation in crystallite size between 30-44 nm. While the optical studies revealed an increase in transmission as well as variation in optical band gap, the electrical studies confirmed n-type semiconductive behavior of the thin films, increase in mobility and a decrease in resistivity from 2.33×10-2 - 9.31×10-4 Ωcm with the increase in gamma dose from 0-200 kGy. The gamma irradiation caused totally electronic excitation and resulted in this modifications. The degenerate electron gas model was considered when attempting to understand the prevalent scattering mechanism in gamma irradiated ITO thin films.

  15. The Radio/Gamma-Ray Connection from 120 MHz to 230 GHz

    Directory of Open Access Journals (Sweden)

    Marcello Giroletti

    2016-09-01

    Full Text Available Radio loud active galactic nuclei are composed of different spatial features, each one characterized by different spectral properties in the radio band. Among them, blazars are the most common class of sources detected at gamma-rays by Fermi, and their radio emission is dominated by the flat spectrum compact core. In this contribution, we explore the connection between emission at high energy revealed by Fermi and at radio frequencies. Taking as a reference the strong and very highly significant correlation found between gamma rays and cm-λ radio emission, we explore the different behaviours found as we change the energy range in gamma rays and in radio, therefore changing the physical parameters of the zones involved in the emitted radiation. We find that the correlation weakens when we consider (1 gamma rays of energy above 10 GeV (except for high synchrotron peaked blazars or (2 low frequency radio data taken by the Murchison Widefield Array; on the other hand, the correlation strengthens when we consider mm-λ data taken by Atacama Large Millimeter Array (ALMA.

  16. Gamma-irradiation effects on optical properties of lexan film. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrehim, N; El-Samahy, A E; Kassem, M E [Physics Department, Faculty of Science, Alexandria University. (Egypt); Abou-Taleb, W M [Physics and Chemistry Department, Faculty of Education, Alexandria University. (Egypt)

    1996-03-01

    The optical absorption method is a powerful tool for studying the optically induced transitions and for determining the energy gap in crystalline and non-crystalline materials. The absorption spectra in the lower energy part sheds light on the atomic vibrations. While the higher energy parts of the spectrum manifest the electronic states in the atoms. Effect of gamma-irradiation on the optical properties of plastic detector (Lexan film) has been studied. These investigations were carried out for gamma-doses from 10 kGy -2 mGy to determine the optical parameters; optical energy gap E{sub op}, absorption coefficient {alpha} , absorption index K, mobility energy gap E{sub g}, absorption band edge {lambda}{sub g} and the absorbance at wavelength 340 nm. The results showed that both direct and indirect transitions existed in lexan detector, and because highly sensitive to gamma-irradiation doses. The variations of optical energy gap with gamma-irradiation doses can be explained as the change in the degree of disorder and the phonon energy E{sub p}, is dose dependent. 7 figs.

  17. Gamma-irradiation effects on optical properties of lexan film. Vol. 2

    International Nuclear Information System (INIS)

    Abd-Elrehim, N.; El-Samahy, A.E.; Kassem, M.E.; Abou-Taleb, W.M.

    1996-01-01

    The optical absorption method is a powerful tool for studying the optically induced transitions and for determining the energy gap in crystalline and non-crystalline materials. The absorption spectra in the lower energy part sheds light on the atomic vibrations. While the higher energy parts of the spectrum manifest the electronic states in the atoms. Effect of gamma-irradiation on the optical properties of plastic detector (Lexan film) has been studied. These investigations were carried out for gamma-doses from 10 kGy -2 mGy to determine the optical parameters; optical energy gap E op , absorption coefficient α , absorption index K, mobility energy gap E g , absorption band edge λ g and the absorbance at wavelength 340 nm. The results showed that both direct and indirect transitions existed in lexan detector, and because highly sensitive to gamma-irradiation doses. The variations of optical energy gap with gamma-irradiation doses can be explained as the change in the degree of disorder and the phonon energy E p , is dose dependent. 7 figs

  18. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68 eV) and high X- and gamma-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and gamma-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation gamma-ray (511 keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56 keV FWHM (11%) for 511 keV gamma-rays. Energy resolution of 1.81 keV FWHM for 5.9 keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and 1/f noise were dominant noise sources in the detector...

  19. 30 CFR 56.19008 - Friction hoist synchronizing mechanisms.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Friction hoist synchronizing mechanisms. 56... Personnel Hoisting Hoists § 56.19008 Friction hoist synchronizing mechanisms. Where creep or slip may alter the effective position of safety devices, friction hoists shall be equipped with synchronizing...

  20. [Synchronous sigmoideum- and caecum volvulus].

    Science.gov (United States)

    Berg, Anna Korsgaard; Perdawood, Sharaf Karim

    2015-09-21

    This case presents a synchronous sigmoid- and caecum volvulus in a 69-year old man with Parkinson's disease, hypertension and previous history of colonic volvulus. On admission the patient had abdominal pain, nausea, vomiting and constipation. The CT scan showed a sigmoid volvulus with a dilated caecum. The synchronous sigmoideum- and caecum volvulus was diagnosed intraoperatively. Total colectomy and ileostomy was performed.