WorldWideScience

Sample records for galvannealed zinc coating

  1. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  2. Effect of elastic-plastic behavior of coating layer on drawability and frictional characteristic of galvannealed steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Won; Lee, Jung Min [Korea Institute of Industrial Technology, Jinju (Korea, Republic of); Joun, Man Soo [Gyeongsang National University, Jinju (Korea, Republic of); Kim, Dong Hwan [International University of Korea, Jinju (Korea, Republic of)

    2016-07-15

    During a galvannealed sheet metal forming, the failures of coating layers (powdering, flaking and cracking) frequently affect the strain state of sheets and deteriorate the frictional characteristic between sheets and tools. Two FE-models in this study were suggested to investigate the effects of the mechanical behavior of coating layers on the formability and friction of the coated steel sheets in FE analysis; the first is one-layer model to express the coated sheet as one stress-strain curve and the second is a multiple-layer model which is composed of substrates and coating layers, separately. First, the frictional properties and the formability of the coated sheets were experimentally investigated using a cup deep-drawing trial. After, the drawing process was simulated by FE analysis of the two models. In the multiplelayer model, the mechanical behavior of the coating is defined as a stress-strain curve which was determined using the nanoindentation test of the coating, its FE analysis and artificial neural network method. The result showed that the multiple-layer model provides more accuracy predictions of drawing loads than the one-layer model in the FE analysis, compared to the actual cup drawing test.

  3. Characterization of galvannealed strip

    International Nuclear Information System (INIS)

    Moreas, G.; Hardy, Y.

    1999-01-01

    With the aim of enhancing coating quality control during galvannealing process, an online microscopic image acquisition sensor has been developed at CRM. In galvannealing process, the ζ phase surface density is a coating quality characteristic, and the on-line microscope, equipped with optics placed at 20 mm from the surface, grabs 250 μm x 190 μm images on which ζ crystals (approximate dimensions: 1 μm x 10 μm) can be clearly identified. On-line, the sensor is mounted in front of a roll where the strip has a stable position. The coating surface to sensor optics distance is continuously measured by an accurate triangulation sensor (1 μm repeatability) and is adjusted in such a way that, due to roll eccentricity, the image is focused at least twice per revolution. When focused, image of moving product is frozen by a short (10 ns) laser light pulse and is grabbed. The obtained image is then processed to extract ζ phase percentage and allows adjustment of process parameters to reach the desired coating characteristics. (author)

  4. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  5. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  6. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  7. The structure of bright zinc coatings

    Directory of Open Access Journals (Sweden)

    MIODRAG STOJANOVIC

    2000-11-01

    Full Text Available The structures of bright zinc coatings obtained from acid sulfate solutions in the presence of dextrin/salicyl aldehyde mixture were examined. It was shown by the STM technique that the surfaces of bright zinc coatings are covered by hexagonal zinc crystals, the tops of planes of which are flat and mutually parallel and which exhibit smoothness on the atomic level. X-Ray diffraction (XRD analysis of the bright zinc coatings showed that the zinc crystallites are oriented in the (110 plane only.

  8. An Industrial Gauge for Measuring The Phase Distribution of Galvanneal

    Energy Technology Data Exchange (ETDEWEB)

    Christopher BUrnett; Roland Gouel; James R. Phillips

    1996-01-19

    Augmentation of the internal software of a commercial x-ray fluorescence gauge is shown to enable the instrument to extend its continuous on-line real-time measurements of a galvanneal coating's total elemental content to encompass similar measurements of the relative thickness of the coating's three principal metallurgical phases. The mathematical structure of this software augmentation is derived from the theory of neural networks. The empirical basis for the numerics embedded in the software's decision logic is presented. The performance of the augmented gauge is validated by comparing the gauge-implied real-time phase distribution with the phase distribution independently measured off-line on time-tagged samples drawn from the galvanneal production line where the measurement gauge had been installed. The performance validation is shown to demonstrate good agreement between the gauge and laboratory measurements and to suggest preferred approaches to be followed in future applications of the augmented gauge.

  9. Plasma-Sprayed Photocatalytic Zinc Oxide Coatings

    Science.gov (United States)

    Navidpour, A. H.; Kalantari, Y.; Salehi, M.; Salimijazi, H. R.; Amirnasr, M.; Rismanchian, M.; Azarpour Siahkali, M.

    2017-04-01

    Fabrication of semiconductor coatings with photocatalytic action for photodegradation of organic pollutants is highly desirable. In this research, pure zinc oxide, which is well known for its promising photocatalytic activity, was deposited on stainless-steel plates by plasma spraying. The phase composition and microstructure of the deposited films were studied by x-ray diffraction analysis and scanning electron microscopy, respectively. Despite the low-energy conditions of the plasma spraying process, the zinc oxide coatings showed good mechanical integrity on the substrate. Their photocatalytic activity was evaluated using aqueous solution of methylene blue at concentration of 5 mg L-1. The results showed the potential of the plasma spraying technique to deposit zinc oxide coatings with photocatalytic action under ultraviolet illumination. Ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy confirmed that the plasma spraying method could deposit zinc oxide films with higher photoabsorption ability relative to the initial powder.

  10. Niobium pentoxide coating replacing zinc phosphate coating

    OpenAIRE

    RODRIGUES, P.R.P.; TERADA, M.; JUNIOR, O.R.A.; LOPES, A.C.; COSTA, I.; BANCZEK, E.P.

    2015-01-01

    A new coating made of niobium pentoxide, obtained through the sol-gel process, was developed for the carbon steel (SAE 1010). The corrosion protection provided by this coating was evaluated through electrochemical tests such as: open circuit potential, electrochemical impedance spectroscopy and anodic potentiodynamic polarization in NaCl 0,5 mol L-1 solution. The morphology and composition of the coatings were analyzed using scanning electronic microscopy, energy dispersive spectroscopy and X...

  11. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  12. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    Wintec

    The pH of the bath solution was measured using a digital pH meter (equipetronix model. 7020) and adjusted with 10% sulphuric acid or sodium bicarbonate solution. Zinc plate of 99⋅99% purity was used as anode. The anode was activated each time by immersing in 10% HCl followed by water wash. Mild steel (AISI-. 1079 ...

  13. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    Wintec

    7020) and adjusted with 10% sulphuric acid or sodium bicarbonate solution. Zinc plate of 99⋅99% purity was used as anode. The anode was activated each time by immersing in 10% HCl followed by water wash. Mild steel (AISI-. 1079, composition C 0⋅5%, Mn 0⋅5%, P and S 0⋅05% and rest Fe) plates of standard Hull ...

  14. Corrosion properties of pulse-plated zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Alfantazi, A.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Metals and Materials Engineering; Erb, U. [Queen`s Univ., Kingston, Ontario (Canada)

    1996-11-01

    Corrosion properties of pulse-plated Zn-Ni alloy coating on a steel substrate were investigated using the neutral salt-spray test (ASTM B 117-81) and the potentiodynamic polarization technique (ASTM G 5-82). Performance of these alloy coatings with various Ni contents (up to 62 wt%) was compared to that of laboratory-prepared electrodeposited Zn coatings and commercial galvannealed (GA) steel. Results of the neutral salt-spray test indicated corrosion resistance of pulse-plated Zn-Ni alloy coatings was superior to that of the pure Zn and commercial GA coating. The Zn-20 wt% Ni and Zn-14 wt% Ni alloys gave the best protection of the Zn-Ni coatings tested. Potentiodynamic polarization tests confirmed excellent corrosion performance of the 20 wt% Ni alloy

  15. Surface treatment of zinc coatings by molybdate solutions

    International Nuclear Information System (INIS)

    Fachikov, L.; Ivanova, D.

    2012-01-01

    Highlights: ► Molybdate conversion treatments on zinc coatings. ► Zn, Mo, P, O and Ni are basic elements in the coatings. ► Better corrosion resistance of zinc coatings after molybdate surface treatment. - Abstract: The influence of different factors such as concentration, temperature, pH and cathodic polarization on formation, properties and composition of coatings obtained under treatment of zinc surfaces by molybdate solutions has been investigated by gravimetric, electrochemical and physical methods. Coatings obtained at pH 4 are distinguished for the best uniformity and density of color. The thicknesses of coatings raise by increasing the cathode current density under other equal conditions. Molybdenum, zinc and phosphorus are the basic components of the passive films.

  16. AISI/DOE Advanced Process Control Program Vol. 5 of 6: Phase Measurement of Galvanneal

    Energy Technology Data Exchange (ETDEWEB)

    Cristopher Burnett; Ronald Guel; James R. Philips; L. Lowry; Beverly Tai

    1999-05-31

    Augmentation of the internal software of a commercial X-ray fluorescence gauge is shown to enable the instrument to extend its continuous on-line real-time measurements of a galvanneal coating's total elemental content to encompass similar measurements of the relative thickness of the coating's three principal metallurgical phases. The mathematical structure of this software augmentation is derived from the theory of neural networks. The performance of the augmented gauge is validated by comparing the gauge implied real-time phase distribution with the phase distribution independently measured off-line on between the gauge and laboratory measurements and to suggest preferred approaches to be followed in future application of the augmented gauge.

  17. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity

    Science.gov (United States)

    Schmid, M.; Willert-Porada, M.

    2017-05-01

    Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.

  18. 21 CFR 175.390 - Zinc-silicon dioxide matrix coatings.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc-silicon dioxide matrix coatings. 175.390... COATINGS Substances for Use as Components of Coatings § 175.390 Zinc-silicon dioxide matrix coatings. Zinc-silicon dioxide matrix coatings may be safely used as the food-contact surface of articles intended for...

  19. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    Science.gov (United States)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  20. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  1. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  2. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel

    NARCIS (Netherlands)

    Song, G. M.; Vystavel, T.; De Hosson, J. Th M.; Sloof, W. G.; van der Pers, N.M.

    The microstructure of hot dip galvanized zinc coatings on dual phase steel was investigated by electron microscopy and the coating adhesion characterized by tensile testing. The zinc coating consists of a zinc layer and columnar zeta-FeZn13 particles on top of a thin inhibition layer adjacent to the

  3. Characterization of the failure behavior of zinc coating on dual phase steel under tensile deformation

    International Nuclear Information System (INIS)

    Song Guiming; Sloof, Willem G.

    2011-01-01

    Highlights: → The microcracks and voids at the zinc grain boundaries are the initial sites for the coating cracking. → The crack spacing of the fragmentally fractured zinc coating is mainly determined by the zinc grain size. → Small zinc grain size and the c-axis direction of zinc grain parallel to the zinc surface are beneficial to the mitigation of the zinc coating delamination. - Abstract: The failure behavior of hot-dip galvanized zinc coatings on dual phase steels under tensile deformation is characterized with in situ scanning electron microscopy (SEM). Under tension, the pre-existed microcracks and voids at the zinc grain boundaries propagate along the zinc grain boundaries to form crack nets within the coating, leading to a segmented fracture of the zinc coating with the crack spacing approximately equal to the zinc grain size. With further loading, the coating segments partially delaminated along the interface between the top zinc layer and the inhibition layer instead of the interface between the inhibition layer and steel substrate. As the c-axis of zinc grains trends to be normal to the tensile loading direction, the twinning deformation became more noticeable, and meanwhile the coating delamination was diminished. The transverse and incline tunneling cracks occurred in the inhibition layer with tensile deformation. The existence of the brittle FeZn 13 particles on top of the inhibition layer was unfavorable to the coating adhesion.

  4. Benchmarking of Zinc Coatings for Corrosion Protection: A Detailed Characterization of Corrosion and Electrochemical Properties of Zinc Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, Sudesh L; Zixi, Tan [Singapore Institute of Manufacturing Technology, Nanyang Drive (Singapore)

    2017-02-15

    Due to various types of Zn coatings for many decades for various applications, it is imperative to study and compare their corrosion resistance properties of some of these. Here, we introduce a systematic methodology for evaluation and validation of corrosion protection properties of metallic coatings. According to this methodology, samples are were exposed in an advanced cyclic corrosion test chamber according to ISO 14993, and removed at the end of each withdrawal for respective corrosion and electrochemical characterization to evaluate both barrier and galvanic protection properties. Corrosion protection properties of coatings were evaluated by visual examination according to ISO 10289, mass loss and subsequent corrosion rate measurements, electrochemical properties, and advanced electrochemical scanning techniques. In this study, corrosion protection properties of a commercial zinc rich coating (ZRC) on AISI 1020 mild steel substrates were evaluated and benchmarked against hot dip galvanized (HDG). Results were correlated, and corrosion protection capabilities of the two coatings were compared. The zinc rich coating performed better than hot dip galvanized coating in terms of overall corrosion protection properties, according to the exposure and experimental conditions used in this study. It proved to be a suitable candidate to replace hot dip galvanized coatings for desired applications.

  5. Phosphating of hot-dipped zinc-aluminum coated steel: Formation and properties of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, L.; Radzikowski, M. [Inst. of Precision Mechanics, Warsaw (Poland)

    1995-11-01

    55%Al-Zn and 5%Al-Zn were phosphated in comparison with electrolytic zinc coatings. Potential measurements during phosphating were carried out in order to find the interpretation of differences in the crystal size. impedance measurements were performed for the assessment of the corrosion properties of the phosphate coatings. It was found that there is no differences between coatings formed from the high or low-zinc baths. The best results were obtained for the phosphated 55%Al-Zn, however one may find also suitable treatment for 5%Al-Zn surface. From the X-ray diffraction data de and rehydration tendency of the coating components were recorded. In the case of high zinc processes it was found that the slowest rehydration rate occurs on the phosphated 5% Al-Zn surfaces. It was also found that depending on the kind of the bath, hopeite formed on the metal surface exhibited various thermal stabilities.

  6. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    Hosking, N.C.; Stroem, M.A.; Shipway, P.H.; Rudd, C.D.

    2007-01-01

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn 5 Cl 2 (OH) 8 . H 2 O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH) 2 ) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH) 2 , which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  7. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  8. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  9. Characterization of polyacrylic acid modified zinc phosphate crystal conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wragg, J.L.; Chamberlain, J.E.; Chann, L.; White, H.W. (Univ. of Missouri, Columbia, MO (United States). Dept. of Physics and Astronomy); Sugama, T. (Brookhaven National Lab., Upton, NY (United States). Energy Efficiency and Conservation Div.); Manalis, S. (Digital Instruments, Inc., Santa Barbara, CA (United States))

    1993-11-05

    Raman spectroscopy and atomic force microscopy have been used to investigate the composition and surface structure of polyacrylic acid modified zinc phosphate crystal conversion coatings on steel. Zinc phosphate coatings are used extensively to provide corrosion protection and to improve adherence of top coatings to steel. Within the last few years it has been demonstrated that addition of high molecular weight polyacrylic acid (PAA) to the phosphating bath can significantly improve both resistance to corrosion and topcoat adherence. It has been reported that the addition of PAA reduces the size of crystallites, which leads to greater film ductility, and therefore to fewer sites for corrosive attack, and that organic molecular segments from the PAA are incorporated into the surface structure and provide additional adhesive bonding with polymeric topcoats. In this work Raman spectra show the compositions of both unmodified and PAA modified films to be zinc phosphate dihydrate, Zn[sub 3](PO[sub 4])[sub 2] [times] 2H[sub 2]O. Atomic force microscopy (AFM) was used to measure the morphologies of single crystallite surfaces. Morphologies of the unmodified and modified films obtained by AFM are in general quite similar, but subtle differences are apparent.

  10. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel.

    Science.gov (United States)

    Et Taouil, Abdeslam; Mahmoud, Mahmoud Mourad; Lallemand, Fabrice; Lallemand, Séverine; Gigandet, Marie-Pierre; Hihn, Jean-Yves

    2012-11-01

    A variety of coatings based on electrosynthesized polypyrrole were deposited on zinc coated steel in presence or absence of ultrasound, and studied in terms of corrosion protection. Cr III and Cr VI commercial passivation were used as references. Depth profiling showed a homogeneous deposit for Cr III, while SEM imaging revealed good surface homogeneity for Cr VI layers. These chromium-based passivations ensured good protection against corrosion. Polypyrrole (PPy) was also electrochemically deposited on zinc coated steel with and without high frequency ultrasound irradiation in aqueous sodium tartrate-molybdate solution. Such PPy coatings act as a physical barrier against corrosive species. PPy electrosynthesized in silent conditions exhibits similar properties to Cr VI passivation with respect to corrosion protection. Ultrasound leads to more compact and more homogeneous surface structures for PPy, as well as to more homogeneous distribution of doping molybdate anions within the film. Far better corrosion protection is exhibited for such sonicated films. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Corrosion behavior of zinc-nickel alloy electrodeposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Fabri Miranda, F.J. [USIMINAS, Ipatinga, Minas Gerais (Brazil); Margarit, I.C.P.; Mattos, O.R.; Barcia, O.E. [UFRJ, Rio de Janeiro (Brazil); Wiart, R. [Univ. Pierre et M. Curie, Paris (France)

    1999-08-01

    Various types of zinc-electrocoated steel sheets are used to improve the durability of car bodies. Among these coatings, the Zn-Ni alloy has higher corrosion resistance than pure Zn, as well as better welding and painting properties. The corrosion mechanism of the Zn-Ni alloy has been investigated mainly on the basis of accelerated tests and electrochemical measurements. There are few data about long-term corrosion tests. In the present study, the behavior of unpainted Zn-Ni alloy coated steel was studied during 3 years of exposure in industrial and marine environments. Electrochemical impedance spectroscopy (EIS) and surface analysis (scanning electron microscopy [SEM] and Auger electron spectroscopy [AES]) were the experimental techniques used. Long-term atmospheric corrosion mechanism of Zn-Ni coatings was discussed and compared with that proposed based on short-term tests.

  12. Comparative study of the corrosion resistance of steels covered by the processes galvalume and galvannealing

    International Nuclear Information System (INIS)

    Pritzel, Alvaro; Rodrigues, Joel da Silva; Dick, Luis Frederico Pinheiro

    2010-01-01

    Zinc has been used since a long time as a protective coating on automotive bodies. However, the industry is looking increasingly for protective coatings more resistant to corrosion, which have good weldability, paintability and especially low cost. This work aims to study the influence of parameters on the protection efficiency of zinc coatings on steel. The electrochemical behavior of zinc coatings (GA, GI and Galvalume) was studied by scanning vibrating electrode techniques (SVET). The samples were characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS). It was also observed the presence of Anodic currents were observed at distances much higher than the thickness of Zn coatings. (author)

  13. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Tamilselvi, M. [Department of Chemistry, Thiru Kolanjiappar Government Arts College, Virudhachalam 606001 (India); Kamaraj, P. [Department of Chemistry, SRM University, Kattankulathur 603203 (India); Arthanareeswari, M., E-mail: arthanareeswari@gmail.com [Department of Chemistry, SRM University, Kattankulathur 603203 (India); Devikala, S. [Department of Chemistry, SRM University, Kattankulathur 603203 (India)

    2015-02-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO{sub 2}) required for phosphating.

  14. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...... for the automotive industry, off-shore construction or component and devices used in harsh industrial environments. The ER monitoring makes it possible to study the corrosion rate on-line in remote locations as a function of temperature, relative humidity and changes in the composition of the atmosphere. Different...

  15. Corrosion protection of iron using composite coatings based on zinc and zinc alloys

    International Nuclear Information System (INIS)

    Raichevski, G.; Boshkov, N.; Koleva, D.; Tsvetanov, Ch.

    2003-01-01

    The electrodeposition conditions of mono- and bi-layer protective systems consisting of galvanic zinc and Zn-Co alloy additionally treated with chromating solutions are described and discussed. Some of the separate layers contain electrophoretically included nanoparticles (size 300 - 700 nm) of copolymers. The latter are prepared using special modeling process and consist of polypropylene oxide - PPO - and polyethylene oxide - PEO. These composite layers and their peculiarities are investigated using SEM studies before and after corrosion treatment in 5% NaCl. An important effect was established - some nanoparticles hold back metal ions during the electro crystallization and after the chemical passivation take part in the microstructure of the chromating film forming a net of micropores on the whole surface. The latter leads to the conclusion about increased protective ability of the multi-layer coating containing zinc as a final layer. (Original)

  16. Effects of nano-zinc oxide based paint on weathering performance of coated wood

    OpenAIRE

    Can, Ahmet; Sivrikaya, Hüseyin

    2014-01-01

    Nano-sized zinc oxide (ZnO) was chosen as a suitable candidate for the UV-protection of coatings. The accelerated weathering performances of Scots pine coated with wood paint mixed with nano- ZnO were investigated. Uncoated specimens, specimens coated with only nano-ZnO and nano-zinc oxide based paint were used as references. This work describes the effect of the nanoparticles and paint performance on accelerated weathering performance of coated specimens. 1 ml and 3 ml nano-zinc oxide is add...

  17. Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface

    Directory of Open Access Journals (Sweden)

    Hongxia Wan

    2017-06-01

    Full Text Available Waterborne coating has recently been paid much attention. However, it cannot be used widely due to its performance limitations. Under the specified conditions of the selected resin, selecting the function pigment is key to improving the anticorrosive properties of the coating. Zinc phosphate is an environmentally protective and efficient anticorrosion pigment. In this work, zinc phosphate was used in modifying waterborne acrylic coatings. Moreover, the disbonding resistance of the coating was studied. Results showed that adding zinc phosphate can effectively inhibit the anode process of metal corrosion and enhance the wet adhesion of the coating, and consequently prevent the horizontal diffusion of the corrosive medium into the coating/metal interface and slow down the disbonding of the coating.

  18. Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface.

    Science.gov (United States)

    Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei

    2017-06-14

    Waterborne coating has recently been paid much attention. However, it cannot be used widely due to its performance limitations. Under the specified conditions of the selected resin, selecting the function pigment is key to improving the anticorrosive properties of the coating. Zinc phosphate is an environmentally protective and efficient anticorrosion pigment. In this work, zinc phosphate was used in modifying waterborne acrylic coatings. Moreover, the disbonding resistance of the coating was studied. Results showed that adding zinc phosphate can effectively inhibit the anode process of metal corrosion and enhance the wet adhesion of the coating, and consequently prevent the horizontal diffusion of the corrosive medium into the coating/metal interface and slow down the disbonding of the coating.

  19. On the mechanism of formation of zinc pack coatings

    International Nuclear Information System (INIS)

    Pistofidis, N.; Vourlias, G.; Chaliampalias, D.; Chrysafis, K.; Stergioudis, G.; Polychroniadis, E.K.

    2006-01-01

    The mechanism of the formation of zinc (Zn) pack coatings is studied with scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). DSC showed that the coatings formation takes place in three steps. The initial step (at 193.9 deg. C) is endothermic and involves the transformation of α-NH 4 Cl to β-NH 4 Cl and the NH 4 Cl decomposition to NH 3 and HCl. During the second step (at 248.6 deg. C), which is exothermic, Zn 2+ salts are formed and especially ZnCl 2 . Finally at 264.1 deg. C Zn is deposited by an endothermic reaction on the ferrous substrate through the decomposition of ZnCl 2 . The as-cast Zn diffuses into the iron lattice forming the gamma (Γ-Fe 11 Zn 4 ) and delta (δ-FeZn 1 ) phases. Al 2 O 3 is not involved in the above-mentioned mechanism and acts only as filler

  20. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K.R.; Smith, C.J.E. [Defence Research Agency, Farnborough (United Kingdom). Structural Materials Centre; Robinson, M.J. [Cranfield Univ. (United Kingdom). School of Industrial and Manufacturing Science

    1995-12-01

    The ability of electrodeposited zinc-nickel alloy coatings to cathodically protect steel was studied in dilute chloride solutions. The potential distribution along steel strips partly electroplated with zinc-nickel alloys was determined, and the length of exposed steel that was held below the minimum protection potential (E{sub prot}) was taken as a measure of the level of cathodic protection (CP) provided by the alloy coatings. The level of CP afforded by zinc alloy coatings was found to decrease with increasing nickel content. When nickel content was increased to {approx} {ge} 21 wt%, no CP was obtained. Surface analysis of uncoupled zinc-nickel alloys that were immersed in sodium chloride (NaCl) solutions showed the concentration of zinc decreased in the surface layers while the concentration of nickel increased, indicating that the alloys were susceptible to dezincification. The analysis of zinc-nickel alloy coatings on partly electroplated steel strips that were immersed in chloride solution showed a significantly higher level of dezincification than that found for uncoupled alloy coatings. This effect accounted for the rapid loss of CP afforded to steel by some zinc alloy coatings, particularly those with high initial nickel levels.

  1. Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments

    Czech Academy of Sciences Publication Activity Database

    Kalendová, A.; Veselý, D.; Kohl, M.; Stejskal, Jaroslav

    2015-01-01

    Roč. 78, January (2015), s. 1-20 ISSN 0300-9440 Institutional support: RVO:61389013 Keywords : conducting polymer * zinc metal * organic coating Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.632, year: 2015

  2. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  3. Influence of silane films in the zinc coating post-treatment

    International Nuclear Information System (INIS)

    Costa, Marlla Vallerius da; Menezes, Tiago Lemos; Malfatti, Celia de Fraga; Muller, Iduvirges Lourdes; Oliveira, Claudia Trindade; Bonino, Jean-Pierre

    2009-01-01

    The sol-gel process based on silanes precursors appeared in recent years as a strong alternative for post-treatment to provide an optimization of the protective efficacy of zinc. Moreover, this process has been used to replace chemical chromating conversion based on hexavalent chromium. The silane films are hybrid compounds that provide characteristics of both polymeric materials, such as flexibility and functional compatibility, and ceramic materials, such as high strength and durability. The present work aimed to evaluate the influence of silane films obtained by dip-coating, on the characteristics of electrodeposited zinc coatings. The xerogel films showed a homogeneous surface and a better performance on the corrosion resistance than zinc coating without post-treatment, what can be confirmed by the electrochemical impedance results. These tests showed that application of the silane film promotes the occurrence of one more time constant compared to pure zinc system, hindering the corrosion process. (author)

  4. The effect of Al and Cr additions on pack cementation zinc coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Papazoglou, M.; Tsipas, S.; Pavlidou, E.; Skolianos, S.; Stergioudis, G.; Vourlias, G.

    2010-01-01

    Zinc is widely used as a protective coating material due to its corrosion resistant properties. The structure and oxidation resistance of Al and Cr mixed zinc coatings, deposited by pack cementation process, is thoroughly examined in this work. The morphology and chemical composition of the as-deposited and oxidized samples was accomplished by electron microscopy while the phase identification was performed by XRD diffraction analysis. The experimental results showed that the addition of aluminum or chromium in the pack mixture forms only Al and Cr rich phases on the surface of the specimens without affecting significantly the phase composition of the rest zinc coatings. In the case of Zn-Al coatings, the overlying layer contains high concentrations of Al together with lower amounts of zinc and iron and in Zn-Cr coatings this layer contains Cr, Fe and Zn atoms and has much smaller thickness. The presence of these additional layers promotes significantly the oxidation resistance of the zinc pack coatings and they preserve most of their initial thickness and chemical content when exposed to an aggressive environment while their oxidation mass gain was measured at low levels during the oxidation tests.

  5. Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath

    International Nuclear Information System (INIS)

    Dubent, S.; Mertens, M.L.A.D.; Saurat, M.

    2010-01-01

    Tin-zinc alloy electroplated coatings are recognized as a potential alternative to toxic cadmium as corrosion resistant deposits because they combine the barrier protection of tin with the cathodic protection afforded by zinc. The coatings containing 20 wt.% zinc, balance tin, offer excellent corrosion protection for steel and do not form gross voluminous white corrosion products like pure zinc or high zinc alloy deposits. In this study, the effects of variables of the process (i.e. cathodic current density, pH and temperature) on deposit composition have been evaluated using a Hull cell to obtain 20 wt.% zinc alloy coatings. The tin-20 wt.% zinc deposits, produced with electroplating optimized conditions, were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray fluorescence spectrometry (XRF) and glow discharge optical emission spectrometry (GDOES). On the other hand, the corrosion behaviour of tin-zinc alloy electroplated coatings on steel has been investigated using electrochemical methods in a 3 wt.% NaCl solution and the salt spray test. The performance of the deposits was compared with cadmium and zinc-nickel electrodeposited coatings. The results show that the corrosion resistance of tin-20 wt.% zinc alloy coating is superior to that of cadmium and zinc-12 wt.% nickel coatings. Finally, sliding friction tests were conducted.

  6. Mechanical Coating of Zinc Particles with Bi2O3-Li2O-ZnO Glasses as Anode Material for Rechargeable Zinc-Based Batteries

    Directory of Open Access Journals (Sweden)

    Tobias Michlik

    2018-02-01

    Full Text Available The electrochemical performance of zinc particles with 250 μm and 30 μm diameters, coated with Bi2O3-Li2O-ZnO glass is investigated and compared with noncoated zinc particles. Galvanostatic investigations were conducted in the form of complete discharge and charging cycles in electrolyte excess. Coated 30 μm zinc particles provide the best rechargeability after complete discharge. The coatings reached an average charge capacity over 20 cycles of 113 mAh/g compared to the known zero rechargeability of uncoated zinc particles. Proposed reasons for the prolonged cycle life are effective immobilization of discharge products in the glass layer and the formation of percolating metallic bismuth and zinc phases, forming a conductive network through the glass matrix. The coating itself is carried out by mechanical ball milling. Different coating parameters and the resulting coating quality as well as their influence on the passivation and on the rechargeability of zinc–glass composites is investigated. Optimized coating qualities with respect to adhesion, homogeneity and compactness of the glass layer are achieved at defined preparation conditions, providing a glass coating content of almost 5 wt % for 250 μm zinc particles and almost 11 wt % for 30 μm zinc particles.

  7. Advanced zinc phosphate conversion coatings. Final report, June 1996--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Handsy, C.I. [ATSTA-TMC, Warren, MI (United States); Sugama, T. [Brookhaven National Lab., Upton, NY (United States)

    1997-04-01

    A SERDP-sponsored program aims at developing environmentally benign zinc phosphate conversion coatings and their process technologies for the electrogalvanized steel (EGS). We succeeded in formulating an environmentally acceptable phosphate solution without Co- and Ni-related additives, and also in replacing a hexavalent Cr acid sealant applied over the zinc phosphate (Zh-Ph) layers with a water-based polysiloxane sealers. The specific advantages of the newly developed Zn-Ph coatings were as follows: (1) there was rapid growth of uniform, dense embryonic Zn-Ph crystals on the EGS surfaces due to the creation of short-circuited cells with Mn acting as the cathode and the galvanized (zinc) coatings as the anode, (2) an excellent protection layer against corrosion was formed, extending the service life of zinc layers as galvanic sacrifice barriers, and (3) adhesion to the electro-deposited polymeric primer coating was improved because of the interaction between the siloxane sealer and primer. A full-scale demonstration to evaluate the reproducibility of this new coating technology on mini-sized automotive door panels made from EGS was carried out in collaboration with the Palnut Company (as industrial coating applicator) in New Jersey. All of the 150 mini-door panels were successfully coated with Zn-Ph.

  8. Forecasting of Zinc Coating Thickness with Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Tuğçen Hatipoğlu

    2013-01-01

    Full Text Available Since the competition level among the companies is increasing day by day, meeting customer demands with qualified products and cost reduction are primary goals of each company. And zinc, the main raw material in galvanization sector, is the most important cost item. So it is required to forecast the amount of zinc to be spent. In this study it is tried to forecast the amount of zinc consumption using the artificial neural network (ANN method. To evaluate the convenience of values hypothesis tests are done; and the results showed that there is no significant difference between the predicted and real outputs statistically.

  9. Development of nano SiO{sub 2} incorporated nano zinc phosphate coatings on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Tamilselvi, M. [Department of Chemistry, Thiru Kolanjiappar Government Arts College, Virudhachalam 606001 (India); Kamaraj, P. [Department of Chemistry, SRM University, Kattankulathur 603203 (India); Arthanareeswari, M., E-mail: arthanareeswari@gmail.com [Department of Chemistry, SRM University, Kattankulathur 603203 (India); Devikala, S.; Selvi, J. Arockia [Department of Chemistry, SRM University, Kattankulathur 603203 (India)

    2015-03-30

    Highlights: • Nano SiO{sub 2} incorporated nano zinc phosphate coating on mild steel was developed. • Coatings showed enhanced corrosion resistance. • The nano SiO{sub 2} is adsorbed on mild steel surface and become nucleation sites. • The nano SiO{sub 2} accelerates the phosphating process. - Abstract: This paper reports the development of nano SiO{sub 2} incorporated nano zinc phosphate coatings on mild steel at low temperature for achieving better corrosion protection. A new formulation of phosphating bath at low temperature with nano SiO{sub 2} was attempted to explore the possibilities of development of nano zinc phosphate coatings on mild steel with improved corrosion resistance. The coatings developed were studied by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Electrochemical measurements. Significant variation in the coating weight, morphology and corrosion resistance was observed as nano SiO{sub 2} concentrations varied from 0.5–4 g/L. The results showed that, the nano SiO{sub 2} in the phosphating solution changed the initial potential of the interface between mild steel substrate and phosphating solution and reduce the activation energy of the phosphating process, increase the nucleation sites and yielded zinc phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance. Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano SiO{sub 2}. The new formulation reported in the present study was free from Ni or Mn salts and had very low concentration of sodium nitrite (0.4 g/L) as accelerator.

  10. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shruti, S., E-mail: biotech.shruti@gmail.com; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-15

    Highlights: • Mesoporous bioactive glass substituted with Ce, Ga or Zn coated on Ti6Al4 V alloy. • Ce, Ga and Zn play vital role in bone metabolism. • Coating was homogenous and crack free retaining the characteristics of glass samples. • Apatite layer formed on unsubstituted, Ce and Ga substituted samples by 15 d. • Zn substituted samples lack apatite layer formation ability. - Abstract: Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO{sub 2}-15%CaO-5%P{sub 2}O{sub 5} mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic—organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  11. Resistance of Chromated Zinc Coatings to the Impact of Microscopic Fungi

    Directory of Open Access Journals (Sweden)

    Albinas LUGAUSKAS

    2011-03-01

    Full Text Available Zinc coatings are used to protect metallic parts of automobiles from corrosion. Zinc protective coatings are often chromated additionally treating them in acidic solution of chromium compounds. In recent years new technologies were designed to deposit chromate films of various thickness and resistance on zinc surface from acidic solution of Cr(III compounds. It has been noticed, that under atmospheric corrosion conditions microscopic fungi are present in the environment affect zinc coating. The aim of the presented study was to determine if zinc coatings treated with Cr(III solution become more resistant to fungi influence or their resistance diminishes. The analysis of steel plates coated with a zinc film and treated in four different chromium solutions has shown that in all the specimens fungi of Cladosporium herbarium species were detected and their frequency of detection was quite high, sometimes up to 50 %. However, we failed to determine the regularities of distribution of some fungi on the surface of plates chromated in different solution. The comparison of changes in the surfaces of plates treated with the four solutions has shown that the plates treated in the Likonda 3Cr5 passivation solution changed least after being exposed to atmospheric conditions. Chromated plates contaminated with mixtures of different fungi and kept for 60 days at a temperature of (26 ±2 °C under humid conditions were examined by using a scanning electron microscope (EVO 5O XP Carl Zeiss STM AG, Germany and the peculiarities of their surface damage were determined. The peculiarities of growth of some fungi species were determined on the plates chromated in the Likonda 3Cr5 and Cr(NO33*9H2O + malonic acid solutions. Under these conditions the fungi of Chrysosporium merdarium, Fusarium proliferatum, Paecilomyces lilacinus, Penicillium stoloniferum can either generate and promote the damage of metal surface or stabilize its corrosion processes

  12. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  13. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  14. Cr(VI) and Cr(III)-Based Conversion Coatings on Zinc

    NARCIS (Netherlands)

    Zhang, X.

    2005-01-01

    With the aims of understanding the protective mechanism of chromate conversion coatings and developing alternatives to chromate treatments, the physical natures and corrosion properties of Cr(VI) and Cr(III) treated zinc have been investigated in this work. The Cr(VI) treatments were carried out in

  15. Wear of soft tool materials in sliding contact with zinc coated steel sheet

    NARCIS (Netherlands)

    van der Heide, Emile; Burlat, M.; Bolt, P.J.; Schipper, Dirk J.

    2003-01-01

    In order to reduce costs of tooling for press operations, efforts are made to use alternative tool materials like wood or plastic. Friction and wear characteristics in sliding contact with zinc-coated steel sheet could, however, limit the applicability of these tool materials for automotive

  16. Perennial soybean seeds coated with high doses of boron and zinc ...

    African Journals Online (AJOL)

    The objective of this work was to study combinations of high doses of boron (B) and zinc (Zn) in the recoating of perennial soybean seeds, in order to provide these nutrients to the future plants. The physical, physiological and nutritional characteristics of the coated seeds and initial development of plants in a greenhouse ...

  17. Mechanical characterization and single asperity scratch behaviour of dry zinc and manganese phosphate coatings

    NARCIS (Netherlands)

    Ernens, D.; de Rooij, M. B.; Pasaribu, H. R.; van Riet, E.J.; van Haaften, W.M.; Schipper, D. J.

    The goal of this study is to characterise the mechanical properties of zinc and manganese phosphate coatings before and after running in. The characterization is done with nano-indentation to determine the individual crystal hardness and single asperity scratch tests to investigate the deformation

  18. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  19. Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives

    Science.gov (United States)

    Punith Kumar, M. K.; Srivastava, Chandan

    2014-10-01

    In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are "green" and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

  20. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91

    Energy Technology Data Exchange (ETDEWEB)

    Phuong, Nguyen Van [Surface Technology Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongnam, 642-831 (Korea, Republic of); University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350 (Korea, Republic of); Moon, Sungmo; Chang, Doyon [Surface Technology Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongnam, 642-831 (Korea, Republic of); Lee, Kyu Hwan, E-mail: lgh1636@kims.re.kr [Surface Technology Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongnam, 642-831 (Korea, Republic of); University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350 (Korea, Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The decrease of {beta}-phase causes decreasing of both coatings weight and etching weight. Black-Right-Pointing-Pointer Microstructure plays important roles for formation and characteristics of the coating crystals. Black-Right-Pointing-Pointer The {beta}-phase becomes hydrogen evolution center during phosphating process. Black-Right-Pointing-Pointer The coatings form two layers: inner layer and outer layer. Black-Right-Pointing-Pointer The initial corrosion resistance of AZ91 is increased by phosphate coatings. - Abstract: The effect of the microstructure, particularly of {beta}-Mg{sub 17}Al{sub 12} phase, on the formation and growth of zinc phosphate conversion coatings on magnesium alloy AZ91 (AZ91) was studied. The zinc phosphate coatings were formed on AZ91 with different microstructures produced by heat treatment. The effect of the microstructure on the zinc phosphate coatings were examined using optical microscope (OM), X-ray diffraction (XRD), coatings weight and etching weight balances, scanning electron microscopy (SEM) and salt immersion test. Results showed that as-cast AZ91 contained a high volume fraction of the {beta}-Mg{sub 17}Al{sub 12} phase and it was dissolved into {alpha}-Mg phase during heat treatment at 400 Degree-Sign C. The {beta}-phase became center for hydrogen evolution during phosphating reaction (cathodic sites). The decreased volume fraction of the {beta}-phase caused decreasing both coatings weight and etching weight of the phosphating process. However, it increased the crystal size of the coatings and improved corrosion resistance of AZ91 by immersing in 0.5 M NaCl solution. Results also showed that the structure of the zinc phosphate conversion on AZ91 consisted of two layers: an outer crystal Zn{sub 3}(PO{sub 4}){sub 2}{center_dot}4H{sub 2}O (hopeite) and an inner which was mainly composed of MgZn{sub 2}(PO{sub 4}){sub 2} and Mg{sub 3}(PO{sub 4}){sub 2}. A mechanism for the formation of two

  1. Index of refraction enhancement of calcite particles coated with zinc carbonate

    Science.gov (United States)

    Lattaud, Kathleen; Vilminot, Serge; Hirlimann, Charles; Parant, Hubert; Schoelkopf, Joachim; Gane, Patrick

    2006-10-01

    ZnCO 3 coating on calcite particles has been developed in order to enhance the index of refraction of this mineral that is used as a charge in paper, paint and polymer industries. Chemical reaction between calcite particles in an aqueous suspension with zinc chloride promotes the formation of a ZnCO 3 coating consisting of two layers with different interactions with the calcite particle. The refraction index of the resulting composite particles increases with the Zn/Ca ratio. A model allows to evaluate the coating thickness. The value of the scattering S and diffusion K coefficients of sheets coated with the ZnCO 3 coated particles reveal a dependence on the preparation conditions with a 15% increase for the best samples.

  2. Corrosion behaviour of hot dip zinc and zinc-aluminium coatings

    Indian Academy of Sciences (India)

    A comparative investigation of hot dip Zn–25Al alloy, Zn–55Al–Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn–25Al alloy coating is several ...

  3. Design and fabrication of anti-reflection coating on Gallium Phosphide, Zinc Selenide and Zinc Sulfide substrates for visible and infrared application

    Directory of Open Access Journals (Sweden)

    Mokrý P.

    2013-05-01

    Full Text Available Results of design and fabrication of a dual-band anti-reflection coating on a gallium phosphide (GaP, zinc selenide (ZnSe and zinc sulfide (ZnS substrates are presented. A multilayer stack structure of antireflection coatings made of zinc sulfide and yttrium fluoride (YF3 was theoretically designed for optical bands between 0.8 and 0.9 μm and between 9.5 and 10.5 μm. This stack was designed as efficient for these materials (GaP, ZnS, ZnSe together. Multilayer stack structure was deposited using thermal evaporation method. Theoretically predicted transmittance spectra were compared with transmitted spectra measured on coated substrates. Efficiency of anti-reflection coating is estimated and discrepancies are analyzed and discussed.

  4. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  5. Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings.

    Science.gov (United States)

    Iconaru, Simona Liliana; Prodan, Alina Mihaela; Buton, Nicolas; Predoi, Daniela

    2017-04-09

    The present study is focused on the synthesis, characterization and antifungal evaluation of zinc-doped hydroxyapatite (Zn:HAp) coatings. The Zn:HAp coatings were deposited on a pure Si (Zn:HAp_Si) and Ti (Zn:HAp_Ti) substrate by a sol-gel dip coating method using a zinc-doped hydroxyapatite nanogel. The nature of the crystal phase was determined by X-ray diffraction (XRD). The crystalline phase of the prepared Zn:HAp composite was assigned to hexagonal hydroxyapatite in the P6 3/m space group. The colloidal properties of the resulting Zn:HAp (x Zn = 0.1) nanogel were analyzed by Dynamic Light Scattering (DLS) and zeta potential. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the zinc-doped hydroxyapatite (Zn:HAp) nanogel composite and Zn:HAp coatings. The elements Ca, P, O and Zn were found in the Zn:HAp composite. According to the EDX results, the degree of Zn substitution in the structure of Zn:HAp composite was 1.67 wt%. Moreover, the antifungal activity of Zn:HAp_Si and Zn:HAp_Ti against Candida albicans ( C. albicans ) was evaluated. A decrease in the number of surviving cells was not observed under dark conditions, whereas under daylight and UV light illumination a major decrease in the number of surviving cells was observed.

  6. Homogeneous Coating with an Anion-Exchange Ionomer Improves the Cycling Stability of Secondary Batteries with Zinc Anodes.

    Science.gov (United States)

    Stock, Daniel; Dongmo, Saustin; Walther, Felix; Sann, Joachim; Janek, Jürgen; Schröder, Daniel

    2018-03-14

    Limited cycling stability of secondary cells with zinc anodes arises mainly from the high solubility of oxidized zinc species in the alkaline electrolyte resulting in electrode shape change and loss of active material during repeated discharge and charge. We propose and successfully employ a homogeneous coating with an anion-exchange ionomer (AEI) on model electrodes with electron-conductive host structures to confine the oxidized zinc species. Ideally, the confinement of oxidized zinc species reduces the shape change of the electrode and keeps the active material as close as possible at its place of origin. In this work, the confinement concept for the oxidized zinc species is elucidated by means of electrochemical studies and X-ray photoelectron spectroscopy: as intended, an interlayer of zinc oxide forms between the AEI and the surface of the zinc electrode. This interlayer implies that the hydroxide ions are able to pass and react as intended, whereas the migration of oxidized zinc species into the bulk electrolyte is hindered. The coating with an AEI yields a higher amount of restored zinc during electrodeposition in comparison to an uncoated zinc electrode-applying an AEI coating increases the achievable cycle number by up to six times. We investigate the morphology of the cycled electrodes and derive thereby the needs for further material classes that might be employed in the confinement concept. This approach demonstrates the benefit of ion-selective coatings, allowing for the permeation of hydroxide ions but not of oxidized zinc species, a concept which improves rechargeable batteries with zinc anodes, such as zinc-oxygen batteries.

  7. Comparative EIS and XPS studies of the protective character of thin lacquer films containing CR or P salts formed on galvanised steel, galvanneal and galfan substrates

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S.; Barranco, V

    2004-03-01

    X-ray photoelectron spectroscopy (XPS) is used to analyse variations during exposure to humidity and UV radiation (UVCON test) in the chemical composition of the outer surface of organic coatings (lacquers) containing phosphating or chromating reagents applied on galvanised steel, galvanneal and galfan substrates. By means of electrochemical impedance spectroscopy (EIS) measurements the protective character of the coatings analysed by XPS is studied and an attempt is made to establish possible relationships between the chemical composition of the surface of the lacquered substrates after exposure to the UVCON test and their electrochemical characterisation in immersion in a 3% NaCl solution. In general, the formation of defects or the loss of adhesion of the lacquer film leads to a significant reduction in charge transfer resistance values and, at the same time, an increase in interfacial capacitance values. The special behaviour of the galfan/lacquer 'with chromating reagents' system is associated with the presence of a thin insulating film of chromium and aluminium oxides at the base of the pores in the lacquer. Interfacial capacitance values tend to evolve in close correspondence with the content of some elements on the surface of the materials.

  8. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling.

    Science.gov (United States)

    Al-Naamani, Laila; Dobretsov, Sergey; Dutta, Joydeep; Burgess, J Grant

    2017-02-01

    Marine biofouling is a worldwide problem affecting maritime industries. Global concerns about the high toxicity of antifouling paints have highlighted the need to develop less toxic antifouling coatings. Chitosan is a natural polymer with antimicrobial, antifungal and antialgal properties that is obtained from partial deacetylation of crustacean waste. In the present study, nanocomposite chitosan-zinc oxide (chitosan-ZnO) nanoparticle hybrid coatings were developed and their antifouling activity was tested. Chitosan-ZnO nanoparticle coatings showed anti-diatom activity against Navicula sp. and antibacterial activity against the marine bacterium Pseudoalteromonas nigrifaciens. Additional antifouling properties of the coatings were investigated in a mesocosm study using tanks containing natural sea water under controlled laboratory conditions. Each week for four weeks, biofilm was removed and analysed by flow cytometry to estimate total bacterial densities on the coated substrates. Chitosan-ZnO hybrid coatings led to better inhibition of bacterial growth in comparison to chitosan coatings alone, as determined by flow cytometry. This study demonstrates the antifouling potential of chitosan-ZnO nanocomposite hybrid coatings, which can be used for the prevention of biofouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Electrochemical Impedance Study of Zinc Yellow Polypropylene-Coated Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhi-hua Sun

    2010-01-01

    Full Text Available Performance of zinc yellow polypropylene-coated aluminum alloy 7B04 during accelerated degradation test is studied using electrochemical impedance spectroscopy (EIS. It has been found that the zinc yellow polypropylene paint has few flaw and acts as a pure capacitance before accelerated test. After 336-hour exposure to the test, the impedance spectroscopy shows two time constants, and water has reached to the aluminum alloy/paint interface and forms corrosive microcell. For the scratched samples, the reaction of metal corrosion and the hydrolysis of zinc yellow ion can occur simultaneously. The impedance spectroscopy indicates inductance after 1008-hour exposure to the test, but the inductance disappears after 1344-hour exposure and the passivation film has pitting corrosion.

  10. Characteristics of Zinc Phosphate Coating Activated by Different Concentrations of Nickel Acetate Solution

    Science.gov (United States)

    Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.

    2017-02-01

    Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.

  11. Acid formic effect in zinc coatings obtained by galvanostatic deposition

    International Nuclear Information System (INIS)

    Lopes, C.; David, M.; Souza, E.C.

    2016-01-01

    Zinc deposits obtained from electrodeposition is widely used for the purpose of protecting steel substrates from corrosion. They are generally added to Zn deposition bath many additives for improving certain characteristics of the deposit. As far as is known there is no information in literature about the effect of formic acid in corrosion resistance of a Zn deposit. Because it is an acid additive, it has the use of cyclohexylamine, in order for the electrolytic bath continue with a pH equal to the one used commercially, around 5. The main goal of this study is analyze the effect of the formic acid addition in the corrosion resistance of an Zn electrodeposition obtained by galvanostatic deposition. The results obtained by performance tests, cyclic voltammetry and X-ray diffraction showed that the formic acid addition may be promising in combating the corrosion of materials. (author)

  12. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  13. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  14. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials.

    Science.gov (United States)

    Abdulkareem, Elham H; Memarzadeh, K; Allaker, R P; Huang, J; Pratten, J; Spratt, D

    2015-12-01

    Dental implants are prone to failure as a result of bacterial biofilm accumulation. Such biofilms are often resistant to traditional antimicrobials and the use of nanoparticles as implant coatings may offer a means to control infection over a prolonged period. The objective of this study was to determine the antibiofilm activity of nanoparticulate coated titanium (Ti) discs using a film fermenter based system. Metal oxide nanoparticles of zinc oxide (nZnO), hydroxyapatite (nHA) and a combination (nZnO+nHA) were coated using electrohydrodynamic deposition onto Ti discs. Using human saliva as an inoculum, biofilms were grown on coated discs for 96 h in a constant depth film fermenter under aerobic conditions with artificial saliva and peri-implant sulcular fluid. Viability assays and biofilm thickness measurements were used to assess antimicrobial activity. Following 96 h, reduced numbers of facultatively anaerobic and Streptococcus spp. on all three nano-coated surfaces were demonstrated. The proportion of non-viable microorganisms was shown to be higher on nZnO and composite (nZnO+nHA) coated surfaces at 96 h compared with nHA coated and uncoated titanium. Biofilm thickness comparison also demonstrated that nZnO and composite coatings to be the most effective. The findings support the use of coating Ti dental implant surfaces with nZnO to provide an antimicrobial function. Current forms of treatment for implant associated infection are often inadequate and may result in chronic infection requiring implant removal and resective/regenerative procedures to restore and reshape supporting tissue. The use of metal oxide nanoparticles to coat implants could provide osteoconductive and antimicrobial functionalities to prevent failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Corrosion Behavior of Brazed Zinc-Coated Structured Sheet Metal

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2017-01-01

    Full Text Available Arc brazing has, in comparison to arc welding, the advantage of less heat input while joining galvanized sheet metals. The evaporation of zinc is reduced in the areas adjacent to the joint and improved corrosion protection is achieved. In the automotive industry, lightweight design is a key technology against the background of the weight and environment protection. Structured sheet metals have higher stiffness compared to typical automobile sheet metals and therefore they can play an important role in lightweight structures. In the present paper, three arc brazing variants of galvanized structured sheet metals were validated in terms of the corrosion behavior. The standard gas metal arc brazing, the pulsed arc brazing, and the cold metal transfer (CMT® in combination with a pulsed cycle were investigated. In experimental climate change tests, the influence of the brazing processes on the corrosion behavior of galvanized structured sheet metals was investigated. After that, the corrosion behavior of brazed structured and flat sheet metals was compared. Because of the selected lap joint, the valuation of damage between sheet metals was conducted. The pulsed CMT brazing has been derived from the results as the best brazing method for the joining process of galvanized structured sheet metals.

  16. Tailoring the optical and hydrophobic property of zinc oxide nanorod by coating with amorphous graphene

    Science.gov (United States)

    Pahari, D.; Das, N. S.; Das, B.; Chattopadhyay, K. K.; Banerjee, D.

    2016-09-01

    Zinc oxide (ZnO) nanorods were synthesized at room temperature on potassium permanganate activated silicon and glass substrate by simple chemical method using zinc acetate as precursor. To modify the surface energy of the as prepared ZnO thin films the samples were coated with amorphous graphene (a-G) synthesized by un-zipping of chemically synthesized amorphous carbon nanotubes (a-CNTs). All the pure and coated samples were characterized by x-ray diffraction, field emission scanning electron microscope, Raman spectroscopy, and Fourier transformed infrared spectroscopy. The roughness analysis of the as prepared samples was done by atomic force microscopic analysis. The detail optical properties of all the samples were studied with the help of a UV-Visible spectrophotometer. The surface energy of the as prepared pure and coated samples was calculated by measuring the contact angle of two different liquids. It is seen that the water repellence of ZnO nanorods got increased after they are being coated with a-Gs. Also even after UV irradiation the contact angle remain same unlike the case for the uncoated sample where the contact angle gets decreased significantly after UV irradiation. Existing Cassie-Wenzel model has been employed along with the Owen's approach to determine the different components of surface energy.

  17. Microstructural effects on the initiation of zinc phosphate coatings on 2024-T3 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Susac, D.; Sun, X.; Li, R.Y.; Wong, K.C.; Wong, P.C.; Mitchell, K.A.R.; Champaneria, R

    2004-12-15

    The initiation of coatings deposited on to 2024-T3 aluminum alloy from supersaturated zinc phosphating solutions has been studied using scanning Auger microscopy (SAM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The alloy microstructure, especially associated with the second-phase particles, strongly affects the formation stages of the coating process, where etching of the substrate has a significant role. At the start, zinc phosphate (ZPO) crystals form on the Al-Cu-Mg second-phase particles, rather than on the matrix or on the Al-Cu-Fe-Mn particles, with the initial nucleation appearing at interfaces between Al-Cu-Mg particles and the matrix. In contrast, the formation of the ZPO coating is delayed on the cathodic Al-Cu-Fe-Mn particles, compared to those of the Al-Cu-Mg composition. When the coating process is completed, the whole sample surface is covered with ZPO although its thickness varies at the different micro-regions.

  18. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Jalili, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  19. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    International Nuclear Information System (INIS)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties

  20. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Science.gov (United States)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-02-01

    Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  1. Magnetic heating of triethylene glycol (TREG)-coated zinc-doped nickel ferrite nanoparticles

    Science.gov (United States)

    Ahmad, Ashfaq; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2018-02-01

    Triethylene glycol (TREG)-coated nickel-zinc (Ni-Zn) ferrite nanoparticles were synthesized via the hydrothermal method and characterized for application to magnetic hyperthermia. Ni-Zn ferrite particles of Ni1-xZnxFe2O4 with three different zinc contents of x = 0.2, 0.4, and 0.6 were formulated to investigate the structural and magnetic properties according to the zinc content. Transmission electron microscopy images revealed that the particles were spherical in shape and that the average diameters of the particles were 10.67, 13.02, and 18.73 nm for zinc contents of 0.6, 0.4, and 0.2, respectively. Fourier transform infrared spectroscopy confirmed that the TREG was firmly coated on the surface of the particles. The saturation magnetization decreased with the increasing zinc content in the particles, which affected the heating ability of the particles in the alternating magnetic field. The heating ability of the Ni0.8Zn0.2Fe2O4 and Ni0.6Zn0.4Fe2O4 particles facilitated the aqueous solution of these particles to reach the target temperature of 42 °C for magnetic hyperthermia, while an aqueous solution of Ni0.2Zn0.8Fe2O4 particles with a high particle concentration did not reach the target temperature. The high specific absorption rates of the Ni0.8Zn0.2Fe2O4 and Ni0.6Zn0.4Fe2O4 particles indicate that these particles are applicable to magnetic hyperthermia.

  2. Laser Overlap Welding of Zinc-coated Steel on Aluminum Alloy

    Science.gov (United States)

    Kashani, Hamed Tasalloti; Kah, Paul; Martikainen, Jukka

    Local reinforcement of aluminum with laser welded patches of zinc-coated steel can effectively contribute to crashworthiness, durability and weight reduction of car body. However, the weld between Zn-coated steel and aluminum is commonly susceptible to defects such as spatter, cavity and crack. The vaporization of Zn is commonly known as the main source of instability in the weld pool and cavity formation, especially in a lap joint configuration. Cracks are mainly due to the brittle intermetallic compounds growing at the weld interface of aluminum and steel. This study provides a review on the main metallurgical and mechanical concerns regarding laser overlap welding of Zn-coated steel on Al-alloy and the methods used by researchers to avoid the weld defects related to the vaporization of Zn and the poor metallurgical compatibility between steel and aluminum.

  3. Assessing the anti-fungal efficiency of filters coated with zinc oxide nanoparticles

    Science.gov (United States)

    Decelis, Stephen; Sardella, Davide; Triganza, Thomas; Brincat, Jean-Pierre; Gatt, Ruben; Valdramidis, Vasilis P.

    2017-05-01

    Air filters support fungal growth, leading to generation of conidia and volatile organic compounds, causing allergies, infections and food spoilage. Filters that inhibit fungi are therefore necessary. Zinc oxide (ZnO) nanoparticles have anti-fungal properties and therefore are good candidates for inhibiting growth. Two concentrations (0.012 M and 0.12 M) were used to coat two types of filters (melt-blown and needle-punched) for three different periods (0.5, 5 and 50 min). Rhizopus stolonifer and Penicillium expansum isolated from spoiled pears were used as test organisms. Conidial suspensions of 105 to 103 spores ml-1 were prepared in Sabouraud dextrose agar at 50°C, and a modified slide-culture technique was used to test the anti-fungal properties of the filters. Penicillium expansum was the more sensitive organism, with inhibition at 0.012 M at only 0.5 min coating time on the needle-punched filter. The longer the coating time, the more effective inhibition was for both organisms. Furthermore, it was also determined that the coating process had only a slight effect on the Young's Moduli of the needle-punched filters, while the Young's Moduli of the melt-blown filters is more susceptible to the coating method. This work contributes to the assessment of the efficacy of filter coating with ZnO nanopaticles aimed at inhibiting fungal growth.

  4. Antibacterial effects, biocompatibility and electrochemical behavior of zinc incorporated niobium oxide coating on 316L SS for biomedical applications

    Science.gov (United States)

    Pradeep PremKumar, K.; Duraipandy, N.; Manikantan Syamala, Kiran; Rajendran, N.

    2018-01-01

    In the present study, Nb2O5 (NZ0) composite coatings with various concentrations of zinc (NZ2, NZ4 & NZ6) are produced on 316L SS by sol-gel method with the aim of improving its antibacterial activity, bone formability and corrosion resistance properties. This work studied the surface characterization of NZ0, NZ2, NZ4 & NZ6 coated 316L SS by ATR-FTIR, XRD, HR-SEM with EDAX. The synthesized coatings were different in the morphological aspects, NZ0 shows mesoporous morphology whereas irregular cluster like morphology was observed for the zinc incorporated coatings. The chemical composition of the NZ0 and NZ4 composite coatings were studied by XPS and the results revealed that the zinc exist as ZnO and Nb as Nb2O5 in the coatings. The increase in the concentration of zinc in Nb2O5 increases the hydrophilic nature identified by water contact angle studies. The potentiodynamic polarization studies in simulated body fluid reveals the increase in polarization resistance with decrease in current density (icorr) and electrochemical impedance spectroscopic studies with increase in charge transfer resistance (Rct) and double layer capacitance (Qdl) were observed for NZ4 coated 316L SS. The inhibition of Staphylococcus aureus and Escherichia coli bacteria were identified for NZ4 coated 316L SS by bacterial viability studies. The NZ4 coated 316L SS showed better Osseo-integration by spreading the MG 63 osteoblast cells. The study results imply that zinc incorporated Nb2O5 (NZ4) composite coating exhibits antibacterial activity and also enhance the corrosion resistance and biocompatibility of the 316L SS.

  5. Zinc

    Science.gov (United States)

    ... fertility problems and enlarged prostate, as well as erectile dysfunction (ED). Zinc is taken by mouth for osteoporosis, ... who are not receiving zinc under medical supervision: adults 19 years and older (including pregnancy and lactation), 40 mg/day. The ...

  6. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion.

    Science.gov (United States)

    Brassard, J D; Sarkar, D K; Perron, J; Audibert-Hayet, A; Melot, D

    2015-06-01

    Thin films of zinc have been deposited on steel substrates by electrodeposition process and further functionalized with ultra-thin films of commercial silicone rubber, in order to obtain superhydrophobic properties. Morphological feature, by scanning electron microscope (SEM), shows that the electrodeposited zinc films are composed of micro-nano rough patterns. Furthermore, chemical compositions of these films have been analyzed by X-ray diffraction (XRD) and infra-red (IRRAS). An optimum electrodeposition condition, based on electrical potential and deposition time, has been obtained which provides superhydrophobic properties with a water contact angle of 155±1°. The corrosion resistance properties, in artificial seawater, of the superhydrophobic zinc coated steel are found to be superior to bare steel. Similarly, the measured ice adhesion strength on superhydrophobic surfaces, using the centrifugal adhesion test (CAT), is found to be 6.3 times lower as compared to bare steel. This coating has promising applications in offshore environment, to mitigate corrosion and reduce ice adhesion. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Stress and deformation of ceramic rolls to produce high quality zinc coated steel sheet

    Science.gov (United States)

    Sakai, Hiromasa; Noda, Nao-Aki; Sano, Yoshikazu; Takase, Yasushi; Zhang, Guowei

    2017-05-01

    Several ceramic rolls can be used efficiently to produce high quality zinc coated steel sheet used for automobiles. Those ceramics rolls may provide a longer life and reduce the cost for the maintenance because of its large heat resistance and large wear resistance. One example may be seen in sink rolls used in molten zinc bath to manufacture zinc coated steel sheet. Since the rolls are subjected to large thermal stress and mechanical loading, care should be taken for the risk of fracture due to the ceramic brittleness. Moreover, since the sleeve and shafts can be connected only by using small shrink fitting ratio, another failure risk should be considered for the separation of those components [25, 26]. In this paper, therefore, the mechanical and thermal stress and separation condition will be investigated considering the separation of the connected portion. Here, by using the finite volume method the heat transfer coefficient is discussed and by using the finite element method the thermal stress is considered.

  8. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingling, E-mail: lasier_wang@hotmail.com [College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, Fujian (China); Environmental Engineering and Science Program, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Han, Changseok [ORISE Post-doctoral Fellow, The U.S. Environmental Protection Agency, ORD, NRMRL, STD, CPB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268 (United States); Nadagouda, Mallikarjuna N. [The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, WQMB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268 (United States); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678, Nicosia (Cyprus)

    2016-08-05

    Highlights: • An innovative adsorbent was successfully synthesized to remove humic acid. • The adsorbent possessed high adsorption capacity for humic acid. • The adsorption capacity remarkably increased after an acid modification. • The adsorption capacity was proportional to the amount of ZnO coated on zeolite. • Electrostatic interactions are a major factor at the first stage of the process. - Abstract: Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO{sub 3}){sub 2}·6H{sub 2}O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21 ± 1 °C was about 60 mgC g{sup −1}. The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  9. Cadmium ban spurs interest in zinc-nickel coating for corrosive aerospace environments

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J. (Pure Coatings Inc., West Palm Beach, FL (United States))

    1994-02-01

    OSHA recently reduced the permissible exposure level for cadmium. The new standard virtually outlaws cadmium production and use, except in the most cost-insensitive applications. Aerospace manufacturers, which use cadmium extensively in coatings applications because of the material's corrosion resistance, are searching for substitutes. The most promising alternative found to date is a zinc-nickel alloy. Tests show that the alloy outperforms cadmium without generating associated toxicity issues. As a result, several major manufacturing and standards organizations have adopted the zinc-nickel compound as a standard cadmium replacement. The basis for revising the cadmium PEL -- which applies to occupational exposure in industrial, agricultural and maritime occupations -- is an official OSHA determination that employees exposed to cadmium under the existing PEL face significant health risks from lung cancer and kidney damage. In one of its principal uses, cadmium is electroplated to steel, where it acts as an anticorrosive agent.

  10. Corrosion resistance of different metallic coatings on press-hardened steels for automotive

    Energy Technology Data Exchange (ETDEWEB)

    Dosdat, L.; Petitjean, J.; Vietoris, T. (ArcelorMittal Maizieres Automotive Products Research Centre, F-57283 Maizieres-les-Metz); Clauzeau, O. [Bohr Technologies (France)

    2011-06-15

    The corrosion resistance of laboratory press-hardened components in aluminized, galvanized or galvannealed boron steels was evaluated through VDA 621-415 cyclic test for the automotive industry. 22MnB5 uncoated steel for hot stamping and standard galvanized steel for cold forming were also included as references. Corrosion resistance after painting (cosmetic corrosion) was quantified by measuring the delamination of electro-deposited paint from scribed panels. The rusting on their edges was used for determining the cut-edge corrosion resistance. The corrosion resistance on unpainted deformed panels (perforating corrosion) was quantified by mass losses and pit depth measurements. Zinc-coated boron steels were found to be more resistant to cosmetic corrosion than the other materials, and slightly more resistant to cut-edge corrosion than the aluminized one. Red rust apparition could not be avoided due to the high iron content in all these hot-stamped coatings. The three coated boron steels showed similar performances in terms of resistance to perforation. Aluminized boron steel presents the advantage of being less sensitive to hot-stamping process deviation. Its robustness has been proved for many years on cars. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    Directory of Open Access Journals (Sweden)

    Narges Milani

    Full Text Available Zinc oxide (ZnO nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP and urea using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF mapping and absorption fine structure spectroscopy (μ-XAFS. Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO42.2H2O and zinc ammonium phosphate (Zn(NH4PO4 species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be

  12. Influence of thickness of zinc coating on CMT welding-brazing with AlSi5 alloy wire

    Science.gov (United States)

    Jin, Pengli; Wang, Zhiping; Yang, Sinan; Jia, Peng

    2018-03-01

    Effect of thickness of zinc coating on Cold Mattel Transfer (CMT) brazing of aluminum and galvanized steel is investigated. The thickness of zinc coating is 10 μm, 30 μm, and 60 μm, respectively. A high-speed camera was used to capture images of welding process of different specimens; the microstructure and composition analyses of the welding seam were examined by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS); the mechanical properties were measured in the form of Nano-indentation experiments. The results showed that arc characteristics and metal transfer behavior were unsteady at the beginning of welding process and that became stable after two cycles of CMT. With the thickness of zinc coating thickening, arc characteristics and metal transfer behaviors were more deteriorated. Compared with 10 μm and 30 μm, clad appearance of 60 μm was straight seam edges and a smooth surface which wetting angle was 60°. Zinc-rich zone at the seam edges was formed by zinc dissolution and motel pool oscillating, and zinc content of 10 μm and 30 μm were 5.8% and 7.75%. Zinc content of 60 μm was 14.61%, and it was a belt between galvanized steel and welding seam. The thickness of intermetallic compounds layer was in the range of 1–8 μm, and it changed with the thickness of zinc coating. The average hardness of the reaction layer of 60 μm is 9.197 GPa.

  13. Data on the optimized sulphate electrolyte zinc rich coating produced through in-situ variation of process parameters.

    Science.gov (United States)

    Fayomi, Ojo Sunday Isaac

    2018-02-01

    In this study, a comprehensive effect of particle loading and optimised process parameter on the developed zinc electrolyte was presented. The depositions were performed between 10-30 min at a stirring rate of 200 rpm at room temperature of 30 °C. The effect of coating difference on the properties and interfacial surface was acquired, at a voltage interval between 0.6 and 1.0 V for the coating duration. The framework of bath condition as it influences the coating thickness was put into consideration. Hence, the electrodeposition data for coating thickness, and coating per unit area at constant distance between the anode and cathode with depth of immersion were acquired. The weight gained under varying coating parameter were acquired and could be used for designing and given typical direction to multifunctional performance of developed multifacetal coatings in surface engineering application.

  14. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.

    Science.gov (United States)

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-06-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm(2) of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm(2). To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Electrochemical and spectroscopic in situ techniques for the investigation of the phosphating of zinc coated steel

    International Nuclear Information System (INIS)

    Tomandl, A.

    2003-05-01

    In this work spectroscopic and electrochemical techniques were developed for the investigation of surface treatments used in steel industry. ICP-atomic emission spectroscopy (ICP-AES), Raman spectroscopy and the Quartz crystal microbalance (QCM) were applied to the investigation of the kinetics of phosphating as well as the properties of phosphate layers. Phosphating of zinc coated steel leads to the formation of a crystalline layer consisting of zinc phosphate and is employed to enhance paint adhesion and corrosion protection. For the high reaction rates necessary in industrial production lines, oxidation agents are added to the phosphating bathes to accelerate the reaction. The oxidation agents provide an additional reduction reaction beside the hydrogen formation and therefore decrease the number of gas bubbles, which would block the zinc surface and reduce the rate of phosphating. With addition of H2O2 or nitrates the rate of layer formation is distinctly increased. In a combined experiment of ICP-AES with QCM and potential transients, it was shown that the presence of these accelerators in the phosphating bath increases the rate of zinc dissolution and hence leads to a faster formation of the phosphate layer. In under paint corrosion of painted, zinc coated steel phosphate layers are exposed to a highly alkaline environment. The stability of a phosphate layer against alkaline attack is therefore essential for its performance in corrosion protection. To enhance the alkaline stability Mn and Ni are added to modern phosphating bathes. The incorporation of these elements reduces the dissolution rate in 0.1 M NaOH proportional to their concentration in the phosphate layer. The dissolution of Zn, P, Mn and Ni was determined quantitatively with ICP-AES. Raman spectroscopy showed the formation of a Mn-hydroxide layer during alkaline attack, which protects the phosphate layer and reduces further dissolution. On basis of these results the reaction of phosphate layers

  16. Zinc-modified Calcium Silicate Coatings Promote Osteogenic Differentiation through TGF-?/Smad Pathway and Osseointegration in Osteopenic Rabbits

    OpenAIRE

    Yu, Jiangming; Xu, Lizhang; Li, Kai; Xie, Ning; Xi, Yanhai; Wang, Yang; Zheng, Xuebin; Chen, Xiongsheng; Wang, Meiyan; Ye, Xiaojian

    2017-01-01

    Surface-modified metal implants incorporating different ions have been employed in the biomedical field as bioactive dental implants with good osseointegration properties. However, the molecular mechanism through which surface coatings exert the biological activity is not fully understood, and the effects have been difficult to achieve, especially in the osteopenic bone. In this study, We examined the effect of zinc-modified calcium silicate coatings with two different Zn contents to induce o...

  17. Investigation of transport phenomena and defect formation in pulsed laser keyhole welding of zinc-coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J [Department of Mechanical and Engineering Technology, Georgia Southern University, PO Box 8046, Statesboro, GA 30460 (United States); Tsai, H L [Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, 1870 Miner Circle, Rolla, MO 65409 (United States); Lehnhoff, T F [Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, 1870 Miner Circle, Rolla, MO 65409 (United States)

    2006-12-21

    Lasers are being used to weld zinc-coated steels due to high welding speed, high aspect ratio, and narrow heat affected zone. However, escape of high-pressure zinc vapour in the welding process can damage the weld pool continuity and cause large voids and serious undercuts in the final welds. In this paper, a mathematical model and the associated numerical techniques have been developed to study the transport phenomena and defect formation mechanisms in pulsed laser keyhole welding of zinc-coated steels. The volume-of-fluid (VOF) method is employed to track free surfaces. The continuum model is used to handle the liquid phase, the solid phase and the mushy zone of the metal. The enthalpy method is employed to account for the latent heat during melting and solidification. The transient heat transfer and melt flow in the weld pool during the keyhole formation and collapse processes are calculated. The escape of zinc vapour through the keyhole and the interaction between zinc vapour and weld pool are studied. Voids in the welds are found to be caused by the combined effects of zinc vapour-melt interactions, keyhole collapse and solidification process. By controlling the laser pulse profile, it is found that the keyhole collapse and solidification process can be delayed, allowing the zinc vapour to escape, which results in the reduction or elimination of voids. The good agreement between the model predictions and the experimental observations indicates that the proposed model lays a solid foundation for future study of laser welding of zinc-coated steels.

  18. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    International Nuclear Information System (INIS)

    Timma, Christian; Lostak, Thomas; Janssen, Stella; Flock, Jörg; Mayer, Christian

    2016-01-01

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH 4 ) 2 SO 4 in a common roll-coating method. • A formation of (NH 4 ) 2 Zn(SO 4 ) * xH 2 O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH 4 ) 2 SO 4 ) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH 4 ) 2 Zn(SO 4 ) 2 * xH 2 O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  19. Investigation of Zinc and Phosphorus Elements Incorporated into Micro-Arc Oxidation Coatings Developed on Ti-6Al-4V Alloys

    Directory of Open Access Journals (Sweden)

    Yaping Wang

    2018-02-01

    Full Text Available In order to clarify the mechanism that zinc and phosphorus elements entering the micro-arc oxidation (MAO coatings developed on Ti-6Al-4V alloys, anodic coatings containing different zinc and phosphorus were fabricated using an orthogonal experiment of four factors with three levels in an electrolyte containing EDTA-ZnNa2, KOH, and phytic acid. Surface morphology, element composition, chemical state and phase structure of MAO coatings were characterized by scanning electron microscope (SEM, energy dispersive X-ray spectrometer (EDS, X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD. The concentrations of zinc and phosphorus in the electrolyte were analyzed by an inductively coupled plasma optical emission spectrometry (ICP-OES. The results show that zinc and phosphorus elements in MAO coatings exist in the form of Zn3(PO42. Phytic acid is the most important factor on both zinc and phosphorus contents of MAO coatings. With the increase of phytic acid concentration or the decrease of KOH concentration, the contents of zinc and phosphorus in MAO coatings present a similarly increasing tendency. Our results indicate that phosphorus takes part in coating formation mainly by diffusion, while zinc enters into MAO coatings with phosphorus from phytic acid.

  20. MULTI-ZONE ANTIREFLECTION COATING ON A SUBSTRATE MADE OF OPTICAL ZINC SULPHIDE

    Directory of Open Access Journals (Sweden)

    T. D. Tan

    2014-01-01

    Full Text Available The paper deals with creation technique for a multi-zone antireflection coating on a substrate made of the optical zinc sulphide ZnS. The coating effectively operates simultaneously in the following spectral ranges: visible region of 450 - 700 nm, in the near infrared region of 1000 - 1100 nm, at the wavelength of 1.55 μm, and in the mid-infrared (IR spectrum of 3 - 5 microns. Reflection coefficient in the range of 450 - 700 nm is not more than 2%, in the range of 1000 - 1100 nm is less than 0.5%, in the range of 1500 - 1700 nm is close to 1.5% and in the range of 3 - 5 μm is equal to 0.6%. Analysis results of the deviation impact in the thickness of layers on the value changing of the energy reflection coefficient in the considered areas are given. Deviation in the thickness of the layer, contiguous with the air, is shown to have the greatest effect on the spectral characteristics of the obtained coating. Refractive index deviation for this layer influences the magnitude of the residual reflection.

  1. Evaluation of interface adhesion of hot-dipped zinc coating on TRIP steel with tensile testing and finite element calculation

    NARCIS (Netherlands)

    Song, G.M.; De Hosson, J.T.M.; Sloof, W.G.; Pei, Y.T.

    In this work, a methodology for the determination of the interface adhesion strength of zinc coating on TRIP steel is present. This method consists of a conventional tensile test in combination with finite element calculation. The relation between the average interface crack length and the applied

  2. Biological effects of emissions from resistance spot welding of zinc-coated material after controlled exposure of healthy human subjects.

    Science.gov (United States)

    Gube, Monika; Kraus, Thomas; Lenz, Klaus; Reisgen, Uwe; Brand, Peter

    2014-06-01

    Do emissions from a resistance spot welding process of zinc-coated materials induce systemic inflammation in healthy subjects after exposure for 6 hours? Twelve healthy male subjects were exposed once for 6 hours either to filtered ambient air or to welding fume from resistance spot welding of zinc-coated material (mass concentration approximately 100 μg m). Biological effects were measured before, after, and 24 hours after exposure. At the concentrations used in this study, however, the suspected properties of ultrafine particles did not lead to systemic inflammation as reflected by high-sensitivity C-reactive protein or other endpoint parameters under consideration. Ultrafine particles from a resistance spot welding process of zinc-covered materials with a number concentration of about 10 cm and a mass concentration of about 100 μg m did not induce systemic inflammation.

  3. Press-hardening of zinc coated steel - characterization of a new material for a new process

    Science.gov (United States)

    Kurz, T.; Larour, P.; Lackner, J.; Steck, T.; Jesner, G.

    2016-11-01

    Press-hardening of zinc-coated PHS has been limited to the indirect process until a pre-cooling step was introduced before the hot forming to prevent liquid metal embrittlement. Even though that's only a minor change in the process itself it does not only eliminate LME, but increases also the demands on the base material especially in terms of hardenability or phase transformations at temperatures below 700 °C in general. This paper deals with the characterization of a modified zinc-coated material for press-hardening with pre-cooling that assures a robust process. The pre-cooling step itself and especially the transfer of the blank in the hot-forming die is more demanding than the standard 22MnB5 can stand to ensure full hardenability. Therefore the transformation behavior of the modified material is shown in CCT and TTT diagrams. Of the same importance are the changed hot forming temperature and flow curves for material at lower temperatures than typically used in direct hot forming. The resulting mechanical properties after hardening from tensile testing and bending tests are shown in detail. Finally some results from side impact crash tests and correlations of the findings with mechanical properties such as fracture elongation, tensile strength, VDA238 bending angle at maximum force as well as postuniform bending slope are given as well. Fracture elongation is shown to be of little help for damage prediction in side impact crash. Tensile strength and VDA bending properties enable however some accurate prediction of the PHS final damage behavior in bending dominated side impact load case.

  4. Accelerated crack growth, residual stress, and a cracked zinc coated pressure shell

    Science.gov (United States)

    Dittman, Daniel L.; Hampton, Roy W.; Nelson, Howard G.

    1987-01-01

    During a partial inspection of a 42 year old, operating, pressurized wind tunnel at NASA-Ames Research Center, a surface connected defect 114 in. long having an indicated depth of a 0.7 in. was detected. The pressure shell, constructed of a medium carbon steel, contains approximately 10 miles of welds and is cooled by flowing water over its zinc coated external surface. Metallurgical and fractographic analysis showed that the actual detect was 1.7 in. deep, and originated from an area of lack of weld penetration. Crack growth studies were performed on the shell material in the laboratory under various loading rates, hold times, and R-ratios with a simulated shell environment. The combination of zinc, water with electrolyte, and steel formed an electrolytic cell which resulted in an increase in cyclic crack growth rate by as much as 500 times over that observed in air. It was concluded that slow crack growth occurred in the pressure shell by a combination of stress corrosion cracking due to the welding residual stress and corrosion fatigue due to the cyclic operating stress.

  5. Perspectives on coated advanced high strength steels for automotive applications

    OpenAIRE

    Bhattacharya, D.

    2011-01-01

    Advanced High Strength Steels (AHSS) is the fastest growing segment of sheet products in the automotiveindustry. Coated (galvanized or galvannealed) AHSS are the most important of this class of steels. AHSSincludes various families of steels, major among them being dual-phase, multi-phase or complex-phase, TRIPand martensitic steels. Recently, Twin Induced Plasticity (TWIP) and Quenching and Partitioning (QP) steelsare also becoming popular. Finally, press-hardened steels (PHS) are increasing...

  6. Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ren-Jei Chung

    2017-02-01

    Full Text Available Nowadays glucose detection is of great importance in the fields of biological, environmental, and clinical analyzes. In this research, we report a zinc oxide (ZnO nanorod powder surface-coated with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure observation, and electrochemical property investigations were carried out. For the cyclic voltammetric (CV glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was attained. The sensitivity was 2.97 μA/cm2mM, which is the most optimized ever reported. With such good analytical performance from a simple process, it is believed that the nanocomposites composed of ZnO nanorod powder surface-coated with carbon material are promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity.

  7. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2014-06-01

    Full Text Available Silica coated (30 wt% cobalt zinc ferrite (Co1−xZnxFe2O4, x=0, 0.2, 0.3, 0.4, 0.5 and 1 nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction (XRD reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared (FTIR spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy (SEM images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1−xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.

  8. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants

    Science.gov (United States)

    Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone. PMID:23483914

  9. Magnetic properties of zinc-coated Sm2(Fe0.9Co0.1)17Nx powders

    International Nuclear Information System (INIS)

    Arlot, R.; Machida, K.; Adachi, G.

    1998-01-01

    High-performance magnetic powders of the Sm 2 (Fe 0.9 Co 0.1 ) 17 N 2.9 compound were prepared by ball milling in an organic solution containing surface active agent (Aerosol OT). The subsequent zinc-coating process allows the powders to be stabilized against oxidation by O 2 or H 2 O. The above two steps were optimized by investigating the powder particle size (i.e. milling time) dependence and the influence of zinc content on the treatment efficiency, in order to obtain powerful magnets. (orig.)

  10. Combined chemical and EIS study of the reaction of zinc coatings under alkaline conditions

    International Nuclear Information System (INIS)

    Walkner, Sarah; Hassel, Achim Walter

    2014-01-01

    Graphical abstract: - Highlights: • An electrochemical unit for automatic EIS and pH modulation is used. • ZnMg2Al2 and ZnAl53 are studied in alkaline solutions. • Amount of consumed sodium hydroxide allows following hydroxide formation and film thickness. • Cross sections of 13 μm show excellent agreement with consumed hydroxide. • ZnAl53 consumes more hydroxide due to soluble aluminate formation. - Abstract: Two different zinc coatings of composition ZnMg2Al2 (Zn + 2 wt.% Mg + 2 wt.% Al) and ZnAl53 (Zn + 53 wt.% Al) were investigated in aqueous solution at pH 12.0 with a novel setup, the so-called impedance titrator. This device is able to perform electrochemical measurements including, but not limited to, impedance spectroscopy in dependency of different pH-values. The setup allows holding the pH-value with a precision of at least 0.05 by dosing the required amount of titrating agent to the system. If the alkaline pH region is investigated, hydroxide ions are consumed in the course of passive layer formation. The amount of consumed hydroxide allows to quantitatively follow the formation of the hydroxide film and its thickness. Cross section SEM shows an excellent agreement of 13 μm after 7 h for ZnMg2Al2. At a constant pH value, the hydroxide concentration is constant and film formation is well defined and kinetically characterised. The consumption of hydroxide by the ZnAl53 coating is higher resulting from the solubility of the Al as aluminate under alkaline conditions. The composition of the precipitates contains less than 3 wt.% of Al. The observed processes and the formation of corrosion products are recorded and differences in the behaviour of the two coatings are discussed

  11. Surface investigation and tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Timma, Christian, E-mail: christian.timma@thyssenkrupp.com [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany); Lostak, Thomas; Janssen, Stella; Flock, Jörg [ThyssenKrupp Steel Europe AG, Technology & Innovation, Kaiser-Wilhelm Str. 100, 47166 Duisburg (Germany); Mayer, Christian [University of Duisburg-Essen, Faculty of Chemistry, CENIDE, Universitätsstraße 7, 45141 Essen (Germany)

    2016-12-30

    Highlights: • Skin-passed hot-dip galvanized (HDG-) steel sheets were coated with (NH{sub 4}){sub 2}SO{sub 4} in a common roll-coating method. • A formation of (NH{sub 4}){sub 2}Zn(SO{sub 4}) * xH{sub 2}O was observed and the reaction mainly occurred in the skin-passed areas of the surface. • Sulfate coated samples reveal a superior friction behaviour in oil-like conditions compared non-sulfated specimen. - Abstract: Phosphatation is a well-known technique to improve friction and wear behaviour of zinc coated steel, but has a variety of economic and ecologic limitations. In this study an alternative coating based on ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) is applied on skin-passed hot-dip galvanized steel sheets in order to investigate its surface chemical and tribological behaviour in a Pin-on-Disk Tribometer. Raman- and X-ray photoelectron spectroscopic results revealed a formation of ammonium zinc sulfate ((NH{sub 4}){sub 2}Zn(SO{sub 4}){sub 2} * xH{sub 2}O) on the surface, which is primarily located in the skin-passed areas of the steel material. Sulfate coated samples exhibited a superior friction behaviour in Pin-on-Disk Tests using squalane as a model substance for oil-like lubricated conditions and a formation of a thin lubrication film is obtained in the wear track. Squalane acts as a carrier substance for ammonium zinc sulfate, leading to an effective lubrication film in the wear track.

  12. The analysis of corrosion performance of car bodies coated by no nickel and low nickel zinc phosphating processes

    Energy Technology Data Exchange (ETDEWEB)

    Derun, E.M.; Demirozu, T.; Piskin, M.B.; Piskin, S. [Yildiz Technical University, Department of Chemical Engineering, Davutpasa Kampuesue 127, Esenler-Istanbul (Turkey)

    2005-06-01

    In today's automotive industry in order to protect car bodies from corrosion, spray or immersion type zinc phosphating processes are applied. In both types, nickel and chromium are widely used though they are harmful to human health and environment. In this study, car body's corrosion performance, coated by no nickel (0 ppm) and low nickel (100, 200, 300 ppm) immersion type zinc phosphating (without chromium passivation) processes, are compared to the bodies that are coated by spray and immersion type processes including nickel (500-700 ppm) and chromium. After analyzing coating weight, composition, morphology of the crystals and salt spray test corrosion performance of car bodies specimens coated by no nickel and low nickel processes are as good as the ones coated by spray and immersion phosphating processes including nickel and chromium. In developing environment consciousness, it is inevitable to favor no nickel or low nickel processes since they give no harm to nature and human health. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  13. Electrochemical impedance spectroscopy and zero resistance ammeters (ZRA) as tools for studying the behaviour of zinc-rich inorganic coatings

    International Nuclear Information System (INIS)

    Novoa, X.R.; Izquierdo, M.; Merino, P.; Espada, L.

    1989-01-01

    Impedance spectra obtained from zinc-rich inorganic coatings after one year of atmospheric exposure, have been interpreted on the basis of the study of the galvanic couple Zn/Fe, using a potentiostat combined with two ZRA. The area ratio of Zn/Fe is one of the factors conditioning the cathodic protection of iron. When this ratio is locally 1:1 or lower, corrosion spots are detected on iron and the overall impedance spectra shows a 'flattened' shape at low frequencies. The type of atmosphere determines the durability and evolution of the coating's protection mechanism. (author) 9 refs., 13 figs

  14. Influence of pH of phosphating bath on the zinc phosphate coating on AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.Y.; Lian, J.S.; Niu, L.Y.; Jiang, Z.H. [Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China)

    2006-02-15

    Suitable pH of the phosphating bath is crucial to restrain resolving rate of magnesium and obtain high quality phosphate coatings because of the high activity of magnesium. In this investigation a compact zinc phosphate coatings on AZ91D were successfully obtained from the phosphating bath with pH=2.15{proportional_to}2.5. This figure indicated that the slab-like phosphate crystals were entirely covered the substrate when the pH of the phosphating bath is 2.5. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  15. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    Directory of Open Access Journals (Sweden)

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  16. Contribution to the study of the influence of zinc bath composition on corrosion resistance of coatings obtained by galvanization

    International Nuclear Information System (INIS)

    Cabrillac, Claude

    1969-01-01

    This research thesis deals with the influence of zinc purity on the corrosion resistance of a coating obtained by galvanization, and on its effect on cathodic protection. This study therefore addresses methods and tests processes (notably salt spray test) aiming at assessing the efficiency of steel protection by hot galvanization, and aims at highlighting the influence of galvanization bath purity or composition on corrosion resistance of galvanized layers

  17. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Yan-Huei Lee

    2016-11-01

    Full Text Available The inverted organic solar cell was fabricated by using sol-gel indium-gallium-zinc-oxide (IGZO as the electron-transport layer. The IGZO precursor solution was deposited by blade coating with simultaneous substrate heating at 120 °C from the bottom and hot wind from above. Uniform IGZO film of around 30 nm was formed after annealing at 400 °C. Using the blend of low band-gap polymer poly[(4,8-bis-(2-ethylhexyloxy-benzo(1,2-b:4,5-b’dithiophene-2,6-diyl-alt- (4-(2-ethylhexanoyl-thieno [3,4-b]thiophene--2-6-diyl] (PBDTTT-C-T and [6,6]-Phenyl C71 butyric acid methyl ester ([70]PCBM as the active layer for the inverted organic solar cell, an efficiency of 6.2% was achieved with a blade speed of 180 mm/s for the IGZO. The efficiency of the inverted organic solar cells was found to depend on the coating speed of the IGZO films, which was attributed to the change in the concentration of surface OH groups. Compared to organic solar cells of conventional structure using PBDTTT-C-T: [70]PCBM as active layer, the inverted organic solar cells showed significant improvement in thermal stability. In addition, the chemical composition, as well as the work function of the IGZO film at the surface and inside can be tuned by the blade speed, which may find applications in other areas like thin-film transistors.

  18. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  19. Effects of molybdenum dithiocarbamate and zinc dialkyl dithiophosphate additives on tribological behaviors of hydrogenated diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Yue, Wen; Liu, Chunyue; Fu, Zhiqiang; Wang, Chengbiao; Huang, Haipeng; Liu, Jiajun

    2014-01-01

    Highlights: • For MoDTC, DLC coating showed better anti-friction and worse anti-wear behaviors. • The improved anti-friction property was due to graphitization and MoS 2 . • Formation of MoO x resulted in a high wear volume. • For ZDDP, DLC coating showed the best anti-wear and the worst anti-friction behaviors. • Absence of friction reducing product and graphitized layer resulted in a higher friction. - Abstract: The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors

  20. Fabrication and properties of zinc oxide thin film prepared by sol-gel dip coating method

    Directory of Open Access Journals (Sweden)

    Kayani Zohra Nazir

    2015-09-01

    Full Text Available ZnO thin films were deposited on a glass substrate by dip coating technique using a solution of zinc acetate, ethanol and distilled water. Optical constants, such as refractive index n and extinction coefficient k. were determined from transmittance spectrum in the ultraviolet-visible-near infrared (UV-Vis-NIR regions using envelope methods. The films were found to exhibit high transmittance, low absorbance and low reflectance in the visible regions. Absorption coefficient α and the thickness of the film t were calculated from interference of transmittance spectra. The direct optical band gap of the films was in the range of 3.98 to 3.54 eV and the thickness of the films was evaluated in the range of 173 to 323 nm, while the refractive index slightly varied in the range of 1.515 to 1.622 with an increase in withdrawal speed from 100 to 250 mm/s. The crystallographic structure of the films was analyzed with X-ray diffractometer. The films were amorphous in nature.

  1. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  2. Laser-assisted coating of TI6AL4V substrate with Zinc

    CSIR Research Space (South Africa)

    Baloyi, NM

    2012-12-01

    Full Text Available Laser coating is an advanced coating technology used for improving the surface properties of metal components. The coatings produced are thick, dense, and crack-free with continuous non-porous microstructures having uniform composition which results...

  3. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  4. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    Directory of Open Access Journals (Sweden)

    Jiangming Yu

    Full Text Available The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I, osteocalcin, insulin-like growth factor-I (IGF-I, and transforming growth factor-β1 (TGF-β1. The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  5. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Zhou-Shan [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Zhou, Wan-Shu [Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou 550001 (China); He, Xing-Wen [Department of Orthopaedic Surgery, Hangzhou Bay Hospital of Ningbo, 315000 (China); Liu, Wei [Department of Orthopaedic Surgery, Jingmen No. 1 People' s Hospital, Jingmen 44800, Hubei (China); Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Lv, Yang-Xun [Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000 (China); Cui, Wei [Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, Sichuan 610000 (China); Yang, Lei, E-mail: tzs19900327@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China)

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague–Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. - Highlights: • Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. • However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), Magnesium(Mg), Strontium (Sr) present a benificial effect on bone

  6. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    International Nuclear Information System (INIS)

    Furko, M.; Jiang, Y.; Wilkins, T.A.; Balázsi, C.

    2016-01-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO 3 ) 2 and NH 4 H 2 PO 4 components. During the electrochemical deposition Ag + and Zn 2+ ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn 2+ is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  7. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    Energy Technology Data Exchange (ETDEWEB)

    Furko, M., E-mail: monika.furko@bayzoltan.hu [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary); Jiang, Y.; Wilkins, T.A. [Institute of Particle Science and Engineering, University of Leeds, LS2 9JT (United Kingdom); Balázsi, C. [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary)

    2016-05-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4} components. During the electrochemical deposition Ag{sup +} and Zn{sup 2+} ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn{sup 2+} is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  8. Preparation of ciprofloxacin-coated zinc oxide nanoparticles and their antibacterial effects against clinical isolates of Staphylococcus aureus and Escherichia coli

    DEFF Research Database (Denmark)

    Seif, Sepideh; Kazempour, Zarah Bahri; Pourmand, Mohammad Reza

    2011-01-01

    In the present research study, ciprofloxacincoated zinc oxide nanoparticles were prepared using a precipitation method. The nature of interactions between zinc oxide nanoparticles and ciprofloxacin (CAS 85721-33-1) was studied by Fourier transform infrared spectroscopy. The results show that the ......In the present research study, ciprofloxacincoated zinc oxide nanoparticles were prepared using a precipitation method. The nature of interactions between zinc oxide nanoparticles and ciprofloxacin (CAS 85721-33-1) was studied by Fourier transform infrared spectroscopy. The results show...... that the carbonyl group in ciprofloxacin is actively involved in forming chemical - rather than physical - bonds with zinc oxide nanoparticles. Also the antibacterial activity of free zinc oxide nanoparticles and ciprofloxacin-coated zinc oxide nanoparticles have been evaluated against different clinical isolates...... ciprofloxacin) considerably enhanced the antibacterial activity of zinc oxide nanoparticles against different isolates of Staphylococcus aureus and Escherichia coli (4 to 32 fold increase). The result is of particular value, since it demonstrates that, by using biocompatible zinc oxide nanoparticles...

  9. Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications.

    Science.gov (United States)

    Rădulescu, Marius; Andronescu, Ecaterina; Cirja, Andreea; Holban, Alina Maria; Mogoantă, LaurenŢiu; Bălşeanu, Tudor Adrian; Cătălin, Bogdan; Neagu, Tiberiu Paul; Lascăr, Ioan; Florea, Denisa Alexandra; Grumezescu, Alexandru Mihai; Ciubuca, Bianca; Lazăr, Veronica; Chifiriuc, Mariana Carmen; Bolocan, Alexandra

    2016-01-01

    This work presents a novel nano-modified coating for wound dressings and other medical devices with anti-infective properties, based on functionalized zinc oxide nanostructures and orange oil (ZnO@OO). The obtained nanosurfaces were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected area electron diffraction (SAED), differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The obtained nanocomposite coatings exhibited an antimicrobial activity superior to bare ZnO nanoparticles (NPs) and to the control antibiotic against Staphylococcus aureus and Escherichia coli, as revealed by the lower minimal inhibitory concentration values. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based, viable cell count method was used. The coated wound dressings proved to be more resistant to S. aureus microbial colonization and biofilm formation compared to the uncoated controls. These results, correlated with the good in vivo biodistribution open new directions for the design of nanostructured bioactive coating and surfaces, which can find applications in the medical field, for obtaining improved bioactive wound dressings and prosthetic devices, but also in food packaging and cosmetic industry.

  10. A Five-year Performance Study of Low VOC Coatings over Zinc Thermal Spray for the Protection of Carbon Steel at the Kennedy Space Center

    Science.gov (United States)

    Kolody, Mark R.; Curran, Jerome P.; Calle, Luz Marina

    2014-01-01

    The launch facilities at the Kennedy Space Center (KSC) are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs. While currently used coating systems provide excellent corrosion control performance, they are subject to occupational, safety, and environmental regulations at the Federal and State levels that limit their use. Many contain high volatile organic compounds (VOCs), hazardous air pollutants, and other hazardous materials. Hazardous waste from coating operations include vacuum filters, zinc dust, hazardous paint related material, and solid paint. There are also worker safety issues such as exposure to solvents and isocyanates. To address these issues, top-coated thermal spray zinc coating systems were investigated as a promising environmentally friendly corrosion protection for carbon steel in an acidic launch environment. Additional benefits of the combined coating system include a long service life, cathodic protection to the substrate, no volatile contaminants, and high service temperatures. This paper reports the results of a performance based study to evaluate low VOC topcoats (for thermal spray zinc coatings) on carbon steel for use in a space launch environment.

  11. Non Chromate, ZVOC Coatings for Steel Substrates on Army and Navy Aircraft and Ground Vehicles: Non Chromate Sealers for Zinc Phosphate

    Science.gov (United States)

    2017-04-30

    WP-200906) Non-Chromate, ZVOC Coatings for Steel Substrates on Army and Navy Aircraft and Ground Vehicles Non-Chromate Sealers for Zinc... CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...PERSON 19b. TELEPHONE NUMBER (Include area code) 04/30/2017 Cost & Performance Report Non-Chromate, ZVOC Coatings for Steel Substrates on Army and Navy

  12. Corrosion behaviour of hot dip zinc and zinc–aluminium coatings on ...

    Indian Academy of Sciences (India)

    products and reweighed to determine loss of coating due to corrosion. To facilitate direct comparison of coatings with different densities, average thickness losses were calculated from the weight loss measurements. After the weight measurement, the samples were submitted to tensile testing, according to ASTM A370-77.

  13. Corrosion behaviour of hot dip zinc and zinc–aluminium coatings on ...

    Indian Academy of Sciences (India)

    A comparative investigation of hot dip Zn–25Al alloy, Zn–55Al–Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn–25Al alloy coating is several ...

  14. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunhong, E-mail: y.jiang@leeds.ac.uk [University of Leeds, Institute of Particle Science and Engineering (United Kingdom); O’Neill, Alex J. [University of Leeds, School of Molecular and Cellular Biology (United Kingdom); Ding, Yulong [University of Leeds, Institute of Particle Science and Engineering (United Kingdom)

    2015-04-15

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  15. Calcium and Zinc Containing Bactericidal Glass Coatings for Biomedical Metallic Substrates

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    2014-07-01

    Full Text Available The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log.

  16. The effect of polyaniline phosphate on mechanical and corrosive properties of protective organic coatings containing high amounts of zinc metal particles

    Czech Academy of Sciences Publication Activity Database

    Kohl, M.; Kalendová, A.; Stejskal, Jaroslav

    2014-01-01

    Roč. 77, č. 2 (2014), s. 512-517 ISSN 0300-9440 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : conductive polymers * zinc metal * organic coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.358, year: 2014

  17. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Science.gov (United States)

    Wallenhorst, L. M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-07-01

    In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  18. Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes.

    Science.gov (United States)

    Kobya, M; Demirbas, E; Dedeli, A; Sensoy, M T

    2010-01-15

    Treatment of spent final rinse water of zinc phosphating from an automotive assembly plant was investigated in an electrochemical cell equipped with aluminum or iron plate electrodes in a batch mode by electrocoagulation (EC). Effects of the process variables such as pH, current density, electrode material and operating time were explored with respect to phosphate and zinc removal efficiencies, electrical energy and electrode consumptions. The optimum operating conditions for removal of phosphate and zinc were current density of 60.0 A/m(2), pH 5.0 and operating time of 25.0 min with Al electrode and current density of 60.0 A/m(2), pH 3.0 and operating time of 15.0 min with Fe electrode, respectively. The highest phosphate and zinc removal efficiencies at optimum conditions were 97.7% and 97.8% for Fe electrode, and 99.8% and 96.7% for Al electrode. The electrode consumptions increased from 0.01 to 0.35 kg electrode/m(3) for Al electrode and from 0.20 to 0.62 kg electrode/m(3) for Fe electrode with increasing current density from 10.0 to 100.0 A/m(2). The energy consumptions were 0.18-11.29 kWh/m(3) for Al electrode and 0.24-8.47 kWh/m(3) for Fe electrode in the same current density range. Removal efficiencies of phosphate and zinc were found to decrease when flow rate was increased from 50 to 400 mL/min in continuous mode of operation. The morphology and elements present in the sludge was also characterized by using SEM and EDX.

  19. Corrosion behaviour of hot dip zinc and zinc–aluminium coatings on ...

    Indian Academy of Sciences (India)

    Zn–Al) alloy coatings started in the 1960s, although galvanized steels ... water. The galvanic current was measured using zero- resistance amperometry. The saturated calomel electrode. (SCE) and the platinum electrode were used as ...

  20. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  1. AFM AND XPS Characterization of Zinc-Aluminum Alloy Coatings with Attention to Surface Dross and Flow Lines

    Science.gov (United States)

    Harding, Felipe A.; Alarcon, Nelson A.; Toledo, Pedro G.

    Surfaces of various zinc-aluminum alloy (Zn-Al) coated steel samples are studied with attention to foreign surface dross by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS/ESCA). AFM topographic maps of zinc-aluminum alloy surfaces free of dross reveal the perfect nanoscale details of two kinds of dendrites: branched and globular. In all magnifications the dendrites appear smooth and, in general, very clean. XPS analysis of the extreme surface of a Zn-Al sample reveals Al, Zn, Si and O as the main components. The XPS results show no segregation or separation of phases other than those indicated by the ternary Al-Zn-Si diagram. For surfaces of Zn-Al plagued with impurities, high resolution AFM topographic maps reveal three situations: (1) areas with well-defined dendrites, relatively free of dross; (2) areas with small, millimeter-sized black spots known as dross; and (3) areas with large black stains, known as flow lines. Dendrite deformation and dross accumulation increase notably in the neighborhood, apparently clean to the naked eye, of dross or flow lines. XPS results of areas with dross and flow lines indicate unacceptable high concentration of Si and important Si phase separation. These results, in the light of AFM work, reveal that dross and flow lines are a consequence of a high local concentration of Si from high melting point silica and silicate impurities in the Zn-Al alloy source.

  2. Investigation of anticorrosion properties of nanocomposites of spray coated zinc oxide and titanium dioxide thin films on stainless steel (304L SS) in saline environment

    Science.gov (United States)

    P, Muhamed Shajudheen V.; S, Saravana Kumar; V, Senthil Kumar; Maheswari A, Uma; M, Sivakumar; Rani K, Anitha

    2018-01-01

    The present study reports the anticorrosive nature of nanocomposite thin films of zinc oxide and titanium dioxide on steel substrate (304L SS) using spray coating method. The morphology and chemical constituents of the nanocomposite thin film were characterized by field effect scanning electron microscopy and energy dispersive analysis of x-ray (EDAX) studies. From the EDAX studies, it was observed that nanocomposite coatings of desired stoichiometry can be synthesized using present coating technique. The cyclic voltametric techniques such as Tafel analysis and electrochemical impedance spectroscopy (EIS) analysis were conducted to study the anticorrosion properties of the coatings. The E corr values obtained from Tafel polarization curves of the sample coated with nanocomposites of ZnO and TiO2 in different ratios (5:1, 1:1 and 1:5) indicated that the corrosion resistance was improved compared to bare steel. The coating resistance values obtained from the Nyquist plot after fitting with equivalent circuit confirmed the improved anticorrosion performance of the coated samples. The sample coated with ZnO: TiO2 in the ratio 1:5 showed better corrosion resistance compared to other ratios. The Tafel and EIS studies were repeated after exposure to 5% NaCl for 390 h and the results indicated the anticorrosive nature of the coating in the aggressive environment. The root mean square deviation of surface roughness values calculated from the AFM images before and after salt spray indicated the stability of coating in the saline environment.

  3. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    Science.gov (United States)

    Simescu, Florica; Idrissi, Hassane

    2008-01-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating. PMID:27878037

  4. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Florica Simescu and Hassane Idrissi

    2008-01-01

    Full Text Available We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO46(OH2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  5. Carbon-coated Zinc Sulfide nano-clusters: synthesis, photothermal conversion and adsorption properties.

    Science.gov (United States)

    Bao, Chunlin; Zhu, Guoxing; Shen, Mengqi; Yang, Jing

    2014-12-15

    Carbon-coated cluster-like ZnS nanospheres were synthesized by a facile solvothermal route. ZnCl2, thiourea, and glucose were selected as the raw materials. The formed ZnS with hexagonal phase has spherical cluster-like structure, which shows good monodispersity in size. A thin layer carbon is coated on the surface of ZnS cluster-like spheres. The thickness of carbon shell is dependent on the dosage of glucose. The carbon-coated ZnS nano-clusters show the same emission as that of pristine ZnS nano-clusters. Exposure of the aqueous dispersion of carbon-coated ZnS products to 980 nm laser can elevate its temperature by 5.1°C in 8 min. It was found that the photothermal conversion effect mainly comes from the carbon component and at the same time, the heterointerface between ZnS and carbon also provides a positive role for it. In addition, the carbon-coated ZnS products can absorb dye molecular with highest adsorption capacity of 36.8 mg/g toward Rhodamine B. The present finding demonstrates their potential applications in photothermal agents, adsorbents, and related fields. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Relationship between welding fume concentration and systemic inflammation after controlled exposure of human subjects with welding fumes from metal inert gas brazing of zinc-coated materials.

    Science.gov (United States)

    Brand, Peter; Bauer, Marcus; Gube, Monika; Lenz, Klaus; Reisgen, Uwe; Spiegel-Ciobanu, Vilia Elena; Kraus, Thomas

    2014-01-01

    It has been shown that exposure of subjects to emissions from a metal inert gas (MIG) brazing process of zinc-coated material led to an increase of high-sensitivity C-reactive protein (hsCRP) in the blood. In this study, the no-observed-effect level (NOEL) for such emissions was assessed. Twelve healthy subjects were exposed for 6 hours to different concentrations of MIG brazing fumes under controlled conditions. High-sensitivity C-reactive protein was measured in the blood. For welding fumes containing 1.20 and 1.50 mg m zinc, high-sensitivity C-reactive protein was increased the day after exposure. For 0.90 mg m zinc, no increase was detected. These data indicate that the no-observed-effect level for emissions from a MIG brazing process of zinc-coated material in respect to systemic inflammation is found for welding fumes with zinc concentrations between 0.90 and 1.20 mg m.

  7. Evaluation of the degradation of a zinc coating exposed to a damp industrial environment

    International Nuclear Information System (INIS)

    Naquid G, C.; Ayala R, V.

    2001-01-01

    The purpose of this work is to characterize and identify the degradation mechanism of a galvanized coating exposed to a dry arid industrial environment, but this one with events of high humidity (rains) and contaminated with copper salts. It was demonstrated that the atmospheric corrosion was accelerated by the presence of copper deposits and sulfur over the samples surface. Likewise it was tried to correlate the contact time (staying time) between the coating and the contaminated environment, the p H value (acid media) and the presence of salts (copper sulfates) in solution, with the deterioration grade of the galvanized coating. The analytical techniques applied in the study were: optical microscopy, scanning electron microscopy, X-ray diffraction and chemical analysis by X-ray dispersive energy spectroscopy. (Author)

  8. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide.

    Science.gov (United States)

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-11-16

    The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  9. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-11-01

    Full Text Available The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  10. FABRICATION OF NANOPOROUS Ni VIA DEALLOYING OF ZINC-NICKEL COATINGS

    OpenAIRE

    Seda , Oturak

    2015-01-01

    Dealloying is a selective leaching of one component in a multicomponent alloy so as to produce a nanoporous structure. In this study, it was aimed to produce nanoporous Ni coating by selective leaching of Zn in a Zn-Ni alloy. To achieve this, first the Zn-Ni alloy was obtained by electrodeposition in a bath containing Zn and Ni salts. Then, dealloying was performed at different concentrations of NaOH solution. Dealloying led to crack formation in the coatings which thus prevented the formatio...

  11. Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, A. Nithya Deva; Vimala, R., E-mail: vimala.r@vit.ac.in

    2016-04-01

    Green synthesis of zinc oxide nanoparticles (ZnO-NPs) is gaining importance as an eco-friendly alternative to conventional methods due to its enormous applications. The present work reports the synthesis of ZnO-NPs using the endosperm of Cocos nucifera (coconut water) and the bio-molecules responsible for nanoparticle formation have been identified. The synthesized nanoparticles were characterized using UV–Visible spectroscopy (UV–Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Zeta potential measurement. The results obtained reveal that the synthesized nanoparticles are moderately stable with the size ranging from 20 to 80 nm. The bactericidal effect of the nanoparticles was proved by well diffusion assay and determination of minimum inhibitory concentration (MIC) against marine biofilm forming bacteria. Further the green synthesized ZnO-NPs were doped with TEOS sol–gels (TESGs) in order to assess their antimicrofouling capability. Different volumes of liquid sol–gels were coated on to 96-well microtitre plate and cured under various conditions. The optimum curing conditions were found to be temperature 60 °C, time 72 h and volume 200 μl. Antiadhesion test of the undoped (SG) and ZnO-NP doped TEOS sol–gel (ZNSG) coatings were evaluated using marine biofilm forming bacteria. ZNSG coatings exhibited highest biofilm inhibition (89.2%) represented by lowest OD value against Pseudomonasotitidis strain NV1. - Highlights: • The study reports low cost, and simple procedure for the synthesis of ZnO-NPs using coconut water. • XRD result shows the high crystalline nature of the synthesized ZnO-NPs. • TEM and zeta potential distribution confirms the nanostructure, stability of the synthesized ZnO-NPs. • ZnO-NPs doped with TEOS sol¬-gels (TESGs) exhibited excellent antimicrofouling activity.

  12. Magnetic materials based on manganese–zinc ferrite with surface organized polyaniline coating

    Czech Academy of Sciences Publication Activity Database

    Kazantseva, N. E.; Bespyatykh, Y.; Sapurina, I.; Stejskal, Jaroslav; Vilčáková, J.; Sáha, P.

    2006-01-01

    Roč. 301, č. 1 (2006), s. 155-165 ISSN 0304-8853 R&D Projects: GA AV ČR IAA4050313 Keywords : ferrite * coated particles * conducting polymer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006

  13. The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D

    Energy Technology Data Exchange (ETDEWEB)

    Li Qing, E-mail: liqingswu@yeah.ne [School of Chemistry and Chemical Engineering, Southwest University, 1 Tiansheng Road, Beibei, Chongqing 400715 (China); Xu Shuqiang; Hu Junying; Zhang Shiyan; Zhong Xiankang [School of Chemistry and Chemical Engineering, Southwest University, 1 Tiansheng Road, Beibei, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China)

    2010-01-01

    This paper discussed a zinc phosphate conversion coating formed on magnesium alloy AZ91D from the phosphating bath with varying amounts of ethanolamine (MEA). The effects of MEA on the form, structure, phase composition and electrochemical behavior of the phosphate coatings were examined using an scanning electron microscopy (SEM), X-ray diffraction (XRD) potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Interpretations of the electrical elements of the equivalent circuit were obtained from the SEM structure of the coatings, assumed to be formed of two layers: an outer porous crystal layer and an inner flat amorphous layer. The result showed that adding MEA refined the microstructure of the crystal layer and that the phosphate coating, derived at the optimal content of 1.2 g/L, with the most uniform and compact outer crystal layer provided the best corrosion protection.

  14. Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton

    Science.gov (United States)

    Priyanka, N.; Venkatachalam, P.

    2016-12-01

    This study describes the bioengineering of phycomolecule-coated zinc oxide nanoparticles (ZnO NPs) as a novel type of plant-growth-enhancing micronutrient catalyst aimed at increasing crop productivity. The impact of natural engineered phycomolecule-loaded ZnO NPs on plant growth characteristics and biochemical changes in Gossypium hirsutum L. plants was investigated after 21 days of exposure to a wide range of concentrations (0, 25, 50, 75, 100, and 200 mg l-l). ZnO NP exposure significantly enhanced growth and biomass by 125.4% and 132.8%, respectively, in the treated plants compared to the untreated control. Interestingly, photosynthetic pigments, namely, chlorophyll a (134.7%), chlorophyll b (132.6%), carotenoids (160.1%), and total soluble protein contents (165.4%) increased significantly, but the level of malondialdehyde (MDA) content (73.8%) decreased in the ZnO-NP-exposed plants compared to the control. The results showed that there were significant increases in superoxide dismutase (SOD, 267.8%) and peroxidase (POX, 174.5%) enzyme activity, whereas decreased catalase (CAT, 83.2%) activity was recorded in the NP-treated plants compared to the control. ZnO NP treatment did not show distinct alterations (the presence or absence of DNA) in a random amplified polymorphic DNA (RAPD) banding pattern. These results suggest that bioengineered ZnO NPs coated with natural phycochemicals display different biochemical effects associated with enhanced growth and biomass in G. hirsutum. Our results imply that ZnO NPs have tremendous potential in their use as an effective plant-growth-promoting micronutrient catalyst in agriculture.

  15. Grey–Taguchi method to optimize the percent zinc coating balances edge joints for galvanized steel sheets using metal inert gas pulse brazing process

    Directory of Open Access Journals (Sweden)

    Khasempong Songsorn

    2016-06-01

    Full Text Available The objective of this work was to optimize the percent zinc coating balances edge joints of galvanized steel sheets using the metal inert gas pulse brazing process. The Taguchi method and grey relational analysis were used to determine the relationship between the metal inert gas pulse brazing process parameters and percent zinc coating balances edge joints. The metal inert gas pulse brazing process parameters used in this study included wire feed speeds, arc voltages, travel speed, peak currents, and pulse frequency. The characteristics of metal inert gas pulse brazing process that were considered to find response were percent zinc coating balances edge joints on the upper edge joint (PZBEJ1, the lower edge joint (PZBEJ2, and the back sides of the edge joint (PZBEJ3. Analysis of variance was performed to determine the impact of an individual process parameter on the quality parameters. The results showed that the optimal parameters in which grey relational grade increases at the highest level were wire feed speeds at 3.25 m/min, arc voltages at 16 V, travel speeds at 0.9 m/min, peak currents at 425 A, and pulse frequency at 35 Hz. These parameters gave a 74.90% higher response value than those of the initial parameters of metal inert gas pulse brazing process.

  16. Ozone Oxidation of Self-Assembled Monolayers on SiOx-Coated Zinc Selenide Surfaces

    Science.gov (United States)

    McIntire, T. M.; Ryder, O. S.; Finlayson-Pitts, B. J.

    2008-12-01

    Airborne particles are important for visibility, human health, climate, and atmospheric reactions. Atmospheric particles contain a significant fraction of organics and such compounds present on airborne particles are susceptible to oxidation by atmospheric oxidants, such as OH, ozone, halogen atoms, and nitrogen trioxide. Oxidized organics associated with airborne particles are thought to be polar, hygroscopic species with enhanced cloud-nucleating properties. Oxide layers on silicon, or SiO2-coated substrates, act as models of environmentally relevant surfaces such as dust particles upon which organics adsorb. We have shown previously that ozone oxidation of unsaturated self-assembled monolayers (SAMs) on silicon attenuated total reflectance (ATR) crystals leads to the formation of carbonyl groups and micron-sized, hydrophobic organic aggregates surrounded by carbon depleted substrate that do not have increased water uptake as previously assumed. Reported here are further ATR-FTIR studies of the oxidation of alkene SAMs on ZnSe and SiO2-coated ZnSe. These substrates have the advantage that they transmit below 1500 cm-1, allowing detection of additional product species. These experiments show that the loss of C=C and formation of carbonyl groups is also accompanied by formation of a peak at 1110 cm-1, attributed to the secondary ozonide. Details concerning the products and mechanism of ozonolysis of alkene SAMs on surfaces based on these new data are presented and the implications for the oxidation of alkenes on airborne dust particles are discussed.

  17. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    Science.gov (United States)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  18. Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration.

    Science.gov (United States)

    Venugopalan, Pooyath Lekshmy; Jain, Shilpee; Shivashankar, Srinivasrao; Ghosh, Ambarish

    2018-02-01

    Magnetic nanomotors with integrated theranostic capabilities can revolutionize biomedicine of the future. Typically, these nanomotors contain ferromagnetic materials, such that small magnetic fields can be used to maneuver and localize them in fluidic or gel-like environments. Motors with large permanent magnetic moments tend to agglomerate, which limits the scalability of this otherwise promising technology. Here, we demonstrate the application of a microwave-synthesized ferrite layer to reduce the agglomeration of helical ferromagnetic nanomotors by an order of magnitude, which allows them to be stored in a colloidal suspension for longer than six months and subsequently be manoeuvred with undiminished performance. The ferrite layer also rendered the nanomotors suitable as magnetic hyperthermia agents, as demonstrated by their cytotoxic effects on cancer cells. The two functionalities were inter-related since higher hyperthermia efficiency required a denser suspension, both of which were achieved in a single microwave-synthesized ferrite coating.

  19. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications

    Science.gov (United States)

    Bujňáková, Zdenka; Dutková, Erika; Kello, Martin; Mojžiš, Ján; Baláž, Matej; Baláž, Peter; Shpotyuk, Oleh

    2017-05-01

    The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.

  20. Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating

    Directory of Open Access Journals (Sweden)

    Wan Rafizah Wan Abdullah

    2012-04-01

    Full Text Available High demands on low-voltage electronics have increased the need for zinc oxide (ZnO varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr6O11 based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr6O11 addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr6O11 from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr6O11 content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.

  1. Zinc oxyfluoride transparent conductor

    Science.gov (United States)

    Gordon, Roy G.

    1991-02-05

    Transparent, electrically conductive and infrared-reflective films of zinc oxyfluoride are produced by chemical vapor deposition from vapor mixtures of zinc, oxygen and fluorine-containing compounds. The substitution of fluorine for some of the oxygen in zinc oxide results in dramatic increases in the electrical conductivity. For example, diethyl zinc, ethyl alcohol and hexafluoropropene vapors are reacted over a glass surface at 400.degree. C. to form a visibly transparent, electrically conductive, infrared reflective and ultraviolet absorptive film of zinc oxyfluoride. Such films are useful in liquid crystal display devices, solar cells, electrochromic absorbers and reflectors, energy-conserving heat mirrors, and antistatic coatings.

  2. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell.

    Science.gov (United States)

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO(3)) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO(2)) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)(3)](PF(6))(2), [Co(pby)(3)](PF(6))(3), LiClO(4), and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO(3) as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff=56%) compared to ZnO working electrode (ff=40%) under the same condition. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application.

    Science.gov (United States)

    Chen, Haiyan; Zhang, Erlin; Yang, Ke

    2014-01-01

    In order to improve the biocompatibility and the corrosion resistance in the initial stage of implantation, a phosphate (CaZn2(PO4)2·2H2O) coating was obtained on the surface of pure iron by a chemical reaction method. The anti-corrosion property, the blood compatibility and the cell toxicity of the coated pure iron specimens were investigated. The coating was composed of some fine phosphate crystals and the surface of coating was flat and dense enough. The electrochemical data indicated that the corrosion resistance of the coated pure iron was improved with the increase of phosphating time. When the specimen was phosphated for 30min, the corrosion resistance (Rp) increased to 8006 Ω. Compared with that of the naked pure iron, the anti-hemolysis property and cell compatibility of the coated specimen was improved significantly, while the anti-coagulant property became slightly worse due to the existence of element calcium. It was thought that phosphating treatment might be an effective method to improve the biocompatibility of pure iron for biomedical application. © 2013.

  4. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  5. Advanced zinc phosphate conversion and pre-ceramic polymetallosiloxane coatings for corrosion protection of steel and aluminum, and characteristics of polyphenyletheretherketone-based materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Carciello, N.R.

    1992-07-01

    Anhydrous zinc phosphate (Zn{center_dot}Ph) coatings deposited by immersing the steel in transition Co, Ni, and Mn cation-incorporated phosphating solutions were investigated. Two features for the anhydrous 340C-heated (Zn{center_dot}Ph) were addressed; one was to determine if electron trapping of adsorbed CO{sup 2+} and Ni{sup 2+} ions acts to inhibit the cathodic reaction on the (Zn{center_dot}Ph), and the second was to determine the less susceptibility of the {alpha}-Zn{sub 3}(PO{sub 4}){sub 2} phase to alkali-induced dissolution. The factors governing film-forming of pre-ceramic polymetallosiloxane (PMS) coatings for Al substrates were investigated. Four factors were important in obtaining a good film: (1) formation of organopolymetallosiloxane at sintering temperatures of 150C; (2) pyrolytic conversion at 350C into an amorphous PMS network structure in which the Si-O-M linkage were moderately enhanced; (3) noncrystalline phases; and (4) formation of interfacial oxane bond between PMS and Al oxide. Formation of well-crystallized polyphenyletheretherketone (PEEK) in vicinity of silica aggregates was found in the molted body made in N{sub 2}. Crystalline PEEK contributed to thermal and hydrothermal stabilities of mortar specimens at temperatures up to 200C, and resistance in 5 wt % H{sub 2}SO{sub 4} solution at 80C.

  6. Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandra Mouli [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042 (India); Dewan, Srishti [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Biomedical Engineering Department, Deenbandhu Chhotu Ram University of Science & Technology, Haryana 131039 (India); Chawla, Seema [Biomedical Engineering Department, Deenbandhu Chhotu Ram University of Science & Technology, Haryana 131039 (India); Yadav, Birendra Kumar [Rajiv Gandhi Cancer Institute and Research Centre, Rohini, Delhi 110085 (India); Sumana, Gajjala, E-mail: sumanagajjala@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Malhotra, Bansi Dhar, E-mail: bansi.malhotra@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042 (India)

    2016-09-21

    We report results of the studies relating to controlled deposition of the amino-functionalized silica-coated zinc oxide (Am-Si@ZnO) nano-assemblies onto an indium tin oxide (ITO) coated glass substrate using Langmuir-Blodgett (LB) technique. The monolayers have been deposited by transferring the spread solution of Am-Si@ZnO stearic acid prepared in chloroform at the air-water interface, at optimized pressure (16 mN/m), concentration (10 mg/ml) and temperature (23 °C). The high-resolution transmission electron microscopic studies of the Am-Si@ZnO nanocomposite reveal that the nanoparticles have a microscopic structure comprising of hexagonal assemblies of ZnO with typical dimensions of 30 nm. The surface morphology of the LB multilayer observed by scanning electron microscopy shows uniform surface of the Am-Si@ZnO film in the nanometer range (<80 nm). These electrodes have been utilized for chronic myelogenous leukemia (CML) detection by covalently immobilizing the amino-terminated oligonucleotide probe sequence via glutaraldehyde as a crosslinker. The response studies of these fabricated electrodes carried out using electrochemical impedance spectroscopy show that this Am-Si@ZnO LB film based nucleic acid sensor exhibits a linear response to complementary DNA (10{sup −6}–10{sup −16} M) with a detection limit of 1 × 10{sup −16} M. This fabricated platform is validated with clinical samples of CML positive patients and the results demonstrate its immense potential for clinical diagnosis. - Graphical abstract: Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for label free electrochemical detection of chronic myelogenous leukemia. - Highlights: • Stable and controlled deposition of Am-Si@ZnO nano-assemblies using LB technique. • Uniform monolayer deposition of the Am-Si@ZnO LB film within the nanometer range. • Am-Si@ZnO LB film shows enhanced electrochemical properties. • Fabricated

  7. Effect of Microwave Power on the Physical Properties of Carboxylic Acid-Coated Manganese-Ion-Doped Zinc Sulfide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Baibaswata Bhattacharjee

    2011-01-01

    Full Text Available Bright ZnS : Mn2+ nanoparticles have been synthesized employing microwave irradiation technique and using zinc 2-ethylhexanoate as a novel zinc precursor. A series of samples is obtained by changing the microwave power (from 150 W to 500 W to study its effect on the physical properties of the ZnS : Mn2+ nanoparticles. The particle size increases with increasing microwave power for the samples synthesized in the microwave range of 150 W to 300 W. The decrease in particle size for higher microwave power (400 W and 500 W can be described as an onset of the secondary nucleation due to the excess energy associated with the higher microwave power. The sample synthesized with microwave power of 300 W shows highest luminescence intensity suggesting increase in Mn2+ luminescence center for the sample synthesized at 300 W, as supported by the quantity analysis results.

  8. Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses

    Czech Academy of Sciences Publication Activity Database

    Hodek, Jan; Zajícová, V.; Lovětinská-Šlamborová, I.; Stibor, I.; Müllerová, J.; Weber, Jan

    2016-01-01

    Roč. 16, Apr 1 (2016), č. článku 56. ISSN 1471-2180 R&D Projects: GA MŠk(CZ) LK11207 Institutional support: RVO:61388963 Keywords : hybrid coating * virucidal effect * HIV * enveloped viruses Subject RIV: EE - Microbiology, Virology Impact factor: 2.644, year: 2016 http://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-016-0675-x

  9. Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response.

    Science.gov (United States)

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2018-03-06

    The chemistry, structure and morphology of the implant surface have a great influence on the integration of an implant material with bone tissue. In this work, we applied Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE) to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and Zn-substituted β-tricalcium phosphate (ZnTCP) on Titanium substrates. Five samples with different SrHA/ZnTCP composition ratios were fabricated by a single step laser procedure. SrHA was synthesized in aqueous medium, whereas ZnTCP was obtained by reaction at high temperature. Both powders were separately suspended in deionized water, frozen at liquid nitrogen temperature and used as targets for C-MAPLE experiments, which proceed via simultaneous laser vaporization of two distinct material targets. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples, with a homogeneous distribution of the two phosphates along deposited thin films. Human osteoclast precursor 2T-110 and human osteoblast-like cells MG63 were co-cultured on the coatings. The results indicate that osteoblast viability and production of osteocalcin were promoted by the presence of ZnTCP. On the other hand, SrHA inhibited osteoclastogenesis and osteoclast differentiation, as demonstrated by the observed increase of the osteoprotegerin/RANKL ratio and decrease of the number of TRAP-positive multinucleated cells when increasing SrHA amount in the coatings. The results indicate that the possibility to tailor the composition of the coatings provides materials able to modulate bone growth and bone resorption. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    J. Yi

    2008-03-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  11. Plasmochemical modification of aluminum-zinc alloys using NH{sub 3}-Ar atmosphere with anti-wear coatings deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kyzioł, Karol, E-mail: kyziol@agh.edu.pl [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland); Koper, Katarzyna [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland); Kaczmarek, Łukasz [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90 924 Łódz (Poland); Grzesik, Zbigniew [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30 059 Kraków (Poland)

    2017-03-01

    This paper constitutes a continuation of studies on modification technologies for 7075 series aluminum alloys (Al-Zn) in plasmochemical conditions using the RF CVD (Radio-Frequency Chemical Vapor Deposition) method. This technique is simultaneously the second stage of alloy ageing. The presented results concern optimization of alloy surface modification using N{sup +} ions (in NH{sub 3} or NH{sub 3}/Ar atmosphere) before obtaining a DLC (Diamond-Like Carbon) layer doped with Si and N. From the results it can be concluded that the most profitable mechanical properties (H, ca. 12 GPa and E, ca. 115 GPa) are obtained when the SiCNH coating process is preceded by Al-Zn alloy surface modification with nitrogen ions. These ions are provided by a flowing NH{sub 3} and Ar gas mixture (1:1 ratio). In these process conditions, the lowest tribological wear of the surface is also observed. Furthermore, the obtained coating exhibits a fine-grained structure. - Highlights: • Surface properties of Al-Zn alloy after plasma processes are investigated. • Modification in a RF reactor was the second stage of ageing. • The N{sup +} ion treatments of aluminum substrates was justified. • SiCNH coatings obtained on Al alloys significantly improve mechanical parameters.

  12. Inactivation of Vegetative Cells, but Not Spores, of Bacillus anthracis, B. cereus, and B. subtilis on Stainless Steel Surfaces Coated with an Antimicrobial Silver- and Zinc-Containing Zeolite Formulation

    Science.gov (United States)

    Galeano, Belinda; Korff, Emily; Nicholson, Wayne L.

    2003-01-01

    Stainless steel surfaces coated with paints containing a silver- and zinc-containing zeolite (AgION antimicrobial) were assayed in comparison to uncoated stainless steel for antimicrobial activity against vegetative cells and spores of three Bacillus species, namely, B. anthracis Sterne, B. cereus T, and B. subtilis 168. Under the test conditions (25°C and 80% relative humidity), the zeolite coating produced approximately 3 log10 inactivation of vegetative cells within a 5- to 24-h period, but viability of spores of the three species was not significantly affected. PMID:12839825

  13. Structure and characterization of Sn, Al co-doped zinc oxide thin films prepared by sol–gel dip-coating process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-I [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Legrand, David [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lerondel, Gilles [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taiwan (China)

    2014-11-03

    Transparent conductive zinc oxide co-doped with tin and aluminum (TAZO) thin films were prepared via sol–gel dip-coating process. Non-toxic ethanol was used in this study instead of 2-methoxyethanol used in conventional work. Dip-coating was repeated several times to obtain relatively thick films consisting of six layers. The films were then annealed at 500 °C for 1 h in air or in vacuum and not subsequently as employed in other studies. The X-ray diffraction patterns indicated that all the samples revealed a single phase of hexagonal ZnO polycrystalline structure with a main peak of (002). The optical band gap and resistivity of the TAZO films were in the ranges of 3.28 to 3.32 eV and 0.52 to 575.25 Ω cm, respectively. The 1.0 at.% Sn, 1.0 at.% Al co-doped ZnO thin film annealed in vacuum was found to have a better photoelectrochemical performance with photocurrent density of about 0.28 mA/cm{sup 2} at a bias of 0.5 V vs. SCE under a 300 W Xe lamp illumination with the intensity of 100 mW/cm{sup 2}. Compared to the same dopant concentration but annealed in air (∼ 0.05 mA/cm{sup 2} bias 0.5 V vs. SCE), the photocurrent density of the film annealed in vacuum was 5 times higher than the film annealed in air. Through electrochemical measurements, we found that the dopant concentration of Sn plays an important role in TAZO that affected photocurrent density, stability of water splitting and anti-corrosion. - Highlights: • Al, Sn co-doped ZnO (TAZO) films was synthesized by sol–gel process. • The parameters of TAZO films were dopant concentration and annealed ambient. • The photoelectrochemical characteristics of TAZO films were investigated.

  14. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  15. Synthesis, characterization, in vitro and in vivo studies of dextrin-coated zinc-iron ferrite nanoparticles (Zn0.5Fe0.5Fe2O4) as contrast agent in MRI

    Science.gov (United States)

    Zare, T.; Lotfi, M.; Heli, H.; Azarpira, N.; Mehdizadeh, A. R.; Sattarahmady, N.; Abdollah-dizavandi, M. R.; Heidari, M.

    2015-09-01

    Iron oxide nanoparticles, such as ferrites, offer some attractive possibilities in biomedicine, especially in MRI applications. The objective of this study is to investigate the effectiveness of dextrin-coated zinc-iron ferrite nanoparticles (IFNPs) as an MRI contrast agent in in vivo and in vitro media. IFNPs were synthesized by an aqueous precipitation method in the presence of dextrin. An agarose phantom with different concentrations of dextrin-coated IFNPs was performed on a 1.5-T MRI. For in vivo MRI studies, implanted melanoma tumors in mice were immediately scanned after intra-tumoral injection of dextrin-coated IFNPs. Microscopic studies showed that the average diameter of dextrin-coated IFNPs was 12 ± 2.4 nm and the saturation magnetization for IFNPs was 31.5 emu g-1; r 1 and r 2 relaxivities of these ultrasmall superparamagnetic IFNPs in agarose phantom were obtained as 0.99 and 17.4 mmol L-1 s-1, respectively. The relaxivity measurements revealed that the dextrin-coated IFNPs can serve as a negative contrast agent. In vivo MRI showed that the dextrin-coated IFNPs can be used for tumor detection. The dextrin-coated IFNPs were suggested to be applied for lymph node and targeted imaging.

  16. Non-Chromate Passivation of Zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, G.

    1993-01-01

    . There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...... minutes, in any one of the baths, at 60¢XC. Some movement of the submerged samples, or stirring with air-bubbles, should be applied, just as a thorough rinse of the zinc surface immediately before the pas-sivation is extremely important....

  17. Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples

    Directory of Open Access Journals (Sweden)

    Mahnaz Adeli

    2017-02-01

    Full Text Available In the present study, sodium dodecyl sulphate-coated Fe3O4 nanoparticles (SDS–Fe3O4 NPs were applied to remove Cu(II, Ni(II and Zn(II ions from water and wastewater samples. The effects of pH of solution, SDS, Fe3O4 NPs and salt addition on removal efficiency of the metal ions were investigated and optimized. Salt addition has a negative effect on the removal efficiency of the metal ions, thus extraction follows the ion exchange mechanism. The results showed that the adsorption process onto the adsorbent is very fast under optimum conditions and nearly 1 min of contact time was found to be sufficient for completion of the metal ions' adsorption. Adsorption equilibrium of the metal ions reveals that data were fitted well to the Langmuir isotherm. Also, the maximum monolayer capacity, qmax, obtained from the Langmuir isotherm was 24.3, 41.2 and 59.2 mg g−1 for Cu(II, Ni(II and Zn(II, respectively. Desorption experiments by elution of the adsorbent with methanol show that the SDS-Fe3O4 NPs could be reconditioned without significant loss of its initial properties even after three adsorption–desorption cycles. Finally, application of the SDS-Fe3O4 NPs as efficient adsorbent material for removal of the metal ions from Iran Khodro's wastewater samples was investigated and satisfactory results were obtained.

  18. Development of Improved and Novel Thermal Control Coatings (Preprint)

    National Research Council Canada - National Science Library

    Davis, Amber I; Cerbus, Clifford A; Johnson, Joel A

    2007-01-01

    .... Recent improvements in the synthesis and particle size control of zinc orthotitanate pigment for silicate binder coatings have resulted in performance improvements over prior coatings of this type...

  19. Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs

    Directory of Open Access Journals (Sweden)

    Young Min Song

    2018-03-01

    Full Text Available Objective The present study was conducted to investigate the effects of a lipid-coated zinc oxide (ZnO supplement Shield Zn (SZ at the sub-pharmacological concentration on intestinal morphology and gene expression in weanling pigs, with an aim to gain insights into the mechanism of actions for SZ. Methods Forty 22-day-old weanling pigs were fed a nursery diet supplemented with 100 or 2,500 mg Zn/kg with uncoated ZnO (negative control [NC] or positive control [PC], respectively, 100, 200, or 400 mg Zn/kg with SZ for 14 days and their intestinal tissues were taken for histological and molecular biological examinations. The villus height (VH and crypt depth (CD of the intestinal mucosa were measured microscopically following preparation of the tissue specimen; expression of the genes associated with growth and immune function was determined using the real-time quantitative polymerase chain reaction. Results There was no difference in daily gain, gain:feed, and diarrhea score between the SZ group and either of NC and PC. The VH and VH:CD ratio were less for the SZ group vs NC in the jejunum and duodenum, respectively (p<0.05. The jejunal mucosal mRNA levels of insulin-like growth factor (IGF-I and interleukin (IL-10 regressed and tended to regress (p = 0.053 on the SZ concentration with a positive coefficient, respectively, whereas the IL-6 mRNA level regressed on the SZ concentration with a negative coefficient. The mRNA levels of IGF-I, zonula occludens protein-1, tumor necrosis factor-α, IL-6, and IL-10 did not differ between the SZ group and either of NC and PC; the occludin and transforming growth factor-β1 mRNA levels were lower for the SZ group than for PC. Conclusion The present results are interpreted to suggest that dietary ZnO provided by SZ may play a role in intestinal mucosal growth and immune function by modulating the expression of IGF-I, IL-6, and IL-10 genes.

  20. Unwanted electroless zinc plating on current collectors in zinc air batteries

    OpenAIRE

    Vijayaratnam, Vinoba; Natter, Harald; Grandthyll, Samuel; Neurohr, Jens Uwe; Jacobs, Karin; Müller, Frank; Hempelmann, Rolf

    2017-01-01

    The occurrence of metallic film deposition without external power supply on the copper current collector of a zinc air battery half-cell containing zinc slurry is investigated. Therefore, test specimens of miscellaneous materials representing the current collector are immersed in a commercial available zinc slurry as well as an in self-prepared zinc slurry. In case of copper and metals which are more noble (silver and gold), a coating on the respective specimen is obtained. An element mapping...

  1. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  2. Electrodeposition of zinc-nickel alloy from fluoborate baths - as a substitute for electrogalvanising

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Bapu, G.N.K.; Ayyapparaju, J.; Devaraj, G.

    Use of fluoborate electroytes have been investigated for depositing a suitable composition of zinc-nickel alloy on mild steel for better corrosion protection. In the present investigation, the plating and bath conditions have been optimized so that zinc-nickel alloy coating from fluoborate solutions find applications for plating wires as well as other articles advantageously in the place of zinc coatings.

  3. Graphene deposited onto aligned zinc oxide nanorods as an efficient coating for headspace solid-phase microextraction of gasoline fractions from oil samples.

    Science.gov (United States)

    Wen, Congying; Li, Mengmeng; Li, Wangbo; Li, Zizhou; Duan, Wei; Li, Yulong; Zhou, Jie; Li, Xiyou; Zeng, Jingbin

    2017-12-29

    The content of gasoline fraction in oil samples is not only an important indicator of oil quality, but also an indispensable fundamental data for oil refining and processing. Before its determination, efficient preconcentration and separation of gasoline fractions from complicated matrices is essential. In this work, a thin layer of graphene (G) was deposited onto oriented ZnO nanorods (ZNRs) as a SPME coating. By this approach, the surface area of G was greatly enhanced by the aligned ZNRs, and the surface polarity of ZNRs was changed from polar to less polar, which were both beneficial for the extraction of gasoline fractions. In addition, the ZNRs were well protected by the mechanically and chemically stable G, making the coating highly durable for use. With headspace SPME (HS-SPME) mode, the G/ZNRs coating can effectively extract gasoline fractions from various oil samples, whose extraction efficiency achieved 1.5-5.4 and 2.1-8.2 times higher than those of a G and commercial 7-μm PDMS coating respectively. Coupled with GC-FID, the developed method is sensitive, simple, cost effective and easily accessible for the analysis of gasoline fractions. Moreover, the method is also feasible for the detection of gasoline markers in simulated oil-polluted water, which provides an option for the monitoring of oil spill accident. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The choice of the conditions to receive the electrolytic zinc powders for metal-rich compositions

    Directory of Open Access Journals (Sweden)

    A. V. Patrushev

    2015-03-01

    Full Text Available In the work a method of obtaining highly dispersed zinc powders by electrolysis and comparison of the properties of zinc-rich compositions prepared using as a pigment zinc powders obtained by different methods is provided. Conducted measurements have shown that the electrical conductivity of zinc-rich coatings comprising electrolytic zinc powder does not inferior to the conductivity of the film with PZHD-0 powder obtained by the  evaporation-condensation method, despite the significant difference in the amount of zinc pigment. On the basis of the received data one can conclude that the use of electrolytic zinc powder as a pigment will significantly save zinc.

  5. Examination of Wetting by Liquid Zinc of Steel Sheets Following Various Kinds of Abrasive Blasting

    Directory of Open Access Journals (Sweden)

    Cecotka M.

    2016-06-01

    Full Text Available Abrasive blasting is one of the methods of surface working before hot-dip zinc-coating. It allows not only to remove products of corrosion from the surface, but it also affects the quality of the zinc coating applied later, thereby affecting wettability of surface being zinc-coated. The surface working can be done with different types of abrasive material.

  6. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Amanzadeh, Hatam; Yamini, Yadollah [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175 Tehran (Iran, Islamic Republic of); Moradi, Morteza [Department of Semiconductors, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of)

    2015-07-16

    Highlights: • ZnO/polypyrrole (ZNO/PPY) nanocomposite coating was fabricated on stainless steel. • Nanocomposite coating morphology was evaluated using scanning electron microscopy. • It was applied for HS-SPME of aliphatic hydrocarbons in water and soil samples. • Separation and determination of the hydrocarbons were performed by GC-FID. • The method is suitable for routine analysis of n-alkanes in various environmental samples. - Abstract: In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L{sup −1}, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results

  7. Acid formic effect in zinc coatings obtained by galvanostatic deposition; Efeito do acido formico em revestimentos de zinco obtidos por deposicao galvanostatica

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, C.; David, M.; Souza, E.C., E-mail: carolinalops@gmail.com [Universidade Federal da Bahia (UFBA), BA (Brazil). Escola Politecnica. Departamento de Engenharia Quimica

    2016-07-01

    Zinc deposits obtained from electrodeposition is widely used for the purpose of protecting steel substrates from corrosion. They are generally added to Zn deposition bath many additives for improving certain characteristics of the deposit. As far as is known there is no information in literature about the effect of formic acid in corrosion resistance of a Zn deposit. Because it is an acid additive, it has the use of cyclohexylamine, in order for the electrolytic bath continue with a pH equal to the one used commercially, around 5. The main goal of this study is analyze the effect of the formic acid addition in the corrosion resistance of an Zn electrodeposition obtained by galvanostatic deposition. The results obtained by performance tests, cyclic voltammetry and X-ray diffraction showed that the formic acid addition may be promising in combating the corrosion of materials. (author)

  8. Shield effect of polyaniline between zinc active material and aqueous electrolyte in zinc-air batteries

    Science.gov (United States)

    Jo, Yong Nam; Kang, Suk Hyun; Prasanna, K.; Eom, Seung Wook; Lee, Chang Woo

    2017-11-01

    The self-discharge behavior of zinc-air batteries is a critical issue that is induced by corrosion and hydrogen evolution reaction (HER) of zinc anodes. Polyaniline (PANI) coatings help control the HER and the corrosion reaction. Herein, PANI is synthesized with different amounts of HCl (20, 50, 100 ml). Among these, the PANI synthesized using 20 ml of HCl (20PANI@Zn) is the most effective for reducing the self-discharge behavior because it provides more amount of coating layer on the surfaces of the zinc particles compared to other prepared materials. This layer prevents direct contact between zinc and the aqueous electrolyte and minimize HER. The 20PANI@Zn shows 85% corrosion inhibition efficiency against pure zinc and results in 97.81% capacity retention after 24 h storage against no-storage condition at ambient temperature.

  9. Thermal stability of phosphate coatings on steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2015-07-01

    Full Text Available The work was validated thermal stability of zinc, manganese and tri-cations phosphate coatings on steel, made from commercial phosphating bath type Pragofos. Thermogravimetric data dehydration of scholzite, phosphophylite and hureaulite coatings in the temperature range 160 °C – 400 °C define the conditions for applying paints with higher firing temperature or thermal spraying ceramic coatings.

  10. The investigation of influence of adhesion promoters on adhesion bond between vulcanisate and zinc coated steel cord in products based on mixtures of natural and 1,4-cis-polybutadiene rubber

    Directory of Open Access Journals (Sweden)

    Gojić Mirko T.

    2007-01-01

    Full Text Available The mixtures of elastomer compounds based on natural and 1,4-cispolybutadiene rubber of 80:20 ratio, were used for the investigation of adhesion promoters influence on adhesion of vulcanisate to steel cord. Ni-stearate and resorsynol-formaldehyde resin combined with hexamethylenetetramine in various mass ratios were included as adhesion promoters. Elastomer mixtures were prepared using a laboratory double mill, and the rheological and vulcanization characteristics were examined on a vulcameter provided with an oscillating disc, a higher temperature of 145 °C. The crosslinking of the mixture was carried out by press, at a temperature of 145 °C and specific pressure of 40 bar, in period of 45 minutes. A wide number of standardized methods for physical mechanical characterization of vulcanization prior and after accelerated aging were used. The adhesion of vulcanizate bond with zinc coated steel cord was determined according to the so called H-test, by measuring the pulling-out force of the cord from the vulcanized block, and the degree of coverage of cord with vulcanizate after separation. The results of examinations show significant dependence of physico-mechanical characteristics and adhesion forces on the type and amount of used adhesion promoters in experimental elastomer mixtures.

  11. Titania and Zinc Oxide Nanoparticles: Coating with Polydopamine and Encapsulation within Lecithin Liposomes—Water Treatment Analysis by Gel Filtration Chromatography with Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Xuhao Zhao

    2018-02-01

    Full Text Available The interplay of metal oxide nanoparticles, environmental pollution, and health risks is key to all industrial and drinking water treatment processes. In this work we present a study using gel filtration chromatography for the analytical investigation of metal oxide nanoparticles in water, their coating with polydopamine, and their encapsulation within lecithin liposomes. Polydopamine prevents TiO2 and ZnO nanoparticles from aggregation during chromatographic separation. Lecithin forms liposomes that encapsulate the nanoparticles and carry them through the gel filtration column, producing an increase of peak area for quantitative analysis without any change in retention time to affect qualitative identification. To the best of our knowledge, this is the first report that demonstrates the potential application of lecithin liposomes for cleaning up metal oxide nanoparticles in water treatment. Encapsulation of graphene quantum dots by liposomes would allow for monitoring of nanoparticle-loaded liposomes to ensure their complete removal by membrane ultrafiltration from treated water.

  12. LEVELING METAL COATINGS

    Science.gov (United States)

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  13. Synergistic Effects between Doped Nitrogen and Phosphorus in Metal-Free Cathode for Zinc-Air Battery from Covalent Organic Frameworks Coated CNT.

    Science.gov (United States)

    Li, Zhongtao; Zhao, Weinan; Yin, Changzhi; Wei, Liangqin; Wu, Wenting; Hu, Zhenpeng; Wu, Mingbo

    2017-12-27

    A covalent organic framework that is composed of hexachlorocyclotriphosphazene and dicyanamide has been coated on CNT to prepare metal-free oxygen reduction reaction catalyst through thermal polymerization of the Zn-air battery cathode. The N,P-codoped nanohybrids have highly porous structure and active synergistic effect between graphitic-N and -P, which promoted the electrocatalytic performance. The electrocatalysts exhibits remarkable half-wave potential (-0.162 V), high current density (6.1 mA/cm -2 ), good stability (83%), and excellent methanol tolerance for ORR in alkaline solution. Furthermore, the N,P-codoped nanohybrids were used as an air electrode for fabrication of a high performance Zn-air battery. The battery achieves a high open-circuit potential (1.53 V) and peak power density (0.255 W cm -2 ). Moreover, the effect of N,P codoping on the conjugate carbon system and the synergistic effect between graphitic-N and P have been calculated through density functional theory calculations, which are essentially in agreement with experimental data.

  14. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  15. Zinc poisoning

    Science.gov (United States)

    ... Compounds used to make paint, rubber, dyes, wood preservatives, and ointments Rust prevention coatings Vitamin and mineral ... the person milk, unless instructed otherwise by a health care provider. Before Calling Emergency The following information ...

  16. Textural and morphological studies on zinc-iron alloy electrodeposits

    Indian Academy of Sciences (India)

    Zinc-iron alloy electrodeposits have industrial significance, since they provide better corrosion resistance and with improved mechanical properties when compared to pure zinc coatings. This is due to the unique phase structure of the alloy formed. But this deposition belongs to anomalous deposition, where the ...

  17. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution

    Science.gov (United States)

    Cho, Yung-Da; Fey, George Ting-Kuo

    The shape change and redistribution of zinc anode material over the electrode during repeated cycling have been identified as the main factors that can limit the life of alkaline zinc-air batteries. Li 2O-2B 2O 3 (lithium boron oxide, LBO) glass with high Li + conductivity and stability can be coated on the surface of zinc powders. The structures of the surface-treated and pristine zinc powders were characterized by XRD, SEM, TEM, ESCA and BET analyses. XRD patterns of LBO-coated zinc powders revealed that the coating did not affect the crystal structure. TEM images of LBO-coated on the zinc particles were compact with an average passivation layer of about 250 nm. The LBO layer can prevent zinc from coming into direct contact with the KOH electrolyte and minimize the side reactions within the batteries. The 0.1 wt.% LBO-coated zinc anode material provided an initial discharge capacity of 1.70 Ah at 0.5 V, while the pristine zinc electrode delivered only 1.57 Ah. A surface-treated zinc electrode can increase discharge capacity, decrease hydrogen evolution reaction, and reduce self-discharge. The results indicated that surface treatment should be effective for improving the comprehensive properties of anode materials for zinc-air batteries.

  18. Transparent nanocrystalline ZnO films prepared by spin coating

    International Nuclear Information System (INIS)

    Berber, M.; Bulto, V.; Kliss, R.; Hahn, H.

    2005-01-01

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents

  19. Development of Zn-SiC composite coatings: Electrochemical corrosion studies

    Directory of Open Access Journals (Sweden)

    Mudigere Krishnegowda Punith Kumar

    2015-03-01

    Full Text Available The Zn-SiC composite coatings were fabricated by using sulphate plating bath dispersed with 1, 2 and 3 g L-1 of 64.28 nm SiC nanoparticles. Appreciable influence on morphology and microstructure was observed in scanning electron microscopy, X-ray diffraction spectroscopy and texture co-efficient calculations for SiC incorporated zinc coatings. The electrochemical corrosion behavior of zinc and Zn-SiC composite coatings was studied by potentiodynamic polarization and electrochemical impedance analysis. Significant reduction in corrosion current and corrosion rate with increased charge transfer resistance was noticed for composite coatings. The SiC incorporated zinc coatings shown improved micro-hardness property to pure zinc coating. The properties of Zn-SiC composite coatings were compared with that of pure zinc coating.

  20. Coatings for rubber bonding and paint adhesion

    Science.gov (United States)

    Boulos, M. S.; Petschel, M.

    1997-08-01

    Conversion coatings form an important base for the adhesion of paint to metal substrates and for the bonding of rubber to metal parts. Four types of conversion coatings were assessed as base treatments for the bonding of rubber to steel and for the corrosion protection of metal substrates under paint: amorphous iron phosphate, heavy zinc phosphate, and three types of modified zinc phosphates that utilized one or more metal cations in addition to zinc. When applied, these conversion coatings formed a thin film over the metal substrate that was characterized by scanning electron microscopy, x-ray diffraction, and chemical methods. The performance of the coatings was assessed using physical methods such as dry adhesion, conical mandrel, impact, and stress adhesion for the rubber-bonded parts, and by corrosion resistance methods such as humidity, salt spray, and cyclic corrosion. Coating characterization and performance were correlated.

  1. Synthesis and characterization of fly ash-zinc oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Kunal Yeole

    2014-04-01

    Full Text Available Fly ash, generated in thermal power plants, is recognized as an environmental pollutant. Thus, measures are required to be undertaken to dispose it in an environmentally friendly method. In this paper an attempt is made to coat zinc oxide nano-particles on the surface of fly ash by a simple and environmentally friendly facile chemical method, at room temperature. Zinc oxide may serve as effective corrosion inhibitor by providing sacrificial protection. Concentration of fly ash was varied as 5, 10 and 15 (w/w % of zinc oxide. It was found that crystallinity increased, whereas particle size, specific gravity and oil absorption value decreased with increased concentration of fly ash in zinc oxide, which is attributed to the uniform distribution of zinc oxide on the surface of fly ash. These nanocomposites can potentially be used in commercial applications as additive for anticorrosion coatings.

  2. The Characteristics of Cr-Free Coating Hot Dip Galvanized Sheet Steel

    International Nuclear Information System (INIS)

    Kim, Jong Gi; Moon, Man Been; Yun, Jeong Mo

    2011-01-01

    The greatest purpose of chromate treatment is to improve anti-corrosion by stabilizing a metal surface. Because metal surface forms a compound by absorbing oxygen or water in the air by being generally unstable, it is necessary to improve anti-corrosion of the metal by forming the metal surface with a stable film. When considering the economical efficiency and requirements together because the film of the metal surface treated with chromate has good anti-corrosion and the stability also in the air by being compact and strong, Chromate treatment has been used most up to the electronics industry from the auto industry. However, these days, because hexavalent chromium is both a toxic agent to be able to cause cancers and deadly poisonous environmental pollutant, the strong legal controls on its use is being imposed all over the world. Because of this reason, a new anti-corrosion method is being required. Also, by users' various demands, the passivations that have recently been developed require various characteristics such as conductivity, chemical resistance, alkali cleaning resistance as well as anti-corrosion. We could confirm the results such as excellent anti-corrosion compared to chromate, conductivity, chemical resistance and detergent resistance as the result of analysis of various characteristics of the galvannealed sheet steels coated with Cr-Free solution developed in this research

  3. Production of zinc pellets

    Science.gov (United States)

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  4. Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate

    Science.gov (United States)

    Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran

    2018-02-01

    In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.

  5. Corrosion resistant coatings for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Weirick, L.J.; Lynch, C.T.

    1977-01-01

    Coatings to prevent the corrosion of uranium and uranium alloys are considered in two military applications: kinetic energy penetrators and aircraft counterweights. This study, which evaluated organic films and metallic coatings, demonstrated that the two most promising coatings are based on an electrodeposited nickel system and a galvanized zinc system

  6. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Diffusion zinc plating of structural steels

    International Nuclear Information System (INIS)

    Kazakovskaya, Tatiana; Goncharov, Ivan; Tukmakov, Victor; Shapovalov, Vyacheslav

    2004-01-01

    The report deals with the research on diffusion zinc plating of structural steels when replacing their cyanide cadmium plating. The results of the experiments in the open air, in vacuum, in the inert atmosphere, under various temperatures (300 - 500 deg.C) for different steel brands are presented. It is shown that diffusion zinc plating in argon or nitrogen atmosphere ensures obtaining the qualitative anticorrosion coating with insignificant change of mechanical properties of steels. The process is simple, reliable, ecology pure and cost-effective. (authors)

  8. Zinc and vegetarian diets.

    Science.gov (United States)

    Saunders, Angela V; Craig, Winston J; Baines, Surinder K

    2013-08-19

    Well planned vegetarian diets can provide adequate amounts of zinc from plant sources. Vegetarians appear to adapt to lower zinc intakes by increased absorption and retention of zinc. Good sources of zinc for vegetarians include whole grains, tofu, tempeh, legumes, nuts and seeds, fortified breakfast cereals and dairy products. The inhibitory effects of phytate on absorption of zinc can be minimised by modern food-processing methods such as soaking, heating, sprouting, fermenting and leavening. Absorption of zinc can be improved by using yeast-based breads and sourdough breads, sprouts, and presoaked legumes. Studies show vegetarians have similar serum zinc concentrations to, and no greater risk of zinc deficiency than, non-vegetarians (despite differences in zinc intake).

  9. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  10. Method of capturing or trapping zinc using zinc getter materials

    Science.gov (United States)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  11. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  12. Bacitracin zinc overdose

    Science.gov (United States)

    ... Ophthalmic Bacitracin zinc may also be added to animal food. Other products may also contain bacitracin zinc. ... electrocardiogram, or heart tracing) Treatment may include: Activated charcoal Breathing support Intravenous fluids (given through a vein) ...

  13. Zinc in human serum

    International Nuclear Information System (INIS)

    Kiilerich, S.

    1987-01-01

    The zinc ion is essential for the living organism. Many pathological conditions have been described as a consequence of zinc deficiency. As zinc constitutes less than 0.01 per cent of the body weight, it conventionally belongs to the group of trace elements. The method of atomic absorption spectrophotometry is used to measure the concentration of zinc in serum and urine from healthy persons. The assumptions of the method is discussed. The importance of proteinbinding, diet and the diurnal variation of serum zinc concentration is presented. Serum versus plasma zinc concentration is discussed. Reference serum zinc values from 104 normal subjects are given. Zinc in serum is almost entirely bound to proteins. A preliminary model for the estimation of the distribution of zinc between serum albumin and α 2 -macroglobulin is set up. This estimate has been examined by an ultracentrufugation method. The binding of zinc to a α 2 -macroglobulin in normal persons is appoximately 7 per cent, in patients with cirrhosis of the liver of alcoholic origin approximately 6 per cent, in patients with insulin dependent diabetes mellitus approximately 5 per cent, and in patients with chronic renal failure approximately 2 per cent. It is concluded, therefore, that for clinical purposes it is sufficient to use the concentration of total serum zinc corrected for the concentration of serum albumin. (author)

  14. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium ...

    Indian Academy of Sciences (India)

    Electrochemical; aluminium-doped zinc oxide; PVA-coated; UV sensing. 1. Introduction. Metal oxide semiconductors have received considerable attention due to their excellent physical and chemical prop- erties (Johnson et al 2001; Vayssieres et al 2001; Kolmakov and Moskovits 2004). Zinc oxide (ZnO), one of the most.

  15. Chemical vapor deposition of fluorine-doped zinc oxide

    Science.gov (United States)

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  16. Application of zinc oxide quantum dots in food safety

    Science.gov (United States)

    Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...

  17. Chelators for investigating zinc metalloneurochemistry

    OpenAIRE

    Radford, Robert John; Lippard, Stephen J.

    2013-01-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals o...

  18. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Raj, V., E-mail: alaguraj2@rediffmail.com; Mohan Raj, R., E-mail: chem_mohan@rediffmail.com

    2016-12-15

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  19. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    International Nuclear Information System (INIS)

    Raj, V.; Mohan Raj, R.

    2016-01-01

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  20. Zinc in diet

    Science.gov (United States)

    ... nuts, whole grains, legumes, and yeast. Fruits and vegetables are not good sources, because the zinc in plant proteins is not as available for use by the body as the zinc from animal proteins. Therefore, low-protein diets and vegetarian diets ...

  1. Method and coating composition for protecting and decontaminating surfaces

    Science.gov (United States)

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  2. Exploring zinc coordination in novel zinc battery electrolytes.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

  3. Inorganic precursor peroxides for antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, S.M.; Pedersen, L.T.; Hermann, M.H.

    2009-01-01

    antifouling properties, it is also a vital ingredient for the antifouling coating to obtain its polishing and leaching mechanism. In this paper, peroxides of strontium, calcium, magnesium, and zinc are tested as pigments in antifouling coatings. The peroxides react with seawater to create hydrogen peroxide...... and highly seawater-soluble ions of the metal. The goals have been to establish the antifouling potency of an antifouling coating that releases hydrogen peroxide as biocide, and to investigate the potential use of peroxides as water-soluble polishing and leaching pigments. The investigations have shown...

  4. Zinc and cognitive development.

    Science.gov (United States)

    Bhatnagar, S; Taneja, S

    2001-05-01

    Cognition is a field of thought processes by which an individual processes information through skills of perception, thinking, memory, learning and attention. Zinc deficiency may affect cognitive development by alterations in attention, activity, neuropsychological behavior and motor development. The exact mechanisms are not clear but it appears that zinc is essential for neurogenesis, neuronal migration, synaptogenesis and its deficiency could interfere with neurotransmission and subsequent neuropsychological behavior. Studies in animals show that zinc deficiency during the time of rapid brain growth, or during the juvenile and adolescent period affects cognitive development by decreasing activity, increasing emotional behavior, impairing memory and the capacity to learn. Evidence from human studies is limited. Low maternal intakes of zinc during pregnancy and lactation were found to be associated with less focused attention in neonates and decreased motor functions at 6 months of age. Zinc supplementation resulted in better motor development and more playfulness in low birth weight infants and increased vigorous and functional activity in infants and toddlers. In older school going children the data is controversial but there is some evidence of improved neuropsychological functions with zinc supplementation. Additional research is required to determine the exact biological mechanisms, the critical periods, the threshold of severity and the long-term effects of zinc deprivation on cognitive development.

  5. Synthesis of zinc sulfide by chemical vapor deposition using an organometallic precursor: Di-tertiary-butyl-disulfide

    International Nuclear Information System (INIS)

    Vasekar, Parag; Dhakal, Tara; Ganta, Lakshmikanth; Vanhart, Daniel; Desu, Seshu

    2012-01-01

    Zinc sulfide has gained popularity in the last few years as a cadmium-free heterojunction partner for thin film solar cells and is seen as a good replacement for cadmium sulfide due to better blue photon response and non-toxicity. In this work, zinc sulfide films are prepared using an organic sulfur source. We report a simple and repeatable process for development of zinc sulfide using a cost-effective and less hazardous organic sulfur source. The development of zinc sulfide has been studied on zinc oxide-coated glass where the zinc oxide is converted into zinc sulfide. Zinc oxide grown by atomic layer deposition as well as commercially available zinc oxide-coated glass was used. The zinc sulfide synthesis has been studied and the films are characterized using scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a UV–VIS spectrophotometer. XRD, XPS and optical characterization confirm the zinc sulfide phase formation. - Highlights: ► Synthesis of ZnS using a less-hazardous precursor, di-tertiary-butyl-disulfide. ► ZnS process optimized for two types of ZnO films. ► Preliminary results for a solar cell show an efficiency of 1.09%.

  6. Chlorophenol's ultra-trace analysis in environmental samples by chitosan-zinc oxide nanorod composite as a novel coating for solid phase micro-extraction combined with high performance liquid chromatography.

    Science.gov (United States)

    Alizadeh, Reza

    2016-01-01

    In this study, a simple, novel, and efficient preconcentration method has been developed for the determination of some chlorophenols (4-chlorophenol, 2,5-dichlorophenol, 2,3-dichlorophenol, and 2,4,6-trichlorophenol) using a direct solid phase microextraction (D-SPME) based on chitosan-ZnO nanorod composite combined with high performance liquid chromatography (HPLC). A one step-novel hydrothermal method was demonstrated on the fabrication of ZnO nanorods arrayed on the fused silica fiber in the chitosan hydrogel solution (CZNC) as a new coating of SPME fiber. The coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) instruments. The CZNC coating has combined the merits of both ZnO nanorods and chitosan hydrogel; it has several improvements such as increased extraction efficiency of chlorophenols and longer life time (over 80 cycles of D-SPME-HPLC operation). Experimental design method was used for optimization of extraction conditions and determination of four chlorophenols in water samples by SPME-HPLC-UV method. The calibration curves were linear from 5 to 1000 µg L(-1) for analytes, and the limits of detection were between 0.1 and 2 µg L(-1). Single fiber repeatability and fiber-to-fiber reproducibility were in the range of 5.8-10.2% and 8.8-14.5%, respectively. The spiked recoveries at 50 µg L(-1) for environmental water sample were in the range of 93-102%. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Stress Corrosion-Cracking and Corrosion Fatigue Impact of IZ-C17+ Zinc Nickel on 4340 Steel

    Science.gov (United States)

    2017-05-17

    corrosion, cracking, corrosion fatigue impact, zinc-nickel, steel , metallic coating 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...REPORT NO: NAWCADPAX/TIM-2016/189 STRESS CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL by...CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL by Craig Matzdorf Charles Lei Matt Stanley

  8. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  9. Surface cracking in resistance seam welding of coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Adonyi, Y.; Kimchi, M.

    1994-12-31

    In this experimental work, the focus was on the understanding the electrode-wheel/coated steel surface phenomena by building operational lobes and by correlating the weld quality with static-and dynamic-contact-resistance variation during welding. Conventional AC, DC, and electrode-wire resistance-seam weldability of printed zinc-coated and hot-dipped tin-coated steel was performed in this work, as compared with traditional lead-tin (terne) coating used as reference material. Variables included steel substrate type, welding equipment type, electrode-wheel cleaning practice, and electrode-wire geometry. Optic and electron microscopy were used for the evaluation of specimens extracted from longitudinal cross-sections of representative welds. The size and morphology of surface cracks was characterized and correlated with variations in the above-mentioned parameters. It was found that the tin-coated (unpainted) steel sheet had a superior all-together performance to the zinc-coated steel and terne-coated steel, both in terms of wider weldability lobes and lesser surface cracking. The extent of surface cracking was greatly reduced by using the electrode-wire seam welding process using a longitudinally grooved wire profile, which also widened the corresponding weldability lobes. It was also found that the extent of cracking depended on the electrode knurl geometry, substrate type, and the presence of conductive paint applied on top of the metallic coating. An attempt was made to characterize the specific mechanisms governing the LME phenomenon for the lead-, zinc and tin-based coating systems and to assess the potential for crack propagation in the welds. The dynamic contact resistance was found to be a good measure of the welding process stability and an indicator of defect formation. It was found that the ratio between the static and dynamic contact resistances of the tin-coated sheet was considerably lower than similar ratios for bare and zinc-coated sheet.

  10. Enrichment and Identification of the Most Abundant Zinc Binding Proteins in Developing Barley Grains by Zinc-IMAC Capture and Nano LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Giuseppe Dionisio

    2018-01-01

    Full Text Available Background: Zinc accumulates in the embryo, aleurone, and subaleurone layers at different amounts in cereal grains. Our hypothesis is that zinc could be stored bound, not only to low MW metabolites/proteins, but also to high MW proteins as well. Methods: In order to identify the most abundant zinc binding proteins in different grain tissues, we microdissected barley grains into (1 seed coats; (2 aleurone/subaleurone; (3 embryo; and (4 endosperm. Initial screening for putative zinc binding proteins from the different tissue types was performed by fractionating proteins according to solubility (Osborne fractionation, and resolving those via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE followed by polyvinylidene fluoride (PVDF membrane blotting and dithizone staining. Selected protein fractions were subjected to Zn2+-immobilized metal ion affinity chromatography, and the captured proteins were identified using nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS. Results: In the endosperm, the most abundant zinc binding proteins were the storage protein B-hordeins, gamma-, and D-hordeins, while in the embryo, 7S globulins storage proteins exhibited zinc binding. In the aleurone/subaleurone, zinc affinity captured proteins were late abundant embryogenesis proteins, dehydrins, many isoforms of non-specific lipid transfer proteins, and alpha amylase trypsin inhibitor. Conclusions: We have shown evidence that abundant barley grain proteins have been captured by Zn-IMAC, and their zinc binding properties in relationship to the possibility of zinc storage is discussed.

  11. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  12. History of zinc in agriculture.

    Science.gov (United States)

    Nielsen, Forrest H

    2012-11-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application.

  13. Electroactive Polymers as Environmentally Benign Coating Replacements for Cadmium Plating on High Strength Steels

    Science.gov (United States)

    2008-06-01

    mico -and nano- particles into the polymer film. Meghan Baronowski, Marc Pepi, Joe Hibbs and John Baronowski devised the test matrix and tested for...steel (galvanic effect) Electroplated zinc Army Voluminous white corrosion products SermeTel®(Sermatech Inc) Navy Performance hindered by complex ...geometries Zinc/nickel with E-coat topcoat Navy Performance hindered by complex geometries Zinc electroplate-alkaline bath Navy Better than acid

  14. The study and microstructure analysis of zinc and zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Kliber, J.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 43-46 ISSN 0543-5846 Grant - others:KEGA(SK) KEGA 007 TnUAD-4/2013 Institutional support: RVO:68081723 Keywords : zinc * production of zinc oxide * microstructure * chemical composition * zinc slag Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  15. Relationship between maternal serum zinc, cord blood zinc and ...

    African Journals Online (AJOL)

    Background: Adequate in utero supply of zinc is essential for optimal fetal growth because of the role of zinc in cellular division, growth and differentiation. Low maternal serum zinc has been reported to be associated with low birth weight and the later is associated with increased morbidity and mortality in newborns.

  16. relationship between maternal serum zinc, cord blood zinc and birth

    African Journals Online (AJOL)

    FOBUR

    Conclusion: The study outcome suggests that cord serum zinc but not maternal serum zinc predicts birth weight. In spite of low maternal serum zinc level, ... Therefore, in order to ensure optimal fetal growth and development, ... info statistical software version 3.5.3. A 95% confidence interval was used and a p- value of less.

  17. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W.de

    2009-01-01

    The corrosion properties of electrodeposited zinc-cobalt-iron (Zn-Co-Fe) alloys (up to 40 wt.% Co and 1 wt.% Fe) on steel were studied by using various electrochemical techniques and compared with zinc (Zn) and cadmium (Cd) coatings in 3.5% NaCl solution. It was found that with an increase in Co

  18. Zinc biofortification of cereals

    DEFF Research Database (Denmark)

    Palmgren, Michael; Clemens, Stephan; Williams, Lorraine E.

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...... and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and - in cereals - the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal...... tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals....

  19. Aproximación matemática al proceso de galvanorrecocido en productos siderúrgicos planos

    Directory of Open Access Journals (Sweden)

    Pérez, A.

    1998-05-01

    Full Text Available A short review of the kinetics models for the formation of Fe-Zn alloy phases in the galvannealing process is presented. It will focus on the continuous process which is often used by the automotive industry. A first mathematical approach of the kinetics growth of the δ phase has been done, using a continuous hot-diping process simulator which resembles the conditions of the galvannealing process in production lines. Hold time and the galvannealing temperature as well as the weight of the coating were varied. The preliminary results of the iron content and proportion of δ phase in the coating are in agreement with the results obtained by other authors.

    Se revisan brevemente los modelos cinéticos descritos para la formación de las fases de aleación Zn-Fe durante el proceso de galvanorrecocido de chapa, con especial énfasis en el proceso continuo, con destino a la industria del automóvil. Se ha realizado una primera aproximación matemática al crecimiento cinético de la fase delta utilizando un simulador de recubrimiento en continuo por inmersión en caliente produciéndose el galvanorrecocido por calentamiento de la chapa galvanizada exactamente después de su salida del baño de zinc con objeto de aproximarse a las condiciones reales imperantes en las líneas de producción. Los parámetro variables han sido: el tiempo y la temperatura de galvanorrecocido y el peso de recubrimiento. Los resultados iniciales del contenido de hierro del recubrimiento y de contenido de fase delta están de acuerdo con los resultados obtenidos por otros autores.

  20. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  1. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  2. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs

  3. Zinc electrode in alkaline electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  4. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  5. Corrosion resistance of zinc-based systems in NaCl environment

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Metal components in engineering, industry and agriculture are subjects of degradation process influenced by corrosion which result in changes of mechanical characteristics. The current trend of anticorrosion protection is aimed at inorganic metal zinc-based coatings, such as zinc dipping which can be improved by duplex protection. This paper deals with two types of corrosion protection of steel components by zinc coating, first of which is produced by hot dip galvanizing, the other by Zn-Al spray. Hot dip galvanizing was processed in working conditions; the Zn-Al coating was sprayed following the instructions of producer. It is a special aerosol with particles of Zn and Al sized approximately 5 µm. There have been processed the following tests: analysis of element structure, test of corrosion resistance in aggressive environment of salt spray according to ČSN ISO 9227, further measurement weight of applied coatings according to ČSN EN ISO 3892 and measurement of thickness of passivating coating. There was also made an analysis of coating tenacity on bending pin according to ČSN EN ISO 8401. Quality of applied coatings was evaluated following the metallographic scratch pattern.

  6. Hydrogen embrittlement of high strength steel electroplated with zincâ  cobalt allo

    OpenAIRE

    Hillier, Elizabeth M. K.; Robinson, M. J.

    2004-01-01

    Slow strain rate tests were performed on quenched and tempered AISI 4340 steel to measure the extent of hydrogen embrittlement caused by electroplating with zincâ  cobalt alloys. The effects of bath composition and pH were studied and compared with results for electrodeposited cadmium and zincâ  10%nickel. It was found that zincâ  1%cobalt alloy coatings caused serious hydrogen embrittlement (EI 0.63); almost as severe as that of cadmium (EI 0.78). Baking cadmium plate...

  7. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    International Nuclear Information System (INIS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei Wei; Jin Chunming; Narayan, Roger J.

    2009-01-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices

  8. Effect of Mn{sup 2+} additive on the zinc phosphating of 2024-Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.S.; Wong, K.C.; Wong, P.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1 (Canada); Mitchell, K.A.R. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1 (Canada)], E-mail: karm@chem.ubc.ca

    2007-07-31

    Zinc phosphate (ZPO) conversion coatings formed on 2024-T3 aluminum alloy, after dipping in Mn{sup 2+}-containing ZPO coating baths for different times, have been studied by X-ray photoelectron spectroscopy, scanning electron microscopy, and scanning Auger microscopy. An optimal coating (in terms of thickness and morphology) is formed when the alloy is immersed for 3 min in a ZPO coating solution containing 2000 ppm Mn{sup 2+}. Comparisons are made with coatings formed from a Ni{sup 2+}-containing ZPO bath. Both Ni{sup 2+} and Mn{sup 2+} additives decrease the coating crystal size, with Mn{sup 2+} giving a greater reduction, and the coating formed from the Mn{sup 2+}-containing solution is thicker than that formed with Ni{sup 2+}. The coatings are heterogeneous in depth with Mn{sup 2+} depositing during the early stages of coating, while precipitation of Ni{sup 2+} occurs mainly later in the coating process. Patterns of deposition across the surface are also affected significantly by the composition of the ZPO coating solution. Mn{sup 2+} in the coating bath gives the most even distribution of coating across the different microstructural regions on the surface.

  9. Water resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property

    OpenAIRE

    Ennaceri, H.; Wang, L.; Erfurt, D.; Riedel, W.; Mangalgiri, G.; Khaldoun, A.; El Kenz, A.; Benyoussef, A.; Ennaoui, A

    2016-01-01

    This study presents an experimental approach for fabricating super hydrophobic coatings based on a dual roughness structure composed of zinc oxide nanorod arrays coated with a sputtered zinc oxide nano layer. The ZnO nanorod arrays were grown by means of a low temperature electrochemical deposition technique 75 C on FTO substrates. The ZnO nanorods show a 002 orientation along the c axis, and have a hexagonal structure, with an average length of 710 nm, and average width of 156 nm. On th...

  10. Zinc in multiple sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Fredriksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  11. Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings.

    Science.gov (United States)

    Mirak, Mohammad; Alizadeh, Morteza; Ghaffari, Mohammad; Ashtiani, Mohammad Najafi

    2016-09-01

    Biocompatible Zinc-hydroxyapatite-titania and Zinc-hydroxyapatite nanocomposite coatings have been prepared by electrodeposition on NiTi shape memory alloy. Structures of coatings were characterized using X-ray diffraction (XRD). It was found that addition of TiO2 particles cause to reduction of crystallite size of coating. Scanning Electronic Microscope (SEM) observation showed that the Zn-HA/TiO2 coating consists of plate-like regions which can express that this plate-like structure can facilitate bone growth. X-ray photoelectron microscope (XPS) was performed to investigation of chemical state of composite coating and showed that Zinc matrix was bonded to oxygen. high-resolution transmission electron microscope (HRTEM) result illustrated the crystalline structure of nanocomposite coating. Mechanical behavior of coating was evaluated using microhardness and ball on disk wear test. The TiO2 incorporated composite coatings exhibited the better hardness and anti-wear performance than the Zn-HA coatings. Polarization measurements have been used to evaluate the electrochemical coatings performance. The Zn-HA/TiO2 composite coatings showed the highest corrosion resistance compared with Zn-HA and bare NiTi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  13. Nanostructured glass–ceramic coatings for orthopaedic applications

    Science.gov (United States)

    Wang, Guocheng; Lu, Zufu; Liu, Xuanyong; Zhou, Xiaming; Ding, Chuanxian; Zreiqat, Hala

    2011-01-01

    Glass–ceramics have attracted much attention in the biomedical field, as they provide great possibilities to manipulate their properties by post-treatments, including strength, degradation rate and coefficient of thermal expansion. In this work, hardystonite (HT; Ca2ZnSi2O7) and sphene (SP; CaTiSiO5) glass–ceramic coatings with nanostructures were prepared by a plasma spray technique using conventional powders. The bonding strength and Vickers hardness for HT and SP coatings are higher than the reported values for plasma-sprayed hydroxyapatite coatings. Both types of coatings release bioactive calcium (Ca) and silicon (Si) ions into the surrounding environment. Mineralization test in cell-free culture medium showed that many mushroom-like Ca and phosphorus compounds formed on the HT coatings after 5 h, suggesting its high acellular mineralization ability. Primary human osteoblasts attach, spread and proliferate well on both types of coatings. Higher proliferation rate was observed on the HT coatings compared with the SP coatings and uncoated Ti-6Al-4V alloy, probably due to the zinc ions released from the HT coatings. Higher expression levels of Runx2, osteopontin and type I collagen were observed on both types of coatings compared with Ti-6Al-4V alloy, possibly due to the Ca and Si released from the coatings. Results of this study point to the potential use of HT and SP coatings for orthopaedic applications. PMID:21292725

  14. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (plastics. One possible way of processing nanoceramic coatings at low temperatures (plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  15. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  16. Anticorrosion Coatings Based on Assemblies of Superhydrophobic Particles Impregnated with Conductive Oil

    Science.gov (United States)

    2016-05-13

    steel components that are commonly used in electrical equipment. The developed coatings are based on assemblies of superhydrophobic diatomaceous earth...applied to steel components, steel components coated with zinc-nickel and electrical connectors through an aerosol spray process. Corrosion in electronic...SUBJECT TERMS Anticorrosion, superhydrophobic, polydimethylsiloxane, graphene 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF

  17. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Zhang Ziping; Yu Gang; Ouyang Yuejun; He Xiaomei; Hu Bonian; Zhang Jun; Wu Zhenjun

    2009-01-01

    The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH) 2 and MgF 2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF 2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm -3 of F - is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.

  18. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  19. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  20. CORROSION BEHAVIOR OF A CONVERSION COATING BASED ON ZIRCONIUM AND COLORANTS ON GALVANIZED STEEL BY ELECTRODEPOSITION

    Directory of Open Access Journals (Sweden)

    Josiane Soares Costa

    2015-06-01

    Full Text Available Corrosion performance of Zr-based coating on substrates obtained by zinc electrodeposition in an alkaline bath is compared to chromate coatings (Cr III and Cr VI. The “nano Zr” is a conversion coating formed by immersion in a hexafluorozirconic acid solution. Since the “nano Zr” coating is transparent, the addiction of a colorant provides color to the surface. In this case, the colorant, when applied after the conversion coating, conferred the yellow color to the surface. The coating produced improves the corrosion protection of the substrate. For this study the samples were analyzed by electrochemical impedance spectroscopy (EIS and accelerated corrosion test in a humidity chamber. The results showed similar behaviors between the “nano Zr”, colorant and the chromate (Cr III coating. Therefore this kind of conversion coating is a promising substitute for chromate coatings.

  1. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium ...

    Indian Academy of Sciences (India)

    295–300. c Indian Academy of Sciences. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium-doped zinc oxide nanorods. KANCHAN SAXENA. ∗. , AMIT KUMAR, NISHANT MALIK, PRAMOD KUMAR and V K JAIN. Amity Institute of Advanced Research and Studies (Materials and Devices), Amity University, ...

  2. Ultraviolet sensing properties of polyvinyl alcohol-coated aluminium ...

    Indian Academy of Sciences (India)

    Undoped and aluminium (Al)-doped zinc oxide (ZnO) nanorods have been synthesized by electrochemical route. The synthesized materials have been characterized by X-ray diffraction, UV–visible spectrometer and scanning electron microscope. The Al-doped ZnO nanorods have been coated with polyvinyl alcohol.

  3. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  4. Innovative uses for zinc in dermatology.

    Science.gov (United States)

    Bae, Yoon Soo; Hill, Nikki D; Bibi, Yuval; Dreiher, Jacob; Cohen, Arnon D

    2010-07-01

    Severe zinc deficiency states, such as acrodermatitis enteropathica, are associated with a variety of skin manifestations, such as perioral, acral, and perineal dermatitis. These syndromes can be reversed with systemic zinc repletion. In addition to skin pathologies that are clearly zinc-dependent, many dermatologic conditions (eg, dandruff, acne, and diaper rash) have been associated and treated with zinc. Success rates for treatment with zinc vary greatly depending on the disease, mode of administration, and precise zinc preparation used. With the exception of systemic zinc deficiency states, there is little evidence that convincingly demonstrates the efficacy of zinc as a reliable first-line treatment for most dermatologic conditions. However, zinc may be considered as an adjunctive treatment modality. Further research is needed to establish the indications for zinc treatment in dermatology, optimal mode of zinc delivery, and best type of zinc compound to be used. Copyright 2010 Elsevier Inc. All rights reserved.

  5. All-solid-state cable-type flexible zinc-air battery.

    Science.gov (United States)

    Park, Joohyuk; Park, Minjoon; Nam, Gyutae; Lee, Jang-soo; Cho, Jaephil

    2015-02-25

    A cable-type flexible Zn-air battery with a spiral zinc anode, gel polymer electrolyte (GPE), and air cathode coated on a nonprecious metal catalyst is designed in order to extend its application area toward wearable electronic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Composition control of tin-zinc electrodeposits through means of experimental strategies

    International Nuclear Information System (INIS)

    Dubent, S.; De Petris-Wery, M.; Saurat, M.; Ayedi, H.F.

    2007-01-01

    Tin-zinc coatings offer excellent corrosion protection and do not suffer the drawback of the voluminous white corrosion product of pure zinc or high zinc alloy coatings. The aim of this study was to determine the suitable electroplating conditions (i.e. electrolyte composition and cathode current density) to produce 70Sn-30Zn electrodeposits. Thus, a fractional factorial design (FFD) was carried out to evaluate the effects of experimental parameters (Zn II concentration, Sn IV concentration, pH and current density) on the Zn content of the electrodeposit. On the other hand, the electrodeposits were characterised by glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). Correlation between operating conditions, composition and morphology was attempted

  7. Zinc starvation induces autophagy in yeast.

    Science.gov (United States)

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Zinc as a Gatekeeper of Immune Function

    OpenAIRE

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underly...

  9. CORROSION RESISTANCE OF ORGANOMETALLIC COATING APLICATED IN FUEL TANKS USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY IN BIOFUEL – PART I

    Directory of Open Access Journals (Sweden)

    Milene Adriane Luciano

    2014-10-01

    Full Text Available Nowadays, the industry has opted for more sustainable production processes, and the planet has also opted for new energy sources. From this perspective, automotive tanks with organometallic coatings as well as a partial substitution of fossil fuels by biofuels have been developed. These organometallic coated tanks have a zinc layer, deposited by a galvanizing process, formed between the steel and the organometallic coating. This work aims to characterize the organometallic coating used in metal automotive tanks and evaluate their corrosion resistance in contact with hydrated ethyl alcohol fuel (AEHC. For this purpose, the resistance of all layers formed between Zinc and EEP steel and also the tin coated steel, which has been used for over thirty years, were evaluated. The technique chosen was the Electrochemical Impedance Spectroscopy. The results indicated an increase on the corrosion resistance when organometallic coatings are used in AEHC medium. In addition to that, these coatings allow an estimated 25% reduction in tanks production costs.

  10. A New Coating for Non-resorbable Surgical Suture

    Directory of Open Access Journals (Sweden)

    Ahmed Salah Hameed

    2017-12-01

    Full Text Available Suture is a biomaterial used to approximate wound edges to facilitate the healing process. This task could be compromised as a result of wound infection. Zinc is an element that has antibacterial action and can be a member of silicate glasses. The zinc-silicate glasses can be used as a coating for surgical suture to combat wound infection. However, zinc has a negative effect on glass degradation and its  antibacterial action is a pH sensitive. In this work, silicate glasseswith ZnO at 14 and 17 mole% were used as a coating for non-resorbable Mersilk suture using a slurry-dipping technique. The coating morphology was studied using SEM and itsanti-bacterial action was investigated in vitroagainstgram positive and negative bacteria at neutral and acidic conditions.The effect of the coating on tensile strength of the sutures wasstudied as well.The results revealed that the coatingwas well-adhered to the suture and had anti-bacterial action atacidic condition.The coating had no effect on the tensile strength of the surgical suture

  11. Modified corrosion protection coatings for Concrete tower of Transmission line

    Science.gov (United States)

    Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin

    2017-12-01

    By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.

  12. Zinc in Infection and Inflammation.

    Science.gov (United States)

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  13. Zinc in Infection and Inflammation

    Directory of Open Access Journals (Sweden)

    Nour Zahi Gammoh

    2017-06-01

    Full Text Available Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB, a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  14. Effects of post-LOCA conditions on a protective coating (paint) for the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Loyola, V.M.; Womelsduff, J.E.

    1985-03-01

    When corrosion protection of steel cannot be achieved by galvanizing due to size, use, or other restrictions, the steel is frequently protected by the application of a suitable corrosion-inhibiting paint. A widely accepted corrosion inhibiting coating is one in which finely powdered zinc metal is dispersed in an organic polymer matrix and applied to steel as a paint. This system is often used with a non-zinc bearing topcoat for enhanced protection. We have studied the oxidation of zinc in a zinc-rich coating used in the nuclear power industry and have measured the rates of hydrogen generation from these coatings due to zinc oxidation at temperatures of up to 175 0 C. The results suggest that the real-time rates of hydrogen generation are considerably higher than previously believed. A second concern involves the generation of debris or solid reaction products which could cause plugging or fouling of the recirculation pumps, spray nozzles, and/or heat exchangers. Coatings are observed to fail at post-LOCA conditions which are well within the limits predicted by Design Basis Accident analysis. The failures involve cracking and/or delamination of the topcoat and production of solid corrosion products involving the zinc-rich primer. 22 refs., 10 figs., 6 tabs

  15. The Practical Realisation of Zinc-Iron CMA Coatings

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    1998-01-01

    compositions is possible with nanometre layering attainable using single or double bath methods. Furthermore, by the use of a high concentration of ammonium chloride ostensibly as "conductivity" salt, the mechanism of deposition may be modified through control of a thin cathode oxide/hydroxide film....

  16. A zinc paste primary battery

    Science.gov (United States)

    Jasinski, R.; McCarron, R.; Brilmyer, G.

    1983-03-01

    It is pointed out that zinc/air batteries could, in principle, be used to power electric vehicles. One concept for enhancing the practical performance of this battery system involves the separation of energy density factors from power density factors. This concept can be implemented by employing the active negative plate material in the form of a zinc slurry, which is circulated from a reservoir through the negative electrode compartment. An extension of this fuel cell-battery concept is related to the utilization of the active material as a pumpable paste rather than as a slurry. The present investigation is concerned with preliminary experiments on formulating and characterizing pumpable zinc/zinc oxide pastes in the context of a primary zinc/oxygen battery. A 'paste' is defined as a thick viscous mass of solid, uniformly and semipermanently dispersed in a liquid phase. Attention is given to the physical basis for predicting which solid/liquid mixtures will provide pumpable pastes.

  17. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    Science.gov (United States)

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  18. Zinc as a Gatekeeper of Immune Function

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2017-11-01

    Full Text Available After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14, zinc “exporters” (ZnT 1–10, and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.

  19. Increased urinary zinc excretion after thermal injury.

    Science.gov (United States)

    Boosalis, M G; Solem, L D; Cerra, F B; Konstantinides, F; Ahrenholz, D H; McCall, J T; McClain, C J

    1991-12-01

    Urinary zinc excretion normally plays a minor role in zinc homeostasis; however, urinary zinc excretion is markedly elevated after trauma or surgery, and mechanism(s) for this zinc loss are poorly defined. In this study we evaluated multiple potential mechanisms for increased urinary zinc excretion in patients with thermal injury. We documented that patients with severe thermal injury had markedly elevated urinary zinc excretion. Above 20% total body surface area burn, however, the severity of thermal injury did not correlate with urinary zinc excretion. Serum zinc concentrations were depressed on initial evaluation and gradually increased during the hospital course, whereas peak urinary zinc excretion occurred 2 to 5 weeks after injury. Thus the depression in serum zinc concentration did not temporally relate to the observed pattern of hyperzincuria. Increased urinary zinc excretion also did not temporally relate to urinary excretion of the amino acids cysteine and histidine (both of which tightly bind zinc) nor to urinary 3-methylhistidine excretion, a marker of muscle breakdown. Urinary amylase excretion, a marker of renal tubular dysfunction, did follow the pattern of urinary zinc loss to some extent, although this correlation was not perfect. Increased oral intake of zinc via zinc supplements resulted in significantly increased urinary zinc excretion. Patients receiving total parenteral nutrition (TPN) did not have significantly increased urinary zinc excretion when compared with people receiving their total nutrient intake by mouth.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Hardness analysis and morphological characterization of copper-zinc alloys produced in pyrophosphate-based electrolytes

    Directory of Open Access Journals (Sweden)

    Lilian Ferreira de Senna

    2005-09-01

    Full Text Available In this work, copper-zinc alloy coatings on mild steel substrates were obtained in nontoxic pyrophosphate-based electrolytes, at room temperature and under continuous current. The effects of bath composition and current density on the hardness of the coatings, as well as on their morphologies, were evaluated. The results showed that the electrolyte composition, and the use of stress relieving additives strongly influence the hardness of the coatings, while the current density directly affect their morphology. Hence, for a current density of 116 A/m², copper-zinc alloy deposits with no pores or cracks were produced in a pyrophosphate-based electrolyte, especially when allyl alcohol was added to the solution.

  1. REMOVING ZINC FROM GALVANIZED STEEL SCRAP TO FEASIBLE THE BOF SLUDGE RECYCLING

    Directory of Open Access Journals (Sweden)

    Mônica Marques Caetano de Lima

    2013-06-01

    Full Text Available Galvanized steel scraps generated at Usiminas Ipatinga are recycled in BOF converters. Although they are noble products, they contain a significant quantity of zinc that escapes from the bath due to its high vapor pressure and is captured by the gas control system, appearing in BOF sludge. As BOF sludge contains high iron content, it could be recycled to the process, but due to its zinc content, it is disposed in landfills. For this reason, this study aimed to treat these scraps to remove zinc layer using a thermal treatment process. The samples were fed to a rotative furnace in an inert ambient. It was tested the hot dip galvanized and eletrogalvanized scraps, varying the zinc coating weight between 20g/m2 and 150g/m2, temperature between 700°C and 900°C and time between 3 minutes and 10 minutes. Considering these conditions, it is verified that more than 70% of the zinc layer is removed at 700°C, in 10 minutes. Dust captured is about 60% of metallic zinc and 40% as zinc oxide. Based on these results, the recycling of BOF sludge can be feasible to the ironmaking process.

  2. The Corrosion Protection of 2219-T87 Aluminum by Organic and Inorganic Zinc-Rich Primers

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 pA/CM2 and 23.7 pA/CM2 for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  3. High emittance black nickel coating on copper substrate for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Soniya, E-mail: jrf0013@isac.gov.in; Pillai, Anju M., E-mail: anjum@isac.gov.in; Rajendra, A., E-mail: rajendra@isac.gov.in; Sharma, A.K., E-mail: aks@isac.gov.in

    2015-09-15

    Highlights: • High emittance black nickel coating is obtained on copper substrate. • The effect of various process parameters on IR emittance is studied systematically. • Process parameters are optimized to develop a high emittance black nickel coating. • Coating obtained using the finalized parameters exhibited an emittance of 0.83. • SEM and EDAX are used for coating characterization. - Abstract: Black nickel, an alloy coating of zinc and nickel, is obtained on copper substrate by pulse electrodeposition from a modified Fishlock bath containing nickel sulphate, nickel ammonium sulphate, zinc sulphate and ammonium thiocyanate. A nickel undercoat of 4–5 μm thickness is obtained using Watts bath to increase the corrosion resistance and adhesion of the black nickel coating. The effect of bath composition, temperature, solution pH, current density and plating time on the coating appearance and corresponding infra-red emittance of the coating is investigated systematically. Process parameters are optimized to develop a high emittance space worthy black nickel coating to improve the heat radiation characteristics. The effect of the chemistry of the plating bath on the coating composition was studied using energy dispersive X-ray analysis (EDAX) of the coatings. The 5–6 μm thick uniform jet black zinc–nickel alloy coating obtained with optimized process exhibited an emittance of 0.83 and an absorbance of 0.92. The zinc to nickel ratio of black nickel coatings showing high emittance and appealing appearance was found to be in the range 2.3–2.4.

  4. The zinc paradigm for metalloneurochemistry.

    Science.gov (United States)

    Barr, Chelsea A; Burdette, Shawn C

    2017-05-09

    Neurotransmission and sensory perception are shaped through metal ion-protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  6. Zinc and cadmium monosalicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC 6 H 4 COOH (H 2 Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC 6 H 4 COO) and products of their thepmal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure

  7. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition having properties as good as thermosetting acrylic or amino alkid resins is provided by employing active energy irradiation, particularly electron beams, using a radically polymerizable low molecular compound (A) (hereafter called an oligomer) containing at least two vinyl radicals in one molecule. This oligomer is produced by reacting an epoxy-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The composition (I) contains 10% - 100% of this oligomer. In embodiments, an oligomer having a fiberous trivinyl construction is produced by reacting 180 parts by weight of glycidyl methacrylate ester with 130 parts of itaconic acid in the presence of a polymerization-inhibitor and an addition reaction catalyst at 90 0 C for 6 hours. In practice, the coating material compositions (1), consist of the whole oligomer [I-1]; (2), consist of 10-90% of (A) component and 90%-10% of vinyl monomers containing at least 30% (meth) acrylic monomer [I-2]; (3), 10%-90% of component (A) and 90%-10% of other monomers containing at least two vinyl radicals [I-3]; (4), a mixture of (I-2) and (I-3), [I-4]; and (5), consist of 50% or less unsaturated polyester of 500-5,000 molecular weight range or drying oil, or alkyd resin of 500-5,000 molecular weight range modified by drying oil, [I-5]. As a catalyst a tertiary amino vinyl compound is preferred. Five examples are given. (Iwakiri, K.)

  8. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    OpenAIRE

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating e...

  9. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  10. Zinc in Wound Healing Modulation

    Directory of Open Access Journals (Sweden)

    Pei-Hui Lin

    2017-12-01

    Full Text Available Wound care is a major healthcare expenditure. Treatment of burns, surgical and trauma wounds, diabetic lower limb ulcers and skin wounds is a major medical challenge with current therapies largely focused on supportive care measures. Successful wound repair requires a series of tightly coordinated steps including coagulation, inflammation, angiogenesis, new tissue formation and extracellular matrix remodelling. Zinc is an essential trace element (micronutrient which plays important roles in human physiology. Zinc is a cofactor for many metalloenzymes required for cell membrane repair, cell proliferation, growth and immune system function. The pathological effects of zinc deficiency include the occurrence of skin lesions, growth retardation, impaired immune function and compromised would healing. Here, we discuss investigations on the cellular and molecular mechanisms of zinc in modulating the wound healing process. Knowledge gained from this body of research will help to translate these findings into future clinical management of wound healing.

  11. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-01-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  12. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    Science.gov (United States)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  13. Prevalence of Zinc Deficiency by “ Zinc Taste Test” in Pre School Children in Yazd.

    Directory of Open Access Journals (Sweden)

    Gh Maleki

    2004-10-01

    Full Text Available Introduction: Zinc deficiency is a health problem in many communities, especially among children because of growth spurt. Zinc deficiency can cause;growth limitation, delay in sexuel maturity, behavior disorders and abnormalities of immune system,susceptibility to respiratory and gasterointestinal infections and impairment of taste and smell perception. Material and Method: One of the methods of assessment the zinc defeciency is “ Zinc taste test” using zinc sulfate solution 0.1% , this test performed used to assess the zinc deficiency among preshool childeren in Yazd. The results were evaluated with measurments of weight,height and demographic data. 400 preschool children were selected by multi stage random sampling.Having good taste perception of zinc sulfate 0.1% was used as impaired taste test ( zinc deficiency and having bad taste perception as normal zinc level. Results: Regarding to zinc taste test 73.9% of study group had zinc deficiency (77.6%femal, 69.7% male There were no significant relation between zinc deficiency and measurment of weight and height,but there was higher prevalence of zinc deficiency in children who were below the 5th percentile in height and weight by age. Conclusion: 70% of preschool children in yazd had zinc deficiency assessed by “ zinc taste test”,31% of adolecents in Tehran have had zinc deficiency based on plasma , erythrocyte and hairindex. There is no significant relation between zinc deficiency and antropometric and demographic data, in this study and the study that had been done on adolescents in Tehran.Considering the prevalnce of zinc deficiency with “ Zinc taste test” ;it seems more accurate studies need to be done like zinc measurment in WBC,RBC and Platelets and zinc taste test at the same time,if correlation coefficients between zinc taste test and other tests were very strong , we can used zinc tase test in the different age for assessment of zinc body.

  14. Waterborne chitosan-epoxysilane hybrid pretreatments for corrosion protection of zinc.

    Science.gov (United States)

    Fernández-Solis, Christian; Erbe, Andreas

    2016-06-23

    Biopolymer-based systems are extensively studied as green alternatives for traditional polymer coatings, e.g., in corrosion protection. Chitosan-epoxysilane hybrid films are presented in this work as a chitosan-based protective system, which could, e.g., be applied in a pretreatment step. For the preparation of the chitosan-epoxysilane hybrid systems, a sol-gel procedure was applied. The function of the silane is to ensure adhesion to the substrate. On zinc substrates, homogeneous thin films with thickness of 50-70 nm were obtained after thermal curing. The hybrid-coated zinc substrates were characterized by infrared spectroscopy, ellipsometry, and x-ray photoelectron spectroscopy. As model corrosion experiments, linear polarization resistance was measured, and cathodic delamination of the weak polymer coating poly(vinylbutyral) (PVB) was studied using scanning Kelvin probe. Overall, chitosan-epoxysilane hybrid pretreated samples showed lower delamination rates than unmodified chitosan coatings and pure PVB. Electrochemical impedance spectroscopy confirmed a reduced ion permeability and water uptake by chitosan-epoxysilane films compared to that of a nonmodified chitosan coating. Even though the coatings are hydrophobic and contain water, they slow down cathodic delamination by limiting ion transport.

  15. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  16. Coating materials

    International Nuclear Information System (INIS)

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition is provided which can be hardened by irradiation with active energy, particularly electron beams, using a composition which contains 10%-100% of a radically polymerizable low molecular compound (A), (hereafter called an oligomer), having at least two vinyl radicals in one molecule. These compositions have a high degree of polymerization and characteristics equivalent to thermosetting acrylic or amino alkyd resin. The oligomer (A) is produced by reacting an epoxy-containing vinyl monomer with saturated polycarboxylic acids or anhydrides. In one embodiment, 146 parts by weight of adipic acid and 280 parts of glycidyl methacrylate ester undergo addition reaction in the presence of a polymerization-inhibitor and a catalyst at 90 0 C for 6 hours to produce an oligomer having a fiberous divinyl construction. The coating composition utilizes this oligomer in the forms of (I-1), a whole oligomer; (I-2), 0%-90% of this oligomer and 90%-10% of a vinyl monomer containing at least 30% of (meth) acrylic monomer; (I-3), 10%-90% of such oligomer and 90%-10% of other monomers containing at least two vinyl radicals in one molecule; (I-4), a mixture of (I-2) and (I-3) in proportion of 1/9 to 9/1, and (I-5), above four compositions each containing 50% or less unsaturated polyester or drying oil having 500-5,000 molecules or a drying oil-modified alkyd resin having 500-5,000 molecules. Four examples are given. (Iwakiri, K.)

  17. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  18. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  19. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  20. Zinc Toxicosis in a Boxer Dog Secondary to Ingestion of Holiday Garland.

    Science.gov (United States)

    Bischoff, Karyn; Chiapella, Anne; Weisman, Jaime; Crofton, Lisa M; Hillebrandt, Joseph

    2017-09-01

    Increased admissions occur in small animal veterinary emergency clinics during some holidays, and some of the increased caseload is due to ingestion of toxic substances. This report documents zinc toxicosis contributing to the death of a dog after ingestion of holiday tinsel garland. A mature boxer dog presented with a 4-day history of vomiting and diarrhea. Radiodense foreign material was detected in the stomach and removed via gastrotomy. The patient clinically worsened over the next several days with evidence of hemolytic anemia, severe hypernatremia, and an elevated WBC count with a suspected dehiscence of the surgical site and acute renal failure. The serum zinc concentration was moderately elevated. Postmortem findings included surgical dehiscence from the gastrotomy and enterotomy sites, hepatic extramedullary hematopoiesis, hemoglobinuric nephrosis, and pancreatic fibrosis. The foreign material removed from the stomach also contained zinc. Ingestion of holiday tinsel garland made from metal-coated plastic film has not previously been implicated in zinc toxicosis. Zinc toxicosis has a good prognosis in veterinary medicine when diagnosed and treated promptly, but the unique source of zinc in this dog contributed to the delay in diagnosis and grave outcome in this case.

  1. Zinc toxicity among galvanization workers in the iron and steel industry.

    Science.gov (United States)

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  2. Stable superhydrophilic coating on superhydrophobic porous media by functionalized nanoparticles

    Science.gov (United States)

    Khazaei, Masoud; Taghi Sadeghi, Mohammad; Sadat Hosseini, Marzieh

    2018-01-01

    In this study, the hydrophilicity property of TiO2 nano-coating was improved by zinc acetate-assisted sol-gel method. The stable superhydrophilic coating was fabricated on a superhydrophobic mineral rock surface. The wettability of surface before and after coating was characterized by contact angle measurements. The n-heptane and water droplet contact angle was 0° and 168° respectively, so the untreated rock was superhydrophobic. After nano-treatment, the n-heptane and water contact angle changed to 172° and 0° respectively, so the superhydrophilic coating was formed on the superhydrophobic surface. The thermal, mechanical and salinity stability of the fabricated coatings was investigated. The coatings had high thermal and salinity stability; they also had moderate mechanical stability that was evaluated by abrasion test. The morphology and composition of synthesized nanoparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and x-ray diffraction (XRD) analyses. Characterization of the coated surfaces was conducted by SEM and XRD analyses. Applications of these nano-coatings include surfaces where cleanliness is paramount such as in hospitals as well as the protection of public monuments and building facades from weathering. Novel industrial application includes wettability alteration of oil wet carbonate rock for enhanced oil recovery.

  3. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  4. Zinc oxide doped graphene oxide films for gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Chetna,, E-mail: chetna2288@gmail.com; Kumar, Shani; Chaudhary, S.; Kapoor, A. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Garg, A.; Chowdhuri, A.; Dhingra, V. [Department of Electronic Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi- 110019 (India)

    2016-05-06

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer’s method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  5. History of Zinc in Agriculture12

    Science.gov (United States)

    Nielsen, Forrest H.

    2012-01-01

    Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732

  6. Coating compositions and method for the treatment of metal surfaces

    International Nuclear Information System (INIS)

    Das, N.; Stastny, P.M.

    1984-01-01

    An aqeuous acidic composition provides improved coating for aluminum. The composition comprises from about 10 to about 150 ppm zirconium, from about 20 to about 250 ppm fluoride, from 30 to about 125 ppm tannin, from about about 15 to about 100 ppm phosphate and from about 5 to about 50 ppm zinc, said coating solution having a tannin to phosphate ratio in the range of at least about 1:1 to about 2:1 and a pH in the range of about 2.3 to about 2.95

  7. 21 CFR 182.8991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used in...

  8. 21 CFR 182.8985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  9. 21 CFR 182.8988 - Zinc gluconate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8988 Zinc gluconate. (a) Product. Zinc gluconate. (b) Conditions of use. This substance is generally recognized as safe when used...

  10. 21 CFR 182.8997 - Zinc sulfate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  11. Zinc blotting assay for detection of zinc binding prolamin in barley (Hordeum vulgare) grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Nielsen, Ane Langkilde-Lauesen; Vincze, Eva

    2014-01-01

    zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  12. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    Science.gov (United States)

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  13. Impact of residual elements on zinc quality in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Dymáček, Petr; Pešlová, F.; Jurkovič, Z.; Barborák, O.; Stodola, J.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 407-410 ISSN 0543-5846 Institutional support: RVO:68081723 Keywords : zinc * metallography * microstructure of zinc * zinc oxide * production of zinc oxide Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  14. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline/zinc

  15. Zinc: a multipurpose trace element

    Energy Technology Data Exchange (ETDEWEB)

    Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. [University of Athens, Department of Forensic Medicine and Toxicology, Athens (Greece)

    2006-01-01

    Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning. (orig.)

  16. NON-POLLUTING REPLACEMENT FOR CHROMATE CONVERSION COATING & ZINC PHOSPHATING IN POWDER COATING APPLICATIONS

    Science.gov (United States)

    Picklex, a proprietary formulation, is an alternative to conventional metal surface pretreatments. Its developers claim that it does not produce waste or lower production rates, and it will maintain performance compared to conventional processes. A laboratory program was designed...

  17. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  18. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    Science.gov (United States)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  19. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings

    International Nuclear Information System (INIS)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-01-01

    Highlights: • Zn and Zn–SiC coatings were obtained under different electrodeposition pulse conditions. • Effects of duty cycle, pulse frequency and applied current on SiC incorporation were investigated. • Potentiodynamic polarization tests were conducted to investigate corrosion behavior of coatings. • SiC incorporation enhances coatings corrosion behavior by filling gaps and defects. • Increasing pulse frequency and decreasing applied current favors SiC incorporation. - Abstract: Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect

  20. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    Science.gov (United States)

    2017-09-01

    demonstrated, the flame-sprayed polyole- fin coating is too costly for use on large steel structures. Guidance docu- ments are identified to help make...the feedstock material, the thermal-spray process and application parameters, and the post-treat- ment of the applied coating. An 85% zinc and 15...thickness (85/15 plus topcoat) was measured by gauge for compliance with project requirements. Total thickness measure- ments indicated that the

  1. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  2. Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles

    OpenAIRE

    Merve Küçük; M. Lütfi Öveçoğlu

    2016-01-01

    Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution ...

  3. Largely enhanced near band edge emission of ultrathin zinc oxide nanowire/gold nanoparticles composites by surface plasmon resonance

    Science.gov (United States)

    Li, Lei; Wang, Chenying; Han, Feng; Yang, Shuming; Jing, Weixuan; Jiang, Zhuangde

    2018-03-01

    Ultrathin zinc oxide nanowires with diameter less than 50 nm were synthesized by polyethyleneimine assisted solution method. Zinc oxide nanowire near band edge emission was enhanced obviously by gold nanoparticles coating, and a max 26 times enhancement was realized. The defects caused visible light emission was also quenched to noise level when gold was deposited more than 10 s. The large near band edge emission enhancement was caused by surface plasmon resonance mediated luminescent energy transfer, which absorbed the visible light energy and transferred to the near band edge emission. The large surface to volume ratio enhanced the coupling strength between gold nanoparticles and ultrathin zinc oxide nanowires. This research provide a method to improve the luminescent efficiency of zinc oxide nanowires.

  4. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573 in...

  5. Zinc supplementation in children with cystic fibrosis

    Science.gov (United States)

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  6. Relationship between Zinc Levels and Anthropometric Indices ...

    African Journals Online (AJOL)

    2018-01-24

    Jan 24, 2018 ... zinc may directly regulate DNA synthesis through these systems. Zinc also influences hormonal regulation of cell division. Specifically, the pituitary growth hormone. (GH)‑insulin‑like growth factor‑I (IGF‑I) axis is responsive to zinc status. Both increased and decreased circulating concentrations of GH have ...

  7. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...... and durability of anticorrosive coatings have been included. The different types of anticorrosive coatings are presented, and the most widely applied generic types of binders and pigments in anticorrosive coatings are listed and described. Furthermore, the protective mechanisms of barrier, sacrificial...

  8. Polypropylene – zinc oxide nanorod hybrid material for applications in separation processes

    OpenAIRE

    Jakubiak Szymon; Tomaszewska Justyna; Jackiewicz Anna; Michalski Jakub; Kurzydłowski Krzysztof J.

    2016-01-01

    Hybrid filter material was obtained via modification of polypropylene (PP) nonwoven with nanosize zinc oxide particles of a high aspect ratio. Modification was conducted as a three-step process, a variant of hydrothermal method used for synthesis of nano-ZnO, adopted for coating three dimensional polymeric nonwoven filters. The process consisted of plasma treatment of nonwoven to increase its wettability, deposition of ZnO nanoparticles and low temperature hydrothermal growth of ZnO rods. The...

  9. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating

    Science.gov (United States)

    The transport, retention, and long-term fate of zinc oxide nanoparticles (ZnO-NPs) were investigated in saturated, bare and biofilm (Pseudomonas putida) coated sand packed columns. Almost complete retention of ZnO-NPs occurred in bare and biofilm coated sand when the influent solution pH was 9 and t...

  10. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  11. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems.

    Science.gov (United States)

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun

    2016-10-05

    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  12. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans

    Science.gov (United States)

    Kjellerup, Lasse; Winther, Anne-Marie L.; Wilson, Duncan; Fuglsang, Anja T.

    2018-01-01

    Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen. PMID:29619016

  13. The corrosion protection of AISI(TM) 1010 steel by organic and inorganic zinc-rich primers

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.

    1995-01-01

    The behavior of zinc-rich primer-coated AISI 1010 steel in 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR), were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electromechanical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 1010 steel cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high current between the steel cathode and both zinc-rich primer anodes (38.8 and 135.2 microns A/sq cm for the organic and inorganic primers, respectively). The results of corrosion rate determinations demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. EIS equivalent circuit parameters confirmed this conclusion. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application on solid rocket booster steel hardware.

  14. Nucleation and growth in alkaline zinc electrodeposition An Experimental and Theoretical study

    Science.gov (United States)

    Desai, Divyaraj

    The current work seeks to investigate the nucleation and growth of zinc electrodeposition in alkaline electrolyte, which is of commercial interest to alkaline zinc batteries for energy storage. The morphology of zinc growth places a severe limitation on the typical cycle life of such batteries. The formation of mossy zinc leads to a progressive deterioration of battery performance while zinc dendrites are responsible for sudden catastrophic battery failure. The problems are identified as the nucleation-controlled formation of mossy zinc and the transport-limited formation of dendritic zinc. Consequently, this thesis work seeks to investigate and accurately simulate the conditions under which such morphologies are formed. The nucleation and early-stage growth of Zn electrodeposits is studied on carbon-coated TEM grids. At low overpotentials, the morphology develops by aggregation at two distinct length scales: ~5 nm diameter monocrystalline nanoclusters form ~50nm diameter polycrystalline aggregates, and second, the aggregates form a branched network. Epitaxial (0002) growth above a critical overpotential leads to the formation of hexagonal single-crystals. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment. The formation of dendritic zinc is investigated using in-operando transmission X-ray microscopy which is a unique technique for imaging metal electrodeposits. The nucleation density of zinc nuclei is lowered using polyaniline films to cover the active nucleation sites. The effect of overpotential is investigated and the morphology shows beautiful in-operando formation of symmetric zinc crystals. A linear perturbation model was developed to predict the growth and formation of these crystals to first

  15. Molybdate based passivation of zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per

    1997-01-01

    In order to reduce corrosion rates, zinc plated parts are usually chromated. Recently chromates have caused increasingly environmental concern, for both allergic effects among workers touching chro-mated parts and toxic effects on fish, plants and bacteria. A molybdate based alternative has been...

  16. Serum zinc level in thalassemia

    International Nuclear Information System (INIS)

    Keikhaei, B.; Badavi, M.; Pedram, M.; Zandian, K.

    2010-01-01

    To compare serum zinc level between Thalassemia Major (TM) patients and normal population at Shafa Hospital in South West of Iran. A total of 25 male and 36 female of TM patients were enrolled in this study. Out of 61 patients thirty were treated by deferroxamine (DFO) and 31 were on the combination of DFO and deferiprone (DEF) protocol therapy. Sixty normal subjects of the matching age and gender were recruited as controls. From each patient and control group 2 ml of blood was taken in fasting condition. Cell blood count and serum zinc were carried out for both thalassemia patients and normal subjects. The mean age of patients and control group was 15+- 5 years. Mean serum zinc level was 68.97+- 21.12 mu g/dl, 78.10-28.50 mu g/dl, and 80.16+- 26.54 mu g/dl in the TM with DFO, TM with DFO + DEF combination protocol and control group respectively. There was no significant correlation between patients and control group. However 50 percent of TM with DFO, 38.7 percent of TM with DFO + DEF and 32.8 percent of control group had hypozincemia. Nearly 40 to 50 percent of TM patients and one third of normal subjects are suffering from hypozincemia. This study shows that low level of serum zinc is a health problem in both thalassemia patients and normal population in South West of Iran. (author)

  17. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir; Vakili, H.; Amini, R.

    2015-02-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  18. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    International Nuclear Information System (INIS)

    Ramezanzadeh, B.; Vakili, H.; Amini, R.

    2015-01-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly

  19. European coatings conference - Marine coatings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  20. Seal coat research project

    Science.gov (United States)

    1999-12-01

    This study evaluates the use of seal coating as a method to protect bituminous pavements from oxidation, water infiltration, and raveling. The Minnesota Department of Transportation (Mn/DOT) applied seal coating to a roadway segment of Trunk Highway ...

  1. Evaluation of masonry coatings.

    Science.gov (United States)

    1969-08-01

    This report describes the evaluation of five coating systems to replace the conventional Class 2 rubbed finish now required on concrete structures. The evaluation consisted of preparing test specimens with each of the five coatings and conducting abs...

  2. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  3. METHOD FOR TESTING COATINGS

    Science.gov (United States)

    Johns, I.B.; Newton, A.S.

    1958-09-01

    A method is described for detecting pin hole imperfections in coatings on uranium-metal objects. Such coated objects are contacted with a heated atmosphere of gaseous hydrogen and imperfections present in the coatings will allow the uranlum to react with the hydrogen to form uranium hydride. Since uranium hydride is less dense than uranium metal it will swell, causing enlargement of the coating defeot and rendering it visible.

  4. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  5. Ceramic with zircon coating

    Science.gov (United States)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  6. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  7. PIT Coating Requirements Analysis

    International Nuclear Information System (INIS)

    MINTEER, D.J.

    2000-01-01

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products

  8. Radiation-hardening coatings

    International Nuclear Information System (INIS)

    Sellmer, H.

    1989-01-01

    Lacquers and coating agents hardened by radiation have replaced conventional coating in some fields. By means of single developments (glass-fiber coating, photosensitive lacquers for films and printing plates, photoresists, additives and fillers) the latest tendencies are shown in a survey. (HP) [de

  9. Coating of graphene

    OpenAIRE

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as a sensor, etc. The invention therefor also relates to use of coated graphene.

  10. The biological inorganic chemistry of zinc ions.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  11. In situ ZnO-PVA nanocomposite coated microfluidic chips for biosensing

    DEFF Research Database (Denmark)

    Habouti, S.; Kunstmann-Olsen, C.; Hoyland, J. D.

    2014-01-01

    Microfluidic chips with integrated fluid and optical connectors have been generated via a simple PDMS master-mould technique. In situ coating using a Zinc oxide polyvinylalcohol based sol-gel method results in ultrathin nanocomposite layers on the fluid channels, which makes them strongly...

  12. Relationships between environmental pollution and the corrosion of zinc and galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Dreulle, N.; Dreulle, P.

    1973-03-01

    The corrosion spelter and galvanized steel plates used as roofing materials by air pollutants in general, and sulfur dioxide in particular was studied, and measures to be taken to abate corrosion are proposed. In atmosphere containing SO2, zinc is corroded on its surface only through the formation first of insoluble zinc sulfite and then of water-soluble zinc sulfate. A relationship between the site of exposure, the atmospheric SO2 concentration, and the rate of corrosion of zinc was established, and an increase in the rate of corrosion with relative humidity and in precipitation was determined. The rate of corrosion of spelter amounts to about 10 microns per year which corresponds to a life expectancy of about 30 years in industrial polluted air. In urban air, the life expectancy amounts to about 100 years, well over one century in rural areas. The life of galvanized steel plates increases practically linearly with the thickness of the zinc coating. Painting was found highly efficient in abating the corrosion of spelter and galvanized steel. (Air Pollut. Abstr.)

  13. Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions

    International Nuclear Information System (INIS)

    Prosek, T.; Nazarov, A.; Bexell, U.; Thierry, D.; Serak, J.

    2008-01-01

    Recently, superior corrosion properties of zinc coatings alloyed with magnesium have been reported. Corrosion behaviour of model zinc-magnesium alloys was studied to understand better the protective mechanism of magnesium in zinc. Alloys containing from 1 to 32 wt.% magnesium, pure zinc, and pure magnesium were contaminated with sodium chloride and exposed to humid air for 28 days. Composition of corrosion products was analyzed using infrared spectroscopy (FTIR), ion chromatography (IC), and Auger electron spectroscopy (AES). The exposure tests were completed with scanning Kelvin probe (SKP) and electrochemical measurements. Weight loss of ZnMg alloys with 1-16 wt.% magnesium was lower than that of pure zinc. Up to 10-fold drop in weight loss was found for materials with 4-8 wt.% Mg in the structure. The improved corrosion stability of ZnMg alloys was connected to the presence of an Mg-based film adjacent to the metal surface. It ensured stable passivity in chloride environment and limited the efficiency of oxygen reduction

  14. Structure determination of electrodeposited zinc-nickel alloys: thermal stability and quantification using XRD and potentiodynamic dissolution

    International Nuclear Information System (INIS)

    Fedi, B.; Gigandet, M.P.; Hihn, J-Y; Mierzejewski, S.

    2016-01-01

    Highlights: • Quantification of zinc-nickel phases between 1,2% and 20%. • Coupling XRD to partial potentiodynamic dissolution. • Deconvolution of anodic stripping curves. • Phase quantification after annealing. - Abstract: Electrodeposited zinc-nickel coatings obtained by electrodeposition reveal the presence of metastable phases in various quantities, thus requiring their identification, a study of their thermal stability, and, finally, determination of their respective proportions. By combining XRD measurement with partial potentiodynamic dissolution, anodic peaks were indexed to allow their quantification. Quantification of electrodeposited zinc-nickel alloys approximately 10 μm thick was thus carried out on nickel content between 1.2% and 20%, and exhibited good accuracy. This method was then extended to the same set of alloys after annealing (250 °C, 2 h), thus bringing the structural organization closer to its thermodynamic equilibrium. The result obtained ensures better understanding of crystallization of metastable phases and of phase proportion evolution in a bi-phasic zinc-nickel coating. Finally, the presence of a monophase γ and its thermal stability in the 12% to 15% range provides important information for coating anti-corrosion behavior.

  15. METAL OXIDE DOPED ANTIBACTERIAL POLYMERIC COATED TEXTILE MATERIALS AND ASSESSEMENT OF ANTIBACTERIAL ACTIVITY WITH ELECTRON SPIN RESONANCE

    Directory of Open Access Journals (Sweden)

    GEDIK Gorkem

    2017-05-01

    Full Text Available Antibacterial activity of a food conveyor belt is an essential property in some cases. However, every antibacterial chemical is not suitable to contact with food materials. Many metal oxides are suitable option for this purpose. The aim of this study was to investigate antibacterial properties of zinc oxide doped PVC polymer coated with electron spin resonance technique. Therefore, optimum zinc oxide containing PVC paste was prepared and applied to textile surface. Coating construction was designed as double layered, first layer did not contain antibacterial agent, thin second layer contained zinc oxide at 10-35% concentration. Oxygen radicals released from zinc oxide containing polymeric coated surface were spin trapped with DMPO (dimethylpyrroline-N-oxide spin trap and measured with Electron Spin Resonance (ESR. Besides conveyor belt samples, oxygen radical release from zinc oxide surface was measured with ESR under UV light and dark conditions. Oxygen radical release was determined even at dark conditions. Antibacterial properties were tested with ISO 22196 standard using Listeria innocua species. Measured antibacterial properties were related with ESR results. Higher concentration of zinc oxide resulted in higher antibacterial efficiency. DCFH-DA flourometric assay was carried out to determine oxidative stress insidebacteria. It is tought that, this technique will lead to decrease on the labour and time needed for conventional antibacterial tests.

  16. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  17. Metallic coating of microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  18. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed...... in order to review the current coating baseline. The performance of several material combinations, considering a simple bi-layer, simple multilayer and linear graded multilayer coatings are tested and simulation of the mirror performance considering both the optimized coating design and the coating...

  19. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  20. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  1. Evaluation of HVOF coatings

    Directory of Open Access Journals (Sweden)

    Mariana Landová

    2016-07-01

    Full Text Available Attention in this paper is devoted to the evaluation of wear coatings deposited using HVOF technology (high velocity oxy-fuel. There were evaluated three types of coatings based on WC-Co (next only 1343, WC-Co-Cr (next only 1350 and Cr3C2-25NiCr (next only 1375. There was assessed adherence of coatings, micro hardness, porosity and the tribological properties of erosive, abrasive, adhesive and wear resistance of coatings in terms of cyclic thermal load. Thanks to wide variety of suitable materials and their combinations, the area of utilization thermally sprayed coatings is very broad. It is possible to deposit coatings of various materials from pure metals to special alloys. The best results in the evaluated properties were achieved at the coating with the label 1375.

  2. Serum zinc response in thermal injury.

    Science.gov (United States)

    Boosalis, M G; Solem, L D; McCall, J T; Ahrenholz, D H; McClain, C J

    1988-02-01

    Zinc is an essential trace element required for RNA and DNA synthesis and the function of over 200 zinc metalloenzymes. After surgery or trauma, the serum zinc concentration usually decreases. The magnitude and duration of this hypozincemia after thermal injury are unclear, as are mechanisms for this hypozincemia. In this study we evaluated, over the duration of their hospital course, serum zinc concentrations in 23 thermal injury patients. The initial mean serum zinc concentration was significantly depressed (42 +/- micrograms/dl; normal 66-110 micrograms/dl). By the second week of hospitalization, serum zinc concentrations gradually increased into the normal range in the majority of patients. Mechanisms for this hypozincemia were evaluated. Decreases in the serum zinc concentration did not correlate with increased urinary zinc excretion; thus increased urinary zinc excretion was an unlikely mechanism for the observed hypozincemia. Values for albumin, the major zinc binding protein in serum, generally were inversely correlated with the serum zinc concentration. Thus, hypoalbuminemia could not explain the decreased serum zinc concentration. Certain cytokines such as interleukin-1 are known to cause a decrease in the serum zinc concentration as part of the acute phase response. Therefore, we measured serum C reactive protein concentrations as an indicator of the acute phase response. Thermally injured patients initially had markedly elevated C-reactive protein levels which gradually decreased during hospitalization. We suggest that the initial hypozincemia observed in thermally injured patients may be a reflection of interleukin-1 mediated acute phase response. Whether one should vigorously attempt to correct this initial marked hypozincemia requires further investigation.

  3. Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries

    Directory of Open Access Journals (Sweden)

    Nurhaswani Alias

    2015-01-01

    Full Text Available The morphology of Zinc (Zn deposits was investigated as anode for aqueous batteries. The Zn was deposited from zinc sulfate solution in direct current conditions on a copper surface at different current densities. The morphology characterization of Zn deposits was performed via field emission scanning electron microscopy. The Zn deposits transformed from a dense and compact structure to dendritic form with increasing current density. The electrodeposition of Zn with a current density of 0.02 A cm−2 exhibited good morphology with a high charge efficiency that reached up to 95.2%. The Zn deposits were applied as the anode in zinc–air and zinc–carbon batteries, which gave specific discharge capacities of 460 and 300 mA h g−1, respectively.

  4. Study on performance of waterborne anticorrosive coatings on steel rebars

    Science.gov (United States)

    Ramaswamy, S. N.; Varalakshmi, R.; Selvaraj, R.

    2017-12-01

    Durability of reinforced cement concrete structures is mainly affected by corrosion of steel reinforcements. In order to protect the reinforcing bars from corrosion and to enhance the lifetime of reinforced cement concrete structural members, anticorrosive treatment to steel is of prime importance. Conventional coatings are solvent based. In this study, water based Latex was used to formulate anticorrosive coating. Latex is applied to steel specimen substrates such as plates and rods and their mechanical properties such as flexibility, abrasion, bendability, adhesive strength, impact resistance, etc. were studied. It was inferred that coating containing latex, micro silica, zinc phosphate, ferric oxide, aluminum oxide, titanium oxide and silica fume was found to possess more corrosion resistance under marine exposure conditions.

  5. Growth of zinc oxide nanostructures

    Indian Academy of Sciences (India)

    Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2 m) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 m length was observed after a ...

  6. Growth of zinc oxide nanostructures

    Indian Academy of Sciences (India)

    Abstract. Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer. ZnO(50 nm)/Zn(20 nm)/ZnO(2 µm) structure on a polished stainless steel (SS) sub- strate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 µm length was observed ...

  7. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    International Nuclear Information System (INIS)

    Li Xiaozhu; Wang Yongqian

    2011-01-01

    Highlights: → ZnO nano-needles were synthesized by thermal oxidation. → Their surfaces were coated with Ag by pulse electro-deposition technique. → The uncoated and coated ZnO nano-needles were characterized. → The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. → The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 μm. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  8. Photoluminescence properties of zinc white

    Science.gov (United States)

    Artesani, A.

    2017-03-01

    Zinc white pigment has characterized artist's palettes from the end of the eighteenth century up the twentieth century. It thus belongs to the modern pigments which were industrially produced by inorganic material (ZnO). This new category of pictorial materials interested conservators and scientists mainly for its behavour with aging. For this reason, this work focuses on the understanding of photo-physical behaviour of zinc white based on a time-resolved analysis of photoluminescence emission of historical samples. This study allowed the characterization of the decay kinetic properties of photoluminescence emissions. All historical samples showed near-band-edge and trap state emissions, typically occurring in semiconductors, that were modified by the interaction of the pigment with the surrounding organic binding material. The study further suggests that zinc carboxylates, detected in all historical samples, could be responsible for changes in emission mechanisms. Generally, data demonstrates how time-resolved photoluminescence spectroscopy is a powerful method for elucidating the nature of the mechanism processes in luminescent semiconductor pigments.

  9. The characterization of an oxide interfacial coating for ceramic matrix composites

    International Nuclear Information System (INIS)

    Coons, Timothy P.; Reutenauer, Justin W.; Mercado, Andrew; Kmetz, Michael A.; Suib, Steven L.

    2013-01-01

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon ™ , Hi-Nicalon ™ , and Hi-Nicalon ™ Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO 2 coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO 2 duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon ™ Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  10. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.

    Science.gov (United States)

    Kogan, Samuel; Sood, Aditya; Garnick, Mark S

    2017-04-01

    Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.

  11. The zinc electrode - Its behaviour in the nickel oxide-zinc accumulator

    Science.gov (United States)

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling.

  12. Zinc and immunity: An essential interrelation.

    Science.gov (United States)

    Maares, Maria; Haase, Hajo

    2016-12-01

    The significance of the essential trace element zinc for immune function has been known for several decades. Zinc deficiency affects immune cells, resulting in altered host defense, increased risk of inflammation, and even death. The micronutrient zinc is important for maintenance and development of immune cells of both the innate and adaptive immune system. A disrupted zinc homeostasis affects these cells, leading to impaired formation, activation, and maturation of lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host defense via phagocytosis and oxidative burst. This review outlines the connection between zinc and immunity by giving a survey on the major roles of zinc in immune cell function, and their potential consequences in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition

    International Nuclear Information System (INIS)

    Bhanvase, B.A.; Patel, M.A.; Sonawane, S.H.

    2014-01-01

    Highlights: • We investigate the responsive release of imidazole from CZM nanocontainers. • Acoustic cavitation leads to the formation of smaller CZM nanoparticle. • We study kinetic models for imidazole release from CZM nanocontainers. • Improved anticorrosion performance by incorporating CZM nanocontainers in coatings. - Abstract: In the present study the loading of imidazole in between polyelectrolyte layers was carried out and the responsive release of imidazole was studied. Cerium zinc molybdate (CZM) was used as a core corrosion inhibitive nano pigment. The release rate of imidazole from CZM nanocontainer has been quantitatively estimated in water at different pH. The validation of quantitative analysis of release of corrosion inhibitor was carried out using the kinetic models. Results of electrochemical corrosion analysis of nanocontainer coatings on mild steel (MS) panel showed significant improvement in the anticorrosion performance of the nanocontainer/alkyd resin coatings

  14. An efficient biomimetic coating methodology for a prosthetic alloy

    International Nuclear Information System (INIS)

    Adawy, Alaa; Abdel-Fattah, Wafa I.

    2013-01-01

    The combination of the load-bearing metallic implants with the bioactive materials in the design of synthetic implants is an important aspect in the biomaterials research. Biomimetic coating of bioinert alloys with calcium phosphate phases provides a good alternative to the prerequisite for the continual replacement of implants because of the failure of bone-implant integration. We attempted to accelerate the biomimetic coating process of stainless steel alloy (316L) with biomimetic apatite. In addition, we investigated the incorporation of functioning minerals such as strontianite and smithsonite into the deposited layer. In order to develop a highly mature apatite coating, our method requires soaking of the pre-treated alloy in highly concentrated synthetic body fluid for only few hours. Surface characterizations were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Also, the deposited apatitic layers were analysed by powder diffraction X-ray analysis (XRD). 316L surface showed the growth of highly crystalline, low carbonated hydroxyapatite, after only 6 h of the whole soaking process. Highlights: ► The manuscript describes a fast and efficient biomimetic coating methodology. ► This methodology can be used for metallic implants. ► 316L was coated with crystalline hydroxyapatite. ► Addition of strontium and zinc lead to the deposition of brushite. ► Coating of all synthetic solutions is highly crystalline

  15. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Science.gov (United States)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  16. Use of pyrrole black in zinc-halogen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mengoli, G.; Musiani, M.M.; Tomat, R.; Valcher, S.; Pletcher, D.

    1985-09-01

    The storage of Br/sub 2//Br/sup -/ and I/sub 2//I/sup -/ couples in a conducting polymer matrix, polypyrrole coated on a reticulated vitreous carbon disc, is described and the application of these positive electrodes in zinc-halogen model batteries is discussed. The cell based on the polypyrrole bromine adduct shows the higher open circuit voltage which, however, depends on the state of charge. Such cells self discharge thus limiting their usefulness. In the case of the iodine cell the self discharge is due to loss of iodine from the polymer to the bulk solution, but with the bromine cell the cause is oxidative bromination and depolymerization of the polypyrrole. 22 references, 6 figures, 2 tables.

  17. Zinc oxide-chitosan nanobiocomposite for urea sensor

    Science.gov (United States)

    Solanki, Pratima R.; Kaushik, Ajeet; Ansari, Anees A.; Sumana, G.; Malhotra, B. D.

    2008-10-01

    Zinc oxide (ZnO)-chitosan (CH) nanobiocomposite film onto indium-tin-oxide (ITO) coated glass has been used to immobilize urease (Urs) and glutamate dehydrogenase (GLDH) for urea detection. The presence of ZnO nanoparticles in CH results in its increased surface area and enhanced electron transfer kinetics. The Urs-GLDH/CH-ZnO/ITO bioelectrode characterized using electrochemical, Fourier transform infrared, and scanning electron microscopy studies exhibit linearity of 5-100mg/dl, detection limit of 3mg/dl, response time of 10s, reproducibility as 20 times, and shelf life of 3months. The low Michaelis-Menten constant (Km) value (4.92mg/dl) indicates enhanced affinity of enzyme with nanobiocomposite.

  18. Iron, zinc, and manganese distribution in mature soybean seeds

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Przybyłowicz, Wojciech J; Mesjasz-Przybyłowicz, Jolanta

    2009-01-01

    approach, it is important to consider both the quantities and bioavailability of the target micronutrients. Both the speciation and the localization of the micronutrients within the seed can have an impact on bioavailability. In this study we use the sensitive and non-destructive micro-PIXE technique...... to reveal the distribution of iron, zinc, manganese and phosphorus within soybean seeds. We show that high concentrations of iron accumulate in the seed coats of mature soybean seeds. This iron accounted for 20 to 40% of the total seed iron. Furthermore, manganese and iron accumulated in close proximity...... the radicle tip. Our study provides a thorough description of the distribution of important micronutrients within the mature soybean seed....

  19. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...... for these designs and present test results from coatings....

  20. Mineralogical Study of a Biologically-Based Treatment System That Removes Arsenic, Zinc and Copper from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Maryam Khoshnoodi

    2013-12-01

    Full Text Available Mineralogical characterization by X-ray diffraction (XRD and a high throughput automated quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN was conducted on samples from a sulphate-reducing biochemical reactor (BCR treating high concentrations of metals (As, Zn, Cu in smelter waste landfill seepage. The samples were also subjected to energy dispersive X-ray (EDX analysis of specific particles. The bulk analysis results revealed that the samples consisted mainly of silicate and carbonate minerals. More detailed phase analysis indicated four different classes: zinc-arsenic sulphosalts/sulphates, zinc-arsenic oxides, zinc phosphates and zinc-lead sulphosalts/sulphates. This suggests that sulphates and sulphides are the predominant types of Zn and As minerals formed in the BCR. Sphalerite (ZnS was a common mineral observed in many of the samples. In addition, X-ray point analysis showed evidence of As and Zn coating around feldspar and amphibole particles. The presence of arsenic-zinc-iron, with or without cadmium particles, indicated arsenopyrite minerals. Copper-iron-sulphide particles suggested chalcopyrite (CuFeS2 and tennantite (Cu,Fe12As4S13. Microbial communities found in each sample were correlated with metal content to describe taxonomic groups associated with high-metal samples. The research results highlight mineral grains that were present or formed at the site that might be the predominant forms of immobilized arsenic, zinc and copper.

  1. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    Science.gov (United States)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  2. Zinc and Brass in Archaeological Perspective

    Directory of Open Access Journals (Sweden)

    J. S. Kharakwal

    2006-12-01

    Full Text Available Brass has a much longer history than zinc. There has been a bit of confusion about the early beginning of zinc as several claims are made out side of India. Both literary as well as archaeological records reveal that production of pure zinc had begun in the second half of the first millennium BC, though production on commercial scale begun in the early Medieval times. This paper attempts to examine the archaeological record and literary evidence to understand the actual beginning of brass and zinc in India.

  3. Status of zinc injection in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, C.A. [Westinghouse Electric Co., Pittsburgh, PA (United States)

    1995-03-01

    Based on laboratory and other studies, it was concluded that zinc addition in a PWR primary coolant should result in reduced Alloy 600 PWSCC and general corrosion rates of the materials of construction. Because of these positive results, a Westinghouse Owner`s Subgroup, EPRI, and Westinghouse provided funds to continue the development and application of zinc in an operating plant. As part of the program, Southern Operating Nuclear Company agreed to operate the Farley 2 plant with zinc addition as a demonstration test of the effectiveness of zinc. Since zinc is incorporated in the corrosion oxide film on the primary system surfaces and Farley 2 is a mature plant, it was estimated that about 10 kgs of zinc would be needed to condition the plant before an equilibrium value in the coolant would be reached. The engineered aspects of a Zinc Addition and Monitoring System (ZAMS) considered such items as the constitutents, location, sizing and water supply of the ZAMS. Baseline data such as the PWSCC history of the Alloy 600 steam generator tubing, fuel oxide thickness, fuel crud deposits, radiation levels, and RCP seal leak-off rates were obtained before zinc addition is initiated. This presentation summarizes some of the work performed under the program, and the status of zinc injection in the Farley 2 plant.

  4. Zinc absorption in inflammatory bowel disease

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-01-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered

  5. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    Science.gov (United States)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  6. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Janet C. King

    2012-07-01

    Full Text Available Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide.

  7. Quantitative analysis and metallic coating thickness measurements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Negrea, Denis; Ducu, Catalin; Malinovschi, Viorel; Moga, Sorin; Boicea, Niculae

    2009-01-01

    Full text: This paperwork covers the use of X-ray fluorescence (XRF) for determining the concentration and the coating thickness on metallic samples. The analysis method presented here may also be applicable to other coatings, providing that the elemental nature of the coating and substrate are compatible with the technical aspects of XRF, such as the absorption coefficient of the system, primary radiation, fluorescent radiation and type of detection. For the coating thickness measurement it was used the substrate-line attenuation method and a computing algorithm was developed. Its advantage relies in the fact that no special calibration with standard samples having different layer thickness is needed. The samples used for evaluation were metallic pieces of iron with zinc-nickel coatings of different thickness obtained by electrochemical deposition. (authors)

  8. Quantitative analysis and metallic coating thickness measurements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Negrea, Denis; Ducu, Catalin; Malinovschi, Viorel; Moga, Sorin; Boicea, Niculae

    2009-01-01

    This work deals with the use of X-ray fluorescence (XRF) for determining the concentration and the coating thickness on metallic samples. The analysis method presented here may also be applicable to other coatings, providing that the elemental nature of the coating and substrate are compatible with the technical aspects of XRF, such as the absorption coefficient of the system, primary radiation, fluorescent radiation and type of detection. For the coating thickness measurement it was used the substrate-line attenuation method and an algorithm was developed. Its advantage relies in the fact that no special calibration with standard samples having different layer thickness is needed. The samples used for evaluation were metallic pieces of iron with zinc-nickel coatings of different thickness obtained by electrochemical deposition. (authors)

  9. Chemical state analysis of conversion coatings by SR-XPS and TEY-XANES

    CERN Document Server

    Noro, H; Nagoshi, M

    2002-01-01

    Chromate coatings on galvanized steel have been studied by Synchrotron Radiation (SR) based techniques that include X-ray Photoelectron Spectroscopy (XPS) and Total-Electron-Yield X-ray Absorption Near Edge Structure (TEY-XANES). Non-destructive depth profiling of the coatings by SR-XPS reveals the enhancement of Cr sup 6 sup + in the outer surface. TEY-XANES spectroscopy based on simple specimen current measurement is demonstrated as an effective technique for analyzing chemical states of conversion coatings on general bulk substrates. The sampling depth of this technique, which exceeds several tens of nanometer, is determined by the penetration length of Auger electrons excited by X-ray and the inelastic mean free path of secondary electrons excited by inelastically scattered Auger electrons. The chemical states of phosphoric acid added chromate coatings are studied using this technique. The phosphoric acid is taken into the chromate coatings as partially changed into zinc and chromium phosphates, and the r...

  10. Development of 780MPa grade gal annealed dual phase steel sheets for automobile

    Science.gov (United States)

    Jiang, Yinghua; Xie, Chunqian; Kuang, Shuang

    2018-01-01

    As the weight reduction of automotive body and crash safety become much more important factors, in an effort to satisfy these requirements, Shougang has developed 780MPa grade galvannealed dual phase steel sheet. Steel chemistry with low C and low Si was designed for good zinc wettability and spot weldability. And some of elements were added to improve the hole expansibility and work hardening capacity of steel as these effectively refine the microstructure and introduce retained austenite. Newly developed 780MPa grade galvannealed dual phase steels have a high yield strength and a good hole expansibility.

  11. Effects of Mn addition on the microstructure and indentation creep behavior of the hot dip Zn coating

    International Nuclear Information System (INIS)

    Wang, Youbin; Zeng, Jianmin

    2015-01-01

    Highlights: • Mn addition could significantly refine the grain of the Zn coating. • Twins could be observed in the Zn coatings. • The stress exponent of the Zn coating increases with Mn addition. • The creep process of the Zn coating is dominated by dislocation climb and twins. - Abstract: The Zn coatings with different Mn additions were prepared by hot dip process, and the effects of the Mn addition on the microstructure and indentation creep behavior of the coatings were investigated through scanning electron microscope and constant-load holding indentation technique at the room temperature. Some twins can be observed in the microstructure of Zn coating, which may account for the formation of the large thermal misfit stress between the zinc coating and the steel substrate. The amount of twin microstructure in the Zn coating decreases with the Mn addition. It is also found that Mn addition could induce MnZn 13 phases to precipitate along the grain boundary and significantly refine the grains of Zn coatings. The steady-state stress of the Zn coating could be improved by Mn addition. The creep stress exponent values are in the range of 14–46 and increases with Mn addition. The creep process of the Zn coating is dominated by dislocation climb and twin formation

  12. Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins.

    Science.gov (United States)

    Maret, Wolfgang

    2011-06-01

    Homeostatic control maintains essential transition metal ions at characteristic cellular concentrations to support their physiological functions and to avoid adverse effects. Zinc is especially widely used as a catalytic or structural cofactor in about 3000 human zinc proteins. In addition, the homeostatic control of zinc in eukaryotic cells permits functions of zinc(II) ions in regulation and in paracrine and intracrine signaling. Zinc ions are released from proteins through ligand-centered reactions in zinc/thiolate coordination environments, and from stores in cellular organelles, where zinc transporters participate in zinc loading and release. Muffling reactions allow zinc ions to serve as signaling ions (second messengers) in the cytosol that is buffered to picomolar zinc ion concentrations at steady-state. Muffling includes zinc ion binding to metallothioneins, cellular translocations of metallothioneins, delivery of zinc ions to transporter proteins, and zinc ion fluxes through cellular membranes with the result of removing the additional zinc ions from the cytosol and restoring the steady-state. Targets of regulatory zinc ions are proteins with sites for transient zinc binding, such as membrane receptors, enzymes, protein-protein interactions, and sensor proteins that control gene expression. The generation, transmission, targets, and termination of zinc ion signals involve proteins that use coordination dynamics in the inner and outer ligand spheres to control metal ion association and dissociation. These new findings establish critically important functions of zinc ions and zinc metalloproteins in cellular control.

  13. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions

    NARCIS (Netherlands)

    Brun, N.R.; Lenz, M.; Wehrli, B.; Fent, K.

    2014-01-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of

  14. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution......-enriched terminals, whereas the dorsal horn was dominated by medium-sized and small zinc-enriched terminals.The presence of boutons with flat synaptic vesicles with zinc ions and symmetric synaptic contacts suggests the presence of inhibitory zinc-enriched terminals in the mammalian spinal cord...

  15. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Science.gov (United States)

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  16. Clinical Aspects of Trace Elements: Zinc in Human Nutrition - Assessment of Zinc Status

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Because the limiting and vulnerable zinc pool has not been identified, it becomes a challenge to determine which of the many zinc pools is most susceptible to deficiency. As a consequence, defining and assessing zinc status in the individual patient is a somewhat uncertain process. Laboratory analysis of zinc status is difficult because no single biochemical criterion can reliably reflect zinc body stores. Many indexes have been examined in the hopes of discovering a method for the assessment of zinc nutriture. None of the methods currently used can be wholeheartedly recommended because they are fraught with problems that affect their use and interpretation. However, these methods remain in use for clinical and research purposes, though their benefits and drawbacks must always be acknowledged. Until an acceptable method of analysis is discovered, clinicians must rely for confirmation of zinc deficiency on a process of supplementing with zinc and observing the patient’s response. The main indexes (plasma/serum, erythrocyte, leukocyte, neutrophil, urine, hair and salivary zinc levels, taste acuity and oral zinc tolerance tests, and measurement of metallothionein levels are reviewed. Measurement of plasma or erythrocyte metallothionein levels shows promise as a future tool for the accurate determination of zinc status.

  17. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  18. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  19. MICRONUTRIENT ZINC DEFICIENCY AS A POSSIBLE CO ...

    African Journals Online (AJOL)

    Thirty-four HIV/AIDS patients at various stages of disease progression volunteered to manage their health using a nutritional supplement that contained several micronutrients that included a 15 mg daily dose of elemental zinc. This initial publication only focuses on trends in the serum zinc levels and the observed ...

  20. Zinc intervention on macrophages and lymphocytes responce

    Energy Technology Data Exchange (ETDEWEB)

    Lastra, M.D.; Pastelin, R.; Camacho, A.; Monroy, B.; Aguilar, A.E. [Lab. de Investigacion en Immunologia, Univ. Nacional Autonoma de Mexico (Mexico)

    2001-07-01

    Normal zinc levels are essential for the development and maintenance of immune functions; Zn deficiency is detrimental to the embryo and offspring of experimental animals, especially concerning immune development. It is known that Zn supplementation improves immune responses. To further explore the relation between Zn administration and the metal in vitro effects, we studied zinc (500 mg/l) supplementation impact on lymphocytes and macrophages and zinc in vitro effects, in BALB/c mice supplemented from gestation to lactation. Results show a significant increase in proliferation (assessed by {sup 3}H incorporation) in lymphocytes exposed to Zn (0.1 mM) in vitro, in 3-wk-old mice; this effect is annulled when the supplementation period is lengthened, indicating saturation of the mechanisms involved in zinc induced stimulation. Macrophages functional capacity assessed by erythrophagocytosis was also improved by Zn supplementation and furthermore by the in vitro exposure to the metal, in mice 3 wk old, this was also depressed by Zn accumulation due to the supplementation period extension (9 weeks). Results show an improvement in the immune parameters analysed due to zinc supplementation and to zinc in vitro exposure. Results also suggest the accumulation of zinc as a result of prolonged supplementation periods, suppresses the cells response to zinc in vitro. (orig.)

  1. Amidinate Ligands in Zinc coordination sphere

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 6. Amidinate Ligands in Zinc coordination sphere: Synthesis and structural diversity. SRINIVAS ANGA INDRANI BANERJEE TARUN K PANDA. Regular Article Volume 128 Issue 6 June 2016 pp ... Keywords. Zinc; carbodiimides; amidinate; alkyl migration.

  2. The zinc electrode: Reactions and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J. [Brookhaven National Lab., Upton, NY (United States)

    1993-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. This paper reports on in situ x-ray absorption (XAS) results on supersaturated zincate and on mossy deposits.

  3. Effect of consuming zinc-fortified bread on serum zinc and iron status of zinc-deficient women: A double blind, randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Akbar Badii

    2012-01-01

    Full Text Available After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fortification. The objective of this study is to evaluate the influence of consuming zinc-fortified breads on the zinc and iron status in the blood serum. In this study, three types of bread were prepared from non-fortified and fortified flours, with 50 and 100 ppm elemental zinc in the form of sulfate. Eighty zinc-deficient women aged 19 to 49 years were randomly assigned to three groups; The volunteers received, daily, (1 a non-fortified bread, (2 a high-zinc bread, and (3 a low-zinc bread for one month. Serum zinc and iron were measured by Atomic Absorption before and after the study. Results showed a significant increase in serum zinc and iron levels in all groups (p 0.05. Absorption of zinc and iron in the group that consumed high-zinc bread was significantly greater than that in the group that received low-zinc bread (p < 0.01. It was concluded that fortification of flour with 50-100 ppm zinc was an effective way to achieve adequate zinc intake and absorption in zinc-deficient people. It also appeared that consuming zinc-fortified bread improved iron absorption.

  4. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    Science.gov (United States)

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  5. Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating.

    Science.gov (United States)

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2011-12-01

    Calcium silicate ceramic coatings have received considerable attention in recent years due to their excellent bioactivity and bonding strength. However, their high dissolution rates limit their practical applications. In this study, zinc incorporated calcium silicate based ceramic Ca(2)ZnSi(2)O(7) coating was prepared on Ti-6Al-4V substrate via plasma spraying technology aiming to achieve higher chemical stability and additional antibacterial activity. Chemical stability of the coating was assessed by monitoring mass loss and ion release of the coating after immersion in the Tris-HCl buffer solution and examining pH value variation of the solution. Results showed that the chemical stability of zinc incorporated coating was improved significantly. Antimicrobial activity of the Ca(2)ZnSi(2)O(7) coating was evaluated, and it was found that the coating exhibited 93% antibacterial ratio against Staphylococcus aureus. In addition, in vitro bioactivity and cytocompatibility were confirmed for the Ca(2)ZnSi(2)O(7) coating by simulated body fluid test, MC3T3-E1 cells adhesion investigation and cytotoxicity assay.

  6. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  7. Metallurgical coating system

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, L.C.; Whittaker, G.S.

    1984-05-01

    The present invention relates to a novel metallurgical coating system which provides corrosion resistance and non-stick properties to metallic components which are subjected to unusually severe operating conditions. The coating system comprises a first layer comprising tantalum which is deposited upon a substrate and a second layer comprising molybdenum disilicide which is deposited upon the first layer.

  8. Unobtrusive graphene coatings

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther

    2012-01-01

    The contact angle of water drops on substrates for which the wettability is dominated by van der Waals forces remains unchanged when the substrates are coated with a monolayer of graphene. Such 'wetting transparency' could lead to superior conducting and hydrophobic graphene-coated surfaces with

  9. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  10. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  11. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  12. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  13. Dietary Zinc Acts as a Sleep Modulator

    Directory of Open Access Journals (Sweden)

    Yoan Cherasse

    2017-11-01

    Full Text Available While zinc is known to be important for many biological processes in animals at a molecular and physiological level, new evidence indicates that it may also be involved in the regulation of sleep. Recent research has concluded that zinc serum concentration varies with the amount of sleep, while orally administered zinc increases the amount and the quality of sleep in mice and humans. In this review, we provide an exhaustive study of the literature connecting zinc and sleep, and try to evaluate which molecular mechanism is likely to be involved in this phenomenon. A better understanding should provide critical information not only about the way zinc is related to sleep but also about how sleep itself works and what its real function is.

  14. Recent advances in zinc-air batteries.

    Science.gov (United States)

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  15. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  16. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  17. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  18. Radiation curable coating compositions

    International Nuclear Information System (INIS)

    Jenkinson, R.D.; Carder, C.H.

    1979-01-01

    The present invention provides a low-toxicity diluent component for radiation curable coating compositions that contain an acrylyl or methacryly oligomer or resin component such as an acrylyl urethane oligomer. The low-toxicity diluent component of this invention is chosen from the group consisting of tetraethlorthosilicate and tetraethoxyethylorthosilicate. When the diluent component is used as described, benefits in addition to viscosity reduction, may be realized. Application characteristics of the uncured coatings composition, such as flowability, leveling, and smoothness are notably improved. Upon curing by exposure to actinic radiation, the coating composition forms a solid, non-tacky surface free of pits, fissures or other irregularities. While there is no readily apparent reactive mechanism by which the orthosilicate becomes chemically bonded to the cured coating, the presence of silicon in the cured coating has been confirmed by scanning electron microscopy. 12 drawing

  19. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    OpenAIRE

    Kan, Chi-Wai; Lam, Yin-Ling

    2013-01-01

    Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst) was dev...

  20. Annual Report - Compatibility of ZDDP and ionic liquid anti-wear additives with hard coatings for engine lubrications

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leonard, Donovan N [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    The objectives for this considerations described here are to; investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected commercial hard coatings, and provide fundamental understanding to guide future development of engine lubricants.

  1. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  2. The effect of zinc deficiency and zinc supplementation on element levels in the bone tissue of ovariectomized rats: histopathologic changes.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasim; Sunar, Fusun; Mogulkoc, Rasim; Acar, Musa; Toy, Hatice

    2014-05-01

    Study aimed to determine the effects of zinc supplementation/deficiency on the histological structure and elements levels in bone tissue in ovariectomized rats. The study included 40 Sprague-Dawley type adult female rats, divided as follows: Control, ovariectomized, ovariectomized + zinc supplemented, ovariectomized + zinc deficient groups. At the end of the study bone tissues (femur) were collected to determine the levels of calcium, phosphorus, magnesium, zinc, iron, aluminium, chrome, lithium, lead, nickel, and manganese. The bone tissue was examined for histopathology. Ovariectomy leaded to significant decrease in magnesium. Zinc supplementation to ovariectomized rats restored the reduced calcium, phosphorus, zinc. However, zinc deficiency in ovariectomized rats further reduced calcium, phosphorus, zinc, and manganese levels. Zinc deficiency in ovariectomized significantly increased Al, Cr, Li, Pb, and Ni levels. Tissue integrity was impaired due to ovariectomy and zinc deficiency. Ovariectomy and zinc deficiency leads significant decreases elements of the bone.

  3. Zinc, Iron, and Chlorophyll Metabolism in Zinc-toxic Corn.

    Science.gov (United States)

    Rosen, J A; Pike, C S; Golden, M L

    1977-06-01

    Zinc toxicity and Zn-Fe interactions were studied in corn (Zea mays L. var. Barbecue hybrid) grown in hydroponic culture. High Zn greatly reduced the root and shoot fresh weights; increasing Fe largely, but not completely, restored normal growth. Correlation analyses of root and leaf Zn and Fe contents suggested that Zn may interfere with the translocation of Fe; however, Zn toxicity was not associated with a diminished leaf Fe content. Fe did appear to retard both the absorption and the translocation of Zn. The chlorosis of Zn-toxic plants is not attributable to diminshed total leaf Fe; however, this chlorosis is relieved by increasing nutrient Fe. Zn and Fe probably do interact at some site.

  4. Serum zinc levels in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Rahimi Sharbaf F

    2008-12-01

    Full Text Available "nBackground: Maternal zinc deficiency during pregnancy has been related to adverse pregnancy outcomes. Most studies in which pregnant women have been supplemented with zinc to examine its effects on the outcome of the pregnancy have been carried out in industrialized countries and the results have been inconclusive. It has been shown that women with gestational diabetes (GDM have lower serum zinc levels than healthy pregnant women, and higher rates of macrosomia. Zinc is required for normal glucose metabolism, and strengthens the insulin-induced transportation of glucose into cells by its effect on the insulin signaling pathway. The purpose of this study was to assess the serum zinc levels of GDM patients and evaluate the effect of zinc supplementation. "nMethods: In the first stage of this prospective controlled study, we enrolled 70 women who were 24-28 weeks pregnant at the Prenatal Care Center of Mirza Kochak Khan Hospital, Tehran, Iran. The serum zinc level of each subject was determined. In the second stage, among these 70 subjects, the diabetics receiving insulin were divided into two groups, only one of which received a zinc supplement and the other group was the control group. Birth weight of neonates and insulin dosages were recorded. "nResults: The mean serum zinc level in the GDM group was lower than that of the control group (94.83 vs. 103.49mg/dl, respectively and the mean birth weight of neonates from the GDM women who received the zinc supplement was lower than that of the control group (3849g vs. 4136g. The rate of macrosomia was lower in the zinc supplemented group (20% vs. 53%. The mean of increase of insulin after receiving the zinc supplement was lower (8.4u vs. 13.53. "nConclusion: Maternal insulin resistance is associated with the accumulation of maternal fat tissue during early stages of pregnancy and greater fetoplacental nutrient availability in later stages, when 70% of fetal growth occurs, resulting in macrosomia. In

  5. Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers

    KAUST Repository

    Neelakanda, Pradeep

    2015-09-05

    ZIF-8 composite membranes were synthesized at room temperature from aqueous solution by a double-zinc-source method on polyacrylonitrile (PAN) porous supports. The support was coated with zinc oxide (ZnO) by magnetron sputtering prior to ZIF-8 growth to improve the nucleation as well as the adhesion between the ZIF-8 layer and support. By this method, we were able to grow a continuous, dense, very thin (900 nm) and defect free ZIF-8 layer on a polymeric support. The developed ZIF-8 membranes had a gas permeance of 1.23 x 10-7 mol m-2 sec-1 Pa-1 for hydrogen and a selectivity of 26 for hydrogen/propane gases which is 5 times higher than the Knudsen selectivity. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were done to characterize the membranes.

  6. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    Science.gov (United States)

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  7. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    Science.gov (United States)

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. PREPARATION OF ZINC ENRICHED YEAST (SACCHAROMYCES CEREVISIAE BY CULTIVATION WITH DIFFERENT ZINC SALTS

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2012-02-01

    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  9. Zinc-Laccase Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2011-12-01

    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  10. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  11. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2010-12-17

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  13. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  14. substitute for Zn(II) in zinc fingers?

    Indian Academy of Sciences (India)

    Zinc finger domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. The role of zinc in a DNA binding finger was considered purely structural due to the absence of redox chemistry in zinc. However, whether other metals e.g. Co(II) or Cd(II) can substitute ...

  15. On structural, optical and dielectric properties of zinc aluminate ...

    Indian Academy of Sciences (India)

    with a normal spinel structure having all zinc cations in the tetrahedral and all aluminium cations in the octahedral ... rrite in the nano-regime show anomalous magnetic properties in that zinc ions instead of occupying ... (Roy et al 2006). Zinc aluminate can be con- sidered as the non-magnetic counterpart of zinc ferrite and.

  16. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  17. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  18. Zinc in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Arnold, L Eugene; DiSilvestro, Robert A

    2005-08-01

    The aim of this study was to review the published evidence for a role of zinc nutrition in attention-deficit/hyperactivity disorder (ADHD). A computer literature search was supplemented by the authors' knowledge. Numerous controlled studies report cross-sectional evidence of lower zinc tissue levels (serum, red cells, hair, urine, nails) in children who have ADHD, compared to normal controls and population norms. A few studies show correlations of zinc level with either clinical severity or a change thereof in response to stimulant or chemical challenge. Two placebo-controlled trials--one of zinc monotherapy, the other of zinc supplementation of methylphenidate--reported significant benefit. However, diagnostic procedures and sample representativeness were often not clear, and most such reports have come from countries and cultures with different diets and/or socioeconomic realities than are found in the United States (only one American sample in nine published reports). In particular, both positive clinical trials of zinc supplementation came from the Mid-East (Turkey and Iran), an area with suspected endemic zinc deficiency. The largest of these trials used zinc doses above the recommended upper tolerable limit and had a 2 in 3 dropout rate. It is not clear how well the accumulating evidence for a possible role of zinc in ADHD applies to middle-class American children. However, the evidence appears strong enough to warrant further controlled study in well-diagnosed samples representative of the socioeconomic spectrum. Hypothesis-testing clinical trials are needed of this potential treatment that, if found effective, might become a relatively safe, cheap substitute for, or adjunct to, current treatments in some patients. At present, it should remain an investigational treatment.

  19. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat

    Directory of Open Access Journals (Sweden)

    Sana Kamran

    2017-12-01

    Full Text Available Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 (Pseudomonas fragi, EPS 6 (Pantoea dispersa, EPS 13 (Pantoea agglomerans, PBS 2 (E. cloacae and LHRW1 (Rhizobium sp. were selected (based on their zinc solubilizing and PGP activities for pot scale plant experiments. ZnCO3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month, maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1 while E. cloacae (PBS 2 increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2 and in roots of P. agglomerans (EPS 13 followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6, P. agglomerans (EPS 13 and E. cloacae (PBS 2 significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS 1

  20. Study of iron-zinc catalysts by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Arriola, S.H.

    1990-01-01

    The Moessbauer parameters were determined on a series of catalyst mixtures of iron and zinc oxides with variable quantities of zinc. A change in the crystal structure of the iron oxide when introducing zinc into the samples was observed. The corundum structure of the α-Fe 2 O 3 phase was transformed into the spinel type of zinc ferrite when zinc oxide was present in any quantity. A strong electronic interaction between the zinc ferrite and the zinc oxide present in excess was evident. The catalysts were analyzed using x-ray fluorescence and x-ray diffraction methods. (author) 10 refs.; 4 figs.; 2 tabs

  1. Research on the corrosion inhibitors of zinc in hydrochloric acid

    Science.gov (United States)

    Sun, C. X.; Chen, Y. M.; Xu, H. W.; Huang, C. S.; Zhang, M.; Wu, J. Y.; Chen, M.; Xue, M.

    2017-06-01

    Three organic compounds were tested as zinc corrosion inhibitors in hydrochloric acid: cetyltrimethyl ammonium bromide (CTAB), nicotini acid, bromohexadecyl pyridine. The static coupon test results indicate that CTAB and bromohexadecyl pyridine offer the best zinc corrosion protection, while nicotinic acid accelerates zinc corrosion. The polarization results indicate that CTAB, nicotinic acid and bromohexadecyl pyridine induce a positive shift in the E0 of zinc in hydrochloric acid. A complex of CTAB and bromohexadecyl pyridine inhibits the corrosion of zinc in hydrochloric acid. SEM results indicate that the CTAB and bromohexadecyl pyridine formed a uniform and compact membrane on the surface of zinc that subsequently protects the zinc from effective corrosion.

  2. Zinc oxide tetrapod nanocrystal diodes

    Science.gov (United States)

    Newton, Marcus Christian

    Advances in fabrication and analysis tools have allowed the synthesis and manipulation of functional materials with features comparable to fundamental physical length scales. Many interesting properties inherently due to quantum size effects have been observed in nanometre scale structures. It is hoped that these nanoscale structures will play a key role in future materials and devices that exploit their unique properties. Zinc oxide (ZnO) is a wide band-gap transparent and piezoelectric semiconductor material. It also has a large exciton binding energy which allows for stable ultraviolet light emission at room temperature. There are therefore foreseeable applications in optoelectronic devices which include ultraviolet photosensitive devices and light emitting diodes. Nanoscale structures formed from ZnO are interesting as they possess many of the properties inherent form the bulk but are also subject to various quantum size effects that may occur at the nanoscale. To date, the study of ZnO nanostructures is a relatively recent endeavour with the vast majority of reports being made within the last five years. ZnO is unique in that it forms a family of nanoscale structures. These structures include nanoscale wires, rods, hexagons, tetrapods, ribbons, rings, flowers and helixes. This work is focussed on the study of zinc oxide tetrapod crystalline nanoscale structures and their devices. We have synthesised ZnO tetrapods using chemical vapour transport techniques. Photoluminescence characterisation revealed the presence of optically active surface defects that could be quenched with a simple surface treatment. We have also for the first time observed resonant cavity modes in a single ZnO tetrapod nanocrystal. An ultraviolet sensitive Schottky diode was fabricated from a single ZnO tetrapod using focussed ion-beam assisted deposition techniques. The device characteristics observed were modelled and successfully shown to result from an illumination induced reduction in

  3. The effect of pH and role of Ni{sup 2+} in zinc phosphating of 2024-Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.S. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, K.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Mitchell, K.A.R. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)]. E-mail: karm@chem.ubc.ca

    2006-11-15

    Coatings formed on 2024-T3 aluminum alloy were studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) after dipping in zinc phosphating (ZPO) baths at different acidities, for different lengths of time, and with or without Ni{sup 2+} additive. The overall objective was to learn more about the role of Ni{sup 2+} on the ZPO coating mechanism, particularly since this additive is believed to improve corrosion protection for the Al alloy. Secondary phosphates dominate the coatings when the Ni-containing solution is adjusted to starting pH values of either 3 or 5, while tertiary phosphate is predominant at pH 4. AlF{sub 3} precipitates during the early stages of the coating process. Ni{sup 2+} has two main roles in the mechanism. First, the rate of increase in local solution pH is retarded by the slower kinetics of reactions involving Ni{sup 2+} compared to Zn{sup 2+}, leading to thinner ZPO coatings when Ni{sup 2+} is present in the coating solution. Second, most Ni{sup 2+} deposition occurs during the later stages of the coating process, by nickel phosphate deposition and/or by formation of a Ni-rich oxide.

  4. The Zinc Dyshomeostasis Hypothesis of Alzheimer's Disease

    Science.gov (United States)

    Craddock, Travis J. A.; Tuszynski, Jack A.; Chopra, Deepak; Casey, Noel; Goldstein, Lee E.; Hameroff, Stuart R.; Tanzi, Rudolph E.

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized

  5. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Travis J A Craddock

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ, intracellular neurofibrillary tangles (NFTs composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau, and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1 used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2 performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3 used metallomic imaging mass spectrometry (MIMS to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of

  6. Spectrophotometric determination of zinc in impure solutions

    International Nuclear Information System (INIS)

    Rodriguez Hernandez, B.; Reyes Tamaral, A.

    1972-01-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  7. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  8. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  9. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution......-enriched terminals, whereas the dorsal horn was dominated by medium-sized and small zinc-enriched terminals.The presence of boutons with flat synaptic vesicles with zinc ions and symmetric synaptic contacts suggests the presence of inhibitory zinc-enriched terminals in the mammalian spinal cord....... The densest populations of zinc-enriched terminals were seen in dorsal horn laminae I, III and IV, whereas the deeper laminae V and VI contained fewer terminals. At ultrastructural levels, zinc-enriched terminals primarily formed symmetrical synapses on perikarya and dendrites. Only relatively few...

  10. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Intestinal absorption and excretion of zinc in streptozotocin-diabetic rats as affected by dietary zinc and protein

    International Nuclear Information System (INIS)

    Johnson, W.T.; Canfield, W.K.

    1985-01-01

    65 Zn was used to examine the effects of dietary zinc and protein on true zinc absorption and intestinal excretion of endogenous zinc by an isotope dilution technique in streptozotocin-diabetic and control rats. Four groups each of diabetic and control rats were fed diets containing 20 ppm Zn, 20% egg white protein (HMHP); 20 ppm Zn, 10% egg white protein (HMLP); 10 ppm Zn, 20% egg white protein (LMHP); and 10 ppm Zn, 10% egg white protein (LMLP). Measurement of zinc balance was begun 9 d after an i.m. injection of 65 Zn. True zinc absorption and the contribution of endogenous zinc to fecal zinc excretion were calculated from the isotopically labeled and unlabeled zinc in the feces, duodenum and kidney. Results from the isotope dilution study indicated that diabetic rats, but not control rats, absorbed more zinc from 20 ppm zinc diets than from 10ppm zinc diets and that all rats absorbed more zinc from 20% protein diets than from 10% protein diets. Furthermore, all rats excreted more endogenous zinc from their intestines when dietary zinc and protein levels resulted in greater zinc absorption. In diabetic and control rats, consuming equivalent amounts of zinc, the amount of zinc absorbed was not significantly different, but the amount of zinc excreted by the intestine was less in the diabetic rats. Decreased intestinal excretion of endogenous zinc may be a homeostatic response to the increased urinary excretion of endogenous zinc in the diabetic rats and may also lead to the elevated zinc concentrations observed in some organs of the diabetic rats

  12. Thermally joining and/or coating or thermally separating the workpieces having heat-sensitive coating, comprises restoring coating by thermally coating the coating material after thermally joining and/or coating or thermally separating

    OpenAIRE

    Riedel, Frank; Winkelmann, Ralf; Puschmann, Markus

    2011-01-01

    The method for thermally joining and/or coating or thermally separating the workpieces (1), which have a heat-sensitive coating (2), comprises restoring the coating by thermally coating a coating material (3) after thermally joining and/or coating or thermally separating the workpieces. A part of the thermal energy introduced in the workpiece for joining and/or coating or separating or in the workpieces is used for thermally coating the coating material. Two workpieces are welded or soldered ...

  13. Prevalence of zinc deficiency among primary school children in a ...

    African Journals Online (AJOL)

    Few zinc-rich sources appeared in the diet that was predominantly plant-based. Mean dietary zinc intake was 4.6±2.2 mg/day. The mean value of serum zinc was 66.4±21.5 μg/dL, with 46% of the children having values less than the 70 μg/dL cutoff. The findings indicate a high risk of zinc deficiency and suboptimal zinc ...

  14. Coating of substrates

    International Nuclear Information System (INIS)

    Cairns, J.A.; Nelson, R.L.; Woodhead, J.L.

    1979-01-01

    The process is concerned with providing substrates with coatings obtainable from sols, for example to protect the substrate (such as in nuclear reactors or hydrocarbon cracking plant) or to provide a carrier for catalytically active material. Hitherto, coatings obtained from sols have had a high porosity and high surface area so that they have not been entirely satisfactory for the above applications. In the process described, dense, low-porosity coatings are provided by contacting the substrate with a sol of refractory material (e.g. CeO 2 or SiO 2 ) convertible to a gel of density at least 40% of the theoretical density of the refractory material, and converting the sol to the gel. Optionally, the gel may be converted to a ceramic coating by firing. (author)

  15. Aluminum phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Sankar (Chicago, IL); Steiner, Kimberly A. (Chicago, IL); Rangan, Krishnaswamy K. (Evanston, IL)

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  16. Robust Fiber Coatings

    National Research Council Canada - National Science Library

    Goettler, Richard

    2002-01-01

    The highly desired ceramic matrix composite is the one in which the high strength and strain-to-failure is achieved through judicious selection of a fiber coating that can survive the high-temperature...

  17. Manganese phosphate-coating

    International Nuclear Information System (INIS)

    Peyre, Y.

    1999-01-01

    Manganese phosphate-coating is one of the numerous chemical surface treatment which is used industrially. Its applications are usual for improving the friction properties of a lot of mechanical parts. Used for the treatment of steels and cast steels, baths (containing phosphoric acid, manganese phosphate and different additives) lead to the formation of nonmetal coatings of a few micrometers. These manganese-iron or manganese phosphates crystals reduce the friction coefficient and retain the lubricant film in contact with the moving parts. The running noises, the wear and the seizure risks are then strongly reduced. Pure manganese phosphate-coating is currently developing because the obtained coatings are thinner and more regular. (O.M.)

  18. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  19. Efficiency Enhancement of Gallium Arsenide Photovoltaics Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers

    Directory of Open Access Journals (Sweden)

    Yangsen Kang

    2015-01-01

    Full Text Available We demonstrate a high-throughput, solution-based process for subwavelength surface texturing of a III-V compound solar cell. A zinc oxide (ZnO nanoparticle ink is spray-coated directly on top of a gallium arsenide (GaAs solar cell. The nanostructured ZnO films have demonstrated antireflection and light scattering properties over the visible/near-infrared (NIR spectrum. The results show a broadband spectral enhancement of the solar cell external quantum efficiency (EQE, a 16% enhancement of short circuit current, and a 10% increase in photovoltaic efficiency.

  20. Efficiency Enhancement of Gallium Arsenide Photovoltaic Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers

    International Nuclear Information System (INIS)

    Kang, Y.; Huo, Y.; Chen, Y.; Christoforo, M. G.; Harris, J.S.; Liang, D.; Mehra, S.; Salleo, A.; Harris, J.S.; Harris, J.S.

    2015-01-01

    We demonstrate a high-throughput, solution-based process for sub wavelength surface texturing of a III-V compound solar cell. A zinc oxide (ZnO) nanoparticle ink is spray-coated directly on top of a gallium arsenide (GaAs) solar cell. The nano structured ZnO films have demonstrated antireflection and light scattering properties over the visible/near-infrared (NIR) spectrum. The results show a broadband spectral enhancement of the solar cell external quantum efficiency (EQE), a 16% enhancement of short circuit current, and a 10% increase in photovoltaic efficiency

  1. Tiny optical fiber temperature sensor based on temperature-dependent refractive index of zinc telluride film

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong

    2018-03-01

    The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.

  2. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  3. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  4. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  5. A review of the biochemical roles, toxicity and interactions of zinc, copper and iron: I. Zinc.

    Science.gov (United States)

    Abdel-Mageed, A B; Oehme, F W

    1990-02-01

    Zinc is essential for biological functions of all living matter. Zinc is necessary for growth, appetite, testicular maturation, skin integrity, mental activity, wound healing and immunocompetence. Zinc is required for the metabolic activities of over 70 metalloenzymes. The intestinal competition of zinc with copper, iron, lead, calcium and cadmium may accentuate nutritional deficiencies or toxicities from these environmental metals. A unifying hypothesis is not yet established for the effects or imbalances among these elements. These interactions will be of substantial practical importance in estimating dietary recommendations, in validating prophylactic measures, and in the assessment of situations in which human and animal health may be at risk.

  6. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Metabolism

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1995-01-01

    Full Text Available Although zinc has been the most intensely studied trace element, much remains to be learned about its metabolism. Little is known about the normal mechanisms of absorption and transport across the intestinal tract. In addition, numerous unknowns surround the intricacies of bodily zinc homeostasis. Part two of this five-part review presents current views on the normal intestinal absorption, intracellular and extracellular metabolism, transport, excretion and homeostasis of zinc in the human body. The alterations in zinc metabolism that occur with age and changing physiological conditions are also discussed.

  7. Study of zinc electrodes for single flow zinc/nickel battery application

    Science.gov (United States)

    Zhang, Li; Cheng, Jie; Yang, Yu-sheng; Wen, Yue-hua; Wang, Xin-dong; Cao, Gao-ping

    Zinc deposition from alkaline zincate solution in single flow zinc/nickel battery has been investigated. The effect of different substrates such as copper, cadmium and lead were examined by using cyclic voltammetry and cathodic polarization technique. It was found that the cadmium substrate is better than the others. Zinc deposition was carried out by using galvanostatic technique, and the deposits were examined by SEM. The results demonstrated that there is no zinc dendrite on the cadmium substrate in flowing electrolyte. Coulombic and voltage efficiencies of 98 and 88%, respectively, are obtained in a small laboratory cell.

  8. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  9. Dietary Zinc Intake and Plasma Zinc Concentrations in Children with Short Stature and Failure to Thrive.

    Science.gov (United States)

    Yazbeck, Nadine; Hanna-Wakim, Rima; El Rafei, Rym; Barhoumi, Abir; Farra, Chantal; Daher, Rose T; Majdalani, Marianne

    2016-01-01

    The burden of zinc deficiency on children includes an increased incidence of diarrhea, failure to thrive (FTT) and short stature. The aim of this study was to assess whether children with FTT and/or short stature have lower dietary zinc intake and plasma zinc concentrations compared to controls. A case-control study conducted at the American University of Beirut Medical Center included 161 subjects from 1 to 10 years of age. Cases had a statistically significant lower energy intake (960.9 vs. 1,135.2 kcal for controls, p = 0.010), lower level of fat (30.3 vs. 36.5 g/day, p = 0.0043) and iron intake (7.4 vs. 9.1 mg/day, p = 0.034). There was no difference in zinc, copper, carbohydrate and protein intake between the 2 groups. The plasma zinc concentration did not differ between the cases and controls (97.4 vs. 98.2 μg/dl, p = 0.882). More cases had mild-to-moderate zinc deficiency when compared to controls with 10.3 vs. 3.6%, p = 0.095. Our study did not show statistically significant difference in dietary zinc intake and plasma zinc concentrations between children with FTT and/or short stature compared to healthy controls. A prospective study is planned to assess the effect of zinc supplementation on growth parameters in FTT children. © 2016 S. Karger AG, Basel.

  10. Ceramic electrolyte coating methods

    Energy Technology Data Exchange (ETDEWEB)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  11. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  12. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles

    Science.gov (United States)

    Gittard, Shaun D.; Miller, Philip R.; Jin, Chunming; Martin, Timothy N.; Boehm, Ryan D.; Chisholm, Bret J.; Stafslien, Shane J.; Daniels, Justin W.; Cilz, Nicholas; Monteiro-Riviere, Nancy A.; Nasir, Adnan; Narayan, Roger J.

    2011-06-01

    Microneedles are small-scale needle-like projections that may be used for transdermal delivery of pharmacologic agents, including protein-containing and nucleic acid-containing agents. Commercial translation of polymeric microneedles would benefit from the use of facile and cost effective fabrication methods. In this study, visible light dynamic mask microstereolithography, a rapid prototyping technique that utilizes digital light projection for selective polymerization of a liquid resin, was used for fabrication of solid microneedle array structures out of an acrylate-based polymer. Pulsed laser deposition was used to deposit silver and zinc oxide coatings on the surfaces of the visible light dynamic mask microstereolithography-fabricated microneedle array structures. Agar diffusion studies were used to demonstrate the antimicrobial activity of the coated microneedle array structures. This study indicates that light-based technologies, including visible light dynamic mask microstereolithography and pulsed laser deposition, may be used to fabricate microneedles with antimicrobial properties for treatment of local skin infections.

  13. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  14. The protective nature of passivation films on zinc: surface charge

    International Nuclear Information System (INIS)

    Muster, Tim H.; Cole, Ivan S.

    2004-01-01

    The influence of oxide surface charge on the corrosion performance of zinc metals was investigated. Oxidised zinc species (zinc oxide, zinc hydroxychloride, zinc hydroxysulfate and zinc hydroxycarbonate) with chemical compositions similar to those produced on zinc during atmospheric corrosion were formed as particles from aqueous solution, and as passive films deposited onto zinc powder, and rolled zinc, surfaces. Synthesized oxides were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and electron probe X-ray microanalysis. The zeta potentials of various oxide particles, as determined by microelectrophoresis, are reported as a function of pH. Particulates containing a majority of zinc hydroxycarbonate and zinc hydroxysulfate crystallites were found to possess a negative surface charge below pH 6, whilst zinc oxide-hydroxide and zinc hydroxychloride crystallites possessed isoelectric points (IEP's) higher than pH 8. The ability of chloride species to pass through a bed of 3 μm diameter zinc powder was found to increase for surfaces possessing carboxy and sulfate surface species, suggesting that negatively charged surfaces can aid in the repulsion of chloride ions. Electrochemical analysis of the open-circuit potential as a function of time at a fixed pH of 6.5 showed that the chemical composition of passive films on zinc plates influenced the ability of chloride ions to access anodic sites for periods of approximately 1 h

  15. Zinc and its importance for human health: An integrative review

    Directory of Open Access Journals (Sweden)

    Nazanin Roohani

    2013-01-01

    Full Text Available Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers, human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  16. Sorption of zinc on human teeth

    International Nuclear Information System (INIS)

    Helal, A.; Amin, H.; Alian, G.

    1997-01-01

    Zinc containing dental amalgams are sometimes used as fillings by dentists. The freshly mixed mass of the amalgam alloy and liquid mercury packed or condensed into a prepared tooth cavity. Zinc has been included in amalgams alloys up to 2% as an aid in manufacturing by helping to produce clean sound castings of the ingots. Although such restorations have a relatively long service life, they are subject to corrosion and galvanic action, thus releasing metallic products into the oral environment. The aim of this paper is to investigate the uptake (sorption) of Zinc ionic species on human teeth using the radioactive tracer technique. For this purpose the isotope Zn-65 produced from pile-irradiation of zinc metal was used. The various liquids studied were drinking water (tap water), tea, coffee, red tea and chicken soup. Sorption was studied through immersion of a single human tooth (extracted) in each of these liquids

  17. Model of how plants sense zinc deficiency

    DEFF Research Database (Denmark)

    Assuncao, Ana G.L.; Persson, Daniel Olof; Husted, Søren

    2013-01-01

    to develop plant-based solutions addressing nutrient-use-efficiency and adaptation to nutrient-limited or -toxic soils. Recently two transcription factors of the bZIP family (basic-region leucine zipper) have been identified in Arabidopsis and shown to be pivotal in the adaptation response to zinc deficiency....... They represent not only the first regulators of zinc homeostasis identified in plants, but also a very promising starting-point that can provide new insights into the molecular basis of how plants sense and adapt to the stress of zinc deficiency. Considering the available information thus far we propose...... in this review a putative model of how plants sense zinc deficiency....

  18. A microwave sensor for zinc corrosion detection

    Science.gov (United States)

    Rammal, Jamal; Salameh, Farah; Tantot, Olivier; Delhote, Nicolas; Verdeyme, Serge; Rioual, Stéphane; Gallée, François; Lescop, Benoit

    2017-09-01

    This article presents a sensor based on zinc wires of different widths deposited on the surface of the ceramic resonator capable of detecting and following the evolution of the corrosion of the zinc material. Electromagnetic studies show that due to the evolution of the corrosion, the progressive degradation of the conductivity of the formed zinc grid (from 6 S/μm to 0.015 S/μm) causes a degradation of the quality factor (from Q0 = 50 to Q0 transmission of the TE101 mode of the resonator (from -8 dB to transmission coefficient, and a degradation of the unloaded quality factor. Confirmed by electronic microscopy and X-Ray analysis, these variations are due to the evolution in the corrosion of zinc wires over time, leading to a creation of corrosion products in these wires.

  19. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  20. Review of Zinc Oxide Thin Films

    Science.gov (United States)

    2014-12-23

    Chemical Properties ZnO occurs  as white powder  known  as  zinc white or  as  the mineral  zincite.  Zinc  oxide   is  an  amphoteric   oxide .  It  is...AFRL-OSR-VA-TR-2015-0044 Review of Zinc Oxide Thin Films Tom Otiti COLLEGE OF COMPUTING AND INFORMATION SCIENCE MAKERERE U Final Report 12/23/2014...COVERED (From - To)      01-07-2011 to 30-06-2014 4.  TITLE AND SUBTITLE ZINC OXIDE MATERIALS FOR PHOTOVOLTAIC APPLICATIONS 5a.  CONTRACT NUMBER 5b

  1. A regenerative zinc-air fuel cell

    Science.gov (United States)

    Smedley, Stuart I.; Zhang, X. Gregory

    The zinc regenerative fuel cell (ZRFC) developed by the former Metallic Power Inc. over the period from 1998 to 2004 is described. The component technologies and engineering solutions for various technical issues are discussed in relation to their functionality in the system. The system was designed to serve as a source of backup emergency power for remote or difficult to access cell phone towers during periods when the main power was interrupted. It contained a 12 cell stack providing 1.8 kW, a separate fuel tank containing zinc pellet fuel and electrolyte, and a zinc electrolyzer to regenerate the zinc pellets during standby periods. Offsite commissioning and testing of the system was successfully performed. The intellectual property of the ZRFC technology is now owned by Teck Cominco Metals Ltd.

  2. 21 CFR 182.8994 - Zinc stearate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8994 Zinc stearate. (a... substance is generally recognized as safe when used in accordance with good manufacturing practice. ...

  3. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  4. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  5. Coated particle waste form development

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes.

  6. Coated particle waste form development

    International Nuclear Information System (INIS)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  7. Determination of activable isotopic tracers of zinc by neutron activation analysis for study of bioavailability of zinc

    International Nuclear Information System (INIS)

    Bang-fa Ni, Pingsheng Wang; Yingjun Luo; Shouyang Yu

    1991-01-01

    A procedure of pre-irradiation concentration of zinc in fecal samples using anion exchanger was developed for the study of the bioavailability of zinc by neutron activation analysis. The mass ratios between 70 Zn and 68 Zn, or 64 Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc when the abundance of the isotope 70 Zn is not high enough. (author) 9 refs.; 1 fig.; 2 tabs

  8. Oral zinc for treating diarrhoea in children

    Science.gov (United States)

    Lazzerini, Marzia; Wanzira, Humphrey

    2016-01-01

    Background In developing countries, diarrhoea causes around 500,000 child deaths annually. Zinc supplementation during acute diarrhoea is currently recommended by the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). Objectives To evaluate oral zinc supplementation for treating children with acute or persistent diarrhoea. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (the Cochrane Library 2016, Issue 5), MEDLINE, Embase, LILACS, CINAHL, mRCT, and reference lists up to 30 September 2016. We also contacted researchers. Selection criteria Randomized controlled trials (RCTs) that compared oral zinc supplementation with placebo in children aged one month to five years with acute or persistent diarrhoea, including dysentery. Data collection and analysis Both review authors assessed trial eligibility and risk of bias, extracted and analysed data, and drafted the review. The primary outcomes were diarrhoea duration and severity. We summarized dichotomous outcomes using risk ratios (RR) and continuous outcomes using mean differences (MD) with 95% confidence intervals (CI). Where appropriate, we combined data in meta-analyses (using either a fixed-effect or random-effects model) and assessed heterogeneity. We assessed the certainty of the evidence using the GRADE approach. Main results Thirty-three trials that included 10,841 children met our inclusion criteria. Most included trials were conducted in Asian countries that were at high risk of zinc deficiency. Acute diarrhoea There is currently not enough evidence from well-conducted RCTs to be able to say whether zinc supplementation during acute diarrhoea reduces death or number of children hospitalized (very low certainty evidence). In children older than six months of age, zinc supplementation may shorten the average duration of diarrhoea by around half a day (MD −11.46 hours, 95% CI −19.72 to −3.19; 2581 children, 9 trials, low

  9. Phosphorescent Sensor for Biological Mobile Zinc

    Science.gov (United States)

    You, Youngmin; Lee, Sumin; Kim, Taehee; Ohkubo, Kei; Chae, Weon-Sik; Fukuzumi, Shunichi; Jhon, Gil-Ja; Nam, Wonwoo; Lippard, Stephen J.

    2011-01-01

    A new phosphorescent zinc sensor (ZIrF) was constructed based on an Ir(III) complex bearing two 2-(2,4-difluorophenyl)pyridine (dfppy) cyclometalating ligands and a neutral 1,10-phenanthroline (phen) ligand. A zinc-specific di(2-picolyl)amino (DPA) receptor was introduced at the 4-position of the phen ligand via a methylene linker. The cationic Ir(III) complex exhibited dual phosphorescence bands in CH3CN solutions originating from blue and yellow emission of the dfppy and phen ligands, respectively. Zinc coordination selectively enhanced the latter, affording a phosphorescence ratiometric response. Electrochemical techniques, quantum chemical calculations, and steady-state and femtosecond spectroscopy were employed to establish a photophysical mechanism for this phosphorescence response. The studies revealed that zinc coordination perturbs nonemissive processes of photoinduced electron transfer (PeT) and intraligand charge transfer (ILCT) transition occurring between DPA and phen. ZIrF can detect zinc ions in a reversible and selective manner in buffered solution (pH 7.0, 25 mM PIPES) with Kd = 11 nM and pKa = 4.16. Enhanced signal-to-noise ratios were achieved by time-gated acquisition of long-lived phosphorescence signals. The sensor was applied to image biological free zinc ions in live A549 cells by confocal laser scanning microscopy. A fluorescence lifetime imaging microscope (FLIM) detected an increase in photoluminescence lifetime for zinc-treated A549 cells as compared to controls. ZIrF is the first successful phosphorescent sensor that detects zinc ions in biological samples. PMID:22023085

  10. Substrates coated with silver nanoparticles as a neuronal regenerative material

    Directory of Open Access Journals (Sweden)

    Alon N

    2014-05-01

    Full Text Available Noa Alon,1,3,* Yana Miroshnikov,2,3,* Nina Perkas,2,3 Ifat Nissan,2,3 Aharon Gedanken,2,3 Orit Shefi1,31Faculty of Engineering, 2Department of Chemistry, 3Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel*These authors contributed equally to this workAbstract: Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs and zinc oxide nanoparticles (ZnONPs demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies.Keywords: nerve regeneration, nanotopography, antibacterial material, neuroblastoma, gold nanoparticles, zinc oxide nanoparticles

  11. The application of ion-exchanged clay as corrosion inhibiting pigments in organic coatings

    Science.gov (United States)

    Chrisanti, Santi

    High strength aluminum alloys are used in aerospace industry and are normally coated to prevent corrosion. The corrosion protection of the coatings is mainly provided by pigmented-primer layer. Strontium chromate pigments are widely used, but they are toxic and carcinogenic. The objective of the current study is to develop and characterize the ion exchange compounds bentonite and hydrotalcite as corrosion inhibiting pigments. These compounds were synthesized with different cations and anions, and were used either alone or in mixtures as particulate additive in organic coatings. In coating applications as well as bulk solution, the inhibitor release mechanism is based on ion exchange. To evaluate corrosion inhibition, pigments extract solutions were used in potentiodynamic polarization as well as electrochemical impedance spectroscopy (EIS) experiments on bare aluminum alloy 2024-T3. Cathodic polarization showed that zinc- and cerium-containing filtrate solutions modestly inhibited cathodic current density. These solutions also decreased the extent of pitting damage formed on the surface, as compared to uninhibited 0.5 M NaCl solution. Pigments were also added as primer additives, and painted on AA2024-T3. The coated panels were then subjected to salt spray exposure testing. The possibility of sensing inhibitor exhaustion by means of X-ray diffraction interrogation of the pigment in a coating is demonstrated and discussed on cerium bentonite-pigmented coatings. Although cerium bentonite-pigmented coatings did not show behavior indicative of self-healing, the combination of bentonite and hydrotalcite that released Ce3+, Zn 2+, and PO43- showed potent scribe protection even after 3000 h exposure in salt spray. Promising self-healing was also demonstrated by pigments that consisted of decavanadate-hydrotalcite and zinc pyrovanadate, as indicated by a shiny scribed area after 1000h exposure in salt spray. When these pigments are used, blistering is minimized.

  12. Spin coating of ZnS nanostructures on filter paper and their characterization

    Science.gov (United States)

    Kumar, Nitin; Purohit, L. P.; Goswami, Y. C.

    2016-09-01

    In this paper we have reported spin coating of Cu doped Zinc sulphide nanostructures on filter paper flexible substrates. Zinc chloride and thiourea were used as precursors of zinc and sulphur. The samples were characterized by XRD, FE-SEM, EDAX and UV-visible spectrum studies. All the diffractogram peaks confirm the cubic structure of ZnS with small peak of Cu indicates incorporation of Cu into ZnS lattice. FE-SEM micrographs exhibit fibrous morphologies of ZnS structures on filter paper. Compound structures on flexible substrates show ohmic behavior with conductivity about 3.07×106 (Ωcm)-1 to 4.27×106 (Ωcm)-1. Excellent photoluminescence property doped with copper makes them suitable for flexible opto-electronic devices.

  13. Phosphate chemical conversion coatings on metallic substrates for biomedical application: a review.

    Science.gov (United States)

    Liu, Bing; Zhang, Xian; Xiao, Gui-yong; Lu, Yu-peng

    2015-02-01

    Phosphate chemical conversion (PCC) technology has been investigated for improving the surface performance of metallic implants in the biomedical field over the last decade. The metallic materials, such as magnesium and its alloys, titanium, pure iron and stainless steel are widely used as orthopedic devices for immobilization of bone fractures in clinic. They were previously studied as metal substrates for PCC coating aiming to modify their biocompatibility and osteoconductivity. Zinc, calcium and zinc-calcium PCC coatings are frequently utilized considering their nature and the end-use. Although PCC coating has been confirmed to potentially improve the bio-performance of metallic implants in vitro and in vivo by many researchers, there are no unified standards or regulations to give quantitative appraisal of its quality and property. As such, an overview of several main phosphate phases together with their properties and behaviors in vitro and in vivo was conducted. The mechanism of phosphating was also briefly discussed. Critical qualities of PCC coating used for biomedical application including corrosion resistance, wettability and bonding strength were analyzed separately. Biological response including in vitro cell investigations and in vivo tissue response were discussed in terms of the cytocompatibility and bioactivity of PCC coating. Further investigations are proposed to develop appropriate performance evaluation measurements by combining conventional technologies and biomedical procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Characterisation of organic thin film coatings on automobile steel sheets by photothermal methods

    Energy Technology Data Exchange (ETDEWEB)

    Orth, T. [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Fluegge, W. [Salzgitter Mannesmann Forschung GmbH, Salzgitter (Germany); Gibkes, J. [Ruhr-Univ. Bochum (Germany). AG FestKoerperSpektroskopie

    2006-07-01

    In the nineties, the first generation of organic thin film coatings for corrosion protection of zinc-coated thin sheet steel have been introduced. The coating typically consists of a suspension of small zinc particles, embedded in a polymer matrix. In the scope of quality control, the characterisation of the resulting layer structure is of great interest, comprising not only a constant layer thickness and a local homogeneity of the coating, but also the depth distribution of the particles within the layer. Especially the latter parameter does have a direct influence on the spot weldability of the steel sheets. The present work shows, how photothermal methods like modulated infrared radiometry and photoacoustics can be used for a successful depth profiling of the thin film coatings. The sample surface is periodically heated using an intensitymodulated laser beam, and a thermal wave is induced in the layer system. By variation of the modulation frequency of the laser beam, the thermal diffusion length and, as a consequence, the penetration depth of the thermal wave can be adjusted. By a suitable evaluation of the amplitude and phase lag signals as a function of the modulation frequency, accurate depth profiling has been realized which can be used for a very reliable prediction of the welding properties of the product. In the first investigations, artificial samples with well defined extreme distributions of the particles have been analyzed, and in a second step, an evaluation strategy has been developed for real production samples. (orig.)

  15. An electrochemical study of the delamination of polymer coatings on galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Ogle, K. [Arcelor Research, SA, Maizieres-les-Metz (France)]. E-mail: kevin.ogle@irsid.arcelor.com; Morel, S. [Arcelor Research, SA, Maizieres-les-Metz (France); Meddahi, N. [Arcelor Research, SA, Maizieres-les-Metz (France)

    2005-08-01

    The relationship between the rate of polymer delamination and the intensity of either anodic or cathodic current under the paint has been investigated for the zinc/surface treatment/polymer system by using a special electrochemical cell. Three types of surface treatment were investigated: simple alkaline degreasing, trication phosphating, and a chromate free conversion coating. Significant differences were observed for the three substrates. The alkaline resistance of the conversion coatings was determined using an ICP atomic emission spectroelectrochemical method. The results are interpreted in terms of the differing chemical stability of the conversion layers towards hydroxide generated by oxygen reduction.

  16. Waste minimization assessment for a manufacturer of coated parts. Environmental research brief

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, H.W.; Kostrzewa, M.F.; Looby, G.P.

    1994-09-01

    The Waste Minimization Assessment Centers (WMACs) team at Colorado State University performed an assessment at a plant that produces specialty coated parts-approximately one million per year. Special-purpose coatings such as chromate conversion, zinc phosphating, and paint are applied to customer-supplied aluminum, steel, and plastic parts. The team's report, detailing findings and recommendations, indicated that rinse water is the waste stream generated in the greatest quantity and that significant waste reduction could be achieved by redirecting the effluent from one rinse to another.

  17. Zinc distribution in mouse brain by SRXRF

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Zhang Yongping; Li Delu; Zhang Guilin; Long Jiangang; Shen Hui; Huang Yuying; He Wei

    2006-01-01

    In order to explore the interaction between the expression of ZnT3 (Zinc Transporter 3) mRNA (Messenger Ribonucleic Acid) and the concentration of elemental zinc in mouse brain, zinc distribution in brain was determined by synchrotron radiation X-ray fluorescence (SRXRF) technique and a ZnT3 mRNA expression in tissue was examined by the reverse-transcriptase polymerase chain reaction (RT-PCR) method. The results show that the zinc concentration is not evenly distributed in brain slices. Its concentrations in cerebral cortex and hippocampus are nearly 5-10 times higher than those in other positions. A corresponding relation is that ZnT3 mRNA in cerebral cortex, hippocampus and testis has higher abundant degree, but it is not examined out in other tissues. Furthermore, the results promote that ZnT3 facilitates the accumulation of zinc in synaptic vesicles and may play an important role in structuring of vesicular zinc pool. (author)

  18. An autopsy case of zinc chloride poisoning.

    Science.gov (United States)

    Kondo, Takeshi; Takahashi, Motonori; Watanabe, Seiya; Ebina, Masatomo; Mizu, Daisuke; Ariyoshi, Koichi; Asano, Migiwa; Nagasaki, Yasushi; Ueno, Yasuhiro

    2016-07-01

    Ingestion of large amounts of zinc chloride causes corrosive gastroenteritis with vomiting, abdominal pain, and diarrhea. Some individuals experience shock after ingesting large amounts of zinc chloride, resulting in fatality. Here, we present the results of an administrative autopsy performed on a 70-year-old man who ingested zinc chloride solution and died. After drinking the solution, he developed vomiting, abdominal pain, and diarrhea, and called for an ambulance. Except for tachycardia, his vital signs were stable at presentation. However, he developed hypotension and severe metabolic acidosis and died. The patient's blood zinc concentration on arrival was high at 3030μg/dL. Liver cirrhosis with cloudy yellow ascites was observed, however, there were no clear findings of gastrointestinal perforation. The gastric mucosa was gray-brown, with sclerosis present in all gastric wall layers. Zinc staining was strongly positive in all layers. There was almost no postmortem degeneration of the gastric mucosal epithelium, and hypercontracture of the smooth muscle layer was observed. Measurement of the zinc concentration in the organs revealed the highest concentration in the gastric mucosa, followed by the pancreas and spleen. Clinically, corrosive gastroenteritis was the cause of death. However, although autopsy revealed solidification in the esophagus and gastric mucosa, there were no findings in the small or large intestine. Therefore, metabolic acidosis resulting from organ damage was the direct cause of death. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Serum zinc level in children with malnutrition

    International Nuclear Information System (INIS)

    Ahmad, T.M.; Mahmood, M.T.; Baluch, G.R.; Bhatti, M.T.

    2000-01-01

    Serum zinc level amongst children with protein energy malnutrition (PEM) was evaluated in a control study conducted in the Department of Paediatrics, Allama Iqbal Medical College and Jinnah Hospital, Lahore. Twenty-five children with PEM and 25 healthy children as control from the community were screened. Mean serum zinc level was found to be 54.48 -+ 18.91 mg/dl in children with PEM while it was 72.72 -+ 8.21 mg/dl in control group (P < 0.001). No significant difference in zinc level was noted between both sexes in each group. Marasmic 16 children revealed mean serum zinc level of 57.55 -+ 18.16 mg/dl while in Kwashiorkor it was 44.57 -+ 13.66 mg/dl. Serum zinc was significantly low in Kwashiorkor than in marasmus (P < 0.001). It was also significantly low in children with acute or chronic diarrhea associated with malnutrition (44.66 -+ 16.0 mg/dl). Acute respiratory infections in these children were not associated with low serum zinc level (71.66 -+ 16.51 mg/dl). (author)

  20. Nanostructure of aluminium (Al) - Doped zinc oxide (AZO) thin films

    Science.gov (United States)

    Hussin, Rosniza; Husin, M. Asri

    2017-12-01

    Aluminium (Al)-doped Zinc Oxide (ZnO) was deposited on glass substrates by using the sol-gel dip coating technique. Next, AZO sol-gel solution was produced via sol-gel method. Al was used as doped element with molar ratios of 1%, 2%, and 3%, while the calcination temperatures were set at 400°C, 500°C, and 600°C for 2 hours. In fact, characterization was carried out in order to determine the effect of calcination temperature and molar ratio of doping by using several techniques, such as X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), and Ultraviolet-Visible spectroscopy (UV-Vis). XRD was performed to investigate the crystal structure in which the ZnO was in wurtzite hexagonal form. Next, Energy Dispersive Spectroscopy (EDS) was used to determine the composition of thin films where the result revealed the existence of zinc, oxygen, and aluminium. The roughness of the deposited film was later measured by using the AFM approach where the findings indicated increment in RMS from 8.496 nm to 35.883 nm as the temperature was increased. Additionally, FESEM was carried out to look into the microstructure surfaces of the deposited AZO thin film for increased temperature caused the particle to grow bigger for all molar ratio of dopant. Lastly, UV-Vis was conducted to study the optical properties of AZO, in which the result demonstrated that AZO thin film possessed the highest transmittance percentage among all samples above 90% with band gap value that ranged from 3.25 eV to 3.32 eV.