WorldWideScience

Sample records for galerkin scheme approximating

  1. Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem

    Antonietti, Paola F.

    2015-11-21

    We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.

  2. Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem

    Antonietti, Paola F.; Ayuso de Dios, Blanca; Mazzieri, Ilario; Quarteroni, Alfio

    2015-01-01

    We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.

  3. ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics

    Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.

    2018-03-01

    We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.

  4. Galerkin approximations of nonlinear optimal control problems in Hilbert spaces

    Mickael D. Chekroun

    2017-07-01

    Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.

  5. A Galerkin approximation for linear elastic shallow shells

    Figueiredo, I. N.; Trabucho, L.

    1992-03-01

    This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.

  6. -Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Lee HyunYoung

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  7. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

    Liu, Meilin; Bagci, Hakan

    2011-01-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results

  8. L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Hyun Young Lee

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ℓ∞(L2 error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  9. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

    Liu, Meilin

    2011-07-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.

  10. An A Posteriori Error Analysis of Mixed Finite Element Galerkin Approximations to Second Order Linear Parabolic Problems

    Memon, Sajid; Nataraj, Neela; Pani, Amiya Kumar

    2012-01-01

    In this article, a posteriori error estimates are derived for mixed finite element Galerkin approximations to second order linear parabolic initial and boundary value problems. Using mixed elliptic reconstructions, a posteriori error estimates in L∞(L2)- and L2(L2)-norms for the solution as well as its flux are proved for the semidiscrete scheme. Finally, based on a backward Euler method, a completely discrete scheme is analyzed and a posteriori error bounds are derived, which improves upon earlier results on a posteriori estimates of mixed finite element approximations to parabolic problems. Results of numerical experiments verifying the efficiency of the estimators have also been provided. © 2012 Society for Industrial and Applied Mathematics.

  11. Approximate solution of the transport equation by methods of Galerkin type

    Pitkaranta, J.

    1977-01-01

    Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form

  12. Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients

    Beck, Joakim

    2011-12-22

    In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new effective class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids.

  13. Energy-preserving H1-Galerkin schemes for shallow water wave equations with peakon solutions

    Miyatake, Yuto; Matsuo, Takayasu

    2012-01-01

    New energy-preserving Galerkin schemes for the Camassa–Holm and the Degasperis–Procesi equations which model shallow water waves are presented. The schemes can be implemented only with cheap H 1 elements, which is expected to be sufficient to catch the characteristic peakon solutions. The keys of the derivation are the Hamiltonian structures of the equations and an L 2 -projection technique newly employed in the present Letter to mimic the Hamiltonian structures in a discrete setting, so that the desired energy-preserving property rightly follows. Numerical examples confirm the effectiveness of the schemes. -- Highlights: ► Numerical integration of the Camassa–Holm and Degasperis–Procesi equation. ► New energy-preserving Galerkin schemes for these equations are proposed. ► They can be implemented only with P1 elements. ► They well capture the characteristic peakon solutions over long time. ► The keys are the Hamiltonian structures and L 2 -projection technique.

  14. Asymptotic Analysis of Upwind Discontinuous Galerkin Approximation of the Radiative Transport Equation in the Diffusive Limit

    Guermond, Jean-Luc; Kanschat, Guido

    2010-01-01

    We revisit some results from M. L. Adams [Nu cl. Sci. Engrg., 137 (2001), pp. 298- 333]. Using functional analytic tools we prove that a necessary and sufficient condition for the standard upwind discontinuous Galerkin approximation to converge to the correct limit solution in the diffusive regime is that the approximation space contains a linear space of continuous functions, and the restrictions of the functions of this space to each mesh cell contain the linear polynomials. Furthermore, the discrete diffusion limit converges in the Sobolev space H1 to the continuous one if the boundary data is isotropic. With anisotropic boundary data, a boundary layer occurs, and convergence holds in the broken Sobolev space H with s < 1/2 only © 2010 Society for Industrial and Applied Mathematics.

  15. On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue

    Asadzadeh, M.; Thevenot, L.

    2010-01-01

    The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

  16. Equivalence between the Energy Stable Flux Reconstruction and Filtered Discontinuous Galerkin Schemes

    Zwanenburg, Philip; Nadarajah, Siva

    2016-02-01

    The aim of this paper is to demonstrate the equivalence between filtered Discontinuous Galerkin (DG) schemes and the Energy Stable Flux Reconstruction (ESFR) schemes, expanding on previous demonstrations in 1D [1] and for straight-sided elements in 3D [2]. We first derive the DG and ESFR schemes in strong form and compare the respective flux penalization terms while highlighting the implications of the fundamental assumptions for stability in the ESFR formulations, notably that all ESFR scheme correction fields can be interpreted as modally filtered DG correction fields. We present the result in the general context of all higher dimensional curvilinear element formulations. Through a demonstration that there exists a weak form of the ESFR schemes which is both discretely and analytically equivalent to the strong form, we then extend the results obtained for the strong formulations to demonstrate that ESFR schemes can be interpreted as a DG scheme in weak form where discontinuous edge flux is substituted for numerical edge flux correction. Theoretical derivations are then verified with numerical results obtained from a 2D Euler testcase with curved boundaries. Given the current choice of high-order DG-type schemes and the question as to which might be best to use for a specific application, the main significance of this work is the bridge that it provides between them. Clearly outlining the similarities between the schemes results in the important conclusion that it is always less efficient to use ESFR schemes, as opposed to the weak DG scheme, when solving problems implicitly.

  17. A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Diffusion

    Huynh, H. T.

    2009-01-01

    We introduce a new approach to high-order accuracy for the numerical solution of diffusion problems by solving the equations in differential form using a reconstruction technique. The approach has the advantages of simplicity and economy. It results in several new high-order methods including a simplified version of discontinuous Galerkin (DG). It also leads to new definitions of common value and common gradient quantities at each interface shared by the two adjacent cells. In addition, the new approach clarifies the relations among the various choices of new and existing common quantities. Fourier stability and accuracy analyses are carried out for the resulting schemes. Extensions to the case of quadrilateral meshes are obtained via tensor products. For the two-point boundary value problem (steady state), it is shown that these schemes, which include most popular DG methods, yield exact common interface quantities as well as exact cell average solutions for nearly all cases.

  18. A space-time mixed galerkin marching-on-in-time scheme for the time-domain combined field integral equation

    Beghein, Yves; Cools, Kristof; Bagci, Hakan; De Zutter, Danië l

    2013-01-01

    electrically conducting bodies, is free from spurious resonances. The standard marching-on-in-time technique for discretizing the TD-CFIE uses Galerkin and collocation schemes in space and time, respectively. Unfortunately, the standard scheme is theoretically

  19. Multilevel preconditioners for discontinuous, Galerkin approximations of elliptic problems, with jump coefficients

    Ayuso Dios, Blanca

    2013-10-30

    We introduce and analyze two-level and multilevel preconditioners for a family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with large jumps in the diffusion coefficient. Our approach to IPDG-type methods is based on a splitting of the DG space into two components that are orthogonal in the energy inner product naturally induced by the methods. As a result, the methods and their analysis depend in a crucial way on the diffusion coefficient of the problem. The analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes; dealing simultaneously with the jump in the diffusion coefficient and the non-nested character of the relevant discrete spaces presents additional difficulties in the analysis, which precludes a simple extension of existing results. However, we are able to establish robustness (with respect to the diffusion coefficient) and near-optimality (up to a logarithmic term depending on the mesh size) for both two-level and BPX-type preconditioners, by using a more refined Conjugate Gradient theory. Useful by-products of the analysis are the supporting results on the construction and analysis of simple, efficient and robust two-level and multilevel preconditioners for non-conforming Crouzeix-Raviart discretizations of elliptic problems with jump coefficients. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods. © 2013 American Mathematical Society.

  20. Multilevel preconditioners for discontinuous, Galerkin approximations of elliptic problems, with jump coefficients

    Ayuso Dios, Blanca; Holst, Michael; Zhu, Yunrong; Zikatanov, Ludmil

    2013-01-01

    We introduce and analyze two-level and multilevel preconditioners for a family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with large jumps in the diffusion coefficient. Our approach to IPDG-type methods is based on a splitting of the DG space into two components that are orthogonal in the energy inner product naturally induced by the methods. As a result, the methods and their analysis depend in a crucial way on the diffusion coefficient of the problem. The analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes; dealing simultaneously with the jump in the diffusion coefficient and the non-nested character of the relevant discrete spaces presents additional difficulties in the analysis, which precludes a simple extension of existing results. However, we are able to establish robustness (with respect to the diffusion coefficient) and near-optimality (up to a logarithmic term depending on the mesh size) for both two-level and BPX-type preconditioners, by using a more refined Conjugate Gradient theory. Useful by-products of the analysis are the supporting results on the construction and analysis of simple, efficient and robust two-level and multilevel preconditioners for non-conforming Crouzeix-Raviart discretizations of elliptic problems with jump coefficients. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods. © 2013 American Mathematical Society.

  1. On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods

    Beck, Joakim; Tempone, Raul; Nobile, Fabio; Tamellini, Lorenzo

    2012-01-01

    In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.

  2. On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods

    Beck, Joakim

    2012-09-01

    In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.

  3. A higher order space-time Galerkin scheme for time domain integral equations

    Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam

    2014-01-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  4. galerkin's methods

    user

    The assumed deflection shapes used in the approximate methods such as in the Galerkin's method were normally ... to direct compressive forces Nx, was derived by Navier. [3]. ..... tend to give higher frequency and stiffness, as well as.

  5. Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    Pazner, Will; Persson, Per-Olof

    2018-02-01

    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.

  6. Applicability of the Galerkin method to the approximate solution of the multigroup diffusion equation

    Obradovic, D.

    1970-04-01

    In the study of the nuclear reactors space-time behaviour the modal analysis is very often used though some basic mathematical problems connected with application of this methods are still unsolved. In this paper the modal analysis is identified as a set of the methods in the mathematical literature known as the Galerkin methods (or projection methods, or sometimes direct methods). Using the results of the mathematical investigations of these methods the applicability of the Galerkin type methods to the calculations of the eigenvalue and eigenvectors of the stationary and non-stationary diffusion operator, as well as for the solutions of the corresponding functional equations, is established (author)

  7. Discontinuous Galerkin Approximations for Computing Electromagnetic Bloch Modes in Photonic Crystals

    Lu, Zhongjie; Cesmelioglu, A.; van der Vegt, Jacobus J.W.; Xu, Yan

    We analyze discontinuous Galerkin finite element discretizations of the Maxwell equations with periodic coefficients. These equations are used to model the behavior of light in photonic crystals, which are materials containing a spatially periodic variation of the refractive index commensurate with

  8. A higher order space-time Galerkin scheme for time domain integral equations

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  9. Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations

    Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran

    2018-06-01

    This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.

  10. Fully discrete Galerkin schemes for the nonlinear and nonlocal Hartree equation

    Walter H. Aschbacher

    2009-01-01

    Full Text Available We study the time dependent Hartree equation in the continuum, the semidiscrete, and the fully discrete setting. We prove existence-uniqueness, regularity, and approximation properties for the respective schemes, and set the stage for a controlled numerical computation of delicate nonlinear and nonlocal features of the Hartree dynamics in various physical applications.

  11. Approximations and Implementations of Nonlinear Filtering Schemes.

    1988-02-01

    sias k an Ykar repctively the input and the output vectors. Asfold. First, there are intrinsic errors, due to explained in the previous section, the...e.g.[BV,P]). In the above example of a a-algebra, the distributive property SIA (S 2vS3) - (SIAS2)v(SIAS3) holds. A complete orthocomplemented...process can be approximated by a switched Control Systems: Stochastic Stability and parameter process depending on the aggregated slow Dynamic Relaibility

  12. Multicomponent gas flow computations by a discontinuous Galerkin scheme using L2-projection of perfect gas EOS

    Franchina, N.; Savini, M.; Bassi, F.

    2016-06-01

    A new formulation of multicomponent gas flow computation, suited to a discontinuous Galerkin discretization, is here presented and discussed. The original key feature is the use of L2-projection form of the (perfect gas) equation of state that allows all thermodynamic variables to span the same functional space. This choice greatly mitigates problems encountered by the front-capturing schemes in computing discontinuous flow field, retaining at the same time their conservation properties at the discrete level and ease of use. This new approach, combined with an original residual-based artificial dissipation technique, shows itself capable, through a series of tests illustrated in the paper, to both control the spurious oscillations of flow variables occurring in high-order accurate computations and reduce them increasing the degree of the polynomial representation of the solution. This result is of great importance in computing reacting gaseous flows, where the local accuracy of temperature and species mass fractions is crucial to the correct evaluation of the chemical source terms contained in the equations, even if the presence of the physical diffusivities somewhat brings relief to these problems. The present work can therefore also be considered, among many others already presented in the literature, as the authors' first step toward the construction of a new discontinuous Galerkin scheme for reacting gas mixture flows.

  13. Advances in the discontinuous Galerkin method: Hybrid schemes and applications to the reactive infiltration instability in an upwelling compacting mantle

    Schiemenz, Alan R.

    High-order methods are emerging in the scientific computing community as superior alternatives to the classical finite difference, finite volume, and continuous finite element methods. The discontinuous Galerkin (DG) method in particular combines many of the positive features of all of these methods. This thesis presents two projects involving the DG method. First, a Hybrid scheme is presented, which implements DG areas where the solution is considered smooth, while dropping the order of the scheme elsewhere and implementing a finite volume scheme with high-order, non-oscillatory solution reconstructions suitable for unstructured mesh. Two such reconstructions from the ENO class are considered in the Hybrid. Successful numerical results are presented for nonlinear systems of conservation laws in one dimension. Second, the high-order discontinuous Galerkin and Fourier spectral methods are applied to an application modeling three-phase fluid flow through a porous medium, undergoing solid-fluid reaction due to the reactive infiltration instability (RII). This model incorporates a solid upwelling term and an equation to track the abundance of the reacting mineral orthopyroxene (opx). After validating the numerical discretization, results are given that provide new insight into the formation of melt channels in the Earth's mantle. Mantle heterogeneities are observed to be one catalyst for the development of melt channels, and the dissolution of opx produces interesting bifurcations in the melt channels. An alternative formulation is considered where the mass transfer rate relative to velocity is taken to be infinitely large. In this setting, the stiffest terms are removed, greatly reducing the cost of time integration.

  14. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations

    Carlberg, Kevin

    2010-10-28

    A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy. © 2010 John Wiley & Sons, Ltd.

  15. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations

    Carlberg, Kevin; Bou-Mosleh, Charbel; Farhat, Charbel

    2010-01-01

    A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy. © 2010 John Wiley & Sons, Ltd.

  16. Nonstandard approximation schemes for lower dimensional quantum field theories

    Fitzpatrick, D.A.

    1981-01-01

    The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results

  17. Analysis of expansion phase experiments with improved approximation schemes

    Foit, J.J.

    1987-05-01

    A steady-state flow of a single-phase and incompressible fluid across a singularity is studied. Based on these theoretical considerations new approximation methods for the pressure gradient term in the SIMMER-II momentum equations are proposed which give a satisfactory pressure change in flows across singularities. The expansion phase experiments with a dipplate performed by SRI-International are evaluated to examine the quality of the proposed approximation schemes. (orig.) [de

  18. Linear source approximation scheme for method of characteristics

    Tang Chuntao

    2011-01-01

    Method of characteristics (MOC) for solving neutron transport equation based on unstructured mesh has already become one of the fundamental methods for lattice calculation of nuclear design code system. However, most of MOC codes are developed with flat source approximation called step characteristics (SC) scheme, which is another basic assumption for MOC. A linear source (LS) characteristics scheme and its corresponding modification for negative source distribution were proposed. The OECD/NEA C5G7-MOX 2D benchmark and a self-defined BWR mini-core problem were employed to validate the new LS module of PEACH code. Numerical results indicate that the proposed LS scheme employs less memory and computational time compared with SC scheme at the same accuracy. (authors)

  19. On some Approximation Schemes for Steady Compressible Viscous Flow

    Bause, M.; Heywood, J. G.; Novotny, A.; Padula, M.

    This paper continues our development of approximation schemes for steady compressible viscous flow based on an iteration between a Stokes like problem for the velocity and a transport equation for the density, with the aim of improving their suitability for computations. Such schemes seem attractive for computations because they offer a reduction to standard problems for which there is already highly refined software, and because of the guidance that can be drawn from an existence theory based on them. Our objective here is to modify a recent scheme of Heywood and Padula [12], to improve its convergence properties. This scheme improved upon an earlier scheme of Padula [21], [23] through the use of a special ``effective pressure'' in linking the Stokes and transport problems. However, its convergence is limited for several reasons. Firstly, the steady transport equation itself is only solvable for general velocity fields if they satisfy certain smallness conditions. These conditions are met here by using a rescaled variant of the steady transport equation based on a pseudo time step for the equation of continuity. Another matter limiting the convergence of the scheme in [12] is that the Stokes linearization, which is a linearization about zero, has an inevitably small range of convergence. We replace it here with an Oseen or Newton linearization, either of which has a wider range of convergence, and converges more rapidly. The simplicity of the scheme offered in [12] was conducive to a relatively simple and clearly organized proof of its convergence. The proofs of convergence for the more complicated schemes proposed here are structured along the same lines. They strengthen the theorems of existence and uniqueness in [12] by weakening the smallness conditions that are needed. The expected improvement in the computational performance of the modified schemes has been confirmed by Bause [2], in an ongoing investigation.

  20. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total

  1. A stable higher order space time Galerkin marching-on-in-time scheme

    Pray, Andrew J.; Shanker, Balasubramaniam; Bagci, Hakan

    2013-01-01

    We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order

  2. A space-time mixed galerkin marching-on-in-time scheme for the time-domain combined field integral equation

    Beghein, Yves

    2013-03-01

    The time domain combined field integral equation (TD-CFIE), which is constructed from a weighted sum of the time domain electric and magnetic field integral equations (TD-EFIE and TD-MFIE) for analyzing transient scattering from closed perfect electrically conducting bodies, is free from spurious resonances. The standard marching-on-in-time technique for discretizing the TD-CFIE uses Galerkin and collocation schemes in space and time, respectively. Unfortunately, the standard scheme is theoretically not well understood: stability and convergence have been proven for only one class of space-time Galerkin discretizations. Moreover, existing discretization schemes are nonconforming, i.e., the TD-MFIE contribution is tested with divergence conforming functions instead of curl conforming functions. We therefore introduce a novel space-time mixed Galerkin discretization for the TD-CFIE. A family of temporal basis and testing functions with arbitrary order is introduced. It is explained how the corresponding interactions can be computed efficiently by existing collocation-in-time codes. The spatial mixed discretization is made fully conforming and consistent by leveraging both Rao-Wilton-Glisson and Buffa-Christiansen basis functions and by applying the appropriate bi-orthogonalization procedures. The combination of both techniques is essential when high accuracy over a broad frequency band is required. © 2012 IEEE.

  3. Approximation scheme for strongly coupled plasmas: Dynamical theory

    Golden, K.I.; Kalman, G.

    1979-01-01

    The authors present a self-consistent approximation scheme for the calculation of the dynamical polarizability α (k, ω) at long wavelengths in strongly coupled one-component plasmas. Development of the scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS) velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-dissipation theorem to dynamical calculations. The result is the simple expression for α (k, ω), αatsub GKSat(k, ω) 4 moment sum rule. In the second stage, the above dynamical expression is made self-consistent at long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms of linear ones, which prevails in the k → 0 limit for weak coupling, can be relied upon as a paradigm for arbitrary coupling. The result is a relatively simple quadratic integral equation for α. Its evaluation in the weak-coupling limit and its comparison with known exact results in that limit reveal that almost all important correlational and long-time effects are reproduced by our theory with very good numerical accuracy over the entire frequency range; the only significant defect of the approximation seems to be the absence of the ''dominant'' γ ln γ -1 (γ is the plasma parameter) contribution to Im α

  4. High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms

    Xing Yulong; Shu Chiwang

    2006-01-01

    Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source term. In our earlier work [J. Comput. Phys. 208 (2005) 206-227; J. Sci. Comput., accepted], we designed a well-balanced finite difference weighted essentially non-oscillatory (WENO) scheme, which at the same time maintains genuine high order accuracy for general solutions, to a class of hyperbolic systems with separable source terms including the shallow water equations, the elastic wave equation, the hyperbolic model for a chemosensitive movement, the nozzle flow and a two phase flow model. In this paper, we generalize high order finite volume WENO schemes and Runge-Kutta discontinuous Galerkin (RKDG) finite element methods to the same class of hyperbolic systems to maintain a well-balanced property. Finite volume and discontinuous Galerkin finite element schemes are more flexible than finite difference schemes to treat complicated geometry and adaptivity. However, because of a different computational framework, the maintenance of the well-balanced property requires different technical approaches. After the description of our well-balanced high order finite volume WENO and RKDG schemes, we perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions

  5. A stable higher order space time Galerkin marching-on-in-time scheme

    Pray, Andrew J.

    2013-07-01

    We present a method for the stable solution of time-domain integral equations. The method uses a technique developed in [1] to accurately evaluate matrix elements. As opposed to existing stabilization schemes, the method presented uses higher order basis functions in time to improve the accuracy of the solver. The method is validated by showing convergence in temporal basis function order, time step size, and geometric discretization order. © 2013 IEEE.

  6. Improved superposition schemes for approximate multi-caloron configurations

    Gerhold, P.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    2007-01-01

    Two improved superposition schemes for the construction of approximate multi-caloron-anti-caloron configurations, using exact single (anti-)caloron gauge fields as underlying building blocks, are introduced in this paper. The first improvement deals with possible monopole-Dirac string interactions between different calorons with non-trivial holonomy. The second one, based on the ADHM formalism, improves the (anti-)selfduality in the case of small caloron separations. It conforms with Shuryak's well-known ratio-ansatz when applied to instantons. Both superposition techniques provide a higher degree of (anti-)selfduality than the widely used sum-ansatz, which simply adds the (anti)caloron vector potentials in an appropriate gauge. Furthermore, the improved configurations (when discretized onto a lattice) are characterized by a higher stability when they are exposed to lattice cooling techniques

  7. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well

  8. Effective implementation of wavelet Galerkin method

    Finěk, Václav; Šimunková, Martina

    2012-11-01

    It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.

  9. Space-Efficient Approximation Scheme for Circular Earth Mover Distance

    Brody, Joshua Eric; Liang, Hongyu; Sun, Xiaoming

    2012-01-01

    The Earth Mover Distance (EMD) between point sets A and B is the minimum cost of a bipartite matching between A and B. EMD is an important measure for estimating similarities between objects with quantifiable features and has important applications in several areas including computer vision...... to computer vision [13] and can be seen as a special case of computing EMD on a discretized grid. We achieve a (1 ±ε) approximation for EMD in $\\tilde O(\\varepsilon^{-3})$ space, for every 0 ... that matches the space bound asked in [9]....

  10. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction

    Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir

    2016-01-01

    Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.

  11. Investigation on the MOC with a linear source approximation scheme in three-dimensional assembly

    Zhu, Chenglin; Cao, Xinrong

    2014-01-01

    Method of characteristics (MOC) for solving neutron transport equation has already become one of the fundamental methods for lattice calculation of nuclear design code system. At present, MOC has three schemes to deal with the neutron source of the transport equation: the flat source approximation of the step characteristics (SC) scheme, the diamond difference (DD) scheme and the linear source (LS) characteristics scheme. The MOC for SC scheme and DD scheme need large storage space and long computing time when they are used to calculate large-scale three-dimensional neutron transport problems. In this paper, a LS scheme and its correction for negative source distribution were developed and added to DRAGON code. This new scheme was compared with the SC scheme and DD scheme which had been applied in this code. As an open source code, DRAGON could solve three-dimensional assembly with MOC method. Detailed calculation is conducted on two-dimensional VVER-1000 assembly under three schemes of MOC. The numerical results indicate that coarse mesh could be used in the LS scheme with the same accuracy. And the LS scheme applied in DRAGON is effective and expected results are achieved. Then three-dimensional cell problem and VVER-1000 assembly are calculated with LS scheme and SC scheme. The results show that less memory and shorter computational time are employed in LS scheme compared with SC scheme. It is concluded that by using LS scheme, DRAGON is able to calculate large-scale three-dimensional problems with less storage space and shorter computing time

  12. Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

    Ford, Neville J.; Connolly, Joseph A.

    2009-07-01

    We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.

  13. Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes

    Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo

    2018-04-01

    We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.

  14. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  15. The combined Petrov-Galerkin method with auto-adapting schemes and its applications in numerical resolution of problems with limit layer

    Silva, R.S.; Galeao, A.C.; Carmo, E.G.D. do

    1989-07-01

    In this paper a new finite element model is constructed combining an r- refinement scheme with the CCAU method. The new formulation gives better approximation for boundary and internal layers compared to the standard CCAU, without increasing computer codes. (author) [pt

  16. Renormalization of self-consistent approximation schemes at finite temperature. II. Applications to the sunset diagram

    Hees, Hendrik van; Knoll, Joern

    2002-01-01

    The theoretical concepts for the renormalization of self-consistent Dyson resummations, devised in the first paper of this series, are applied to first example cases of φ 4 theory. In addition to the tadpole (Hartree) approximation, as a novel part the numerical solutions are presented, which include the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or the two-particle irreducible effective action concept

  17. Renormalization of self-consistent approximation schemes at finite temperature II: applications to the sunset diagram

    Hees, H. van; Knoll, J.

    2001-01-01

    The theoretical concepts for the renormalization of self-consistent Dyson resummations, deviced in the first paper of this series, are applied to first example cases for the φ 4 -theory. Besides the tadpole (Hartree) approximation as a novel part the numerical solutions are presented which includes the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or 2PI effective action concept. (orig.)

  18. Renormalization in self-consistent approximation schemes at finite temperature I: theory

    Hees, H. van; Knoll, J.

    2001-07-01

    Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym's Φ-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamic potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation scheme to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences. (orig.)

  19. Discontinuous Galerkin for the Radiative Transport Equation

    Guermond, Jean-Luc; Kanschat, Guido; Ragusa, Jean C.

    2013-01-01

    This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.

  20. Discontinuous Galerkin for the Radiative Transport Equation

    Guermond, Jean-Luc

    2013-10-11

    This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.

  1. The Pathwise Numerical Approximation of Stationary Solutions of Semilinear Stochastic Evolution Equations

    Caraballo, T.; Kloeden, P.E.

    2006-01-01

    Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions

  2. Relaxation approximations to second-order traffic flow models by high-resolution schemes

    Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.

    2015-01-01

    A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers

  3. Approximate Waveforms for Extreme-Mass-Ratio Inspirals: The Chimera Scheme

    Sopuerta, Carlos F; Yunes, Nicolás

    2012-01-01

    We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid method that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesies. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geodesies, and harmonic coordinates, associated with the multipolar post-Minkowskian decomposition. The Chimera scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme to intermediate mass ratios, and hence, it can provide valuable information for future space-based gravitational-wave observatories, like LISA, and even for advanced ground detectors. The local character in time of our multipolar post-Minkowskian self-force makes this scheme amenable to study the possible appearance of transient resonances in generic inspirals.

  4. Study of some approximation schemes in the spin-boson problem

    Kenkre, V.M.; Giuggioli, L.

    2004-01-01

    Some approximation schemes used in the description of the evolution of the spin-boson system are studied through numerical and analytic methods. Among the procedures investigated are semiclassical approximations and the memory function approach. An infinitely large number of semiclassical approximations are discussed. Their two extreme limits are shown to be characterized, respectively, by effective energy mismatch and effective intersite transfer. The validity of the two limits is explored by explicit numerical calculations for important regions in parameter space, and it is shown that they can provide good descriptions in the so-called adiabatic and anti-adiabatic regimes, respectively. The memory function approach, which provides an excellent approximation scheme for a certain range of parameters, is shown to be connected to other approaches such as the non-interacting blip approximation. New results are derived from the memory approach in semiclassical contexts. Comments are made on thermal effects in the spin-boson problem, the discrete non-linear Schroedinger equation, and connections to the areas of dynamic localization, and quantum control

  5. Extending the Riemann-Solver-Free High-Order Space-Time Discontinuous Galerkin Cell Vertex Scheme (DG-CVS) to Solve Compressible Magnetohydrodynamics Equations

    2016-06-08

    Ideal Magnetohydrodynamics,” J. Com- put. Phys., Vol. 153, No. 2, 1999, pp. 334–352. [14] Tang, H.-Z. and Xu, K., “A high-order gas -kinetic method for...notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does...Riemann-solver-free spacetime discontinuous Galerkin method for general conservation laws to solve compressible magnetohydrodynamics (MHD) equations. The

  6. Implementation of an approximate zero-variance scheme in the TRIPOLI Monte Carlo code

    Christoforou, S.; Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Dumonteil, E.; Petit, O.; Diop, C. [Commissariat a l' Energie Atomique CEA, Gif-sur-Yvette (France)

    2006-07-01

    In an accompanying paper it is shown that theoretically a zero-variance Monte Carlo scheme can be devised for criticality calculations if the space, energy and direction dependent adjoint function is exactly known. This requires biasing of the transition and collision kernels with the appropriate adjoint function. In this paper it is discussed how an existing general purpose Monte Carlo code like TRIPOLI can be modified to approach the zero-variance scheme. This requires modifications for reading in the adjoint function obtained from a separate deterministic calculation for a number of space intervals, energy groups and discrete directions. Furthermore, a function has to be added to supply the direction dependent and the averaged adjoint function at a specific position in the system by interpolation. The initial particle weights of a certain batch must be set inversely proportional to the averaged adjoint function and proper normalization of the initial weights must be secured. The sampling of the biased transition kernel requires cumulative integrals of the biased kernel along the flight path until a certain value, depending on a selected random number is reached to determine a new collision site. The weight of the particle must be adapted accordingly. The sampling of the biased collision kernel (in a multigroup treatment) is much more like the normal sampling procedure. A numerical example is given for a 3-group calculation with a simplified transport model (two-direction model), demonstrating that the zero-variance scheme can be approximated quite well for this simplified case. (authors)

  7. Development of highly accurate approximate scheme for computing the charge transfer integral

    Pershin, Anton; Szalay, Péter G. [Laboratory for Theoretical Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  8. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow

    Toumi, I.; Kumbaro, A.; Paillere, H.

    1999-01-01

    These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)

  9. An analytical approximation scheme to two-point boundary value problems of ordinary differential equations

    Boisseau, Bruno; Forgacs, Peter; Giacomini, Hector

    2007-01-01

    A new (algebraic) approximation scheme to find global solutions of two-point boundary value problems of ordinary differential equations (ODEs) is presented. The method is applicable for both linear and nonlinear (coupled) ODEs whose solutions are analytic near one of the boundary points. It is based on replacing the original ODEs by a sequence of auxiliary first-order polynomial ODEs with constant coefficients. The coefficients in the auxiliary ODEs are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. The problem of obtaining the parameters of the global (connecting) solutions, analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the 'connecting parameters' for a number of nonlinear ODEs arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Abrikosov-Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODEs coming from the exact renormalization group. The ground-state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision. (fast track communication)

  10. Galerkin v. discrete-optimal projection in nonlinear model reduction

    Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)

    2015-04-01

    Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.

  11. Hybridized Multiscale Discontinuous Galerkin Methods for Multiphysics

    2015-09-14

    local approximation spaces of the hybridizable discontinuous Galerkin methods with precomputed phases which are solutions of the eikonal equation in...geometrical optics. Second, we propose a systematic procedure for computing multiple solutions of the eikonal equation. Third, we utilize the eigenvalue

  12. On cell entropy inequality for discontinuous Galerkin methods

    Jiang, Guangshan; Shu, Chi-Wang

    1993-01-01

    We prove a cell entropy inequality for a class of high order discontinuous Galerkin finite element methods approximating conservation laws, which implies convergence for the one dimensional scalar convex case.

  13. Exponential discontinuous numerical scheme for electron transport in the continuous slowing down approximation

    Prinja, A.K.

    1997-01-01

    A nonlinear discretization scheme in space and energy, based on the recently developed exponential discontinuous method, is applied to continuous slowing down dominated electron transport (i.e., in the absence of scattering.) Numerical results for dose and charge deposition are obtained and compared against results from the ONELD and ONEBFP codes, and against exact results from an adjoint Monte Carlo code. It is found that although the exponential discontinuous scheme yields strictly positive and monotonic solutions, the dose profile is considerably straggled when compared to results from the linear codes. On the other hand, the linear schemes produce negative results which, furthermore, do not damp effectively in some cases. A general conclusion is that while yielding strictly positive solutions, the exponential discontinuous method does not show the crude cell accuracy for charged particle transport as was apparent for neutral particle transport problems

  14. Stability control for approximate implicit time-stepping schemes with minimal residual iterations

    Botchev, M.A.; Sleijpen, G.L.G.; Vorst, H.A. van der

    1997-01-01

    Implicit schemes for the integration of ODE's are popular when stabil- ity is more of concern than accuracy, for instance for the computation of a steady state solution. However, in particular for very large sys- tems the solution of the involved linear systems maybevery expensive. In this

  15. Stability control for approximate implicit time­stepping schemes with minimal residual iterations

    Botchev, M.A.; Sleijpen, G.L.G.; Vorst, H.A. van der

    1997-01-01

    Implicit schemes for the integration of ODE's are popular when stabil­ ity is more of concern than accuracy, for instance for the computation of a steady state solution. However, in particular for very large sys­ tems the solution of the involved linear systems may be very expensive. In this

  16. Convergence of Discontinuous Galerkin Methods for Incompressible Two-Phase Flow in Heterogeneous Media

    Kou, Jisheng; Sun, Shuyu

    2013-01-01

    A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.

  17. On approximate reasoning and minimal models for the development of robust outdoor vehicle navigation schemes

    Pin, F.G.

    1993-11-01

    Outdoor sensor-based operation of autonomous robots has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. Two basic principles, or philosophies, and their associated methodologies are proposed in an attempt to remedy some of these difficulties. The first principle is based on the concept of ``minimal model`` for accomplishing given tasks and proposes to utilize only the minimum level of information and precision necessary to accomplish elemental functions of complex tasks. This approach diverges completely from the direction taken by most artificial vision studies which conventionally call for crisp and detailed analysis of every available component in the perception data. The paper will first review the basic concepts of this approach and will discuss its pragmatic feasibility when embodied in a behaviorist framework. The second principle which is proposed deals with implicit representation of uncertainties using Fuzzy Set Theory-based approximations and approximate reasoning, rather than explicit (crisp) representation through calculation and conventional propagation techniques. A framework which merges these principles and approaches is presented, and its application to the problem of sensor-based outdoor navigation of a mobile robot is discussed. Results of navigation experiments with a real car in actual outdoor environments are also discussed to illustrate the feasibility of the overall concept.

  18. On approximate reasoning and minimal models for the development of robust outdoor vehicle navigation schemes

    Pin, F.G.

    1993-01-01

    Outdoor sensor-based operation of autonomous robots has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. Two basic principles, or philosophies, and their associated methodologies are proposed in an attempt to remedy some of these difficulties. The first principle is based on the concept of ''minimal model'' for accomplishing given tasks and proposes to utilize only the minimum level of information and precision necessary to accomplish elemental functions of complex tasks. This approach diverges completely from the direction taken by most artificial vision studies which conventionally call for crisp and detailed analysis of every available component in the perception data. The paper will first review the basic concepts of this approach and will discuss its pragmatic feasibility when embodied in a behaviorist framework. The second principle which is proposed deals with implicit representation of uncertainties using Fuzzy Set Theory-based approximations and approximate reasoning, rather than explicit (crisp) representation through calculation and conventional propagation techniques. A framework which merges these principles and approaches is presented, and its application to the problem of sensor-based outdoor navigation of a mobile robot is discussed. Results of navigation experiments with a real car in actual outdoor environments are also discussed to illustrate the feasibility of the overall concept

  19. Approximate solutions of the hyperchaotic Rössler system by using the Bessel collocation scheme

    Şuayip Yüzbaşı

    2015-02-01

    Full Text Available The purpose of this study is to give a Bessel polynomial approximation for the solutions of the hyperchaotic Rössler system. For this purpose, the Bessel collocation method applied to different problems is developed for the mentioned system. This method is based on taking the truncated Bessel expansions of the functions in the hyperchaotic Rössler systems. The suggested secheme converts the problem into a system of nonlinear algebraic equations by means of the matrix operations and collocation points, The accuracy and efficiency of the proposed approach are demonstrated by numerical applications and performed with the help of a computer code written in Maple. Also, comparison between our method and the differential transformation method is made with the accuracy of solutions.

  20. Discontinuous Galerkin Method for Hyperbolic Conservation Laws

    Mousikou, Ioanna

    2016-11-11

    Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.

  1. Discontinuous Galerkin Method for Hyperbolic Conservation Laws

    Mousikou, Ioanna

    2016-01-01

    Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.

  2. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  3. Analysis of a finite-difference and a Galerkin technique applied to the simulation of advection and diffusion of air pollutants from a line source

    Runca, E.; Melli, P.; Sardei, F.

    1985-01-01

    A finite-difference scheme and a Galerkin scheme are compared with respect to a very accurate solution describing time-dependent advection and diffusion of air pollutants from a line source in an atmosphere vertically stratified and limited by an inversion layer. The accurate solution was achieved by applying the finite-difference scheme on a very refined grid with a very small time step. The grid size and time step were defined according to stability and accuracy criteria discussed in the text. It is found that for the problem considered the two methods can be considered equally accurate. However, the Galerkin method gives a better approximation in the vicinity of the source. This was assumed to be partly due to the different way the source term is taken into account in the two methods. Improvement of the accuracy of the finite-difference scheme was achieved by approximating, at every step, the contribution of the source term by a Gaussian puff moving and diffusing with the velocity and diffusivity of the source location, instead of utilizing a stepwise function for the numerical approximation of the delta function representing the source term

  4. Feed back Petrov-Galerkin methods for convection dominated problems

    Carmo, E.G.D. do; Galeao, A.C.

    1988-09-01

    The Petrov-Galerkin method is adaptively applied to convection dominated problems. To this end a feedback function is created which increases the control of derivatives in the direction of he gradient of the approximate solution. This leads to a method with good stability properties close to boundary layers and high accuracy in those regions where regular solutions do occur. (author) [pt

  5. Interior penalty discontinuous Galerkin method for coupled elasto-acoustic media

    Dudouit , Yohann; Giraud , Luc; Millot , Florence; Pernet , Sébastien

    2016-01-01

    We introduce a high order interior penalty discontinuous Galerkin scheme for the nu- merical solution of wave propagation in coupled elasto-acoustic media. A displacement formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same framework. Weakly imposing the correct transmission condition is achieved by the derivation of adapted numerical fluxes. This generalization does not weaken the discontinuous Galerkin method, thus hp-non-conforming m...

  6. COMPARISON OF IMPLICIT SCHEMES TO SOLVE EQUATIONS OF RADIATION HYDRODYNAMICS WITH A FLUX-LIMITED DIFFUSION APPROXIMATION: NEWTON–RAPHSON, OPERATOR SPLITTING, AND LINEARIZATION

    Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2016-03-15

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.

  7. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  8. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  9. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  10. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  11. A discontinuous Galerkin method on kinetic flocking models

    Tan, Changhui

    2014-01-01

    We study kinetic representations of flocking models. They arise from agent-based models for self-organized dynamics, such as Cucker-Smale and Motsch-Tadmor models. We prove flocking behavior for the kinetic descriptions of flocking systems, which indicates a concentration in velocity variable in infinite time. We propose a discontinuous Galerkin method to treat the asymptotic $\\delta$-singularity, and construct high order positive preserving scheme to solve kinetic flocking systems.

  12. A discontinuous Galerkin method for P-wave modeling in tilted TI media

    Amler, Thomas; Alkhalifah, Tariq Ali; Hoteit, Ibrahim

    2014-01-01

    The acoustic approximation is an efficient alternative to the equations of elastodynamics for modeling Pwave propagation in weakly anisotropic media. We present a stable discontinuous Galerkin (DG) method for solving the acoustic approximation in tilted TI media (acoustic TI approximation). The acoustic TI approximation is considered as a modification of the equations of elastodynamics from which a modified energy is derived. The modified energy is obtained by eliminating the shear stress in the coordinates determined by the tilt angle and finding an energy for the remaining unknowns. This construction is valid if the medium is not elliptically anisotropic, a requirement frequently found in the literature. In the fully discrete setting, the modified energy is also conserved in time the presence of sharp contrasts in material parameters. By construction, the scheme can be coupled to the (fully) acoustic wave equation in the same way as the equations of elastodynamics. Hence, the number of unknowns can be reduced in acoustic regions. Our numerical examples confirm the conservation of energy in the discrete setting and the stability of the scheme.

  13. Multiplicative noise removal through fractional order tv-based model and fast numerical schemes for its approximation

    Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad

    2017-07-01

    This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.

  14. Non-Galerkin Coarse Grids for Algebraic Multigrid

    Falgout, Robert D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, Jacob B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-26

    Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

  15. Galerkin algorithm for multidimensional plasma simulation codes. Informal report

    Godfrey, B.B.

    1979-03-01

    A Galerkin finite element differencing scheme has been developed for a computer simulation of plasmas. The new difference equations identically satisfy an equation of continuity. Thus, the usual current correction procedure, involving inversion of Poisson's equation, is unnecessary. The algorithm is free of many numerical Cherenkov instabilities. This differencing scheme has been implemented in CCUBE, an already existing relativistic, electromagnetic, two-dimensional PIC code in arbitrary separable, orthogonal coordinates. The separability constraint is eliminated by the new algorithm. The new version of CCUBE exhibits good stability and accuracy with reduced computer memory and time requirements. Details of the algorithm and its implementation are presented

  16. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  17. A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation

    Terrana, S.; Vilotte, J. P.; Guillot, L.

    2018-04-01

    We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm

  18. Nonlinear dynamic analysis using Petrov-Galerkin natural element method

    Lee, Hong Woo; Cho, Jin Rae

    2004-01-01

    According to our previous study, it is confirmed that the Petrov-Galerkin Natural Element Method (PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin Natural Element Method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem

  19. Dual-scale Galerkin methods for Darcy flow

    Wang, Guoyin; Scovazzi, Guglielmo; Nouveau, Léo; Kees, Christopher E.; Rossi, Simone; Colomés, Oriol; Main, Alex

    2018-02-01

    The discontinuous Galerkin (DG) method has found widespread application in elliptic problems with rough coefficients, of which the Darcy flow equations are a prototypical example. One of the long-standing issues of DG approximations is the overall computational cost, and many different strategies have been proposed, such as the variational multiscale DG method, the hybridizable DG method, the multiscale DG method, the embedded DG method, and the Enriched Galerkin method. In this work, we propose a mixed dual-scale Galerkin method, in which the degrees-of-freedom of a less computationally expensive coarse-scale approximation are linked to the degrees-of-freedom of a base DG approximation. We show that the proposed approach has always similar or improved accuracy with respect to the base DG method, with a considerable reduction in computational cost. For the specific definition of the coarse-scale space, we consider Raviart-Thomas finite elements for the mass flux and piecewise-linear continuous finite elements for the pressure. We provide a complete analysis of stability and convergence of the proposed method, in addition to a study on its conservation and consistency properties. We also present a battery of numerical tests to verify the results of the analysis, and evaluate a number of possible variations, such as using piecewise-linear continuous finite elements for the coarse-scale mass fluxes.

  20. A hybrid perturbation-Galerkin technique for partial differential equations

    Geer, James F.; Anderson, Carl M.

    1990-01-01

    A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.

  1. A Streaming Language Implementation of the Discontinuous Galerkin Method

    Barth, Timothy; Knight, Timothy

    2005-01-01

    We present a Brook streaming language implementation of the 3-D discontinuous Galerkin method for compressible fluid flow on tetrahedral meshes. Efficient implementation of the discontinuous Galerkin method using the streaming model of computation introduces several algorithmic design challenges. Using a cycle-accurate simulator, performance characteristics have been obtained for the Stanford Merrimac stream processor. The current Merrimac design achieves 128 Gflops per chip and the desktop board is populated with 16 chips yielding a peak performance of 2 Teraflops. Total parts cost for the desktop board is less than $20K. Current cycle-accurate simulations for discretizations of the 3-D compressible flow equations yield approximately 40-50% of the peak performance of the Merrimac streaming processor chip. Ongoing work includes the assessment of the performance of the same algorithm on the 2 Teraflop desktop board with a target goal of achieving 1 Teraflop performance.

  2. Analysis of the discontinuous Petrov-Galerkin method with optimal test functions for the Reissner-Mindlin plate bending model

    Calo, Victor M.

    2014-01-01

    We analyze the discontinuous Petrov-Galerkin (DPG) method with optimal test functions when applied to solve the Reissner-Mindlin model of plate bending. We prove that the hybrid variational formulation underlying the DPG method is well-posed (stable) with a thickness-dependent constant in a norm encompassing the L2-norms of the bending moment, the shear force, the transverse deflection and the rotation vector. We then construct a numerical solution scheme based on quadrilateral scalar and vector finite elements of degree p. We show that for affine meshes the discretization inherits the stability of the continuous formulation provided that the optimal test functions are approximated by polynomials of degree p+3. We prove a theoretical error estimate in terms of the mesh size h and polynomial degree p and demonstrate numerical convergence on affine as well as non-affine mesh sequences. © 2013 Elsevier Ltd. All rights reserved.

  3. Stochastic Galerkin methods for the steady-state Navier–Stokes equations

    Sousedík, Bedřich, E-mail: sousedik@umbc.edu [Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Elman, Howard C., E-mail: elman@cs.umd.edu [Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 (United States)

    2016-07-01

    We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmark problems.

  4. The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation

    Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi

    2014-01-01

    We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...

  5. Convergence Analysis of Generalized Jacobi-Galerkin Methods for Second Kind Volterra Integral Equations with Weakly Singular Kernels

    Haotao Cai

    2017-01-01

    Full Text Available We develop a generalized Jacobi-Galerkin method for second kind Volterra integral equations with weakly singular kernels. In this method, we first introduce some known singular nonpolynomial functions in the approximation space of the conventional Jacobi-Galerkin method. Secondly, we use the Gauss-Jacobi quadrature rules to approximate the integral term in the resulting equation so as to obtain high-order accuracy for the approximation. Then, we establish that the approximate equation has a unique solution and the approximate solution arrives at an optimal convergence order. One numerical example is presented to demonstrate the effectiveness of the proposed method.

  6. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2018-01-01

    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  7. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    Li, Ping

    2018-04-13

    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  8. Numerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    Jinfeng Wang

    2014-01-01

    Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

  9. On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin

    2017-12-01

    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.

  10. A high-order method for the integration of the Galerkin semi-discretized nuclear reactor kinetics equations

    Vargas, L.

    1988-01-01

    The numerical approximate solution of the space-time nuclear reactor kinetics equation is investigated using a finite-element discretization of the space variable and a high order integration scheme for the resulting semi-discretized parabolic equation. The Galerkin method with spatial piecewise polynomial Lagrange basis functions are used to obtained a continuous time semi-discretized form of the space-time reactor kinetics equation. A temporal discretization is then carried out with a numerical scheme based on the Iterated Defect Correction (IDC) method using piecewise quadratic polynomials or exponential functions. The kinetics equations are thus solved with in a general finite element framework with respect to space as well as time variables in which the order of convergence of the spatial and temporal discretizations is consistently high. A computer code GALFEM/IDC is developed, to implement the numerical schemes described above. This issued to solve a one space dimensional benchmark problem. The results of the numerical experiments confirm the theoretical arguments and show that the convergence is very fast and the overall procedure is quite efficient. This is due to the good asymptotic properties of the numerical scheme which is of third order in the time interval

  11. An efficient discontinuous Galerkin finite element method for highly accurate solution of maxwell equations

    Liu, Meilin

    2012-08-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.

  12. An efficient discontinuous Galerkin finite element method for highly accurate solution of maxwell equations

    Liu, Meilin; Sirenko, Kostyantyn; Bagci, Hakan

    2012-01-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.

  13. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    Wintermeyer, Niklas [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Winters, Andrew R., E-mail: awinters@math.uni-koeln.de [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Gassner, Gregor J. [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Kopriva, David A. [Department of Mathematics, The Florida State University, Tallahassee, FL 32306 (United States)

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  14. Approximate Riemann solvers and flux vector splitting schemes for two-phase flow; Solveurs de Riemann approches et schemas de decentrement de flux pour les ecoulements diphasiques

    Toumi, I.; Kumbaro, A.; Paillere, H

    1999-07-01

    These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)

  15. Error Analysis of Galerkin's Method for Semilinear Equations

    Tadashi Kawanago

    2012-01-01

    Full Text Available We establish a general existence result for Galerkin's approximate solutions of abstract semilinear equations and conduct an error analysis. Our results may be regarded as some extension of a precedent work (Schultz 1969. The derivation of our results is, however, different from the discussion in his paper and is essentially based on the convergence theorem of Newton’s method and some techniques for deriving it. Some of our results may be applicable for investigating the quality of numerical verification methods for solutions of ordinary and partial differential equations.

  16. A study on discontinuous Galerkin finite element methods for elliptic problems

    Janivita Joto Sudirham, J.J.S.; Sudirham, J.J.; van der Vegt, Jacobus J.W.; van Damme, Rudolf M.J.

    2003-01-01

    In this report we study several approaches of the discontinuous Galerkin finite element methods for elliptic problems. An important aspect in these formulations is the use of a lifting operator, for which we present an efficient numerical approximation technique. Numerical experiments for two

  17. Stable Galerkin versus equal-order Galerkin least-squares elements for the stokes flow problem

    Franca, L.P.; Frey, S.L.; Sampaio, R.

    1989-11-01

    Numerical experiments are performed for the stokes flow problem employing a stable Galerkin method and a Galerkin/Least-squares method with equal-order elements. Error estimates for the methods tested herein are reviewed. The numerical results presented attest the good stability properties of all methods examined herein. (A.C.A.S.) [pt

  18. An Alternate Approach to Optimal L 2 -Error Analysis of Semidiscrete Galerkin Methods for Linear Parabolic Problems with Nonsmooth Initial Data

    Goswami, Deepjyoti; Pani, Amiya K.

    2011-01-01

    In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis

  19. Planet-disc interactions with Discontinuous Galerkin Methods using GPUs

    Velasco Romero, David A.; Veiga, Maria Han; Teyssier, Romain; Masset, Frédéric S.

    2018-05-01

    We present a two-dimensional Cartesian code based on high order discontinuous Galerkin methods, implemented to run in parallel over multiple GPUs. A simple planet-disc setup is used to compare the behaviour of our code against the behaviour found using the FARGO3D code with a polar mesh. We make use of the time dependence of the torque exerted by the disc on the planet as a mean to quantify the numerical viscosity of the code. We find that the numerical viscosity of the Keplerian flow can be as low as a few 10-8r2Ω, r and Ω being respectively the local orbital radius and frequency, for fifth order schemes and resolution of ˜10-2r. Although for a single disc problem a solution of low numerical viscosity can be obtained at lower computational cost with FARGO3D (which is nearly an order of magnitude faster than a fifth order method), discontinuous Galerkin methods appear promising to obtain solutions of low numerical viscosity in more complex situations where the flow cannot be captured on a polar or spherical mesh concentric with the disc.

  20. Sharp Penalty Term and Time Step Bounds for the Interior Penalty Discontinuous Galerkin Method for Linear Hyperbolic Problems

    Geevers, Sjoerd; van der Vegt, J.J.W.

    2017-01-01

    We present sharp and sucient bounds for the interior penalty term and time step size to ensure stability of the symmetric interior penalty discontinuous Galerkin (SIPDG) method combined with an explicit time-stepping scheme. These conditions hold for generic meshes, including unstructured

  1. An h-p Taylor-Galerkin finite element method for compressible Euler equations

    Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.

    1991-01-01

    An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.

  2. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    Sirenko, Kostyantyn

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.

  3. A hybrid Pade-Galerkin technique for differential equations

    Geer, James F.; Andersen, Carl M.

    1993-01-01

    A three-step hybrid analysis technique, which successively uses the regular perturbation expansion method, the Pade expansion method, and then a Galerkin approximation, is presented and applied to some model boundary value problems. In the first step of the method, the regular perturbation method is used to construct an approximation to the solution in the form of a finite power series in a small parameter epsilon associated with the problem. In the second step of the method, the series approximation obtained in step one is used to construct a Pade approximation in the form of a rational function in the parameter epsilon. In the third step, the various powers of epsilon which appear in the Pade approximation are replaced by new (unknown) parameters (delta(sub j)). These new parameters are determined by requiring that the residual formed by substituting the new approximation into the governing differential equation is orthogonal to each of the perturbation coordinate functions used in step one. The technique is applied to model problems involving ordinary or partial differential equations. In general, the technique appears to provide good approximations to the solution even when the perturbation and Pade approximations fail to do so. The method is discussed and topics for future investigations are indicated.

  4. The Galerkin finite element method for a multi-term time-fractional diffusion equation

    Jin, Bangti

    2015-01-01

    © 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.

  5. A Galerkin Finite Element Method for Numerical Solutions of the Modified Regularized Long Wave Equation

    Liquan Mei

    2014-01-01

    Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.

  6. A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation

    S. Battal Gazi Karakoç

    2016-02-01

    Full Text Available The generalized equal width (GEW wave equation is solved numerically by using lumped Galerkin approach with cubic B-spline functions. The proposed numerical scheme is tested by applying two test problems including single solitary wave and interaction of two solitary waves. In order to determine the performance of the algorithm, the error norms L2 and L∞ and the invariants I1, I2 and I3 are calculated. For the linear stability analysis of the numerical algorithm, von Neumann approach is used. As a result, the obtained findings show that the presented numerical scheme is preferable to some recent numerical methods.  

  7. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  8. Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods

    Diosady, Laslo T.; Murman, Scott M.

    2017-02-01

    A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  9. Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  10. An adjoint-based scheme for eigenvalue error improvement

    Merton, S.R.; Smedley-Stevenson, R.P.; Pain, C.C.; El-Sheikh, A.H.; Buchan, A.G.

    2011-01-01

    A scheme for improving the accuracy and reducing the error in eigenvalue calculations is presented. Using a rst order Taylor series expansion of both the eigenvalue solution and the residual of the governing equation, an approximation to the error in the eigenvalue is derived. This is done using a convolution of the equation residual and adjoint solution, which is calculated in-line with the primal solution. A defect correction on the solution is then performed in which the approximation to the error is used to apply a correction to the eigenvalue. The method is shown to dramatically improve convergence of the eigenvalue. The equation for the eigenvalue is shown to simplify when certain normalizations are applied to the eigenvector. Two such normalizations are considered; the rst of these is a fission-source type of normalisation and the second is an eigenvector normalisation. Results are demonstrated on a number of demanding elliptic problems using continuous Galerkin weighted nite elements. Moreover, the correction scheme may also be applied to hyperbolic problems and arbitrary discretization. This is not limited to spatial corrections and may be used throughout the phase space of the discrete equation. The applied correction not only improves fidelity of the calculation, it allows assessment of the reliability of numerical schemes to be made and could be used to guide mesh adaption algorithms or to automate mesh generation schemes. (author)

  11. An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)

    Shi Ting-Yu; Ge Hong-Xia; Cheng Rong-Jun

    2013-01-01

    A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method

  12. Finite element and discontinuous Galerkin methods for transient wave equations

    Cohen, Gary

    2017-01-01

    This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...

  13. Galerkin method for solving diffusion equations

    Tsapelkin, E.S.

    1975-01-01

    A programme for the solution of the three-dimensional two-group multizone neutron diffusion problem in (x, y, z)-geometry is described. The programme XYZ-5 gives the currents of both groups, the effective neutron multiplication coefficient and several integral properties of the reactor. The solution was found with the Galerkin method using speciallly constructed and chosen coordinate functions. The programme is written in ALGOL-60 and consists of 5 parts. Its text is given

  14. Extension of meshless Galerkin/Petrov-Galerkin approach without using Lagrange multipliers

    Kamitani, Atsushi; Takayama, Teruou; Itoh, Taku; Nakamura, Hiroaki

    2011-01-01

    By directly discretizing the weak form used in the finite element method, meshless methods have been derived. Neither the Lagrange multiplier method nor the penalty method is employed in the derivation of the methods. The resulting methods are divided into two groups, depending on whether the discretization is based on the Galerkin or the Petrov-Galerkin approach. Each group is further subdivided into two groups, according to the method for imposing the essential boundary condition. Hence, four types of the meshless methods have been formulated. The accuracy of these methods is illustrated for two-dimensional Poisson problems. (author)

  15. Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data

    Hall, Eric Joseph; Hoel, Hå kon; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2016-01-01

    posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations

  16. Additive operator-difference schemes splitting schemes

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  17. Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients

    Beck, Joakim; Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul

    2014-01-01

    In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.

  18. Mollified birth in natural-age-grid Galerkin methods for age-structured biological systems

    Ayati, Bruce P; Dupont, Todd F

    2009-01-01

    We present natural-age-grid Galerkin methods for a model of a biological population undergoing aging. We use a mollified birth term in the method and analysis. The error due to mollification is of arbitrary order, depending on the choice of mollifier. The methods in this paper generalize the methods presented in [1], where the approximation space in age was taken to be a discontinuous piecewise polynomial subspace of L 2 . We refer to these methods as 'natural-age-grid' Galerkin methods since transport in the age variable is computed through the smooth movement of the age grid at the natural dimensionless velocity of one. The time variable has been left continuous to emphasize this smooth motion, as well as the independence of the time and age discretizations. The methods are shown to be superconvergent in the age variable

  19. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation

    Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng

    2018-03-01

    In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.

  20. Discontinuous Galerkin Approaches for Stokes Flow and Flow in Porous Media

    Lehmann, Ragnar; Kaus, Boris; Lukacova, Maria

    2014-05-01

    Firstly, we present results of a study comparing two different numerical approaches for solving the Stokes equations with strongly varying viscosity: the continuous Galerkin (i.e., FEM) and the discontinuous Galerkin (DG) method. Secondly, we show how the latter method can be extended and applied to flow in porous media governed by Darcy's law. Nonlinearities in the viscosity or other material parameters can lead to discontinuities in the velocity-pressure solution that may not be approximated well with continuous elements. The DG method allows for discontinuities across interior edges of the underlying mesh. Furthermore, depending on the chosen basis functions, it naturally enforces local mass conservation, i.e., in every mesh cell. Computationally, it provides the capability to locally adapt the polynomial degree and needs communication only between directly adjacent mesh cells making it highly flexible and easy to parallelize. The methods are compared for several geophysically relevant benchmarking setups and discussed with respect to speed, accuracy, computational efficiency.

  1. Topology optimization using the improved element-free Galerkin method for elasticity*

    Wu Yi; Ma Yong-Qi; Feng Wei; Cheng Yu-Min

    2017-01-01

    The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function. In a topology optimization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin (EFG) method. The central processing unit (CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown. (paper)

  2. Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients

    Beck, Joakim

    2014-03-01

    In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.

  3. An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings

    Jin, Shi, E-mail: sjin@wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Hanqing, E-mail: hanqing@math.wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2017-04-01

    In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (in the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.

  4. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    Sirenko, Kostyantyn; Liu, Meilin; Bagci, Hakan

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing

  5. Discontinuous Galerkin finite element methods for hyperbolic differential equations

    van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.

    2002-01-01

    In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas

  6. An Element Free Galerkin method for an elastoplastic coupled to damage analysis

    Sendi Zohra

    2016-01-01

    Full Text Available In this work, a Meshless approach for nonlinear solid mechanics is developed based on the Element Free Galerkin method. Furthermore, Meshless is combined with an elastoplastic model coupled to ductile damage. The efficiency of the proposed methodology is evaluated through various numerical examples. Besides these, two-dimensional tensile tests under several boundary conditions were studied and solved by a Dynamic-Explicit resolution scheme. Finally, the results obtained from the numerical simulations are analyzed and critically compared with Finite Element Method results.

  7. Spacetime Discontinuous Galerkin FEM: Spectral Response

    Abedi, R; Omidi, O; Clarke, P L

    2014-01-01

    Materials in nature demonstrate certain spectral shapes in terms of their material properties. Since successful experimental demonstrations in 2000, metamaterials have provided a means to engineer materials with desired spectral shapes for their material properties. Computational tools are employed in two different aspects for metamaterial modeling: 1. Mircoscale unit cell analysis to derive and possibly optimize material's spectral response; 2. macroscale to analyze their interaction with conventional material. We compare two different approaches of Time-Domain (TD) and Frequency Domain (FD) methods for metamaterial applications. Finally, we discuss advantages of the TD method of Spacetime Discontinuous Galerkin finite element method (FEM) for spectral analysis of metamaterials

  8. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

    Wheeler, Mary

    2013-11-16

    We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.

  9. Application of hexagonal element scheme in finite element method to three-dimensional diffusion problem of fast reactors

    Ishiguro, Misako; Higuchi, Kenji

    1983-01-01

    The finite element method is applied in Galerkin-type approximation to three-dimensional neutron diffusion equations of fast reactors. A hexagonal element scheme is adopted for treating the hexagonal lattice which is typical for fast reactors. The validity of the scheme is verified by applying the scheme as well as alternative schemes to the neutron diffusion calculation of a gas-cooled fast reactor of actual scale. The computed results are compared with corresponding values obtained using the currently applied triangular-element and also with conventional finite difference schemes. The hexagonal finite element scheme is found to yield a reasonable solution to the problem taken up here, with some merit in terms of saving in computing time, but the resulting multiplication factor differs by 1% and the flux by 9% compared with the triangular mesh finite difference scheme. The finite element method, even in triangular element scheme, would appear to incur error in inadmissible amount and which could not be easily eliminated by refining the nodes. (author)

  10. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    Choi, Youngsoo [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlberg, Kevin Thomas [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.

    2017-09-01

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over all space and time in a weighted ℓ2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.

  11. A non-conformal finite element/finite volume scheme for the non-structured grid-based approximation of low Mach number flows

    Ansanay-Alex, G.

    2009-01-01

    The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)

  12. Study of flow over object problems by a nodal discontinuous Galerkin-lattice Boltzmann method

    Wu, Jie; Shen, Meng; Liu, Chen

    2018-04-01

    The flow over object problems are studied by a nodal discontinuous Galerkin-lattice Boltzmann method (NDG-LBM) in this work. Different from the standard lattice Boltzmann method, the current method applies the nodal discontinuous Galerkin method into the streaming process in LBM to solve the resultant pure convection equation, in which the spatial discretization is completed on unstructured grids and the low-storage explicit Runge-Kutta scheme is used for time marching. The present method then overcomes the disadvantage of standard LBM for depending on the uniform meshes. Moreover, the collision process in the LBM is completed by using the multiple-relaxation-time scheme. After the validation of the NDG-LBM by simulating the lid-driven cavity flow, the simulations of flows over a fixed circular cylinder, a stationary airfoil and rotating-stationary cylinders are performed. Good agreement of present results with previous results is achieved, which indicates that the current NDG-LBM is accurate and effective for flow over object problems.

  13. Lagrangian Particle Tracking in a Discontinuous Galerkin Method for Hypersonic Reentry Flows in Dusty Environments

    Ching, Eric; Lv, Yu; Ihme, Matthias

    2017-11-01

    Recent interest in human-scale missions to Mars has sparked active research into high-fidelity simulations of reentry flows. A key feature of the Mars atmosphere is the high levels of suspended dust particles, which can not only enhance erosion of thermal protection systems but also transfer energy and momentum to the shock layer, increasing surface heat fluxes. Second-order finite-volume schemes are typically employed for hypersonic flow simulations, but such schemes suffer from a number of limitations. An attractive alternative is discontinuous Galerkin methods, which benefit from arbitrarily high spatial order of accuracy, geometric flexibility, and other advantages. As such, a Lagrangian particle method is developed in a discontinuous Galerkin framework to enable the computation of particle-laden hypersonic flows. Two-way coupling between the carrier and disperse phases is considered, and an efficient particle search algorithm compatible with unstructured curved meshes is proposed. In addition, variable thermodynamic properties are considered to accommodate high-temperature gases. The performance of the particle method is demonstrated in several test cases, with focus on the accurate prediction of particle trajectories and heating augmentation. Financial support from a Stanford Graduate Fellowship and the NASA Early Career Faculty program are gratefully acknowledged.

  14. The direct Discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids

    Yang, Xiaoquan; Cheng, Jian; Liu, Tiegang; Luo, Hong

    2015-11-01

    The direct discontinuous Galerkin (DDG) method based on a traditional discontinuous Galerkin (DG) formulation is extended and implemented for solving the compressible Navier-Stokes equations on arbitrary grids. Compared to the widely used second Bassi-Rebay (BR2) scheme for the discretization of diffusive fluxes, the DDG method has two attractive features: first, it is simple to implement as it is directly based on the weak form, and therefore there is no need for any local or global lifting operator; second, it can deliver comparable results, if not better than BR2 scheme, in a more efficient way with much less CPU time. Two approaches to perform the DDG flux for the Navier- Stokes equations are presented in this work, one is based on conservative variables, the other is based on primitive variables. In the implementation of the DDG method for arbitrary grid, the definition of mesh size plays a critical role as the formation of viscous flux explicitly depends on the geometry. A variety of test cases are presented to demonstrate the accuracy and efficiency of the DDG method for discretizing the viscous fluxes in the compressible Navier-Stokes equations on arbitrary grids.

  15. Galerkin FEM for Fractional Order Parabolic Equations with Initial Data in H − s , 0 ≤ s ≤ 1

    Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi

    2013-01-01

    We investigate semi-discrete numerical schemes based on the standard Galerkin and lumped mass Galerkin finite element methods for an initial-boundary value problem for homogeneous fractional diffusion problems with non-smooth initial data. We assume that Ω ⊂ ℝd , d = 1,2,3 is a convex polygonal (polyhedral) domain. We theoretically justify optimal order error estimates in L2- and H1-norms for initial data in H-s (Ω), 0 ≤ s ≤ 1. We confirm our theoretical findings with a number of numerical tests that include initial data v being a Dirac δ-function supported on a (d-1)-dimensional manifold. © 2013 Springer-Verlag.

  16. Class of reconstructed discontinuous Galerkin methods in computational fluid dynamics

    Luo, Hong; Xia, Yidong; Nourgaliev, Robert

    2011-01-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness. (author)

  17. A fractional spline collocation-Galerkin method for the time-fractional diffusion equation

    Pezza L.

    2018-03-01

    Full Text Available The aim of this paper is to numerically solve a diffusion differential problem having time derivative of fractional order. To this end we propose a collocation-Galerkin method that uses the fractional splines as approximating functions. The main advantage is in that the derivatives of integer and fractional order of the fractional splines can be expressed in a closed form that involves just the generalized finite difference operator. This allows us to construct an accurate and efficient numerical method. Several numerical tests showing the effectiveness of the proposed method are presented.

  18. Comparison of two Galerkin quadrature methods

    Morel, J. E.; Warsa, J. S.; Franke, B. C.; Prinja, A. K.

    2013-01-01

    We compare two methods for generating Galerkin quadrature for problems with highly forward-peaked scattering. In Method 1, the standard Sn method is used to generate the moment-to-discrete matrix and the discrete-to-moment is generated by inverting the moment-to-discrete matrix. In Method 2, which we introduce here, the standard Sn method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. Method 1 has the advantage that it preserves both N eigenvalues and N eigenvectors (in a pointwise sense) of the scattering operator with an N-point quadrature. Method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator with an N-point quadrature. Our computational results indicate that these two methods are quite comparable for the test problem considered. (authors)

  19. Long-time stability effects of quadrature and artificial viscosity on nodal discontinuous Galerkin methods for gas dynamics

    Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan

    2017-11-01

    Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.

  20. Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison

    Bäck, Joakim

    2010-09-17

    Much attention has recently been devoted to the development of Stochastic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantification. An open and relevant research topic is the comparison of these two methods. By introducing a suitable generalization of the classical sparse grid SC method, we are able to compare SG and SC on the same underlying multivariate polynomial space in terms of accuracy vs. computational work. The approximation spaces considered here include isotropic and anisotropic versions of Tensor Product (TP), Total Degree (TD), Hyperbolic Cross (HC) and Smolyak (SM) polynomials. Numerical results for linear elliptic SPDEs indicate a slight computational work advantage of isotropic SC over SG, with SC-SM and SG-TD being the best choices of approximation spaces for each method. Finally, numerical results corroborate the optimality of the theoretical estimate of anisotropy ratios introduced by the authors in a previous work for the construction of anisotropic approximation spaces. © 2011 Springer.

  1. A simplified model of the Martian atmosphere - Part 2: a POD-Galerkin analysis

    S. G. Whitehouse

    2005-01-01

    Full Text Available In Part I of this study Whitehouse et al. (2005 performed a diagnostic analysis of a simplied model of the Martian atmosphere, in which topography was absent and in which heating was modelled as Newtonian relaxation towards a zonally symmetric equilibrium temperature field. There we derived a reduced-order approximation to the vertical and the horizonal structure of the baroclinically unstable Martian atmosphere, retaining only the barotropic mode and the leading order baroclinic modes. Our objectives in Part II of the study are to incorporate these approximations into a Proper Orthogonal Decomposition-Galerkin expansion of the spherical quasi-geostrophic model in order to derive hierarchies of nonlinear ordinary differential equations for the time-varying coefficients of the spatial structures. Two different vertical truncations are considered, as well as three different norms and 3 different Galerkin truncations. We investigate each in turn, using tools from bifurcation theory, to determine which of the systems most closely resembles the data for which the original diagnostics were performed.

  2. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.

    Thamareerat, N; Luadsong, A; Aschariyaphotha, N

    2016-01-01

    In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering.

  3. Individualized drug dosing using RBF-Galerkin method: Case of anemia management in chronic kidney disease.

    Mirinejad, Hossein; Gaweda, Adam E; Brier, Michael E; Zurada, Jacek M; Inanc, Tamer

    2017-09-01

    Anemia is a common comorbidity in patients with chronic kidney disease (CKD) and is frequently associated with decreased physical component of quality of life, as well as adverse cardiovascular events. Current treatment methods for renal anemia are mostly population-based approaches treating individual patients with a one-size-fits-all model. However, FDA recommendations stipulate individualized anemia treatment with precise control of the hemoglobin concentration and minimal drug utilization. In accordance with these recommendations, this work presents an individualized drug dosing approach to anemia management by leveraging the theory of optimal control. A Multiple Receding Horizon Control (MRHC) approach based on the RBF-Galerkin optimization method is proposed for individualized anemia management in CKD patients. Recently developed by the authors, the RBF-Galerkin method uses the radial basis function approximation along with the Galerkin error projection to solve constrained optimal control problems numerically. The proposed approach is applied to generate optimal dosing recommendations for individual patients. Performance of the proposed approach (MRHC) is compared in silico to that of a population-based anemia management protocol and an individualized multiple model predictive control method for two case scenarios: hemoglobin measurement with and without observational errors. In silico comparison indicates that hemoglobin concentration with MRHC method has less variation among the methods, especially in presence of measurement errors. In addition, the average achieved hemoglobin level from the MRHC is significantly closer to the target hemoglobin than that of the other two methods, according to the analysis of variance (ANOVA) statistical test. Furthermore, drug dosages recommended by the MRHC are more stable and accurate and reach the steady-state value notably faster than those generated by the other two methods. The proposed method is highly efficient for

  4. Galerkin projection methods for solving multiple related linear systems

    Chan, T.F.; Ng, M.; Wan, W.L.

    1996-12-31

    We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.

  5. Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model

    Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.

  6. OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA

    GOSWAMI, DEEPJYOTI; PANI, AMIYA K.; YADAV, SANGITA

    2014-01-01

    AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.

  7. On discontinuous Galerkin approach for atmospheric flow in the mesoscale with and without moisture

    Dieter Schuster

    2014-09-01

    Full Text Available We present and discuss discontinuous Galerkin (DG schemes for dry and moist atmospheric flows in the mesoscale. We derive terrain-following coordinates on the sphere in strong-conservation form, which makes it possible to perform the computation on a Cartesian grid and yet conserves the momentum density on an f$f$-plane. A new DG model, i.e. DG-COSMO, is compared to the operational model COSMO of the Deutscher Wetterdienst (DWD. A simplified version of the suggested terrain-following coordinates is implemented in DG-COSMO and is compared against the DG dynamical core implemented within the DUNE framework, which uses unstructured grids to capture orography. Finally, a few idealised test cases, including 3d and moisture, are used for validation. In addition an estimate of efficiency for locally adaptive grids is derived for locally and non-locally occurring phenomena.

  8. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    Li, Ping; Shi, Yifei; Jiang, Lijun; Bagci, Hakan

    2014-01-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer's shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  9. Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids

    Ma, Xinrong; Duan, Zhijian

    2018-04-01

    High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.

  10. A discontinuous Galerkin method for numerical pricing of European options under Heston stochastic volatility

    Hozman, J.; Tichý, T.

    2016-12-01

    The paper is based on the results from our recent research on multidimensional option pricing problems. We focus on European option valuation when the price movement of the underlying asset is driven by a stochastic volatility following a square root process proposed by Heston. The stochastic approach incorporates a new additional spatial variable into this model and makes it very robust, i.e. it provides a framework to price a variety of options that is closer to reality. The main topic is to present the numerical scheme arising from the concept of discontinuous Galerkin methods and applicable to the Heston option pricing model. The numerical results are presented on artificial benchmarks as well as on reference market data.

  11. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  12. The dimension split element-free Galerkin method for three-dimensional potential problems

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-02-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  13. Stochastic Least-Squares Petrov--Galerkin Method for Parameterized Linear Systems

    Lee, Kookjin [Univ. of Maryland, College Park, MD (United States). Dept. of Computer Science; Carlberg, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Elman, Howard C. [Univ. of Maryland, College Park, MD (United States). Dept. of Computer Science and Inst. for Advanced Computer Studies

    2018-03-29

    Here, we consider the numerical solution of parameterized linear systems where the system matrix, the solution, and the right-hand side are parameterized by a set of uncertain input parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to minimize any measure of the solution error. As a remedy for this, we propose a novel stochatic least-squares Petrov--Galerkin (LSPG) method. The proposed method is optimal in the sense that it produces the solution that minimizes a weighted $\\ell^2$-norm of the residual over all solutions in a given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution error in different weighted $\\ell^2$-norms by simply applying a weighting function within the least-squares formulation. In addition, a goal-oriented seminorm induced by an output quantity of interest can be minimized by defining a weighting function as a linear functional of the solution. We establish optimality and error bounds for the proposed method, and extensive numerical experiments show that the weighted LSPG method outperforms other spectral methods in minimizing corresponding target weighted norms.

  14. A Level Set Discontinuous Galerkin Method for Free Surface Flows

    Grooss, Jesper; Hesthaven, Jan

    2006-01-01

    We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation...

  15. Clearance gap flow: Simulations by discontinuous Galerkin method and experiments

    Hála, Jindřich; Luxa, Martin; Bublík, O.; Prausová, H.; Vimmr, J.

    2016-01-01

    Roč. 92, May (2016), 02073-02073 ISSN 2100-014X. [EFM14 – Experimental Fluid Mechanics 2014. Český Krumlov, 18.11.2014-21.11.2014] Institutional support: RVO:61388998 Keywords : compressible fluid flow * narrow channel flow * discontinuous Galerkin finite element method Subject RIV: BK - Fluid Dynamics

  16. Rollout sampling approximate policy iteration

    Dimitrakakis, C.; Lagoudakis, M.G.

    2008-01-01

    Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a

  17. Adaptive ACMS: A robust localized Approximated Component Mode Synthesis Method

    Madureira, Alexandre L.; Sarkis, Marcus

    2017-01-01

    We consider finite element methods of multiscale type to approximate solutions for two-dimensional symmetric elliptic partial differential equations with heterogeneous $L^\\infty$ coefficients. The methods are of Galerkin type and follows the Variational Multiscale and Localized Orthogonal Decomposition--LOD approaches in the sense that it decouples spaces into multiscale and fine subspaces. In a first method, the multiscale basis functions are obtained by mapping coarse basis functions, based...

  18. An Online Generalized Multiscale Discontinuous Galerkin Method (GMsDGM) for Flows in Heterogeneous Media

    Chung, Eric T.

    2017-02-07

    Offline computation is an essential component in most multiscale model reduction techniques. However, there are multiscale problems in which offline procedure is insufficient to give accurate representations of solutions, due to the fact that offline computations are typically performed locally and global information is missing in these offline information. To tackle this difficulty, we develop an online local adaptivity technique for local multiscale model reduction problems. We design new online basis functions within Discontinuous Galerkin method based on local residuals and some optimally estimates. The resulting basis functions are able to capture the solution efficiently and accurately, and are added to the approximation iteratively. Moreover, we show that the iterative procedure is convergent with a rate independent of physical scales if the initial space is chosen carefully. Our analysis also gives a guideline on how to choose the initial space. We present some numerical examples to show the performance of the proposed method.

  19. Efficient Galerkin solution of stochastic fractional differential equations using second kind Chebyshev wavelets

    Fakhrodin Mohammadi

    2017-10-01

    Full Text Available ‎Stochastic fractional differential equations (SFDEs have been used for modeling many physical problems in the fields of turbulance‎, ‎heterogeneous‎, ‎flows and matrials‎, ‎viscoelasticity and electromagnetic theory‎. ‎In this paper‎, ‎an‎ efficient wavelet Galerkin method based on the second kind Chebyshev wavelets are proposed for approximate solution of SFDEs‎. ‎In ‎this ‎app‎roach‎‎, ‎o‎perational matrices of the second kind Chebyshev wavelets ‎are used ‎for reducing SFDEs to a linear system of algebraic equations that can be solved easily‎. ‎C‎onvergence and error analysis of the proposed method is ‎considered‎.‎ ‎Some numerical examples are performed to confirm the applicability and efficiency of the proposed method‎.

  20. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

    Pani, Amiya K.

    2010-06-06

    In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

  1. Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations

    Iliev, Oleg P.

    2010-01-01

    We present a two-scale finite element method for solving Brinkman\\'s equations with piece-wise constant coefficients. This system of equations model fluid flows in highly porous, heterogeneous media with complex topology of the heterogeneities. We make use of the recently proposed discontinuous Galerkin FEM for Stokes equations by Wang and Ye in [12] and the concept of subgrid approximation developed for Darcy\\'s equations by Arbogast in [4]. In order to reduce the error along the coarse-grid interfaces we have added a alternating Schwarz iteration using patches around the coarse-grid boundaries. We have implemented the subgrid method using Deal.II FEM library, [7], and we present the computational results for a number of model problems. © 2010 Springer-Verlag Berlin Heidelberg.

  2. A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems

    Efendiev, Yalchin R.

    2015-08-01

    We design a multiscale model reduction framework within the hybridizable discontinuous Galerkin finite element method. Our approach uses local snapshot spaces and local spectral decomposition following the concept of Generalized Multiscale Finite Element Methods. We propose several multiscale finite element spaces on the coarse edges that provide a reduced dimensional approximation for numerical traces within the HDG framework. We provide a general framework for systematic construction of multiscale trace spaces. Using local snapshots, we avoid high dimensional representation of trace spaces and use some local features of the solution space in constructing a low dimensional trace space. We investigate the solvability and numerically study the performance of the proposed method on a representative number of numerical examples.

  3. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

    Pani, Amiya K.; Yadav, Sangita

    2010-01-01

    In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

  4. A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems

    Liu, Zuolin; Xu, Jian

    2018-04-01

    In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.

  5. Upwind discontinuous Galerkin methods with mass conservation of both phases for incompressible two-phase flow in porous media

    Kou, Jisheng; Sun, Shuyu

    2014-01-01

    Discontinuous Galerkin methods with interior penalties and upwind schemes are applied to the original formulation modeling incompressible two-phase flow in porous media with the capillary pressure. The pressure equation is obtained by summing the discretized conservation equations of two phases. This treatment is very different from the conventional approaches, and its great merit is that the mass conservations hold for both phases instead of only one phase in the conventional schemes. By constructing a new continuous map and using the fixed-point theorem, we prove the global existence of discrete solutions under the proper conditions, and furthermore, we obtain a priori hp error estimates of the pressures in L 2 (H 1) and the saturations in L ∞(L 2) and L 2 (H 1). © 2014 Wiley Periodicals, Inc.

  6. Upwind discontinuous Galerkin methods with mass conservation of both phases for incompressible two-phase flow in porous media

    Kou, Jisheng

    2014-03-22

    Discontinuous Galerkin methods with interior penalties and upwind schemes are applied to the original formulation modeling incompressible two-phase flow in porous media with the capillary pressure. The pressure equation is obtained by summing the discretized conservation equations of two phases. This treatment is very different from the conventional approaches, and its great merit is that the mass conservations hold for both phases instead of only one phase in the conventional schemes. By constructing a new continuous map and using the fixed-point theorem, we prove the global existence of discrete solutions under the proper conditions, and furthermore, we obtain a priori hp error estimates of the pressures in L 2 (H 1) and the saturations in L ∞(L 2) and L 2 (H 1). © 2014 Wiley Periodicals, Inc.

  7. Multilevel Preconditioners for Discontinuous Galerkin Approximations of Elliptic Problems with Jump Coefficients

    2010-12-01

    discontinuous coefficients on geometrically nonconforming substructures. Technical Report Serie A 634, Instituto de Matematica Pura e Aplicada, Brazil, 2009...Instituto de Matematica Pura e Aplicada, Brazil, 2010. submitted. [41] M. Dryja, M. V. Sarkis, and O. B. Widlund. Multilevel Schwarz methods for

  8. Finite Element-Galerkin Approximation of the Eigenvalues of Eigenvectors of Selfadjoint Problems

    1988-07-01

    l’ "k, + 1. Combining (3.20), (3.22), and the fact that I-Eh(Ak ) and Ph are orthogonal projections we have I(I-Eh(Xk,)) PhUB 5 Si (I-Eh(xk)) PhT(Ph-I...Its adjoint are equal. (3.23) implies Hf(I-Eh(1kI )Ph)u{1B - P(IPh)UIBI 5 I(I-Eh(Ak )) PhuB -< d i ii ( Ph- I )T II H B_--H,3 1(P h- I ) u liB , and

  9. Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients

    Beck, Joakim; Nobile, F.; Tamellini, L.; Tempone, Raul

    2011-01-01

    We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new effective class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids.

  10. High-Order Approximation of Chromatographic Models using a Nodal Discontinuous Galerkin Approach

    Meyer, Kristian; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2018-01-01

    by Javeed et al. (2011a,b, 2013) with an efficient quadrature-free implementation. The framework is used to simulate linear and non-linear multicomponent chromatographic systems. The results confirm arbitrary high-order accuracy and demonstrate the potential for accuracy and speed-up gains obtainable...

  11. An angularly refineable phase space finite element method with approximate sweeping procedure

    Kophazi, J.; Lathouwers, D.

    2013-01-01

    An angularly refineable phase space finite element method is proposed to solve the neutron transport equation. The method combines the advantages of two recently published schemes. The angular domain is discretized into small patches and patch-wise discontinuous angular basis functions are restricted to these patches, i.e. there is no overlap between basis functions corresponding to different patches. This approach yields block diagonal Jacobians with small block size and retains the possibility for S n -like approximate sweeping of the spatially discontinuous elements in order to provide efficient preconditioners for the solution procedure. On the other hand, the preservation of the full FEM framework (as opposed to collocation into a high-order S n scheme) retains the possibility of the Galerkin interpolated connection between phase space elements at arbitrary levels of discretization. Since the basis vectors are not orthonormal, a generalization of the Riemann procedure is introduced to separate the incoming and outgoing contributions in case of unstructured meshes. However, due to the properties of the angular discretization, the Riemann procedure can be avoided at a large fraction of the faces and this fraction rapidly increases as the level of refinement increases, contributing to the computational efficiency. In this paper the properties of the discretization scheme are studied with uniform refinement using an iterative solver based on the S 2 sweep order of the spatial elements. The fourth order convergence of the scalar flux is shown as anticipated from earlier schemes and the rapidly decreasing fraction of required Riemann faces is illustrated. (authors)

  12. Modeling shallow water flows using the discontinuous Galerkin method

    Khan, Abdul A

    2014-01-01

    Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fie...

  13. The discrete maximum principle for Galerkin solutions of elliptic problems

    Vejchodský, Tomáš

    2012-01-01

    Roč. 10, č. 1 (2012), s. 25-43 ISSN 1895-1074 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete maximum principle * monotone methods * Galerkin solution Subject RIV: BA - General Mathematics Impact factor: 0.405, year: 2012 http://www.springerlink.com/content/x73624wm23x4wj26

  14. Petrov-Galerkin mixed formulations for bidimensional elasticity

    Toledo, E.M.; Loula, A.F.D.; Guerreiro, J.N.C.

    1989-10-01

    A new formulation for two-dimensional elasticity in stress and displacements is presented. Consistently adding to the Galerkin classical formulation residuals forms of constitutive and equilibrium equations, the original saddle point is transformed into a minimization problem without any restrictions. We also propose a stress post processing technique using both equilibrium and constitutive equations. Numerical analysis error estimates and numerical results are presented confirming the predicted rates of convergence. (A.C.A.S.) [pt

  15. Model Adaptation in Parametric Space for POD-Galerkin Models

    Gao, Haotian; Wei, Mingjun

    2017-11-01

    The development of low-order POD-Galerkin models is largely motivated by the expectation to use the model developed with a set of parameters at their native values to predict the dynamic behaviors of the same system under different parametric values, in other words, a successful model adaptation in parametric space. However, most of time, even small deviation of parameters from their original value may lead to large deviation or unstable results. It has been shown that adding more information (e.g. a steady state, mean value of a different unsteady state, or an entire different set of POD modes) may improve the prediction of flow with other parametric states. For a simple case of the flow passing a fixed cylinder, an orthogonal mean mode at a different Reynolds number may stabilize the POD-Galerkin model when Reynolds number is changed. For a more complicated case of the flow passing an oscillatory cylinder, a global POD-Galerkin model is first applied to handle the moving boundaries, then more information (e.g. more POD modes) is required to predicate the flow under different oscillatory frequencies. Supported by ARL.

  16. Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media

    Hou, Jiangyong

    2016-02-05

    In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.

  17. Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media

    Hou, Jiangyong; Chen, Jie; Sun, Shuyu; Chen, Zhangxin

    2016-01-01

    In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.

  18. Implicit high-order discontinuous Galerkin method with HWENO type limiters for steady viscous flow simulations

    Jiang, Zhen-Hua; Yan, Chao; Yu, Jian

    2013-08-01

    Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.

  19. Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles

    Moffitt, Nicholas J.

    This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate

  20. Variational, projection methods and Pade approximants in scattering theory

    Turchetti, G.

    1980-12-01

    Several aspects on the scattering theory are discussed in a perturbative scheme. The Pade approximant method plays an important role in such a scheme. Solitons solutions are also discussed in this same scheme. (L.C.) [pt

  1. Approximate Likelihood

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  2. Diophantine approximation

    Schmidt, Wolfgang M

    1980-01-01

    "In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)

  3. Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

    Atkins, H. L.; Helenbrook, B. T.

    2005-01-01

    This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.

  4. Applications of mixed Petrov-Galerkin finite element methods to transient and steady state creep analysis

    Guerreiro, J.N.C.; Loula, A.F.D.

    1988-12-01

    The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt

  5. Discontinuous Galerkin finite element method with anisotropic local grid refinement for inviscid compressible flows

    van der Vegt, Jacobus J.W.; van der Ven, H.

    1998-01-01

    A new discretization method for the three-dimensional Euler equations of gas dynamics is presented, which is based on the discontinuous Galerkin finite element method. Special attention is paid to an efficient implementation of the discontinuous Galerkin method that minimizes the number of flux

  6. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media

    Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar

    2010-01-01

    We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.

  7. Symmetric-Galerkin BEM simulation of fracture with frictional contact

    Phan, AV

    2003-06-14

    Full Text Available FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2003; 57:835?851 (DOI: 10.1002/nme.707) Symmetric-Galerkin BEM simulation of fracture with frictional contact A.-V. Phan1;asteriskmath;?, J. A. L. Napier2, L. J. Gray3 and T. Kaplan3 1Department... Methods in Engineering 1975; 9:495?507. 35. Barsoum RS. On the use of isoparametric FFnite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering 1976; 10:25?37. 36. Gray LJ, Phan A-V, Paulino GH, Kaplan T...

  8. A point-value enhanced finite volume method based on approximate delta functions

    Xuan, Li-Jun; Majdalani, Joseph

    2018-02-01

    We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

  9. A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations

    Piatkowski, Marian; Müthing, Steffen; Bastian, Peter

    2018-03-01

    In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.

  10. A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations

    Zhang, Guoyu; Huang, Chengming; Li, Meng

    2018-04-01

    We consider the numerical simulation of the coupled nonlinear space fractional Schrödinger equations. Based on the Galerkin finite element method in space and the Crank-Nicolson (CN) difference method in time, a fully discrete scheme is constructed. Firstly, we focus on a rigorous analysis of conservation laws for the discrete system. The definitions of discrete mass and energy here correspond with the original ones in physics. Then, we prove that the fully discrete system is uniquely solvable. Moreover, we consider the unconditionally convergent properties (that is to say, we complete the error estimates without any mesh ratio restriction). We derive L2-norm error estimates for the nonlinear equations and L^{∞}-norm error estimates for the linear equations. Finally, some numerical experiments are included showing results in agreement with the theoretical predictions.

  11. Adaptive Meshless Local Petrov-Galerkin Method with Variable Domain of Influence in 2D Elastostatic Problems

    Pamuda Pudjisuryadi

    2008-01-01

    Full Text Available A meshless local Petrov-Galerkin (MLPG method that employs polygonal sub-domains constructed from several triangular patches rather than the typically used circular sub-domains is presented. Moving least-squares approximation is used to construct the trial displacements and linear, Lagrange interpolation functions are used to construct the test functions. An adaptive technique to improve the accuracy of approximate solutions is developed to minimize the computational cost. Variable domain of influence (VDOI and effective stress gradient indicator (EK for local error assessment are the focus of this study. Several numerical examples are presented to verify the efficiency and accuracy of the proposed adaptive MLPG method. The results show that the proposed adaptive technique performs as expected that is refining the problem domain in area with high stress concentration in which higher accuracy is commonly required.

  12. Numerical Solution and Simulation of Second-Order Parabolic PDEs with Sinc-Galerkin Method Using Maple

    Aydin Secer

    2013-01-01

    Full Text Available An efficient solution algorithm for sinc-Galerkin method has been presented for obtaining numerical solution of PDEs with Dirichlet-type boundary conditions by using Maple Computer Algebra System. The method is based on Whittaker cardinal function and uses approximating basis functions and their appropriate derivatives. In this work, PDEs have been converted to algebraic equation systems with new accurate explicit approximations of inner products without the need to calculate any numeric integrals. The solution of this system of algebraic equations has been reduced to the solution of a matrix equation system via Maple. The accuracy of the solutions has been compared with the exact solutions of the test problem. Computational results indicate that the technique presented in this study is valid for linear partial differential equations with various types of boundary conditions.

  13. High-order discontinuous Galerkin nonlocal transport and energy equations scheme for radiation hydrodynamics

    Holec, M.; Limpouch, J.; Liska, R.; Weber, Stefan A.

    2017-01-01

    Roč. 83, č. 10 (2017), s. 779-797 ISSN 0271-2091 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : radiation hydrodynamics * nonlocal transport * Knudsen number * multigroup diffusion * radiation coupling Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.652, year: 2016

  14. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory.

    Hu, Wei; Lin, Lin; Yang, Chao

    2015-12-21

    With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.

  15. Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations

    Rhebergen, S.; Bokhove, O.; Vegt, J.J.W. van der

    2008-01-01

    We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the weak formulation is that if the system of nonconservative partial differential equations can be transformed into conservative form, then the formulation must reduce to that for conservative systems. Standard DGFEM formulations cannot be applied to nonconservative systems of partial differential equations. We therefore introduce the theory of weak solutions for nonconservative products into the DGFEM formulation leading to the new question how to define the path connecting left and right states across a discontinuity. The effect of different paths on the numerical solution is investigated and found to be small. We also introduce a new numerical flux that is able to deal with nonconservative products. Our scheme is applied to two different systems of partial differential equations. First, we consider the shallow water equations, where topography leads to nonconservative products, in which the known, possibly discontinuous, topography is formally taken as an unknown in the system. Second, we consider a simplification of a depth-averaged two-phase flow model which contains more intrinsic nonconservative products

  16. Development and application of a third order scheme of finite differences centered in mesh

    Delfin L, A.; Alonso V, G.; Valle G, E. del

    2003-01-01

    In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)

  17. Sensitivity analysis of the Galerkin finite element method neutron diffusion solver to the shape of the elements

    Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2017-02-15

    The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

  18. Comparisons of Particle Tracking Techniques and Galerkin Finite Element Methods in Flow Simulations on Watershed Scales

    Shih, D.; Yeh, G.

    2009-12-01

    This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.

  19. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

    Nobile, F.

    2015-10-30

    In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature.

  20. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

    Nobile, F.; Tamellini, L.; Tempone, Raul

    2015-01-01

    In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw–Curtis) or non-nested (Gauss–Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature.

  1. Truthful approximations to range voting

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...

  2. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    Li, Ping

    2017-03-22

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.

  3. Renormalization scheme-invariant perturbation theory

    Dhar, A.

    1983-01-01

    A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)

  4. Colour schemes

    van Leeuwen, Theo

    2013-01-01

    This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation.......This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....

  5. A Galerkin least squares approach to viscoelastic flow.

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.

  6. A zonal Galerkin-free POD model for incompressible flows

    Bergmann, Michel; Ferrero, Andrea; Iollo, Angelo; Lombardi, Edoardo; Scardigli, Angela; Telib, Haysam

    2018-01-01

    A domain decomposition method which couples a high and a low-fidelity model is proposed to reduce the computational cost of a flow simulation. This approach requires to solve the high-fidelity model in a small portion of the computational domain while the external field is described by a Galerkin-free Proper Orthogonal Decomposition (POD) model. We propose an error indicator to determine the extent of the interior domain and to perform an optimal coupling between the two models. This zonal approach can be used to study multi-body configurations or to perform detailed local analyses in the framework of shape optimisation problems. The efficiency of the method to perform predictive low-cost simulations is investigated for an unsteady flow and for an aerodynamic shape optimisation problem.

  7. Adaptive discontinuous Galerkin methods for non-linear reactive flows

    Uzunca, Murat

    2016-01-01

    The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

  8. Element free Galerkin formulation of composite beam with longitudinal slip

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad [Department of Civil Engineering, Universiti Selangor, Bestari Jaya, Selangor (Malaysia); Badli, Mohd Iqbal; Yassin, Airil Y. Mohd [Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor (Malaysia)

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.

  9. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2017-01-01

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split

  10. Implementation of the entropy viscosity method with the discontinuous Galerkin method

    Zingan, Valentin

    2013-01-01

    The notion of entropy viscosity method introduced in Guermond and Pasquetti [21] is extended to the discontinuous Galerkin framework for scalar conservation laws and the compressible Euler equations. © 2012 Elsevier B.V.

  11. Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison

    Bä ck, Joakim; Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul

    2010-01-01

    Much attention has recently been devoted to the development of Stochastic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantification. An open and relevant research topic is the comparison of these two methods

  12. application of the galerkin-vlasov method to the flexural analysis

    user

    In this research, the Galerkin-Vlasov variational method was used to present a general formulation of the Kirchhoff plate problem with simply supported edges and under distributed ..... analysed for elastic, dynamic and stability behaviour,.

  13. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    Wang, Yi; Yu, Bo; Sun, Shuyu

    2017-01-01

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions

  14. A collocation--Galerkin finite element model of cardiac action potential propagation.

    Rogers, J M; McCulloch, A D

    1994-08-01

    A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.

  15. A stochastic Galerkin method for the Euler equations with Roe variable transformation

    Pettersson, Per; Iaccarino, Gianluca; Nordströ m, Jan

    2014-01-01

    The Euler equations subject to uncertainty in the initial and boundary conditions are investigated via the stochastic Galerkin approach. We present a new fully intrusive method based on a variable transformation of the continuous equations. Roe variables are employed to get quadratic dependence in the flux function and a well-defined Roe average matrix that can be determined without matrix inversion.In previous formulations based on generalized polynomial chaos expansion of the physical variables, the need to introduce stochastic expansions of inverse quantities, or square roots of stochastic quantities of interest, adds to the number of possible different ways to approximate the original stochastic problem. We present a method where the square roots occur in the choice of variables, resulting in an unambiguous problem formulation.The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, the Roe formulation is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. For certain stochastic basis functions, the proposed method can be made more effective and well-conditioned. This leads to increased robustness for both choices of variables. We use a multi-wavelet basis that can be chosen to include a large number of resolution levels to handle more extreme cases (e.g. strong discontinuities) in a robust way. For smooth cases, the order of the polynomial representation can be increased for increased accuracy. © 2013 Elsevier Inc.

  16. Automatically stable discontinuous Petrov-Galerkin methods for stationary transport problems: Quasi-optimal test space norm

    Niemi, Antti H.; Collier, Nathan; Calo, Victor M.

    2013-01-01

    We investigate the application of the discontinuous Petrov-Galerkin (DPG) finite element framework to stationary convection-diffusion problems. In particular, we demonstrate how the quasi-optimal test space norm improves the robustness of the DPG method with respect to vanishing diffusion. We numerically compare coarse-mesh accuracy of the approximation when using the quasi-optimal norm, the standard norm, and the weighted norm. Our results show that the quasi-optimal norm leads to more accurate results on three benchmark problems in two spatial dimensions. We address the problems associated to the resolution of the optimal test functions with respect to the quasi-optimal norm by studying their convergence numerically. In order to facilitate understanding of the method, we also include a detailed explanation of the methodology from the algorithmic point of view. © 2013 Elsevier Ltd. All rights reserved.

  17. Reactivity perturbation formulation for a discontinuous Galerkin-based transport solver and its use with adaptive mesh refinement

    Le Tellier, R.; Fournier, D.; Suteau, C.

    2011-01-01

    Within the framework of a Discontinuous Galerkin spatial approximation of the multigroup discrete ordinates transport equation, we present a generalization of the exact standard perturbation formula that takes into account spatial discretization-induced reactivity changes. It encompasses in two separate contributions the nuclear data-induced reactivity change and the reactivity modification induced by two different spatial discretizations. The two potential uses of such a formulation when considering adaptive mesh refinement are discussed, and numerical results on a simple two-group Cartesian two-dimensional benchmark are provided. In particular, such a formulation is shown to be useful to filter out a more accurate estimate of nuclear data-related reactivity effects from initial and perturbed calculations based on independent adaptation processes. (authors)

  18. Automatically stable discontinuous Petrov-Galerkin methods for stationary transport problems: Quasi-optimal test space norm

    Niemi, Antti H.

    2013-12-01

    We investigate the application of the discontinuous Petrov-Galerkin (DPG) finite element framework to stationary convection-diffusion problems. In particular, we demonstrate how the quasi-optimal test space norm improves the robustness of the DPG method with respect to vanishing diffusion. We numerically compare coarse-mesh accuracy of the approximation when using the quasi-optimal norm, the standard norm, and the weighted norm. Our results show that the quasi-optimal norm leads to more accurate results on three benchmark problems in two spatial dimensions. We address the problems associated to the resolution of the optimal test functions with respect to the quasi-optimal norm by studying their convergence numerically. In order to facilitate understanding of the method, we also include a detailed explanation of the methodology from the algorithmic point of view. © 2013 Elsevier Ltd. All rights reserved.

  19. Diophantine approximation and badly approximable sets

    Kristensen, S.; Thorn, R.; Velani, S.

    2006-01-01

    . The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...

  20. Tradable schemes

    J.K. Hoogland (Jiri); C.D.D. Neumann

    2000-01-01

    textabstractIn this article we present a new approach to the numerical valuation of derivative securities. The method is based on our previous work where we formulated the theory of pricing in terms of tradables. The basic idea is to fit a finite difference scheme to exact solutions of the pricing

  1. High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations

    Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek

    2018-04-01

    This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.

  2. The nonlinear Galerkin method: A multi-scale method applied to the simulation of homogeneous turbulent flows

    Debussche, A.; Dubois, T.; Temam, R.

    1993-01-01

    Using results of Direct Numerical Simulation (DNS) in the case of two-dimensional homogeneous isotropic flows, the behavior of the small and large scales of Kolmogorov like flows at moderate Reynolds numbers are first analyzed in detail. Several estimates on the time variations of the small eddies and the nonlinear interaction terms were derived; those terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, a multilevel scheme which treats differently the small and the large eddies was proposed. Using mathematical developments, estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptive procedure were derived. Finally, realistic simulations of (Kolmorov like) flows over several eddy-turnover times were performed. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.

  3. Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces

    Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.

    2013-01-01

    Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.

  4. A non-conformal finite element/finite volume scheme for the non-structured grid-based approximation of low Mach number flows; Un schema elements finis non-conformes/volumes finis pour l'approximation en maillages non-structures des ecoulements a faible nombre de Mach

    Ansanay-Alex, G.

    2009-06-17

    The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)

  5. Adaptive stochastic Galerkin FEM with hierarchical tensor representations

    Eigel, Martin

    2016-01-08

    PDE with stochastic data usually lead to very high-dimensional algebraic problems which easily become unfeasible for numerical computations because of the dense coupling structure of the discretised stochastic operator. Recently, an adaptive stochastic Galerkin FEM based on a residual a posteriori error estimator was presented and the convergence of the adaptive algorithm was shown. While this approach leads to a drastic reduction of the complexity of the problem due to the iterative discovery of the sparsity of the solution, the problem size and structure is still rather limited. To allow for larger and more general problems, we exploit the tensor structure of the parametric problem by representing operator and solution iterates in the tensor train (TT) format. The (successive) compression carried out with these representations can be seen as a generalisation of some other model reduction techniques, e.g. the reduced basis method. We show that this approach facilitates the efficient computation of different error indicators related to the computational mesh, the active polynomial chaos index set, and the TT rank. In particular, the curse of dimension is avoided.

  6. Optimum RA reactor fuelling scheme

    Strugar, P.; Nikolic, V.

    1965-10-01

    Ideal reactor refueling scheme can be achieved only by continuous fuel elements movement in the core, which is not possible, and thus approximations are applied. One of the possible approximations is discontinuous movement of fuel elements groups in radial direction. This enables higher burnup especially if axial exchange is possible. Analysis of refueling schemes in the RA reactor core and schemes with mixing the fresh and used fuel elements show that 30% higher burnup can be achieved by applying mixing, and even 40% if reactivity due to decrease in experimental space is taken into account. Up to now, mean burnup of 4400 MWd/t has been achieved, and the proposed fueling scheme with reduction of experimental space could achieve mean burnup of 6300 MWd/t which means about 25 Mwd/t per fuel channel [sr

  7. Generalization of binary tensor product schemes depends upon four parameters

    Bashir, R.; Bari, M.; Mustafa, G.

    2018-01-01

    This article deals with general formulae of parametric and non parametric bivariate subdivision scheme with four parameters. By assigning specific values to those parameters we get some special cases of existing tensor product schemes as well as a new proposed scheme. The behavior of schemes produced by the general formulae is interpolating, approximating and relaxed. Approximating bivariate subdivision schemes produce some other surfaces as compared to interpolating bivariate subdivision schemes. Polynomial reproduction and polynomial generation are desirable properties of subdivision schemes. Capability of polynomial reproduction and polynomial generation is strongly connected with smoothness, sum rules, convergence and approximation order. We also calculate the polynomial generation and polynomial reproduction of 9-point bivariate approximating subdivision scheme. Comparison of polynomial reproduction, polynomial generation and continuity of existing and proposed schemes has also been established. Some numerical examples are also presented to show the behavior of bivariate schemes. (author)

  8. A new finite element formulation for CFD:VIII. The Galerkin/least-squares method for advective-diffusive equations

    Hughes, T.J.R.; Hulbert, G.M.; Franca, L.P.

    1988-10-01

    Galerkin/least-squares finite element methods are presented for advective-diffusive equations. Galerkin/least-squares represents a conceptual simplification of SUPG, and is in fact applicable to a wide variety of other problem types. A convergence analysis and error estimates are presented. (author) [pt

  9. Super-convergence of Discontinuous Galerkin Method Applied to the Navier-Stokes Equations

    Atkins, Harold L.

    2009-01-01

    The practical benefits of the hyper-accuracy properties of the discontinuous Galerkin method are examined. In particular, we demonstrate that some flow attributes exhibit super-convergence even in the absence of any post-processing technique. Theoretical analysis suggest that flow features that are dominated by global propagation speeds and decay or growth rates should be super-convergent. Several discrete forms of the discontinuous Galerkin method are applied to the simulation of unsteady viscous flow over a two-dimensional cylinder. Convergence of the period of the naturally occurring oscillation is examined and shown to converge at 2p+1, where p is the polynomial degree of the discontinuous Galerkin basis. Comparisons are made between the different discretizations and with theoretical analysis.

  10. A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation

    Yunying Zheng

    2011-01-01

    Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.

  11. Analysis of circular fibers with an arbitrary index profile by the Galerkin method.

    Guo, Shangping; Wu, Feng; Ikram, Khalid; Albin, Sacharia

    2004-01-01

    We propose a full-vectorial Galerkin method for the analysis of circular symmetric fibers with arbitrary index profiles. A set of orthogonal Laguerre-Gauss functions is used to calculate the dispersion relation and mode fields of TE and TM modes. Examples are given for both standard step-index fibers and Bragg fibers. For standard step-index fiber with low or high index contrast, the Galerkin method agrees well with the analytical results. In the case of the TE mode of a Bragg fiber it agrees well with the asymptotic results.

  12. A discontinuous Galerkin method for solving transient Maxwell equations with nonlinear material properties

    Sirenko, Kostyantyn; Asirim, Ozum Emre; Bagci, Hakan

    2014-01-01

    Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for 'linear' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.

  13. A discontinuous Galerkin method for solving transient Maxwell equations with nonlinear material properties

    Sirenko, Kostyantyn

    2014-07-01

    Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for \\'linear\\' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.

  14. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  15. Numerical study of the stress-strain state of reinforced plate on an elastic foundation by the Bubnov-Galerkin method

    Beskopylny, Alexey; Kadomtseva, Elena; Strelnikov, Grigory

    2017-10-01

    The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.

  16. An Alternate Approach to Optimal L 2 -Error Analysis of Semidiscrete Galerkin Methods for Linear Parabolic Problems with Nonsmooth Initial Data

    Goswami, Deepjyoti

    2011-09-01

    In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis is based on energy arguments without using parabolic duality. Further, it follows the spirit of the proof technique used for deriving optimal error estimates for finite element approximations to parabolic problems with smooth initial data and hence, it unifies both theories, that is, one for smooth initial data and other for nonsmooth data. Moreover, the proposed technique is also extended to a semidiscrete mixed method for linear parabolic problems. In both cases, optimal L2-error estimates are derived, when the initial data is in L2. A superconvergence phenomenon is also observed, which is then used to prove L∞-estimates for linear parabolic problems defined on two-dimensional spatial domain again with rough initial data. Copyright © Taylor & Francis Group, LLC.

  17. Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method

    Gbeminiyi Sobamowo

    2017-04-01

    Full Text Available The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathematical analyses were employed. It is noted that such solutions do not provide general exact solutions. Inevitably, comparatively simple, flexible yet accurate and practicable solutions are required for the analyses of these structures. Therefore, in this study, approximate analytical solutions are provided to the nonlinear equations arising in flow-induced vibration of pipes, micro-pipes and nanotubes using Galerkin-Newton-Harmonic Method (GNHM. The developed approximate analytical solutions are shown to be valid for both small and large amplitude oscillations. The accuracies and explicitness of these solutions were examined in limiting cases to establish the suitability of the method.

  18. Error Estimates for the Approximation of the Effective Hamiltonian

    Camilli, Fabio; Capuzzo Dolcetta, Italo; Gomes, Diogo A.

    2008-01-01

    We study approximation schemes for the cell problem arising in homogenization of Hamilton-Jacobi equations. We prove several error estimates concerning the rate of convergence of the approximation scheme to the effective Hamiltonian, both in the optimal control setting and as well as in the calculus of variations setting

  19. A non-linear optimal Discontinuous Petrov-Galerkin method for stabilising the solution of the transport equation

    Merton, S. R.; Smedley-Stevenson, R. P.; Pain, C. C.; Buchan, A. G.; Eaton, M. D.

    2009-01-01

    This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (S N ) and spherical harmonics (P N ) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)

  20. An accurate discontinuous Galerkin method for solving point-source Eikonal equation in 2-D heterogeneous anisotropic media

    Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.

    2018-03-01

    Accurate numerical computation of wave traveltimes in heterogeneous media is of major interest for a large range of applications in seismics, such as phase identification, data windowing, traveltime tomography and seismic imaging. A high level of precision is needed for traveltimes and their derivatives in applications which require quantities such as amplitude or take-off angle. Even more challenging is the anisotropic case, where the general Eikonal equation is a quartic in the derivatives of traveltimes. Despite their efficiency on Cartesian meshes, finite-difference solvers are inappropriate when dealing with unstructured meshes and irregular topographies. Moreover, reaching high orders of accuracy generally requires wide stencils and high additional computational load. To go beyond these limitations, we propose a discontinuous-finite-element-based strategy which has the following advantages: (1) the Hamiltonian formalism is general enough for handling the full anisotropic Eikonal equations; (2) the scheme is suitable for any desired high-order formulation or mixing of orders (p-adaptivity); (3) the solver is explicit whatever Hamiltonian is used (no need to find the roots of the quartic); (4) the use of unstructured meshes provides the flexibility for handling complex boundary geometries such as topographies (h-adaptivity) and radiation boundary conditions for mimicking an infinite medium. The point-source factorization principles are extended to this discontinuous Galerkin formulation. Extensive tests in smooth analytical media demonstrate the high accuracy of the method. Simulations in strongly heterogeneous media illustrate the solver robustness to realistic Earth-sciences-oriented applications.

  1. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation

    Lin Lin; Lu Jianfeng; Ying Lexing; Weinan, E

    2012-01-01

    Kohn–Sham density functional theory is one of the most widely used electronic structure theories. In the pseudopotential framework, uniform discretization of the Kohn–Sham Hamiltonian generally results in a large number of basis functions per atom in order to resolve the rapid oscillations of the Kohn–Sham orbitals around the nuclei. Previous attempts to reduce the number of basis functions per atom include the usage of atomic orbitals and similar objects, but the atomic orbitals generally require fine tuning in order to reach high accuracy. We present a novel discretization scheme that adaptively and systematically builds the rapid oscillations of the Kohn–Sham orbitals around the nuclei as well as environmental effects into the basis functions. The resulting basis functions are localized in the real space, and are discontinuous in the global domain. The continuous Kohn–Sham orbitals and the electron density are evaluated from the discontinuous basis functions using the discontinuous Galerkin (DG) framework. Our method is implemented in parallel and the current implementation is able to handle systems with at least thousands of atoms. Numerical examples indicate that our method can reach very high accuracy (less than 1 meV) with a very small number (4–40) of basis functions per atom.

  2. To Be or Not to Be Intrusive? The Solution of Parametric and Stochastic Equations---the “Plain Vanilla” Galerkin Case

    Giraldi, Loï c; Litvinenko, Alexander; Liu, Dishi; Matthies, Hermann G.; Nouy, Anthony

    2014-01-01

    In parametric equations---stochastic equations are a special case---one may want to approximate the solution such that it is easy to evaluate its dependence on the parameters. Interpolation in the parameters is an obvious possibility---in this context often labeled as a collocation method. In the frequent situation where one has a “solver” for a given fixed parameter value, this may be used “nonintrusively” as a black-box component to compute the solution at all the interpolation points independently of each other. By extension, all other methods, and especially simple Galerkin methods, which produce some kind of coupled system, are often classed as “intrusive.” We show how, for such “plain vanilla” Galerkin formulations, one may solve the coupled system in a nonintrusive way, and even the simplest form of block-solver has comparable efficiency. This opens at least two avenues for possible speed-up: first, to benefit from the coupling in the iteration by using more sophisticated block-solvers and, second, the possibility of nonintrusive successive rank-one updates as in the proper generalized decomposition (PGD).

  3. Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics

    Niemi, Antti H.

    2011-02-01

    We study the applicability of the discontinuous Petrov-Galerkin (DPG) variational framework for thin-body problems in structural mechanics. Our numerical approach is based on discontinuous piecewise polynomial finite element spaces for the trial functions and approximate, local computation of the corresponding \\'optimal\\' test functions. In the Timoshenko beam problem, the proposed method is shown to provide the best approximation in an energy-type norm which is equivalent to the L2-norm for all the unknowns, uniformly with respect to the thickness parameter. The same formulation remains valid also for the asymptotic Euler-Bernoulli solution. As another one-dimensional model problem we consider the modelling of the so called basic edge effect in shell deformations. In particular, we derive a special norm for the test space which leads to a robust method in terms of the shell thickness. Finally, we demonstrate how a posteriori error estimator arising directly from the discontinuous variational framework can be utilized to generate an optimal hp-mesh for resolving the boundary layer. © 2010 Elsevier B.V.

  4. An Entropy Stable h/p Non-Conforming Discontinuous Galerkin Method with the Summation-by-Parts Property

    Friedrich, Lucas

    2017-12-29

    This work presents an entropy stable discontinuous Galerkin (DG) spectral element approximation for systems of non-linear conservation laws with general geometric (h) and polynomial order (p) non-conforming rectangular meshes. The crux of the proofs presented is that the nodal DG method is constructed with the collocated Legendre-Gauss-Lobatto nodes. This choice ensures that the derivative/mass matrix pair is a summation-by-parts (SBP) operator such that entropy stability proofs from the continuous analysis are discretely mimicked. Special attention is given to the coupling between nonconforming elements as we demonstrate that the standard mortar approach for DG methods does not guarantee entropy stability for non-linear problems, which can lead to instabilities. As such, we describe a precise procedure and modify the mortar method to guarantee entropy stability for general non-linear hyperbolic systems on h/p non-conforming meshes. We verify the high-order accuracy and the entropy conservation/stability of fully non-conforming approximation with numerical examples.

  5. A second order discontinuous Galerkin method for advection on unstructured triangular meshes

    Geijselaers, Hubertus J.M.; Huetink, Han

    2003-01-01

    In this paper the advection of element data which are linearly distributed inside the elements is addressed. Across element boundaries the data are assumed discontinuous. The equations are discretized by the Discontinuous Galerkin method. For stability and accuracy at large step sizes (large values

  6. An H1(Ph)-Coercive Discontinuous Galerkin Formulation for the Poisson Problem : 1-D Analysis

    Van der Zee, K.G.; Van Brummelen, E.H.

    2005-01-01

    Discontinuous Galerkin (DG) methods are finite element techniques for the solution of partial differential equations. They allow shape functions which are discontinuous across inter-element edges. In principle, DG methods are ideally suited for hp-adaptivity, as they handle nonconforming meshes and

  7. Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation

    P.W. Hemker (Piet); M.H. van Raalte (Marc)

    2002-01-01

    textabstractIn this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the

  8. Fourier two-level analysis for discontinuous Galerkin discretization with linear elements

    P.W. Hemker (Piet); W. Hoffmann; M.H. van Raalte (Marc)

    2002-01-01

    textabstractIn this paper we study the convergence of a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence fordifferent block-relaxation strategies. In addition to an

  9. Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretisation

    P.W. Hemker (Piet); W. Hoffmann; M.H. van Raalte (Marc)

    2002-01-01

    textabstractIn this paper we study a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, andwe give a detailed analysis of the convergence for different block-relaxation strategies.We find that point-wise

  10. The Stochastic Galerkin Method for Darcy Flow Problem with Log-Normal Random

    Beres, Michal; Domesová, Simona

    2017-01-01

    Roč. 15, č. 2 (2017), s. 267-279 ISSN 1336-1376 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : Darcy flow * Gaussian random field * Karhunen-Loeve decomposition * polynomial chaos * Stochastic Galerkin method Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://advances.utc.sk/index.php/AEEE/article/view/2280

  11. Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations

    Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.

    We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the formulation is that if the system of nonconservative partial

  12. Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations

    Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.

    2008-01-01

    We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the weak formulation is that if the system of nonconservative partial

  13. hpGEM -- A software framework for discontinuous Galerkin finite element methods

    Pesch, L.; Bell, A.; Sollie, W.E.H.; Ambati, V.R.; Bokhove, Onno; van der Vegt, Jacobus J.W.

    2006-01-01

    hpGEM, a novel framework for the implementation of discontinuous Galerkin finite element methods, is described. We present structures and methods that are common for many (discontinuous) finite element methods and show how we have implemented the components as an object-oriented framework. This

  14. Error analysis of some Galerkin - least squares methods for the elasticity equations

    Franca, L.P.; Stenberg, R.

    1989-05-01

    We consider the recent technique of stabilizing mixed finite element methods by augmenting the Galerkin formulation with least squares terms calculated separately on each element. The error analysis is performed in a unified manner yielding improved results for some methods introduced earlier. In addition, a new formulation is introduced and analyzed [pt

  15. Scalable Nonlinear Compact Schemes

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  16. On the Preconditioning of a Newton-Krylov Solver for a High-Order reconstructed Discontinuous Galerkin Discretization of All-Speed Compressible Flow with Phase Change for Application in Laser-Based Additive Manufacturing

    Weston, Brian T. [Univ. of California, Davis, CA (United States)

    2017-05-17

    This dissertation focuses on the development of a fully-implicit, high-order compressible ow solver with phase change. The work is motivated by laser-induced phase change applications, particularly by the need to develop large-scale multi-physics simulations of the selective laser melting (SLM) process in metal additive manufacturing (3D printing). Simulations of the SLM process require precise tracking of multi-material solid-liquid-gas interfaces, due to laser-induced melting/ solidi cation and evaporation/condensation of metal powder in an ambient gas. These rapid density variations and phase change processes tightly couple the governing equations, requiring a fully compressible framework to robustly capture the rapid density variations of the ambient gas and the melting/evaporation of the metal powder. For non-isothermal phase change, the velocity is gradually suppressed through the mushy region by a variable viscosity and Darcy source term model. The governing equations are discretized up to 4th-order accuracy with our reconstructed Discontinuous Galerkin spatial discretization scheme and up to 5th-order accuracy with L-stable fully implicit time discretization schemes (BDF2 and ESDIRK3-5). The resulting set of non-linear equations is solved using a robust Newton-Krylov method, with the Jacobian-free version of the GMRES solver for linear iterations. Due to the sti nes associated with the acoustic waves and thermal and viscous/material strength e ects, preconditioning the GMRES solver is essential. A robust and scalable approximate block factorization preconditioner was developed, which utilizes the velocity-pressure (vP) and velocity-temperature (vT) Schur complement systems. This multigrid block reduction preconditioning technique converges for high CFL/Fourier numbers and exhibits excellent parallel and algorithmic scalability on classic benchmark problems in uid dynamics (lid-driven cavity ow and natural convection heat transfer) as well as for laser

  17. Mapping moveout approximations in TI media

    Stovas, Alexey; Alkhalifah, Tariq Ali

    2013-01-01

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  18. Mapping moveout approximations in TI media

    Stovas, Alexey

    2013-11-21

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  19. Modulated Pade approximant

    Ginsburg, C.A.

    1980-01-01

    In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)

  20. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.

    Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui

    2018-06-01

    Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.

  1. Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis

    Barton, Michael; Calo, Victor M.

    2016-01-01

    We introduce Gaussian quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. By definition, these spaces are of even degrees. The optimal quadrature rules we recently derived

  2. Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics

    Niemi, Antti H.; Bramwell, Jamie A.; Demkowicz, Leszek F.

    2011-01-01

    We study the applicability of the discontinuous Petrov-Galerkin (DPG) variational framework for thin-body problems in structural mechanics. Our numerical approach is based on discontinuous piecewise polynomial finite element spaces for the trial

  3. Discontinuous Petrov-Galerkin method based on the optimal test space norm for one-dimensional transport problems

    Niemi, Antti; Collier, Nathan; Calo, Victor M.

    2011-01-01

    We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can

  4. Sparse approximation with bases

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  5. PHYSICAL-CONSTRAINT-PRESERVING CENTRAL DISCONTINUOUS GALERKIN METHODS FOR SPECIAL RELATIVISTIC HYDRODYNAMICS WITH A GENERAL EQUATION OF STATE

    Wu, Kailiang [School of Mathematical Sciences, Peking University, Beijing 100871 (China); Tang, Huazhong, E-mail: wukl@pku.edu.cn, E-mail: hztang@math.pku.edu.cn [HEDPS, CAPT and LMAM, School of Mathematical Sciences, Peking University, Beijing 100871 (China)

    2017-01-01

    The ideal gas equation of state (EOS) with a constant adiabatic index is a poor approximation for most relativistic astrophysical flows, although it is commonly used in relativistic hydrodynamics (RHD). This paper develops high-order accurate, physical-constraints-preserving (PCP), central, discontinuous Galerkin (DG) methods for the one- and two-dimensional special RHD equations with a general EOS. It is built on our theoretical analysis of the admissible states for RHD and the PCP limiting procedure that enforce the admissibility of central DG solutions. The convexity, scaling invariance, orthogonal invariance, and Lax–Friedrichs splitting property of the admissible state set are first proved with the aid of its equivalent form. Then, the high-order central DG methods with the PCP limiting procedure and strong stability-preserving time discretization are proved, to preserve the positivity of the density, pressure, specific internal energy, and the bound of the fluid velocity, maintain high-order accuracy, and be L {sup 1}-stable. The accuracy, robustness, and effectiveness of the proposed methods are demonstrated by several 1D and 2D numerical examples involving large Lorentz factor, strong discontinuities, or low density/pressure, etc.

  6. Approximate symmetries of Hamiltonians

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  7. Approximating distributions from moments

    Pawula, R. F.

    1987-11-01

    A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.

  8. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  9. Approximation techniques for engineers

    Komzsik, Louis

    2006-01-01

    Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.

  10. Expectation Consistent Approximate Inference

    Opper, Manfred; Winther, Ole

    2005-01-01

    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...

  11. Dual and primal mixed Petrov-Galerkin finite element methods in heat transfer problems

    Loula, A.F.D.; Toledo, E.M.

    1988-12-01

    New mixed finite element formulations for the steady state heat transfer problem are presented with no limitation in the choice of conforming finite element spaces. Adding least square residual forms of the governing equations of the classical Galerkin formulation the original saddle point problem is transformed into a minimization problem. Stability analysis, error estimates and numerical results are presented, confirming the error estimates and the good performance of this new formulation. (author) [pt

  12. Optimal convergence of discontinuous Galerkin methods for continuum modeling of supply chain networks

    Zhang, Shuhua; Sun, Shuyu; Yang, Hongtao

    2014-01-01

    A discontinuous Galerkin method is considered to simulate materials flow in a supply chain network problem which is governed by a system of conservation laws. By means of a novel interpolation and superclose analysis technique, the optimal and superconvergence error estimates are established under two physically meaningful assumptions on the connectivity matrix. Numerical examples are presented to validate the theoretical results. © 2014 Elsevier Ltd. All rights reserved.

  13. Optimal convergence of discontinuous Galerkin methods for continuum modeling of supply chain networks

    Zhang, Shuhua

    2014-09-01

    A discontinuous Galerkin method is considered to simulate materials flow in a supply chain network problem which is governed by a system of conservation laws. By means of a novel interpolation and superclose analysis technique, the optimal and superconvergence error estimates are established under two physically meaningful assumptions on the connectivity matrix. Numerical examples are presented to validate the theoretical results. © 2014 Elsevier Ltd. All rights reserved.

  14. A weak Galerkin least-squares finite element method for div-curl systems

    Li, Jichun; Ye, Xiu; Zhang, Shangyou

    2018-06-01

    In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.

  15. Ordered cones and approximation

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  16. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  17. A Streamline-Upwind Petrov-Galerkin Finite Element Scheme for Non-Ionized Hypersonic Flows in Thermochemical Nonequilibrium

    Kirk, Benjamin S.; Bova, Stephen W.; Bond, Ryan B.

    2011-01-01

    Presentation topics include background and motivation; physical modeling including governing equations and thermochemistry; finite element formulation; results of inviscid thermal nonequilibrium chemically reacting flow and viscous thermal equilibrium chemical reacting flow; and near-term effort.

  18. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    Pelties, Christian

    2012-02-18

    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.

  19. An adaptive simplex cut-cell method for high-order discontinuous Galerkin discretizations of elliptic interface problems and conjugate heat transfer problems

    Sun, Huafei; Darmofal, David L.

    2014-12-01

    In this paper we propose a new high-order solution framework for interface problems on non-interface-conforming meshes. The framework consists of a discontinuous Galerkin (DG) discretization, a simplex cut-cell technique, and an output-based adaptive scheme. We first present a DG discretization with a dual-consistent output evaluation for elliptic interface problems on interface-conforming meshes, and then extend the method to handle multi-physics interface problems, in particular conjugate heat transfer (CHT) problems. The method is then applied to non-interface-conforming meshes using a cut-cell technique, where the interface definition is completely separate from the mesh generation process. No assumption is made on the interface shape (other than Lipschitz continuity). We then equip our strategy with an output-based adaptive scheme for an accurate output prediction. Through numerical examples, we demonstrate high-order convergence for elliptic interface problems and CHT problems with both smooth and non-smooth interface shapes.

  20. A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers

    Tavelli, Maurizio; Dumbser, Michael

    2017-07-01

    We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In

  1. Approximate and renormgroup symmetries

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  2. Approximate and renormgroup symmetries

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  3. Approximations of Fuzzy Systems

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  4. General Rytov approximation.

    Potvin, Guy

    2015-10-01

    We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.

  5. A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Photovoltaic bilayers: Asymptotic analysis and a 2D hdg finite element scheme

    Brinkman, Daniel

    2013-05-01

    We present and discuss a mathematical model for the operation of bilayer organic photovoltaic devices. Our model couples drift-diffusion-recombination equations for the charge carriers (specifically, electrons and holes) with a reaction-diffusion equation for the excitons/polaron pairs and Poisson\\'s equation for the self-consistent electrostatic potential. The material difference (i.e. the HOMO/LUMO gap) of the two organic substrates forming the bilayer device is included as a work-function potential. Firstly, we perform an asymptotic analysis of the scaled one-dimensional stationary state system: (i) with focus on the dynamics on the interface and (ii) with the goal of simplifying the bulk dynamics away from the interface. Secondly, we present a two-dimensional hybrid discontinuous Galerkin finite element numerical scheme which is very well suited to resolve: (i) the material changes, (ii) the resulting strong variation over the interface, and (iii) the necessary upwinding in the discretization of drift-diffusion equations. Finally, we compare the numerical results with the approximating asymptotics. © 2013 World Scientific Publishing Company.

  6. Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces

    Ito, Kazufumi

    1987-01-01

    The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.

  7. Milstein Approximation for Advection-Diffusion Equations Driven by Multiplicative Noncontinuous Martingale Noises

    Barth, Andrea; Lang, Annika

    2012-01-01

    In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler–Maruyama approximation. Finally, simulations complete the paper.

  8. Geometric approximation algorithms

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  9. INTOR cost approximation

    Knobloch, A.F.

    1980-01-01

    A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de

  10. Finite approximations in fluid mechanics

    Hirschel, E.H.

    1986-01-01

    This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems

  11. Development and application of a third order scheme of finite differences centered in mesh; Desarrollo y aplicacion de un esquema de tercer orden de diferencias finitas centradas en malla

    Delfin L, A.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: adl@nuclear.inin.mx

    2003-07-01

    In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)

  12. Approximation and Computation

    Gautschi, Walter; Rassias, Themistocles M

    2011-01-01

    Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg

  13. A high-order solver for aerodynamic flow simulations and comparison of different numerical schemes

    Mikhaylov, Sergey; Morozov, Alexander; Podaruev, Vladimir; Troshin, Alexey

    2017-11-01

    An implementation of high order of accuracy Discontinuous Galerkin method is presented. Reconstruction is done for the conservative variables. Gradients are calculated using the BR2 method. Coordinate transformations are done by serendipity elements. In computations with schemes of order higher than 2, curvature of the mesh lines is taken into account. A comparison with finite volume methods is performed, including WENO method with linear weights and single quadrature point on a cell side. The results of the following classical tests are presented: subsonic flow around a circular cylinder in an ideal gas, convection of two-dimensional isentropic vortex, and decay of the Taylor-Green vortex.

  14. Approximate kernel competitive learning.

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. An approximation theory for nonlinear partial differential equations with applications to identification and control

    Banks, H. T.; Kunisch, K.

    1982-01-01

    Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.

  16. On Covering Approximation Subspaces

    Xun Ge

    2009-06-01

    Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

  17. Hardness of approximation for strip packing

    Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin

    2017-01-01

    Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...

  18. On Convex Quadratic Approximation

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  19. Prestack wavefield approximations

    Alkhalifah, Tariq

    2013-01-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  20. Approximating The DCM

    Madsen, Rasmus Elsborg

    2005-01-01

    The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...

  1. Approximation by Cylinder Surfaces

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  2. Prestack wavefield approximations

    Alkhalifah, Tariq

    2013-09-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  3. The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.

    Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.

    2009-04-01

    Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D

  4. Finite Boltzmann schemes

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  5. An improved saddlepoint approximation.

    Gillespie, Colin S; Renshaw, Eric

    2007-08-01

    Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.

  6. Prestack traveltime approximations

    Alkhalifah, Tariq Ali

    2011-01-01

    Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.

  7. Topology, calculus and approximation

    Komornik, Vilmos

    2017-01-01

    Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...

  8. Discontinuous Galerkin time-domain analysis of power/ground plate pairs with wave port excitation

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2018-01-01

    In this work, a discontinuous Galerkin time-domain method is developed to analyze the power/ground plate pairs taking into account arbitrarily shaped antipads. To implement proper source excitations over the antipads, the magnetic surface current expanded by the electric eigen-modes supported by the corresponding antipad is employed as the excitation. For irregularly shaped antipads, the eigen-modes are obtained by numerical approach. Accordingly, the methodology for the S-parameter extraction is derived based on the orthogonal properties of the different modes. Based on the approach, the transformation between different modes can be readily evaluated.

  9. Discontinuous Galerkin time-domain analysis of power/ground plate pairs with wave port excitation

    Li, Ping

    2018-04-06

    In this work, a discontinuous Galerkin time-domain method is developed to analyze the power/ground plate pairs taking into account arbitrarily shaped antipads. To implement proper source excitations over the antipads, the magnetic surface current expanded by the electric eigen-modes supported by the corresponding antipad is employed as the excitation. For irregularly shaped antipads, the eigen-modes are obtained by numerical approach. Accordingly, the methodology for the S-parameter extraction is derived based on the orthogonal properties of the different modes. Based on the approach, the transformation between different modes can be readily evaluated.

  10. And still, a new beginning: the Galerkin least-squares gradient method

    Franca, L.P.; Carmo, E.G.D. do

    1988-08-01

    A finite element method is proposed to solve a scalar singular diffusion problem. The method is constructed by adding to the standard Galerkin a mesh-dependent term obtained by taking the gradient of the Euler-lagrange equation and multiplying it by its least-squares. For the one-dimensional homogeneous problem the method is designed to develop nodal exact solution. An error estimate shows that the method converges optimaly for any value of the singular parameter. Numerical results demonstrate the good stability and accuracy properties of the method. (author) [pt

  11. Steady and transient analyses of natural convection in a horizontal porous annulus with Galerkin method

    Rao, Y.F.; Fukuda, K.; Hasegawa, S.

    1986-01-01

    Steady and transient analytical investigation with the Galerkin method has been performed on natural convection in a horizontal porous annulus heated from the inner surface. Three families of convergent solutions, appearing one after another with increasing RaDa numbers, were obtained corresponding to different initial conditions. Despite the fact that the flow structures of two branching solutions are quite different, there exists a critical RaDa number at which their overall heat transfer rates have the same value. The bifurcation point was determined numerically, which coincided very well with that from experimental observation. The solutions in which higher wavenumber modes are dominant agree better with experimental data of overall heat transfer

  12. A high-order Petrov-Galerkin method for the Boltzmann transport equation

    Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov-Galerkin

  13. Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem

    Yoo, Jaechil [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.

  14. Approximate Bayesian recursive estimation

    Kárný, Miroslav

    2014-01-01

    Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf

  15. Approximating Preemptive Stochastic Scheduling

    Megow Nicole; Vredeveld Tjark

    2009-01-01

    We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...

  16. Optimization and approximation

    Pedregal, Pablo

    2017-01-01

    This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

  17. Homogenization scheme for acoustic metamaterials

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  18. Approximate solutions of the Wei Hua oscillator using the Pekeris ...

    The approximate analytical bound-state solutions of the Schrödinger equation for the. Wei Hua oscillator are carried out in N-dimensional space by taking Pekeris approximation scheme to the orbital centrifugal term. Solutions of the corresponding hyper-radial equation are obtained using the conventional Nikiforov–Uvarov ...

  19. Vector domain decomposition schemes for parabolic equations

    Vabishchevich, P. N.

    2017-09-01

    A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

  20. Cyclic approximation to stasis

    Stewart D. Johnson

    2009-06-01

    Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.

  1. On the WKBJ approximation

    El Sawi, M.

    1983-07-01

    A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)

  2. The relaxation time approximation

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  3. Polynomial approximation on polytopes

    Totik, Vilmos

    2014-01-01

    Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.

  4. Finite elements and approximation

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  5. Regionally Implicit Discontinuous Galerkin Methods for Solving the Relativistic Vlasov-Maxwell System Submitted to Iowa State University

    Guthrey, Pierson Tyler

    ) argument requires. The maximum stable time-step scales inversely with the highest degree in the DG polynomial approximation space and becomes progressively smaller with each added spatial dimension. In this work, we overcome this difficulty by introducing a novel time-stepping strategy: the regionally-implicit discontinuous Galerkin (RIDG) method. The RIDG is method is based on an extension of the Lax-Wendroff DG (LxW-DG) method, which previously had been shown to be equivalent (for linear constant coefficient problems) to a predictor-corrector approach, where the prediction is computed by a space-time DG method (STDG). The corrector is an explicit method that uses the space-time reconstructed solution from the predictor step. In this work, we modify the predictor to include not just local information, but also neighboring information. With this modification, we show that the stability is greatly enhanced; we show that we can remove the polynomial degree dependence of the maximum time-step and show vastly improved time-steps in multiple spatial dimensions. Upon the development of the general RIDG method, we apply it to the non-relativistic 1D1V Vlasov-Poisson equations and the relativistic 1D2V Vlasov-Maxwell equations. For each we validate the high-order method on several test cases. In the final test case, we demonstrate the ability of the method to simulate the acceleration of electrons to relativistic speeds in a simplified test case.

  6. Resummation of perturbative QCD by pade approximants

    Gardi, E.

    1997-01-01

    In this lecture I present some of the new developments concerning the use of Pade Approximants (PA's) for resuming perturbative series in QCD. It is shown that PA's tend to reduce the renormalization scale and scheme dependence as compared to truncated series. In particular it is proven that in the limit where the β function is dominated by the 1-loop contribution, there is an exact symmetry that guarantees invariance of diagonal PA's under changing the renormalization scale. In addition it is shown that in the large β 0 approximation diagonal PA's can be interpreted as a systematic method for approximating the flow of momentum in Feynman diagrams. This corresponds to a new multiple scale generalization of the Brodsky-Lepage-Mackenzie (BLM) method to higher orders. I illustrate the method with the Bjorken sum rule and the vacuum polarization function. (author)

  7. Approximate Bayesian computation.

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  8. h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    Botti, L.; Colombo, A.; Bassi, F.

    2017-10-01

    In this work we exploit agglomeration based h-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.

  9. Discontinuous Galerkin methods and a posteriori error analysis for heterogenous diffusion problems

    Stephansen, A.F.

    2007-12-01

    In this thesis we analyse a discontinuous Galerkin (DG) method and two computable a posteriori error estimators for the linear and stationary advection-diffusion-reaction equation with heterogeneous diffusion. The DG method considered, the SWIP method, is a variation of the Symmetric Interior Penalty Galerkin method. The difference is that the SWIP method uses weighted averages with weights that depend on the diffusion. The a priori analysis shows optimal convergence with respect to mesh-size and robustness with respect to heterogeneous diffusion, which is confirmed by numerical tests. Both a posteriori error estimators are of the residual type and control the energy (semi-)norm of the error. Local lower bounds are obtained showing that almost all indicators are independent of heterogeneities. The exception is for the non-conforming part of the error, which has been evaluated using the Oswald interpolator. The second error estimator is sharper in its estimate with respect to the first one, but it is slightly more costly. This estimator is based on the construction of an H(div)-conforming Raviart-Thomas-Nedelec flux using the conservativeness of DG methods. Numerical results show that both estimators can be used for mesh-adaptation. (author)

  10. Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations

    Bonnasse-Gahot, Marie; Calandra, Henri; Diaz, Julien; Lanteri, Stéphane

    2018-04-01

    Discontinuous Galerkin (DG) methods are nowadays actively studied and increasingly exploited for the simulation of large-scale time-domain (i.e. unsteady) seismic wave propagation problems. Although theoretically applicable to frequency-domain problems as well, their use in this context has been hampered by the potentially large number of coupled unknowns they incur, especially in the 3-D case, as compared to classical continuous finite element methods. In this paper, we address this issue in the framework of the so-called hybridizable discontinuous Galerkin (HDG) formulations. As a first step, we study an HDG method for the resolution of the frequency-domain elastic wave equations in the 2-D case. We describe the weak formulation of the method and provide some implementation details. The proposed HDG method is assessed numerically including a comparison with a classical upwind flux-based DG method, showing better overall computational efficiency as a result of the drastic reduction of the number of globally coupled unknowns in the resulting discrete HDG system.

  11. A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D

    Zitelli, J.; Muga, Ignacio; Demkowicz, Leszek F.; Gopalakrishnan, Jayadeep; Pardo, David; Calo, Victor M.

    2011-01-01

    The phase error, or the pollution effect in the finite element solution of wave propagation problems, is a well known phenomenon that must be confronted when solving problems in the high-frequency range. This paper presents a new method with no phase errors for one-dimensional (1D) time-harmonic wave propagation problems using new ideas that hold promise for the multidimensional case. The method is constructed within the framework of the discontinuous Petrov-Galerkin (DPG) method with optimal test functions. We have previously shown that such methods select solutions that are the best possible approximations in an energy norm dual to any selected test space norm. In this paper, we advance by asking what is the optimal test space norm that achieves error reduction in a given energy norm. This is answered in the specific case of the Helmholtz equation with L2-norm as the energy norm. We obtain uniform stability with respect to the wave number. We illustrate the method with a number of 1D numerical experiments, using discontinuous piecewise polynomial hp spaces for the trial space and its corresponding optimal test functions computed approximately and locally. A 1D theoretical stability analysis is also developed. © 2010 Elsevier Inc.

  12. A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D

    Zitelli, J.

    2011-04-01

    The phase error, or the pollution effect in the finite element solution of wave propagation problems, is a well known phenomenon that must be confronted when solving problems in the high-frequency range. This paper presents a new method with no phase errors for one-dimensional (1D) time-harmonic wave propagation problems using new ideas that hold promise for the multidimensional case. The method is constructed within the framework of the discontinuous Petrov-Galerkin (DPG) method with optimal test functions. We have previously shown that such methods select solutions that are the best possible approximations in an energy norm dual to any selected test space norm. In this paper, we advance by asking what is the optimal test space norm that achieves error reduction in a given energy norm. This is answered in the specific case of the Helmholtz equation with L2-norm as the energy norm. We obtain uniform stability with respect to the wave number. We illustrate the method with a number of 1D numerical experiments, using discontinuous piecewise polynomial hp spaces for the trial space and its corresponding optimal test functions computed approximately and locally. A 1D theoretical stability analysis is also developed. © 2010 Elsevier Inc.

  13. Approximation of bivariate copulas by patched bivariate Fréchet copulas

    Zheng, Yanting

    2011-03-01

    Bivariate Fréchet (BF) copulas characterize dependence as a mixture of three simple structures: comonotonicity, independence and countermonotonicity. They are easily interpretable but have limitations when used as approximations to general dependence structures. To improve the approximation property of the BF copulas and keep the advantage of easy interpretation, we develop a new copula approximation scheme by using BF copulas locally and patching the local pieces together. Error bounds and a probabilistic interpretation of this approximation scheme are developed. The new approximation scheme is compared with several existing copula approximations, including shuffle of min, checkmin, checkerboard and Bernstein approximations and exhibits better performance, especially in characterizing the local dependence. The utility of the new approximation scheme in insurance and finance is illustrated in the computation of the rainbow option prices and stop-loss premiums. © 2010 Elsevier B.V.

  14. Approximation of bivariate copulas by patched bivariate Fréchet copulas

    Zheng, Yanting; Yang, Jingping; Huang, Jianhua Z.

    2011-01-01

    Bivariate Fréchet (BF) copulas characterize dependence as a mixture of three simple structures: comonotonicity, independence and countermonotonicity. They are easily interpretable but have limitations when used as approximations to general dependence structures. To improve the approximation property of the BF copulas and keep the advantage of easy interpretation, we develop a new copula approximation scheme by using BF copulas locally and patching the local pieces together. Error bounds and a probabilistic interpretation of this approximation scheme are developed. The new approximation scheme is compared with several existing copula approximations, including shuffle of min, checkmin, checkerboard and Bernstein approximations and exhibits better performance, especially in characterizing the local dependence. The utility of the new approximation scheme in insurance and finance is illustrated in the computation of the rainbow option prices and stop-loss premiums. © 2010 Elsevier B.V.

  15. The random phase approximation

    Schuck, P.

    1985-01-01

    RPA is the adequate theory to describe vibrations of the nucleus of very small amplitudes. These vibrations can either be forced by an external electromagnetic field or can be eigenmodes of the nucleus. In a one dimensional analogue the potential corresponding to such eigenmodes of very small amplitude should be rather stiff otherwise the motion risks to be a large amplitude one and to enter a region where the approximation is not valid. This means that nuclei which are supposedly well described by RPA must have a very stable groundstate configuration (must e.g. be very stiff against deformation). This is usually the case for doubly magic nuclei or close to magic nuclei which are in the middle of proton and neutron shells which develop a very stable groundstate deformation; we take the deformation as an example but there are many other possible degrees of freedom as, for example, compression modes, isovector degrees of freedom, spin degrees of freedom, and many more

  16. The quasilocalized charge approximation

    Kalman, G J; Golden, K I; Donko, Z; Hartmann, P

    2005-01-01

    The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two

  17. Scheme Program Documentation Tools

    Nørmark, Kurt

    2004-01-01

    are separate and intended for different documentation purposes they are related to each other in several ways. Both tools are based on XML languages for tool setup and for documentation authoring. In addition, both tools rely on the LAML framework which---in a systematic way---makes an XML language available...... as named functions in Scheme. Finally, the Scheme Elucidator is able to integrate SchemeDoc resources as part of an internal documentation resource....

  18. HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part I. Multilevel Analysis

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2011-01-01

    The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space-(time) discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the

  19. Topology Optimization of Nano-Mechanical Cantilever Sensors Using a C0 Discontinuous Galerkin-Type Approach

    Marhadi, Kun Saptohartyadi; Evgrafov, Anton; Sørensen, Mads Peter

    2011-01-01

    We demonstrate the use of a C0 discontinuous Galerkin method for topology optimization of nano-mechanical sensors, namely temperature, surface stress, and mass sensors. The sensors are modeled using classical thin plate theory, which requires C1 basis functions in the standard finite element method...

  20. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Analysis of the discontinuous Petrov-Galerkin method with optimal test functions for the Reissner-Mindlin plate bending model

    Calo, Victor M.; Collier, Nathan; Niemi, Antti H.

    2014-01-01

    We analyze the discontinuous Petrov-Galerkin (DPG) method with optimal test functions when applied to solve the Reissner-Mindlin model of plate bending. We prove that the hybrid variational formulation underlying the DPG method is well-posed (stable

  2. Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data

    Hall, Eric Joseph

    2016-12-08

    We derive computable error estimates for finite element approximations of linear elliptic partial differential equations with rough stochastic coefficients. In this setting, the exact solutions contain high frequency content that standard a posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations. Derived using easily validated assumptions, these novel estimates can be computed at a relatively low cost and have applications to subsurface flow problems in geophysics where the conductivities are assumed to have lognormal distributions with low regularity. Our theory is supported by numerical experiments on test problems in one and two dimensions.

  3. Approximate quantum Markov chains

    Sutter, David

    2018-01-01

    This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...

  4. Prestack traveltime approximations

    Alkhalifah, Tariq Ali

    2012-05-01

    Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.

  5. On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation

    Vermeire, B. C.; Vincent, P. E.

    2016-12-01

    We begin by investigating the stability, order of accuracy, and dispersion and dissipation characteristics of the extended range of energy stable flux reconstruction (E-ESFR) schemes in the context of implicit large eddy simulation (ILES). We proceed to demonstrate that subsets of the E-ESFR schemes are more stable than collocation nodal discontinuous Galerkin methods recovered with the flux reconstruction approach (FRDG) for marginally-resolved ILES simulations of the Taylor-Green vortex. These schemes are shown to have reduced dissipation and dispersion errors relative to FRDG schemes of the same polynomial degree and, simultaneously, have increased Courant-Friedrichs-Lewy (CFL) limits. Finally, we simulate turbulent flow over an SD7003 aerofoil using two of the most stable E-ESFR schemes identified by the aforementioned Taylor-Green vortex experiments. Results demonstrate that subsets of E-ESFR schemes appear more stable than the commonly used FRDG method, have increased CFL limits, and are suitable for ILES of complex turbulent flows on unstructured grids.

  6. Penyelesaian Numerik Persamaan Advection Dengan Radial Point Interpolation Method dan Integrasi Waktu Dengan Discontinuous Galerkin Method

    Kresno Wikan Sadono

    2016-12-01

    Full Text Available Persamaan differensial banyak digunakan untuk menggambarkan berbagai fenomena dalam bidang sains dan rekayasa. Berbagai masalah komplek dalam kehidupan sehari-hari dapat dimodelkan dengan persamaan differensial dan diselesaikan dengan metode numerik. Salah satu metode numerik, yaitu metode meshfree atau meshless berkembang akhir-akhir ini, tanpa proses pembuatan elemen pada domain. Penelitian ini menggabungkan metode meshless yaitu radial basis point interpolation method (RPIM dengan integrasi waktu discontinuous Galerkin method (DGM, metode ini disebut RPIM-DGM. Metode RPIM-DGM diaplikasikan pada advection equation pada satu dimensi. RPIM menggunakan basis function multiquadratic function (MQ dan integrasi waktu diturunkan untuk linear-DGM maupun quadratic-DGM. Hasil simulasi menunjukkan, metode ini mendekati hasil analitis dengan baik. Hasil simulasi numerik dengan RPIM DGM menunjukkan semakin banyak node dan semakin kecil time increment menunjukkan hasil numerik semakin akurat. Hasil lain menunjukkan, integrasi numerik dengan quadratic-DGM untuk suatu time increment dan jumlah node tertentu semakin meningkatkan akurasi dibandingkan dengan linear-DGM.  [Title: Numerical solution of advection equation with radial basis interpolation method and discontinuous Galerkin method for time integration] Differential equation is widely used to describe a variety of phenomena in science and engineering. A variety of complex issues in everyday life can be modeled with differential equations and solved by numerical method. One of the numerical methods, the method meshfree or meshless developing lately, without making use of the elements in the domain. The research combines methods meshless, i.e. radial basis point interpolation method with discontinuous Galerkin method as time integration method. This method is called RPIM-DGM. The RPIM-DGM applied to one dimension advection equation. The RPIM using basis function multiquadratic function and time

  7. Multiresolution signal decomposition schemes

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  8. Adaptive protection scheme

    R. Sitharthan

    2016-09-01

    Full Text Available This paper aims at modelling an electronically coupled distributed energy resource with an adaptive protection scheme. The electronically coupled distributed energy resource is a microgrid framework formed by coupling the renewable energy source electronically. Further, the proposed adaptive protection scheme provides a suitable protection to the microgrid for various fault conditions irrespective of the operating mode of the microgrid: namely, grid connected mode and islanded mode. The outstanding aspect of the developed adaptive protection scheme is that it monitors the microgrid and instantly updates relay fault current according to the variations that occur in the system. The proposed adaptive protection scheme also employs auto reclosures, through which the proposed adaptive protection scheme recovers faster from the fault and thereby increases the consistency of the microgrid. The effectiveness of the proposed adaptive protection is studied through the time domain simulations carried out in the PSCAD⧹EMTDC software environment.

  9. Self-similar factor approximants

    Gluzman, S.; Yukalov, V.I.; Sornette, D.

    2003-01-01

    The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties

  10. Propel: A Discontinuous-Galerkin Finite Element Code for Solving the Reacting Navier-Stokes Equations

    Johnson, Ryan; Kercher, Andrew; Schwer, Douglas; Corrigan, Andrew; Kailasanath, Kazhikathra

    2017-11-01

    This presentation focuses on the development of a Discontinuous Galerkin (DG) method for application to chemically reacting flows. The in-house code, called Propel, was developed by the Laboratory of Computational Physics and Fluid Dynamics at the Naval Research Laboratory. It was designed specifically for developing advanced multi-dimensional algorithms to run efficiently on new and innovative architectures such as GPUs. For these results, Propel solves for convection and diffusion simultaneously with detailed transport and thermodynamics. Chemistry is currently solved in a time-split approach using Strang-splitting with finite element DG time integration of chemical source terms. Results presented here show canonical unsteady reacting flow cases, such as co-flow and splitter plate, and we report performance for higher order DG on CPU and GPUs.

  11. The streamline upwind Petrov-Galerkin stabilising method for the numerical solution of highly advective problems

    Carlos Humberto Galeano Urueña

    2009-05-01

    Full Text Available This article describes the streamline upwind Petrov-Galerkin (SUPG method as being a stabilisation technique for resolving the diffusion-advection-reaction equation by finite elements. The first part of this article has a short analysis of the importance of this type of differential equation in modelling physical phenomena in multiple fields. A one-dimensional description of the SUPG me- thod is then given to extend this basis to two and three dimensions. The outcome of a strongly advective and a high numerical complexity experiment is presented. The results show how the version of the implemented SUPG technique allowed stabilised approaches in space, even for high Peclet numbers. Additional graphs of the numerical experiments presented here can be downloaded from www.gnum.unal.edu.co.

  12. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    Wang, Yi

    2017-01-25

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

  13. A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations

    Liu, Hongwei; Xu, Kun

    2007-01-01

    This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method

  14. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  15. A class of discontinuous Petrov–Galerkin methods. Part III: Adaptivity

    Demkowicz, Leszek

    2012-04-01

    We continue our theoretical and numerical study on the Discontinuous Petrov-Galerkin method with optimal test functions in context of 1D and 2D convection-dominated diffusion problems and hp-adaptivity. With a proper choice of the norm for the test space, we prove robustness (uniform stability with respect to the diffusion parameter) and mesh-independence of the energy norm of the FE error for the 1D problem. With hp-adaptivity and a proper scaling of the norms for the test functions, we establish new limits for solving convection-dominated diffusion problems numerically: ε=10 -11 for 1D and ε=10 -7 for 2D problems. The adaptive process is fully automatic and starts with a mesh consisting of few elements only. © 2011 IMACS. Published by Elsevier B.V. All rights reserved.

  16. Application of stochastic Galerkin FEM to the complete electrode model of electrical impedance tomography

    Leinonen, Matti; Hakula, Harri; Hyvönen, Nuutti

    2014-01-01

    The aim of electrical impedance tomography is to determine the internal conductivity distribution of some physical body from boundary measurements of current and voltage. The most accurate forward model for impedance tomography is the complete electrode model, which consists of the conductivity equation coupled with boundary conditions that take into account the electrode shapes and the contact resistances at the corresponding interfaces. If the reconstruction task of impedance tomography is recast as a Bayesian inference problem, it is essential to be able to solve the complete electrode model forward problem with the conductivity and the contact resistances treated as a random field and random variables, respectively. In this work, we apply a stochastic Galerkin finite element method to the ensuing elliptic stochastic boundary value problem and compare the results with Monte Carlo simulations

  17. Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow

    Yingyun Sun

    2016-03-01

    Full Text Available An intrusive spectral method of probabilistic load flow (PLF is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.

  18. Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils

    Frére, A.; Sørensen, Niels N.; Hillewaert, K.

    2016-01-01

    This paper aims at evaluating the potential of the Discontinuous Galerkin (DG) methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is however not used in the wind energy...... sector yet. The present study aims at evaluating this methodology on an application which is relevant for that sector and focuses on blade section aerodynamics characterization. To be pertinent for large wind turbines, the simulations would need to be at low Mach numbers (M ≤ 0.3) where compressible...... at low and high Reynolds numbers and compares the results to state-of-the-art models used in industry, namely the panel method (XFOIL with boundary layer modeling) and Reynolds Averaged Navier-Stokes (RANS). At low Reynolds number (Re = 6 × 104), involving laminar boundary layer separation and transition...

  19. Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries

    Field, Scott E; Hesthaven, Jan S; Lau, Stephen R

    2009-01-01

    Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) method for solving the distributionally forced 1+1 wave equations which arise when modeling EMRBs via the perturbation theory of Schwarzschild black holes. Despite the presence of jump discontinuities in the relevant polar and axial gravitational 'master functions', our dG method achieves global spectral accuracy, provided that we know the instantaneous position, velocity and acceleration of the small particle. Here these variables are known, since we assume that the particle follows a timelike geodesic of the Schwarzschild geometry. We document the results of several numerical experiments testing our method, and in our concluding section discuss the possible inclusion of gravitational self-force effects.

  20. Discontinuous Galerkin discretization and hp-refinement for the resolution of the neutron transport equation

    Fournier, Damien; Le-Tellier, Romain; Herbin, Raphaele

    2013-01-01

    This paper presents an hp-refinement method for a first order scalar transport reaction equation discretized by a discontinuous Galerkin method. First, the theoretical rates of convergence of h- and p-refinement are recalled and numerically tested. Then, in order to design some meshes, we propose two different estimators of the local error on the spatial domain. These quantities are analyzed and compared depending on the regularity of the solution so as to find the best way to lead the refinement process and the best strategy to choose between h- and p-refinement. Finally, the different possible refinement strategies are compared first on analytical examples and then on realistic applications for neutron transport in a nuclear reactor core. (authors)

  1. Lagrange–Galerkin methods for the incompressible Navier-Stokes equations: a review

    Bermejo Rodolfo

    2016-09-01

    Full Text Available We review in this paper the development of Lagrange-Galerkin (LG methods to integrate the incompressible Navier-Stokes equations (NSEs for engineering applications. These methods were introduced in the computational fluid dynamics community in the early eighties of the past century, and at that time they were considered good methods for both their theoretical stability properties and the way of dealing with the nonlinear terms of the equations; however, the numerical experience gained with the application of LG methods to different problems has identified drawbacks of them, such as the calculation of specific integrals that arise in their formulation and the calculation of the ow trajectories, which somehow have hampered the applicability of LG methods. In this paper, we focus on these issues and summarize the convergence results of LG methods; furthermore, we shall briefly introduce a new stabilized LG method suitable for high Reynolds numbers.

  2. Divergence-Conforming Discontinuous Galerkin Methods and $C^0$ Interior Penalty Methods

    Kanschat, Guido

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics. In this paper, we show that recently developed divergence-conforming methods for the Stokes problem have discrete stream functions. These stream functions in turn solve a continuous interior penalty problem for biharmonic equations. The equivalence is established for the most common methods in two dimensions based on interior penalty terms. Then, extensions of the concept to discontinuous Galerkin methods defined through lifting operators, for different weak formulations of the Stokes problem, and to three dimensions are discussed. Application of the equivalence result yields an optimal error estimate for the Stokes velocity without involving the pressure. Conversely, combined with a recent multigrid method for Stokes flow, we obtain a simple and uniform preconditioner for harmonic problems with simply supported and clamped boundary.

  3. hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes

    Cangiani, Andrea; Georgoulis, Emmanuil H; Houston, Paul

    2017-01-01

    Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and elemen...

  4. Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers

    Auteri, F; Quartapelle, L

    2003-01-01

    A new Galerkin-Legendre direct spectral solver for the Neumann problem associated with Laplace and Helmholtz operators in rectangular domains is presented. The algorithm differs from other Neumann spectral solvers by the high sparsity of the matrices, exploited in conjunction with the direct product structure of the problem. The homogeneous boundary condition is satisfied exactly by expanding the unknown variable into a polynomial basis of functions which are built upon the Legendre polynomials and have a zero slope at the interval extremes. A double diagonalization process is employed pivoting around the eigenstructure of the pentadiagonal mass matrices in both directions, instead of the full stiffness matrices encountered in the classical variational formulation of the problem with a weak natural imposition of the derivative boundary condition. Nonhomogeneous Neumann data are accounted for by means of a lifting. Numerical results are given to illustrate the performance of the proposed spectral elliptic solv...

  5. Imposition of Dirichlet Boundary Conditions in Element Free Galerkin Method through an Object-Oriented Implementation

    Samira Hosseini

    Full Text Available Abstract One of the main drawbacks of Element Free Galerkin (EFG method is its dependence on moving least square shape functions which don’t satisfy the Kronecker Delta property, so in this method it’s not possible to apply Dirichlet boundary conditions directly. The aim of the present paper is to discuss different aspects of three widely used methods of applying Dirichlet boundary conditions in EFG method, called Lagrange multipliers, penalty method, and coupling with finite element method. Numerical simulations are presented to compare the results of these methods form the perspective of accuracy, convergence and computational expense. These methods have been implemented in an object oriented programing environment, called INSANE, and the results are presented and compared with the analytical solutions.

  6. Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness

    Mengaldo, Gianmarco; De Grazia, Daniele; Moura, Rodrigo C.; Sherwin, Spencer J.

    2018-04-01

    This study focuses on the dispersion and diffusion characteristics of high-order energy-stable flux reconstruction (ESFR) schemes via the spatial eigensolution analysis framework proposed in [1]. The analysis is performed for five ESFR schemes, where the parameter 'c' dictating the properties of the specific scheme recovered is chosen such that it spans the entire class of ESFR methods, also referred to as VCJH schemes, proposed in [2]. In particular, we used five values of 'c', two that correspond to its lower and upper bounds and the others that identify three schemes that are linked to common high-order methods, namely the ESFR recovering two versions of discontinuous Galerkin methods and one recovering the spectral difference scheme. The performance of each scheme is assessed when using different numerical intercell fluxes (e.g. different levels of upwinding), ranging from "under-" to "over-upwinding". In contrast to the more common temporal analysis, the spatial eigensolution analysis framework adopted here allows one to grasp crucial insights into the diffusion and dispersion properties of FR schemes for problems involving non-periodic boundary conditions, typically found in open-flow problems, including turbulence, unsteady aerodynamics and aeroacoustics.

  7. The Hartree-Fock seniority approximation

    Gomez, J.M.G.; Prieto, C.

    1986-01-01

    A new self-consistent method is used to take into account the mean-field and the pairing correlations in nuclei at the same time. We call it the Hartree-Fock seniority approximation, because the long-range and short-range correlations are treated in the frameworks of Hartree-Fock theory and the seniority scheme. The method is developed in detail for a minimum-seniority variational wave function in the coordinate representation for an effective interaction of the Skyrme type. An advantage of the present approach over the Hartree-Fock-Bogoliubov theory is the exact conservation of angular momentum and particle number. Furthermore, the computational effort required in the Hartree-Fock seniority approximation is similar to that ofthe pure Hartree-Fock picture. Some numerical calculations for Ca isotopes are presented. (orig.)

  8. ON THE APPLICATION OF THE METHOD OF B.G. GALERKIN TO LINEAR PROBLEMS ARISING FROM DYNAMICAL SYSTEMS WITH DISTRIBUTED PARAMETERS

    Gurevich, S. G.

    1955-07-01

    Galerkin's method is applied to the solution of a linear partial differential equation of arbitrary order under specified initial and boundary conditions. An example is carried through in complete detail to illustrate the method. (auth)

  9. Threshold Signature Schemes Application

    Anastasiya Victorovna Beresneva

    2015-10-01

    Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.

  10. International Conference Approximation Theory XV

    Schumaker, Larry

    2017-01-01

    These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...

  11. Monotone difference schemes for weakly coupled elliptic and parabolic systems

    P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)

    2017-01-01

    textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is

  12. An accurate scheme by block method for third order ordinary ...

    problems of ordinary differential equations is presented in this paper. The approach of collocation approximation is adopted in the derivation of the scheme and then the scheme is applied as simultaneous integrator to special third order initial value problem of ordinary differential equations. This implementation strategy is ...

  13. CSR schemes in agribusiness

    Pötz, Katharina Anna; Haas, Rainer; Balzarova, Michaela

    2013-01-01

    of schemes that can be categorized on focus areas, scales, mechanisms, origins, types and commitment levels. Research limitations/implications – The findings contribute to conceptual and empirical research on existing models to compare and analyse CSR standards. Sampling technique and depth of analysis limit......Purpose – The rise of CSR followed a demand for CSR standards and guidelines. In a sector already characterized by a large number of standards, the authors seek to ask what CSR schemes apply to agribusiness, and how they can be systematically compared and analysed. Design....../methodology/approach – Following a deductive-inductive approach the authors develop a model to compare and analyse CSR schemes based on existing studies and on coding qualitative data on 216 CSR schemes. Findings – The authors confirm that CSR standards and guidelines have entered agribusiness and identify a complex landscape...

  14. Tabled Execution in Scheme

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  15. Two-level schemes for the advection equation

    Vabishchevich, Petr N.

    2018-06-01

    The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.

  16. Evaluating statistical cloud schemes

    Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix

    2015-01-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...

  17. Gamma spectrometry; level schemes

    Blachot, J.; Bocquet, J.P.; Monnand, E.; Schussler, F.

    1977-01-01

    The research presented dealt with: a new beta emitter, isomer of 131 Sn; the 136 I levels fed through the radioactive decay of 136 Te (20.9s); the A=145 chain (β decay of Ba, La and Ce, and level schemes for 145 La, 145 Ce, 145 Pr); the A=47 chain (La and Ce, β decay, and the level schemes of 147 Ce and 147 Pr) [fr

  18. Scheme of energy utilities

    2002-04-01

    This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)

  19. A numerical scheme for the generalized Burgers–Huxley equation

    Brajesh K. Singh

    2016-10-01

    Full Text Available In this article, a numerical solution of generalized Burgers–Huxley (gBH equation is approximated by using a new scheme: modified cubic B-spline differential quadrature method (MCB-DQM. The scheme is based on differential quadrature method in which the weighting coefficients are obtained by using modified cubic B-splines as a set of basis functions. This scheme reduces the equation into a system of first-order ordinary differential equation (ODE which is solved by adopting SSP-RK43 scheme. Further, it is shown that the proposed scheme is stable. The efficiency of the proposed method is illustrated by four numerical experiments, which confirm that obtained results are in good agreement with earlier studies. This scheme is an easy, economical and efficient technique for finding numerical solutions for various kinds of (nonlinear physical models as compared to the earlier schemes.

  20. Hierarchical low-rank approximation for high dimensional approximation

    Nouy, Anthony

    2016-01-01

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  1. Hierarchical low-rank approximation for high dimensional approximation

    Nouy, Anthony

    2016-01-07

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  2. The chiral Ward-Takahashi identity in the ladder approximation

    Kugo, Taichiro; Mitchard, M.G.

    1992-01-01

    We show that the ladder approximation to the Schwinger-Dyson and Bethe-Salpeter equations preserves the Ward-Takahashi identity for the axial vector vertex if and only if we use the gluon momentum as the argument of the running coupling constant. However, in the usual Landau gauge this is inconsistent with the vector Ward identity. We propose a new method for making the ladder approximation scheme consistent with both vector and axial vector Ward identities. (orig.)

  3. Forms of Approximate Radiation Transport

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  4. An improved wavelet-Galerkin method for dynamic response reconstruction and parameter identification of shear-type frames

    Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping

    2018-04-01

    An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.

  5. Application of a mixed Galerkin/least-squares method to axisymetric shell problems subjected to arbitrary loading

    Loula, A.F.D.; Toledo, E.M.; Franca, L.P.; Garcia, E.L.M.

    1989-08-01

    A variationaly consistent finite element formulation for constrained problems free from shear or membrane locking is applied to axisymetric shells subjected to arbitrary loading. The governing equations are writen according to Love's classical theory for a problem of bending of axisymetric thin and moderately thick shells accounting for shear deformation. The mixed variational formulation, in terms of stresses and displacements here presented consists of classical Galerkin method plus mesh-dependent least-square type terms employed with equal-order finite element polynomials. The additional terms enhance stability and accuracy of the original Galerkin method, as already proven theoretically and confirmed trough numerical experiments. Numerical results of some examples are presented to demonstrate the good stability and accuracy of the formulation. (author) [pt

  6. Peaks, plateaus, numerical instabilities, and achievable accuracy in Galerkin and norm minimizing procedures for solving Ax=b

    Cullum, J. [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States)

    1994-12-31

    Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.

  7. Approximation by planar elastic curves

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  8. Analysis of a combined mixed finite element and discontinuous Galerkin method for incompressible two-phase flow in porous media

    Kou, Jisheng; Sun, Shuyu

    2013-01-01

    We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Analysis of a combined mixed finite element and discontinuous Galerkin method for incompressible two-phase flow in porous media

    Kou, Jisheng

    2013-06-20

    We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Exact constants in approximation theory

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  11. International Conference Approximation Theory XIV

    Schumaker, Larry

    2014-01-01

    This volume developed from papers presented at the international conference Approximation Theory XIV,  held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

  12. Finite nucleus Dirac mean field theory and random phase approximation using finite B splines

    McNeil, J.A.; Furnstahl, R.J.; Rost, E.; Shepard, J.R.; Department of Physics, University of Maryland, College Park, Maryland 20742; Department of Physics, University of Colorado, Boulder, Colorado 80309)

    1989-01-01

    We calculate the finite nucleus Dirac mean field spectrum in a Galerkin approach using finite basis splines. We review the method and present results for the relativistic σ-ω model for the closed-shell nuclei 16 O and 40 Ca. We study the convergence of the method as a function of the size of the basis and the closure properties of the spectrum using an energy-weighted dipole sum rule. We apply the method to the Dirac random-phase-approximation response and present results for the isoscalar 1/sup -/ and 3/sup -/ longitudinal form factors of 16 O and 40 Ca. We also use a B-spline spectral representation of the positive-energy projector to evaluate partial energy-weighted sum rules and compare with nonrelativistic sum rule results

  13. Criteria for the reliability of numerical approximations to the solution of fluid flow problems

    Foias, C.

    1986-01-01

    The numerical approximation of the solutions of fluid flows models is a difficult problem in many cases of energy research. In all numerical methods implementable on digital computers, a basic question is if the number N of elements (Galerkin modes, finite-difference cells, finite-elements, etc.) is sufficient to describe the long time behavior of the exact solutions. It was shown using several approaches that some of the estimates based on physical intuition of N are rigorously valid under very general conditions and follow directly from the mathematical theory of the Navier-Stokes equations. Among the mathematical approaches to these estimates, the most promising (which can be and was already applied to many other dissipative partial differential systems) consists in giving upper estimates to the fractal dimension of the attractor associated to one (or all) solution(s) of the respective partial differential equations. 56 refs

  14. Variational random phase approximation for the anharmonic oscillator

    Dukelsky, J.; Schuck, P.

    1990-04-01

    The recently derived Variational Random Phase Approximation is examined using the anharmonic oscillator model. Special attention is paid to the ground state RPA wave function and the convergence of the proposed truncation scheme to obtain the diagonal density matrix. Comparison with the standard Coupled Cluster method is made

  15. Choosing of optimal start approximation for laplace equation ...

    We investigate Dirichlet problem for a case of two-dimensional area with lime border, numerical scheme for solving this equation is widely knowns it finite difference method. One of the major stages in the algorithm for that numerical solution is choosing of start approximation, usually as the initial values of the unknown ...

  16. Towards Symbolic Encryption Schemes

    Ahmed, Naveed; Jensen, Christian D.; Zenner, Erik

    2012-01-01

    , namely an authenticated encryption scheme that is secure under chosen ciphertext attack. Therefore, many reasonable encryption schemes, such as AES in the CBC or CFB mode, are not among the implementation options. In this paper, we report new attacks on CBC and CFB based implementations of the well......Symbolic encryption, in the style of Dolev-Yao models, is ubiquitous in formal security models. In its common use, encryption on a whole message is specified as a single monolithic block. From a cryptographic perspective, however, this may require a resource-intensive cryptographic algorithm......-known Needham-Schroeder and Denning-Sacco protocols. To avoid such problems, we advocate the use of refined notions of symbolic encryption that have natural correspondence to standard cryptographic encryption schemes....

  17. Compact Spreader Schemes

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  18. New analytic unitarization schemes

    Cudell, J.-R.; Predazzi, E.; Selyugin, O. V.

    2009-01-01

    We consider two well-known classes of unitarization of Born amplitudes of hadron elastic scattering. The standard class, which saturates at the black-disk limit includes the standard eikonal representation, while the other class, which goes beyond the black-disk limit to reach the full unitarity circle, includes the U matrix. It is shown that the basic properties of these schemes are independent of the functional form used for the unitarization, and that U matrix and eikonal schemes can be extended to have similar properties. A common form of unitarization is proposed interpolating between both classes. The correspondence with different nonlinear equations are also briefly examined.

  19. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  20. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  1. Finite Element Approximation of the FENE-P Model

    Barrett , John ,; Boyaval , Sébastien

    2017-01-01

    We extend our analysis on the Oldroyd-B model in Barrett and Boyaval [1] to consider the finite element approximation of the FENE-P system of equations, which models a dilute polymeric fluid, in a bounded domain $D $\\subset$ R d , d = 2 or 3$, subject to no flow boundary conditions. Our schemes are based on approximating the pressure and the symmetric conforma-tion tensor by either (a) piecewise constants or (b) continuous piecewise linears. In case (a) the velocity field is approximated by c...

  2. Application of Galerkin meshfree methods to nonlinear thermo-mechanical simulation of solids under extremely high pulsed loading

    Ibáñez, Daniel Iglesias; García Orden, Juan C.; Brañas, B.; Carmona, J.M.; Molla, J.

    2013-01-01

    Highlights: • The paper presents a novel application of meshfree methods, valid for its implementation on a multibody framework. • Coupled nonlinear thermo-mechanical formulation is detailed and described in the reference configuration, as this allows to compute the shape functions only once. • We show the conditions in which future information induces inefficiency. • Beam parameters are the only information needed to apply the thermal load. • The solution procedure takes charge of updating the volumetric heat rate as the body moves and deforms. -- Abstract: Beam facing elements of the International Fusion Materials Irradiation Facility (IFMIF) Linear Particle Accelerator prototype (LIPAc) must stop 5–40 MeV D + ions with a peak current of 125 mA. The duty cycle of the beam loading varies from 0.1% to 100% (CW), depending on the device, with the ions being stopped in the first hundreds microns of the beam facing material. For intermediate duty cycles up to CW, the thermal load can be considered a heat flux load on the boundary, but this approximation gets too conservative as the duty cycle is reduced because the thermal diffusion becomes more important. Instant heat flux produced by the beam can reach up to 3 GW/m 2 in elements such as the beam dump and slits during short times of hundredths of microseconds. In these cases, the accuracy of the volumetric heat generation is critical for obtaining realistic results. Meshfree Galerkin methods discretize a continuum using scattered nodes. As opposed to FEM, no predefined connectivity is needed between the nodes, so C ∞ (infinitely differentiable) locally supported shape functions can be used to approximate both the trial and the test functions. This feature makes these type of methods well suited for those problems where the domain experiences very large deformations or has high gradients of the state variables. Radial basis (RBF) and moving least squares (MLS) functions have been applied to the

  3. Some results in Diophantine approximation

    Pedersen, Steffen Højris

    the basic concepts on which the papers build. Among other it introduces metric Diophantine approximation, Mahler’s approach on algebraic approximation, the Hausdorff measure, and properties of the formal Laurent series over Fq. The introduction ends with a discussion on Mahler’s problem when considered......This thesis consists of three papers in Diophantine approximation, a subbranch of number theory. Preceding these papers is an introduction to various aspects of Diophantine approximation and formal Laurent series over Fq and a summary of each of the three papers. The introduction introduces...

  4. Limitations of shallow nets approximation.

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Improved stochastic approximation methods for discretized parabolic partial differential equations

    Guiaş, Flavius

    2016-12-01

    We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).

  6. 4. Payment Schemes

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Electronic Commerce - Payment Schemes. V Rajaraman. Series Article Volume 6 Issue 2 February 2001 pp 6-13. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0006-0013 ...

  7. Contract saving schemes

    Ronald, R.; Smith, S.J.; Elsinga, M.; Eng, O.S.; Fox O'Mahony, L.; Wachter, S.

    2012-01-01

    Contractual saving schemes for housing are institutionalised savings programmes normally linked to rights to loans for home purchase. They are diverse types as they have been developed differently in each national context, but normally fall into categories of open, closed, compulsory, and ‘free

  8. Alternative reprocessing schemes evaluation

    1979-02-01

    This paper reviews the parameters which determine the inaccessibility of the plutonium in reprocessing plants. Among the various parameters, the physical and chemical characteristics of the materials, the various processing schemes and the confinement are considered. The emphasis is placed on that latter parameter, and the advantages of an increased confinement in the socalled PIPEX reprocessing plant type are presented

  9. Introduction to association schemes

    Seidel, J.J.

    1991-01-01

    The present paper gives an introduction to the theory of association schemes, following Bose-Mesner (1959), Biggs (1974), Delsarte (1973), Bannai-Ito (1984) and Brouwer-Cohen-Neumaier (1989). Apart from definitions and many examples, also several proofs and some problems are included. The paragraphs

  10. Reaction schemes of immunoanalysis

    Delaage, M.; Barbet, J.

    1991-01-01

    The authors apply a general theory for multiple equilibria to the reaction schemes of immunoanalysis, competition and sandwich. This approach allows the manufacturer to optimize the system and provide the user with interpolation functions for the standard curve and its first derivative as well, thus giving access to variance [fr

  11. Alternative health insurance schemes

    Keiding, Hans; Hansen, Bodil O.

    2002-01-01

    In this paper, we present a simple model of health insurance with asymmetric information, where we compare two alternative ways of organizing the insurance market. Either as a competitive insurance market, where some risks remain uninsured, or as a compulsory scheme, where however, the level...... competitive insurance; this situation turns out to be at least as good as either of the alternatives...

  12. A Hybrid DGTD-MNA Scheme for Analyzing Complex Electromagnetic Systems

    Li, Peng

    2015-01-07

    A hybrid electromagnetics (EM)-circuit simulator for analyzing complex systems consisting of EM devices loaded with nonlinear multi-port lumped circuits is described. The proposed scheme splits the computational domain into two subsystems: EM and circuit subsystems, where field interactions are modeled using Maxwell and Kirchhoff equations, respectively. Maxwell equations are discretized using a discontinuous Galerkin time domain (DGTD) scheme while Kirchhoff equations are discretized using a modified nodal analysis (MNA)-based scheme. The coupling between the EM and circuit subsystems is realized at the lumped ports, where related EM fields and circuit voltages and currents are allowed to “interact’’ via numerical flux. To account for nonlinear lumped circuit elements, the standard Newton-Raphson method is applied at every time step. Additionally, a local time-stepping scheme is developed to improve the efficiency of the hybrid solver. Numerical examples consisting of EM systems loaded with single and multiport linear/nonlinear circuit networks are presented to demonstrate the accuracy, efficiency, and applicability of the proposed solver.

  13. Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

    Zhu, Jun; Zhong, Xinghui; Shu, Chi-Wang; Qiu, Jianxian

    2013-09-01

    In this paper we generalize a new type of limiters based on the weighted essentially non-oscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [32] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the entire polynomials of the DG solutions from the troubled cell and its immediate neighboring cells, and then apply the classical WENO procedure to form a convex combination of these polynomials based on smoothness indicators and nonlinear weights, with suitable adjustments to guarantee conservation. The main advantage of this new limiter is its simplicity in implementation, especially for the unstructured meshes considered in this paper, as only information from immediate neighbors is needed and the usage of complicated geometric information of the meshes is largely avoided. Numerical results for both scalar equations and Euler systems of compressible gas dynamics are provided to illustrate the good performance of this procedure.

  14. Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods

    Kubatko, Ethan J.; Yeager, Benjamin A.; Ketcheson, David I.

    2013-01-01

    Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.

  15. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2017-01-01

    A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.

  16. Diffusion and dispersion characteristics of hybridized discontinuous Galerkin methods for under-resolved turbulence simulations

    Moura, Rodrigo; Fernandez, Pablo; Mengaldo, Gianmarco

    2017-11-01

    We investigate the dispersion and diffusion characteristics of hybridized discontinuous Galerkin (DG) methods. This provides us with insights to develop robust and accurate high-order DG discretizations for under-resolved flow simulations. Using the eigenanalysis technique introduced in (Moura et al., JCP, 2015 and Mengaldo et al., Computers & Fluids, 2017), we present a dispersion-diffusion analysis for the linear advection-diffusion equation. The effect of the accuracy order, the Riemann flux and the viscous stabilization are investigated. Next, we examine the diffusion characteristics of hybridized DG methods for under-resolved turbulent flows. The implicit large-eddy simulation (iLES) of the inviscid and viscous Taylor-Green vortex (TGV) problems are considered to this end. The inviscid case is relevant in the limit of high Reynolds numbers Re , i.e. negligible molecular viscosity, while the viscous case explores the effect of Re on the accuracy and robustness of the simulations. The TGV cases considered here are particularly crucial to under-resolved turbulent free flows away from walls. We conclude the talk with a discussion on the connections between hybridized and standard DG methods for under-resolved flow simulations.

  17. A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media

    Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, M. S.

    2018-03-01

    A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the computation of viscoelastic wavefields in complex geological media. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact solution of the heterogeneous Riemann problem. Our implementation offers capabilities for modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial scale with little logistical overhead. It allows the import of external tetrahedral meshes provided by independent meshing software and can be run in a parallel computing environment. Computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical solutions and results from a spectral element method. The capabilities of the NDG method are demonstrated through a 3-D example case taken from tunnel seismics which considers high-frequency elastic wave propagation around a curved underground tunnel cutting through inclined and faulted sedimentary strata. The NDG method was coded into the open-source software package NEXD and is available from GitHub.

  18. Discontinuous Galerkin methods for plasma physics in the scrape-off layer of tokamaks

    Michoski, C.; Meyerson, D.; Isaac, T.; Waelbroeck, F.

    2014-01-01

    A new parallel discontinuous Galerkin solver, called ArcOn, is developed to describe the intermittent turbulent transport of filamentary blobs in the scrape-off layer (SOL) of fusion plasma. The model is comprised of an elliptic subsystem coupled to two convection-dominated reaction–diffusion–convection equations. Upwinding is used for a class of numerical fluxes developed to accommodate cross product driven convection, and the elliptic solver uses SIPG, NIPG, IIPG, Brezzi, and Bassi–Rebay fluxes to formulate the stiffness matrix. A novel entropy sensor is developed for this system, designed for a space–time varying artificial diffusion/viscosity regularization algorithm. Some numerical experiments are performed to show convergence order on manufactured solutions, regularization of blob/streamer dynamics in the SOL given unstable parameterizations, long-time stability of modon (or dipole drift vortex) solutions arising in simulations of drift-wave turbulence, and finally the formation of edge mode turbulence in the scrape-off layer under turbulent saturation conditions

  19. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  20. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    Mezzacappa, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Endeve, Eirik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauck, Cory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xing, Yulong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.

  1. The hybridized Discontinuous Galerkin method for Implicit Large-Eddy Simulation of transitional turbulent flows

    Fernandez, P.; Nguyen, N. C.; Peraire, J.

    2017-05-01

    We present a high-order Implicit Large-Eddy Simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.

  2. Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods

    Kubatko, Ethan J.

    2013-10-29

    Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.

  3. A discontinuous Galerkin approach for conservative modeling of fully nonlinear and weakly dispersive wave transformations

    Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef

    2018-05-01

    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.

  4. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.

  5. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Anninos, Peter; Lau, Cheuk [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 (United States); Bryant, Colton [Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Holgado, A. Miguel [Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 (United States); Nemergut, Daniel [Operations and Engineering Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  6. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Anninos, Peter; Lau, Cheuk; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Nemergut, Daniel

    2017-01-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  7. Spherical Approximation on Unit Sphere

    Eman Samir Bhaya

    2018-01-01

    Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of  functions in  spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in    spaces for  by modulus of smoothness of functions.

  8. Approximate circuits for increased reliability

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  9. Analysis and development of adjoint-based h-adaptive direct discontinuous Galerkin method for the compressible Navier-Stokes equations

    Cheng, Jian; Yue, Huiqiang; Yu, Shengjiao; Liu, Tiegang

    2018-06-01

    In this paper, an adjoint-based high-order h-adaptive direct discontinuous Galerkin method is developed and analyzed for the two dimensional steady state compressible Navier-Stokes equations. Particular emphasis is devoted to the analysis of the adjoint consistency for three different direct discontinuous Galerkin discretizations: including the original direct discontinuous Galerkin method (DDG), the direct discontinuous Galerkin method with interface correction (DDG(IC)) and the symmetric direct discontinuous Galerkin method (SDDG). Theoretical analysis shows the extra interface correction term adopted in the DDG(IC) method and the SDDG method plays a key role in preserving the adjoint consistency. To be specific, for the model problem considered in this work, we prove that the original DDG method is not adjoint consistent, while the DDG(IC) method and the SDDG method can be adjoint consistent with appropriate treatment of boundary conditions and correct modifications towards the underlying output functionals. The performance of those three DDG methods is carefully investigated and evaluated through typical test cases. Based on the theoretical analysis, an adjoint-based h-adaptive DDG(IC) method is further developed and evaluated, numerical experiment shows its potential in the applications of adjoint-based adaptation for simulating compressible flows.

  10. Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem

    Bramble, James H.

    2010-01-01

    We consider the application of a perfectly matched layer (PML) technique to approximate solutions to the elastic wave scattering problem in the frequency domain. The PML is viewed as a complex coordinate shift in spherical coordinates which leads to a variable complex coefficient equation for the displacement vector posed on an infinite domain (the complement of the scatterer). The rapid decay of the PML solution suggests truncation to a bounded domain with a convenient outer boundary condition and subsequent finite element approximation (for the truncated problem). We prove existence and uniqueness of the solutions to the infinite domain and truncated domain PML equations (provided that the truncated domain is sufficiently large). We also show exponential convergence of the solution of the truncated PML problem to the solution of the original scattering problem in the region of interest. We then analyze a Galerkin numerical approximation to the truncated PML problem and prove that it is well posed provided that the PML damping parameter and mesh size are small enough. Finally, computational results illustrating the efficiency of the finite element PML approximation are presented. © 2010 American Mathematical Society.

  11. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  12. On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme

    Wang Daoshun

    2010-01-01

    Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.

  13. The efficiency of Flory approximation

    Obukhov, S.P.

    1984-01-01

    The Flory approximation for the self-avoiding chain problem is compared with a conventional perturbation theory expansion. While in perturbation theory each term is averaged over the unperturbed set of configurations, the Flory approximation is equivalent to the perturbation theory with the averaging over the stretched set of configurations. This imposes restrictions on the integration domain in higher order terms and they can be treated self-consistently. The accuracy δν/ν of Flory approximation for self-avoiding chain problems is estimated to be 2-5% for 1 < d < 4. (orig.)

  14. Selectively strippable paint schemes

    Stein, R.; Thumm, D.; Blackford, Roger W.

    1993-03-01

    In order to meet the requirements of more environmentally acceptable paint stripping processes many different removal methods are under evaluation. These new processes can be divided into mechanical and chemical methods. ICI has developed a paint scheme with intermediate coat and fluid resistant polyurethane topcoat which can be stripped chemically in a short period of time with methylene chloride free and phenol free paint strippers.

  15. Semiclassical approximation of the Wheeler-DeWitt equation: arbitrary orders and the question of unitarity

    Kiefer, Claus; Wichmann, David

    2018-06-01

    We extend the Born-Oppenheimer type of approximation scheme for the Wheeler-DeWitt equation of canonical quantum gravity to arbitrary orders in the inverse Planck mass squared. We discuss in detail the origin of unitarity violation in this scheme and show that unitarity can be restored by an appropriate modification which requires back reaction from matter onto the gravitational sector. In our analysis, we heavily rely on the gauge aspects of the standard Born-Oppenheimer scheme in molecular physics.

  16. Approximate Implicitization Using Linear Algebra

    Oliver J. D. Barrowclough

    2012-01-01

    Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.

  17. Weighted approximation with varying weight

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  18. Framework for sequential approximate optimization

    Jacobs, J.H.; Etman, L.F.P.; Keulen, van F.; Rooda, J.E.

    2004-01-01

    An object-oriented framework for Sequential Approximate Optimization (SAO) isproposed. The framework aims to provide an open environment for thespecification and implementation of SAO strategies. The framework is based onthe Python programming language and contains a toolbox of Python

  19. Traveling cluster approximation for uncorrelated amorphous systems

    Kaplan, T.; Sen, A.K.; Gray, L.J.; Mills, R.

    1985-01-01

    In this paper, the authors apply the TCA concepts to spatially disordered, uncorrelated systems (e.g., fluids or amorphous metals without short-range order). This is the first approximation scheme for amorphous systems that takes cluster effects into account while preserving the Herglotz property for any amount of disorder. They have performed some computer calculations for the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results are compared with exact calculations (which, in principle, taken into account all cluster effects) and with the CPA, which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA, and yet, apparently, the pair approximation distorts some of the features of the exact results. They conclude that the effects of large clusters are much more important in an uncorrelated liquid metal than in a substitutional alloy. As a result, the pair TCA, which does quite a nice job for alloys, is not adequate for the liquid. Larger clusters must be treated exactly, and therefore an n-TCA with n > 2 must be used

  20. The Application of Discontinuous Galerkin Methods in Conjugate Heat Transfer Simulations of Gas Turbines

    Zeng-Rong Hao

    2014-11-01

    Full Text Available The performance of modern heavy-duty gas turbines is greatly determined by the accurate numerical predictions of thermal loading on the hot-end components. The purpose of this paper is: (1 to present an approach applying a novel numerical technique—the discontinuous Galerkin (DG method—to conjugate heat transfer (CHT simulations, develop the engineering-oriented numerical platform, and validate the feasibility of the methodology and tool preliminarily; and (2 to utilize the constructed platform to investigate the aerothermodynamic features of a typical transonic turbine vane with convection cooling. Fluid dynamic and solid heat conductive equations are discretized into explicit DG formulations. A centroid-expanded Taylor basis is adopted for various types of elements. The Bassi-Rebay method is used in the computation of gradients. A coupled strategy based on a data exchange process via numerical flux on interface quadrature points is simply devised. Additionally, various turbulence Reynolds-Averaged-Navier-Stokes (RANS models and the local-variable-based transition model γ-Reθ are assimilated into the integral framework, combining sophisticated modelling with the innovative algorithm. Numerical tests exhibit good consistency between computational and analytical or experimental results, demonstrating that the presented approach and tool can handle well general CHT simulations. Application and analysis in the turbine vane, focusing on features around where there in cluster exist shock, separation and transition, illustrate the effects of Bradshaw’s shear stress limitation and separation-induced-transition modelling. The general overestimation of heat transfer intensity behind shock is conjectured to be associated with compressibility effects on transition modeling. This work presents an unconventional formulation in CHT problems and achieves its engineering applications in gas turbines.

  1. Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation

    Pagán Muñoz, Raúl; Hornikx, Maarten

    2017-11-01

    The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.

  2. Discontinuous Galerkin modeling of the Columbia River's coupled estuary-plume dynamics

    Vallaeys, Valentin; Kärnä, Tuomas; Delandmeter, Philippe; Lambrechts, Jonathan; Baptista, António M.; Deleersnijder, Eric; Hanert, Emmanuel

    2018-04-01

    The Columbia River (CR) estuary is characterized by high river discharge and strong tides that generate high velocity flows and sharp density gradients. Its dynamics strongly affects the coastal ocean circulation. Tidal straining in turn modulates the stratification in the estuary. Simulating the hydrodynamics of the CR estuary and plume therefore requires a multi-scale model as both shelf and estuarine circulations are coupled. Such a model has to keep numerical dissipation as low as possible in order to correctly represent the plume propagation and the salinity intrusion in the estuary. Here, we show that the 3D baroclinic discontinuous Galerkin finite element model SLIM 3D is able to reproduce the main features of the CR estuary-to-ocean continuum. We introduce new vertical discretization and mode splitting that allow us to model a region characterized by complex bathymetry and sharp density and velocity gradients. Our model takes into account the major forcings, i.e. tides, surface wind stress and river discharge, on a single multi-scale grid. The simulation period covers the end of spring-early summer of 2006, a period of high river flow and strong changes in the wind regime. SLIM 3D is validated with in-situ data on the shelf and at multiple locations in the estuary and compared with an operational implementation of SELFE. The model skill in the estuary and on the shelf indicate that SLIM 3D is able to reproduce the key processes driving the river plume dynamics, such as the occurrence of bidirectional plumes or reversals of the inner shelf coastal currents.

  3. Numerical solution of the helmholtz equation for the superellipsoid via the galerkin method

    Hy Dinh

    2013-01-01

    Full Text Available The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes was: $x=cos(xsin(y^{n},y=sin(xsin(y^{n},z=cos(y$ where $n$ varied from 0.5 to 4. The Helmholtz equation, which is the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition, we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equation, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green's theorem to solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method, such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala , Warnapala and Morgan .

  4. Accurate characterization of 3D diffraction gratings using time domain discontinuous Galerkin method with exact absorbing boundary conditions

    Sirenko, Kostyantyn

    2013-07-01

    Exact absorbing and periodic boundary conditions allow to truncate grating problems\\' infinite physical domains without introducing any errors. This work presents exact absorbing boundary conditions for 3D diffraction gratings and describes their discretization within a high-order time-domain discontinuous Galerkin finite element method (TD-DG-FEM). The error introduced by the boundary condition discretization matches that of the TD-DG-FEM; this results in an optimal solver in terms of accuracy and computation time. Numerical results demonstrate the superiority of this solver over TD-DG-FEM with perfectly matched layers (PML)-based domain truncation. © 2013 IEEE.

  5. Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis

    Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D.

    2016-01-01

    A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.

  6. New implementation method for essential boundary condition to extended element-free Galerkin method. Application to nonlinear problem

    Saitoh, Ayumu; Matsui, Nobuyuki; Itoh, Taku; Kamitani, Atsushi; Nakamura, Hiroaki

    2011-01-01

    A new method has been proposed for implementing essential boundary conditions to the Element-Free Galerkin Method (EFGM) without using the Lagrange multiplier. Furthermore, the performance of the proposed method has been investigated for a nonlinear Poisson problem. The results of computations show that, as interpolation functions become closer to delta functions, the accuracy of the solution is improved on the boundary. In addition, the accuracy of the proposed method is higher than that of the conventional EFGM. Therefore, it might be concluded that the proposed method is useful for solving the nonlinear Poisson problem. (author)

  7. Discontinuous Petrov-Galerkin method based on the optimal test space norm for one-dimensional transport problems

    Niemi, Antti

    2011-05-14

    We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the so called optimal test space norm by using an element subgrid discretization. This should make the DPG method not only stable but also robust, that is, uniformly stable with respect to the Ṕeclet number in the current application. The e_ectiveness of the algorithm is demonstrated on two problems for the linear advection-di_usion equation.

  8. Analysis of an a posteriori error estimator for the transport equation with SN and discontinuous Galerkin discretizations

    Fournier, D.; Le Tellier, R.; Suteau, C.

    2011-01-01

    We present an error estimator for the S N neutron transport equation discretized with an arbitrary high-order discontinuous Galerkin method. As a starting point, the estimator is obtained for conforming Cartesian meshes with a uniform polynomial order for the trial space then adapted to deal with non-conforming meshes and a variable polynomial order. Some numerical tests illustrate the properties of the estimator and its limitations. Finally, a simple shielding benchmark is analyzed in order to show the relevance of the estimator in an adaptive process.

  9. Resolution of the Vlasov-Maxwell system by PIC discontinuous Galerkin method on GPU with OpenCL

    Crestetto Anaïs

    2013-01-01

    Full Text Available We present an implementation of a Vlasov-Maxwell solver for multicore processors. The Vlasov equation describes the evolution of charged particles in an electromagnetic field, solution of the Maxwell equations. The Vlasov equation is solved by a Particle-In-Cell method (PIC, while the Maxwell system is computed by a Discontinuous Galerkin method. We use the OpenCL framework, which allows our code to run on multicore processors or recent Graphic Processing Units (GPU. We present several numerical applications to two-dimensional test cases.

  10. Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method

    Kosík, Adam; Feistauer, M.; Hadrava, Martin; Horáček, Jaromír

    2015-01-01

    Roč. 267, September (2015), s. 382-396 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : discontinuous Galerkin method * nonlinear elasticity * compressible viscous flow * fluid–structure interaction Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315002453/pdfft?md5=02d46bc730e3a7fb8a5008aaab1da786&pid=1-s2.0-S0096300315002453-main.pdf

  11. Fast successive approximation analog-to-digital converter

    Gobbur, S G; Landis, D A; Goulding, F S [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1977-01-15

    A new scheme has been developed for a 4096-channel (12-bit) successive approximation ADC which will allow more rapid coding than schemes commonly used at the present time. The allowable bit setting time for the major bits has been increased without adding to the total coding time. This is accomplished by permitting the initial accuracy of the setting of the major bits to be within eight channels. Towards the end of the coding time, when the major bits have settled, this error is corrected to an accuracy of a fraction of a channel. Using this scheme a differential nonlinearity of better than 20% has been achieved in the basic encoder with a total coding time of 4 ..mu..s. Applying a 6-bit sliding register (the method of Gatti) to the ADC, a differential nonlinearity less than 0.5% results in the complete ADC.

  12. The development of high performance numerical simulation code for transient groundwater flow and reactive solute transport problems based on local discontinuous Galerkin method

    Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji

    2009-01-01

    The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)

  13. ESCAP mobile training scheme.

    Yasas, F M

    1977-01-01

    In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries.

  14. Bonus schemes and trading activity

    Pikulina, E.S.; Renneboog, L.D.R.; ter Horst, J.R.; Tobler, P.N.

    2014-01-01

    Little is known about how different bonus schemes affect traders' propensity to trade and which bonus schemes improve traders' performance. We study the effects of linear versus threshold bonus schemes on traders' behavior. Traders buy and sell shares in an experimental stock market on the basis of

  15. Nuclear Hartree-Fock approximation testing and other related approximations

    Cohenca, J.M.

    1970-01-01

    Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt

  16. Succesful labelling schemes

    Juhl, Hans Jørn; Stacey, Julia

    2001-01-01

    . In the spring of 2001 MAPP carried out an extensive consumer study with special emphasis on the Nordic environmentally friendly label 'the swan'. The purpose was to find out how much consumers actually know and use various labelling schemes. 869 households were contacted and asked to fill in a questionnaire...... it into consideration when I go shopping. The respondent was asked to pick the most suitable answer, which described her use of each label. 29% - also called 'the labelling blind' - responded that they basically only knew the recycling label and the Government controlled organic label 'Ø-mærket'. Another segment of 6...

  17. Scheme of stepmotor control

    Grashilin, V.A.; Karyshev, Yu.Ya.

    1982-01-01

    A 6-cycle scheme of step motor is described. The block-diagram and the basic circuit of the step motor control are presented. The step motor control comprises a pulse shaper, electronic commutator and power amplifiers. The step motor supply from 6-cycle electronic commutator provides for higher reliability and accuracy than from 3-cycle commutator. The control of step motor work is realised by the program given by the external source of control signals. Time-dependent diagrams for step motor control are presented. The specifications of the step-motor is given

  18. WENO schemes for balance laws with spatially varying flux

    Vukovic, Senka; Crnjaric-Zic, Nelida; Sopta, Luka

    2004-01-01

    In this paper we construct numerical schemes of high order of accuracy for hyperbolic balance law systems with spatially variable flux function and a source term of the geometrical type. We start with the original finite difference characteristicwise weighted essentially nonoscillatory (WENO) schemes and then we create new schemes by modifying the flux formulations (locally Lax-Friedrichs and Roe with entropy fix) in order to account for the spatially variable flux, and by decomposing the source term in order to obtain balance between numerical approximations of the flux gradient and of the source term. We apply so extended WENO schemes to the one-dimensional open channel flow equations and to the one-dimensional elastic wave equations. In particular, we prove that in these applications the new schemes are exactly consistent with steady-state solutions from an appropriately chosen subset. Experimentally obtained orders of accuracy of the extended and original WENO schemes are almost identical on a convergence test. Other presented test problems illustrate the improvement of the proposed schemes relative to the original WENO schemes combined with the pointwise source term evaluation. As expected, the increase in the formal order of accuracy of applied WENO reconstructions in all the tests causes visible increase in the high resolution properties of the schemes

  19. Magnus approximation in neutrino oscillations

    Acero, Mario A; Aguilar-Arevalo, Alexis A; D'Olivo, J C

    2011-01-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  20. Intensity-based hierarchical elastic registration using approximating splines.

    Serifovic-Trbalic, Amira; Demirovic, Damir; Cattin, Philippe C

    2014-01-01

    We introduce a new hierarchical approach for elastic medical image registration using approximating splines. In order to obtain the dense deformation field, we employ Gaussian elastic body splines (GEBS) that incorporate anisotropic landmark errors and rotation information. Since the GEBS approach is based on a physical model in form of analytical solutions of the Navier equation, it can very well cope with the local as well as global deformations present in the images by varying the standard deviation of the Gaussian forces. The proposed GEBS approximating model is integrated into the elastic hierarchical image registration framework, which decomposes a nonrigid registration problem into numerous local rigid transformations. The approximating GEBS registration scheme incorporates anisotropic landmark errors as well as rotation information. The anisotropic landmark localization uncertainties can be estimated directly from the image data, and in this case, they represent the minimal stochastic localization error, i.e., the Cramér-Rao bound. The rotation information of each landmark obtained from the hierarchical procedure is transposed in an additional angular landmark, doubling the number of landmarks in the GEBS model. The modified hierarchical registration using the approximating GEBS model is applied to register 161 image pairs from a digital mammogram database. The obtained results are very encouraging, and the proposed approach significantly improved all registrations comparing the mean-square error in relation to approximating TPS with the rotation information. On artificially deformed breast images, the newly proposed method performed better than the state-of-the-art registration algorithm introduced by Rueckert et al. (IEEE Trans Med Imaging 18:712-721, 1999). The average error per breast tissue pixel was less than 2.23 pixels compared to 2.46 pixels for Rueckert's method. The proposed hierarchical elastic image registration approach incorporates the GEBS

  1. A parallel nearly implicit time-stepping scheme

    Botchev, Mike A.; van der Vorst, Henk A.

    2001-01-01

    Across-the-space parallelism still remains the most mature, convenient and natural way to parallelize large scale problems. One of the major problems here is that implicit time stepping is often difficult to parallelize due to the structure of the system. Approximate implicit schemes have been suggested to circumvent the problem. These schemes have attractive stability properties and they are also very well parallelizable. The purpose of this article is to give an overall assessment of the pa...

  2. Shearlets and Optimally Sparse Approximations

    Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q

    2012-01-01

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....

  3. Diophantine approximation and Dirichlet series

    Queffélec, Hervé

    2013-01-01

    This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of anal...

  4. Approximations to camera sensor noise

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  5. Rational approximations for tomographic reconstructions

    Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas

    2013-01-01

    We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp–Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image. (paper)

  6. Approximation methods in probability theory

    Čekanavičius, Vydas

    2016-01-01

    This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.

  7. Discontinuous Galerkin methods and a posteriori error analysis for heterogenous diffusion problems; Methodes de Galerkine discontinues et analyse d'erreur a posteriori pour les problemes de diffusion heterogene

    Stephansen, A.F

    2007-12-15

    In this thesis we analyse a discontinuous Galerkin (DG) method and two computable a posteriori error estimators for the linear and stationary advection-diffusion-reaction equation with heterogeneous diffusion. The DG method considered, the SWIP method, is a variation of the Symmetric Interior Penalty Galerkin method. The difference is that the SWIP method uses weighted averages with weights that depend on the diffusion. The a priori analysis shows optimal convergence with respect to mesh-size and robustness with respect to heterogeneous diffusion, which is confirmed by numerical tests. Both a posteriori error estimators are of the residual type and control the energy (semi-)norm of the error. Local lower bounds are obtained showing that almost all indicators are independent of heterogeneities. The exception is for the non-conforming part of the error, which has been evaluated using the Oswald interpolator. The second error estimator is sharper in its estimate with respect to the first one, but it is slightly more costly. This estimator is based on the construction of an H(div)-conforming Raviart-Thomas-Nedelec flux using the conservativeness of DG methods. Numerical results show that both estimators can be used for mesh-adaptation. (author)

  8. Well posedness and maximum entropy approximation for the dynamics of quantitative traits

    Boďová , Katarí na; Haskovec, Jan; Markowich, Peter A.

    2017-01-01

    We study the Fokker–Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker–Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain’s boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium.Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of observables (moments) of the Fokker–Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one.

  9. Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients

    Nobile, Fabio; Tempone, Raul

    2009-01-01

    We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.

  10. Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients

    Nobile, Fabio

    2009-11-05

    We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.

  11. Well posedness and maximum entropy approximation for the dynamics of quantitative traits

    Boďová, Katarína

    2017-11-06

    We study the Fokker–Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker–Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain’s boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium.Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of observables (moments) of the Fokker–Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one.

  12. Numerical solution of the 1D kinetics equations using a cubic reduced nodal scheme

    Gomez T, A.M.; Valle G, E. del; Delfin L, A.; Alonso V, G.

    2003-01-01

    In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as Θ scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)

  13. Approximate reasoning in physical systems

    Mutihac, R.

    1991-01-01

    The theory of fuzzy sets provides excellent ground to deal with fuzzy observations (uncertain or imprecise signals, wavelengths, temperatures,etc.) fuzzy functions (spectra and depth profiles) and fuzzy logic and approximate reasoning. First, the basic ideas of fuzzy set theory are briefly presented. Secondly, stress is put on application of simple fuzzy set operations for matching candidate reference spectra of a spectral library to an unknown sample spectrum (e.g. IR spectroscopy). Thirdly, approximate reasoning is applied to infer an unknown property from information available in a database (e.g. crystal systems). Finally, multi-dimensional fuzzy reasoning techniques are suggested. (Author)

  14. Face Recognition using Approximate Arithmetic

    Marso, Karol

    Face recognition is image processing technique which aims to identify human faces and found its use in various different fields for example in security. Throughout the years this field evolved and there are many approaches and many different algorithms which aim to make the face recognition as effective...... processing applications the results do not need to be completely precise and use of the approximate arithmetic can lead to reduction in terms of delay, space and power consumption. In this paper we examine possible use of approximate arithmetic in face recognition using Eigenfaces algorithm....

  15. Kullback-Leibler divergence and the Pareto-Exponential approximation.

    Weinberg, G V

    2016-01-01

    Recent radar research interests in the Pareto distribution as a model for X-band maritime surveillance radar clutter returns have resulted in analysis of the asymptotic behaviour of this clutter model. In particular, it is of interest to understand when the Pareto distribution is well approximated by an Exponential distribution. The justification for this is that under the latter clutter model assumption, simpler radar detection schemes can be applied. An information theory approach is introduced to investigate the Pareto-Exponential approximation. By analysing the Kullback-Leibler divergence between the two distributions it is possible to not only assess when the approximation is valid, but to determine, for a given Pareto model, the optimal Exponential approximation.

  16. Nonlinear Multigrid solver exploiting AMGe Coarse Spaces with Approximation Properties

    Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

    The paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstructured problems is the guaranteed approximation property of the AMGe coarse...... properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on unstructured meshes has the ability to be as powerful/successful as FAS on geometrically refined meshes. For comparison, Newton’s method and Picard iterations with an inner state-of-the-art linear solver...... are compared to FAS on a nonlinear saddle point problem with applications to porous media flow. It is demonstrated that FAS is faster than Newton’s method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate...

  17. Pade approximants and the calculation of effective interactions

    Schucan, T.H.

    1975-01-01

    It is known that the series expansion of the effective interaction in nuclei diverges in practical applications due to the occurrence of low lying collective states. An approximation scheme which can be used to overcome the difficulties connected with this divergence is reviewed and it is shown that a continued fraction expansion can be used to calculate the eigenstate that has the larger overlap with the model space. An extension of this method is obtained by using Pade approximants (P.A.) which are then applied to the effective interaction, and to related matrices and matrix elements. Mathematical properties of the P.A. are discussed in light of these applications. 7 figures

  18. Pade approximants and the calculation of effective interactions

    Schucan, T.H.

    1975-01-01

    The analytic properties of the effective interaction in nuclei have become increasingly well understood in the last few years. It has been found that the corresponding series expansion diverges in most practical applications due to the occurrence of low lying collective states. It is the purpose of this paper to review and discuss an approximation scheme that has been used to rearrange this series with the aim to overcome the difficulties connected with its divergence. (orig./WL) [de

  19. Approximate eigenvalue determination of geometrically frustrated magnetic molecules

    A.M. Läuchli

    2009-01-01

    Full Text Available Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.

  20. Packet reversed packet combining scheme

    Bhunia, C.T.

    2006-07-01

    The packet combining scheme is a well defined simple error correction scheme with erroneous copies at the receiver. It offers higher throughput combined with ARQ protocols in networks than that of basic ARQ protocols. But packet combining scheme fails to correct errors when the errors occur in the same bit locations of two erroneous copies. In the present work, we propose a scheme that will correct error if the errors occur at the same bit location of the erroneous copies. The proposed scheme when combined with ARQ protocol will offer higher throughput. (author)