WorldWideScience

Sample records for galvanic source electromagnetic

  1. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems

    Science.gov (United States)

    Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.

    2017-07-01

    In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also

  2. Synthetic aperture controlled source electromagnetics

    NARCIS (Netherlands)

    Fan, Y.; Snieder, R.; Slob, E.; Hunziker, J.W.; Singer, J.; Sheiman, J.; Rosenquist, M.

    2010-01-01

    Controlled?source electromagnetics (CSEM) has been used as a de?risking tool in the hydrocarbon exploration industry. Although there have been successful applications of CSEM, this technique is still not widely used in the industry because the limited types of hydrocarbon reservoirs CSEM can detect.

  3. A Review of Galvanically Isolated Impedance-Source DC–DC Converters

    DEFF Research Database (Denmark)

    Chub, Andrii; Vinnikov, Dmitri; Blaabjerg, Frede

    2016-01-01

    Impedance-source converters, an emerging technology in electric energy conversion, overcome limitations of conventional solutions by the use of specific impedance-source networks. Focus of this paper is on the topologies of galvanically isolated impedance-source dc-dc converters. These converters...... isolated dc-dc converters according to the element that transfers energy from the input to the output: a transformer, a coupled inductor, or their combination. This classification reveals advantages and disadvantages, as well as a wide space for further research. This paper also outlines the most promising...

  4. Compton Sources of Electromagnetic Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft,Gerd Priebe

    2011-01-01

    When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.

  5. Galvanic manufacturing in the cities of Russia: potential source of ambient nanoparticles.

    Directory of Open Access Journals (Sweden)

    Kirill S Golokhvast

    Full Text Available Galvanic manufacturing is widely employed and can be found in nearly every average city in Russia. The release and accumulation of different metals (Me, depending on the technology used can be found in the vicinities of galvanic plants. Under the environmental protection act in Russia, the regulations for galvanic manufacturing do not include the regulations and safety standards for ambient ultrafine and nanosized particulate matter (PM. To assess whether Me nanoparticles (NP are among environmental pollutants caused by galvanic manufacturing, the level of Me NP were tested in urban snow samples collected around galvanic enterprises in two cities. Employing transmission electronic microscopy, energy-dispersive X-ray spectroscopy, and a laser diffraction particle size analyzer, we found that the size distribution of tested Me NP was within 10-120 nm range. This is the first study to report that Me NP of Fe, Cr, Pb, Al, Ni, Cu, and Zn were detected around galvanic shop settings.

  6. Marine Controlled-Source Electromagnetic Interferometry

    NARCIS (Netherlands)

    Hunziker, J.W.

    2012-01-01

    In marine Controlled-Source Electromagnetics, a boat tows an electric source, whose signal is travelling on various paths to the receiver stations at the ocean bottom. Unfortunately, the signal does not only travel via the subsurface to the receivers, but also directly through the water and via the

  7. Bathymetry, electromagnetic streamlines and the marine controlled source electromagnetic method

    Science.gov (United States)

    Pethick, Andrew; Harris, Brett

    2014-07-01

    Seafloor topography must influence the strength and direction of electromagnetic fields generated during deep ocean controlled source electromagnetic surveying. Neither mathematical equation nor rules of thumb provide a clear perspective of how changes in water column thickness alters electromagnetic fields that engulf hundreds of cubic kilometres of air, ocean, host and reservoir. We use streamline visualisation to provide a generalised representation of how electromagnetic fields propagate into a 2D geo-electrical setting that includes strong bathymetry. Of particular interest are: (i)' dead zones' where electric fields at the ocean floor are demonstrated to be weak and (ii) the 'airwave' that appears in the electric field streamlines as circulating vortices with a shape that is clearly influenced by changes in ocean depth. Our analysis of the distribution of electric fields for deep and shallow water examples alludes to potential benefits from placement of receivers and/or transmitters higher in the water column as is the case for towed receiver geometries. Real-time streamline representation probably holds the most value at the survey planning stage, especially for shallow water marine EM surveys where ocean bottom topography is likely to be consequential.

  8. Electromagnetic Sources in Moving Simple Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1970-01-01

    A retarded potential tensor (4-vector) is derived in an arbitrary system of inertia for an arbitrary electromagnetic source in a moving homogeneous, isotropic, nondispersive, lossless dielectric. The velocity is uniform, and the result is relativistic correct. ©1970 The American Institute...

  9. Electromagnetics

    CERN Document Server

    Rothwell, Edward J

    2009-01-01

    Introductory concepts Notation, conventions, and symbology The field concept of electromagneticsThe sources of the electromagnetic field Problems Maxwell's theory of electromagnetism The postulate Maxwell's equations in moving frames The Maxwell-Boffi equations Large-scale form of Maxwell's equationsThe nature of the four field quantities Maxwell's equations with magnetic sources Boundary (jump) conditions Fundamental theorems The wave nature of the electromagnetic field ProblemsThe static electromagnetic field Static fields and steady currents ElectrostaticsMagnetostatics Static field theorem

  10. Stochastic electromagnetic radiation of complex sources

    NARCIS (Netherlands)

    Naus, H.W.L.

    2007-01-01

    The emission of electromagnetic radiation by localized complex electric charge and current distributions is studied. A statistical formalism in terms of general dynamical multipole fields is developed. The appearing coefficients are treated as stochastic variables. Hereby as much as possible a

  11. Time-lapse controlled-source electromagnetics using interferometry

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Wapenaar, C.P.A.

    In time-lapse controlled-source electromagnetics, it is crucial that the source and the receivers are positioned at exactly the same location at all times of measurement. We use interferometry by multidimensional deconvolution (MDD) to overcome problems in repeatability of the source location.

  12. Interacting massless scalar and source-free electromagnetic fields

    International Nuclear Information System (INIS)

    Ayyangar, B.R.N.; Mohanty, G.

    1985-01-01

    The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)

  13. Methods and solutions for galvanic waste water treatment

    OpenAIRE

    Makisha Nikolay; Yunchina Maria

    2017-01-01

    Currently galvanic sludge is considered as one of the most dangerous wastes, which are formed during purification of galvanic wastewater. The slimes of galvanic production are the most toxic industrial waste and sources of heavy metals emitted into the environment. Galvanic sludge belongs to the third hazard class; these wastes need to be deposited in special landfills for toxic waste. These polygons are complex and require significant costs. In this regard, there is a need for such methods o...

  14. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    Science.gov (United States)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  15. Inversino of controlled-source electromagnetic reflection responses

    NARCIS (Netherlands)

    Hunziker, Jürg; Thorbecke, J.W.; Brackenhoff, J.A.; Slob, E.C.

    2016-01-01

    Marine controlled-source electromagnetic reflection responses can be retrieved by interferometry. These reflection responses are free of effects related to the water layer and the air above it and do not suffer from uncertainties related to the source position and orientation. Interferometry is a

  16. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  17. Standard electromagnetically driven cosmology coupled with fermionic source

    Energy Technology Data Exchange (ETDEWEB)

    Mello, M. M. C., E-mail: mmcmello@gmail.com [Universidade Federal do ABC - UFABC Santo André (Brazil); Klippert, R., E-mail: klippert@unifei.edu.br [Instituto de Matemática e Computação, Universidade Federal de Itajubá Av. BPS 1303 Pinheirinho, 37500-903, Itajubá (Brazil)

    2015-03-10

    Dirac fermions and electromagnetic fields are considered as the source of gravitation in the framework of standard Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology. It is shown that all solutions for the scale-factor a(t) are non-singular, provided the cosmological constant Λ is set to be less than the positive inverse of a quantum scale.

  18. Electromagnetic Sources in a Moving Conducting Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1971-01-01

    The problem of an arbitrary source distribution in a uniformly moving, homogeneous, isotropic, nondispersive, conducting medium is solved. The technique used is to solve the problem in the rest system of the medium and then write the result in an appropriate four-dimensional, covariant form which...

  19. Electromagnetic and transient shielding effectiveness for near-field sources

    Directory of Open Access Journals (Sweden)

    C. Möller

    2007-06-01

    Full Text Available The contribution deals with an investigation of the recently proposed definitions for the electromagnetic and transient shielding effectiveness (SE in the case of an electric-dipole near-field source. To this end, new factors are introduced which depend on the distance between the dipole source and the measurement point inside the shield and which are valid for perpendicularly (with respect to the distance vector polarized dipoles. Numerical results support and confirm the theoretical derivations.

  20. Sparse Spatio-temporal Inference of Electromagnetic Brain Sources

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai Thomas; Wipf, David

    2010-01-01

    The electromagnetic brain activity measured via MEG (or EEG) can be interpreted as arising from a collection of current dipoles or sources located throughout the cortex. Because the number of candidate locations for these sources is much larger than the number of sensors, source reconstruction......, this paper develops a hierarchical, spatio-temporal Bayesian model that accommodates the principled computation of sparse spatial and smooth temporal M/EEG source reconstructions consistent with neurophysiological assumptions in a variety of event-related imaging paradigms. The underlying methodology relies......-suited for estimation problems that arise from other brain imaging modalities such as functional or diffusion weighted MRI....

  1. An electromagnetically focused electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e-

    2003-01-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180 deg., with cathode to work site distance of 130 mm. Dimensions of the beam (1.25x120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment

  2. Shielding of electromagnetic fields of current sources by spherical enclosures

    Science.gov (United States)

    Shastry, S. V. K.; Rao, M. N.; Katti, V. R.

    Expressions for the shielding effectiveness of a conductive spherical enclosure excited by a Hertzian dipole have been derived using the dyadic Green's function technique. This technique has the advantage that the fields inside or outside the enclosure due to arbitrary current distribution may be found by employing the same set of dyadic Green's functions. The shielding effectiveness for plane wave incidence has been determined by considering the limiting case of the current source external to the spherical shell. Computed values of shielding effectiveness deduced in this manner have been compared with those obtained by the numerical evaluation of the expressions derived by earlier authors. The theory presented here may be useful to EMC (electromagnetic compatibility) engineers who must consider electromagnetic coupling from current sources in the vicinity of shielding enclosures.

  3. Classical electromagnetic field theory in the presence of magnetic sources

    OpenAIRE

    Chen, Wen-Jun; Li, Kang; Naón, Carlos

    2001-01-01

    Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.

  4. Controlled-Source Electromagnetics for Reservoir Monitoring on Land

    OpenAIRE

    Wirianto, M.

    2012-01-01

    The main goal of exploration geophysics is to obtain information about the subsurface that is not directly available from surface geological observations. The results are primarily used for finding potential reservoirs that contain commercial quantities of hydrocarbons. A number of possible geophysical methods exists these days to achieve such a goal. One of them is the controlled-source electromagnetic (CSEM) method. CSEM data can provide resistivity maps of the subsurface. Because the bulk ...

  5. Issues in recycling galvanized scrap

    Energy Technology Data Exchange (ETDEWEB)

    Koros, P.J. [LTV Steel Co., Inc., Cleveland, OH (United States); Hellickson, D.A. [General Motors Corp., Detroit, MI (United States); Dudek, F.J. [Argonne National Lab., IL (United States)

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  6. Localization from near-source quasi-static electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, John Compton [Univ. of Southern California, Los Angeles, CA (United States)

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  7. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.

  8. Design and application of an electromagnetic vibrator seismic source

    Science.gov (United States)

    Haines, S.S.

    2006-01-01

    Vibrational seismic sources frequently provide a higher-frequency seismic wavelet (and therefore better resolution) than other sources, and can provide a superior signal-to-noise ratio in many settings. However, they are often prohibitively expensive for lower-budget shallow surveys. In order to address this problem, I designed and built a simple but effective vibrator source for about one thousand dollars. The "EMvibe" is an inexpensive electromagnetic vibrator that can be built with easy-to-machine parts and off-the-shelf electronics. It can repeatably produce pulse and frequency-sweep signals in the range of 5 to 650 Hz, and provides sufficient energy for recording at offsets up to 20 m. Analysis of frequency spectra show that the EMvibe provides a broader frequency range than the sledgehammer at offsets up to ??? 10 m in data collected at a site with soft sediments in the upper several meters. The EMvibe offers a high-resolution alternative to the sledgehammer for shallow surveys. It is well-suited to teaching applications, and to surveys requiring a precisely-repeatable source signature.

  9. Increasing the sensitivity of controlled-source electromagnetics with synthetic aperture

    NARCIS (Netherlands)

    Fan, Y.; Snieder, R.; Slob, E.C.; Hunziker, J.W.; Singer, J.; Sheiman, J.; Rosenquist, M.

    2012-01-01

    Controlled-source electromagnetics (CSEM) has been used as a derisking tool in the hydrocarbon exploration industry. We apply the concept of synthetic aperture to the lowfrequency electromagnetic field in CSEM. Synthetic aperture sources have been used in radar imaging for many years. Using the

  10. Methods and solutions for galvanic waste water treatment

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2017-01-01

    Full Text Available Currently galvanic sludge is considered as one of the most dangerous wastes, which are formed during purification of galvanic wastewater. The slimes of galvanic production are the most toxic industrial waste and sources of heavy metals emitted into the environment. Galvanic sludge belongs to the third hazard class; these wastes need to be deposited in special landfills for toxic waste. These polygons are complex and require significant costs. In this regard, there is a need for such methods of purification of galvanic sewage sludge, which may be used in other industries or will have fourth class of hazard or below. This article compares the main methods of purification of galvanic waste waters in general and galvanic sludge in particular, currently introducing new techniques for treating industrial effluents. One of them considers treatment of galvanic waste water by means of suspensions of ferriferous hydrosol that is an electric generated coagulant derived from waste forming, steel wool, etc. There is a sort of experience already acquired in some countries how to use of ferropericlase.

  11. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  12. Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics

    Science.gov (United States)

    Hickey, M. S.; Trevino, S., III; Everett, M. E.

    2017-12-01

    Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.

  13. Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source.

    Science.gov (United States)

    Korotkova, Olga; Salem, Mohamed; Wolf, Emil

    2004-06-01

    It was shown recently that the basic properties of a fluctuating electromagnetic beam can be derived from knowledge of a 2 x 2 cross-spectral density matrix of the electric field in the source plane. However, not every such matrix represents a source that will generate a beamlike field. We derive conditions that the matrix must satisfy for the source to generate an electromagnetic Gaussian Schell-model beam.

  14. Sensitivity of the near-surface vertical electric field land Controlled-Source Electromagnetic monitoring

    NARCIS (Netherlands)

    Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.

    2014-01-01

    We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil

  15. On the physics of frequency-domain controlled source electromagnetics in shallow water. 1: isotropic conductivity

    Science.gov (United States)

    Chave, Alan D.; Everett, Mark E.; Mattsson, Johan; Boon, James; Midgley, Jonathan

    2017-02-01

    In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the subseafloor conductivity that is assumed to be isotropic. The deep water (ocean layer electrically much thicker than the overburden) seafloor EM response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a half-space, or a stronger and faster response. For an ocean whose electrical thickness is comparable to or much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. These transitions can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire subseafloor resistivity structure with the sea surface. A stronger and faster response occurs when guided energy flow is dominant, while a weaker and slower response occurs when the air interaction is dominant. However, at intermediate offsets for some models, the air interaction can partially or

  16. On guided versus deflected fields in controlled-source electromagnetics

    Science.gov (United States)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  17. Development of Realistic Head Models for Electromagnetic Source Imaging of the Human Brain

    National Research Council Canada - National Science Library

    Akalin, Z

    2001-01-01

    In this work, a methodology is developed to solve the forward problem of electromagnetic source imaging using realistic head models, For this purpose, first segmentation of the 3 dimensional MR head...

  18. Design and numerical simulation of the electromagnetic field of linear anode layer ion source

    International Nuclear Information System (INIS)

    Wang Lisheng; Tang Deli; Cheng Changming

    2006-01-01

    The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)

  19. Three dimensional internal electromagnetic pulse calculated by particle source method

    International Nuclear Information System (INIS)

    Wang Yuzhi; Wang Taichun

    1986-01-01

    The numerical results of the primary electric current and the internal electromagnetic pulse were obtained by particle method in the rectanglar cavity. The results obtained from this method is compared with three dimensional Euler-method. It is shown that two methods are in good agreement if the conditions are the same

  20. Imposed currents in galvanic cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Soestbergen, M.; Bazant, M.Z.

    2009-01-01

    We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not only operation in the galvanic discharging mode, spontaneously generating a positive current

  1. Effects of the airwave in time-domain marine controlled-source electromagnetics

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Mulder, W.

    2011-01-01

    In marine time-domain controlled-source electromagnetics (CSEM), there are two different acquisition methods: with horizontal sources for fast and simple data acquisition or with vertical sources for minimizing the effects of the airwave. Illustrations of the electric field as a function of space

  2. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  3. Redatuming controlled-source electromagnetic data using Stratton–Chu type integral transformations

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu

    2016-01-01

    We present a new method of analyzing controlled-source electromagnetic (CSEM) data based on redatuming of the observed data from the actual receivers into the virtual receivers. We use the Stratton–Chu type integral transform to calculate the EM field in the virtual receivers. The virtual receivers...... can be placed at any desirable position, including close to the target, which increases the sensitivity of the EM data to the target. The developed method provides an effective model-based interpolation/extrapolation tool for electromagnetic field data. This paper demonstrates that redatuming can...... be used for designing the optimized CSEM survey configuration. The numerical examples, for the Kevin Dome Electromagnetic Project Site, illustrate the practical effectiveness of the developed method....

  4. Effect of three common sources of electromagnetic fields on health

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.; Ahmadi, J.; Behnejad, B.

    2006-01-01

    Background And Aims: The number of people complaining about different symptoms that may be associated with exposure to electromagnetic fields (E.M.F.) has increased rapidly during the past years. Students use both mobile phones and video display terminals frequently. The purpose of this study was to investigate the association of mobile phone use and E.M.F. health hazards. Methods: Basic demographic data and self-reported symptoms were sought using a questionnaire administered to all apparently healthy students at Rafsanjan University of Medical Sciences (R.U.M.S.) and Vali-e-Asr University (V.A.U.). Questions ab out some major confounding factors such as age, gender, amount of video display terminal work were also included. All symptoms were self reported and there was no medical examination. Exact Fisher Test was used for data analysis. Results: 518 complete responses were collected. The responders comprised 317 Vali-e-Asr students (61.2%) and 201 R.U.M.S. students (38.8%). The gender distribution was male 175 33.8%), and female 343 (66.2 %). Thirty percent of the students had been using mobile phones (26% in female students and 38.2% in males, P<0.01). There was a significant difference between the frequency of mobile phone users in medical/par a medical (41.3%) and non-medical (23%) students (P<0. 001). Thirty six percent of the students had been using cord-less phones (no statistically significant gender difference). 56.3% used cathode ray tubes (C.R.T.) as computer monitors (47.1% in female students and 74.3% in males, P<0.001). Regarding self-reported symptoms, headache (52%), fatigue (35%), difficulties in concentration (31.7%), vertigo/dizziness (30%), attention disorders (28.8%), nervousness (28.1%), palpitation (14.7%), low back pain (14.3%), myalgia (12.3%), and tinnitus (10%) were the main self-reported symptoms. There were significantly more women with headache, dizziness, myalgia, and nervousness than men (in each case P<0.001). No significant

  5. Effect of three common sources of electromagnetic fields on health

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, S.M.J.; Ahmadi, J.; Behnejad, B. [Rafsanjan Univ. of Medical Sciences, Rafsanjan (Iran, Islamic Republic of)

    2006-07-01

    Background And Aims: The number of people complaining about different symptoms that may be associated with exposure to electromagnetic fields (E.M.F.) has increased rapidly during the past years. Students use both mobile phones and video display terminals frequently. The purpose of this study was to investigate the association of mobile phone use and E.M.F. health hazards. Methods: Basic demographic data and self-reported symptoms were sought using a questionnaire administered to all apparently healthy students at Rafsanjan University of Medical Sciences (R.U.M.S.) and Vali-e-Asr University (V.A.U.). Questions ab out some major confounding factors such as age, gender, amount of video display terminal work were also included. All symptoms were self reported and there was no medical examination. Exact Fisher Test was used for data analysis. Results: 518 complete responses were collected. The responders comprised 317 Vali-e-Asr students (61.2%) and 201 R.U.M.S. students (38.8%). The gender distribution was male 175 33.8%), and female 343 (66.2 %). Thirty percent of the students had been using mobile phones (26% in female students and 38.2% in males, P<0.01). There was a significant difference between the frequency of mobile phone users in medical/par a medical (41.3%) and non-medical (23%) students (P<0. 001). Thirty six percent of the students had been using cord-less phones (no statistically significant gender difference). 56.3% used cathode ray tubes (C.R.T.) as computer monitors (47.1% in female students and 74.3% in males, P<0.001). Regarding self-reported symptoms, headache (52%), fatigue (35%), difficulties in concentration (31.7%), vertigo/dizziness (30%), attention disorders (28.8%), nervousness (28.1%), palpitation (14.7%), low back pain (14.3%), myalgia (12.3%), and tinnitus (10%) were the main self-reported symptoms. There were significantly more women with headache, dizziness, myalgia, and nervousness than men (in each case P<0.001). No significant

  6. Electromagnetic induction by finite wavenumber source fields in 2-D lateral heterogeneities - The transverse electric mode

    Science.gov (United States)

    Hermance, J. F.

    1984-01-01

    Electromagnetic induction in a laterally homogeneous earth is analyzed in terms of a source field with finite dimensions. Attention is focused on a time-varying two-dimensional current source directed parallel to the strike of a two-dimensional anomalous structure within the earth, i.e., the E-parallel mode. The spatially harmonic source field is expressed as discontinuities in the magnetic (or electric) field of the current in the source. The model is applied to describing the magnetic gradients across megatectonic features, and may be used to predict the magnetic fields encountered by a satellite orbiting above the ionosphere.

  7. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Riesgo, O.; Bianchi, G.L.; Duffo, G.S.

    1993-01-01

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  8. Small-Signal Modeling of Marine Electromagnetic Detection Transmitter Controlled-Source Circuit

    Directory of Open Access Journals (Sweden)

    Haijun Tao

    2015-01-01

    Full Text Available Marine electromagnetic transmitter transmits electromagnetic waves with large power frequency conversion to the seabed to obtain the submarine structure and mineral resources. However, the current transmitter presents several problems, such as low efficiency, serious heat, and poor adaptability to the load. Soft-switching controlled-source circuit is used to reduce circuit losses. The mathematical model of controlled-source circuit should be established to realize a closed-loop control for increasing the output transient performance of electromagnetic waves. Given that the soft-switching controlled-source circuit has more status and that direct modeling is difficult, small-signal model of soft-switching controlled-source circuit is established based on that of hard-switching controlled-source circuit by analyzing the effect of output filter inductor current transformer leakage inductance and input voltage soft-switching controlled circuit on change in the duty cycle. Finally, experiments verify the accuracy and validity of the model.

  9. Mapping thunder sources by inverting acoustic and electromagnetic observations

    Science.gov (United States)

    Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.

    2014-12-01

    We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.

  10. PADF electromagnetic source localization using extremum seeking control

    Science.gov (United States)

    Al Issa, Huthaifa A.; Ordóñez, Raúl

    2014-10-01

    Wireless Sensor Networks (WSNs) are a significant technology attracting considerable research interest. Recent advances in wireless communications and electronics have enabled the development of low-cost, low-power and multi-functional sensors that are small in size and communicate over short distances. Most WSN applications require knowing or measuring locations of thousands of sensors accurately. For example, sensing data without knowing the sensor location is often meaningless. Locations of sensor nodes are fundamental to providing location stamps, locating and tracking objects, forming clusters, and facilitating routing. This research focused on the modeling and implementation of distributed, mobile radar sensor networks. In particular, we worked on the problem of Position-Adaptive Direction Finding (PADF), to determine the location of a non- collaborative transmitter, possibly hidden within a structure, by using a team of cooperative intelligent sensor networks. Position-Adaptive radar concepts have been formulated and investigated at the Air Force Research Laboratory (AFRL) within the past few years. In this paper, we present the simulation performance analysis on the application aspect. We apply Extremum Seeking Control (ESC) schemes by using the swarm seeking problem, where the goal is to design a control law for each individual sensor that can minimize the error metric by adapting the sensor positions in real-time, thereby minimizing the unknown estimation error. As a result we achieved source seeking and collision avoidance of the entire group of the sensor positions.

  11. What Are Electromagnetic Fields?

    Science.gov (United States)

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  12. New effects in the interaction between electromagnetic sources mediated by nonminimal Lorentz violating interactions

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C.; Ferrari, A.F. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [Universidade Federal de Itajuba, IFQ, Itajuba, MG (Brazil)

    2016-11-15

    This paper is dedicated to the study of interactions between external sources for the electromagnetic field in the presence of Lorentz symmetry breaking. We focus on a higher derivative, Lorentz violating interaction that arises from a specific model that was argued to lead to interesting effects in the low energy phenomenology of light pseudoscalars interacting with photons. The kind of higher derivative Lorentz violating interaction we discuss are called nonminimal. They are usually expected to be relevant only at very high energies, but we argue they might also induce relevant effects in low energy phenomena. Indeed, we show that the Lorentz violating background considered by us leads to several phenomena that have no counterpart in Maxwell theory, such as nontrivial torques on isolated electric dipoles, as well as nontrivial forces and torques between line currents and point like charges, as well as among Dirac strings and other electromagnetic sources. (orig.)

  13. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    Science.gov (United States)

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...Wavelength Electromagnetic Light Bullets Generated by a 10 µm CO2 Ultrashort Pulsed Source Grant/Contract Number AFOSR assigned control number. It must

  14. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey.

    Science.gov (United States)

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.

  15. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  16. Vertical soil profiling using a galvanic contact resistivity scanning approach.

    Science.gov (United States)

    Pan, Luan; Adamchuk, Viacheslav I; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S; Dabas, Michel

    2014-07-23

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  17. Conservation laws and symmetry transformations of the electromagnetic field with sources

    Science.gov (United States)

    Nienhuis, Gerard

    2016-02-01

    In classical electrodynamics, the universal conservation laws of energy, momentum, and angular momentum are expressed by well-known continuity equations for the densities of these quantities. In the presence of charges and currents source terms must be added. These terms describe the exchange of energy and (linear or angular) momentum between field and matter. Recently, other conserved quantities of the electromagnetic field have been introduced and discussed. Examples are the pseudoscalars chirality and helicity, which are related to the handedness of the field. Even though these quantities have no obvious definition for matter, their conservation laws can still be presented in the form of continuity equations with source terms added. We show that these terms shed light on the interaction of chiral light with matter. A different role of conserved quantities is that they generate symmetry transformations of the system. The spatial transformations translation and rotation of the radiation field are generated by differential operators acting on mode functions. These operators are identical in form to the operators for the momentum and angular momentum of a quantum particle with spin 1. Also, for the total helicity and spin angular momentum of the field such operators on mode functions can be identified. A quite different picture arises in a quantum description of the electromagnetic field. The operator nature of the conserved quantities then arises from the commutation rules of photon creation and annihilation operators. We analyze the relation between these two pictures of symmetry transformations of the electromagnetic field.

  18. An Improved Current-Doubler Rectifier for the Marine Controlled Source Electromagnetic Transmitter

    Directory of Open Access Journals (Sweden)

    Hongxi Song

    2018-01-01

    Full Text Available High power marine controlled source electromagnetic transmitters have gained interest with applications in marine geological survey and mineral resources exploration. The direct current to direct current (DC-DC converter that is typically used in marine transmitters has some issues, as the insulated-gate bipolar transistor (IGBT tube cannot achieve zero-voltage switching (ZVS. In particular, lagging-leg switching cannot easily achieve ZVS. The conversion efficiency of the heat converter requires improvement. This paper proposes an improved current-doubler rectifier for the marine controlled source electromagnetic transmitter (ICDR-MCSET. Resonant inductance is increased and a blocking capacitor is added to the converter (DC-DC circuit, where the converter can achieve ZVS in a wide load range. This results in the effective decrease of the heating temperature and the improvement of transformation efficiency. Saber software simulation and a 20 KW electromagnetic transmitter are used to verify the results, which show that the method is feasible and effective.

  19. Electromagnet power sources for taking beam out of electron synchrotron in Institute for Nuclear Study

    International Nuclear Information System (INIS)

    Muto, Masafumi; Yoshida, Katsuhide; Okuno, Hideki; Watanabe, Kenichi

    1996-01-01

    In the 1.3 GeV electron synchrotron in Institute for Nuclear Study, the new system of taking out and transporting electron beam was introduced in 1985, and the duty factor of beam was able to be made into 10-15%. The system of taking out and transporting electron beam is the system for guiding the electrons accelerated in the electron synchrotron to the experimental devices, namely, photon tagging device and wide solid angle spectrometer. The constitution of the system is described. The main electromagnets of the electron synchrotron are AC/DC superposition type. In order to taking electrons out with high duty factor, also the exciting waveforms of respective electromagnets in the system must be the current waveforms of superposing DC and sine wave. For the purpose, it is necessary to change frequency and finely adjust exciting waveform. The features of respective power sources are explained. The constitution of the circuits for KM1, KM2 and BM power sources is described. When the electron beam transport system was constructed, at the beginning, due to insufficient waveform adjustment and the frequent occurrence of troubles, the BM power source was changed to the present power source in May, 1995. KM1 and KM2 power sources have been operated for 10 years without serious trouble. (K.I.)

  20. Background electromagnetic noise characterization: the role of external and internal Earth sources

    Directory of Open Access Journals (Sweden)

    Antonio Meloni

    2015-07-01

    Full Text Available The Earth is surrounded by the ionosphere and magnetosphere that can roughly be seen schematically as two concentric shells. These two composed and inhomogeneous structured shells around the Earth selectively affect electromagnetic (EM waves propagation. Both ionosphere and magnetosphere interact also with particles and waves coming from external sources, generating electromagnetic phenomena that in turn might become sources of EM waves. Conversely, EM waves generated inside the ionosphere remain confined at various altitudes in this region, up to a so-called critical frequency limit, depending on frequency, EM waves can escape out of the ionosphere and magnetosphere or get through. The EM waves generated inside the magnetospheric cavity mainly originate as a result of the electrical activity in the atmosphere. It is well known that also man-made sources, now widely spread on Earth, are a fundamental source of EM waves; however, excluding certain frequencies employed in power distribution and communication, man-made noise can be dominant only at local scale, near their source. According to recent studies, EM waves are also generated in the Earth’s lithosphere; these waves were sometimes associated with earthquake activity showing, on the Earth’s surface, intensities that are generally orders of magnitude below the background EM noise. In this review paper, we illustrate EM waves of natural origin and discuss their characterization in order to try discriminate those of lithospheric origin detectable at or near the Earth’s surface.

  1. A kilonova as the electromagnetic counterpart to a gravitational-wave source.

    Science.gov (United States)

    Smartt, S J; Chen, T-W; Jerkstrand, A; Coughlin, M; Kankare, E; Sim, S A; Fraser, M; Inserra, C; Maguire, K; Chambers, K C; Huber, M E; Krühler, T; Leloudas, G; Magee, M; Shingles, L J; Smith, K W; Young, D R; Tonry, J; Kotak, R; Gal-Yam, A; Lyman, J D; Homan, D S; Agliozzo, C; Anderson, J P; Angus, C R; Ashall, C; Barbarino, C; Bauer, F E; Berton, M; Botticella, M T; Bulla, M; Bulger, J; Cannizzaro, G; Cano, Z; Cartier, R; Cikota, A; Clark, P; De Cia, A; Della Valle, M; Denneau, L; Dennefeld, M; Dessart, L; Dimitriadis, G; Elias-Rosa, N; Firth, R E; Flewelling, H; Flörs, A; Franckowiak, A; Frohmaier, C; Galbany, L; González-Gaitán, S; Greiner, J; Gromadzki, M; Guelbenzu, A Nicuesa; Gutiérrez, C P; Hamanowicz, A; Hanlon, L; Harmanen, J; Heintz, K E; Heinze, A; Hernandez, M-S; Hodgkin, S T; Hook, I M; Izzo, L; James, P A; Jonker, P G; Kerzendorf, W E; Klose, S; Kostrzewa-Rutkowska, Z; Kowalski, M; Kromer, M; Kuncarayakti, H; Lawrence, A; Lowe, T B; Magnier, E A; Manulis, I; Martin-Carrillo, A; Mattila, S; McBrien, O; Müller, A; Nordin, J; O'Neill, D; Onori, F; Palmerio, J T; Pastorello, A; Patat, F; Pignata, G; Podsiadlowski, Ph; Pumo, M L; Prentice, S J; Rau, A; Razza, A; Rest, A; Reynolds, T; Roy, R; Ruiter, A J; Rybicki, K A; Salmon, L; Schady, P; Schultz, A S B; Schweyer, T; Seitenzahl, I R; Smith, M; Sollerman, J; Stalder, B; Stubbs, C W; Sullivan, M; Szegedi, H; Taddia, F; Taubenberger, S; Terreran, G; van Soelen, B; Vos, J; Wainscoat, R J; Walton, N A; Waters, C; Weiland, H; Willman, M; Wiseman, P; Wright, D E; Wyrzykowski, Ł; Yaron, O

    2017-11-02

    Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

  2. A kilonova as the electromagnetic counterpart to a gravitational-wave source

    Science.gov (United States)

    Smartt, S. J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K. C.; Huber, M. E.; Krühler, T.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Tonry, J.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Bulger, J.; Cannizzaro, G.; Cano, Z.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Denneau, L.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flewelling, H.; Flörs, A.; Franckowiak, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Greiner, J.; Gromadzki, M.; Guelbenzu, A. Nicuesa; Gutiérrez, C. P.; Hamanowicz, A.; Hanlon, L.; Harmanen, J.; Heintz, K. E.; Heinze, A.; Hernandez, M.-S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Klose, S.; Kostrzewa-Rutkowska, Z.; Kowalski, M.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Lowe, T. B.; Magnier, E. A.; Manulis, I.; Martin-Carrillo, A.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, Ph.; Pumo, M. L.; Prentice, S. J.; Rau, A.; Razza, A.; Rest, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Schady, P.; Schultz, A. S. B.; Schweyer, T.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Stalder, B.; Stubbs, C. W.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; van Soelen, B.; Vos, J.; Wainscoat, R. J.; Walton, N. A.; Waters, C.; Weiland, H.; Willman, M.; Wiseman, P.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.

    2017-11-01

    Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

  3. Goaf water detection using the grounded electrical source airborne transient electromagnetic system

    Science.gov (United States)

    Li, D.; Ji, Y.; Guan, S.; Wu, Y.; Wang, A.

    2017-12-01

    To detect the geoelectric characteristic of goaf water, the grounded electrical source airborne transient electromagnetic (GREATEM) system (developed by Jilin University, China) is applied to the goaf water detection since its advantages of considerable prospecting depth, lateral resolution and detection efficiency. For the test of GREATEM system in goaf water detection, an experimental survey was conducted at Qinshui coal mine (Shanxi province, China). After data acquisition, noise reduction and inversion, the resistivity profiles of survey area is presented. The results highly agree the investigation information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute (China), conforming that the GREATEM system is an effective technique for resistivity detection of goaf water.

  4. Preliminary study of airborne electromagnetic survey using grounded source; Chihyo source gata kuchu denji tansa no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, T. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Shimoizumi, M. [Kitakyushu Polytechnic College, Kitakyushu (Japan); Kusunoki, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Morikawa, T. [Dowa Engineering Co. Ltd., Okayama (Japan); Jomori, N. [Chiba Electronics Research Institute, Chiba (Japan)

    1996-05-01

    For the development of an airborne electromagnetic prospecting method capable of deeper exploration, a basic study was made about a system wherein a transmitter (source) is positioned on the ground and the receiving is done in the sky. Even in case of this airborne electromagnetic method, the TDEM method is supposedly advantageous over others as in case of groundborne exploration. In the study, the transient response of an airborne vertical magnetic field to a horizontal layered structure was calculated. The current source was 2000m long with a capacity of 30A. The one-layer structure was a 10 Ohm m semi-infinite ground, and the two-layer structure had a 100 Ohm m structure just under the one-layer structure. The result of the calculation suggests that, in the absence of a layer of extremely low resistivity, observation of an approximately 1 second long transient response aboard a helicopter flying at approximately 50km/h will enable an approximately 1000m deep exploration. Problems to affect airborne observation, such as swinging, natural magnetic field fluctuation, and artificially produced noises were investigated by use of a magnetometer suspended from a helicopter in flight. 2 refs., 6 figs.

  5. The Spectral Statistical Method for Determining the Location Parameters of a Dipole Source of Electromagnetic Radiation

    Science.gov (United States)

    Panyukov, A. V.; Bogushov, A. K.

    2016-09-01

    Using the measured horizontal and vertical components of the magnetic and electric fields, respectively, we solve the problem of determining the location of a dipole source of electromagnetic radiation, which is equivalent to the lightning discharge, at the specified point of an infinitely conducting plane. The proposed method, which is based on the analysis of the measured-signal spectra, allows one to develop many estimates of the source location, choose the final estimate on the basis of the results of analysis of the entire totality of these estimates, and, therefore, reach stability in determining the source location. The spectral method makes it possible to obtain more stable solutions at a lower computation cost compared with the previously developed parametric extremum method. The spectral-method algorithm can be naturally parallelized. The results of the analytical and numerical studies of the accuracy and stability of the proposed method are presented.

  6. New facilities for magnetotelluric sounding and electromagnetic sounding with active sources

    Science.gov (United States)

    Klymovych, Y.; Rakhlin, L.; Tregubenko, V.

    2003-04-01

    Magnetotelluric (MT) sounding and investigations that use electromagnetic sounding with active sources (SAS) are wide spread in many branch of geophysics. The main goal of their application is Earth geoelectric cross-section parameters definition. For MT sounding it was possible to carry out it mostly till the time intervals less, than 10000 sec, that does not permitted to get the sections for the depth more than some first kilometres. Last years in LCISR the new generation of MT and facilities for deep electromagnetic sounding in ultra-low frequencies periods up to 200,000 sec were designed. It became possible after the development of highly stable devices for DC magnetic and telluric measurements. The long term stability of newly created magnetometers now is better than 0.5 nT per month and temperature stability about 0.1 nT/oC. For telluric currents measurements highly stable non-polarized electrodes with long term stability better than 60 mV per month, and temperature stability about 10 mV/oC were designed. Implementation of such facilities made it possible to realize the magnetotelluric sounding to the depth 400-600 km and the experimental results have good agreement with global magnetotelluric curve. Such MT stations (LEMI-404 model) were used in BEAR (Baltic Electromagnetic Array Research) and several others projects. Their use made it possible also to prove with very high probability the existence of low-depth astenosphere in Dnepre-Donetsk Basin (Ukraine). Now a batch of these MT stations is manufactured and used in Ukrainian magnetotelluric net. This net was intended firstly for investigation of electromagnetic earthquake precursors, but after its further development - for geoelectric section circular changes too. Recently two new MT stations are developed. First one low-frequency (DC 1 Hz) inexpensive station LEMI-411 which, having as high metrological parameters as the wide-band one, costs considerebly lower. Second one is multifunctional SAS station

  7. Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.

    Science.gov (United States)

    Liu, Y.; Li, Y.

    2016-12-01

    We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.

  8. Radiofrequency Electromagnetic Radiation and Memory Performance: Sources of Uncertainty in Epidemiological Cohort Studies.

    Science.gov (United States)

    Brzozek, Christopher; Benke, Kurt K; Zeleke, Berihun M; Abramson, Michael J; Benke, Geza

    2018-03-26

    Uncertainty in experimental studies of exposure to radiation from mobile phones has in the past only been framed within the context of statistical variability. It is now becoming more apparent to researchers that epistemic or reducible uncertainties can also affect the total error in results. These uncertainties are derived from a wide range of sources including human error, such as data transcription, model structure, measurement and linguistic errors in communication. The issue of epistemic uncertainty is reviewed and interpreted in the context of the MoRPhEUS, ExPOSURE and HERMES cohort studies which investigate the effect of radiofrequency electromagnetic radiation from mobile phones on memory performance. Research into this field has found inconsistent results due to limitations from a range of epistemic sources. Potential analytic approaches are suggested based on quantification of epistemic error using Monte Carlo simulation. It is recommended that future studies investigating the relationship between radiofrequency electromagnetic radiation and memory performance pay more attention to treatment of epistemic uncertainties as well as further research into improving exposure assessment. Use of directed acyclic graphs is also encouraged to display the assumed covariate relationship.

  9. Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.

    Science.gov (United States)

    Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig

    2017-06-01

    Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.

  10. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Xiong, Bin; Han, Muran

    2014-01-01

    This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions...... of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system...

  11. The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere

    Science.gov (United States)

    Mason, V. B.

    1973-01-01

    In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.

  12. Developing open-source codes for electromagnetic geophysics using industry support

    Science.gov (United States)

    Key, K.

    2017-12-01

    Funding for open-source software development in academia often takes the form of grants and fellowships awarded by government bodies and foundations where there is no conflict-of-interest between the funding entity and the free dissemination of the open-source software products. Conversely, funding for open-source projects in the geophysics industry presents challenges to conventional business models where proprietary licensing offers value that is not present in open-source software. Such proprietary constraints make it easier to convince companies to fund academic software development under exclusive software distribution agreements. A major challenge for obtaining commercial funding for open-source projects is to offer a value proposition that overcomes the criticism that such funding is a give-away to the competition. This work draws upon a decade of experience developing open-source electromagnetic geophysics software for the oil, gas and minerals exploration industry, and examines various approaches that have been effective for sustaining industry sponsorship.

  13. Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit.

    Science.gov (United States)

    Nair, Ranjith; Tsang, Mankei

    2016-11-04

    We obtain the ultimate quantum limit for estimating the transverse separation of two thermal point sources using a given imaging system with limited spatial bandwidth. We show via the quantum Cramér-Rao bound that, contrary to the Rayleigh limit in conventional direct imaging, quantum mechanics does not mandate any loss of precision in estimating even deep sub-Rayleigh separations. We propose two coherent measurement techniques, easily implementable using current linear-optics technology, that approach the quantum limit over an arbitrarily large range of separations. Our bound is valid for arbitrary source strengths, all regions of the electromagnetic spectrum, and for any imaging system with an inversion-symmetric point-spread function. The measurement schemes can be applied to microscopy, optical sensing, and astrometry at all wavelengths.

  14. Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe.

    Science.gov (United States)

    Mouthaan, Brian E; Rados, Matea; Barsi, Péter; Boon, Paul; Carmichael, David W; Carrette, Evelien; Craiu, Dana; Cross, J Helen; Diehl, Beate; Dimova, Petia; Fabo, Daniel; Francione, Stefano; Gaskin, Vladislav; Gil-Nagel, Antonio; Grigoreva, Elena; Guekht, Alla; Hirsch, Edouard; Hecimovic, Hrvoje; Helmstaedter, Christoph; Jung, Julien; Kalviainen, Reetta; Kelemen, Anna; Kimiskidis, Vasilios; Kobulashvili, Teia; Krsek, Pavel; Kuchukhidze, Giorgi; Larsson, Pål G; Leitinger, Markus; Lossius, Morten I; Luzin, Roman; Malmgren, Kristina; Mameniskiene, Ruta; Marusic, Petr; Metin, Baris; Özkara, Cigdem; Pecina, Hrvoje; Quesada, Carlos M; Rugg-Gunn, Fergus; Rydenhag, Bertil; Ryvlin, Philippe; Scholly, Julia; Seeck, Margitta; Staack, Anke M; Steinhoff, Bernhard J; Stepanov, Valentin; Tarta-Arsene, Oana; Trinka, Eugen; Uzan, Mustafa; Vogt, Viola L; Vos, Sjoerd B; Vulliémoz, Serge; Huiskamp, Geertjan; Leijten, Frans S S; Van Eijsden, Pieter; Braun, Kees P J

    2016-05-01

    In 2014 the European Union-funded E-PILEPSY project was launched to improve awareness of, and accessibility to, epilepsy surgery across Europe. We aimed to investigate the current use of neuroimaging, electromagnetic source localization, and imaging postprocessing procedures in participating centers. A survey on the clinical use of imaging, electromagnetic source localization, and postprocessing methods in epilepsy surgery candidates was distributed among the 25 centers of the consortium. A descriptive analysis was performed, and results were compared to existing guidelines and recommendations. Response rate was 96%. Standard epilepsy magnetic resonance imaging (MRI) protocols are acquired at 3 Tesla by 15 centers and at 1.5 Tesla by 9 centers. Three centers perform 3T MRI only if indicated. Twenty-six different MRI sequences were reported. Six centers follow all guideline-recommended MRI sequences with the proposed slice orientation and slice thickness or voxel size. Additional sequences are used by 22 centers. MRI postprocessing methods are used in 16 centers. Interictal positron emission tomography (PET) is available in 22 centers; all using 18F-fluorodeoxyglucose (FDG). Seventeen centers perform PET postprocessing. Single-photon emission computed tomography (SPECT) is used by 19 centers, of which 15 perform postprocessing. Four centers perform neither PET nor SPECT in children. Seven centers apply magnetoencephalography (MEG) source localization, and nine apply electroencephalography (EEG) source localization. Fourteen combinations of inverse methods and volume conduction models are used. We report a large variation in the presurgical diagnostic workup among epilepsy surgery centers across Europe. This diversity underscores the need for high-quality systematic reviews, evidence-based recommendations, and harmonization of available diagnostic presurgical methods. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  15. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  16. Electrocatalysts Prepared by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Athanasios Papaderakis

    2017-03-01

    Full Text Available Galvanic replacement is the spontaneous replacement of surface layers of a metal, M, by a more noble metal, Mnoble, when the former is treated with a solution containing the latter in ionic form, according to the general replacement reaction: nM + mMnoblen+ → nMm+ + mMnoble. The reaction is driven by the difference in the equilibrium potential of the two metal/metal ion redox couples and, to avoid parasitic cathodic processes such as oxygen reduction and (in some cases hydrogen evolution too, both oxygen levels and the pH must be optimized. The resulting bimetallic material can in principle have a Mnoble-rich shell and M-rich core (denoted as Mnoble(M leading to a possible decrease in noble metal loading and the modification of its properties by the underlying metal M. This paper reviews a number of bimetallic or ternary electrocatalytic materials prepared by galvanic replacement for fuel cell, electrolysis and electrosynthesis reactions. These include oxygen reduction, methanol, formic acid and ethanol oxidation, hydrogen evolution and oxidation, oxygen evolution, borohydride oxidation, and halide reduction. Methods for depositing the precursor metal M on the support material (electrodeposition, electroless deposition, photodeposition as well as the various options for the support are also reviewed.

  17. Numerical simulation of electromagnetic acoustic transducers using distributed point source method.

    Science.gov (United States)

    Eskandarzade, M; Kundu, T; Liebeaux, N; Placko, D; Mobadersani, F

    2010-05-01

    In spite of many advances in analytical and numerical modeling techniques for solving different engineering problems, an efficient solution technique for wave propagation modeling of an electromagnetic acoustic transducer (EMAT) system is still missing. Distributed point source method (DPSM) is a newly developed semi-analytical technique developed since 2000 by Placko and Kundu (2007) [12] that is very powerful and straightforward for solving various engineering problems, including acoustic and electromagnetic modeling problems. In this study DPSM has been employed to model the Lorentz type EMAT with a meander line and flat spiral type coil. The problem of wave propagation has been solved and eddy currents and Lorentz forces have been calculated. The displacement field has been obtained as well. While modeling the Lorentz force the effect of dynamic magnetic field has been considered that most current analyses ignore. Results from this analysis have been compared with the finite element method (FEM) based predictions. It should be noted that with the current state of knowledge this problem can be solved only by FEM. Copyright 2009 Elsevier B.V. All rights reserved.

  18. The FEMM Package: A Simple, Fast, and Accurate Open Source Electromagnetic Tool in Science and Engineering

    Directory of Open Access Journals (Sweden)

    K. B. Baltzis

    2008-01-01

    Full Text Available The finite element method (FEM is one of the most successful computational techniques for obtaining approximate solutions to the partial differential equations that arise in many scientific and engineering applications. Finite Element Method Magnetics (FEMM is a software package for solving electromagnetic problems using FEM. The program addresses 2D planar and 3D axisymmetric linear and nonlinear harmonic low frequency magnetic and magnetostatic problems and linear electrostatic problems. It is a simple, accurate, and low computational cost open source product, popular in science, engineering, and education. In this paper the main characteristics and functions of the package are presented. In order to demonstrate its use and exhibit the aid it offers in the study of electromagnetics a series of illustrative examples are given. The aim of the paper is to demonstrate the capability of FEMM to meet as a complementary tool the needs of science and technology especially when factors like the economic cost or the software complexity do not allow the use of commercial products.

  19. Source-model technique analysis of electromagnetic scattering by surface grooves and slits.

    Science.gov (United States)

    Trotskovsky, Konstantin; Leviatan, Yehuda

    2011-04-01

    A computational tool, based on the source-model technique (SMT), for analysis of electromagnetic wave scattering by surface grooves and slits is presented. The idea is to use a superposition of the solution of the unperturbed problem and local corrections in the groove/slit region (the grooves and slits are treated as perturbations). In this manner, the solution is obtained in a much faster way than solving the original problem. The proposed solution is applied to problems of grooves and slits in otherwise planar or periodic surfaces. Grooves and slits of various shapes, both smooth ones as well as ones with edges, empty or filled with dielectric material, are considered. The obtained results are verified against previously published data. © 2011 Optical Society of America

  20. A land-based controlled-source electromagnetic method for oil field exploration : An example from the Schoonebeek oil field

    NARCIS (Netherlands)

    Schaller, A.M.; Streich, Rita; Drijkoningen, G.G.; Ritter, Oliver; Slob, E.C.

    2018-01-01

    Controlled-source electromagnetic (CSEM) data are sensitive to the subsurface resistivity distribution, but 3D inversion results are ambiguous, and in-depth interpretation is challenging. Resolution and sensitivity analysis as well as the influence of noise on resolution have been used to

  1. Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots.

    Science.gov (United States)

    Liu, Keng-Ku; Tadepalli, Sirimuvva; Wang, Zheyu; Jiang, Qisheng; Singamaneni, Srikanth

    2017-11-20

    Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging.

  2. Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling

    Science.gov (United States)

    Li, Gang; Li, Yuguo; Han, Bo; Liu, Zhan

    2018-01-01

    In this study, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 3-D frequency-domain marine controlled-source electromagnetic (CSEM) field modelling. The Dirichlet boundary, which is usually used within the traditional framework of EM modelling algorithms, assumes that the electric or magnetic field values are zero at the boundaries. This requires the boundaries to be sufficiently far away from the area of interest. To mitigate the boundary artefacts, a large modelling area may be necessary even though cell sizes are allowed to grow toward the boundaries due to the diffusion of the electromagnetic wave propagation. Compared with the conventional Dirichlet boundary, the PML boundary is preferred as the modelling area of interest could be restricted to the target region and only a few absorbing layers surrounding can effectively depress the artificial boundary effect without losing the numerical accuracy. Furthermore, for joint inversion of seismic and marine CSEM data, if we use the PML for CSEM field simulation instead of the conventional Dirichlet, the modelling area for these two different geophysical data collected from the same survey area could be the same, which is convenient for joint inversion grid matching. We apply the CFS-PML boundary to 3-D marine CSEM modelling by using the staggered finite-difference discretization. Numerical test indicates that the modelling algorithm using the CFS-PML also shows good accuracy compared to the Dirichlet. Furthermore, the modelling algorithm using the CFS-PML shows advantages in computational time and memory saving than that using the Dirichlet boundary. For the 3-D example in this study, the memory saving using the PML is nearly 42 per cent and the time saving is around 48 per cent compared to using the Dirichlet.

  3. Bitbus data transport by galvanic interface

    International Nuclear Information System (INIS)

    Jansweijer, P.P.M; Hogenbirk, J.J.

    1988-01-01

    For a bitbus system in a raw environment galvanic interfaces are necessary. This report offers various possibilities for implementing such an galvanic interface. One of the possibilities is described in detail. Along the objects to be controlled an apart ringline runs in behalf of the bitbus. The various bitbus components which have been mounted near these objects, are coupled to this ringline via opto-couplers. (author). 6 refs.; 9 figs

  4. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time.

    Science.gov (United States)

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  5. An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging

    International Nuclear Information System (INIS)

    Akalin-Acar, Zeynep; Gencer, Nevzat G

    2004-01-01

    The forward problem of electromagnetic source imaging has two components: a numerical model to solve the related integral equations and a model of the head geometry. This study is on the boundary element method (BEM) implementation for numerical solutions and realistic head modelling. The use of second-order (quadratic) isoparametric elements and the recursive integration technique increase the accuracy in the solutions. Two new formulations are developed for the calculation of the transfer matrices to obtain the potential and magnetic field patterns using realistic head models. The formulations incorporate the use of the isolated problem approach for increased accuracy in solutions. If a personal computer is used for computations, each transfer matrix is calculated in 2.2 h. After this pre-computation period, solutions for arbitrary source configurations can be obtained in milliseconds for a realistic head model. A hybrid algorithm that uses snakes, morphological operations, region growing and thresholding is used for segmentation. The scalp, skull, grey matter, white matter and eyes are segmented from the multimodal magnetic resonance images and meshes for the corresponding surfaces are created. A mesh generation algorithm is developed for modelling the intersecting tissue compartments, such as eyes. To obtain more accurate results quadratic elements are used in the realistic meshes. The resultant BEM implementation provides more accurate forward problem solutions and more efficient calculations. Thus it can be the firm basis of the future inverse problem solutions

  6. Bayesian Inference for Neural Electromagnetic Source Localization: Analysis of MEG Visual Evoked Activity

    International Nuclear Information System (INIS)

    George, J.S.; Schmidt, D.M.; Wood, C.C.

    1999-01-01

    We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented

  7. A generalized Debye source approach to electromagnetic scattering in layered media

    International Nuclear Information System (INIS)

    O’Neil, Michael

    2014-01-01

    The standard solution to time-harmonic electromagnetic scattering problems in homogeneous layered media relies on the use of the electric field dyadic Green's function. However, for small values of the governing angular frequency ω, evaluation of the electric field using this Green's function exhibits numerical instability. In this short note, we provide an alternative approach which is immune from this low-frequency breakdown as ω → 0. Our approach is based on the generalized Debye source representation of Maxwell fields. Using this formulation, the electric and magnetic fields gracefully decouple in the static limit, a behavior similar to that of the classical Lorenz-Debye-Mie representation of Maxwell fields in spherical geometries. We derive extensions of both the generalized Deybe source and Lorenz-Debye-Mie representations to planar geometries, as well as provide equations for the solution of scattering from a perfectly conducting half-space and in layered media using a Sommerfeld-like approach. These formulas are stable as ω tends to zero, and offer alternatives to the electric field dyadic Green's function

  8. Sensor Interaction as a Source of the Electromagnetic Field Measurement Error

    Directory of Open Access Journals (Sweden)

    Hartansky R.

    2014-12-01

    Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.

  9. Fundamental study on airborne electromagnetic survey using grounded source; Chihyo source gata kuchu denji tansa no kisoteki kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, T.; Fujimitsu, Y. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Tanaka, Y. [Kyoto University, Kyoto (Japan). Faculty of Science; Jomori, N. [Chiba Electronics Research Institute, Chiba (Japan); Morikawa, T. [Dowa Engineering Co. Ltd., Okayama (Japan); Kusunoki, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-27

    With an objective to develop an airborne electromagnetic survey method for greater depths achievable of exploration, a discussion was given on an exploration method of a type in which a transmitting device is placed on the ground to receive signals in an atmosphere. A prototype exploration apparatus is mounted with a fluxgate magnetometer, an attitude meter, a GPS, and a battery. This exploration apparatus is suspended on a 30 meter long rope from a helicopter to perform the exploration. Two flight tests on this apparatus were carried out in the Unzen area, Nagasaki Prefecture and the Motomiya area, Wakayama Prefecture. The ground source was extended to a distance of 1.5 km, and a current of about 20 A was flown with a quiescent wave having four-second cycles. The helicopter flew nearly horizontally at a ground speed of about 50 km, a flight altitude of 450 m above sea level, and a terrain clearances of 100 to 400 m. The obtained data had variations in correspondence with changes in roll and pitch angles, whereas the variation of about 5000 nT was reduced to about 1000 nT as a result of correction. It was not possible, however, to correct completely the variation with short cycles, requiring further discussions on frequency characteristics of the magnetometer. 6 figs., 1 tab.

  10. Cone-shaped source characteristics and inductance effect of transient electromagnetic method

    Science.gov (United States)

    Yang, Hai-Yan; Li, Feng-Ping; Yue, Jian-Hua; Guo, Fu-Sheng; Liu, Xu-Hua; Zhang, Hua

    2017-03-01

    Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-offtime and a deep "blind zone". This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower "blind zone." Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to

  11. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon; Usoskin, Ilya [Sodankylä Geophysical Observatory/Oulu Unit, University of Oulu, P.O.B. 3000, Oulu FI-90014 (Finland); Pohjolainen, Silja [Tuorla Observatory, University of Turku, Piikkiö FI-21500 (Finland); Mishev, Alexander [Space Climate Research Unit, University of Oulu, Oulu FI-90014 (Finland); Reiner, Mike J. [The Catholic University of America, Washington, DC, and NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Lee, Jeongwoo [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Didkovsky, Leonid V. [University of Southern California Space Sciences Center, 835 Bloom Walk, Los Angeles CA 90089 (United States); Pizzo, Victor J. [NOAA Space Weather Prediction Center, Boulder, CO 80305 (United States); Kim, Roksoon; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Klassen, Andreas [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, Kiel D-24118 (Germany); Karlicky, Marian [Astronomical Institute of the Czech Academy of Sciences, Fričova 258, Ondřejov 251 65 (Czech Republic); Gary, Dale E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark NJ 07102-1982 (United States); Valtonen, Eino; Vainio, Rami [Space Research Laboratory, University of Turku, Turku FI-20014 (Finland)

    2017-04-20

    We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associated with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.

  12. Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects

    Science.gov (United States)

    Couchman, M. J.; Everett, M. E.

    2017-12-01

    As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.

  13. An unusual source of electromagnetic interference: a device-device interaction.

    Science.gov (United States)

    Kowalski, Marcin; Shepard, Richard K; Kalahasty, Gautham; Wood, Mark A; Ellenbogen, Kenneth A

    2010-08-01

    Implantable cardioverter-defibrillators (ICDs) are susceptible to oversensing of extracardiac signals, also known as electromagnetic interference (EMI). We report a case of an unusual source of electrical interference of only the high voltage (HV) impedance measurement in the Teligen ICD (Boston Scientific, St. Paul, MN, USA) caused by electrical interference from an electrosurgical generator with an electrocautery patch located in close proximity to the ICD pulse generator. A patient underwent an uneventful implant of a Boston Scientific Teligen 100 ICD. Once the device was inserted in a pocket, interrogation of the device repeatedly demonstrated HV electrode impedance measurements between <20 and 40 Omega and noise only on the HV electrode. A new lead and generator were implanted without a change in the interrogation results. The erroneous measurements of HV impedance were caused by a combination of the close proximity of the electrocautery patch to the ICD generator. The continuous low-amplitude current emitted by the contact quality monitoring system of the electrosurgical cautery generator interfered with an equally weak current delivered through the lead by the device to measurement HV impedance. The Medtronic Virtuoso (Medtronic Inc., Minneapolis, MN, USA) ICD and the St. Jude Medical Current DR (St. Jude Medical, St. Paul, MN, USA) ICD were not affected by the patch due to greater magnitude of current delivered by the device to measure HV electrode impedance. It is important that the operator must be aware of any potential source of EMI, as it may affect the device and require immediate troubleshooting. Failure to recognize this interaction may result in inappropriate and unnecessary pulse generator replacement.

  14. Galvanic Replacement of the Liquid Metal Galinstan.

    Science.gov (United States)

    Hoshyargar, Faegheh; Crawford, Jessica; O'Mullane, Anthony P

    2017-02-01

    The galvanic replacement reaction is a highly versatile approach for the creation of a variety of nanostructured materials. However, the majority of reports are limited to the replacement of metallic nanoparticles or metal surfaces. Here we extend this elegant approach and describe the galvanic replacement of the liquid metal alloy galinstan with Ag and Au. This is achieved at a macrosized droplet to create a liquid metal marble that comprises a liquid metal core and a solid metal shell, whereby the morphology of the outer shell is determined by the concentration of metallic ions used in the solution during the galvanic replacement process. In principle, this allows one to recover precious metal ions from solution in their metallic form, which are immobilized on the liquid metal and therefore easy to recover. The reaction is also undertaken at liquid metal microdroplets created via sonication to produce Ag- and Au-based galinstan nanorice particles. These materials are characterized with SEM, XRD, TEM, SAED, EDX, XPS, UV-visible spectroscopy, and open-circuit potential versus time experiments to understand the galvanic replacement process. Finally, the nanosized materials are investigated for their catalytic activity toward the reduction of methylene blue in the presence of sodium borohydride. This approach illustrates a new avenue of research for the galvanic replacement process and, in principle, could be applied to many more systems.

  15. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  16. INVESTIGATION OF ELECTROMAGNETIC PROCESSES OF SELF-EXCITATION ASYNCHRONOUS TRACTION MOTOR WITH REGENERATIVE BRAKING POWERED BY LIMITED POWER SOURCES

    OpenAIRE

    Kulagin, D. O.

    2015-01-01

    The article presents the definition of the functions of self-excitation electromagnetic processes of asynchronous traction motor with regenerative braking powered by limited power source. It is shown that the power of current synchronous generator with brake mode is not very desirable, as leading to increased fuel consumption and can reduce the value of the braking power, engine traction which develops as a result of absorption of the resistor current synchronous generator. Therefore, it is a...

  17. Recycling galvanized steel: Operating experience and benefits

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A. [Metal Recovery Industries, Inc., East Chicago, IN (United States)

    1993-08-01

    In response to the increase in consumption of galvanized steel for automobiles in the last decade and the problems associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The dezinced ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant to continuously treat loose scrap, with a design capacity of 48,000 tonnes annually, has been in operation in East Chicago, Indiana since early in 1993. The first 450 t of scrap degalvanized in the pilot plant have residual zinc below 0.01% and sodium dragout below 0.01%. Use of degalvanized steel scrap decreases raw materials, environmental compliance, and opportunity costs to steel- and iron-makers. Availability of clean degalvanized scrap may enable integrated steel producers to recycle furnace dusts to the sinter plant and EAF shops to produce flat products without use of high quality scrap alternatives such as DRI, pig iron, or iron carbide. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap. The quantities of zinc available by the year 2000 from prompt and obsolete automotive scrap win approach 25% of zinc consumed in the major automotive production centers of the world. Zinc recycling from galvanized steel scrap, either before or after scrap melting, will have to be implemented.

  18. On the physics of frequency domain controlled source electromagnetics in shallow water, 2: transverse anisotropy

    Science.gov (United States)

    Chave, Alan D.; Mattsson, Johan; Everett, Mark E.

    2017-11-01

    In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically-polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the sub-seafloor conductivity that is assumed to be transversely anisotropic, with a vertical-to-horizontal resistivity ratio of 3:1. For an ocean whose electrical thickness is comparable to that of the overburden, the seafloor electromagnetic response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a halfspace, or a stronger and faster response, and displays little to no evidence for the air interaction. For an ocean whose electrical thickness is much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets, and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. By comparison to the isotropic case with the same horizontal conductivity, transverse anisotropy stretches the Poynting vector and the electric field response from a thin resistive layer to much longer offsets. These phenomena can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air

  19. Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Egbert

    2007-03-22

    The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to the full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before

  20. Research on control technology of hardware parallelism for marine controlled source electromagnetic transmitter

    Science.gov (United States)

    Wang, Meng; Deng, Ming; Luo, Xianhu; Zhao, Qingxian; Chen, Kai; Jing, Jianen

    2018-02-01

    The marine controlled source electromagnetic (CSEM) method has been recognized as an effective exploration method of shallow hydrocarbons around the world. We developed our own underwater marine CSEM transmitter that consisted of many functional modules with various response times. We previously adopted a centralized software-control technology to design the transmitter circuit topological structure. That structure probably generated a control disorder or malfunction. These undesirable conditions could lead to repeated recovery and deployment of the transmitter, which not only consumed time but also affected data continuity and establishment of stable and continuous CSEM field. We developed an instrument design concept named ‘control technology of hardware parallelism’. In this design, a noteworthy innovation of our new technology is to solve the above-mentioned problems at the physical and fundamental levels. We used several self-contained control-units to simultaneously accomplish the predetermined functions of the transmitter. The new solution relies on two technologies: multi-core embedded technology and multi-channel parallel optical-fiber data transmission technology. The first technology depends on many independent microcontrollers. Every microcontroller is only used to achieve a customized function. The second one relies on several multiple optical-fiber transmission channels realized by a complex programmable logic device and two optical-fiber conversion devices, which are used to establish a communication link between the shipboard monitoring and control-unit and underwater transmitter. We have conducted some marine experiments to verify the reliability and stability of the new method. In particular, the new technology used in the transmitter system could help us obtain more useful measured data in a limited time, improve real-time efficiency, and support the establishment of a stable CSEM field.

  1. Bayesian inversion of marine controlled source electromagnetic data offshore Vancouver Island, Canada

    Science.gov (United States)

    Gehrmann, Romina A. S.; Schwalenberg, Katrin; Riedel, Michael; Spence, George D.; Spieß, Volkhard; Dosso, Stan E.

    2016-01-01

    This paper applies nonlinear Bayesian inversion to marine controlled source electromagnetic (CSEM) data collected near two sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on the northern Cascadia Margin to investigate subseafloor resistivity structure related to gas hydrate deposits and cold vents. The Cascadia margin, off the west coast of Vancouver Island, Canada, has a large accretionary prism where sediments are under pressure due to convergent plate boundary tectonics. Gas hydrate deposits and cold vent structures have previously been investigated by various geophysical methods and seabed drilling. Here, we invert time-domain CSEM data collected at Sites U1328 and U1329 of IODP Expedition 311 using Bayesian methods to derive subsurface resistivity model parameters and uncertainties. The Bayesian information criterion is applied to determine the amount of structure (number of layers in a depth-dependent model) that can be resolved by the data. The parameter space is sampled with the Metropolis-Hastings algorithm in principal-component space, utilizing parallel tempering to ensure wider and efficient sampling and convergence. Nonlinear inversion allows analysis of uncertain acquisition parameters such as time delays between receiver and transmitter clocks as well as input electrical current amplitude. Marginalizing over these instrument parameters in the inversion accounts for their contribution to the geophysical model uncertainties. One-dimensional inversion of time-domain CSEM data collected at measurement sites along a survey line allows interpretation of the subsurface resistivity structure. The data sets can be generally explained by models with 1 to 3 layers. Inversion results at U1329, at the landward edge of the gas hydrate stability zone, indicate a sediment unconformity as well as potential cold vents which were previously unknown. The resistivities generally increase upslope due to sediment erosion along the slope. Inversion

  2. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20... galvanized steel wire from China and Mexico were sold at LTFV within the meaning of 733(b) of the Act (19 U.S...

  3. 76 FR 29266 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-05-20

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China and Mexico of galvanized steel wire, provided for in subheading 7217.20.30... subsidized imports of galvanized steel wire from China and Mexico. Accordingly, effective March 31, 2011, the...

  4. Electromagnetic optimisation of a 2.45 GHz microwave plasma source operated at atmospheric pressure and designed for hydrogen production

    Science.gov (United States)

    Miotk, R.; Jasiński, M.; Mizeraczyk, J.

    2018-03-01

    This paper presents the partial electromagnetic optimisation of a 2.45 GHz cylindrical-type microwave plasma source (MPS) operated at atmospheric pressure. The presented device is designed for hydrogen production from liquid fuels, e.g. hydrocarbons and alcohols. Due to industrial requirements regarding low costs for hydrogen produced in this way, previous testing indicated that improvements were required to the electromagnetic performance of the MPS. The MPS has a duct discontinuity region, which is a result of the cylindrical structure located within the device. The microwave plasma is generated in this discontinuity region. Rigorous analysis of the region requires solving a set of Maxwell equations, which is burdensome for complicated structures. Furthermore, the presence of the microwave plasma increases the complexity of this task. To avoid calculating the complex Maxwell equations, we suggest the use of the equivalent circuit method. This work is based upon the idea of using a Weissfloch circuit to characterize the area of the duct discontinuity and the plasma. The resulting MPS equivalent circuit allowed the calculation of a capacitive metallic diaphragm, through which an improvement in the electromagnetic performance of the plasma source was obtained.

  5. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    Science.gov (United States)

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  6. 3D statistical parametric mapping of EEG source spectra by means of variable resolution electromagnetic tomography (VARETA).

    Science.gov (United States)

    Bosch-Bayard, J; Valdés-Sosa, P; Virues-Alba, T; Aubert-Vázquez, E; John, E R; Harmony, T; Riera-Díaz, J; Trujillo-Barreto, N

    2001-04-01

    This article describes a new method for 3D QEEG tomography in the frequency domain. A variant of Statistical Parametric Mapping is presented for source log spectra. Sources are estimated by means of a Discrete Spline EEG inverse solution known as Variable Resolution Electromagnetic Tomography (VARETA). Anatomical constraints are incorporated by the use of the Montreal Neurological Institute (MNI) probabilistic brain atlas. Efficient methods are developed for frequency domain VARETA in order to estimate the source spectra for the set of 10(3)-10(5) voxels that comprise an EEG/MEG inverse solution. High resolution source Z spectra are then defined with respect to the age dependent mean and standard deviations of each voxel, which are summarized as regression equations calculated from the Cuban EEG normative database. The statistical issues involved are addressed by the use of extreme value statistics. Examples are shown that illustrate the potential clinical utility of the methods herein developed.

  7. Bayesian electromagnetic spatio-temporal imaging of extended sources with Markov Random Field and temporal basis expansion.

    Science.gov (United States)

    Liu, Ke; Yu, Zhu Liang; Wu, Wei; Gu, Zhenghui; Li, Yuanqing; Nagarajan, Srikantan

    2016-10-01

    Estimating the locations and spatial extents of brain sources poses a long-standing challenge for electroencephalography and magnetoencephalography (E/MEG) source imaging. In the present work, a novel source imaging method, Bayesian Electromagnetic Spatio-Temporal Imaging of Extended Sources (BESTIES), which is built upon a Bayesian framework that determines the spatio-temporal smoothness of source activities in a fully data-driven fashion, is proposed to address this challenge. In particular, a Markov Random Field (MRF), which can precisely capture local cortical interactions, is employed to characterize the spatial smoothness of source activities, the temporal dynamics of which are modeled by a set of temporal basis functions (TBFs). Crucially, all of the unknowns in the MRF and TBF models are learned from the data. To accomplish model inference efficiently on high-resolution source spaces, a scalable algorithm is developed to approximate the posterior distribution of the source activities, which is based on the variational Bayesian inference and convex analysis. The performance of BESTIES is assessed using both simulated and actual human E/MEG data. Compared with L 2 -norm constrained methods, BESTIES is superior in reconstructing extended sources with less spatial diffusion and less localization error. By virtue of the MRF, BESTIES also overcomes the drawback of over-focal estimates in sparse constrained methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Time dependence of the field energy densities surrounding sources: Application to scalar mesons near point sources and to electromagnetic fields near molecules

    International Nuclear Information System (INIS)

    Persico, F.; Power, E.A.

    1987-01-01

    The time dependence of the dressing-undressing process, i.e., the acquiring or losing by a source of a boson field intensity and hence of a field energy density in its neighborhood, is considered by examining some simple soluble models. First, the loss of the virtual field is followed in time when a point source is suddenly decoupled from a neutral scalar meson field. Second, an initially bare point source acquires a virtual meson cloud as the coupling is switched on. The third example is that of an initially bare molecule interacting with the vacuum of the electromagnetic field to acquire a virtual photon cloud. In all three cases the dressing-undressing is shown to take place within an expanding sphere of radius r = ct centered at the source. At each point in space the energy density tends, for large times, to that of the ground state of the total system. Differences in the time dependence of the dressing between the massive scalar field and the massless electromagnetic field are discussed. The results are also briefly discussed in the light of Feinberg's ideas on the nature of half-dressed states in quantum field theory

  9. Importance of temperature, pH, and boric acid concentration on rates of hydrogen production from galvanized steel corrosion

    International Nuclear Information System (INIS)

    Loyola, V.M.

    1982-01-01

    One of the known sources of hydrogen gas within a nuclear plant containment building during a LOCA is the high temperature corrosion of galvanized steel yielding hydrogen gas. The importance of this source of hydrogen will vary depending on the severity of the accident. In an accident which resulted in core degradation, for example, the major source of hydrogen would probably be the metal-water reaction of the zircaloy cladding, and the corrosion of galvanized steel would then become a relatively minor source of hydrogen. However, in an accident in which core degradation is avoided or limited to minor damage, the corrosion of galvanized steel, and presumably of other materials as well, would then become a major contributor to the buildup of hydrogen within containment. The purpose of this paper is to present the overall effects of temperature, pH, and boric acid concentration on the rate of hydrogen generation over a broad range of each parameter

  10. Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field

    Science.gov (United States)

    Xin, SONG; Qing, WANG; Zeng, LIN; Puhui, ZHANG; Shuhao, WANG

    2018-02-01

    This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction. Electromagnetic coils and permanent magnets were installed at the different sides of cathode surface, the photographs of cathode spots motion trajectory were captured by a camera. Increasing the number of magnets and decreasing the distance between magnets and cathode both lead to enhancing cathode spots motion velocity. Radii of cathode spots trajectory decrease gradually with the increasing of electromagnetic coil’s current, from 40 mm at 0 A to 10 mm at 2.7 A. Parallel magnetic field component intensity influence the speed of cathode spots rotate motion, and perpendicular magnetic field component drives spots drift in the radial direction. Cathode spot’s radial drift is controlled by changing the location of the ‘zero line’ where perpendicular magnetic component shifts direction and the radius of cathode spots trajectory almost equal to ‘zero line’.

  11. New light sources on the basis of electromagnetic shock T and H tubes

    International Nuclear Information System (INIS)

    Basov, Yu. G.; Sereda, N.I.; Skvortsov, B.V.; Sysun, V.V.

    Experimental investigation of plasma light emission was carried out on electromagnetic shock tubes filled with xenon to initial pressure of 10-100 mm Hg. T - and H- discharge devices were connected to the low-inductive discharge circuit (C=12 μF, L=0.43 μH, U=10 - 30 kV). The discharge growth was observed with a high-speed photorecorder. In the course of the investigation lighting parameters of the devices were measured as a function of xenon initial pressure and discharge energy

  12. Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field

    Science.gov (United States)

    Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.

    2018-03-01

    We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.

  13. Electromagnetic studies on the Kola peninsula and in Northern Finland by means of a powerful controlled source

    Science.gov (United States)

    Velikhov, Ye. P.; Zhamaletdinov, A. A.; Belkov, I. V.; Gorbunov, G. I.; Hjelt, S. E.; Lisin, A. S.; Vanyan, L. L.; Zhdanov, M. S.; Demidova, T. A.; Korja, T.; Kirillov, S. K.; Kuksa, Yu. I.; Poltanov, A. Ye.; Tokarev, A. D.; Yevstigneyev, V. V.

    1986-07-01

    Station "Khibiny", equipped with a powerful magnetohydrodynamic (MHD) generator and/or diesel generator, has been successfully used since 1976 to study the electrical conductivity of the Earth's crust in the northern part of the Baltic Shield. The present paper describes the techniques of measurement, data processing and interpretation of the five-component electromagnetic fields created by this source. A longitudinal conductance map for the upper 10 km of the Earth's crust has been constructed. Several blocks, with conductances varying from 0.1 to some thousands of Siemens, have been revealed on the Kola Peninsula, in northern Karelia and in northern Finland. The blocks of high conductance are connected with relatively young complexes of Early Proterozoic and Late Archean ages. In some places, they create thick and extensive conductive belts such as the Imandra-Varzuga and the Pechenga zones. More often, they appear in the shape of vast regions with enhanced conductivity (e.g., the granulite belts and the Allarechen region). The geoelectric cross-section of the Imandra-Varzuga ore-critical structure has been studied in detail, using the method of electromagnetic field migration. Its depth extent is approximately 10 km. Highly resistant blocks are associated with the most ancient geological units, of early Archean age. Resistant regions have been found in the Murmansk and Central Kola regions, as well as in the Kovdor massif and in the Central Finland granite area. These regions are the most promising ones for deep electromagnetic sounding of the lower crust and the upper mantle of the Earth.

  14. Electrical description of a magnetic pole enhanced inductively coupled plasma source: Refinement of the transformer model by reverse electromagnetic modeling

    International Nuclear Information System (INIS)

    Meziani, T.; Colpo, P.; Rossi, F.

    2006-01-01

    The magnetic pole enhanced inductively coupled source (MaPE-ICP) is an innovative low-pressure plasma source that allows for high plasma density and high plasma uniformity, as well as large-area plasma generation. This article presents an electrical characterization of this source, and the experimental measurements are compared to the results obtained after modeling the source by the equivalent circuit of the transformer. In particular, the method applied consists in performing a reverse electromagnetic modeling of the source by providing the measured plasma parameters such as plasma density and electron temperature as an input, and computing the total impedance seen at the primary of the transformer. The impedance results given by the model are compared to the experimental results. This approach allows for a more comprehensive refinement of the electrical model in order to obtain a better fitting of the results. The electrical characteristics of the system, and in particular the total impedance, were measured at the inductive coil antenna (primary of the transformer). The source was modeled electrically by a finite element method, treating the plasma as a conductive load and taking into account the complex plasma conductivity, the value of which was calculated from the electron density and electron temperature measurements carried out previously. The electrical characterization of the inductive excitation source itself versus frequency showed that the source cannot be treated as purely inductive and that the effect of parasitic capacitances must be taken into account in the model. Finally, considerations on the effect of the magnetic core addition on the capacitive component of the coupling are made

  15. Application of the perfectly matched layer in 2.5D marine controlled-source electromagnetic modeling

    Science.gov (United States)

    Li, Gang; Han, Bo

    2017-09-01

    For the traditional framework of EM modeling algorithms, the Dirichlet boundary is usually used which assumes the field values are zero at the boundaries. This crude condition requires that the boundaries should be sufficiently far away from the area of interest. Although cell sizes could become larger toward the boundaries as electromagnetic wave is propagated diffusively, a large modeling area may still be necessary to mitigate the boundary artifacts. In this paper, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 2.5D frequency-domain marine controlled-source electromagnetic (CSEM) field modeling. By using this PML boundary, one can restrict the modeling area of interest to the target region. Only a few absorbing layers surrounding the computational area can effectively depress the artificial boundary effect without losing the numerical accuracy. A 2.5D marine CSEM modeling scheme with the CFS-PML is developed by using the staggered finite-difference discretization. This modeling algorithm using the CFS-PML is of high accuracy, and shows advantages in computational time and memory saving than that using the Dirichlet boundary. For 3D problem, this computation time and memory saving should be more significant.

  16. Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration

    Science.gov (United States)

    Díaz, M. C.; Macri, L. M.; Garcia Lambas, D.; Mendes de Oliveira, C.; Nilo Castellón, J. L.; Ribeiro, T.; Sánchez, B.; Schoenell, W.; Abramo, L. R.; Akras, S.; Alcaniz, J. S.; Artola, R.; Beroiz, M.; Bonoli, S.; Cabral, J.; Camuccio, R.; Castillo, M.; Chavushyan, V.; Coelho, P.; Colazo, C.; Costa-Duarte, M. V.; Cuevas Larenas, H.; DePoy, D. L.; Domínguez Romero, M.; Dultzin, D.; Fernández, D.; García, J.; Girardini, C.; Gonçalves, D. R.; Gonçalves, T. S.; Gurovich, S.; Jiménez-Teja, Y.; Kanaan, A.; Lares, M.; Lopes de Oliveira, R.; López-Cruz, O.; Marshall, J. L.; Melia, R.; Molino, A.; Padilla, N.; Peñuela, T.; Placco, V. M.; Quiñones, C.; Ramírez Rivera, A.; Renzi, V.; Riguccini, L.; Ríos-López, E.; Rodriguez, H.; Sampedro, L.; Schneiter, M.; Sodré, L.; Starck, M.; Torres-Flores, S.; Tornatore, M.; Zadrożny, A.

    2017-10-01

    We present the results of prompt optical follow-up of the electromagnetic counterpart of the gravitational-wave event GW170817 by the Transient Optical Robotic Observatory of the South Collaboration. We detected highly significant dimming in the light curves of the counterpart ({{Δ }}g=0.17+/- 0.03 mag, {{Δ }}r=0.14+/- 0.02 mag, {{Δ }}I=0.10+/- 0.03 mag) over the course of only 80 minutes of observations obtained ˜35 hr after the trigger with the T80-South telescope. A second epoch of observations, obtained ˜59 hr after the event with the EABA 1.5 m telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this event was a “blue kilonova” relatively free of lanthanides.

  17. Evaluation of Galvanic Vestibular Stimulation System

    Science.gov (United States)

    Kofman, I. S.; Warren, E.; DeSoto, R.; Moroney, G.; Chastain, J.; De Dios, Y. E.; Gadd, N.; Taylor, L.; Peters, B. T.; Allen, E.; hide

    2017-01-01

    Microgravity exposure results in an adaptive central reinterpretation of information from multiple sensory sources to produce a sensorimotor state appropriate for motor actions in this unique environment, but this new adaptive state is no longer appropriate for the 1-g gravitational environment on Earth. During these gravitational transitions, astronauts experience deficits in both perceptual and motor functions including impaired postural control, disruption in spatial orientation, impaired control of locomotion that include alterations in muscle activation variability, modified lower limb kinematics, alterations in head-trunk coordination as well as reduced dynamic visual acuity. Post-flight changes in postural and locomotor control might have adverse consequences if a rapid egress was required following a long-duration mission, where support personnel may not be available to aid crewmembers. The act of emergency egress includes, but is not limited to standing, walking, climbing a ladder, jumping down, monitoring displays, actuating discrete controls, operating auxiliary equipment, and communicating with Mission Control and recovery teams while maintaining spatial orientation, mobility and postural stability in order to escape safely. The average time to recover impaired postural control and functional mobility to preflight levels of performance has been shown to be approximately two weeks after long-duration spaceflight. The postflight alterations are due in part to central reinterpretation of vestibular information caused by exposure to microgravity. In this study we will use a commonly used technique of transcutaneous electrical stimulation applied across the vestibular end organs (galvanic vestibular stimulation, GVS) to disrupt vestibular function as a simulation of post-flight disturbances. The goal of this project is an engineering human-in-the-loop evaluation of a device that can degrade performance of functional tasks (e.g. to maintain upright balance

  18. Comparison of galvanic displacement and electroless methods for ...

    Indian Academy of Sciences (India)

    Abstract. Gold nanoparticles have been deposited on synthetic calcite substrate by galvanic displacement reaction and electroless deposition methods. A comparative study has shown that electroless deposition is superior compared to galvanic displacement reaction for uniform deposition of gold nanoparticles on calcite.

  19. Tropical Weather Resistant Galvanized Steel Coated and Uncoated

    Directory of Open Access Journals (Sweden)

    Suárez-Corrales Xenia Isbel

    2014-01-01

    Full Text Available The corrosion behavior of coated and uncoated galvanized steel products is determined by exposing them to accelerated and natural climatic test. Accelerated tests were carried out in climatic chambers and natural atmospheric test in a marine-coastal station (Cojimar. The influence of tropical humid climate on these products is determined. Adhesion is an important property for a good performance, from the decorative point of view or as an additional protection. The evaluation indicates that 95% of the galvanized steel products show a good corrosion resistance; although 71% of coated galvanized products and 100% of painted galvanized products do not cover the requirements with respect to the mechanical and corrosion protection aspects. For a good efficiency and economic performance of metal mechanical industry, a correct surface treatment and coating application is required. A key point is to increase the quality by improving a better corrosion protective performance respecting uncoated galvanized steel.

  20. Biliary lithotripsy with a new electromagnetic shock wave source. A 2-year clinical experience.

    Science.gov (United States)

    Wehrmann, T; Hurst, A; Lembcke, B; Jung, M; Caspary, W

    1993-11-01

    During a two-year study period 170 consecutive patients with gallbladder stones, suitable for lithotripsy, were treated with a new electromagnetic lithotriptor (Modulith) and oral bile acids; 142 patients were treated as outpatients. Sufficient fragmentation were obtained in 94% when 2112 +/- 137 shocks in 211 sessions with an energy setting of 17.8 +/- 0.8 kV were administered. Only 4/170 patients needed transient analgesia. Overall, side effects were transient and mild, but three patients developed biliary pancreatitis, which was treated by endoscopic sphincterotomy in two of them. A total of 67/100 patients were free of stones after one year. Subgroup analysis showed that 80% of the patients (stone diameter 5-20 mm), 64% (20-30 mm) and 65% (multiple stones), respectively, can expected to be free of stones after 12 months. In addition, 25 patients with large, endoscopically not extractable common bile duct stones were treated by lithotripsy with the Modulith. After endoscopic placement of a nasobiliary tube, stone targeting was possible by ultrasonography in 14 patients and by fluoroscopy in another 11 cases. In 23 of the 25 patients (92%) stone clearance by endoscopy was achieved after application of 2516 +/- 565 shocks with an energy preset of 18 kV. One patient refused further endoscopic procedures after successful fragmentation and another required local stone dissolution therapy. Side effects occurred more frequently (P Modulith thus enables safe and highly effective lithotripsy of gallbladder calculi on an outpatient basis.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Galvanic vestibular stimulation speeds visual memory recall.

    Science.gov (United States)

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement.

  2. Outdoor and indoor sources of residential radiofrequency electromagnetic fields, personal cell phone and cordless phone use, and cognitive function in 5-6 years old children

    NARCIS (Netherlands)

    Guxens, Mònica; Vermeulen, Roel; van Eijsden, Manon; Beekhuizen, Johan; Vrijkotte, Tanja G. M.; van Strien, Rob T.; Kromhout, Hans; Huss, Anke

    2016-01-01

    Little is known about the exposure of young children to radiofrequency electromagnetic fields (RF-EMF) and potentially associated health effects. We assessed the relationship between residential RF-EMF exposure from mobile phone base stations, residential presence of indoor sources, personal cell

  3. Outdoor and indoor sources of residential radiofrequency electromagnetic fields, personal cell phone and cordless phone use, and cognitive function in 5-6 years old children

    NARCIS (Netherlands)

    Guxens, Mònica; Vermeulen, Roel|info:eu-repo/dai/nl/216532620; van Eijsden, Manon; Beekhuizen, Johan|info:eu-repo/dai/nl/34472641X; Vrijkotte, Tanja G M; van Strien, Rob T; Kromhout, Hans|info:eu-repo/dai/nl/074385224; Huss, Anke|info:eu-repo/dai/nl/331385880

    2016-01-01

    BACKGROUND: Little is known about the exposure of young children to radiofrequency electromagnetic fields (RF-EMF) and potentially associated health effects. We assessed the relationship between residential RF-EMF exposure from mobile phone base stations, residential presence of indoor sources,

  4. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  5. Application of the Method of Auxiliary Sources for the Analysis of Electromagnetic Scattering by Impedance Spheres

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2002-01-01

    The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....

  6. Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states

    International Nuclear Information System (INIS)

    Power, E.A.; Thirunamachandran, T.

    1993-01-01

    Spatial correlations between electromagnetic fields arising from neutral sources with electric-dipole transition moments are calculated using nonrelativistic quantum electrodynamics in the multipolar formalism. Expressions for electric-electric, magnetic-magnetic, and electric-magnetic correlation functions at two points r and r' are given for a source molecule in either a ground or an excited state. In contrast to the electric-electric and magnetic-magnetic cases there are no electric-magnetic correlations for a ground-state molecule. For an excited molecule the downward transitions contribute additional terms which have modulating factors depending on (r-r')/λ. From these correlation functions electric and magnetic energy densities are found by setting r=r'. These energy densities are then used in a response formalism to calculate intermolecular energy shifts. In the case of two ground-state molecules this leads to the Casimir-Polder potential. However, for a pair of molecules, one or both excited, there are additional terms arising from downward transitions. An important feature of these energies is that they exhibit an R -2 dependence for large intermolecular separations R. This dependence is interpreted in terms of the Poynting vector, which itself can be obtained by setting r=r' in the electric-magnetic correlation function

  7. Residential proximity to electromagnetic field sources and birth weight: Minimizing residual confounding using multiple imputation and propensity score matching.

    Science.gov (United States)

    de Vocht, Frank; Lee, Brian

    2014-08-01

    Studies have suggested that residential exposure to extremely low frequency (50 Hz) electromagnetic fields (ELF-EMF) from high voltage cables, overhead power lines, electricity substations or towers are associated with reduced birth weight and may be associated with adverse birth outcomes or even miscarriages. We previously conducted a study of 140,356 singleton live births between 2004 and 2008 in Northwest England, which suggested that close residential proximity (≤ 50 m) to ELF-EMF sources was associated with reduced average birth weight of 212 g (95%CI: -395 to -29 g) but not with statistically significant increased risks for other adverse perinatal outcomes. However, the cohort was limited by missing data for most potentially confounding variables including maternal smoking during pregnancy, which was only available for a small subgroup, while also residual confounding could not be excluded. This study, using the same cohort, was conducted to minimize the effects of these problems using multiple imputation to address missing data and propensity score matching to minimize residual confounding. Missing data were imputed using multiple imputation using chained equations to generate five datasets. For each dataset 115 exposed women (residing ≤ 50 m from a residential ELF-EMF source) were propensity score matched to 1150 unexposed women. After doubly robust confounder adjustment, close proximity to a residential ELF-EMF source remained associated with a reduction in birth weight of -116 g (95% confidence interval: -224:-7 g). No effect was found for proximity ≤ 100 m compared to women living further away. These results indicate that although the effect size was about half of the effect previously reported, close maternal residential proximity to sources of ELF-EMF remained associated with suboptimal fetal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Analysis of the numerical results of the melting paraffin corks, ensuring the safe operation of the pipeline using a mobile source of electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    Titarenko Vera

    2017-01-01

    Full Text Available For the safe operation of the pipeline, ensuring its smooth operation was conducted analysis of the results of numerical simulation of melting of paraffin jams with using a mobile source of electromagnetic radiation. Carried out varying different parameters of the radiation source, the peculiarities of its movement, the nature of the change of geometry of the boundary of melting of paraffin plugs under different external conditions

  9. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    Science.gov (United States)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVelectromagnetic emission of such plasmas, in the optical/X-ray domain. Fast Silicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02atoms/molecules in the plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  10. Application of a generalized Leibniz rule for calculating electromagnetic fields within continuous source regions

    International Nuclear Information System (INIS)

    Silberstein, M.

    1991-01-01

    In deriving the electric and magnetic fields in a continuous source region by differentiating the vector potential, Yaghjian (1985) explains that the central obstacle is the dependence of the integration limits on the differentiation variable. Since it is not mathematically rigorous to assume the curl and integral signs are interchangeable, he uses an integration variable substitution to circumvent this problematic dependence. Here, an alternative derivation is presented, which evaluates the curl of the vector potential volume integral directly, retaining the dependence of the limits of integration on the differentiation variable. It involves deriving a three-dimensional version of Leibniz' rule for differentiating an integral with variable limits of integration, and using the generalized rule to find the Maxwellian and cavity fields in the source region. 7 refs

  11. Feature Extraction for BCIs Based on Electromagnetic Source Localization and Multiclass Filter Bank Common Spatial Patterns.

    Science.gov (United States)

    Zaitcev, Aleksandr; Cook, Greg; Wei Liu; Paley, Martyn; Milne, Elizabeth

    2015-08-01

    Brain-Computer Interfaces (BCIs) provide means for communication and control without muscular movement and, therefore, can offer significant clinical benefits. Electrical brain activity recorded by electroencephalography (EEG) can be interpreted into software commands by various classification algorithms according to the descriptive features of the signal. In this paper we propose a novel EEG BCI feature extraction method employing EEG source reconstruction and Filter Bank Common Spatial Patterns (FBCSP) based on Joint Approximate Diagonalization (JAD). The proposed method is evaluated by the commonly used reference EEG dataset yielding an average classification accuracy of 77.1 ± 10.1 %. It is shown that FBCSP feature extraction applied to reconstructed source components outperforms conventional CSP and FBCSP feature extraction methods applied to signals in the sensor domain.

  12. Viscoelastic Fluid over a Stretching Sheet with Electromagnetic Effects and Nonuniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2010-01-01

    Full Text Available A magnetic hydrodynamic (MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f''(0 and θ'(0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A* may decrease the heat transfer effects.

  13. Simulation of the electromagnetic field in a cylindrical cavity of an ECR ions source

    Science.gov (United States)

    Estupiñán, A.; Orozco, E. A.; Dugar-Zhabon, V. D.; Murillo Acevedo, M. T.

    2017-12-01

    Now there are numerous sources for multicharged ions production, each being designed for certain science or technological objectives. Electron cyclotron resonance ion sources (ECRIS) are best suited for designing heavy ion accelerators of very high energies, because they can generate multicharged ion beams at relatively great intensities. In these sources, plasma heating and its confinement are effected predominantly in minimum-B magnetic traps, this type of magnetic trap consist of two current coils used for the longitudinal magnetic confinement and a hexapole system around the cavity to generate a transversal confinement of the plasma. In an ECRIS, the electron cyclotron frequency and the microwave frequency are maintained equal on a quasi-ellipsoidal surface localized in the trap volume. It is crucial to heat electrons to energies sufficient to ionize K- and L-levels of heavy atoms. In this work, we present the preliminary numerical results concerning the space distribution of TE 111 microwave field in a cylindrical cavity. The 3D microwave field is calculated by solving the Maxwell equations through the Yee’s method. The magnetic field of minimum-B configuration is determined using the Biot-Savart law. The parameters of the magnetic system are that which guarantee the ECR surface location in a zone of a reasonably high microwave tension. Additionally, the accuracy of electric and magnetic fields calculations are checked.

  14. Maternal residential proximity to sources of extremely low frequency electromagnetic fields and adverse birth outcomes in a UK cohort.

    Science.gov (United States)

    de Vocht, Frank; Hannam, Kimberly; Baker, Philip; Agius, Raymond

    2014-04-01

    Studies have suggested that exposure to extremely low frequency electromagnetic fields (ELF-EMF) may be associated with increased risk of adverse birth outcomes. This study tested the hypothesis that close proximity to residential ELF-EMF sources is associated with a reduction in birth weight and increased the risk of low birthweight (LBW), small for gestational age (SGA) and spontaneous preterm birth (SPTB). Closest residential proximity to high voltage cables, overhead power lines, substations or towers during pregnancy was calculated for 140356 singleton live births between 2004 and 2008 in Northwest England. Associations between proximity and risk for LBW, SGA and SPTB were calculated, as well as associations with birth weight directly. Associations were adjusted for maternal age, ethnicity, parity and for part of the population additionally for maternal smoking during pregnancy. Reduced average birth weight of 212 g (95% confidence interval (CI): -395 to -29 g) was found for close proximity to a source, and was largest for female births (-251 g (95% CI: -487 to -15 g)). No statistically significant increased risks for any clinical birth outcomes with residential proximity of 50 m or less were observed. Living close (50 m or less) to a residential ELF-EMF source during pregnancy is associated with suboptimal growth in utero, with stronger effects in female than in males. However, only a few pregnant women live this close to high voltage cables, overhead power lines, substations or towers, likely limiting its public health impact. © 2014 Wiley Periodicals, Inc.

  15. Estimating the power-law distribution of Earth electrical conductivity from low-frequency, controlled-source electromagnetic responses

    Science.gov (United States)

    Beskardes, G. D.; Weiss, C. J.; Everett, M. E.

    2017-02-01

    Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Quantifying the relationship between multiscale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. We present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, supporting the notion of a `rough geology' exhibiting multiscale hierarchical structure. Bounded by end member cases from homogenized isotropic and anisotropic media, we present numerical modelling results of the electromagnetic responses of textured and spatially correlated, stochastic geologic media, demonstrating that the electromagnetic response is a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed. Our modelling results show that these electromagnetic responses due to spatially correlated geologic textures are examples of fractional Brownian motion. Furthermore, our results suggest that the fractal behaviour of the electromagnetic responses is correlated with degree of the spatial correlation, the contrasts in ground conductivity, and the preferred orientation of small-scale heterogeneity. In addition, the EM responses acquired across a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity also support our inferences from numerical modelling.

  16. Microsoft C#.NET program and electromagnetic depth sounding for large loop source

    Science.gov (United States)

    Prabhakar Rao, K.; Ashok Babu, G.

    2009-07-01

    A program, in the C# (C Sharp) language with Microsoft.NET Framework, is developed to compute the normalized vertical magnetic field of a horizontal rectangular loop source placed on the surface of an n-layered earth. The field can be calculated either inside or outside the loop. Five C# classes with member functions in each class are, designed to compute the kernel, Hankel transform integral, coefficients for cubic spline interpolation between computed values and the normalized vertical magnetic field. The program computes the vertical magnetic field in the frequency domain using the integral expressions evaluated by a combination of straightforward numerical integration and the digital filter technique. The code utilizes different object-oriented programming (OOP) features. It finally computes the amplitude and phase of the normalized vertical magnetic field. The computed results are presented for geometric and parametric soundings. The code is developed in Microsoft.NET visual studio 2003 and uses various system class libraries.

  17. Analysis of Postural Control Adaptation During Galvanic and Vibratory Stimulation

    National Research Council Canada - National Science Library

    Fransson, P

    2001-01-01

    The objective for this study was to investigate whether the postural control adaptation during galvanic stimulation of the vestibular nerve were similar to that found during vibration stimulation to the calf muscles...

  18. The Role of Electrical Anisotropy in Modeling and Interpreting Controlled-Source Electromagnetic Responses for Hydraulic Fracture Monitoring

    Science.gov (United States)

    Trevino, S., III; Hickey, M. S.; Everett, M. E.

    2017-12-01

    Controlled-Source Electromagnetics (CSEM) can be used to monitor the movement and extent of injection fluid during a hydraulic fracture. The response of the fluid to energization by a CSEM source is dependent upon the electrical conductivity difference between the fluid and background geological formation. An important property that must be taken into account when modeling and interpreting CSEM responses is that electrical conductivity may be anisotropic. We study the effect of electrical anisotropy in both the background formation and the fluid-injection zone. First, various properties of the background formation can affect anisotropy including variations in grain size, composition and bedding-plane orientation. In certain formations, such as shale, the horizontal component of the conductivity can be more than an order of magnitude larger than the vertical component. We study this effect by computing differences in surface CSEM responses using the analytic 1-D anisotropic primary solution of a horizontal electric dipole positioned at the surface. Second, during hydraulic fracturing, the injected fluid can create new fractures and infill existing natural fractures. To include the explicit fracture geometry in modeling, a large increase in the number of nodes and computational time is required which may not be feasible. An alternative is to instead model the large-scale fracture geometry as a uniform slab with an appropriate bulk conductivity. Micro-scale fracture geometry may cause preferential fluid propagation in a single direction or plane which can be represented by electrical anisotropy of the slab. To study such effects of bulk anisotropy on CSEM responses we present results from multiple scenarios of surface to surface hydraulic fracture monitoring using 3-D finite element modeling. The model uses Coulomb-gauged potentials to solve Maxwell's equations in the frequency domain and we have updated the code to allow a triaxial electrical conductivity tensor to

  19. Computational Electromagnetics

    CERN Document Server

    Rylander, Thomas; Bondeson, Anders

    2013-01-01

    Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understan...

  20. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  1. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  2. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  3. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  4. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand

    Science.gov (United States)

    Schwalenberg, Katrin; Rippe, Dennis; Koch, Stephanie; Scholl, Carsten

    2017-05-01

    Marine controlled source electromagnetic (CSEM) data have been collected to investigate methane seep sites and associated gas hydrate deposits at Opouawe Bank on the southern tip of the Hikurangi Margin, New Zealand. The bank is located in about 1000 m water depth within the gas hydrate stability field. The seep sites are characterized by active venting and typical methane seep fauna accompanied with patchy carbonate outcrops at the seafloor. Below the seeps, gas migration pathways reach from below the bottom-simulating reflector (at around 380 m sediment depth) toward the seafloor, indicating free gas transport into the shallow hydrate stability field. The CSEM data have been acquired with a seafloor-towed, electric multi-dipole system measuring the inline component of the electric field. CSEM data from three profiles have been analyzed by using 1-D and 2-D inversion techniques. High-resolution 2-D and 3-D multichannel seismic data have been collected in the same area. The electrical resistivity models show several zones of highly anomalous resistivities (>50 Ωm) which correlate with high amplitude reflections located on top of narrow vertical gas conduits, indicating the coexistence of free gas and gas hydrates within the hydrate stability zone. Away from the seeps the CSEM models show normal background resistivities between 1 and 2 Ωm. Archie's law has been applied to estimate gas/gas hydrate saturations below the seeps. At intermediate depths between 50 and 200 m below seafloor, saturations are between 40 and 80% and gas hydrate may be the dominating pore filling constituent. At shallow depths from 10 m to the seafloor, free gas dominates as seismic data and gas plumes suggest.

  5. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  6. Gas hydrate occurrences in the Danube Delta, Western Black Sea: Results from 2D and 3D controlled source electromagnetics

    Science.gov (United States)

    Schwalenberg, Katrin; Hölz, Sebastian; Gehrmann, Romina; Rippe, Dennis; Dannowski, Anke; Zander, Timo; Duan, Shuangmin; Jegen, Marion; Bialas, Jörg

    2017-04-01

    Marine controlled source electromagnetic (CSEM) data have been collected over gas hydrate targets in the Danube Delta off the coasts of Bulgaria and Romania in early 2014 during voyage MSM35 on R/V Maria S. MERIAN. The cruise was part of the German SUGAR Project, a joint venture project with the goal to study submarine gas hydrates as a source of methane. Within European waters the Black Sea is one of the most prospective hydrocarbon areas. Thick sedimentary basins, the existence of an extended gas hydrate stability zone and the observation of multiple bottom simulating reflectors (BSR) in the western part indicate a huge gas hydrate potential in sandy sediments. Low pore-water salinities between 1 and 4 ppt have been observed in borehole data at depths below 30 mbsf, and are attributed to sea level low stands in the past. 2D and 3D CSEM data sets have been collected over one of the channel levee systems of the Danube Delta fan. High-resolution 2D and 3D seismic, and OBS data are available in the same target area providing structural information and porosity profiles from seismic velocity data. Analysis of subsets of the 3D CSEM data reveal pore-water salinities around 4 ppt for the shallow sediment section, thus are not as low as suggested by the borehole data. The inversion of both 2D and 3D CSEM data sets reveal highly anomalous resistivities within the gas hydrate stability field. We believe that high gas hydrate saturations are the likely cause, as low pore-water salinities are not sufficient to explain the high resistivities, seismic data indicate no clear gas migration pathways through the stability field, nor do hydro-acoustic data show areas of gas seepage which are confined to the landward edge of the stability field. Estimates of the gas hydrate saturation are commonly derived from Archie's Law, and strongly depend on the proper choice of input parameters. We apply porosities from seismic velocity profiles, pore-water resistivities derived from salinity

  7. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site......-specific, ragged sonic landscape. The work exhibits intrinsic, non-trivial, emerging behaviour, cyclic or wave-like, which converges and ebbs. It varies its sonic and visual display through a dynamic interaction of light sources, fog and light sensors. The system maintains a fluxing state of ambivalence between...

  8. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  9. Purely electromagnetic spacetimes

    OpenAIRE

    Ivanov, B. V.

    2007-01-01

    Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.

  10. Environmental assessment of the hot-dip galvanization processes

    Directory of Open Access Journals (Sweden)

    T. Karkoszka

    2017-01-01

    Full Text Available Processes of the hot-dip galvanization, refraining from application of dangerous chemical substances together with the necessity of ensuring the high temperatures, both pose a special threat to the environment. Therefore, the subject of analysis was environmental impact of the hot-dip galvanization process. Here has been done the identification and the assessment of the environmental aspects as well as has been pointed at the key-aspects requiring the special supervision. The developed assessment methodology can be applied by each of the organization wanting to master the processes by minimizing their environmental influence.

  11. 76 FR 21914 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  12. Intraoral galvanic corrosion: literature review and case report.

    Science.gov (United States)

    Meyer, R D; Meyer, J; Taloumis, L J

    1993-02-01

    This article reviewed the dental history of a patient with symptomatic electro-chemical reactions after the occlusal relationship of an existing complete gold crown and silver amalgam restoration was changed. A literature review of oral galvanism is presented with diagnostic techniques and treatment options.

  13. An Easy-to-Assemble Three-Part Galvanic Cell

    Science.gov (United States)

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  14. Dissolved oxygen detection by galvanic displacement-induced ...

    Indian Academy of Sciences (India)

    This paper proposed a simple, efficient and sensitive electrochemical sensor for dissolved oxygen (DO) detection based on a galvanic displacement synthesized reduced graphene oxide–silver nanoparticles (RGO/Ag) composite modified grassy carbon electrode (GCE). The synthesized RGO/Ag nanocomposite was ...

  15. Effects of galvanic distortions on magnetotelluric data: Interpretation ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    quasi-static character that causes vertical shifts in MT apparent resistivity curves called “static shift”. The static shift does not have any effects on the phase variations. Usually the galvanic effects are found to be dominant in MT data except the strong induction effects obtained near deep elon- gated depression filled with ...

  16. Radiation and propagation of electromagnetic waves

    CERN Document Server

    Tyras, George; Declaris, Nicholas

    1969-01-01

    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  17. Electromagnetic effects as a new source of information on the space-time evolution of heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Davis Nikolaos

    2017-01-01

    Full Text Available We review our studies of spectator-induced electromagnetic (EM effects on charged pion emission in ultrarelativistic heavy ion collisions. These effects are found to consist in the electromagnetic charge splitting of pion directed flow as well as very large distortions in spectra and ratios of produced charged particles. As it emerges from our analysis, they offer sensitivity to the actual distance, dE, between the pion formation zone at freeze-out and the spectator matter. As a result, this offers a new possibility of studying the space-time evolution of dense and hot matter created in the course of the collision. Having established that dE traces the longitudinal evolution of the system and therefore rapidly decreases as a function of pion rapidity, we investigate the latter finding in view of pion feed-over from intermediate resonance production. As a result, we obtain a first estimate of the pion decoupling time from EM effects which we compare to existing HBT data. We conclude that spectator-induced EM interactions can serve as a new tool for studying the space-time characteristics and longitudinal evolution of the system. We discuss the future perspectives for this activity on the basis of existing and future data from the NA61/SHINE experiment.

  18. Electromagnetism and Gravitation

    OpenAIRE

    Dalton, Kenneth

    1995-01-01

    The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.

  19. Cross-Beam Laser Joining of AA 6111 to Galvanized Steel in a Coach Peel Configuration

    Science.gov (United States)

    Yang, Guang; Mohammadpour, Masoud; Yazdian, Nima; Ma, Junjie; Carlson, Blair; Wang, Hui-Ping; Kovacevic, Radovan

    2017-06-01

    Cross-beam laser joining of aluminum alloy 6111 to hot-dip galvanized steel in the coach-peel configuration was investigated with the addition of AA 4047 filler wire. The filler material was not only brazed onto the galvanized steel but also partially fusion-welded with the aluminum panel. Through adjusting the laser power to 3.4 kW, a desirable wetting and spreading of filler wire on both panel surfaces could be achieved, and the thickness of intermetallic layer in the middle section of the interface between the weld bead and steel was less than 2 μm. To better understand the solid/liquid interfacial reaction at the brazing interface, two rotary Gaussian heat source models were introduced to simulate the temperature distribution in the molten pool by using the finite element method. Joint properties were examined in terms of microstructure and mechanical properties. During the tensile test, the fracture of coupons took place at the aluminum side rather than along the interface between the intermetallic layer and steel panel. No failure occurred during the three-point bending test.

  20. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    Science.gov (United States)

    Yang, Shanglu

    In order to meet the industry demands for increased fuel efficiency and enhanced mechanical and structural performance of vehicles as well as provided excellent corrosion resistance, more and more galvanized advanced high-strength steels (AHSS) have been used to fabricate automobile parts such as panels, bumpers, and front rails. The automotive industry has shown tremendous interest in using laser welding to join galvanized dual phase steels because of lower heat input and higher welding speed. However, the laser welding process tends to become dramatically unstable in the presence of highly pressurized zinc vapor because of the low boiling point of zinc, around 906°C, compared to higher melting point of steel, over 1500°C. A large number of spatters are produced by expelling the liquid metal from the molten pool by the pressurized zinc vapor. Different weld defects such as blowholes and porosities appear in the welds. So far, limited information has been reported on welding of galvanized high strength dual-phase steels in a gap-free lap joint configuration. There is no open literature on the successful attainment of defect-free welds from the laser or hybrid welding of galvanized high-strength steels. To address the significant industry demand, in this study, different welding techniques and monitoring methods are used to study the features of the welding process of galvanized DP steels in a gap-free lap joint configuration. The current research covers: (i) a feasibility study on the welding of galvanized DP 980 steels in a lap joint configuration using gas tungsten arc welding (GTAW), laser welding, hybrid laser/arc welding with the common molten pool, laser welding with the assistance of GTAW preheating source and hybrid laser-variable polarity gas tungsten arc welding (Laser-VPGTAW) techniques (Chapter 2-4); (ii) a welding process monitoring of the welding techniques including the use of machine vision and acoustic emission technique (Chapter 5); (iii

  1. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  2. Clinical management of galvanic current between gold and amalgam.

    Science.gov (United States)

    Williamson, R

    1996-01-01

    Placing a strip of rubber dam or similar insulator between the contacting dissimilar restorations is a diagnostic technique for relieving and evaluating painful galvanic currents. Treatment modalities vary according to severity of pain. In cases of little or no pain, nothing is done, and corrosion products are allowed to form an insulating cover over the offending restoration. For patients with severe pain that does not improve, treatment may consist of placing a composite restoration in the amalgam restoration to break the interproximal dissimilar-metal contact. For painful currents caused by occluding restorations, a coating of unfilled light-cured resin over the offending amalgam breaks the metal contact and allows corrosion product buildup. Galvanic currents can occur and cause pain, but this is generally shortlived and should not influence the dentist's choice of an appropriate restorative material.

  3. Production of some coagulant materials from galvanizing workshop waste

    Energy Technology Data Exchange (ETDEWEB)

    Cici, M.; Cuci, Y. [Firat Univ., Elazig (Turkey). Dept. of Environmental Engineering

    1998-09-01

    The aim of this study was to investigate production of some coagulant reagents which have been widely used in all water coagulation treatments using galvanizing waste of the Karadeniz Iron-Steel Plant in Turkey. The waste sample was analyzed by atomic absorption spectrophotometry and a gravimetric procedure. With different techniques, ferric chloro sulfate, FeClSO{sub 4}, ferric sulfate, Fe{sub 2}(SO{sub 4}){sub 3}, sodium ferrate, Na{sub 2}FeO{sub 4} and potassium ferrate, K{sub 2}FeO{sub 4} were obtained from galvanizing waste under laboratory conditions. Then the composition of each reagent was identified by qualitative and quantitative analyses, separately.

  4. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  5. Use of Galvanic Vestibular Feedback for a Balance Prosthesis

    OpenAIRE

    Peterka, Robert J.

    2012-01-01

    Activation of vestibular afferents by a bilateral bipolar galvanic vestibular stimulus (GVS) evokes medial-lateral (ML) body sway. By applying a GVS feedback signal that is a function of measured ML head motion, the potential exists for GVS to restore a useful vestibular contribution to ML balance control in vestibular-deficient subjects who remain responsive to GVS. A key to developing an effective balance prosthesis using GVS is to determine the functional relationship between GVS and its i...

  6. Malayaite ceramic pigments prepared with galvanic sludge as colouring agent

    OpenAIRE

    Costa, Gracia; Ribeiro, Manuel J.; Labrincha, Joao A.; Dondi, Michele; Matteucci, Francesco; Cruciani, Giuseppe

    2008-01-01

    The synthesis and characterisation of chrome?-tin red malayaite Ca(Cr,Sn)SiO5 pigments are reported. The novel approach of using a galvanizing sludge from the Cr/Ni plating process as colouring agent is investigated. The ceramic pigments were prepared using common solid state reaction process, with optimisation of milling and firing conditions. Characterisation was done by x-?ray powder diffraction, diffuse reflectance spectroscopy, and application in standard ceramic glazes. The ceramic pigm...

  7. Reprocessing of zinc galvanic waste sludge by selective precipitation

    Czech Academy of Sciences Publication Activity Database

    Jandová, J.; Maixner, J.; Grygar, Tomáš

    2002-01-01

    Roč. 46, č. 2 (2002), s. 52-55 ISSN 0862-5468 R&D Projects: GA AV ČR IBS4032004; GA ČR GA203/99/0067 Institutional research plan: CEZ:AV0Z4032918; CEZ:MSM 223100002 Keywords : galvanic sludge * recovery * zinc Subject RIV: CA - Inorganic Chemistry Impact factor: 0.354, year: 2002

  8. Deformation and fatigue behavior of hot dip galvanized coatings

    International Nuclear Information System (INIS)

    Camurri, Carlos P.; Benavente, Raul G.; Roa, Isidoro S.; Carrasco, Claudia C.

    2005-01-01

    This paper reports on the results of a study of the effect of static and dynamic stresses on hot dip galvanized coatings on SAE 1020 steel substrates. Galvanizing was performed using baths maintained at 450 deg. C, the zinc containing 0.16% Ti and 0.02% Fe and with Al and Ni in the ranges 0-0.20% and 0-0.30%, respectively. Static three-point bend tests were conducted with applied stresses in the range 428-790 MPa. Dynamic bend-fatigue tests involved stresses in the range 228-578 MPa at a cyclic frequency of 0.25 Hz for up to 700 cycles. The total crack density in the coatings was measured before and after the tests using light optical and electron microscopy. The results showed that the crack density increased as the applied stress increased and crack propagation was promoted perpendicular to the substrate. The number of cycles had no effect on the crack density and propagation at stresses lower than 386 MPa. At higher stresses the number of applied cycles contributed only to crack propagation. It was concluded that the best bath composition for preventing fatigue crack propagation is one that minimized the formation of thinner brittle layers in the galvanized coatings

  9. A Galvanic Coupling Method for Assessing Hydration Rates

    Directory of Open Access Journals (Sweden)

    Clement Ogugua Asogwa

    2016-07-01

    Full Text Available Recent advances in biomedical sensors, data acquisition techniques, microelectronics and wireless communication systems opened up the use of wearable technology for ehealth monitoring. We introduce a galvanic coupled intrabody communication for monitoring human body hydration. Studies in hydration provide the information necessary for understanding the desired fluid levels for optimal performance of the body’s physiological and metabolic processes during exercise and activities of daily living. Current measurement techniques are mostly suitable for laboratory purposes due to their complexity and technical requirements. Less technical methods such as urine color observation and skin turgor testing are subjective and cannot be integrated into a wearable device. Bioelectrical impedance methods are popular but mostly used for estimating total body water with limited accuracy and sensitive to 800 mL–1000 mL change in body fluid levels. We introduce a non-intrusive and simple method of tracking hydration rates that can detect up to 1.30 dB reduction in attenuation when as little as 100 mL of water is consumed. Our results show that galvanic coupled intrabody signal propagation can provide qualitative hydration and dehydration rates in line with changes in an individual’s urine specific gravity and body mass. The real-time changes in galvanic coupled intrabody signal attenuation can be integrated into wearable electronic devices to evaluate body fluid levels on a particular area of interest and can aid diagnosis and treatment of fluid disorders such as lymphoedema.

  10. A hybrid finite-difference and integral-equation method for modeling and inversion of marine controlled-source electromagnetic data

    DEFF Research Database (Denmark)

    Yoon, Daeung; Zhdanov, Michael; Mattsson, Johan

    2016-01-01

    One of the major problems in the modeling and inversion of marine controlled-source electromagnetic (CSEM) data is related to the need for accurate representation of very complex geoelectrical models typical for marine environment. At the same time, the corresponding forward-modeling algorithms...... should be powerful and fast enough to be suitable for repeated use in hundreds of iterations of the inversion and for multiple transmitter/receiver positions. To this end, we have developed a novel 3D modeling and inversion approach, which combines the advantages of the finite-difference (FD......) and integral-equation (IE) methods. In the framework of this approach, we have solved Maxwell’s equations for anomalous electric fields using the FD approximation on a staggered grid. Once the unknown electric fields in the computation domain of the FD method are computed, the electric and magnetic fields...

  11. Inductive-pulsed power supplying system for a betatron electromagnet

    International Nuclear Information System (INIS)

    Otrubyannikov, Yu.A.; Safronov, A.S.

    1984-01-01

    Circuit of producing quasitriangular current pulses designed for the pulsed power supply system of betatron electromagnet is described. Introduction of additional winding into electromagnet provides circuit galvanic isolation, artificial commutation of basic circuit thyristors and inductive power input to the winding during thyristor commutation. The considered system is used for excitation of betatron electromagnet up to 18 MeV. Magnetic field energy equals 1100 Y. The maximal voltage in energy storage capacitor - 4.8 kV. Current amplitude in basic winding - 335 A. The number of loops in basic winding equals 80, in additional one - 32. Current pulse duration in electromagnet-3.8 ms. The system provides operation with controlled current pulse frequency from 0 up to 150 Hz. The maximal consumption power - 18 kW

  12. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 1: formative years, naturphilosophie, and galvanism.

    Science.gov (United States)

    Finger, Stanley; Piccolino, Marco; Stahnisch, Frank W

    2013-01-01

    During the 1790s, Alexander von Humboldt (1769-1859), who showed an early interest in many facets of natural philosophy and natural history, delved into the controversial subject of galvanism and animal electricity, hoping to shed light on the basic nature of the nerve force. He was motivated by his broad worldview, the experiments of Luigi Galvani, who favored animal electricity in more than a few specialized fishes, and the thinking of Alessandro Volta, who accepted specialized fish electricity but was not willing to generalize to other animals, thinking Galvani's frog experiments flawed by his use of metals. Differing from many German Naturphilosophen, who shunned "violent" experiments, the newest instruments, and detailed measurement, Humboldt conducted thousands of galvanic experiments on animals and animal parts, as well as many on his own body, some of which caused him great pain. He interpreted his results as supporting some but not all of the claims made by both Galvani and Volta. Notably, because of certain negative findings and phenomenological differences, he remained skeptical about the intrinsic animal force being qualitatively identical to true electricity. Hence, he referred to a "galvanic force," not animal electricity, in his letters and publications, a theoretical position he would abandon with Volta's help early in the new century.

  13. Exploration of the Electromagnetic Environment

    Science.gov (United States)

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  14. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  15. Electromagnetic Attraction.

    Science.gov (United States)

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  16. Exposure Perception as a Key Indicator of Risk Perception and Acceptance of Sources of Radio Frequency Electromagnetic Fields

    Science.gov (United States)

    Wiedemann, Peter M.; Brown, Tim W. C.

    2015-01-01

    The presented survey was conducted in six European countries as an online study. A total of 2454 subjects participated. Two main research questions were investigated: firstly, how does the cognitive, moral, and affective framing of radio frequency electromagnetic field (RF EMF) exposure perception influence RF EMF risk perception? Secondly, can the deployment of mobile phone base stations have greater acceptance with RF EMF exposure reduction? The findings with respect to the first question clearly indicated that the cognitive framed exposure perception is the main determinant of RF EMF risk perception. The concomitant sensitivity to exposure strength offers an opportunity to improve the acceptance of base stations by exposure reduction. A linear regression analysis supported this assumption: in a fictional test situation, exposure reduction improved the acceptance of base stations, operationalized as the requested distance of the base station from one's own home. Furthermore, subjects with high RF EMF risk perception were most sensitive to exposure reduction. On average, a 70% exposure reduction reduced the requested distance from about 2000 meters to 1000 meters. The consequences for risk communication are discussed. PMID:26229540

  17. Exposure Perception as a Key Indicator of Risk Perception and Acceptance of Sources of Radio Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Frederik Freudenstein

    2015-01-01

    Full Text Available The presented survey was conducted in six European countries as an online study. A total of 2454 subjects participated. Two main research questions were investigated: firstly, how does the cognitive, moral, and affective framing of radio frequency electromagnetic field (RF EMF exposure perception influence RF EMF risk perception? Secondly, can the deployment of mobile phone base stations have greater acceptance with RF EMF exposure reduction? The findings with respect to the first question clearly indicated that the cognitive framed exposure perception is the main determinant of RF EMF risk perception. The concomitant sensitivity to exposure strength offers an opportunity to improve the acceptance of base stations by exposure reduction. A linear regression analysis supported this assumption: in a fictional test situation, exposure reduction improved the acceptance of base stations, operationalized as the requested distance of the base station from one’s own home. Furthermore, subjects with high RF EMF risk perception were most sensitive to exposure reduction. On average, a 70% exposure reduction reduced the requested distance from about 2000 meters to 1000 meters. The consequences for risk communication are discussed.

  18. Electromagnetic source imaging using simultaneous scalp EEG and intracranial EEG: An emerging tool for interacting with pathological brain networks.

    Science.gov (United States)

    Hosseini, Seyed Amir Hossein; Sohrabpour, Abbas; He, Bin

    2018-01-01

    The goal of this study is to investigate the performance, merits and limitations of source imaging using intracranial EEG (iEEG) recordings and to compare its accuracy to the results of EEG source imaging. Accuracy in this study, is measured both by determining the location and inter-nodal connectivity of underlying brain networks. Systematic computer simulation studies are conducted to evaluate iEEG-based source imaging vs. EEG-based source imaging, and source imaging using both EEG and iEEG. To test the source imaging models, networks of inter-connected nodes (in terms of activity) are simulated. The location of the network nodes is randomly selected within a realistic geometry head model and a connectivity link is created among these nodes based on a multi-variate auto-regressive (MVAR) model. Then the forward problem is solved to calculate the potentials at the electrodes and noise (white and correlated) is added to these simulated potentials to simulate realistic measurements. Subsequently, the inverse problem is solved and an algorithm based on principle component analysis is performed on the estimated source activities to determine the location of the simulated network nodes. The activity of these nodes (over time), is then extracted, and used to estimate the connectivity links among the mentioned nodes using Granger causality analysis. Source imaging based on iEEG recordings may or may not improve the accuracy in localization, depending on the number and location of active nodes relative to iEEG electrodes and to other nodes within the network. However, our simulation results suggest that combining EEG and iEEG modalities (simultaneous scalp and intracranial recordings) can improve the imaging accuracy significantly. While iEEG source imaging is useful in estimating the exact location of sources near the iEEG electrodes, combining EEG and iEEG recordings can achieve a more accurate imaging due to the high spatial coverage of the scalp electrodes and the

  19. Electromagnetic interactions

    CERN Document Server

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  20. Controllable galvanic synthesis of triangular Ag-Pd alloy nanoframes for efficient electrocatalytic methanol oxidation.

    Science.gov (United States)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Yu, Sijia; Chen, Junze; Liao, Yusen; Xue, Can

    2015-06-08

    Triangular Ag-Pd alloy nanoframes were successfully synthesized through galvanic replacement by using Ag nanoprisms as sacrificial templates. The ridge thickness of the Ag-Pd alloy nanoframes could be readily tuned by adjusting the amount of the Pd source during the reaction. These obtained triangular Ag-Pd alloy nanoframes exhibit superior electrocatalytic activity for the methanol oxidation reaction as compared with the commercial Pd/C catalyst due to the alloyed Ag-Pd composition as well as the hollow-framed structures. This work would be highly impactful in the rational design of future bimetallic alloy nanostructures with high catalytic activity for fuel cell systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Detection and elimination of the electromagnetic interferences in the neutron flux measurement circuit, Source Range; Deteccion y eliminacion de interferencias electromagneticas en el circuito de medicion de flujo neutronico, rango de fuente

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. M.; Esguivillas, L.; Valle, J. L.

    2010-07-01

    This paper compiles an experience in Asco I Nuclear Power Plant about electromagnetic interferences associated to the neutron flux measurement system, Source Range Asco I NPP. The circuit affected is the proportional detector (BF3) located outside the reactor vessel to measure the neutron leakage in shutdown and in start-up.

  2. Electromagnetic distance measurement

    CERN Document Server

    1967-01-01

    This book brings together the work of forty-eight geodesists from twenty-five countries. They discuss various new electromagnetic distance measurement (EDM) instruments - among them the Tellurometer, Geodimeter, and air- and satellite-borne systems - and investigate the complex sources of error.

  3. Investigation of the Solution Space of Marine Controlled-Source Electromagnetic Inversion Problems By Using a Genetic Algorithm

    Science.gov (United States)

    Hunziker, J.; Thorbecke, J.; Slob, E. C.

    2014-12-01

    Commonly, electromagnetic measurements for exploring and monitoring hydrocarbon reservoirs are inverted for the subsurface conductivity distribution by minimizing the difference between the actual data and a forward modeled dataset. The convergence of the inversion process to the correct solution strongly depends on the shape of the solution space. Since this is a non-linear problem, there exist a multitude of minima of which only the global one provides the correct conductivity values. To easily find the global minimum we desire it to have a broad cone of attraction, while it should also feature a very narrow bottom in order to obtain the subsurface conductivity with high resolution. In this study, we aim to determine which combination of input data corresponds to a favorable shape of the solution space. Since the solution space is N-dimensional, with N being the number of unknown subsurface parameters, plotting it is out of the question. In our approach, we use a genetic algorithm (Goldberg, 1989) to probe the solution space. Such algorithms have the advantage that every run of the same problem will end up at a different solution. Most of these solutions are expected to lie close to the global minimum. A situation where only few runs end up in the global minimum indicates that the solution space consists of a lot of local minima or that the cone of attraction of the global minimum is small. If a lot of runs end up with a similar data-misfit but with a large spread of the subsurface medium parameters in one or more direction, it can be concluded that the chosen data-input is not sensitive with respect to that direction. Compared to the study of Hunziker et al. 2014, we allow also to invert for subsurface boundaries and include more combinations of input datasets. The results so far suggest that it is essential to include the magnetic field in the inversion process in order to find the anisotropic conductivity values. ReferencesGoldberg, D. E., 1989. Genetic

  4. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  5. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  6. Optimal design of galvanic corrosion protection systems for offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Abrahamsen, Asger Bech; Stolpe, Mathias

    2018-01-01

    The current work addresses a mass/cost optimization procedure for galvanic anode cathodic protection (GACP) systems based on both cathodic protection (CP) standards and numerical simulation. An approach is developed for optimizing the number and dimensions of the galvanic anodes, distributing the...

  7. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis

    International Nuclear Information System (INIS)

    Gallego, Antolino; Gil, Jose F.; Vico, Juan M.; Ruzzante, Jose E.; Piotrkowski, Rosa

    2005-01-01

    Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process

  8. Finishes for Metals. Paintability of Galvanized Steel, Corrosion Resistance of Metallized Coatings.

    Science.gov (United States)

    Building Research Inst., Inc., Washington, DC.

    Two papers are presented. The first, "Report of the AISI Research Project on the Paintability of Galvanized Steel," was a project aimed at determining optimum procedures for painting bright-spangled galvanized sheet steel products using three classes of trade sales paints--metallic zinc-dust, portland cement-in-oil, and water base emulsion paints.…

  9. Contribution to the study of the influence of zinc bath composition on corrosion resistance of coatings obtained by galvanization

    International Nuclear Information System (INIS)

    Cabrillac, Claude

    1969-01-01

    This research thesis deals with the influence of zinc purity on the corrosion resistance of a coating obtained by galvanization, and on its effect on cathodic protection. This study therefore addresses methods and tests processes (notably salt spray test) aiming at assessing the efficiency of steel protection by hot galvanization, and aims at highlighting the influence of galvanization bath purity or composition on corrosion resistance of galvanized layers

  10. 77 FR 17427 - Notice of Final Determination of Sales at Less Than Fair Value: Galvanized Steel Wire From Mexico

    Science.gov (United States)

    2012-03-26

    ... Determination of Sales at Less Than Fair Value: Galvanized Steel Wire From Mexico AGENCY: Import Administration... the investigation of sales at less than fair value of galvanized steel wire (galvanized wire) from... Fair Value and Postponement of Final Determination, 76 FR 68422 (November 4, 2011) (Preliminary...

  11. Temperature Controlled Laser Joining of Aluminum to Galvanized Steel

    Science.gov (United States)

    Weller, Daniel; Simon, Jörg; Stritt, Peter; Weber, Rudolf; Graf, Thomas; Bezençon, Cyrille; Bassi, Corrado

    Reliable joining of 6000 series aluminum alloy to galvanized steel is a challenge for current manufacturing technologies. To control and limit the formation of brittle intermetallic phases, mixing of both metals in liquid state has to be avoided. It has been shown that laser weld-brazing is a possible process. Thereby the aluminum and zinc layer of the galvanized steel are molten and the steel remains solid during the process. In addition, to avoid zinc degassing, the aluminum melt bath temperature has to be below zinc boiling temperature of 907°C. To meet these requirements a temperature controlled laser process was developed, allowing to join the two materials without flux and filler material. The thickness of the intermetallic layer shows a dependency on the set temperature used to control the process. At optimum set temperature the thickness of intermetallic phases can be limited to about 5 μm. Tensile strengths of the joints of up to 75% of the aluminum base material were achieved.

  12. Gold recovery from organic solvents using galvanic stripping

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.; O`Keefe, T.J. [Univ. of Missouri, Rolla, MO (United States). Dept. of Metallurgical Engineering

    1995-08-01

    A novel process using solid metals for the direct reduction of more noble metal ions from solvent extraction organics has been developed. Base metals recovery has been the principal focus of investigations to date but feasibility tests have now also been made on galvanically stripping selected precious metals. In this study gold (III) was loaded from an aqueous HAuCl{sub 4}{center_dot}3H{sub 2}O solution into a mixed organic 40 vol.% TBP, 10 vol.% D2EHPA in kerosene. The direct precipitation of metallic gold from the loaded organic phase using zinc powder and iron, aluminum and copper slabs at 70 C was successfully demonstrated. The gold reduction rates were relatively fast even though the conductivity of the organic solutions is very low. The reaction rates were studied as a function of the variables zinc particulate size, oxygen and nitrogen atmosphere, water content in the organic phase, organic ratios and temperature. The gold morphology was usually powdery or dendritic in nature but continuous films were obtained in some instances. Activation energies were calculated and possible reaction mechanisms are discussed. In general, the results obtained were very promising and showed that gold can be successfully cemented from selected organic solvents by galvanic stripping using less noble solid metal reductants.

  13. External electromagnetic transient sources: analysis of its effect in underground power cables; Fuentes transitorias electromagneticas externas: analisis de su efecto en los cables de potencia subterraneos

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla Paz, Antonio

    2009-07-01

    In most of the electrical power systems that operate at present, the subterranean cables are only a complement. The cost of these cables is generally higher than the one of the aerial power lines, thus its use is restricted only to those areas where the construction of the aerial power lines is not feasible. It is estimated that for voltages lower than 110 kV this cost is up to seven times greater than the one of an aerial power line and for voltages higher than 380 kV it can be up to twenty times greater. Nevertheless, important reasons exist to construct a subterranean cable system such as: a) the fast growth of the urban centers and the industrial zones, which brings about restrictions of the rights of way for the construction of aerial power lines, b) the crossing of large water bodies, c) the congestion of aerial power lines near the generating substations or power plants, d) the crossing of air lines and e) the laws and the regulations, to mention some of them. The importance of the underground transmission systems of high and extra high voltage will be increased in the medium and the long term, therefore, it is considered that the effects of the external phenomena in these systems, like the inductions produced by the electromagnetic transient sources, will be more severe. In this research work the atmospheric discharges are defined as the external electromagnetic transient sources. The large dimension cables such as the power cables, behave as large collectors of the interferences produced by the atmospheric discharges, which can bring about damages in the components of a system. In order to avoid the damages and to increase the reliability of the subterranean cable systems it is necessary to use protective devices and appropriate insulation levels, mainly. If the phenomenon and the behavior of the system are properly represented, it is possible to more accurately determine the characteristics that the equipment must have to resist the over voltages and the

  14. Deep Controlled Source Electro-Magnetic Sensing: A Cost Effective, Long-Term Tool for Sequestration Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    LaBrecque, Douglas [Multi-Phase Technologies, LLC, Sparks, NV (United States); Brigham, Russell D. [Multi-Phase Technologies, LLC, Sparks, NV (United States); Schmidt-Hattenburger, Conny [GFZ German Research Centre for Geoscience, Potsdam (Germany); Um, Evan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petrov, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daley, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-01

    The proposed system was designed to operate as a permanent, autonomous monitoring and data collection system that can provide much higher temporal data density than can be achieved economically with 3-Dimensional (3D) seismic surveys. It can operate over broad areas for long periods of time providing full 3D data sets on a monthly basis at a very low cost. By borrowing techniques commonly used in marine CSEM, structural information from background seismic surveys can be incorporated into the CSEM modeling to provide high resolution models of CO2 progression within reservoirs. The system uses borehole-based vertical-electric-dipole sources placed at reservoir depths in the formation. The electric and magnetic fields induced by this source are received on the surface using an array of stations. The project was conducted in three phases. Phase I demonstrated the feasibility of the system to collect static/reference data at the Ketzin CO2 storage pilot site in Germany. In Phase I, numerical modeling was used to determine the optimal configurations and requirements for sensor sensitivity and data accuracy. Based on the model results, existing hardware and software were modified. The CSEM system was then field tested at the Ketzin site. The data were imaged and the results were compared with independent studies of the reservoir and overburden geo-electrical characteristics. Phase II demonstrated the ability to provide sensitive, cost-effective measurement of changes in reservoir properties and changes in the overlying formations using a second round of measurements at the Ketzin site. A prototype autonomous recording system was developed and tested as a subset of the measurement points. Phase III of the project quantified the advantages (and disadvantages) of the fully autonomous data collection subsystems by comparing them with repeated measurements made with mobile stations. The Phase III also provided an additional time point in measuring post

  15. Joint inversions of three types of electromagnetic data explicitly constrained by seismic observations: results from the central Okavango Delta, Botswana

    Science.gov (United States)

    Kalscheuer, Thomas; Blake, Sarah; Podgorski, Joel E.; Wagner, Frederic; Green, Alan G.; Maurer, Hansruedi; Jones, Alan G.; Muller, Mark; Ntibinyane, Ongkopotse; Tshoso, Gomotsang

    2015-09-01

    The Okavango Delta of northern Botswana is one of the world's largest inland deltas or megafans. To obtain information on the character of sediments and basement depths, audiomagnetotelluric (AMT), controlled-source audiomagnetotelluric (CSAMT) and central-loop transient electromagnetic (TEM) data were collected on the largest island within the delta. The data were inverted individually and jointly for 1-D models of electric resistivity. Distortion effects in the AMT and CSAMT data were accounted for by including galvanic distortion tensors as free parameters in the inversions. By employing Marquardt-Levenberg inversion, we found that a 3-layer model comprising a resistive layer overlying sequentially a conductive layer and a deeper resistive layer was sufficient to explain all of the electromagnetic data. However, the top of the basal resistive layer from electromagnetic-only inversions was much shallower than the well-determined basement depth observed in high-quality seismic reflection images and seismic refraction velocity tomograms. To resolve this discrepancy, we jointly inverted the electromagnetic data for 4-layer models by including seismic depths to an interface between sedimentary units and to basement as explicit a priori constraints. We have also estimated the interconnected porosities, clay contents and pore-fluid resistivities of the sedimentary units from their electrical resistivities and seismic P-wave velocities using appropriate petrophysical models. In the interpretation of our preferred model, a shallow ˜40 m thick freshwater sandy aquifer with 85-100 Ωm resistivity, 10-32 per cent interconnected porosity and Okavango Delta and borehole logs, the second and third layers may represent lacustrine sediments from Paleo Lake Makgadikgadi and a moderately resistive freshwater aquifer comprising sediments of the recently proposed Paleo Okavango Megafan, respectively.

  16. Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves

    Science.gov (United States)

    Gonoskov, Arkady; Bashinov, Alexey; Efimenko, Evgeny; Muraviev, Alexander; Kim, Arkady; Ilderton, Anton; Bastrakov, Sergey; Meyerov, Iosif; Marklund, Mattias; Sergeev, Alexander

    2017-10-01

    The prospect of achieving conditions for triggering strong-field QED phenomena at upcoming large-scale laser facilities raises a number of intriguing questions. What kind of new effects and interaction regimes can be accessed by basic QED phenomena? What are the minimal (optimal) requirements to trigger these effects and enter these regimes? How can we, from this, gain new fundamental knowledge or create important applications? The talk will concern the prospects of producing high fluxes of GeV photons by triggering a special type of self-sustaining cascade in the field of several colliding laser pulses that form a dipole wave. Apart from reaching the highest field strength for a given total power of laser pulses, the dipole wave enables anomalous radiative trapping that favors pair production and high-energy photon generation. An extensive theoretical analysis and 3D QED-PIC simulations indicate that the concept is feasible at upcoming large-scale laser facilities of 10 PW level and can provide an extraordinary intense source of GeV photons for novel experimental studies in nuclear and quark-nuclear physics.

  17. Interacting electromagnetic waves in general relativity

    International Nuclear Information System (INIS)

    Griffiths, J.B.

    1976-01-01

    The problem is considered of finding exact solutions of the Einstein-Maxwell equations which describe the physical situation of two colliding and subsequently interacting electromagnetic waves. The general theory of relativity predicts a nonlinear interaction between electromagnetic waves. The situation is described using an approximate geometrical method, and a new exact solution describing two interacting electromagnetic waves is given. This describes waves emitted from two sources mutually focusing each other on the opposite source. (author)

  18. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  19. Impact of Music on College Students: Analysis of Galvanic Skin Responses

    Directory of Open Access Journals (Sweden)

    Atefeh GOSHVARPOUR

    2014-12-01

    Full Text Available Purpose: The impact of music on the human body is an important trend in music research. Different kinds of music have direct and indirect effects on physiological functions and parameters in normal and pathological conditions. Among various physiological measurements, the galvanic skin response is a noninvasive, useful, simple and reproducible method of capturing the autonomic nerve response. The aim of this study is to evaluate the effect of Persian music on galvanic skin response. Basic methods: Galvanic skin response signals of 25 college students (10 women and 15 men were collected. Mean, amplitude, rise time and Lyapunov exponents of the signals were calculated. Main results: The results show that not only the galvanic skin response amplitude is higher in men subjects during rest, but it also increased to the higher values during music than that of women. In addition, the fluctuations of it increased during music in men group; while it decreased in women group. The positive values of Lyapunov exponents suggest that all galvanic skin responses have low dimensional chaos. In addition, the complexity of galvanic skin responses is decreased during music. Conclusions: Our study has shown that the same music protocol has different reflections on the galvanic skin response of women and men. Furthermore, the proposed method may serve as a quantitative measure for emotional states such as listening to the music.

  20. Growth and galvanic replacement of silver nanocubes in organic media

    Science.gov (United States)

    Polavarapu, Lakshminarayana; Liz-Marzán, Luis M.

    2013-05-01

    Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals form at the beginning of the reaction, which are gradually transformed into single crystalline Ag nanocubes by oxidative etching. Control experiments showed that the solvent plays an important role in the formation of such single crystalline Ag nanocubes. The effects of reaction temperature, oleylamine concentration, solvent, and the nature of the silver ion precursor on the morphology and monodispersity of the nanoparticles were systematically investigated. Additionally, the galvanic replacement reaction with HAuCl4 in an organic medium was implemented to prepare hydrophobic hollow Au-Ag nanocages with tunable localized surface plasmon resonances.Although metal nanoparticles with various shapes can be prepared in polar organic solvents, little has been advanced toward the shape-controlled synthesis in non-polar solvents. We report a simple method for the synthesis of nearly monodisperse single crystalline silver nanocubes in a non-polar solvent (1,2-dichlorobenzene) by using oleylamine as both a reducing and capping agent. Mechanistic studies based on the time evolution of Ag nanoparticles revealed that multiply twinned nanocrystals form at the beginning of the reaction, which are gradually transformed into single crystalline Ag nanocubes by oxidative etching. Control experiments showed that the solvent plays an important role in the formation of such single crystalline Ag nanocubes. The effects of reaction temperature, oleylamine concentration, solvent, and the nature of the

  1. Corrosion of bare and galvanized steel in gypsum

    Directory of Open Access Journals (Sweden)

    Gómez, Mercedes

    1988-12-01

    Full Text Available Gypsum is a relatively low-cost building material much abounding in our country. When it is put in contact with steel, it may produce high corrosion rates due to its pH value (close to 7. This work reports the results obtained in studying the corrosion rates of bare and galvanized steel in contact with gypsum and plaster, as well as the influence curing thermal treatment applied to gypsum, enviromental relative humidity and addition of compounds with different natures and purposes may have in such process. In-situ observations, as well as the measurement of the Polarization Resistance and the weight loss have been used as measurement technics. From the results obtained it has been possible to deduce that galvanized steel has better behaviour in dry enviroments than bare steel in the same conditions and moist atmosphere induces proportionally more corrosion in galvanized steel than in bare one. Additions to gypsum do not modified these conclusions, though it may be pointed out that addition of nitrites or lime improves the behaviour of bare steel, while galvanized behaviour is not modified. The addition of lime is not recommended because phenomena of dilated along time expansion may take place.

    El yeso es un material de construcción de relativo bajo coste y que, además, es muy abundante en nuestro país. Debido a su pH cercano a la neutralidad, cuando entra en contacto con el acero, este puede corroerse a elevadas velocidades. En esta comunicación se presentan los resultados de un estudio sobre la velocidad de corrosión del acero desnudo y galvanizado en contacto con yeso y escayola y la influencia que tienen: el tratamiento térmico del curado del yeso, la humedad relativa ambiental y la adición de aditivos de diversa naturaleza y finalidad. Como técnicas de medida se han utilizado la medida de la Resistencia de Polarización y de la pérdida de peso, así como observaciones visuales. De los resultados se puede deducir que en

  2. Theory of the Spin Galvanic Effect at Oxide Interfaces

    Science.gov (United States)

    Seibold, Götz; Caprara, Sergio; Grilli, Marco; Raimondi, Roberto

    2017-12-01

    The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3 . Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2 g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.

  3. Synthesis of Supported Bimetal Catalysts using Galvanic Deposition Method.

    Science.gov (United States)

    Mahara, Yuji; Ohyama, Junya; Sawabe, Kyoichi; Satsuma, Atsushi

    2018-02-22

    Supported bimetallic catalysts have been studied because of their enhanced catalytic properties due to metal-metal interactions compared with monometallic catalysts. We focused on galvanic deposition (GD) as a bimetallization method, which achieves well-defined metal-metal interfaces by exchanging heterogeneous metals with different ionisation tendencies. We have developed Ni@Ag/SiO 2 catalysts for CO oxidation, Co@Ru/Al 2 O 3 catalysts for automotive three-way reactions and Pd-Co/Al 2 O 3 catalysts for methane combustion by using the GD method. In all cases, the catalysts prepared by the GD method showed higher catalytic activity than the corresponding monometallic and bimetallic catalysts prepared by the conventional co-impregnation method. The GD method provides contact between noble and base metals to improve the electronic state, surface structure and reducibility of noble metals. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Charging system with galvanic isolation and multiple operating modes

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  5. Studies on inhibition of galvanic corrosion of lead based solders

    International Nuclear Information System (INIS)

    Perumareddi, R.; Sastri, V.S.; Elboujdaini, M.

    1999-01-01

    Exposure of Pb/Sn solder embedded in copper plates releases Pb into tap water and well water in excess of permissible level of 10 μg/L. Release of Pb has been inhibited by adding 40 ppm of silicate or 20 ppm of silicate and 20 ppm of phosphate to tap water and well water. XPS, electron microprobe and EDAX analysis of the solder surfaces show the surfaces deposits to be copper silicate and copper silicate and calcium carbonate on Pb/Sn surfaces exposed to tap and well water respectively containing silicate. The release of Pb can be explained satisfactorily on the basis of a scheme of reactions due to galvanic corrosion. (author)

  6. Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material.

    Science.gov (United States)

    Reclaru, L; Lerf, R; Eschler, P Y; Blatter, A; Meyer, J M

    2002-08-01

    The corrosion behavior of surgical implant CoCr alloy and REX 734 steel has been investigated. The pitting or crevice corrosion potentials have been determined to reach values as high as 500 mV vs. SCE for CoCr and 450 mV vs. SCE for REX 734. The galvanic corrosion behavior of CoCr/REX 734 couples has been evaluated with various electrochemical techniques. The measurement of the corrosion current of the galvanic couple as well as its prediction by applying mixed potential theories on measured potentiodynamic polarization curves revealed low galvanic currents in the range of nanoamperes.

  7. Electromagnetic Spectrum from QGP Fluid

    OpenAIRE

    Tetsufumi, HIRANO; Shin, MUROYA; Mikio, NAMIKI; Department of Physics, Waseda University; Tokuyama Women's College, Tokuyama, Yamaguchi; Department of Physics, Waseda University

    1998-01-01

    We calculate thermal photon and electron pair distribution from hot QCD matter produced in high energy heavy-ion collisions, based on a hydrodynamical model which is so tuned as to reproduce the recent experimental data at CERN SPS, and compare these electromagnetic spectra with experimental data given by CERN WA80 and CERES. We investigate mainly the effects of the off-shell properties of the source particles on the electromagnetic spectra.

  8. Electromagnetic Spectrum from QGP Fluid

    OpenAIRE

    Hirano, T.; Muroya, S.; Namiki, M.

    1997-01-01

    We calculate thermal photon and electron pair distribution from hot QCD matter produced in high energy heavy-ion collisions, based on a hydrodynamical model which is so tuned as to reproduce the recent experimental data at CERN SPS, and compare these electromagnetic spectra with experimental data given by CERN WA80 and CERES. We investigate mainly the effects of the off-shell properties of the source particles on the electromagnetic spectra.

  9. Fiber Finishes for Improving Galvanic Resistance of Imide-Based Composites

    National Research Council Canada - National Science Library

    Allred, R. E

    1998-01-01

    The objective of this program is the development and demonstration of galvanic corrosion resistant carbon/ BMI composites through the use of reactive finishes to form coatings that isolate the carbon...

  10. Characterization of solid wastes from two different hot-dip galvanizing processes

    International Nuclear Information System (INIS)

    Delvasto, P.; Casal-Ramos, J. a.; Gonzalez-Jordan, O.; Duran-Rodriguez, N. C.; Dominguez, J. R.; Moncada, P.

    2012-01-01

    Zinc dust and zinc ash from hot-dip galvanizing industries located in Venezuela were characterized using atomic spectroscopy, scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Dust was formed during the high-pressure drying process of the galvanized pieces, in a plant that uses a steel kettle to hold the molten zinc. Ash identified as A came from the same plant as the dust, while ash identified as B came from a hot-dip galvanizing plant which use a ceramic lined galvanizing furnace. Dust contained 98 wt % Zn, in metallic form. Both ash samples contained: Zn and ZnO, while Zn 5 (OH) 8 Cl 2 xH 2 O and ZnCl 2 were only found in ash B. Globally, ash ''A'' and ash ''B'' contain 71 and 75 wt % Zn, respectively. (Author)

  11. The adhesion of epoxy cataphoretic coating on phosphatized hot-dip galvanized steel

    Directory of Open Access Journals (Sweden)

    Bajat Jelena B.

    2006-01-01

    Full Text Available The influence of hot-dip galvanized steel surface pretreatment on the adhesion of epoxy cataphoretic coating was investigated. Phosphate coatings were deposited on hot-dip galvanized steel and the influence of fluoride ions in the phosphating plating bath, as well as the deposition temperature of the plating bath, were investigated. The dry and wet adhesion of epoxy coating were measured by a standard pull-off method. The surface roughness of phosphatized galvanized steel was determined, as well as the wettability of the metal surface by emulsion of the epoxy resin in water. The adhesion of epoxy coatings on phosphatized hot-dip galvanized steel was investigated in 3wt.%NaCI.

  12. Thin film galvanic cell with RbAg4I5 solid electrolyte

    International Nuclear Information System (INIS)

    Bodnaruk, L.I.; Danilov, A.V.; Kulinkovich, V.E.; Aleskovskij, V.B.

    1975-01-01

    In order to decrease the size and weight and to increase the specific capacity and energy of galvanic cells, some solid electrolytes in the form of thin films are proposed. The galvanic cells were prepared by a combined method: the cathodic and anodic materials (Te and Ag) were evaporated under vacuo to cover an electrolyte layer, the latter being obtained by impregnating the porous materials with RbAg 4 I 5 acetonic solution. The most specific charge curves of the galvanic cells at various current densities are given: specific energy of the samples was 0.2 to 0.7 watt-h/kg, their capacity being 0.1 to 0.2 mah. Behaviour of the cells when stored (that of Ag(RbAg 4 I 5 ) interface in particular) was investigated, namely, the effect of the storage time on the capacity and internal resistance of the galvanic cell

  13. Galvanic Vestibular Stimulation (GVS) as an Analogue of Post-flight Sensorimotor Dysfunction

    Data.gov (United States)

    National Aeronautics and Space Administration — Aim 1A (complete): Tolerance to GVS. Dilda, V, MacDougall HG, Moore, ST. Tolerance to extended Galvanic vestibular stimulation: optimal exposure for astronaut...

  14. Corrosion Inhibition of the Galvanic Couple Copper-Carbon Steel in Reverse Osmosis Water

    Directory of Open Access Journals (Sweden)

    Irene Carrillo

    2011-01-01

    Full Text Available The purpose of this paper is to evaluate the electrochemical behaviour of corrosion inhibition of the copper-carbon steel galvanic couple (Cu-CS, exposed to reverse osmosis water (RO used for rinsing of heat exchangers for heavy duty machinery, during manufacture. Molybdate and nitrite salts were utilized to evaluate the inhibition behaviour under galvanic couple conditions. Cu-CS couple was used as working electrodes to measure open circuit potential (OCP, potentiodynamic polarization (PP, and electrochemical impedance spectroscopy (EIS. The surface conditions were characterized by scanning electron microscopy (SEM and electron dispersive X-ray spectroscopy (EDS. The most effective concentration ratio between molybdate and nitrite corrosion inhibitors was determined. The morphological study indicated molybdate deposition on the anodic sites of the galvanic couple. The design of molybdate-based corrosion inhibitor developed in the present work should be applied to control galvanic corrosion of the Cu-CS couple during cleaning in the manufacture of heat exchangers.

  15. Performance evaluation of corrosion inhibitors and galvanized steel in concrete exposure specimens.

    Science.gov (United States)

    1999-01-01

    Corrosion inhibitor admixtures (CIA) and galvanized reinforcing steel (GS) are used for the corrosion protection for reinforced concrete bridges. The results of a 3.5-year evaluation of exposure specimens containing CIA from three different manufactu...

  16. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  17. Electromagnetic fields, pacemakers and defibrillators; Champs electromagnetiques, cardiostimulateurs et defibrillateurs

    Energy Technology Data Exchange (ETDEWEB)

    Guiguet, J.C. [Agence Nationale des Frequences (ANFR), 94 - Maisons Alfort (France); Dodinot, B.; Sadoul, N.; Blangy, H. [Centre Hospitalier Universitaire Nancy-Brabois, Clinique Cardiologique, 54 - Vandoeuvre Brabois (France); Nadi, M.; Hedjiedj, A.; Schmitt, P. [Universite Henri Poincare-Nancy, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France); Joly, L.; Dodinot, B.; Aliot, E. [Centre Hospitalier Universitaire Nancy-Brabois, Service de Cardiologie, 54 - Vandoeuvre-les-Nancy (France); Silny, J. [Aachen University (Germany); Franck, R.; Himbert, C.; Hidden-Lucet, F.; Petitot, J.C.; Fontaine, G. [Hopital Pitie-Salpetriere, Institut de Cardiologie, Service de Rythmologie, 75 - Paris (France); Souques, M.; Lambrozo, J. [Electricite de France (EDF-Gaz de France), Service des Etudes Medicales, 75 - Paris (France); Magne, I.; Bailly, J.M. [Electricite de France (EDF-Gaz de France), Div. Recherche Developpement, 77 - Moret sur Loing (France); Trigano, J.A. [Centre Hospitalier Universitaire, Hopital Nord, 13 - Marseille (France); Burais, N. [CEGELY, Ecole Centrale de Lyon, 69 - Ecully (France); Gaspard, J.Y. [Magtech, 69 - Ecully (France); Andrivet, Ph. [Societe Medtronic France, 92 - Boulogne-Billancourt (France)

    2004-07-01

    Presentation of electromagnetic sources constituted by various radio transmitters contributing to different radio communication services in the environment. Results of a measures campaign to assess the electromagnetic field in the close neighbourhood of various stations. Analysis by frequency domains. (author)

  18. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  19. Studies into the Factors that Affects the Service Integrity of Galvanizing Kettle

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-12-01

    Full Text Available The finding of studies into the factors that affects optimal performance of galvanizing kettle is presented in this paper. The production schedule and history of a failed galvanizing kettle for 3-consecutively years in a hot-dip galvanizing industry was collated and analyzed. The analysis of the collated data revealed that average galvanizing temperatures for the 3-year under review were 483.9°C (2003, 482.25°C (2004 and 482°C (2005 respectively. The amount of flux, and dross produced in the corresponding years were 169.15kg and 31.6 tons, 56.31kg and 10.5 tons and 101.14 and 18.91 tonnes for 2003, 2004 and 2005 respectively. During these years, zinc consumed averaged 647, 334 and 446 tonnes respectively.Stochiometry evaluation of flux, and dross in a hot-dip galvanizing process determined flux required as 60 kg/year and dross produced as 90 slabs / month.The study revealed that the lifespan of galvanizing kettle is greatly reduced by temperature fluctuation, dross formation, excess flux additions and combinations of these factors.It is recommended that improved service integrity of galvanizing kettle is assured at galvanizing temperature of 460°C, flux consumption of 0.15 –0.20kg daily and constant removal of dross at 3-5 slabs per day. This reduces the formation of skim lines, which leads to pits on the walls of the kettle.

  20. The Galvanic Corrosion of Graphite Epoxy Composite Materials Coupled with Alloys

    Science.gov (United States)

    1975-12-01

    between them due to this potential difference (Ref 6:29). Basic corrosion textbooks describe galvanic corrosion as one of the primary forms of corrosion...from the Nernst equa- tion is the sign of the free energy change since this determines the spontaneity of the redox reaction. In an electrochemical...prediction states that corrosion will not take place unless the spon- taneous direction of a redox reaction indicates oxidation. Thus EMF and galvanic

  1. Influence of MAO Treatment on the Galvanic Corrosion Between Aluminum Alloy and 316L Steel

    Science.gov (United States)

    Yang, Yuanhang; Gu, Yanhong; Zhang, Lei; Jiao, Xiangdong; Che, Juntie

    2017-12-01

    To slow down the galvanic corrosion of aluminum alloy and 316L stainless steel in subsea water, a micro-arc oxidation (MAO) coating was prepared on the surface of the Al alloy, and no treatment was performed on the surface of the 316L. The surface morphology of MAO-coated Al alloy was evaluated using a scanning electron microscope (SEM) before and after corrosion. A micro-hardness tester was used to measure the micro-hardness. Corrosion behaviors were evaluated by open-circuit potential (OCP), potentiodynamic polarization (PDP) and electrode impedance spectroscopy (EIS) tests in a 3.5 g/L NaCl solution. The results of PDP testing show that the corrosion potential of the MAO-coated galvanic pair was more positive than that of the uncoated galvanic pair and that the corrosion current density was smaller than that of the uncoated galvanic pair. EIS results show that the impedance of the galvanic pair increased after MAO coating. SEM images show that the corrosion damage of the uncoated Al alloy was more severe than that of the MAO-coated one, and the post-corrosion images of the surface of the 316L connected with MAO-coated Al alloy were more compact than those of the 316L connected with uncoated Al alloy. A physical model was developed to discuss the influence of MAO treatment on the galvanic corrosion process and corrosion mechanism.

  2. Anisotropic conducting films for electromagnetic radiation applications

    Science.gov (United States)

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  3. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  4. Methanol oxidation at platinized copper particles prepared by galvanic replacement

    Directory of Open Access Journals (Sweden)

    Ioanna Mintsouli

    2016-04-01

    Full Text Available Bimetallic Pt-Cu particles have been prepared by galvanic replacement of Cu precursor nanoparticles, upon the treatment of the latter with a chloro-platinate acidic solution. The resulting particles, typically a few tens of nm large, were supported on high surface area carbon (Vulcan® XC–72R, Cabot and tested as electrodes. Surface electrochemistry in deaerated acid solutions was similar to that of pure Pt, indicating the existence of a Pt shell (hence the particles are denoted as Pt(Cu. Pt(Cu/C supported catalysts exhibit superior carbon monoxide and methanol oxidation activity with respect to their Pt/C analogues when compared on a per electroactive surface area basis, due to the modification of Pt activity by Cu residing in the particle core. However, as a result of large particle size and agglomeration phenomena, Pt(Cu/C are still inferior to Pt/C when compared on a mass specific activity basis.

  5. Galvanic corrosion: a microsystems device integrity and reliability concern

    Science.gov (United States)

    Miller, David C.; Hughes, William L.; Wang, Zhong L.; Gall, Ken; Stoldt, Conrad R.

    2006-01-01

    We have studied the corrosion of phosphorus-doped polySi when contacted to a gold metallization layer and exposed to various hydrofluoric acid (HF) based chemistries, including mixtures with HCl, C IIH 6O, H IIO, NH 4F, Triton-X-100, as well as vapor-based HF. Here, we utilize optical-, electron-, and atomic-force-microscopy, optical interferometry, as well as instrumented indentation ("nanoindentation") to characterize test and reference specimens exposed to the various HF solutions. These measurements provide information concerning the appearance, roughness, physical dimensions, hardness, elastic modulus, and reverse phase transformation activity of the various polysilicon specimens. In general, some of the chemistries produced time-dependent darkening or "staining" visibly seen on free surfaces, roughening and attack at grain boundaries, nano-scale pitting of the free surfaces, decrease in thickness, decrease in hardness and mechanical modulus, and diminished elbow and reverse excursion activity for those silicon specimens electrically connected to metal. Change in performance is attributed to the formation of a galvanic cell during the HF immersion, and the corresponding damage driven by an anodic current. The results here can be used to explain previous work, which focused on the change in performance of designated MEMS diagnostic structures.

  6. Use of galvanic vestibular feedback for a balance prosthesis.

    Science.gov (United States)

    Peterka, Robert J

    2012-01-01

    Activation of vestibular afferents by a bilateral bipolar galvanic vestibular stimulus (GVS) evokes medial-lateral (ML) body sway. By applying a GVS feedback signal that is a function of measured ML head motion, the potential exists for GVS to restore a useful vestibular contribution to ML balance control in vestibular-deficient subjects who remain responsive to GVS. A key to developing an effective balance prosthesis using GVS is to determine the functional relationship between GVS and its influence on the brain's internal estimate of head motion. We describe how a model-based interpretation of GVS-evoked body sway can be used to identify this functional relationship. Results indicate that the GVS-evoked internal motion estimate is effectively a low-pass filtered version of the GVS current. With preliminary data, we demonstrate that GVS feedback, compensated for the identified low-pass characteristics, can either remove the ability of a subject with normal vestibular function to use vestibular information for balance control, or can restore the ability of a subject with bilateral vestibular loss to maintain balance in a condition requiring vestibular information for balance control.

  7. Synthesis of chromium containing pigments from chromium galvanic sludges

    International Nuclear Information System (INIS)

    Andreola, F.; Barbieri, L.; Bondioli, F.; Cannio, M.; Ferrari, A.M.; Lancellotti, I.

    2008-01-01

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr 0.04 Sn 0.97 SiO 5 and green Ca 3 Cr 2 (SiO 4 ) 3 were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr 2 O 3 . The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr 2 O 3

  8. Galvanic enhancement for high pressure leaching of chalcopyrite

    Directory of Open Access Journals (Sweden)

    Kim D.H.

    2016-01-01

    Full Text Available This study was conducted to evaluate the galvanic enhancement of the pressure oxidation (POX leaching of a chalcopyrite/chalcocite concentrate, which is believed to take place via a redox reaction. Cu recoveries of >90% could be achieved during POX leaching of this chalcopyrite/chalcocite concentrate at 200°C and 0.7 MPa initial oxygen pressure within 2h in a pressure reactor lined with titanium, which were 18-28% higher than for the same leaching using the teflon liner. A slow heating time seems to produce more sulphur coating, reducing the leaching performance, yielding much lower Cu recovery when the teflon lining was used, although this does not greatly affect the other case when the reactor was lined with titanium. The introduction of an electronic conductor, in this case the titanium surface, is believed to enhance this redox process, in which the oxidation of copper minerals and sulphur to sulphate at the anodic sites (mineral surface encountered during POX leaching takes place simultaneously with the reversible oxidation/reduction of the Fe2+/Fe3+couple and oxygen reduction on titanium.

  9. Histories electromagnetism

    International Nuclear Information System (INIS)

    Burch, Aidan

    2004-01-01

    Working within the HPO (History Projection Operator) Consistent Histories formalism, we follow the work of Savvidou on (scalar) field theory [J. Math. Phys. 43, 3053 (2002)] and that of Savvidou and Anastopoulos on (first-class) constrained systems [Class. Quantum Gravt. 17, 2463 (2000)] to write a histories theory (both classical and quantum) of Electromagnetism. We focus particularly on the foliation-dependence of the histories phase space/Hilbert space and the action thereon of the two Poincare groups that arise in histories field theory. We quantize in the spirit of the Dirac scheme for constrained systems

  10. Galvanic corrosion of Mg-Zr fuel cladding and steel immobilized in Portland cement and geopolymer at early ages

    Science.gov (United States)

    Rooses, Adrien; Lambertin, David; Chartier, David; Frizon, Fabien

    2013-04-01

    Galvanic corrosion behaviour of Mg-Zr alloy fuel cladding and steel has been studied in Ordinary Portland cement and Na-geopolymer. Portland cements implied the worse magnesium corrosion performances due to the negative effects of cement hydrates, grinding agents and gypsum on the galvanic corrosion. Galvanic corrosion in Na-geopolymer paste remains very low. Silicates and fluoride from the geopolymer activation solution significantly improve the corrosion resistance of the magnesium alloy while coupling with a cathode.

  11. Thermal stress for all-ceramics rolls used in molten metal to produce stable high quality galvanized steel sheet

    OpenAIRE

    Noda, Nao-Aki; Yamada, Masahiro; Sano, Yoshikazu; Sugiyama, Shigetada; Kobayashi, Shoichi

    2008-01-01

    The zinc coated steel sheet has been mostly used for automobile and other industries because of its high corrosion resistance. This paper deals with the development of new ceramics support roll used for a continuous galvanizing pot to manufacture stable galvanizing steel sheet. Usually stainless steel rolls coated by tungsten carbide are used to support and stabilize the strip in a continuous galvanizing pot, which is filled with molten zinc. However, corrosion and abrasion arise on the roll ...

  12. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    Directory of Open Access Journals (Sweden)

    Elsa Vaz Pereira

    2009-10-01

    Full Text Available This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 ºC has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established.

  13. Electromagnet. Elektromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Amaya, N.; Weiss, F.; Schmitt, A.

    1991-04-18

    An electromagnet, particularly for use in switching valves for the direct control of a fuel injection quantity on fuel injection pumps, has a magnet pot (25) made of soft magnetic material, an annular excitation coil (30) and a magnet armature (29), which is situated with a working air gap in front of the magnet pot (25). To improve the dynamic behaviour of the electromagnet (20), ie: to achieve extremely low switching times with simple manufacture of the magnetic circuit, the magnet pot (25) and/or the magnet armature (29) made as a solid part is provided with an even number of at least four radial slots (41), which pass through the magnet pot (25) or the magnet armature (29) over their whole axial length. Successive radial slots (41a, 41b) extend alternately from the outside or from the inside jacket surface (311 or 321) to near the inside or the outside jacket surface (321 or 311) respectively and end there, always leaving a bar of material (42 or 43).

  14. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel

    Science.gov (United States)

    Kuang, Chun-fu; Zheng, Zhi-wang; Wang, Min-li; Xu, Quan; Zhang, Shen-gen

    2017-12-01

    A C-Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s (process A) or rapidly cooled to 350°C and then reheated to 450°C (process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel (DP600) was investigated using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength (YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient ( n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength (UTS) and elongation ( A 80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties (YS = 362 MPa, UTS = 638 MPa, A 80 = 24.3%, n = 0.17) was obtained via process A.

  15. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  16. Effect of confinement on bond strength of hot-dip galvanized lap splices in concrete structures

    International Nuclear Information System (INIS)

    Fakhran, Mazen

    2004-01-01

    Galvanizing the reinforcing steel is one of the methods used to protect bars against corrosion. Galvanizing is a hot dip process where the reinforcing bars are immersed in an aqueous pre flux solution of zinc ammonium chloride at a controlled temperature between 840 and 850 degrees F. In 2001, a research program was started at AUB to evaluate experimentally the effect of hot dip galvanizing on the bond capacity of tension lap splices anchored in full-scale beam specimens designed to fail in bond splitting mode. The test results indicated that the use of galvanized bars had a negligible effect on bond strength of reinforcement in normal strength. However, galvanizing caused an average of 20 percent decrease in bond strength of reinforcement in high strength concrete. The primary objective of research reported in this thesis, is the need to find a solution to eliminate the bond reduction of galvanized bars in high strength concrete. It is significant to evaluate the positive effect of the addition of transverse reinforcement in the splice region. The hypothesis to be tested is that such transverse reinforcement will insure uniform bond stress distribution over the entire splice region, thus mobilizing all bar lugs along the splice in the stress transfer mechanism between the bar and the surrounding concrete. Such mechanism might reduce the significant decrease in bond strength in high strength concrete due to galvanizing. To achieve this objective, eighteen full-scale beam specimens were tested in positive bending. Each beam was reinforced with bars spliced in a constant moment region at midspam. The splice length was chosen in such a way that the beams failed in bond splitting of the concrete cover in the splice region. The main variables were type of coating (black or galvanized bars), bar size (20, 25 and 32 mm), and amount of transverse reinforcement in the splice region (0, 2 or 4 stirrups). The test results indicated that confinement did not have a significant

  17. Ion source

    International Nuclear Information System (INIS)

    Saito, Fusao; Okuyama, Toshihisa; Suzuki, Yasuo.

    1996-01-01

    In a negative ion source having magnetic filters, bisecting magnetic fields are formed using electromagnets disposed at the outside of a plasma source. The position of the electromagnets is made adjustable and removable to optimize a negative ion generation efficiency. Further, a plurality of electromagnets are disposed in longitudinal direction of the plasma source, and the intensity of the magnetic fields of the filters in the longitudinal direction is made adjustable to control a beam distribution. Since uniform magnetic fields which bisect the plasma source can be formed by the electromagnets, and magnetomotive force of the electromagnets can be increased easily compared with that of permanent magnets, the magnetomotive force is changed to obtain appropriate filter magnetic fields easily. Then, optimum magnetic fields corresponding to the state of source plasmas can be generated by the control of the power source of the electromagnets, which also increases the negative ion drawing current density, thereby enabling to reduce the drawing area and size of the plasma source. (N.H.)

  18. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    Science.gov (United States)

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-01-01

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054

  19. Galvanic interactions of HE15 /MDN138 & HE15 /MDN250 alloys in natural seawater

    Science.gov (United States)

    Parthiban, G. T.; Subramanian, G.; Muthuraman, K.; Ramakrishna Rao, P.

    2017-06-01

    HE15 is a heat treatable high strength alloy with excellent machinability find wide applications in aerospace and defence industries. In view of their excellent mechanical properties, workability, machinability, heat treatment characteristics and good resistance to general and stress corrosion cracking, MDN138 & MDN250 have been widely used in petrochemical, nuclear and aerospace industries. The galvanic corrosion behaviour of the metal combinations HE15 /MDN138 and HE15 /MDN250, with 1:1 area ratio, has been studied in natural seawater using the open well facility of CECRI's Offshore Platform at Tuticorin for a year. The open circuit potentials of MDN138, MDN250 and HE15 of the individual metal, the galvanic potential and galvanic current of the couples HE15 /MDN138 and HE15 /MDN250 were periodically monitored throughout the study period. The calcareous deposits on MDN138 and MDN250 in galvanic contact with HE15 were analyzed using XRD. The electrochemical behaviors of MDN138, MDN250 and HE15 in seawater have been studied using an electrochemical work station. The surface characteristics of MDN138 and MDN250 in galvanic contact with HE15 have been examined with scanning electron microscope. The results of the study reveal that HE15 offered required amount of protection to MDN138 & MDN250.

  20. A Noble Approach of Process Automation in Galvanized Nut, Bolt Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Akash Samanta

    2012-05-01

    Full Text Available Corrosion costs money”, The Columbus battle institute estimates that corrosion costs Americans more than $ 220 billion annually, about 4.3% of the gross natural product [1].Now a days due to increase of pollution, the rate of corrosion is also increasing day-by-day mainly in India, so, to save the steel structures, galvanizing is the best and the simplest solution. Due to this reason galvanizing industries are increasing day-by-day since mid of 1700s.Galvanizing is a controlled metallurgical combination of zinc and steel that can provide a corrosion resistance in a wide variety of environment. In fact, the galvanized metal corrosion resistance factor can be some 70 to 80 times greater that the base metal material. Keeping in mind the importance of this industry, a noble approach of process automation in galvanized nut-bolt  manufacturing plant is presented here as nuts and bolts are the prime ingredient of any structure. In this paper the main objectives of any industry like survival, profit maximization, profit satisfying and sales growth are fulfilled. Furthermore the environmental aspects i.e. pollution control and energy saving are also considered in this paper. The whole automation process is done using programmable logic controller (PLC which has number of unique advantages like being faster, reliable, requires less maintenance and reprogrammable. The whole system has been designed and tested using GE, FANUC PLC.

  1. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  2. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  3. Solved problems in classical electromagnetism

    CERN Document Server

    Franklin, Jerrold

    2018-01-01

    This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.

  4. Radiation leakage from electromagnetic oven

    Directory of Open Access Journals (Sweden)

    Abdurrahman Khalil

    2015-10-01

    Results & Discussions: The measurements have been done at some houses in Erbil city, according to the source of background radiation exist before measuring data. Our data compared with standard safe range of radiation data. Results showed that there is radiation leak form all type of electromagnetic oven and all at the order of safety compared with standard value.

  5. Characterization of Sludge from the Process of Steel Tubes Chemical Treatment for Hot Galvanizing

    Directory of Open Access Journals (Sweden)

    Sofilić, U.

    2009-10-01

    Full Text Available Inadequate industrial waste management in Croatia is reflected in the non-sanitary waste disposal, low recycling levels, negligible share of waste processing technologies, insufficient control of its flows, etc.Generated industrial wastes are most frequently disposed of at producers’ own, mostly illegal landfills. There are many such landfills on the Croatian territory, and the disposed types of waste often include those that can be hazardous and represent a considerable source of environmental pollution.Past waste management in all industrial branches can be characterized in this way, which at the same time may result in the harmful impact on human health and the environment. It also represents economic loss due to low utilisation of material and energy potential of some industrial wastes. The metallurgical industry collects its production waste separately. Only a part of the generated waste is returned to the production process and some waste is occasionally used by other industries as secondary raw materials, but the largest part of it ends at producers' own landfills on site. Hazardous wastes (dust containing heavy metals, waste oils etc. are mostly disposed of in a controlled and lawful manner. Past handling of metallurgical waste was unacceptable both from the environmental and economic point of view. Therefore a systematic resolving of this important issue was initiated at the beginning of this decade. Sisak Steelworks galvanized steel pipes in the hot-dip galvanizing procedure by immersing in molten zinc. Between 1970 and 2000 Sisak Steelworks produced approximately 900 000 tonnes of galvanized pipes this way and generated around 70 000 m3 of neutralisation sludge, which was subsequently disposed of in the landfill on site. The paper presents the results of examination of physical-chemical properties of neutralisation sludge generated as waste material in the process of neutralisation of waste sulphate acid bath used in Sisak

  6. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  7. Prevention of Crevice Corrosion of STS 304 Stainless Steel by a Mg-alloy Galvanic Anode

    International Nuclear Information System (INIS)

    Lim, U. J.; Yun, B. D.; Kim, J. J.

    2006-01-01

    Prevention of crevice corrosion was studied for STS 304 stainless steel using a Mg-alloy galvanic anode in solutions with various specific resistivity. The crevice corrosion and corrosion protection characteristics of the steel was investigated by the electrochemical polarization and galvanic corrosion tests. Experimental results show that the crevice corrosion of STS 304 stainless steel does not occur in solutions of high specific resistivity, but it occurs in solutions of low specific resistivity like in solutions with resistivities of 30, 60 and 115 Ω · m. With decreasing specific resistivity of the solution, the electrode potential of STS 304 stainless steel in the crevice is lowered. The potential of STS 304 stainless steel in the crevice after coupling is cathodically polarized more by decreasing specific resistivity indicating that the crevice corrosion of STS 304 stainless steel is prevented by the Mg-alloy galvanic anode

  8. Photo-galvanic effect in Bi2Se3 thin films with ionic liquid gating

    Science.gov (United States)

    Pan, Yu; Richardella, Anthony; Lee, Joon Sue; Flanagan, Thomas; Samarth, Nitin

    2013-03-01

    A key challenge in three dimensional (3D) topological insulators (TIs) is to reveal the helical spin-polarized surface states via electrical transport measurements. A recent study [Nature Nanotech. 7, 96 (2012)] showed that circularly polarized light can be used to generate and control photocurrents in the 3D TI Bi2Se3, even at photon energies that are well above the bulk band gap. Symmetry considerations suggest that this ``photo-galvanic effect'' arises purely from photo-currents induced in the surface Dirac states. To gain insights into this phenomenon, we have carried out systematic measurements of the photo-galvanic effect in electrically gated MBE-grown Bi2Se3 thin films of varying thickness. By using an ionic liquid as an optically transparent gate, we map out the behavior of the photo-galvanic effect as a function of Fermi energy over a temperature range 5 K <= T <= 300 K. Supported by ONR and NSF.

  9. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  10. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  11. Prognostic investigation of galvanic corrosion precursors in aircraft structures and their detection strategy

    Science.gov (United States)

    James, Robin; Kim, Tae Hee; Narayanan, Ram M.

    2017-04-01

    Aluminum alloys have been the dominant materials for aerospace construction in the past fifty years due to their light weight, forming and alloying, and relative low cost in comparison to titanium and composites. However, in recent years, carbon fiber reinforced polymers (CFRPs) and honeycomb materials have been used in aircrafts in the quest to attain lower weight, high temperature resistance, and better fuel efficiency. When these two materials are coupled together, the structural strength of the aircraft is unparalleled, but this comes at a price, namely galvanic corrosion. Previous experimental results have shown that when CFRP composite materials are joined with high strength aluminum alloys (AA7075-T6 or AA2024-T3), galvanic corrosion occurs at the material interfaces, and the aluminum is in greater danger of corroding, particularly since carbon and aluminum are on the opposite ends of the galvanic series. In this paper, we explore the occurrence of the recognizable precursors of galvanic corrosion when CFRP plate is coupled to an aluminum alloy using SS-304 bolts and exposed to environmental degradation, which creates significant concerns for aircraft structural reliability. The galvanic corrosion software package, BEASY, is used to simulate the growth of corrosion in the designed specimen after which a microwave non-destructive testing (NDT) technique is explored to detect corrosion defects that appear at the interface of this galvanic couple. This paper also explores a loaded waveguide technique to determine the dielectric constant of the final corrosion product at the Q-band millimeter-wave frequency range (33-50 GHz), as this can be an invaluable asset in developing early detection strategies.

  12. Electromagnetic computations for fusion devices

    International Nuclear Information System (INIS)

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs

  13. Electromagnetic geothermometry theory, modeling, practice

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Geothermometry explores, presents and explains the new technique of temperature estimation within the Earth's interior; the Electromagnetic technique will identify zones of geothermal anomalies and thus provides locations for deep drilling. This book includes many case studies from geothermal areas such as Travale (Italy), Soultz-sous-Forêts (France) and Hengill (Iceland), allowing the author and reader to draw conclusions regarding the dominating heat transfer mechanisms, location of its sources and to constrain the locations for drilling of the new boreholes. Covering a to

  14. Electromagnetic compatibility principles and applications

    CERN Document Server

    Weston, David A

    2001-01-01

    This totally revised and expanded reference/text provides comprehensive, single-source coverage of the design, problem solving, and specifications of electromagnetic compatibility (EMC) into electrical equipment/systems-including new information on basic theories, applications, evaluations, prediction techniques, and practical diagnostic options for preventing EMI through cost-effective solutions. Offers the most recent guidelines, safety limits, and standards for human exposure to electromagnetic fields! Containing updated data on EMI diagnostic verification measurements, as well as over 900 drawings, photographs, tables, and equations-500 more than the previous edition

  15. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  16. Electromagnetic signals generated in the solid Earth by digital transmission of radio-waves as a plausible source for some so-called `seismic electric signals'

    Science.gov (United States)

    Pham, V.-N.; Boyer, D.; Le Mouël, J.-L.; Chouliaras, G.; Stavrakakis, G. N.

    1999-07-01

    Claims by the VAN group [Varotsos, P., Alexopoulos, K., 1984. Physical properties of the variations of the electric field of the earth preceding earthquakes, I. Tectonophysics 110, 73-98, and later works] to have developed a short-term earthquake prediction technique in Greece continue to arouse contentious debates [Claims of success in using geoelectrical precursors to predict earthquakes are criticized and defended, 1998. Letters, Phys. Today 51 (6), 15-100; Great debates in seismology: the VAN method of earthquake prediction, 1998. Eos 79, 573-580]. This is partly because of the unknown origin of the so-called `seismic electric signals' (SES) precursors. Their particular characteristics are not those of the usual electromagnetic noise (cultural noise) or of the natural electromagnetic field (magnetotelluric field). In this paper, we show that transient electric signals looking like SES can be generated by digital transmitters of the radio-telecommunication network. Such signals have been observed in different regions of the world, including Greece and Vietnam. Their characteristics have been analyzed in a broad band of frequencies (10 -3-10 3 Hz) in the Ioannina, Greece, site which is considered as the most `sensitive area' of the VAN network. It is concluded that some of the signals recorded at this site and identified as SES are probably of artificial origin, and that the criteria used by the VAN group are not sufficient to guarantee that the so-called SES are not man-made. Without an extended and thorough study of the ambient electromagnetic noise in a broad band of frequencies and better information about the electrical properties of the deep structure beneath the monitoring station, earthquake predictions issued on the basis of signals recorded by the VAN network are of dubious significance.

  17. Preventing the embrittling by hydrogen when galvanizing high-grade steel

    Energy Technology Data Exchange (ETDEWEB)

    Paatsch, W.

    1987-09-01

    Galvanic precipitation of a double layer consisting of a dull nickel layer overlaid with a brilliant zinc layer on low-alloyed high-strength steel grades leads to the forming of zinc-nickel alloy layers during the subsequent heat treatment. According to traction tests carried out on high-strength steel grades, as well as to hydrogen permeability tests, this process prevents embrittling by hydrogen which might be caused by galvanic process sequences - and creates a diffusion block at the same time. The alloy layers have an excellent corrosion resistance and temperature stability.

  18. Attracting electromagnet for control rod

    International Nuclear Information System (INIS)

    Kato, Kazuo; Sasaki, Kotaro.

    1989-01-01

    Non-magnetic material plates with inherent resistivity of greater than 20 μΩ-cm and thickness of less than 3 mm are used for the end plates of attracting electromagnets for closed type control rods. By using such control rod attracting electromagnets, the scram releasing time can be shortened than usual. Since the armature attracting side of the electromagnet has to be sealed by a non-magnetic plate, a bronze plate of about 5 mm thickness has been used so far. Accordingly, non-magnetic plate is inserted to the electromagnet attracting face to increase air source length for improving to shorten the scram releasing time. This method, however, worsens the attracting property on one hand to require a great magnetomotive force. For overcoming these drawbacks, in the present invention, the material for tightly closing end plates in an electromagnet is changed from bronze plate to non-magnetic stainless steel SUS 303 or non-magnetic Monel metal and, in addition, the plate thickness is reduced to less than 5 mm thereby maintaining the attracting property and shortening the scram releasing time. (K.M.)

  19. Reformulation of electromagnetic and gravito-electromagnetic equations for Lorentz system with octonion algebra

    Science.gov (United States)

    Tanışlı, Murat; Kansu, Mustafa Emre; Demir, Süleyman

    2014-05-01

    In this paper, the real, complex octonion algebra and their properties are defined. The electromagnetic and gravito-electromagnetic equations with monopoles in terms of S and reference systems are presented in vector notations. Additionally, the duality transformations of gravito-electromagnetic situation for two reference systems are also represented. Besides, it is explained that Maxwell-like equations for gravito-electromagnetism are also invariant under Lorentz transformations. By introducing complex octonionic differential operator, a new generalized complex octonionic field term consisting of electromagnetic and gravito-electromagnetic components has been firstly suggested for Lorentz system. Afterwards, a complex octonionic source equation is obtained as in basic way, more compact and elegant notation. By defining a new complex octonionic general potential term, the field equation is attained once again. The components of complex octonionic field and wave equations are written in detailed for S and reference systems.

  20. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  1. A Student-Constructed Galvanic Cell for the Measurement of Cell Potentials at Different Temperatures

    Science.gov (United States)

    Jakubowska, Anna

    2016-01-01

    A student-made galvanic cell is proposed for temperature measurements of cell potential. This cell can be easily constructed by students, the materials needed are readily available and nontoxic, and the solution applied is in an attractive color. For this cell, the potential values are excellently reproducible at each temperature, and the…

  2. Transcranial Doppler ultrasound during galvanic labyrinth polarization depicts central vestibular processing, demonstrating bilateral vestibular projection.

    Science.gov (United States)

    Schlosser, Hans-Georg; Guldin, Wolfgang; Fritzsche, Danny; Clarke, Andrew H

    2008-07-01

    The combination of galvanic labyrinth polarization and transcranial Doppler ultrasound was employed to depict the neurovascular coupling in the cerebral vestibular areas. For galvanic stimulation, surface electrodes were attached to the right and left mastoid and two further electrodes were fixed near to each shoulder blade. Thus, each pair of electrodes (mastoid to shoulder) facilitated unilateral stimulation of the ipsilateral vestibular labyrinth. Blood flow in the middle cerebral artery and the internal carotid artery in both hemispheres was measured by means of Doppler ultrasound. The transcranial Doppler ultrasound system was head-fixed and allowed continuous monitoring of the blood flow throughout the trials. Using a series of different stimulation modes (bilateral, unilateral left, unilateral right and sham), the changes in mean blood flow velocity were evaluated by comparing baseline blood flow under resting conditions to blood flow during stimulation. A total of 18 trials were performed with each of seven volunteer subjects. Galvanic labyrinth polarization elicited a clear sensation of pendular body movement in all subjects. Significant blood flow increase (P < 0.05) in both hemispheres was observed during bilateral stimulation. Of more interest is that unilateral stimulation also elicited a significant increase in flow in both the ipsilateral and the contralateral hemispheres, demonstrating the existence of bilateral projections from each vestibular labyrinth. The combination of galvanic labyrinth polarization with transcranial Doppler ultrasound blood flow measurement provides a novel approach to the functional assessment of the vestibular system (deep cerebral structures and cortical areas). This novel technique provides a useful tool for clinical examinations.

  3. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    Science.gov (United States)

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  4. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    Directory of Open Access Journals (Sweden)

    Marcello Gelfi

    2017-03-01

    Full Text Available This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  5. Zinc toxicity among galvanization workers in the iron and steel industry.

    Science.gov (United States)

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  6. Media Research with a Galvanic Skin Response Biosensor: Some Kids Work Up a Sweat!

    Science.gov (United States)

    Clariana, Roy B.

    This study considers the galvanic skin response (GSR) of sixth-grade students (n=20) using print, video, and microcomputer segments. Subjects received all three media treatments, in randomized order. Data for analysis consisted of standardized test scores and GSR measures; a moderate positive relationship was shown between cumulative GSR and…

  7. Intracavity OptoGalvanic Spectroscopy Not Suitable for Ambient Level Radiocarbon Detection

    NARCIS (Netherlands)

    Paul, Dipayan; Meijer, Harro

    2015-01-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research.

  8. Standard guide for conducting and evaluating galvanic corrosion tests in electrolytes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1981-01-01

    1.1 This guide covers conducting and evaluating galvanic corrosion tests to characterize the behavior of two dissimilar metals in electrical contact in an electrolyte under low-flow conditions. It can be adapted to wrought or cast metals and alloys. 1.2 This guide covers the selection of materials, specimen preparation, test environment, method of exposure, and method for evaluating the results to characterize the behavior of galvanic couples in an electrolyte. Note 1—Additional information on galvanic corrosion testing and examples of the conduct and evaluation of galvanic corrosion tests in electrolytes are given in Refs (1) through (7). 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicabil...

  9. The Effect of Galvanic Vestibular Stimulation on Postural Response of Down Syndrome Individuals on the Seesaw

    Science.gov (United States)

    Carvalho, R. L.; Almeida, G. L.

    2011-01-01

    In order to better understand the role of the vestibular system in postural adjustments on unstable surfaces, we analyzed the effects of galvanic vestibular stimulation (GVS) on the pattern of muscle activity and joint displacements (ankle knee and hip) of eight intellectually normal participants (control group--CG) and eight control group…

  10. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch...

  11. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel

    NARCIS (Netherlands)

    Song, G. M.; Vystavel, T.; De Hosson, J. Th M.; Sloof, W. G.; van der Pers, N.M.

    The microstructure of hot dip galvanized zinc coatings on dual phase steel was investigated by electron microscopy and the coating adhesion characterized by tensile testing. The zinc coating consists of a zinc layer and columnar zeta-FeZn13 particles on top of a thin inhibition layer adjacent to the

  12. ENVIRONMENTAL AND ECONOMIC ASPECTS OF ANTICORROSION PROTECTION BY HOT-DIP GALVANIZED METHOD REBARS IN CONCRETE

    Directory of Open Access Journals (Sweden)

    Hegyi Andreea

    2015-05-01

    Full Text Available The implementation of the sustainable development concept is nowadays a key issue in almost all human activities. For the constructions domain an European strategy has already been elaborated. Among its goals are also the use of long lasting materials and the reduction of repair costs. This paper presents an interdisciplinary study concerning the efficiency of the use of hot-dip galvanized rebar for concrete structures. Experimental results about corrosion kinetics of coated and usual steel reinforcement embedded in concrete, subjected to chlorine ions attack, are analyzed. Electrochemical methods as chronoamperometry and linear polarization have been used. Corrosion potential values recorded for galvanized steel embedded in concrete indicate an uncertain corrosion activation process up to a rate of 2.5 % calcium chloride relative to concrete. For rates of 5% CaCl2 and more the corrosion process is activated. For unprotected steel bars embedded in concrete the corrosion activation process started at all calcium chloride studied rates and higher corrosion potential values has been registered than for the hot-dip galvanized ones, at the same rates. Economical assessments have been done using entire lifetime cost analysis of the reinforced concrete structures. Despite that the hotdip galvanization is a rather expansive procedure, when taking into account the whole expected life span, the use of zinc coating proves to be efficient both from structural and financial approaches.

  13. Electromagnetic Field Penetration Studies

    Science.gov (United States)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  14. Noisy galvanic vestibular stimulation modulates the amplitude of EEG synchrony patterns.

    Directory of Open Access Journals (Sweden)

    Diana J Kim

    Full Text Available Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson's disease; yet, the mechanism of action is unclear. Since Parkinson's and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4-7.5 Hz, low alpha (8-10 Hz, high alpha (10.5-12 Hz, beta (13-30 Hz and gamma (31-50 Hz bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents - at 10, 26, 42, 58, 74 and 90% of sensory threshold - to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20-25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously

  15. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  16. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    Science.gov (United States)

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  17. Electromagnetics and optics

    National Research Council Canada - National Science Library

    Kriezis, E. E; Chrissoulidis, D. P; Papagiannakis, A. G

    1992-01-01

    ..., since light is a high-frequency electromagnetic radiation. Although both electromagnetics and optics are their common origin is only superficially realised physics or electrical engineering. Deeper physical by treating electromagnetics and optics in parallel thus enlightening the natural link between them. By presenting principles, theory a...

  18. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  19. Photo-electrochemical Investigation of Radiation-Enhanced Galvanic Coupling and Hydrogen Permeation in TPBAR-related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivating effect of metal oxides.

  20. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  1. Electromagnetic field, excited by monodirected X-radiation pulse

    International Nuclear Information System (INIS)

    Zhemerov, A.V.; Metelkin, E.V.

    1994-01-01

    Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface

  2. Focusing of electromagnetic waves

    International Nuclear Information System (INIS)

    Dhayalan, V.

    1996-01-01

    The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs

  3. KEKB electromagnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masato; Kubo, Tadashi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-01-01

    Numbers of electromagnet power supply for KEKB are 2,243 except BT. To satisfy stability, DAC in the current control circuit, current detector, R and D of small thermostatic bath and a calibration method of current using CPU were introduced. They satisfied needs. With producing R and D apparatus of switching source, problems of ripple, stability and noise were solved, so that we began mass production. In this paper, many kinds of R and D and performance and troubles after operation of KEKB power source are described. A plan of design of power supply consisted of seven items such as high accuracy, serial communication of interface, small type, high affectivity, easy maintenance, independence of current setting and current detector for monitor and control of radiation and conduction noise of switching power supply. These items were satisfied by development of interface board of ARCNET communication, introduction of double buffer method for interface through CPU, power supply unit by air-cooled method using a switching method and small thermostatic oven for bending and quadrupole electromagnet. R and D of DCCT, burden and shunt resistance, DAC, thermostatic bath, power supply, offset and gain calibration by double buffer method, specification of power supply, various kinds of measurements of mass production apparatus at rising, after long operation and problems before and after operation are reported. The results of R and D made satisfy the specification of stability and ripple of power supply. Although many switching power supply were operated, there was no noise and troubles at the initial period decreased. However, in order to use many power supply, the performance measurement and maintenance are very important at long shut down. (S.Y.)

  4. Wireless data transmission from inside electromagnetic fields.

    Science.gov (United States)

    Huertas, José Ignacio; Barraza, Roberto; Echeverry, Julian Mauricio

    2010-01-01

    This paper describes analytical and experimental work developed to evaluate the effects of the electromagnetic fields produced by high-voltage lines (400 kV) on wireless data transmission at the 900MHz band. In this work the source of the data transmission is located inside the electromagnetic field and the reception station is located at different distances from the power lines. Different atmospheric conditions are considered.

  5. Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer

    Science.gov (United States)

    Karon, David M. (Inventor); Cushing, Vincent (Inventor); Patel, Sandeep K. (Inventor)

    2014-01-01

    An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.

  6. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?

    Science.gov (United States)

    Serhan, Hassan; Slivka, Michael; Albert, Todd; Kwak, S Daniel

    2004-01-01

    Surgeons are hesitant to mix components made of differing metal classes for fear of galvanic corrosion complications. However, in vitro studies have failed to show a significant potential for galvanic corrosion between titanium and stainless steel, the two primary metallic alloys used for spinal implants. Galvanic corrosion resulting from metal mixing has not been described in the literature for spinal implant systems. To determine whether galvanic potential significantly affects in vitro corrosion of titanium and stainless steel spinal implant components during cyclical compression bending. Bilateral spinal implant constructs consisting of pedicle screws, slotted connectors, 6.35-mm diameter rods and a transverse rod connector assembled in polyethylene test blocks were tested in vitro. Two constructs had stainless steel rods with mixed stainless steel (SS-SS) and titanium (SS-Ti) components, and two constructs had titanium rods with mixed stainless steel (Ti-SS) and titanium (Ti-Ti) components. Each construct was immersed in phosphate-buffered saline (pH 7.4) at 37 C and tested in cyclic compression bending using a sinusoidal load-controlling function with a peak load of 300 N and a frequency of 5 Hz until a level of 5 million cycles was reached. The samples were then removed and analyzed visually for evidence of corrosion. In addition, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to evaluate the extent of corrosion at the interconnections. None of the constructs failed during testing. Gross observation of the implant components after disassembly revealed that no corrosion had occurred on the surface of the implants that had not been in contact with another component. The Ti-Ti interfaces showed some minor signs of corrosion only detectable using SEM and EDS. The greatest amount of corrosion occurred at the SS-SS interfaces and was qualitatively less at the SS-Ti and Ti-SS interfaces. The results from this study indicate

  7. Inertization of heavy metals present in galvanic sludge by DC thermal plasma.

    Science.gov (United States)

    Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan

    2014-01-01

    Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most

  8. Experiments on different materials (polyamide, stainless & galvanized steel) influencing geothermal CaCO3 scaling formation: Polymorphs & elemental incorporation

    Science.gov (United States)

    Wedenig, Michael; Dietzel, Martin; Boch, Ronny; Hippler, Dorothee

    2016-04-01

    Thermal water is increasingly used for heat and electric power production providing base-load capable renewable and virtually unlimited geothermal energy. Compared to other energy sources geothermal facilities are less harmful to the environment, i.e. chemically and visually. In order to promote the economic viability of these systems compared to other traditional and renewable energy sources, production hindering processes such as corrosion and scaling of components arising from the typically high salinity thermal waters have to be considered as important economic factors. In this context, using proper materials being in contact with the thermal water is crucial and a playground for further improvements. Aim of the study presented, are basic experiments and observations of scaling and corrosive effects from hydrothermal water interacting with different materials and surfaces (stainless steel, polyamide, galvanized steel) and in particular the nucleation and growth effects of these materials regarding the precipitation of solid carbonate phases. The incorporation of Mg, Sr and Ba cations into the carbonate scalings are investigated as environmental proxy. For this purpose, hydrothermal carbonate precipitating experiments were initialized by mixing NaHCO3 and Ca-Mg-Sr-Ba-chloride solutions at temperatures ranging from 40 to 80 °C in glass reactors hosting artificial substrates of the above mentioned materials. The experiments show a strong dependence of the precipitation behaviour of calcium carbonate polymorphs on the particular material being present. Stainless steel and polyamide seem to restrict aragonite formation, whereas galvanized steel supports aragonite nucleation. Vaterite formation is promoted by polyamide surfaces. Importantly, vaterite is more soluble (less stable) compared to the other anhydrous calcium carbonate polymorphs, i.e. vaterite can be more easily re-dissolved. Thus, the use of polyamide components might reduce the amount and durability of

  9. Application of Boundary Element Method in Galvanic Corrosion Analysis for Metallic Materials used in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamarudin

    2011-01-01

    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. This paper presents the application of boundary element method for galvanic corrosion analysis between two different metallic materials. Aluminium (Al), and zinc (Zn) alloys were used separately coupled with the Carbon Steel (CS) in natural seawater. The measured conductivity of sea water is 30,800 μS/ cm at ambient temperature. Computer software system based on boundary element likes BEASY and ABAQUS can be used to accurately model and simulate the galvanic corrosion. However, the BEM based BEASY program will be used reasonably for predicting the galvanic current density distribution of coupled Al-CS and Zn-CS in this study. (author)

  10. Measurement of adhesion properties between topcoat paint and metallized/galvanized steel with surface energy measurement equipment.

    Science.gov (United States)

    2013-09-01

    The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...

  11. VARIATIONS IN ELECTROPHYSICAL PARAMETERS ESTIMATED FROM ELECTROMAGNETIC MONITORING DATA AS AN INDICATOR OF FAULT ACTIVITY

    Directory of Open Access Journals (Sweden)

    A. E. Shalaginov

    2018-01-01

    Full Text Available In the regions of high seismic activity, investigations of fault zones are of paramount importance as such zones can generate seismicity. A top task in the regional studies is determining the rates of activity from the data obtained by geoelectrical methods, especially considering the data on the faults covered by sediments. From a practical standpoint, the results of these studies are important for seismic zoning and forecasting of natural and anthropogenic geodynamic phenomena that may potentially occur in the populated areas and zones allocated for construction of industrial and civil objects, pipelines, roads, bridges, etc. Seismic activity in Gorny Altai is regularly monitored after the destructive 2003 Chuya earthquake (M=7.3 by the non-stationary electromagnetic sounding with galvanic and inductive sources of three modifications. From the long-term measurements that started in 2007 and continue in the present, electrical resistivity and electrical anisotropy are determined. Our study aimed to estimate the variations of these electrophysical parameters in the zone influenced by the fault, consider the intensity of the variations in comparison with seismicity indicators, and attempt at determining the degree of activity of the faults. Based on the results of our research, we propose a technique for measuring and interpreting the data sets obtained by a complex of non-stationary sounding modifications. The technique ensures a more precise evaluation of the electrophysical parameters. It is concluded that the electric anisotropy coefficient can be effectively used to characterize the current seismicity, and its maximum variations, being observed in the zone influenced by the fault, are characteristic of the fault activity. The use of two electrophysical parameters enhances the informativeness of the study.

  12. Electromagnetic Scattering Analysis of Coated Conductors With Edges Using the Method of Auxiliary Sources (MAS) in Conjunction With the Standard Impedance Boundary Condition (SIBC)

    DEFF Research Database (Denmark)

    Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.

    2002-01-01

    A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia......A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...... efficient than the MoM/SIBC method, proving that the proposed novel combination is a powerful and advantageous computational tool....

  13. Large-scale synthesis of Tellurium nanostructures via galvanic displacement of metals

    Science.gov (United States)

    Kok, Kuan-Ying; Choo, Thye-Foo; Ubaidah Saidin, Nur; Rahman, Che Zuraini Che Ab

    2018-01-01

    Tellurium (Te) is an attractive semiconductor material for a wide range of applications in various functional devices including, radiation dosimeters, optical storage materials, thermoelectric or piezoelectric generators. In this work, large scale synthesis of tellurium (Te) nanostructures have been successfully carried out in different concentrations of aqueous solutions containing TeO2 and NaOH, by galvanic displacements of Zn and Al which served as the sacrificial materials. Galvanic displacement process is cost-effective and it requires no template or surfactant for the synthesis of nanostructures. By varying the concentrations of TeO2 and NaOH, etching temperatures and etching times, Te nanostructures of various forms of nanostructures were successfully obtained, ranging from one-dimensional needles and rod-like structures to more complex hierarchical structures. Microscopy examinations on the nanostructures obtained have shown that both the diameters and lengths of the Te nanostructures increased with increasing etching temperature and etching time.

  14. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  15. Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture

    International Nuclear Information System (INIS)

    Zin, I.M.; Lyon, S.B.; Pokhmurskii, V.I.

    2003-01-01

    The corrosion inhibition of galvanized steel was studied in artificial acid rain solution using extracts of pigments normally used in organic coatings for corrosion control. It was established that a combination of zinc phosphate/molybdate and calcium ion exchange silica has a significant synergetic anticorrosion effect in the acid rain solution compared to the pigments used alone. Further, the charge transfer resistance of galvanized steel in acid rain solution saturated by the above pigment blend approaches that of strontium chromate in artificial acid rain solution. Use of the pigment blend was found to lead to development of a protective film, which is thought to be a complex mixture of calcium phosphates and zinc phosphate

  16. [What is the future for the galvanic industry in Italy and Europe].

    Science.gov (United States)

    Cavallotti, P L

    2012-01-01

    A number of European directives and burocratic constraints give difficulties to the galvanic Italian industries: The situation of the Galvanic industry in Italy is examined, with special care about the innovation perspectives needed to maintain an important role for the Italian surface treatment processes in Italy. Alternatives are already present for zinc cyanic alkaline plating and for the passivation with chromates of zinc. Difficult instead is the substitution of bright nickel and of electroless autocatalytic nickel An important process is Plating On Plastics POP and on other non conducting materials with electroless nickel The substitution of colloidal Palladium for surface activation is proposed. New innovative processes are proposed, regarding composite depositions with powders of micron or nano size, pulsed current deposition and deposition of layers with structure controlled at nanometric level. A strict cooperation among Research centres, Universities and Industries can start the renewal of a production of fundamental importance for the Italian future.

  17. A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Xin He

    2016-01-01

    Full Text Available We demonstrated a general strategy to fabricate silver-coated copper nanowires by a galvanic replacement, which is guided by the chemical principle that metal ions (silver ions with a relatively high reduction potential can galvanically etch nanostructure made from a less metal (copper. Well-dispersed and high-yielded copper nanowires were initially synthesized and then introduced into silver-ammonia solution for the growth of silver nanocrystals on the nanowire surfaces under vigorous oscillation. The results of X-ray diffraction, scanning electron microscope, and transmission electron microscope revealed that the silver nanocrystals were uniformly distributed on the copper nanowire surfaces to form Cu-Ag heterostructures. The concentration of silver-ammonia solution and the time of replacement reaction determine the size and density of the silver nanocrystals. Our investigation might pave the way to the synthesis of other bimetallic nanostructures via a facile, fast, and economical route.

  18. Synthesis and electrochemical properties of composite galvanic Ni with carbon nanomaterials and PVD Mo coatings

    International Nuclear Information System (INIS)

    Drozdovich, V.B.; Chayeuski, V.V.; Zhdanok, S.A.; Barkovskaya, M.M.

    2011-01-01

    Double layer coatings Ni – Mo were obtained by electrolytic deposition of galvanic Ni and following arc PVD deposition of molybdenum. The ion plating coatings Mo on Ni foil and composition electrolytic Ni coatings with carbon nanomaterials (CNM) deposited on mild steel has been also investigated. Composite galvanic Ni coatings with CNM and ion plating coatings Mo contain separately obtained cubic α-Mo phase as well as fragmentary solid solution Mo in Ni. Such coatings exclude hydrogenation of Ni foundation in alkaline solution and possess enlarged electrocatalytic properties while emitting hydrogen and oxygen. Availability of carbon based nanomaterials in combined coatings is cause of an active absorption hydrogen after cathodic polarization. A formation on the surface layer of nanostructure solid solution (Ni, Mo) after compression plasma flows treatment with fixed parameters of patterns Mo/Ni/ mild steel take place. (authors)

  19. The galvanic nature of synapse and the physicochemical aspects of nerve action.

    Science.gov (United States)

    Ghouri, M S; Shibata, S

    1984-04-01

    All electrode reactions are either electrochemical oxidation or electrochemical reduction reactions and therefore membrane potentials are produced by redox reactions. Postsynaptic potentials are the result of spontaneous galvanic electrochemical changes produced by neurotransmitters. Action potentials denote microelectrolysis along the axon length. Threshold is proportional to charge and the higher the threshold the greater the potential energy. Resting membrane potential is thermodynamically controlled whereas action potential is kinetically controlled phenomenon.

  20. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tapas; Satpati, Biswarup, E-mail: biswarup.satpati@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064 (India); Kabiraj, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067 (India)

    2015-06-24

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  1. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.

    Science.gov (United States)

    Zhang, Shuang; Pun, Sio Hang; Mak, Peng Un; Qin, Yu-Ping; Liu, Yi-He; Vai, Mang I

    2016-11-14

    In this study, an experiment was designed to verify the low power consumption of galvanic coupling human-body communication. A silver electrode (silver content: 99%) is placed in a pig leg and a sine wave signal with the power of 0 dBm is input. Compared with radio frequency communication and antenna transmission communication, attenuation is reduced by approximately 10 to 15 dB, so channel characteristics are highly improved.

  2. Intracavity OptoGalvanic Spectroscopy not suitable for ambient level radiocarbon detection.

    Science.gov (United States)

    Paul, Dipayan; Meijer, Harro A J

    2015-09-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research. Significantly cheaper, this technique was portrayed as a possible complementary technique to the more expensive and complex accelerator mass spectrometry. Several groups around the world started developing this technique for various radiocarbon related applications. The IntraCavity OptoGalvanic Spectroscopy setup at the University of Groningen was constructed in 2012 in close collaboration with the Murnick group for exploring possible applications in the fields of radiocarbon dating and atmospheric monitoring. In this paper we describe a systematic evaluation of the IntraCavity OptoGalvanic Spectroscopy setup at Groningen for radiocarbon detection. Since the IntraCavity OptoGalvanic Spectroscopy setup was strictly planned for dating and atmospheric monitoring purposes, all the initial experiments were performed with CO2 samples containing contemporary levels and highly depleted levels of radiocarbon. Because of recurring failures in differentiating the two CO2 samples, with the radiocarbon concentration 3 orders of magnitude apart, CO2 samples containing elevated levels of radiocarbon were prepared in-house and experimented with. All results obtained thus far at Groningen are in sharp contrast to the results published by the Murnick group and rather support the results put forward by the Salehpour group at Uppsala University. From our extensive test work, we must conclude that the method is unsuited for ambient level radiocarbon measurements, and even highly enriched CO2 samples yield insignificant signal.

  3. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  4. Systems and methods for bi-directional energy delivery with galvanic isolation

    Science.gov (United States)

    Kajouke, Lateef A.

    2013-06-18

    Systems and methods are provided for bi-directional energy delivery. A charging system comprises a first bi-directional conversion module, a second bi-directional conversion module, and an isolation module coupled between the first bi-directional conversion module and the second bi-directional conversion module. The isolation module provides galvanic isolation between the first bi-directional conversion module and the second bi-directional conversion module.

  5. Potentiometric titration of zinc and cadmium in electrolytes of in galvanic baths

    International Nuclear Information System (INIS)

    Kosyuga, E.A.; Kalugin, A.A.; Gur'ev, I.A.

    1979-01-01

    The method of potentiometric titration of zinc and cadmium by complexone 3 in electrolytes of galvanic baths using sulphide - silver electrode for determining the finite point of titration is suggested. Copper (2) ions are proposed as indicator ions. The potentiometric determination should be performed at pH=10. The method is verified on model electrolyte solutions and on the electrolyte solutions of operating baths.The technique can be used for automatic control. The time for analysis is 10 minutes

  6. Health hazards and electromagnetic fields.

    Science.gov (United States)

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  7. Relationships between environmental pollution and the corrosion of zinc and galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Dreulle, N.; Dreulle, P.

    1973-03-01

    The corrosion spelter and galvanized steel plates used as roofing materials by air pollutants in general, and sulfur dioxide in particular was studied, and measures to be taken to abate corrosion are proposed. In atmosphere containing SO2, zinc is corroded on its surface only through the formation first of insoluble zinc sulfite and then of water-soluble zinc sulfate. A relationship between the site of exposure, the atmospheric SO2 concentration, and the rate of corrosion of zinc was established, and an increase in the rate of corrosion with relative humidity and in precipitation was determined. The rate of corrosion of spelter amounts to about 10 microns per year which corresponds to a life expectancy of about 30 years in industrial polluted air. In urban air, the life expectancy amounts to about 100 years, well over one century in rural areas. The life of galvanized steel plates increases practically linearly with the thickness of the zinc coating. Painting was found highly efficient in abating the corrosion of spelter and galvanized steel. (Air Pollut. Abstr.)

  8. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    International Nuclear Information System (INIS)

    Lugo-Lugo, Violeta; Barrera-Diaz, Carlos; Bilyeu, Bryan; Balderas-Hernandez, Patricia; Urena-Nunez, Fernando; Sanchez-Mendieta, Victor

    2010-01-01

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm -2 iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm -2 . The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  9. Galvanic Corrosion of Mg-Zr Alloy and Steel or Graphite in Mineral Binders

    Science.gov (United States)

    Lambertin, David; Rooses, Adrien; Frizon, Fabien

    The dismantling of UNGG nuclear reactor generates numerous nuclear wastes such as fuel decanning commonly composed of Mg-Zr alloy. A conditioning strategy consists in encapsulating these wastes into a hydraulic binder in a suitable state for storage. The eventual presence of steel and graphite accompanying the magnesium wastes could imply corrosion by galvanic coupling. This work is an experimental investigation of the galvanic coupling between Mg-Zr alloy and steel or graphite using ZRA electrochemical method in Portland cement or geopolymer pastes. The lowest corrosion activity of magnesium alloy while coupled to graphite or steel cathode has been observed in geopolymer pastes. Indeed, in this binder, an efficient corrosion protection of the magnesium alloy maintains the galvanic current very low during all the hardening process. In geopolymer paste, current densities of anodised Mg-Zr alloy is not dependent of the cathode/anode surface ratio in the range of 0.1 to 5 due to the dominance of the anode resistance.

  10. Galvanic Corrosion of Lead by Iron (Oxyhydr)Oxides: Potential Impacts on Drinking Water Quality.

    Science.gov (United States)

    Trueman, Benjamin F; Sweet, Gregory A; Harding, Matthew D; Estabrook, Hayden; Bishop, D Paul; Gagnon, Graham A

    2017-06-20

    Lead exposure via drinking water remains a significant public health risk; this study explored the potential effects of upstream iron corrosion on lead mobility in water distribution systems. Specifically, galvanic corrosion of lead by iron (oxyhydr)oxides was investigated. Coupling an iron mineral cathode with metallic lead in a galvanic cell increased lead release by 531 μg L -1 on average-a 9-fold increase over uniform corrosion in the absence of iron. Cathodes were composed of spark plasma sintered Fe 3 O 4 or α-Fe 2 O 3 or field-extracted Fe 3 O 4 and α-FeOOH. Orthophosphate immobilized oxidized lead as insoluble hydroxypyromorphite, while humic acid enhanced lead mobility. Addition of a humic isolate increased lead release due to uniform corrosion by 81 μg L -1 and-upon coupling lead to a mineral cathode-release due to galvanic corrosion by 990 μg L -1 . Elevated lead in the presence of humic acid appeared to be driven by complexation, with 208 Pb and UV 254 size-exclusion chromatograms exhibiting strong correlation under these conditions (R 2 average = 0.87). A significant iron corrosion effect was consistent with field data: lead levels after lead service line replacement were greater by factors of 2.3-4.7 at sites supplied by unlined cast iron distribution mains compared with the alternative, lined ductile iron.

  11. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  12. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  13. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  14. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  15. Study of electromagnetic radiation produced by household equipment

    Science.gov (United States)

    Iagăr, A.; Popa, G. N.; Diniş, C. M.

    2017-05-01

    This paper presents the experimental study of electromagnetic radiation produced by different household equipment. Measurements were performed at various distances from the tested devices and in different operating modes of these, using the FA306 electromagnetic field analyzer. Also, it has been analyzed the cumulative effect of multiple sources. The experiments allowed the identification of measures to minimize the effects of exposure to artificial electromagnetic radiation produced by electrical household equipment.

  16. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  17. Electromagnetic Radiation Analysis

    Science.gov (United States)

    1978-04-10

    A methodology is given for determining whether electromagnetic radiation of sufficient strength to cause performance degradation to the test item...exists at the test item location. The results of an electromagnetic radiation effects test are used to identify the radio frequencies and electromagnetic ... radiation levels to which the test item is susceptible. Further, using a test bed, comparisons are made with the representative signal levels to

  18. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  19. Correlated Electromagnetic Levitation Actuator

    Data.gov (United States)

    National Aeronautics and Space Administration — Approach is to first characterize the capabilities of correlated electromagnets by developing a prototype with readily available materials and manufacturing...

  20. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  1. Terrestrial propagation of long electromagnetic waves

    CERN Document Server

    Galejs, Janis; Fock, V A

    2013-01-01

    Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte

  2. Numerical simulation of electromagnetic fields and impedance of CERN LINAC4 H(-) source taking into account the effect of the plasma.

    Science.gov (United States)

    Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R

    2014-02-01

    Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.

  3. Study of Channel Characteristics for Galvanic-Type Intra-Body Communication Based on a Transfer Function from a Quasi-Static Field Model

    Directory of Open Access Journals (Sweden)

    Min Du

    2012-11-01

    Full Text Available Intra-Body Communication (IBC, which modulates ionic currents over the human body as the communication medium, offers a low power and reliable signal transmission method for information exchange across the body. This paper first briefly reviews the quasi-static electromagnetic (EM field modeling for a galvanic-type IBC human limb operating below 1 MHz and obtains the corresponding transfer function with correction factor using minimum mean square error (MMSE technique. Then, the IBC channel characteristics are studied through the comparison between theoretical calculations via this transfer function and experimental measurements in both frequency domain and time domain. High pass characteristics are obtained in the channel gain analysis versus different transmission distances. In addition, harmonic distortions are analyzed in both baseband and passband transmissions for square input waves. The experimental results are consistent with the calculation results from the transfer function with correction factor. Furthermore, we also explore both theoretical and simulation results for the bit-error-rate (BER performance of several common modulation schemes in the IBC system with a carrier frequency of 500 kHz. It is found that the theoretical results are in good agreement with the simulation results.

  4. Numerical modeling of fluid and electromagnetic phenomena in an arcjet

    Science.gov (United States)

    Flowe, Anita C.; Dewitt, Kenneth J.; Keith, Theo G., Jr.; Pawlas, Gary E.; Penko, Paul F.

    1992-01-01

    An explicit numerical technique is used to solve the axisymmetric reduced electromagnetic field equation. The effect of an electrical arc on a viscous, axisymmetric flow is approximated using an implicit thin layer Navier-Stokes solver with additional electromagnetic source terms in conjunction with the explicit finite difference code.

  5. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  6. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  7. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  8. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  9. Introducing Electromagnetic Field Momentum

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  10. Electromagnetic Heating Methods for Heavy Oil Reservoirs

    International Nuclear Information System (INIS)

    Sahni, A.; Kumar, M.; Knapp, R.B.

    2000-01-01

    The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations

  11. Electromagnetic Fields and Public Health: Mobile Phones

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Electromagnetic fields and public health: mobile phones Fact sheet N° ... Electromagnetic fields: base stations and wireless technologies Electromagnetic fields: electromagnetic ... research agenda for electromagnetic fields You ...

  12. Biological and Health Effects of Electromagnetic (Nonionizing) Radiation. LC Science Tracer Bullet.

    Science.gov (United States)

    Halasz, Hisako, Comp.

    The environment we live in today is filled with human-created electromagnetic fields generated by a variety of sources, including radio and television transmitters, power lines, and visual display terminals. (In addition, there exists a natural background of electromagnetic fields.) The term "electromagnetic pollution" is often used to…

  13. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva

    Directory of Open Access Journals (Sweden)

    Ana Mellado-Valero

    2018-01-01

    Full Text Available The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c, one nickel-chromium-titanium alloy (NiCrTi, one gold-palladium alloy (Au, and one titanium alloy (Ti6Al4V, and the galvanic effect when they are coupled to titanium implants (TiG2. It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry in artificial saliva (AS, with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys.

  14. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva

    Science.gov (United States)

    Mellado-Valero, Ana; Igual Muñoz, Anna; Guiñón Pina, Virginia

    2018-01-01

    The aim of the present study is to analyze the electrochemical behavior of five different dental alloys: two cobalt-chromium alloys (CoCr and CoCr-c), one nickel-chromium-titanium alloy (NiCrTi), one gold-palladium alloy (Au), and one titanium alloy (Ti6Al4V), and the galvanic effect when they are coupled to titanium implants (TiG2). It was carried out by electrochemical techniques (open circuit measurements, potentiodynamic curves and Zero-Resistance Ammetry) in artificial saliva (AS), with and without fluorides in different acidic conditions. The studied alloys are spontaneously passivated, but NiCrTi alloy has a very narrow passive domain and losses its passivity in presence of fluorides, so is not considered as a good option for implant superstructures. Variations of pH from 6.5 to 3 in artificial saliva do not change the electrochemical behavior of Ti, Ti6Al4V, and CoCr alloys, and couples, but when the pH of the artificial saliva is below 3.5 and the fluoride content is 1000 ppm Ti and Ti6Al4V starts actively dissolving, and CoCr-c superstructures coupled to Ti show acceleration of corrosion due to galvanic effects. Thus, NiCrTi is not recommended for implant superstructures because of risk of Ni ion release to the body, and fluorides should be avoided in acidic media because Ti, Ti6Al4V, and CoCr-c superstructures show galvanic corrosion. The best combinations are Ti/Ti6Al4V and Ti/CoCr as alternative of noble gold alloys. PMID:29361767

  15. Metallurgical characterization, galvanic corrosion, and ionic release of orthodontic brackets coupled with Ni-Ti archwires.

    Science.gov (United States)

    Darabara, Myrsini S; Bourithis, Lefteris I; Zinelis, Spiros; Papadimitriou, George D

    2007-04-01

    In orthodontics, a combination of metallic alloys is placed into the oral cavity during medical treatment and thus the corrosion resistance and ionic release of these appliances is of vital importance. The aim of this study is to investigate the elemental composition, microstructure, hardness, corrosion properties, and ionic release of commercially available orthodontic brackets and Copper Ni-Ti archwires. Following the assessment of the elemental composition of the orthodontic wire (Copper Ni-Ti) and the six different brackets (Micro Loc, Equilibrium, OptiMESH(XRT), Gemini, Orthos2, and Rematitan), cyclic polarization curves were obtained for each material to estimate the susceptibility of each alloy to pitting corrosion in 1M lactic acid. Galvanic corrosion between the orthodontic wire and each bracket took place in 1M lactic acid for 28 days at 37 degrees C and then the ionic concentration of Nickel and Chromium was studied. The orthodontic wire is made up from a Ni-Ti alloy with copper additions, while the orthodontic brackets are manufactured by different stainless steel grades or titanium alloys. All tested wires and brackets with the exception of Gemini are not susceptible to pitting corrosion. In galvanic corrosion, following exposure for 28 days, the lowest potential difference (approximately 250 mV) appears for the orthodontic wire Copper Ni-Ti and the bracket made up from pure titanium (Rematitan) or from the stainless steel AISI 316 grade (Micro Loc). Following completion of the galvanic corrosion experiments, measurable quantities of chromium and nickel ions were found in the residual lactic acid solution. (c) 2006 Wiley Periodicals, Inc.

  16. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  17. Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach

    International Nuclear Information System (INIS)

    Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R

    2015-01-01

    Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)

  18. Modeling and Characterization of cMUT-based Devices Applied to Galvanic Isolation

    Science.gov (United States)

    Heller, Jacques; Boulmé, Audren; Alquier, Daniel; Ngo, Sophie; Perroteau, Marie; Certon, Domnique

    This paper describes a new way of using cMUT technology: galvanic isolation for power electronics. These devices work like acoustic transformers, except that piezoelectricity is replaced by cMUT technology. Primary and secondary circuits are two cMUT-based transducers respectively layered on each side of a silicon substrate, through which the ultrasonic triggering signal is transmitted. A specific model based on a commercial finite element code was implemented to simulate these devices. A particular attention was paid on the modeling of the cMUT/substrate coupling which is a key feature for the intended application. First experimental results performed for model validation are presented here and discussed.

  19. [Use of magnetic therapy combined with galvanization and tissue electrophoresis in the treatment of trophic ulcers].

    Science.gov (United States)

    Alekseenko, A V; Gusak, V V; Stoliar, V F; Iftodiĭ, A G; Tarabanchuk, V V; Shcherban, N G; Naumets, A A

    1993-01-01

    The results of treatment of 86 patients with the use of magnetotherapy in combination with galvanization and intratissue electrophoresis are presented. To create an electric field, the "Potok-1" apparatus with a density of current equal to 0.05-0.1 mA/cm2 was employed. Simultaneously, the "MAG-30" apparatus for low-frequency magnetotherapy with induction of 30 mT and area of exposure of 20 cm2 was applied to a trophic ulcer site. The use of magnetogalvanotherapy in the complex of treatment of trophic ulcers of the lower extremities is recommended.

  20. Possibility of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Khaynakov, S.A.; Likov, E.P.; Bortun, A.I.; Belyukov, V.N.

    1986-01-01

    Present work is devoted to possibilities of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers. Thus, the comparative study of sorption of chromium ions on anion exchanger A B-17 and on inorganic ion exchangers on the basis of hydrated titanium and zirconium dioxides in static and dynamic conditions is conducted. The influence of chromium ions concentration, solutions acidity (ph=1÷12) and presence of base electrolyte on sorption is studied. The state of chromium ions sorbed by inorganic ion exchangers is studied by means of infrared spectroscopy and spectroscopy. It is defined that inorganic sorbents could be used for chromium extraction from different solutions.

  1. The Feasibility of Using a Galvanic Cell Array for Corrosion Detection and Solution Monitoring

    Science.gov (United States)

    Kolody, Mark; Calle, Luz-Marina; Zeitlin, Nancy P. (Technical Monitor)

    2003-01-01

    An initial investigation into the response of the individual galvanic couples was conducted using potentiodynamic polarization measurements of solutions under conditions of varying corrosivity. It is hypothesized that the differing electrodes may provide a means to further investigate the corrosive nature of the analyte through genetic algorithms and pattern recognition techniques. The robust design of the electrochemical sensor makes its utilization in space exploration particularly attractive. Since the electrodes are fired on a ceramic substrate at 900 C, they may be one of the most rugged sensors available for the anticipated usage.

  2. Less-Conventional Low-Consumption Galvanic Separated MOSFET-IGBT Gate Drive Supply

    Directory of Open Access Journals (Sweden)

    Jean Marie Vianney Bikorimana

    2017-01-01

    Full Text Available A simple half-bridge, galvanic separated power supply which can be short circuit proof is proposed for gate driver local supplies. The supply is made while hacking a common mode type filter as a transformer, as the transformer shows a good insulation, it has a very low parasitic capacitance between primary and secondary coils, and it is cost-effective. Very low standby losses were observed during lab experiments. This makes it compatible with energy efficient drives and solar inverters.

  3. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  4. Electromagnetism applications in nuclear engineering: cyclotron

    International Nuclear Information System (INIS)

    Nobrega Bastos; Dalla Riva, Maria Teresa Cristina da.

    1995-08-01

    Particle accelerators, with special emphasis on cyclotrons, are presented. Other electromagnetic devices and their importance in technology and research are also shown. An experimental arrangement for positrons source productions using a cyclotron aiming at non-destructive testing for radiations damage studies is presented. 46 refs., 23 figs., 2 tabs

  5. Computer techniques for electromagnetics

    CERN Document Server

    Mittra, R

    1973-01-01

    Computer Techniques for Electromagnetics discusses the ways in which computer techniques solve practical problems in electromagnetics. It discusses the impact of the emergence of high-speed computers in the study of electromagnetics. This text provides a brief background on the approaches used by mathematical analysts in solving integral equations. It also demonstrates how to use computer techniques in computing current distribution, radar scattering, and waveguide discontinuities, and inverse scattering. This book will be useful for students looking for a comprehensive text on computer techni

  6. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  7. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  8. Implementation of a galvanically isolated low-noise power supply board for multi-channel headstage preamplifiers.

    Science.gov (United States)

    Tóth, Attila; Máthé, Kálmán; Petykó, Zoltán; Szabó, Imre; Czurkó, András

    2008-06-15

    Custom made multi-channel headstage preamplifiers are traditionally powered by battery. By the use of an isolated unregulated DC/DC converter integrated circuit (DCP010512B from Texas Instruments Inc., TX, USA), here we describe the implementation of a galvanically isolated low-noise power supply board for multi-channel headstage preamplifiers. The implemented galvanically isolated power supply board provides the same quality noise free recording as the battery power supply. The non-isolated part of the power supply board is powered by standard 230 V AC/6 V DC wall mount adapter or USB cable. The described galvanically isolated power supply board can replace the batteries in preamplifier power supplies without any deterioration of the quality of recordings.

  9. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    Science.gov (United States)

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  10. Galvanic Displacement of Gallium Arsenide Surface: A Simple and Low-Cost Method to Deposit Metal Nanoparticles and Films

    Directory of Open Access Journals (Sweden)

    Ngoc Duy Pham

    2014-01-01

    Full Text Available Herein, we report galvanic displacement of metal nanoparticles and films onto single-crystalline GaAs (100 substrates, a simple and cost-effective method to fabricate highly controlled metal/semiconductor interface. A time-resolved surface analysis of Au/GaAs system was conducted and microscopic mechanism of galvanic displacement was elucidated in detail. Quantitative temporal XPS measurements of the Au/GaAs interface showed that, initially, fast Au growth was slowed down as the deposition process proceeded. This was attributed to growing oxide layer blocking hole conduction and causing quenching of the deposition process. Addition of various inorganic acids, which function as oxide etchants, was found to enhance deposition rates by effectively removing surface oxide, with HF the most effective. Various precious metals, such as Pt and Ag, could be deposited onto GaAs through galvanic displacement, which demonstrates the versatility of the method.

  11. Cortisol, biochemical, and galvanic skin responses to music stimuli of different preference values by college students in biology and music.

    Science.gov (United States)

    VanderArk, S D; Ely, D

    1993-08-01

    The purpose of this study was to examine biochemical and galvanic skin responses to music stimuli. Specifically, 30 university biology and 30 music students' plasma levels of norepinephrine and cortisol and their galvanic skin responses were measured before and after listening to two different musical selections, one of which was preferred (liked) by the music students and not preferred (disliked) by the biology students. The music-listening sessions and the controlled silent sessions were done in an anechoic chamber. 30 biology majors and 30 music majors were in the experimental groups; 14 biology and 17 music majors comprised the control group. Analysis indicated that the cortisol levels and galvanic skin responses were significantly higher for the music majors than the biology majors. The data indicate that music majors listen more critically and analytically to music than biology majors, and cortisol levels are associated with this as increases in music majors and decreases in biology majors after the music.

  12. Parametric study of uniformly polarized stochastic electromagnetic beam and its imaging

    International Nuclear Information System (INIS)

    Du Xinyue; Zhao Daomu

    2009-01-01

    A parametric study is performed in investigating the stochastic electromagnetic beam generated by a uniformly polarized electromagnetic Gaussian Schell-model source and passing through ABCD optical systems. Through theoretical analysis, the requirement is derived that the uniformly polarized electromagnetic field can be obtained at the output plane of the imaging optical system. Furthermore, the general imaging formula of the stochastic electromagnetic beam is derived. Numerical examples are also presented to illustrate the application.

  13. Electro-magnetic waves within a model for charged solitons

    International Nuclear Information System (INIS)

    Borisyuk, Dmitry; Faber, Manfried; Kobushkin, Alexander

    2007-01-01

    We analyse the model of topological fermions (MTF), where charged fermions are treated as soliton solutions of the field equations. In the region far from the sources we find plane waves solutions with the properties of electro-magnetic waves

  14. Electromagnetic sinc Schell-model pulses in dispersive media

    International Nuclear Information System (INIS)

    Tang, Miaomiao; Zhao, Daomu; Zhu, Yingbin; Ang, Lay-Kee

    2016-01-01

    A class of random electromagnetic pulsed sources with sinc Schell-model correlations is introduced. Analytical formulas for the electromagnetic pulses generated by such pulsed sources propagating in dispersive media are derived. It is shown that the temporal intensity distribution of this new type of pulse exhibits unique propagation features, such as reshaping its average intensity from the initial Gaussian profile to a double-layer flat-top distribution at far field. The effects, arising from the source temporal coherent length and the dispersion coefficient, on the profiles of the temporal intensity distribution and the temporal degree of polarization are analyzed in detail. The results presented here demonstrate the potential of coherence modulation for pulse shaping applications. - Highlights: • We introduced a new class of random electromagnetic pulsed sources. • We derived its analytical formulas for the electromagnetic pulses in dispersive media. • It is shown that its temporal intensity distribution exhibits unique propagation features.

  15. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  16. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  17. Electromagnetism in the Movies.

    Science.gov (United States)

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  18. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  19. Effect of Temperature on the Galvanic Corrosion of Cu-Ni Alloy/High Strength Steel in Seawater

    Directory of Open Access Journals (Sweden)

    Wang Chun Li

    2016-01-01

    Full Text Available The galvanic corrosion behavior of Cu-Ni Alloy(B10/high strength steel (921A has been studied using a zero-resistance ammeter (ZRA in seawater at different temperatures. As well as it was systemically investigated by weight loss measurements, electrochemical methods and scanning electron microscope.Results showed 921A acts as the anode and B10 act as the cathodes. The effect of temperature on the galvanic corrosion is important, the corrosion rate became higher with the temperature increased.

  20. Earthquake Prediction: Seismo-Electromagnetic Phenomena

    Science.gov (United States)

    Park, Stephen

    Earthquake Prediction: Seismo-Electromagnetic Phenomena is a review of research on electromagnetic emissions (EME) as precursors to earthquakes. The authors state in the introduction that the book is primarily based on their own work, so there is heavy emphasis on the Russian literature. Fewer than 15% of the references are taken from European, Asian, and North American sources. Though the title implies a diverse range of signals, the authors focus mostly on EME in the kHz-MHz range. There is little discussion of signals in the ULFand lower-frequency bands.

  1. Electromagnetic properties of nuclei at high spins

    International Nuclear Information System (INIS)

    Leander, G.A.

    1986-01-01

    A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs

  2. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  3. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  4. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  5. Electromagnetic Education in India

    Directory of Open Access Journals (Sweden)

    Bajpai Shrish

    2016-06-01

    Full Text Available Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases. Electromagnetism has played a vital role in the progress of human kind ever since it has been understood. Electromagnets are found everywhere. One can find them in speakers, doorbells, home security systems, anti-shoplifting systems, hard drives, mobiles, microphones, Maglev trains, motors and many other everyday appliances and products. Before diving into the education system, it is necessary to reiterate its importance in various technologies that have evolved over time. Almost every domain of social life has electromagnetic playing its role. Be it the mobile vibrators you depend upon, a water pump, windshield wipers during rain and the power windows of your car or even the RFID tags that may ease your job during shopping. A flavor of electromagnetics is essential during primary level of schooling for the student to understand its future prospects and open his/her mind to a broad ocean of ideas. Due to such advancements this field can offer, study on such a field is highly beneficial for a developing country like India. The paper presents the scenario of electromagnetic education in India, its importance and numerous schemes taken by the government of India to uplift and acquaint the people about the importance of EM and its applications.

  6. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  7. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  8. Grid computing for electromagnetics

    CERN Document Server

    Tarricone, Luciano

    2004-01-01

    Today, more and more practitioners, researchers, and students are utilizing the power and efficiency of grid computing for their increasingly complex electromagnetics applications. This cutting-edge book offers you the practical and comprehensive guidance you need to use this new approach to supercomputing for your challenging projects. Supported with over 110 illustrations, the book clearly describes a high-performance, low-cost method to solving huge numerical electromagnetics problems.

  9. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  11. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  12. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    Science.gov (United States)

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  13. Mössbauer and XRD study of hot dip galvanized alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E., E-mail: kuzmann@caesar.elte.hu [Eötvös Loránd University, Institute of Chemistry (Hungary); Speakman, R.; El-Sharif, M. [Glasgow Caledonian University (United Kingdom); Stichleutner, S.; Homonnay, Z. [Eötvös Loránd University, Institute of Chemistry (Hungary); Klencsár, Z. [Research Centre for Natural Sciences, HAS, Institute of Materials and Environmental Chemistry (Hungary); Sziráki, L. [Eötvös Loránd University, Institute of Chemistry (Hungary); Chisholm, C. U.; Lak, Gy. B. [Glasgow Caledonian University (United Kingdom)

    2016-12-15

    Mössbauer spectroscopy has been used to investigate the nature of the Zinc-Iron alloys present within the Hot Dip Galvanized (HDG) layers of steel with a silicon content of 0.35 %. The investigation also studied the impact of the powder coating pretreatment on the nature of the alloy layers. The acid etching process within the pretreatment process in particular would be expected to have a significant impact on the HDG layer. This study utilized {sup 57}Fe Mössbauer spectroscopy to examine identically processed samples prior to and post pre treatment. XRD and {sup 57}Fe CEMS measurements were performed on hot galvanized S355J2 + N samples, forming sandwiched structure. Both XRD and CEMS reveal the presence of dominant steel phase in accordance with its estimated occurrence on the surface of the sandwiched samples. Minor Γ-Fe3Zn10, ζ-FeZn15 and solid solution Fe-Zn as well as minor Fe-Si phases could also be identified.

  14. REMOVING ZINC FROM GALVANIZED STEEL SCRAP TO FEASIBLE THE BOF SLUDGE RECYCLING

    Directory of Open Access Journals (Sweden)

    Mônica Marques Caetano de Lima

    2013-06-01

    Full Text Available Galvanized steel scraps generated at Usiminas Ipatinga are recycled in BOF converters. Although they are noble products, they contain a significant quantity of zinc that escapes from the bath due to its high vapor pressure and is captured by the gas control system, appearing in BOF sludge. As BOF sludge contains high iron content, it could be recycled to the process, but due to its zinc content, it is disposed in landfills. For this reason, this study aimed to treat these scraps to remove zinc layer using a thermal treatment process. The samples were fed to a rotative furnace in an inert ambient. It was tested the hot dip galvanized and eletrogalvanized scraps, varying the zinc coating weight between 20g/m2 and 150g/m2, temperature between 700°C and 900°C and time between 3 minutes and 10 minutes. Considering these conditions, it is verified that more than 70% of the zinc layer is removed at 700°C, in 10 minutes. Dust captured is about 60% of metallic zinc and 40% as zinc oxide. Based on these results, the recycling of BOF sludge can be feasible to the ironmaking process.

  15. Silicate glasses obtained from fine silica powder modified with galvanic waste addition

    International Nuclear Information System (INIS)

    Silva, A.C.; Castanho, S.R.H. Mello

    2004-01-01

    This work presents a study of waste incorporation in silicate glass process based on the formulations of soda-lime glass compositions using two different industrial solid residues. Glass silicates were produced from the residue of silica powders retained in the filter sleeves of sanitary ceramic factories. An other waste also used as the starting material was the solid galvanic residue from metallurgical processes. Besides part of the silica contents was replaced by boron oxide to improve melting of the glasses and the behavior of both the formulations was analyzed. The temperatures for the fusion were selected based on the equilibria diagrams and the flux characteristics of the melting as a function of the glass compositions. Temperatures up to 1500 o C and annealing treatments were used. The composition and the structure of the glass specimens were studied using X-ray fluorescence and X-ray diffraction methods. The resistances of the glasses at environmental conditions by hydrolysis, acid and alkaline attack experiments were analyzed. Glasses with up to 40wt% of added galvanic solid waste and 28wt% of fine silica powder with a good chemical resistance were obtained

  16. EVALUATION AND ACTIONS OF CLEANER PRODUCTION IN GALVANIC INDUSTRY OF THE VILLA CLARA PROVINCE

    Directory of Open Access Journals (Sweden)

    Petra G. Velazco Pedroso

    2015-10-01

    Full Text Available In this paper, the assessment results accomplished in different processes of the galvanic industry are presented and it is taking into account the application of good practices and measures of Cleaner Production. The main critical points in the processes of metallic coating were identified; and the characterization of the effluents generated by the installation is done. A number of technological changes in the processes are proposed, as well as the introduction of cleaner production measures which contribute to increase the efficiency and safety of processes, reduce risks and improvements to internal operations. It provides advantages of economic, environmental and social nature for the galvanic industry due to the minimizing of the impacts on environment, because the sewage and its pollutant load are reduced. Besides, we can save water, energy and raw materials. The economic evaluation showed the feasibility of applying the Cleaner Production (PML measures proposed with a Net Present Value (NPV of $109 696.26, and an Internal Rate of Return (IRR of 64 % value and payback period lower than two years.

  17. A simple soft lithographic nanopatterning of gold on gallium arsenide via galvanic displacement.

    Science.gov (United States)

    Lim, Hyuneui; Noh, Jung-Hyun; Choi, Dae-Geun; Kim, Wan-Doo; Maboudian, Roya

    2010-08-01

    Nanoscale patterning of gold layers on GaAs substrate is demonstrated using a combination of soft lithographic molding and galvanic displacement deposition. First, an electroless deposition method has been developed to plate gold on GaAs with ease and cost-effectiveness. The electroless metallization process is performed by dipping the GaAs substrates into a gold salt solution without any reducing agents or additives. The deposition proceeds via galvanic displacement in which gold ions in the aqueous solution are reduced by electrons arising from the GaAs substrate itself. The deposition rate, surface morphology and adhesion property can be modulated by the plating parameters such as the choice of acids and the immersion time. Second, soft lithographic patterning of nanodots, nanorings, and nanolines are demonstrated on GaAs substrates with hard-polydimethylsiloxane (h-PDMS) mold and plasma etching. This method can be easily applied to the metallization and nanopatterning of gold on GaAs surfaces.

  18. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2016-07-01

    Full Text Available Hexavalent chromium [Cr(VI] is a toxic oxidized form and an important metal pollutant in the water bodies. Biosorption of chromium(VI offers a potential alternative to conventional metal removal methods. Dried biomass of Chlorella vulgaris was used as biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents as a function of biosorbent dosage, contact time, pH, salinity and initial metal ion concentration. Batch experiments were conducted for biosorption and the optimum conditions were 1 g/L biomass, 4 h contact time, pH 2 and 2.893 mS/cm of electrical conductivity. The chromium biosorption was strictly pH dependent with a maximum Cr removal of 63.2 mg/L at pH 2. Highest Cr removal at a concentration of 81.3 mg/L was observed at Electrical conductivity (EC value of 2.893 mS/cm. A comparison of Langmuir and Freundlich isotherm models revealed that Freundlich isotherm model fitted the experimental data based on R2, qmax and standard error values. The results suggest that C. vulgaris biomass could be considered a promising low-cost biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents. Keywords: Biosorption, Chlorella vulgaris, Microalgae, Hexavalent chromium

  19. Electromagnetic probes of the QGP

    Directory of Open Access Journals (Sweden)

    Bratkovskaya E. L.

    2015-01-01

    Full Text Available We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow v2 of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleusnucleus collisions can be employed to shed some more light on the origin of the photon v2 “puzzle”. While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  20. How geostatistics can help you find lead and galvanized water service lines: The case of Flint, MI.

    Science.gov (United States)

    Goovaerts, Pierre

    2017-12-01

    In the aftermath of Flint drinking water crisis, most US cities have been scrambling to locate all lead service lines (LSLs) in their water supply systems. This information, which is most often inaccurate or lacking, is critical to assess compliance with the Lead and Copper Rule and to plan the replacement of lead and galvanized service lines (GSLs) as currently under way in Flint. This paper presents the first geospatial approach to predict the likelihood that a home has a LSL or GSL based on neighboring field data (i.e., house inspection) and secondary information (i.e., construction year and city records). The methodology is applied to the City of Flint where 3254 homes have been inspected by the Michigan Department of Environmental Quality to identify service line material. GSLs and LSLs were mostly observed in houses built prior to 1934 and during World War II, respectively. City records led to the over-identification of LSLs, likely because old records were not updated as these lines were being replaced. Indicator semivariograms indicated that both types of service line are spatially clustered with a range of 1.4km for LSLs and 2.8km for GSLs. This spatial autocorrelation was integrated with secondary data using residual indicator kriging to predict the probability of finding each type of material at the tax parcel level. Cross-validation analysis using Receiver Operating Characteristic (ROC) Curves demonstrated the greater accuracy of the kriging model relative to the current approach targeting houses built in the forties; in particular as more field data become available. Anticipated rates of false positives and percentages of detection were computed for different sampling strategies. This approach is flexible enough to accommodate additional sources of information, such as local code and regulatory changes, historical permit records, maintenance and operation records, or customer self-reporting. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Feed network and electromagnetic radiation source

    Science.gov (United States)

    Ardavan, Arzhang; Singleton, John; Linehan, Kevin E.; Ardavan, Houshang; Schmidt-Zwiefel, Andrea Caroline

    2017-01-17

    An antenna may include a volume polarization current radiator and a feed network. The volume polarization current radiator, includes a dielectric solid (such as a dielectric strip), and a plurality of closely-spaced excitation elements (24), each excitation element (24) being configured to induce a volume polarization current distribution in the dielectric solid proximate to the excitation element when a voltage is applied to the excitation element. The feed network is coupled to the volume polarization current radiator. The feed network also includes a plurality of passive power divider elements (32) and a plurality of passive delay elements (d1-d6) coupling the first port (30) and the plurality of second ports (108, 109, 164), the plurality of power divider elements (32) and the plurality of phase delay elements (d1-d6) being configured such that a radio-frequency signal that is applied to the first port (30) experiences a progressive change of phase as it is coupled to the plurality of second ports (108, 109, 164) so as to cause the volume polarization current distribution to propagate along the dielectric solid.

  2. Conducted Electromagnetic Interference (EMI) in Smart Grids

    CERN Document Server

    Smolenski, Robert

    2012-01-01

    As power systems develop to incorporate renewable energy sources, the delivery systems may be disrupted by the changes involved. The grid’s technology and management must be developed to form Smart Grids between consumers, suppliers and producers. Conducted Electromagnetic Interference (EMI) in Smart Grids considers the specific side effects related to electromagnetic interference (EMI) generated by the application of these Smart Grids. Conducted Electromagnetic Interference (EMI) in Smart Grids presents specific EMI conducted phenomena as well as effective methods to filter and handle them once identified. After introduction to Smart Grids, the following sections cover dedicated methods for EMI reduction and potential avenues for future development including chapters dedicated to: •potential system services, •descriptions of the EMI spectra shaping methods, •methods of interference voltage compensation, and theoretical analysis of experimental results.  By focusing on these key aspects, Conducted El...

  3. Relativistically strong electromagnetic radiation in a plasma

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Kiriyama, H.; Kondo, K.

    2016-03-01

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated in the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron-positron pairs, which is described within quantum electrodynamics theory.

  4. Electromagnetic Compatibility in Railways Analysis and Management

    CERN Document Server

    Ogunsola, Ade

    2013-01-01

    A railway is a complex distributed engineering system: the construction of a new railway or the modernisation of a existing one requires a deep understanding of the constitutive components and their interaction, inside the system itself and towards the outside world. The former covers the various subsystems (featuring a complex mix of high power sources, sensitive safety critical systems, intentional transmitters, etc.) and their interaction, including the specific functions and their relevance to safety. The latter represents all the additional possible external victims and sources of electromagnetic interaction. EMC thus starts from a comprehension of the emissions and immunity characteristics and the interactions between sources and victims, with a strong relationship to electromagnetics and to system modeling. On the other hand, the said functions are achieved and preserved and their relevance for safety is adequately handled, if the related requirements are well posed and managed throughout the process f...

  5. Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanized steel and electroplating steel

    Energy Technology Data Exchange (ETDEWEB)

    Lebrini, M., E-mail: mlebrini@yahoo.fr [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, M. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Gengembre, L. [Unite de Catalyse et Chimie du solide UMR 8181 Bat C3, USTL, F-59655, Villeneuve d' Ascq Cedex (France); Fontaine, G. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Lerasle, O.; Genet, N. [TOTAL France, Centre de Recherche de Solaize, Chemin du canal, BP 22, F-69360 Solaize (France)

    2011-02-01

    The efficiency of a formula containing 2-{l_brace}(2-hydroxyethyl)[(4-methyl-1H-1,2,3-benzotriazol-1-yl)methyl] amino{r_brace}ethanol (tolyltriazole) and decanoic acid as corrosion inhibitor for galvanized steel and electroplating steel in aqueous solution have been determined by electrochemical impedance spectroscopy (EIS) techniques. The experimental data obtained from this method show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour in the presence of different concentration of decanoic acid (DA) in the formula was also investigated by EIS. Results obtained reveal that, the formula is a good inhibitor for galvanized steel and electroplating steel in aqueous solution, the better performance was obtained in the case of galvanized steel. The ability of the inhibitor to be adsorbed on the surface was dependent on the nature of metal. X-ray photoelectron spectroscopy surface analysis with inhibitor shows that it's chemisorbed at the galvanized and electroplating steel/aqueous solution interface.

  6. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  7. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India

    International Nuclear Information System (INIS)

    Natesan, M.; Venkatachari, G.; Palaniswamy, N.

    2006-01-01

    As a part of updating Corrosion Map of India project, atmospheric corrosion behaviour of commercially available engineering materials such as mild steel, galvanized iron, zinc and aluminium metals was studied in marine, industrial, urban, and rural environments by weight loss method at 10 exposure stations in India over a period of 5 years. The results of these studies demonstrated that galvanized iron, zinc and aluminium metals were several times more durable than mild steel. Compared to galvanized iron and zinc, aluminium provided superior protection in industrial and marine environment except at Mormugao Port Trust (MPT). It also offered much better resistance to corrosion in rural environments. At certain places, galvanized iron proved to be more durable than aluminium. The results obeyed well with the empirical kinetics equation of the form C = Kt n , where K and C are the corrosion losses in μm after 1 and 't' years of the exposure, respectively, and 'n' is a constant. Based on 'n' values, the corrosion mechanisms of these metals are predicted. The corrosion products formed on the metal samples in Chennai marine atmosphere were identified by X-ray diffraction analysis

  8. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    Science.gov (United States)

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  9. Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait.

    NARCIS (Netherlands)

    van Schooten, K.S.; Sloot, L.H.; Bruijn, S.M.; Kingma, H; Meijer, O.G.; Pijnappels, M.A.G.M.; van Dieen, J.H.

    2011-01-01

    For targeted prevention of falls, it is necessary to identify individuals with balance impairments. To test the sensitivity of measures of variability, local stability and orbital stability of trunk kinematics to balance impairments during gait, we used galvanic vestibular stimulation (GVS) to

  10. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway.

    Science.gov (United States)

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing. © 2013 Elsevier Inc. All rights reserved.

  11. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  12. 76 FR 68422 - Galvanized Steel Wire From Mexico: Preliminary Determination of Sales at Less Than Fair Value and...

    Science.gov (United States)

    2011-11-04

    ... Mexico: Preliminary Determination of Sales at Less Than Fair Value and Postponement of Final... United States at less than fair value (LTFV), as provided in section 733(b) of the Tariff Act of 1930, as.... Fair Value Comparisons To determine whether respondents' sales of galvanized wire from Mexico to the...

  13. 77 FR 17430 - Galvanized Steel Wire From the People's Republic of China: Final Determination of Sales at Less...

    Science.gov (United States)

    2012-03-26

    ... the People's Republic of China: Final Determination of Sales at Less Than Fair Value AGENCY: Import... Determination of sales at less than fair value (``LTFV'') in the antidumping investigation of galvanized steel... Determination of Sales at Less Than Fair Value, 76 FR 73589 (November 29, 2011) (``Amended Preliminary...

  14. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  15. Galvanic corrosion of copper-cast iron couples in relation to the Swedish radioactive waste canister concept

    International Nuclear Information System (INIS)

    Smart, N.R.; Fennell, P.A.H.; Rance, A.P.; Werme, L.O.

    2004-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water could enter the annulus between the inner and outer canister and at points of contact between the two metals there would be a possibility of galvanic interactions. To study this effect, copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial pore-waters and a bentonite slurry, under aerated and deaerated conditions, at 30 deg. C and 50 deg. C. The currents passing between the coupled electrodes and the potential of the couples were monitored for several months. In addition, some bimetallic crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was also investigated. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg. C, galvanic corrosion rates as low as 0.02 μm/year were observed for iron in groundwater after de-aeration, but of the order of 100 μm/year for the cast iron at 50 deg. C in the presence of oxygen. The galvanic currents were generally higher at 50 deg. C than at 30 deg. C. None of the MCA specimens exhibited any signs of crevice corrosion under deaerated conditions. It will be shown that in deaerated

  16. Medium effect on the characteristics of the coupled seismic and electromagnetic signals.

    Science.gov (United States)

    Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John

    2015-01-01

    Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.

  17. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  18. Seismic electromagnetic study in China

    Science.gov (United States)

    Huang, Qinghua

    2016-04-01

    Seismo-electromagnetism is becoming a hot interdisciplinary study in both geosciences and electromagnetism. Numerous electromagnetic changes at a broad range of frequencies associated with earthquakes have been reported independently. There are some attempts of applying such electromagnetic data to short-term earthquake prediction. Although due to the complexity of seismogenic process and underground structure, the seismic electromagnetic phenomena cannot be fully understood, the seismic electromagnetic study plays a key role in the mitigation of seismic hazard. China is one of the countries which have the earliest reports on seismo-electromagnetic phenomena. The seismic electromagnetic study in China started in late 1960's. There are almost 50 years continuous observation data up to now, which provides a unique database for seismo-electromagnetic study not only in China, but also in the world. Therefore, seismo-electromagnetic study in China is interested broadly by international communities of geosciences and electromagnetism. I present here a brief review on seismic electromagnetic study in China, especially focusing on geo-electromagnetic observation and empirical prediction based on the observation data. After summarizing various electromagnetic observations such as apparent resistivity, geoelectric potential, geomagnetic field, electromagnetic disturbance, and so on, I show the cases of the empirical prediction based on the observed electromagnetic data associated with some earthquakes in China. Finally, based on the above review, I propose an integrated research scheme of earthquake-related electromagnetic phenomena, which includes the interaction between appropriate observations, robust methodology of data processing, and theoretical model analysis. This study is supported partially by the National Natural Science Foundation of China (41274075) and the National Basic Research Program of China (2014CB845903).

  19. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-06-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  20. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  1. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    Science.gov (United States)

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  3. Manufacturing of the full size prototype of the ion source for the ITER neutral beam injector – The SPIDER beam source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy); Boilson, Deirdre [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Bonicelli, Tullio [Fusion for Energy, C/Joseph Pla 2, 08019 Barcelona (Spain); Boury, Jacques [Thales Electron Devices, Velizy Villacoublay (France); Bush, Michael [Galvano-T GmbH, T, Raiffeisenstraße 8, 51570 Windeck (Germany); Ceracchi, Andrea; Faso, Diego [CECOM S.r.l., Via Tiburtina – Guidonia Montecelio, Roma (Italy); Graceffa, Joseph [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Heinemann, Bernd [Max-Planck-Institut für Plasmaphysik, D-85740 Garching (Germany); Hemsworth, Ronald [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Lievin, Christophe [Thales Electron Devices, Velizy Villacoublay (France); Marcuzzi, Diego [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy); Masiello, Antonio [Fusion for Energy, C/Joseph Pla 2, 08019 Barcelona (Spain); Sczepaniak, Bernd [Galvano-T GmbH, T, Raiffeisenstraße 8, 51570 Windeck (Germany); Singh, Mahendrajit [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Toigo, Vanni; Zaccaria, Pierluigi [Consorzio RFX, C.so Stati Uniti 4, I-35127, Padova (Italy)

    2015-10-15

    Highlights: • Negative ion sources are key components of neutral beam injectors for nuclear fusion. • The SPIDER experiment aims to optimize the negative ion source of MITICA and HNB. • The SPIDER Beam Source manufacturing is currently on-going. • Manufacturing and assembling technological issues encountered are presented. - Abstract: In ITER, each heating neutral beam injector (HNB) will deliver about 16.5 MW heating power by accelerating a 40 A deuterium negative ion beam up to the energy of 1 MeV. The ions are generated inside a caesiated negative ion source, where the injected H{sub 2}/D{sub 2} is ionized by a radio frequency electromagnetic field. The SPIDER test bed, currently being manufactured, is going to be the ion source test facility for the full size ion source of the HNBs and of the diagnostic neutral beam injector of ITER. The SPIDER beam source comprises an ion source with 8 radio-frequency drivers and a three-grid system, providing an overall acceleration up to energies of about 100 keV [1]. SPIDER represents a substantial step forward between the half ITER size ion source, which is currently being tested at the ELISE test bed in IPP-Garching, and the negative ion sources to be used on ITER, in terms of layout, dimensions and operating parameters. The SPIDER beam source will be housed inside a vacuum vessel which will be equipped with a beam dump and a graphite diagnostic calorimeter. The manufacturing design of the main parts of the SPIDER beam source has been completed and many of the tests on the prototypes have been successfully passed. The most complex parts, from the manufacturing point of view, of the ion source and the accelerator, developed by galvanic deposition of copper are being manufactured. The manufacturing phase will be completed within 2015, when the assembly of the device will start at the PRIMA site, in Padova (I). The paper describes the status of the procurement, the adaptations operated on the design of the beam

  4. Electromagnetic compatibility engineering

    CERN Document Server

    Ott, Henry W

    2009-01-01

    Praise for Noise Reduction Techniques IN electronic systems ""Henry Ott has literally 'written the book' on the subject of EMC. . . . He not only knows the subject, but has the rare ability to communicate that knowledge to others.""-EE Times Electromagnetic Compatibility Engineering is a completely revised, expanded, and updated version of Henry Ott's popular book Noise Reduction Techniques in Electronic Systems. It reflects the most recent developments in the field of electromagnetic compatibility (EMC) and noise reduction¿and their practical applications t

  5. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  6. Essentials of Computational Electromagnetics

    CERN Document Server

    Sheng, Xin-Qing

    2012-01-01

    Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifyin

  7. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  8. Lectures on electromagnetism

    CERN Document Server

    Das, Ashok

    2013-01-01

    These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell's equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of vari

  9. Embedding electromagnetic band gap structures in printed circuit boards for electromagnetic interference reduction

    NARCIS (Netherlands)

    Tereshchenko, O.V.

    2015-01-01

    Due to the tendency of faster data rates and lower power supply voltage in the integrated circuit (IC) design, Simultaneously Switching Noise (SSN) and ground bounce become serious concerns for designers and testers. This noise can be a source of electromagnetic interference (EMI). It propagates

  10. Intermetallic Cu3Sn Phase Layer on Electrode’s Tip of Galvanized Resistance Spot Welding

    Directory of Open Access Journals (Sweden)

    Muhammad Anis

    2010-10-01

    Full Text Available A resistance spot welding method is commonly used in automotive industries application. In a resistance spot welding method, the copper electrode has a significant role as an electric current carrier for joining thin metal sheet. This research was focused on studying the effect of tin layer at the electrode tip for joining galvanized steel sheet. The main variable of this research is in the thickness of the intermetallic Cu3Sn layer. The result showed that the introduction of tin layer less than 1 μm in thickness on the electrode tip gives a comparable shear strength and nugget diameter distribution with the unplated electrode tip.

  11. Performance Evaluation of CMUT-Based Ultrasonic Transformers for Galvanic Isolation.

    Science.gov (United States)

    Heller, Jacques; Boulme, Audren; Alquier, Daniel; Ngo, Sophie; Certon, Dominique

    2018-04-01

    This paper presents the development of a novel acoustic transformer with high galvanic isolation dedicated to power switch triggering. The transformer is based on two capacitive micromachined ultrasonic transducers layered on each side of a silicon substrate; one is the primary circuit, and the other is the secondary circuit. The thickness mode resonance of the substrate is leveraged to transmit the triggering signal. The fabrication and characterization of an initial prototype is presented in this paper. All experimental results are discussed, from the electrical impedance measurements to the power efficiency measurements, for different electrical load conditions. A comparison with a specifically developed finite-element method model is done. Simulations are finally used to identify the optimization rules of this initial prototype. It is shown that the power efficiency can be increased from 35% to 60%, and the transmitted power can be increased from 1.6 to 45 mW/Volt.

  12. Galvanic vestibular stimulation: a novel modulatory countermeasure for vestibular-associated movement disorders

    Directory of Open Access Journals (Sweden)

    Carlos V. Rizzo-Sierra

    2014-01-01

    Full Text Available Motion sickness or kinetosis is the result of the abnormal neural output originated by visual, proprioceptive and vestibular mismatch, which reverses once the dysfunctional sensory information becomes coherent. The space adaptation syndrome or space sickness relates to motion sickness; it is considered to be due to yaw, pith, and roll coordinates mismatch. Several behavioural and pharmacological measures have been proposed to control these vestibular-associated movement disorders with no success. Galvanic vestibular stimulation has the potential of up-regulating disturbed sensory-motor mismatch originated by kinetosis and space sickness by modulating the GABA-related ion channels neural transmission in the inner ear. It improves the signal-to-noise ratio of the afferent proprioceptive volleys, which would ultimately modulate the motor output restoring the disordered gait, balance and human locomotion due to kinetosis, as well as the spatial disorientation generated by gravity transition.

  13. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide.

    Science.gov (United States)

    Kaleva, Aaretti; Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-07-11

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  14. Atom probe tomography characterization of thin copper layers on aluminum deposited by galvanic displacement.

    Science.gov (United States)

    Zhang, Yi; Ai, Jiahe; Hillier, Andrew C; Hebert, Kurt R

    2012-01-24

    ″Ultrathin″ metallization layers on the order of nanometers in thickness are increasingly used in semiconductor interconnects and other nanostructures. Aqueous deposition methods are attractive methods to produce such layers due to their low cost, but formation of ultrathin layers has proven challenging, particularly on oxide-coated substrates. This work focused on the formation of thin copper layers on aluminum, by galvanic displacement from alkaline aqueous solutions. Analysis by atom probe tomography (APT) showed that continuous copper films of approximately 1 nm thickness were formed, apparently the first demonstration of deposition of ultrathin metal layers on oxidized substrates from aqueous solutions. The APT reconstructions indicate that deposited copper replaced a portion of the surface oxide film on aluminum. The results are consistent with mechanisms in which surface hydride species on aluminum mediate deposition, either by directly reducing cupric ions or by inducing electronic conduction in the oxide, thus enabling cupric ion reduction by Al metal.

  15. Moessbauer Studies of Corrosion Products Developed in Prohesion Test over Galvanized Steel Sheets

    International Nuclear Information System (INIS)

    Zapponi, M.; Perez, T.; Ramos, C.; Saragovi, C.

    2003-01-01

    Precoated galvanized steel sheets were submitted to Prohesion test (PT) and to outdoor marine exposure test (OT). The corrosion products were different in both cases. Goethite, lepidocrocite, pyrite and magnetite were found in the Prohesion test samples; the presence of akaganeite cannot be discarded. Surprisingly greigite was detected in these samples, suggesting in addition a located microbiological corrosion process. On the other hand, goethite, lepidocrocite, magnetite, akaganeite and silicates were found in outdoor exposure samples. This study allows the conclusion that in the Prohesion G-85 test the corrosion mechanism is different from that in the marine atmosphere for the analyzed samples and could not be used to predict the performance of this type of outdoor exposed materials.

  16. Flaw detection on galvanized metallic strips in real time by adaptive thresholding

    Science.gov (United States)

    Macaire, Ludovic; Postaire, Jack-Gerard

    1993-12-01

    This paper describes a vision system designed for automatic inspection of galvanized metallic strips in real-time. First, we present the image acquisition system whose two main components are a linear camera and a specific lighting device. In the second part, an original procedure is proposed in order to segment the line images at the line image acquisition rate. It consists in a fast adaptive thresholding scheme which determines global thresholds for each line image. In order to achieve an exhaustive control of the whole production, these tasks are run in real-time on a specific hardware architecture. The prototype described in the last section of this paper has been integrated on a production line to evaluate its efficacy.

  17. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Aaretti Kaleva

    2017-07-01

    Full Text Available In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  18. GALVANIC MAGNETIC PROPERTIES OF BISMUTH THIN FILMS DOPED WITH TELLURIUM MADE BY THERMAL VACUUM EVAPORATION

    Directory of Open Access Journals (Sweden)

    V. A. Komarov

    2013-01-01

    Full Text Available The influence of n-type impurity of tellurium (concentration range from 0.005 atomic % Te to 0.15 atomic % Te on galvanic magnetic properties (resistivity, magnetic resistance and Hall constant of Bi thin films with various thicknesses was studied. The properties were measured in temperature range from 77 to 300 K. It was established that the classical size effect in the films is significant and decreases with higher concentration of Te impurity. The analysis of experimental results was carried out in approximation of the law of Jones-Schoenberg dispersion for Bi films doped with tellurium. Calculation of concentration and mobility of charge carriers in the studied films was made.

  19. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method.

    Science.gov (United States)

    Xu, Xianghui; Zhang, Zhaozhu; Yang, Jin

    2010-03-02

    We have reported an easy means in this paper to imitate the "lotus leaf" by constructing a superhydrophobic surface through a process combining both electroless galvanic deposition and self-assembly of n-octadecanethiol. Superhydrophobicity with a static water contact angle of about 169 +/- 2 degrees and a sliding angle of 0 +/- 2 degrees was achieved. Both the surface chemical compositions and morphological structures were analyzed. We have obtained a feather-like surface structure, and the thickness of the Ag film is about 10-30 microm. The stability of the superhydrophobic surface was tested under the following three conditions: (1) pH value from 1 to 13; (2) after freezing treatment at -20 degrees C; (3) at ambient temperature. It shows a notable stability in that the contact angle of the sample still remained higher than 150 degrees in different conditions. It can be concluded that our approach can provide an alternative way to fabricate stable superhydrophobic materials.

  20. Laser fusion-brazing of aluminum alloy to galvanized steel with pure Al filler powder

    Science.gov (United States)

    Liu, Jia; Jiang, Shichun; Shi, Yan; Kuang, Yulin; Huang, Genzhe; Zhang, Hong

    2015-03-01

    The fusion-brazing connection of the dissimilar metal 5052 aluminum alloy/ST07Z steel was achieved by using the Nd:YAG laser with pure Al filler powder, and the effects of the laser power and powder feeding speed on the formation and mechanical properties of the resultant joints were investigated. The experimental results show that melting-brazing connection of 5052 aluminum alloy/galvanized steel can be successfully achieved, and the zinc plating layer has played the role of flux, assuring the brazing properties. The intermetallic compound layer was generated on the welded brazing interface. The joint exhibited a shear strength of 174 N/mm if the thickness of the intermetallic layer at the interface is about 6-7 μm.

  1. Effect of zinc crystals size on galvanized steel deformation and electrochemical behavior

    Directory of Open Access Journals (Sweden)

    José Daniel Culcasi

    2009-09-01

    Full Text Available Hot-dip galvanized steel sheets with different spangle sizes were deformed by means of rolling and tension. The change of preferential crystallographic orientation and of superficial characteristics due to the deformation was analyzed by means of both X-rays diffraction and optical and scanning electronic microscopy. A correlation between such changes and the involving deformation modes was intended to be done and the spangle size influence on these modes was studied. Coating reactivity change due to the deformation was investigated by means of quasi-steady DC electrochemical tests. The results allow to infer that, in great spangle samples, the main deformation mechanism is twinning whereas in small spangle ones, pyramidal slip systems happen as well. The increase of the reactivity with the deformation is greater in tension than in rolling and it is more important in small than in great spangle samples.

  2. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  3. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  4. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  5. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    Science.gov (United States)

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  6. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    Energy Technology Data Exchange (ETDEWEB)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.; Money, K.E.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.

  7. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    International Nuclear Information System (INIS)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.; Money, K.E.

    1984-01-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed

  8. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    Science.gov (United States)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  9. Treatment and recovery of liquid wastes from galvanic process; Tratamiento y reutilizacion de efluentes liquidos generados en el proceso de galvanizado

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Dominguez, F.J.; Alonso Suarez, F.J.; Maranon Maison, E. [Dpto. de Congruccion e Ingenieria de la Fabricacion, E.T.S.I.I., Univ. de Oviedo, Oviedo (Spain)

    1997-04-01

    Within the metal finishing industry, and in particular the galvanizing industry, one of the main problems to be confronted is that of the generation and subsequent handling of liquid residues. In the specific case of galvanization, these residues are generated basically in the exhausted pickling baths employed in treating surfaces before galvanization, as well as in the rinse water used in the distinct stages of the process. The purpose of the article is to provide an overview of the large number of possibilities for reducing and recovering these effluents. (Author) 29 refs.

  10. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  11. Electromagnetic foundations of solar radiation collection a technology for sustainability

    CERN Document Server

    Sangster, Alan J

    2014-01-01

    This text seeks to illuminate, mainly for the electrical power engineers of the future, the topic of large scale solar flux gathering schemes, which arguably represent the major source of renewable power available. The aim of the content is to impart, from an electromagnetic perspective, a deep and sound understanding of the topic of solar flux collection, ranging from the characteristics of light to the properties of antennas. To do this five chapters are employed to provide a thorough grounding in relevant aspects of electromagnetism and electromagnetic waves including optics, electromagneti

  12. Optical electromagnetic radiation detector

    International Nuclear Information System (INIS)

    Miceli, W. J.; Ludman, J. E.

    1985-01-01

    An optical electromagnetic radiation detector having a probe for receiving nearby electromagnetic radiation. The probe includes a loop antenna connected to a pair of transparent electrodes deposited on the end surfaces of an electro-optic Fabry-Perot interferometer. When the loop antenna picks up the presence of electromagnetic radiation, a voltage will be developed across the crystal of the electro-optic Fabry-Perot interferometer thereby changing the optical length of the interferometer. A beam of light from a remote location is transmitted through an optical fiber onto the Fabry-Perot interferometer. The change in optical length of the Fabry-Perot interferometer alters the intensity of the beam of light as it is reflected from the Fabry-Perot interferometer back through the optical fiber to the remote location. A beamsplitter directs this reflected beam of light onto an intensity detector in order to provide an output indicative of the variations in intensity. The variations in intensity are directly related to the strength of the electromagnetic radiation received by the loop antenna

  13. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  14. Introduction to electromagnetic compatibility

    Science.gov (United States)

    Paul, Clayton R.

    A formal and extensive treatment of electromagnetic compatibility (EMC) is presented. Basic principles are reviewed in detail, including reasons for EMC in electronic design. Also discussed are: nonideal behavior of components, signal spectra, radiated emission and susceptibility, conducted emissions and susceptibility, crosstalk, shielding, electrostatic discharge, and system design for EMC.

  15. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  16. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  17. Nanofocusing of electromagnetic radiation

    DEFF Research Database (Denmark)

    Gramotnev, D. K.; Bozhevolnyi, Sergey I.

    2014-01-01

    Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...

  18. Faraday: Father of Electromagnetism

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Faraday: Father of Electromagnetism. S V Bhat. General Article Volume 7 Issue 3 March 2002 pp 46-50. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/03/0046-0050. Keywords. Faraday ...

  19. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  20. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  1. Electromagnetic site survey at Dhruva research reactor

    International Nuclear Information System (INIS)

    Punekar, Parag; Ramkumar, N.; Roy, Kallol; Darbhe, M.D.

    2016-01-01

    Electromagnetic interference (EMI) has been a major source of disturbance in precision instrumentation, particularly in nuclear instrumentation systems processing signals in the range of nano and pico-amperes. The major sources of electromagnetic fields were identified to be Switched Mode Power Supplies, hand held transceivers, electrical circuit breakers, IGBT control circuits, high switching digital circuits, motor and transformer inrush currents, high current carrying cables etc. This paper provides technical information on EM site survey at Dhruva Research Reactor, basis for choosing the locations for EM survey, the issues involved, methodology, important observations and the experience feedback. The exercise was carried out in collaboration with M/s Automotive Research Association of India, Pune. This survey is a first attempt for characterization of EM environment at Dhruva Research Reactor and was primarily intended to generate base line data which is also expected to provide guidelines for locating new equipment having a potential to disturb existing EM environment

  2. Computational Electronics and Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  3. The electromagnetic spectrum: current and future applications in oncology.

    Science.gov (United States)

    Allison, Ron R

    2013-05-01

    The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.

  4. Electromagnetic or other directed energy pulse launcher

    Science.gov (United States)

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  5. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  6. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  7. Characterization of solid wastes from two different hot-dip galvanizing processes; Caracterizacion de residuos solidos procedentes de dos procesos distintos de galvanizado en caliente por inmersion

    Energy Technology Data Exchange (ETDEWEB)

    Delvasto, P.; Casal-Ramos, J. a.; Gonzalez-Jordan, O.; Duran-Rodriguez, N. C.; Dominguez, J. R.; Moncada, P.

    2012-11-01

    Zinc dust and zinc ash from hot-dip galvanizing industries located in Venezuela were characterized using atomic spectroscopy, scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Dust was formed during the high-pressure drying process of the galvanized pieces, in a plant that uses a steel kettle to hold the molten zinc. Ash identified as A came from the same plant as the dust, while ash identified as B came from a hot-dip galvanizing plant which use a ceramic lined galvanizing furnace. Dust contained 98 wt % Zn, in metallic form. Both ash samples contained: Zn and ZnO, while Zn{sub 5}(OH){sub 8}Cl{sub 2}×H{sub 2}O and ZnCl{sub 2} were only found in ash B. Globally, ash “A” and ash “B” contain 71 and 75 wt % Zn, respectively. (Author)

  8. Electromagnetic radiations and cancer. Cause and prevention.

    Science.gov (United States)

    Shore, R E

    1988-10-15

    The various types of electromagnetic radiation differ considerably in their ability to induce cancer. The potential of radiofrequency or microwave radiation and low-frequency electromagnetic radiation to alter DNA is very limited, because their energy is too low to produce substantial ionizations. They are therefore unlikely to be carcinogenic by any direct mechanism. Epidemiologic studies of the carcinogenicity of microwave radiation are basically negative. Studies of workers with relatively high exposures to low-frequency electromagnetic fields have suggested that such persons may be at somewhat elevated risk for leukemia, especially of the acute myeloid type, but the studies have had methodologic weaknesses and mixed results. The association is not proven at this point, but neither can it be ruled out. For ionizing radiation, which is clearly carcinogenic, major questions pertain to how to define the magnitude of risk from low doses and low dose rates, how to identify subgroups of people who are especially susceptible to the effects of ionizing radiation, and how to minimize radiation exposure. When fortuitous radiation exposure from manmade sources, such as radioactive releases from nuclear power plants, are examined in the context of the total exposure people receive from natural sources, medical irradiation, etc., they are almost always found to be small by comparison. Quantitatively, two sources of radiation provide the greatest opportunities for exposure reduction: abatement of radon levels in homes, and reduction in medical radiation exposures.

  9. [Safety and electromagnetic compatibility in sanitary field].

    Science.gov (United States)

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  10. Synchrotron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.

    1999-12-13

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of electromagnetic radiation extending from the infrared to the x-ray region. Brightness, defined as flux per unit area per unit solid angle, is normally a more important quantity than flux or intensity, particularly in throughput limited applications which include those in which monochromators are used. The authors have attempted to compile the formulae needed to calculate the flux, brightness, polarization and power produced by the three standard storage ring synchrotron radiation sources: bending magnets, wigglers and undulators. Where necessary, these formulae have contained reference to the emittance of the electron beam, as well as to the electron beam size and its divergence. For all three type sources, the source phase space area, i.e. the spatial and angular extent of the effective (real) source, is a convolution of its electron and photon components.

  11. Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide

    International Nuclear Information System (INIS)

    Rybachek, S.T.

    1985-01-01

    This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented

  12. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    Science.gov (United States)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  13. Galvanic replacement mediated synthesis of hollow Pt nanocatalysts: Significance of residual Ag for the H{sub 2} evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Vipul; O' Mullane, Anthony P.; Bhargava, Suresh K. [School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne VIC 3001 (Australia)

    2009-08-15

    With the increasing popularity of the galvanic replacement approach towards the development of bimetallic nanocatalysts, special emphasis has been focused on minimizing the use of expensive metal (e.g. Pt), in the finally formed nanomaterials (e.g. Ag/Pt system as a possible catalyst for fuel cells). However, the complete removal of the less active sacrificial template is generally not achieved during galvanic replacement, and its residual presence may significantly impact on the electrocatalytic properties of the final material. Here, we investigate the hydrogen evolution reaction (HER) activity of Ag nanocubes replaced with different amounts of Pt, and demonstrate how the bimetallic composition significantly affects the activity of the alloyed nanomaterial. (author)

  14. Evaluation of Corrosion Behavior of Galvanized Steel Treated with Conventional Conversion Coatings and a Chromate-Free Organic Inhibitor

    Directory of Open Access Journals (Sweden)

    Laura A. Hernandez-Alvarado

    2012-01-01

    Full Text Available Conventional weight loss tests and both DC and AC electrochemical techniques were used to study if an organic inhibitor containing an alkanolamine salt of a polycarboxylic acid can substitute toxic coatings as chromating and certain phosphating procedures in the protection of galvanized steel. The electrolyte used was a 0.5 M aerated NaCl solution. All tests gave concordant results, indicating that the chromate-free organic inhibitor does protect galvanized steel in this environment, even though the provided protection was less than that of the chromate conversion coating. It was observed that, after a moderate initial attack, the corrosion rate diminishes due to the appearance and growth of passivating corrosion products layers, mainly constituted by zinc hydroxychloride (Zn5(OH8CI2⋅H2O and two varieties of zinc hydroxide, among other crystalline compounds.

  15. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  16. The effect of zinc bath temperature on the morphology, texture and corrosion behaviour of industrially produced hot-dip galvanized coatings

    Directory of Open Access Journals (Sweden)

    A. Bakhtiari

    2014-03-01

    Full Text Available The purpose of this work is to identify the influence of zinc bath temperature on the morphology, texture and corrosion behavior of hot-dip galvanized coatings. Hot-dip galvanized samples were prepared at temperature in the range of 450-480 °C in steps of 10 °C, which is the conventional galvanizing temperature range in the galvanizing industries. The morphology of coatings was examined with optical microscopy and scanning electron microscopy (SEM. The composition of the coating layers was determined using energy dispersive spectroscopy (EDS analysis. The texture of the coatings was evaluated using X-ray diffraction. Corrosion behavior was performed using salt spray cabinet test and Tafel extrapolation test. From the experimental results, it was found that increasing the zinc bath temperature affects the morphology of the galvanized coatings provoking the appearance of cracks in the coating structure. These cracks prevent formation of a compact structure. In addition, it was concluded that (00.2 basal plane texture component was weakened by increasing the zinc bath temperature and, conversely, appearance of (10.1 prism component, (20.1 high angle pyramidal component and low angle component prevailed. Besides, coatings with strong (00.2 texture component and weaker (20.1 components have better corrosion resistance than the coatings with weak (00.2 and strong (20.1 texture components. Furthermore, corrosion resistance of the galvanized coatings was decreased by increasing the zinc bath temperature.

  17. Electromagnetic induction spectroscopy

    Science.gov (United States)

    Won, I. J.; Keiswetter, Dean A.

    1998-09-01

    An object, made partly or wholly of metals, has a distinct combination of electrical conductivity, magnetic permeability, and geometrical shape and size. When the object is exposed to a low-frequency electromagnetic field, it produces a secondary magnetic field. By measuring the secondary field in a broadband spectrum, we obtain a distinct spectral signature that may uniquely identify the object. Based on the response spectrum, we attempt to 'fingerprint' the object. This is the basic concept of Electromagnetic Induction Spectroscopy (EMIS). EMIS technology may be particularly useful for detecting buried landmines and unexploded ordnance. By fully characterizing and identifying an object without excavation. We should be able to reduce significantly the number of false targets. EMIS should be fully applicable to many other problems where target identification and recognition (without intrusive search) are important. For instance, an advanced EMIS device at an airport security gate may be able to recognize a particular weapon by its maker and type.

  18. The KLOE electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Adinolfi, M.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Anulli, F.; Barbiellini, G.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Cabibbo, G.; Caloi, R.; Campana, P.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Ciambrone, P.; De Lucia, E.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giannasi, A.; Giovannella, S.; Graziani, E.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Keeble, L.; Kim, W.; Kuo, C.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, T.; Mao, C.S.; Martemianov, M.; Mei, W.; Messi, R.; Miscetti, S.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Pacciani, L.; Palomba, M.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Picca, D.; Pirozzi, G.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Scuri, F.; Sfiligoi, I.; Silano, P.; Spadaro, T.; Spiriti, E.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Ventura, A.; Woelfle, S.; Wu, Y.; Xie, Y.G.; Zema, P.F.; Zhang, C.D.; Zhang, J.Q.; Zhao, P.P.

    2002-01-01

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e + e - collision data at DAPHINE for an integrated luminosity of some 2 pb -1 we find for electromagnetic showers, an energy resolution of 5.7%/√E(GeV) and a time resolution of 54/√E(GeV) ps. We also present a measurement of efficiency for low energy photons

  19. The KLOE electromagnetic calorimeter

    CERN Document Server

    Adinolfi, M; Antonelli, A; Antonelli, M; Anulli, F; Barbiellini, G; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Cabibbo, G; Caloi, R; Campana, P; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Ciambrone, P; De Lucia, E; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Erriquez, O; Farilla, A; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giannasi, A; Giovannella, S; Graziani, E; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Keeble, L; Kim, W; Kuo, C; Lanfranchi, G; Lee-Franzini, J; Lomtadze, T A; Mao Chen Sheng; Martemyanov, M; Mei, W; Messi, R; Miscetti, S; Moccia, S; Moulson, M; Murtas, F; Müller, S; Pacciani, L; Palomba, M; Palutan, M; Pasqualucci, E; Passalacqua, L; Passeri, A; Picca, D; Pirozzi, G; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Sciascia, B; Scuri, F; Sfiligoi, I; Silano, P; Spadaro, T; Spiriti, E; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Ventura, A; Wu, Y; Wölfle, S; Xie, Y G; Zema, P F; Zhang, C D; Zhang, J Q; Zhao, P P

    2002-01-01

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e sup + e sup - collision data at DAPHINE for an integrated luminosity of some 2 pb sup - sup 1 we find for electromagnetic showers, an energy resolution of 5.7%/sq root E(GeV) and a time resolution of 54/sq root E(GeV) ps. We also present a measurement of efficiency for low energy photons.

  20. Computational electronics and electromagnetics

    International Nuclear Information System (INIS)

    Shang, C C

    1998-01-01

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; and (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs

  1. Classical Electromagnetic Theory

    CERN Document Server

    VanderLinde, Jack

    2004-01-01

    This book is a self contained course in electromagnetic theory suitable for senior physics and electrical engineering students as well as graduate students whose past has not prepared them well for books such as Jackson or Landau and Lifschitz. The text is liberally sprinkled with worked examples illustrating the application of the theory to various physical problems. In this new edition I have endeavored to improve the accuracy and readability, added and further clarified examples, added sections on Schwarz-Christoffel mappings, and to make the book more self sufficient added an appendix on orthogonal function expansions and added the derivation of Bessel functions and Legendre polynomials as well as derivation of their generating functions. The number of student exercises has been increased by 45 over the previous edition. This book stresses the unity of electromagnetic theory with electric and magnetic fields developed in parallel. SI units are used throughout and considerable use is made of tensor notatio...

  2. Electromagnetic energy and food processing

    International Nuclear Information System (INIS)

    Mudgett, R.

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1 st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1 st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plant products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy. (33 refs.)

  3. Introduction to electromagnetic theory

    CERN Document Server

    Owen, George E

    2003-01-01

    A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson's equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced ele

  4. Fractal Electromagnetic Showers

    OpenAIRE

    Anchordoqui, L. A.; Kirasirova, M.; McCauley, T. P.; Paul, T.; Reucroft, S.; Swain, J. D.

    2000-01-01

    We study the self-similar structure of electromagnetic showers and introduce the notion of the fractal dimension of a shower. Studies underway of showers in various materials and at various energies are presented, and the range over which the fractal scaling behaviour is observed is discussed. Applications to fast shower simulations and identification, particularly in the context of extensive air showers, are also discussed.

  5. The KLOE electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Adinolfi, M.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Anulli, F.; Barbiellini, G.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Cabibbo, G.; Caloi, R.; Campana, P.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Ciambrone, P.; De Lucia, E.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giannasi, A.; Giovannella, S.; Graziani, E.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Keeble, L.; Kim, W.; Kuo, C.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, T.; Mao, C.S.; Martemianov, M.; Mei, W.; Messi, R.; Miscetti, S.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Pacciani, L.; Palomba, M.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Picca, D.; Pirozzi, G.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Scuri, F.; Sfiligoi, I.; Silano, P.; Spadaro, T.; Spiriti, E.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Ventura, A.; Woelfle, S.; Wu, Y.; Xie, Y.G.; Zema, P.F.; Zhang, C.D.; Zhang, J.Q.; Zhao, P.P.

    2002-01-01

    The KLOE calorimeter is a fine lead-scintillating fiber sampling calorimeter. We describe in the following the calibration procedures and the calorimeter performances obtained after 3 years of data taking. We get an energy resolution for electromagnetic showers of 5.4%/√E(GeV) and a time resolution of 56 ps/√E(GeV). We also present a measurement of efficiency for low-energy photons

  6. Electromagnetic Hammer for Metalworking

    Science.gov (United States)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; hide

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  7. Static electromagnetic field

    International Nuclear Information System (INIS)

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-01-01

    The problem of static electromagnetic field admitting a time-like and two space-like Killing vectors is completely solved. The solutions contain plane-symmetric solution as a special case. The solutions can be transformed into solutions describing the gravitational field of a charge line-mass by suitably introducing weyl's canonical coordinates. Further, these solutions are true generalizations of Kasner solutions. (Author) [pt

  8. Aircraft Electromagnetic Compatibility.

    Science.gov (United States)

    1987-06-01

    report) 20. Securty Clasif . (of this page) 21. No. of Pages 22. Price FORM 00 For ale by the National Technical Information Service, Springfield...34 the plane with the steering column having steel cable strung from the column to hydraulic actuators which then amplify the force and operate control...surfaces (figure 2.1-14). The engine throttle is operated by a steel cable. A steel cable does not recognize electromagnetic interference. Navigation

  9. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  10. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  11. Alexander von Humboldt: galvanism, animal electricity, and self-experimentation part 2: the electric eel, animal electricity, and later years.

    Science.gov (United States)

    Finger, Stanley; Piccolino, Marco; Stahnisch, Frank W

    2013-01-01

    After extensive experimentation during the 1790s, Alexander von Humboldt remained skeptical about "animal electricity" (and metallic electricity), writing instead about an ill-defined galvanic force. With his worldview and wishing to learn more, he studied electric eels in South America just as the new century began, again using his body as a scientific instrument in many of his experiments. As had been the case in the past and for many of the same reasons, some of his findings with the electric eel (and soon after, Italian torpedoes) seemed to argue against biological electricity. But he no longer used galvanic terminology when describing his electric fish experiments. The fact that he now wrote about animal electricity rather than a different "galvanic" force owed much to Alessandro Volta, who had come forth with his "pile" (battery) for multipling the physical and perceptable effects of otherwise weak electricity in 1800, while Humboldt was deep in South America. Humboldt probably read about and saw voltaic batteries in the United States in 1804, but the time he spent with Volta in 1805 was probably more significant in his conversion from a galvanic to an electrical framework for understanding nerve and muscle physiology. Although he did not continue his animal electricity research program after this time, Humboldt retained his worldview of a unified nature and continued to believe in intrinsic animal electricity. He also served as a patron to some of the most important figures in the new field of electrophysiology (e.g., Hermann Helmholtz and Emil du Bois-Reymond), helping to take the research that he had participated in to the next level.

  12. Can galvanic skin conductance be used as an objective indicator of children?s anxiety in the dental setting?

    OpenAIRE

    Najafpour, Ebrahim; Asl-Aminabadi, Naser; Nuroloyuni, Sara; Jamali, Zahra; Shirazi, Sajjad

    2017-01-01

    Background Assessment of procedural distress is essential at assisting children during invasive dental treatments. This study aimed to determine the validity and reliability of galvanic skin response as a measure for assessment of dental anxiety in children. Material and Methods 151 children, aged 5-7 years, participated in this study. Similar dental treatments were rendered to all subjects. At the beginning and end of the session, modified child dental anxiety scale (MCDAS), clinical anxiety...

  13. Study of the Reaction Rate of Gold Nanotube Synthesis from Sacrificial Silver Nanorods through the Galvanic Replacement Method

    OpenAIRE

    Sunil Kwon; Hyunbae Dong; Sang-Yup Lee

    2010-01-01

    An investigation was carried out about the gold nanotube synthesis via a galvanic replacement reaction. The progress of the gold nanotube synthesis was investigated using electron microscopy and UV-Vis spectroscopy. In addition, the reaction rates of gold nanotube formation in the early stage of the reaction were studied. The chlorine ion concentration linearly increased with the gold precursor concentration but deviated from the stoichiometric amounts. This deviation was probably due to AgCl...

  14. CONSIDERATIONS ON CONTACTLESS ELECTROMAGNETIC MEASUREMENT OF HUMIDITY IN PEDOLOGY

    Directory of Open Access Journals (Sweden)

    Tudor BURLAN-ROTAR

    2017-05-01

    Full Text Available To put into practice the conventional determination of resistivity by the galvanic method, requires a relatively large amount of labor and is, therefore, expensive. At the basis of any interpretation are the lateral or vertical variations of re sistivity. The high cost of resistivity maps execution generally means that fewer measurements are made than desirable, with the result that, either (i the explored area is not large enough to establish a reasonable background, against which the anomaly areas are to be delineated, or (ii the anomaly areas are obscure and lack definition. The application of electromagnetic techniques (EM for measuring soil resistivity or conductivity has been known for a long time. Conductivity is preferable in inductive techniques, as instrumentation readings are generally directly proportional to conductivity and inversely proportional to resistivity. The operating principle of this method is: a Tx coil transmitter, supplied with alternating current at an audio frequency, is placed on the ground. An Rx coil receiver is located at a short distance, s, away from the Tx coil. The magnetic field varies in time and the Tx coil induces very small currents in the ground. These currents generate a secondary magnetic field, Hs, which is sensed by the Rx receiver coil, together with primary magnetic field Hp. The ratio of the secondary field, Hs, to the primary magnetic field, Hp, (Hs/Hp is directly proportional to terrain conductivity. Measuring this ratio, it is possible to construct a device which measures the terrain conductivity by contactless, direct-reading electromagnetic technique. (linear meter. This latest technique for measuring conductivity by electromagnetic induction, using Very Low Frequency (VLF, is a non-invasive, non-destructive sampling method. The measurements can be done quickly and are not expensive. The Electromagnetic induction technology was originally developed for the mining industry, and has been used

  15. Changeability of tissue's magnetic remanence after galvanic-magnetostimulation in upper-back pain treatment.

    Science.gov (United States)

    Dyszkiewicz, Andrzej Jan; Kępiński, Paweł; Połeć, Paweł; Chachulski, Damian; Nowak-Kostrzewska, Ewa

    2015-11-01

    Research was conducted on parametric profiles of healthy subjects and patients with cervico-brachial pain syndrome resulting from C4/5 and/or C5/6 discopathy, including magnetic remanence of tissues in marker points 1-12 (L+R) and functional parameters, and their subsequent change after treatment in group A, using method of push-pull galvanic magnetostimulation (GMT 2.0). GMT 2.0 device, comprised of one air solenoid and three galvanic solenoids in electrolytic tubs, was designed for push-pull magnetostimulation of the head, coupled with simultaneous stimulation of the limbs. Clinical trial was conducted in Outpatient Private Clinic "VIS" under the auspices of Silesian Higher Medical School in Katowice, Poland. 55 subjects participated in the study: control group K consisted of 23 healthy individuals, whereas 33 patients in group A were treated using GMT 2.0. Only patients in group A were treated with GMT 2.0 during 40-min sessions over a period of 10 days. Parametric profile of the patients was defined using various measurements: electronic SFTR test (C-Th-shoulders), HR, RR, BDI and VAS tests, magnetic remanence in marker points 1-12 (L+R) and blood parameters: HB, ER, CREA, BIL, K(+), Na(+), Cl(-) Fe(2+), Ca(2+) and Mg(2+). There was a significant reduction in pain (VAS), increase in the range of motion (SFTR), lower depression symptoms (BDI), slower heart rate (HR), lower blood pressure (RR), greater concentration of Mg(2+), K(+), Ca(2+)ions and reduction in the concentration of BIL, CREA Fe(2+) after GMT 2.0 treatment in group A. Evaluation of magnetic remanence in marker points M1-12 (L+R) initially showed higher values in group K, which after treatment were normalized to values similar to those in group K. GMT 2.0 treatment in group A resulted in normalization of magnetic remanence, synergically with increased range of motion (SFTR test), decreased HR and RR parameters, smaller depressive trends (BDI test), as well as increased ion levels (K(+), Mg(2+), Ca(2

  16. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  17. Natural and man-made terrestrial electromagnetic noise: an outlook

    Directory of Open Access Journals (Sweden)

    A. Meloni

    2007-06-01

    Full Text Available The terrestrial environment is continuously exposed to electromagnetic radiations which set up a «background» electromagnetic noise. Within the Non Ionizing Radiation band (NIR, i.e. for frequencies lower than 300 GHz, this background can have a natural or an artificial origin. Natural origins of electromagnetic radiations are generally atmospheric or cosmic while artificial origins are technological applications, power transmission, communications, etc. This paper briefly describes the natural and man-made electromagnetic noise in the NIR band. Natural noise comes from a large variety of sources involving different physical phenomena and covering a wide range of frequencies and showing various propagation characteristics with an extremely broad range of power levels. Due to technological growth man-made electromagnetic noise is nowadays superimposed on natural noise almost everywhere on Earth. In the last decades man-made noise has increased dramatically over and above the natural noise in residential and business areas. This increase has led some scientists to consider possible negative effects of electromagnetic waves on human life and living systems in general. Accurate measurements of natural and man-made electromagnetic noise are necessary to understand the relative power levels in the different bands and their influence on life.

  18. Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles.

    Science.gov (United States)

    Polavarapu, Lakshminarayana; Zanaga, Daniele; Altantzis, Thomas; Rodal-Cedeira, Sergio; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Bals, Sara; Liz-Marzán, Luis M

    2016-09-14

    Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core-shell NPs (nanorods and nanocubes) into octahedral nanorattles via room-temperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.

  19. Saccule contribution to immediate early gene induction in the gerbil brainstem with posterior canal galvanic or hypergravity stimulation

    Science.gov (United States)

    Marshburn, T. H.; Kaufman, G. D.; Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Immunolabeling patterns of the immediate early gene-related protein Fos in the gerbil brainstem were studied following stimulation of the sacculus by both hypergravity and galvanic stimulation. Head-restrained, alert animals were exposed to a prolonged (1 h) inertial vector of 2 G (19.6 m/s2) head acceleration directed in a dorso-ventral head axis to maximally stimulate the sacculus. Fos-defined immunoreactivity was quantified, and the results compared to a control group. The hypergravity stimulus produced Fos immunolabeling in the dorsomedial cell column (dmcc) of the inferior olive independently of other subnuclei. Similar dmcc labeling was induced by a 30 min galvanic stimulus of up to -100 microA applied through a stimulating electrode placed unilaterally on the bony labyrinth overlying the posterior canal (PC). The pattern of vestibular afferent firing activity induced by this galvanic stimulus was quantified in anesthetized gerbils by simultaneously recording from Scarpa's ganglion. Only saccular and PC afferent neurons exhibited increases in average firing rates of 200-300%, suggesting a pattern of current spread involving only PC and saccular afferent neurons at this level of stimulation. These results suggest that alteration in saccular afferent firing rates are sufficient to induce Fos-defined genomic activation of the dmcc, and lend further evidence to the existence of a functional vestibulo-olivary-cerebellar pathway of adaptation to novel gravito-inertial environments.

  20. A study of phase and morphology changes occurring as a result of galvanic reactions with FeO nanocrystals

    Science.gov (United States)

    Onserio, Benard Obae

    Recently, iron oxide nanoparticles have attracted great attention from various research groups. This is due to their potential applications in various fields such as biomedicine, environmental remediation, storage media, catalysis, and as anode materials for lithium-ion batteries. The objective of this study is to develop a synthesis of hollow Fe3O4 nanoparticles via galvanic reaction between FeO nanocrystals and oxidizing agents in which a nanoscale Kirkendall effect occurs. The objective is based on prior results in which it was demonstrated that Cu2+ oxidized MnO nanocrystals to yield hollow Mn3O4 nanoparticles. The analogous process starting from FeO is expected to be even more thermodynamically favorable. Despite efforts to obtain FeO nanocrystals, the magnetite Fe3O 4 phase was obtained. With this sample, attempts were made towards galvanic reactions in the presence of Cu2+. The initial result of the reaction of Fe3O4 nanocrystals with Cu2+ was unexpected, and FeO was obtained; however, the result could not be reproduced. Later efforts focused on attempting to understand the galvanic reaction that took place leading to the formation of FeO. Thus reaction of Fe3O 4 with oleylamine, silver (I), and ascorbic acid were studied. Data for the phase and morphological changes of the iron oxides will be presented.

  1. Effect of dissolved oxygen, hydrazine and pH outside the crevice on the galvanic corrosion of support plate alloys

    International Nuclear Information System (INIS)

    McKubre, M.C.H.

    1985-01-01

    A study has been performed of the initial corrosion of support structure alloys in crevices of various geometries, when galvanically coupled to alloy 600. Corrosion rates were monitored continuously by measuring the galvanic current flowing in each couple, transduced by a zero impedance ammeter. Experiments were performed in a single-pass flowing electrolyte system, with AVT water pumped through alloy 600 tubing past the orifice of each crevice. Fourteen crevices were studied simultaneously in two parallel flow arms containing seven specimens each. The steady state AVT water pH/hydrazine/oxygen concentrations were controlled by microcomputer, allowing the effect of secondary water chemistry on the corrosion rate to be studied easily. Control of the crevice electrolyte composition was achieved by separately pumping electrolyte, at a low rate, directly into the crevices of the seven specimens in the lower flow arm. In addition, a high pressure syringe was used to introduce chemicals directly into the secondary or crevice electrolyte flow streams, in order to rapidly evaluate the influence of potential corrodent or corrosion control agents on the galvanic corrosion rates. Specimens were studied in the five basic geometries

  2. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  3. Electromagnetic Vibration Simulation of a 250-MW Large Hydropower Generator with Rotor Eccentricity and Rotor Deformation

    OpenAIRE

    Ruhai Li; Chaoshun Li; Xuanlin Peng; Wei Wei

    2017-01-01

    The electromagnetic vibration caused by electromagnetic force on the stator has threatened large hydro generators operating safely and stably. At the Zhexi hydropower station, the hydro generator was beset by electromagnetic vibration for a long time. Therefore, the paper provided a new method to help to find the vibration source and detect the hydro generator fault, through the combination of simulation and experiments. In this paper, the 3D stator pack structure model and the 2D hydro gener...

  4. Investigation of the electromagnetic radiation field level in the vicinity of Damascus international airport

    International Nuclear Information System (INIS)

    Abukassem, I.

    2011-07-01

    The aim of this work is to estimate the electromagnetic radiation exposure of Damascus international airport workers.Different kinds of electromagnetic wave sources exist in the vicinity of the airport, for example, mobile phone base stations. It was found that the exposure level in all studied points (offices, halls, traffic control tour, etc) is lower than the international restriction levels. Few recommendations were given for some work situation or places where the measured electromagnetic radiation levels were relatively high.(author)

  5. Analysis and application of electromagnetic compatibility test for safety instrumentation and control electronic equipment

    International Nuclear Information System (INIS)

    Hu Xuefeng; Zhou Liang; Zhang Longqiang

    2014-01-01

    The applicable qualification standard of electromagnetic compatibility (EMC) tests for instrumentation and control electronic equipment was introduced. The electromagnetic interference immunity test, the radiated radio-frequency electromagnetic field immunity test, the sensibility test, the source surge immunity test and the electrostatic discharge immunity test for EMC test were mainly introduced. And the important of configuration and the selection of method for EMC sampler was especially introduced. (authors)

  6. Magnetically coupled high-gain Y-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push...

  7. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2017-11-01

    Full Text Available In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.

  8. Galvanic skin response test: a new quantitative diagnostic method for Frey syndrome.

    Science.gov (United States)

    Tuzemen, Gokhan; Basut, Oguz; Ozmen, Omer Afsin; Coskun, Hamdi Hakan

    2013-07-01

    Frey syndrome is one of the most common complications following parotid surgery. The current most common test for objectively diagnosing Frey syndrome is Minor starch-iodine test. This test might be insufficient because its results are not quantitative and therefore tests with quantitative results are investigated. The objective of this study was to investigate the efficiency of galvanic skin response (GSR) test, which measures changes in skin resistance, as a method with quantitative results for diagnosis of Frey syndrome. Thirty patients who underwent superficial parotidectomy were assessed postoperatively (mean, 24.7 ± 25.7 months; range, 6-109 months). Patients completed a symptomatic evaluation questionnaire and underwent Minor starch-iodine test and GSR. Diagnostic validity of GSR test was found to be >2.91 following analysis. Sensitivity and specificity of this value were 100% and 55%, respectively, based on symptomatic assessment. Sensitivity and specificity were 87.5% and 57.1%, respectively, based on Minor starch-iodine test. When compared to symptomatic evaluation of patients who underwent superficial parotidectomy, GSR test was shown to be 100% sensitive in diagnosing Frey syndrome and quantitative results of GSR test could determine severity of Frey syndrome.

  9. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    Science.gov (United States)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  10. An environmentally acceptable primer for galvanized steel: Formulation and evaluation by SVET

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, A.M.P., E-mail: alda.simoes@ist.utl.p [CIDEPINT - Centro de Investigacion y Desarrollo en Tecnologia de Pinturas (CIC-CONICET), Calle 52 e/121 y 122, 1900 La Plata (Argentina); TULisbon, Instituto Superior Tecnico, DEQB, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carbonari, R.O.; Di Sarli, A.R.; Amo, B. del [CIDEPINT - Centro de Investigacion y Desarrollo en Tecnologia de Pinturas (CIC-CONICET), Calle 52 e/121 y 122, 1900 La Plata (Argentina); TULisbon, Instituto Superior Tecnico, DEQB, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Romagnoli, R., E-mail: estelectro@cidepint.gov.a [CIDEPINT - Centro de Investigacion y Desarrollo en Tecnologia de Pinturas (CIC-CONICET), Calle 52 e/121 y 122, 1900 La Plata (Argentina); TULisbon, Instituto Superior Tecnico, DEQB, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-01-15

    Research highlights: {yields} Chromates can be replaced successfully by aluminium phosphosilicate in paint systems. {yields} The solvents of the primer are eco-friendly ones. {yields} The primer adheres on galvanized steel and allows top-coating. {yields} The binder of the primer is compatible with other binders for top-coating. - Abstract: The object of this paper was to formulate a two-pack wash primer employing aluminium phosphosilicate as active anticorrosive pigment instead of basic zinc chromate. The anticorrosive action of the primer was evaluated by the polarization technique and the scanning vibrating electrode technique (SVET). The exposed surface was then examined by scanning electron microscopy (SEM) and the surface composition determined by energy dispersive X-ray (EDX) analysis. The primer was finally integrated in a complete paint scheme whose anticorrosive performance was evaluated by the salt spray chamber and electrochemical impedance spectroscopy. The adhesion of the primer plus a painting system was also evaluated by standard ASTM D 3359-90 test method. The wash primer pigmented with zinc chromate was used as reference. Results indicated that basic zinc chromate could be replaced by the more eco-friendly wash-primer containing aluminium phosphosilicate.

  11. Vitrification of galvanic solid wastes: solutions for the east area of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Mattos, Cleiton dos Santos; Castanho, Sonia Regina Homem de Mello

    2011-01-01

    Galvanic solid waste have elevated levels of heavy metals and usually are stocked in the industry, creating a worrisome environmental liabilities. This disturbing fact is aggravated in areas densely populated as the area east of Sao Paulo, which has a pole of industrial electroplating of chrome. The present paper, we describe and provide a technological option for the disposal of waste generated by this activity using techniques that allow the incorporation of these in a glass matrix. The wastes were characterized by XRF, EDS, ICP-AES, AAS, DTA/TGA, XRD and SEM-FEG and embedded in glass and frits made from the system SiO - CaO-Na O , with additions of up to 30% by weight. The results of the analysis of residues showed the majority presence of Ni, Cr, B, Cu, Ca and S. The resulting glasses showed that heavy metals were incorporated into its structure and probably replacing the Ca and Na. In addition, the products showed specific colors indicating the possibility of use in some segments of manufacturing in ceramics with glazes, loading and pigments. (author)

  12. Galvanic vestibular stimulation may improve anterior bending posture in Parkinson's disease.

    Science.gov (United States)

    Okada, Yohei; Kita, Yorihiro; Nakamura, Junji; Kataoka, Hiroshi; Kiriyama, Takao; Ueno, Satoshi; Hiyamizu, Makoto; Morioka, Shu; Shomoto, Koji

    2015-05-06

    This study investigated the effects of binaural monopolar galvanic vestibular stimulation (GVS), which likely stimulates the bilateral vestibular system, on the anterior bending angle in patients with Parkinson's disease (PD) with anterior bending posture in a single-blind, randomized sham-controlled crossover trial. The seven PD patients completed two types of stimulation (binaural monopolar GVS and sham stimulation) applied in a random order 1 week apart. We measured each patient's anterior bending angles while he or she stood with eyes open and eyes closed before/after the stimulations. The anterior bending angles in both the eyes-open and the eyes-closed conditions were significantly reduced after the GVS. The amount of change in the eyes-closed condition post-GVS was significantly larger than that by sham stimulation. The amount of change in anterior bending angles in the GVS condition was not significantly correlated with Unified Parkinson's Disease Rating Scale motor score, disease duration, the duration of the postural deformities, and the anterior bending angles before the GVS. Binaural monopolar GVS might improve anterior bending posture in PD patients, irrespective of the duration and the severity of disease and postural deformities. Binaural monopolar GVS might be a novel treatment strategy to improve anterior bending posture in PD.

  13. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    International Nuclear Information System (INIS)

    Golberg, A; Laufer, S; Rabinowitch, H D; Rubinsky, B

    2011-01-01

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  14. Standard practice for conducting wire-on-bolt test for atmospheric galvanic corrosion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers the evaluation of atmospheric galvanic corrosion of any anodic material that can be made into a wire when in contact with a cathodic material that can be made into a threaded rod. 1.2 When certain materials are used for the anode and cathode, this practice has been used to rate the corrosivity of atmospheres. 1.3 The wire-on-bolt test was first described in 1955 (1), and has since been used extensively with standard materials to determine corrosivity of atmospheres under the names CLIMAT Test (CLassify Industrial and Marine ATmospheres) (2-5) and ATCORR (ATmospheric CORRosivity) (6-9). 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations p...

  15. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  16. Synthesis of Indium Nanowires by Galvanic Displacement and Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Hope Greg

    2008-01-01

    Full Text Available Abstract Single crystalline indium nanowires were prepared on Zn substrate which had been treated in concentrated sulphuric acid by galvanic displacement in the 0.002 mol L−1In2(SO43-0.002 mol L−1SeO2-0.02 mol L−1SDS-0.01 mol L−1citric acid aqueous solution. The typical diameter of indium nanowires is 30 nm and most of the nanowires are over 30 μm in length. XRD, HRTEM, SAED and structural simulation clearly demonstrate that indium nanowires are single-crystalline with the tetragonal structure, the growth direction of the nanowires is along [100] facet. The UV-Vis absorption spectra showed that indium nanowires display typical transverse resonance of SPR properties. The surfactant (SDS and the pretreatment of Zn substrate play an important role in the growth process. The mechanism of indium nanowires growth is the synergic effect of treated Zn substrate (hard template and SDS (soft template.

  17. Solvent extraction applied to the recovery of heavy metals from galvanic sludge.

    Science.gov (United States)

    Silva, J E; Paiva, A P; Soares, D; Labrincha, A; Castro, F

    2005-04-11

    In this study, a hydrometallurgical treatment involving the solvent extraction and recovery of some heavy metals from a sulphuric acid leach solution of galvanic sludge, using di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and bis-(2,4,4-trimethylpentyl)-phosphinic acid (Cyanex 272), both diluted in kerosene, has been investigated. The preliminary tests revealed the necessity to remove other metal species than zinc and nickel, contained in the leach solution, and therefore, processes to cement copper and precipitate chromium were then applied to finally obtain a Zn and Ni pregnant solution prior to solvent extraction. For the experimental conditions studied, Cyanex 272 showed a good recovery of Zn after the stripping stage using H2SO4, but D2EHPA effectively promoted a higher Zn extraction than Cyanex 272 did. The dependence of the solvent extraction method on variables such as pH, contact time and concentration of extractant, as well as the effect of different concentrations of sulphuric acid on stripping, are discussed. The discussion also includes the previous conditions developed to separate the main interfering metallic species from the leach solution in order to improve the extraction and recovery of zinc by solvent extraction. The final objective has been to achieve a solution as pure as possible to recover nickel sulphate.

  18. Effects of galvanic vestibular stimulation on visual memory recall and EEG.

    Science.gov (United States)

    Lee, Jeong-Woo; Lee, Gi-Eun; An, Ji-Hyang; Yoon, Se-Won; Heo, Myoung; Kim, Hwang-Yong

    2014-09-01

    [Purpose] This study aimed to examine the effects of galvanic vestibular stimulation (GVS) on visual memory recall and EEG. [Subjects and Methods] In the present study, 42 adults were selected and divided equally into two groups of 21 adults, the GVS group and the Sham group. The error rate was calculated as a percentage based on the total number of errors in the answers to 24 questions after stimulation, while the reaction time was measured in intervals between the time the questions were asked and the time it took the subjects to answer the questions. EEG data were obtained by attaching electrodes to the Fz, Cz, and Pz points during the question and answer phase. [Results] The error rate showed statistically significant differences in the interaction involving the time of response and group. The reaction time showed no statistically significant differences in the interaction involving the time of response and group. When relative band power parameters were analyzed, alpha waves showed no statistically significant differences in the interaction involving the time of response and group, but only the Fz area of beta waves showed statistically significant differences in the interaction involving the time of response and group. [Conclusion] GVS may improve visual memory recall in relation to a flower, a person, an animal, or a building.

  19. Asymmetry of balance responses to monaural galvanic vestibular stimulation in subjects with vestibular schwannoma.

    Science.gov (United States)

    Welgampola, Miriam S; Ramsay, Elijane; Gleeson, Michael J; Day, Brian L

    2013-09-01

    We investigated the potential of galvanic vestibular stimulation (GVS) to quantify lateralised asymmetry of the vestibulospinal pathways by measuring balance responses to monaural GVS in 10 subjects with vestibular schwannoma and 22 healthy control subjects. Subjects standing without vision were stimulated with 3 s, 1 mA direct current stimuli delivered monaurally. The mean magnitude and direction of the evoked balance responses in the horizontal plane were measured from ground-reaction forces and from displacement and velocity of the trunk. Vestibular-evoked myogenic potentials (VEMPs) to 500 Hz air and bone-conducted tones were also recorded. In healthy subjects, the magnitudes of the force, velocity and displacement responses were not significantly different for left compared to right ear stimulation. Their individual asymmetry ratios were always vestibular schwannoma had significantly smaller force, velocity and displacement responses to stimulation of the affected compared with non-affected ear. Their mean asymmetry ratios were significantly elevated for all three measures (41.2 ± 10.3%, 40.3 ± 15.1% and 21.9 ± 14.6%). Asymmetry ratios of balance responses to monaural GVS provide a quantitative and clinically applicable lateralising test of the vestibulospinal pathways. This method offers a more clinically relevant measure of standing balance than existing vestibular function tests which assess only vestibuloocular and vestibulocollic pathways. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults.

    Science.gov (United States)

    Fujimoto, Chisato; Yamamoto, Yoshiharu; Kamogashira, Teru; Kinoshita, Makoto; Egami, Naoya; Uemura, Yukari; Togo, Fumiharu; Yamasoba, Tatsuya; Iwasaki, Shinichi

    2016-11-21

    Vestibular dysfunction causes postural instability, which is prevalent in the elderly. We previously showed that an imperceptible level of noisy galvanic vestibular stimulation (nGVS) can improve postural stability in patients with bilateral vestibulopathy during the stimulus, presumably by enhancing vestibular information processing. In this study, we investigated the after-effects of an imperceptible long-duration nGVS on body balance in elderly adults. Thirty elderly participants underwent two nGVS sessions in a randomised order. In Session 1, participants received nGVS for 30 min twice with a 4-h interval. In Session 2, participants received nGVS for 3 h. Two-legged stance tasks were performed with eyes closed while participants stood on a foam rubber surface, with and without nGVS, and parameters related to postural stability were measured using posturography. In both sessions, the postural stability was markedly improved for more than 2 h after the cessation of the stimulus and tended to decrease thereafter. The second stimulation in Session 1 caused a moderate additional improvement in body balance and promoted the sustainability of the improvement. These results suggest that nGVS can lead to a postural stability improvement in elderly adults that lasts for several hours after the cessation of the stimulus, probably via vestibular neuroplasticity.