Li, Ping
2014-07-01
This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.
Li, Ping; Shi, Yifei; Jiang, Lijun; Bagci, Hakan
2014-01-01
A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer's shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.
Li, Ping
2014-05-01
A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.
Numerical solution of fuzzy boundary value problems using Galerkin ...
Indian Academy of Sciences (India)
1 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China. 2 Department of ... exact solution of fuzzy first-order boundary value problems. (BVPs). ...... edge partial financial support by the Ministerio de Economıa.
Liu, Meilin; Bagci, Hakan
2011-01-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results
Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries
Morales Escalante, José A.; Gamba, Irene M.
2018-06-01
We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.
Directory of Open Access Journals (Sweden)
Samira Hosseini
Full Text Available Abstract One of the main drawbacks of Element Free Galerkin (EFG method is its dependence on moving least square shape functions which don’t satisfy the Kronecker Delta property, so in this method it’s not possible to apply Dirichlet boundary conditions directly. The aim of the present paper is to discuss different aspects of three widely used methods of applying Dirichlet boundary conditions in EFG method, called Lagrange multipliers, penalty method, and coupling with finite element method. Numerical simulations are presented to compare the results of these methods form the perspective of accuracy, convergence and computational expense. These methods have been implemented in an object oriented programing environment, called INSANE, and the results are presented and compared with the analytical solutions.
Sirenko, Kostyantyn
2013-07-01
Exact absorbing and periodic boundary conditions allow to truncate grating problems\\' infinite physical domains without introducing any errors. This work presents exact absorbing boundary conditions for 3D diffraction gratings and describes their discretization within a high-order time-domain discontinuous Galerkin finite element method (TD-DG-FEM). The error introduced by the boundary condition discretization matches that of the TD-DG-FEM; this results in an optimal solver in terms of accuracy and computation time. Numerical results demonstrate the superiority of this solver over TD-DG-FEM with perfectly matched layers (PML)-based domain truncation. © 2013 IEEE.
Liu, Meilin
2011-07-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.
International Nuclear Information System (INIS)
Saitoh, Ayumu; Matsui, Nobuyuki; Itoh, Taku; Kamitani, Atsushi; Nakamura, Hiroaki
2011-01-01
A new method has been proposed for implementing essential boundary conditions to the Element-Free Galerkin Method (EFGM) without using the Lagrange multiplier. Furthermore, the performance of the proposed method has been investigated for a nonlinear Poisson problem. The results of computations show that, as interpolation functions become closer to delta functions, the accuracy of the solution is improved on the boundary. In addition, the accuracy of the proposed method is higher than that of the conventional EFGM. Therefore, it might be concluded that the proposed method is useful for solving the nonlinear Poisson problem. (author)
Sirenko, Kostyantyn; Liu, Meilin; Bagci, Hakan
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing
Directory of Open Access Journals (Sweden)
Haotao Cai
2017-01-01
Full Text Available We develop a generalized Jacobi-Galerkin method for second kind Volterra integral equations with weakly singular kernels. In this method, we first introduce some known singular nonpolynomial functions in the approximation space of the conventional Jacobi-Galerkin method. Secondly, we use the Gauss-Jacobi quadrature rules to approximate the integral term in the resulting equation so as to obtain high-order accuracy for the approximation. Then, we establish that the approximate equation has a unique solution and the approximate solution arrives at an optimal convergence order. One numerical example is presented to demonstrate the effectiveness of the proposed method.
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam
2014-01-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.
2014-12-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
Pagan Munoz, R.; Hornikx, M.C.J.
The wave-based Fourier Pseudospectral time-domain (Fourier-PSTD) method was shown to be an effective way of modeling outdoor acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly
Feynman Integrals with Absorbing Boundaries
Marchewka, A.; Schuss, Z.
1997-01-01
We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...
Integrable boundary conditions and modified Lax equations
International Nuclear Information System (INIS)
Avan, Jean; Doikou, Anastasia
2008-01-01
We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding 'transfer' matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix
African Journals Online (AJOL)
user
The assumed deflection shapes used in the approximate methods such as in the Galerkin's method were normally ... to direct compressive forces Nx, was derived by Navier. [3]. ..... tend to give higher frequency and stiffness, as well as.
Sirenko, Kostyantyn
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.
Integrability and boundary conditions of supersymmetric systems
International Nuclear Information System (INIS)
Yue Ruihong; Liang Hong
1996-01-01
By studying the solutions of the reflection equations, we find out a series of integrable supersymmetric systems with different boundary conditions. The Hamiltonian contains four free parameters which describe the contribution of the boundary terms
Retarded potentials and time domain boundary integral equations a road map
Sayas, Francisco-Javier
2016-01-01
This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices...
Integral Method of Boundary Characteristics: Neumann Condition
Kot, V. A.
2018-05-01
A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.
International Nuclear Information System (INIS)
Ackroyd, R.T.
1982-01-01
Some minimum and maximum variational principles for even-parity neutron transport are reviewed and the corresponding principles for odd-parity transport are derived by a simple method to show why the essential boundary conditions associated with these maximum principles have to be imposed. The method also shows why both the essential and some of the natural boundary conditions associated with these minimum principles have to be imposed. These imposed boundary conditions for trial functions in the variational principles limit the choice of the finite element used to represent trial functions. The reasons for the boundary conditions imposed on the principles for even- and odd-parity transport point the way to a treatment of composite neutron transport, for which completely boundary-free maximum and minimum principles are derived from a functional identity. In general a trial function is used for each parity in the composite neutron transport, but this can be reduced to one without any boundary conditions having to be imposed. (author)
International Nuclear Information System (INIS)
Vargas, L.
1988-01-01
The numerical approximate solution of the space-time nuclear reactor kinetics equation is investigated using a finite-element discretization of the space variable and a high order integration scheme for the resulting semi-discretized parabolic equation. The Galerkin method with spatial piecewise polynomial Lagrange basis functions are used to obtained a continuous time semi-discretized form of the space-time reactor kinetics equation. A temporal discretization is then carried out with a numerical scheme based on the Iterated Defect Correction (IDC) method using piecewise quadratic polynomials or exponential functions. The kinetics equations are thus solved with in a general finite element framework with respect to space as well as time variables in which the order of convergence of the spatial and temporal discretizations is consistently high. A computer code GALFEM/IDC is developed, to implement the numerical schemes described above. This issued to solve a one space dimensional benchmark problem. The results of the numerical experiments confirm the theoretical arguments and show that the convergence is very fast and the overall procedure is quite efficient. This is due to the good asymptotic properties of the numerical scheme which is of third order in the time interval
Beghein, Yves
2013-03-01
The time domain combined field integral equation (TD-CFIE), which is constructed from a weighted sum of the time domain electric and magnetic field integral equations (TD-EFIE and TD-MFIE) for analyzing transient scattering from closed perfect electrically conducting bodies, is free from spurious resonances. The standard marching-on-in-time technique for discretizing the TD-CFIE uses Galerkin and collocation schemes in space and time, respectively. Unfortunately, the standard scheme is theoretically not well understood: stability and convergence have been proven for only one class of space-time Galerkin discretizations. Moreover, existing discretization schemes are nonconforming, i.e., the TD-MFIE contribution is tested with divergence conforming functions instead of curl conforming functions. We therefore introduce a novel space-time mixed Galerkin discretization for the TD-CFIE. A family of temporal basis and testing functions with arbitrary order is introduced. It is explained how the corresponding interactions can be computed efficiently by existing collocation-in-time codes. The spatial mixed discretization is made fully conforming and consistent by leveraging both Rao-Wilton-Glisson and Buffa-Christiansen basis functions and by applying the appropriate bi-orthogonalization procedures. The combination of both techniques is essential when high accuracy over a broad frequency band is required. © 2012 IEEE.
International Nuclear Information System (INIS)
Ozgener, B.
1998-01-01
A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation
A boundary integral approach to unstable solidification
International Nuclear Information System (INIS)
Strain, J.
1989-01-01
We consider the supercooled Stefan problem with a general anisotropic curvature- and velocity-dependent boundary condition on the moving interface. We present numerical methods, based on an integral equation formulation and including a new algorithm for moving curves with curvature-dependent velocity. These methods compute a periodic interface with O(Δt) accuracy, where Δt is the time step. Previous work has been limited to short time spans and achieved slightly less than O(Δt 1/2 ) accuracy. Accurate numerical results are seen to agree with the predictions of linear stability theory. This agreement has eluded previous authors, because their numerical methods suffered from grid effects and their linear stability theory was incorrect. We study the long-time evolution of an unstable interface. Our computations exhibit the beginnings of a sidebranching instability when the boundary condition includes anisotropy and tip-splitting in the isotropic case. copyright 1989 Academic Press, Inc
Boundary integral methods for unsaturated flow
International Nuclear Information System (INIS)
Martinez, M.J.; McTigue, D.F.
1990-01-01
Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if αD > 4, where α is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on αD. 11 refs., 4 figs.,
Surface free energy for systems with integrable boundary conditions
International Nuclear Information System (INIS)
Goehmann, Frank; Bortz, Michael; Frahm, Holger
2005-01-01
The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions
Directory of Open Access Journals (Sweden)
Gbeminiyi Sobamowo
2017-04-01
Full Text Available The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathematical analyses were employed. It is noted that such solutions do not provide general exact solutions. Inevitably, comparatively simple, flexible yet accurate and practicable solutions are required for the analyses of these structures. Therefore, in this study, approximate analytical solutions are provided to the nonlinear equations arising in flow-induced vibration of pipes, micro-pipes and nanotubes using Galerkin-Newton-Harmonic Method (GNHM. The developed approximate analytical solutions are shown to be valid for both small and large amplitude oscillations. The accuracies and explicitness of these solutions were examined in limiting cases to establish the suitability of the method.
International Nuclear Information System (INIS)
Sanchez, Richard.
1975-04-01
For the one-dimensional geometries, the transport equation with linearly anisotropic scattering can be reduced to a single integral equation; this is a singular-kernel FREDHOLM equation of the second kind. When applying a conventional projective method that of GALERKIN, to the solution of this equation the well-known collision probability algorithm is obtained. Piecewise polynomial expansions are used to represent the flux. In the ANILINE code, the flux is supposed to be linear in plane geometry and parabolic in both cylindrical and spherical geometries. An integral relationship was found between the one-dimensional isotropic and anisotropic kernels; this allows to reduce the new matrix elements (issuing from the anisotropic kernel) to classic collision probabilities of the isotropic scattering equation. For cylindrical and spherical geometries used an approximate representation of the current was used to avoid an additional numerical integration. Reflective boundary conditions were considered; in plane geometry the reflection is supposed specular, for the other geometries the isotropic reflection hypothesis has been adopted. Further, the ANILINE code enables to deal with an incoming isotropic current. Numerous checks were performed in monokinetic theory. Critical radii and albedos were calculated for homogeneous slabs, cylinders and spheres. For heterogeneous media, the thermal utilization factor obtained by this method was compared with the theoretical result based upon a formula by BENOIST. Finally, ANILINE was incorporated into the multigroup APOLLO code, which enabled to analyse the MINERVA experimental reactor in transport theory with 99 groups. The ANILINE method is particularly suited to the treatment of strongly anisotropic media with considerable flux gradients. It is also well adapted to the calculation of reflectors, and in general, to the exact analysis of anisotropic effects in large-sized media [fr
Fused integrable lattice models with quantum impurities and open boundaries
International Nuclear Information System (INIS)
Doikou, Anastasia
2003-01-01
The alternating integrable spin chain and the RSOS(q 1 ,q 2 ;p) model in the presence of a quantum impurity are investigated. The boundary free energy due to the impurity is derived, the ratios of the corresponding g functions at low and high temperature are specified and their relevance to boundary flows in unitary minimal and generalized coset models is discussed. Finally, the alternating spin chain with diagonal and non-diagonal integrable boundaries is studied, and the corresponding boundary free energy and g functions are derived
Extension of meshless Galerkin/Petrov-Galerkin approach without using Lagrange multipliers
International Nuclear Information System (INIS)
Kamitani, Atsushi; Takayama, Teruou; Itoh, Taku; Nakamura, Hiroaki
2011-01-01
By directly discretizing the weak form used in the finite element method, meshless methods have been derived. Neither the Lagrange multiplier method nor the penalty method is employed in the derivation of the methods. The resulting methods are divided into two groups, depending on whether the discretization is based on the Galerkin or the Petrov-Galerkin approach. Each group is further subdivided into two groups, according to the method for imposing the essential boundary condition. Hence, four types of the meshless methods have been formulated. The accuracy of these methods is illustrated for two-dimensional Poisson problems. (author)
Beghein, Yves; Cools, Kristof; Bagci, Hakan; De Zutter, Danië l
2013-01-01
electrically conducting bodies, is free from spurious resonances. The standard marching-on-in-time technique for discretizing the TD-CFIE uses Galerkin and collocation schemes in space and time, respectively. Unfortunately, the standard scheme is theoretically
Classically integrable boundary conditions for affine Toda field theories
International Nuclear Information System (INIS)
Bowcock, P.; Corrigan, E.; Dorey, P.E.; Rietdijk, R.H.
1995-01-01
Boundary conditions compatible with classical integrability are studied both directly, using an approach based on the explicit construction of conserved quantities, and indirectly by first developing a generalisation of the Lax pair idea. The latter approach is closer to the spirit of earlier work by Sklyanin and yields a complete set of conjectures for permissible boundary conditions for any affine Toda field theory. (orig.)
APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS
Directory of Open Access Journals (Sweden)
Vorona Yu.V.
2015-12-01
Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.
Boundary conditions in conformal and integrable theories
Petkova, V B
2000-01-01
The study of boundary conditions in rational conformal field theories is not only physically important. It also reveals a lot on the structure of the theory ``in the bulk''. The same graphs classify both the torus and the cylinder partition functions and provide data on their hidden ``quantum symmetry''. The Ocneanu triangular cells -- the 3j-symbols of these symmetries, admit various interpretations and make a link between different problems.
Panafricanism, African Boundaries and Regional Integration ...
African Journals Online (AJOL)
The Pan African idea of closer unity is examined. Regional economic integration as a Pan African perspective is presented as a major way out of the deep and worsening economic crises bedeviling African economics. Attempts have been made since the 1960s to create and re-create institutions for regional economic ...
Infinite number of integrals of motion in classically integrable system with boundary: Pt.2
International Nuclear Information System (INIS)
Chen Yixin; Luo Xudong
1998-01-01
In Affine Toda field theory, links among three generating functions for integrals of motion derived from Part (I) are studied, and some classically integrable boundary conditions are obtained. An infinite number of integrals of motion are calculated in ZMS model with quasi-periodic condition. The authors find the classically integrable boundary conditions and K +- matrices of ZMS model with independent boundary conditions on each end. It is identified that an infinite number of integrals of motion does exist and one of them is the Hamiltonian, so this system is completely integrable
Classically integrable boundary conditions for symmetric-space sigma models
International Nuclear Information System (INIS)
MacKay, N.J.; Young, C.A.S.
2004-01-01
We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model
Galerkin method for solving diffusion equations
International Nuclear Information System (INIS)
Tsapelkin, E.S.
1975-01-01
A programme for the solution of the three-dimensional two-group multizone neutron diffusion problem in (x, y, z)-geometry is described. The programme XYZ-5 gives the currents of both groups, the effective neutron multiplication coefficient and several integral properties of the reactor. The solution was found with the Galerkin method using speciallly constructed and chosen coordinate functions. The programme is written in ALGOL-60 and consists of 5 parts. Its text is given
Bulger, Carrie A; Matthews, Russell A; Hoffman, Mark E
2007-10-01
While researchers are increasingly interested in understanding the boundaries surrounding the work and personal life domains, few have tested the propositions set forth by theory. Boundary theory proposes that individuals manage the boundaries between work and personal life through processes of segmenting and/or integrating the domains. The authors investigated boundary management profiles of 332 workers in an investigation of the segmentation-integration continuum. Cluster analysis indicated consistent clusters of boundary management practices related to varying segmentation and integration of the work and personal life domains. But, the authors suggest that the segmentation-integration continuum may be more complicated. Results also indicated relationships between boundary management practices and work-personal life interference and work-personal life enhancement. Less flexible and more permeable boundaries were related to more interference, while more flexible and more permeable boundaries were related to more enhancement.
POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media
Wang, Yi; Yu, Bo; Sun, Shuyu
2017-01-01
Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Feed back Petrov-Galerkin methods for convection dominated problems
International Nuclear Information System (INIS)
Carmo, E.G.D. do; Galeao, A.C.
1988-09-01
The Petrov-Galerkin method is adaptively applied to convection dominated problems. To this end a feedback function is created which increases the control of derivatives in the direction of he gradient of the approximate solution. This leads to a method with good stability properties close to boundary layers and high accuracy in those regions where regular solutions do occur. (author) [pt
Integrated care in the daily work: coordination beyond organisational boundaries.
Petrakou, Alexandra
2009-07-09
In this paper, integrated care in an inter-organisational cooperative setting of in-home elderly care is studied. The aim is to explore how home care workers coordinate their daily work, identify coordination issues in situ and discuss possible actions for supporting seamless and integrated elderly care at home. The empirical findings are drawn from an ethnographic workplace study of the cooperation and coordination taking place between home care workers in a Swedish county. Data were collected through observational studies, interviews and group discussions. The paper identifies a need to support two core issues. Firstly, it must be made clear how the care interventions that are currently defined as 'self-treatment' by the home health care should be divided. Secondly, the distributed and asynchronous coordination between all care workers involved, regardless of organisational belonging must be better supported. Integrated care needs to be developed between organisations as well as within each organisation. As a matter of fact, integrated care needs to be built up beyond organisational boundaries. Organisational boundaries affect the planning of the division of care interventions, but not the coordination during the home care process. During the home care process, the main challenge is the coordination difficulties that arise from the fact that workers are distributed in time and/or space, regardless of organisational belonging. A core subject for future practice and research is to develop IT tools that reach beyond formal organisational boundaries and processes while remaining adaptable in view of future structure changes.
Discretization of the induced-charge boundary integral equation.
Bardhan, Jaydeep P; Eisenberg, Robert S; Gillespie, Dirk
2009-07-01
Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.
Discretization of the induced-charge boundary integral equation.
Energy Technology Data Exchange (ETDEWEB)
Bardhan, J. P.; Eisenberg, R. S.; Gillespie, D.; Rush Univ. Medical Center
2009-07-01
Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.
Integrated care in the daily work: coordination beyond organisational boundaries
Directory of Open Access Journals (Sweden)
Alexandra Petrakou
2009-07-01
Full Text Available Objectives: In this paper, integrated care in an inter-organisational cooperative setting of in-home elderly care is studied. The aim is to explore how home care workers coordinate their daily work, identify coordination issues in situ and discuss possible actions for supporting seamless and integrated elderly care at home. Method: The empirical findings are drawn from an ethnographic workplace study of the cooperation and coordination taking place between home care workers in a Swedish county. Data were collected through observational studies, interviews and group discussions. Findings: The paper identifies a need to support two core issues. Firstly, it must be made clear how the care interventions that are currently defined as ‘self-treatment’ by the home health care should be divided. Secondly, the distributed and asynchronous coordination between all care workers involved, regardless of organisational belonging must be better supported. Conclusion: Integrated care needs to be developed between organisations as well as within each organisation. As a matter of fact, integrated care needs to be built up beyond organisational boundaries. Organisational boundaries affect the planning of the division of care interventions, but not the coordination during the home care process. During the home care process, the main challenge is the coordination difficulties that arise from the fact that workers are distributed in time and/or space, regardless of organisational belonging. A core subject for future practice and research is to develop IT tools that reach beyond formal organisational boundaries and processes while remaining adaptable in view of future structure changes.
Tokamak plasma shape identification based on the boundary integral equations
International Nuclear Information System (INIS)
Kurihara, Kenichi; Kimura, Toyoaki
1992-05-01
A necessary condition for tokamak plasma shape identification is discussed and a new identification method is proposed in this article. This method is based on the boundary integral equations governing a vacuum region around a plasma with only the measurement of either magnetic fluxes or magnetic flux intensities. It can identify various plasmas with low to high ellipticities with the precision determined by the number of the magnetic sensors. This method is applicable to real-time control and visualization using a 'table-look-up' procedure. (author)
Methods for assessing NPP containment pressure boundary integrity
International Nuclear Information System (INIS)
Naus, D.J.; Ellingwood, B.R.; Graves, H.L.
2004-01-01
Research is being conducted to address aging of the containment pressure boundary in light-water reactor plants. Objectives of this research are to (1) understand the significant factors relating to corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and of liners of concrete containments; (2) provide the U.S. Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation. Activities include development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of candidate techniques for inspection of inaccessible regions of containment metallic pressure boundaries; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion
A boundary integral formalism for stochastic ray tracing in billiards
International Nuclear Information System (INIS)
Chappell, David J.; Tanner, Gregor
2014-01-01
Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain
Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
International Nuclear Information System (INIS)
Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir
2016-01-01
Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.
Effective implementation of wavelet Galerkin method
Finěk, Václav; Šimunková, Martina
2012-11-01
It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.
Directory of Open Access Journals (Sweden)
Nahed S. Hussein
2014-01-01
Full Text Available A numerical boundary integral scheme is proposed for the solution to the system of eld equations of plane. The stresses are prescribed on one-half of the circle, while the displacements are given. The considered problem with mixed boundary conditions in the circle is replaced by two problems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way, and the problem at this stage is reduced to the solution to a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution and the unknown boundary values of stresses or displacements on proper parts of the boundary. On the basis of the obtained results, it is inferred that a stress component has a singularity at each of the two separation points, thought to be of logarithmic type. The results are discussed and boundary plots are given. We have also calculated the unknown functions in the bulk directly from the given boundary conditions using the boundary collocation method. The obtained results in the bulk are discussed and three-dimensional plots are given. A tentative form for the singular solution is proposed and the corresponding singular stresses and displacements are plotted in the bulk. The form of the singular tangential stress is seen to be compatible with the boundary values obtained earlier. The efficiency of the used numerical schemes is discussed.
International Nuclear Information System (INIS)
Chen Yixin; Luo Xudong
1998-01-01
By the zero curvature condition in classically integrable system, the generating functions for integrals of motion and equations for solving K +- matrices are obtained in two-dimensional integrable systems on a finite interval with independent boundary conditions on each end. Classically integrable boundary conditions will be found by solving K +- matrices. The authors develop a Hamiltonian method in classically integrable system with independent boundary conditions on each end. The result can be applied to more integrable systems than those associated with E.K. Sklyanin's approach
Boundary integral method for torsion of composite shafts
International Nuclear Information System (INIS)
Chou, S.I.; Mohr, J.A.
1987-01-01
The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)
Sirenko, Kostyantyn; Asirim, Ozum Emre; Bagci, Hakan
2014-01-01
Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for 'linear' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.
Sirenko, Kostyantyn
2014-07-01
Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for \\'linear\\' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Integrable systems on so(4) related to XXX spin chains with boundaries
International Nuclear Information System (INIS)
Tsiganov, A V; Goremykin, O V
2004-01-01
We consider two-site XXX Heisenberg magnets with different boundary conditions, which are integrable systems on so(4) possessing additional cubic and quartic integrals of motion. The separated variables for these models are constructed using the Sklyanin method
A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow
Toose, E.M.; Geurts, B.J.; Kuerten, J.G.M.
1995-01-01
A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra
Piloting and Path Integration within and across Boundaries
Mou, Weimin; Wang, Lin
2015-01-01
Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision.…
Directory of Open Access Journals (Sweden)
Aydin Secer
2013-01-01
Full Text Available An efficient solution algorithm for sinc-Galerkin method has been presented for obtaining numerical solution of PDEs with Dirichlet-type boundary conditions by using Maple Computer Algebra System. The method is based on Whittaker cardinal function and uses approximating basis functions and their appropriate derivatives. In this work, PDEs have been converted to algebraic equation systems with new accurate explicit approximations of inner products without the need to calculate any numeric integrals. The solution of this system of algebraic equations has been reduced to the solution of a matrix equation system via Maple. The accuracy of the solutions has been compared with the exact solutions of the test problem. Computational results indicate that the technique presented in this study is valid for linear partial differential equations with various types of boundary conditions.
International Nuclear Information System (INIS)
Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn
2012-01-01
This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)
δ'-function perturbations and Neumann boundary-conditions by path integration
International Nuclear Information System (INIS)
Grosche, C.
1994-02-01
δ'-function perturbations and Neumann boundary conditions are incorporated into the path integral formalism. The starting point is the consideration of the path integral representation for the one dimensional Dirac particle together with a relativistic point interaction. The non-relativistic limit yields either a usual δ-function or a δ'-function perturbation; making their strengths infinitely repulsive one obtains Dirichlet, respectively Neumann boundary conditions in the path integral. (orig.)
Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design
Lee, Esther; Wurster, Kathryn E.
2017-01-01
A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating
Model Adaptation in Parametric Space for POD-Galerkin Models
Gao, Haotian; Wei, Mingjun
2017-11-01
The development of low-order POD-Galerkin models is largely motivated by the expectation to use the model developed with a set of parameters at their native values to predict the dynamic behaviors of the same system under different parametric values, in other words, a successful model adaptation in parametric space. However, most of time, even small deviation of parameters from their original value may lead to large deviation or unstable results. It has been shown that adding more information (e.g. a steady state, mean value of a different unsteady state, or an entire different set of POD modes) may improve the prediction of flow with other parametric states. For a simple case of the flow passing a fixed cylinder, an orthogonal mean mode at a different Reynolds number may stabilize the POD-Galerkin model when Reynolds number is changed. For a more complicated case of the flow passing an oscillatory cylinder, a global POD-Galerkin model is first applied to handle the moving boundaries, then more information (e.g. more POD modes) is required to predicate the flow under different oscillatory frequencies. Supported by ARL.
Energy Technology Data Exchange (ETDEWEB)
Gurevich, S. G.
1955-07-01
Galerkin's method is applied to the solution of a linear partial differential equation of arbitrary order under specified initial and boundary conditions. An example is carried through in complete detail to illustrate the method. (auth)
Goswami, Deepjyoti; Pani, Amiya K.
2011-01-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis
Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary
Directory of Open Access Journals (Sweden)
Fitkevich Maxim
2016-01-01
Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.
A second order discontinuous Galerkin method for advection on unstructured triangular meshes
Geijselaers, Hubertus J.M.; Huetink, Han
2003-01-01
In this paper the advection of element data which are linearly distributed inside the elements is addressed. Across element boundaries the data are assumed discontinuous. The equations are discretized by the Discontinuous Galerkin method. For stability and accuracy at large step sizes (large values
Local defect correction for boundary integral equation methods
Kakuba, G.; Anthonissen, M.J.H.
2014-01-01
The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume
Local defect correction for boundary integral equation methods
Kakuba, G.; Anthonissen, M.J.H.
2013-01-01
This paper presents a new approach to gridding for problems with localised regions of high activity. The technique of local defect correction has been studied for other methods as ¿nite difference methods and ¿nite volume methods. In this paper we develop the technique for the boundary element
Nonlinear dynamic analysis using Petrov-Galerkin natural element method
International Nuclear Information System (INIS)
Lee, Hong Woo; Cho, Jin Rae
2004-01-01
According to our previous study, it is confirmed that the Petrov-Galerkin Natural Element Method (PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin Natural Element Method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem
One out of many? Boundary negotiation and identity formation in postmerger integration
Drori, Israel; Wrzesniewski, Amy; Ellis, Shmuel
2013-01-01
This research investigates how boundaries are utilized during the postmerger integration process to influence the postmerger identity of the firm. We suggest that the boundaries that define the structures, practices, and values of firms prior to a merger become reinforced, contested, or revised in
Mixed Element Formulation for the Finite Element-Boundary Integral Method
National Research Council Canada - National Science Library
Meese, J; Kempel, L. C; Schneider, S. W
2006-01-01
A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...
Second-order domain derivative of normal-dependent boundary integrals
Balzer, Jonathan
2010-01-01
Numerous reconstruction tasks in (optical) surface metrology allow for a variational formulation. The occurring boundary integrals may be interpreted as shape functions. The paper is concerned with the second-order analysis of such functions. Shape
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin
2017-12-01
The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.
Topology and boundary shape optimization as an integrated design tool
Bendsoe, Martin Philip; Rodrigues, Helder Carrico
1990-01-01
The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.
Expanding the Boundaries of Behavioral Integrity in Organizations
2010-07-01
happened to someone else, subordinates can rationally seek behavioral solutions that punish the managers or the organization they represent (i.e...Thousand Oaks, CA: Sage. Brief, A. P., & Motowidlo, S. J. 1986. Prosocial organizational behaviors . Academy of Management Review, 11(4): 710-725...Dissertation Publication 3. DATES COVERED (From - To) 15-03-2009 to 25-07-2010 4. TITLE AND SUBTITLE Expanding the Boundaries of Behavioral
Li, Xiaofan; Nie, Qing
2009-01-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratu...
De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas
2017-04-01
We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc; Kanschat, Guido; Ragusa, Jean C.
2013-01-01
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc
2013-10-11
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
An(1) affine Toda field theories with integrable boundary conditions revisited
International Nuclear Information System (INIS)
Doikou, Anastasia
2008-01-01
Generic classically integrable boundary conditions for the A n (1) affine Toda field theories (ATFT) are investigated. The present analysis rests primarily on the underlying algebra, defined by the classical version of the reflection equation. We use as a prototype example the first non-trivial model of the hierarchy i.e. the A 2 (1) ATFT, however our results may be generalized for any A n (1) (n > 1). We assume here two distinct types of boundary conditions called some times soliton preserving (SP), and soliton non-preserving (SNP) associated to two distinct algebras, i.e. the reflection algebra and the (q) twisted Yangian respectively. The boundary local integrals of motion are then systematically extracted from the asymptotic expansion of the associated transfer matrix. In the case of SNP boundary conditions we recover previously known results. The other type of boundary conditions (SP), associated to the reflection algebra, are novel in this context and lead to a different set of conserved quantities that depend on free boundary parameters. It also turns out that the number of local integrals of motion for SP boundary conditions is 'double' compared to those of the SNP case.
Kot, V. A.
2017-11-01
The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.
McCullough, Jeffrey S; Snir, Eli M
2010-05-01
We study the relationship between physician-hospital integration and its relation to monitoring IT utilization. We develop a theoretical model in which monitoring IT may complement or substitute for integration and test these relationships using a novel data source. Physician labor market heterogeneity identifies the empirical model. We find that monitoring IT utilization is increasing in integration, implying that expanded firm boundaries complement monitoring IT adoption. We argue that the relationship between monitoring IT and firm boundaries depends upon the contractibility of the monitored information.
Second-order domain derivative of normal-dependent boundary integrals
Balzer, Jonathan
2010-03-17
Numerous reconstruction tasks in (optical) surface metrology allow for a variational formulation. The occurring boundary integrals may be interpreted as shape functions. The paper is concerned with the second-order analysis of such functions. Shape Hessians of boundary integrals are considered difficult to find analytically because they correspond to third-order derivatives of an, in a sense equivalent, domain integral. We complement previous results by considering cost functions depending explicitly on the surface normal. The correctness and practicability of our calculations are verified in the context of a Newton-type shape reconstruction method. © 2010 Birkhäuser / Springer Basel AG.
OhioLINK: Implementing Integrated Library Services across Institutional Boundaries.
Hawks, Carol Pitts
1995-01-01
Discusses the implementation of the OhioLINK (Ohio Library and Information Network) system, an integrated library system linking 23 public and private academic institutions and the Ohio State Library. Topics include a history of OhioLINK; organizational structure; decision-making procedures; public relations strategies; cooperative circulation;…
Stable Galerkin versus equal-order Galerkin least-squares elements for the stokes flow problem
International Nuclear Information System (INIS)
Franca, L.P.; Frey, S.L.; Sampaio, R.
1989-11-01
Numerical experiments are performed for the stokes flow problem employing a stable Galerkin method and a Galerkin/Least-squares method with equal-order elements. Error estimates for the methods tested herein are reviewed. The numerical results presented attest the good stability properties of all methods examined herein. (A.C.A.S.) [pt
A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
Terrana, S.; Vilotte, J. P.; Guillot, L.
2018-04-01
We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm
[Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].
Gómez, Amparo
2014-01-01
This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.
Integrating Sustainability into the Curriculum: Crossing Disciplinary Boundaries
Pushnik, J.
2012-12-01
The next generation will confront an increased number of global issues that interface the complexities of socioeconomic perspectives, environmental stability, poverty and development. Recently California State University Chico undertook a general education reform, providing a unique opportunity to craft a general education pathway to prepare students for these challenges by focusing a curriculum on sustainability. The Sustainability Pathway emphasizes a system thinking approach to help students understand and be able to address a set of problems involving the biosphere processes, human institutions and the economic vitality. The curriculum intentionally integrates courses from across the disciplines of natural sciences, social sciences, agriculture, engineering, economics, arts and humanities into a central focused theme of sustainability. The diverse backgrounds and academic focus of the participating faculty has necessitate the development of a common language and a cohesion within the curriculum. To address these needs a faculty learning community (FLC) was established to build on a common set of case studies. Three regional environmental water related issues were selected that had demonstrable socioeconomic, equity/ethical dimensions and environmental consequences. These case studies are Klamath River basin in northern California, the Bay-Delta project in the central part of the state and the Sultan Sea in southern California. Members of the FLC has contributed a perspective from their academic discipline which includes proposed reading lists, web based resources and PowerPoint presentations which are housed in common web- based resource repository. The pedagogical rational is to create linkages and cohesion among the courses in the curriculum by iteratively examining these case studies as basis for development of a multidisciplinary perspective as students progress through their general education.
Brown, Phil
2013-06-01
This article reviews the personal and professional processes of developing an interdisciplinary approach to understanding the complex issues of environmental health in their community, political-economic, social science, and scientific contexts. This interdisciplinary approach includes a synthesis of research, policy work, and advocacy. To examine multiple forms of interdisciplinarity, I examine pathways of integrating medical and environmental sociology via three challenges to the boundaries of traditional research: (1) crossing the boundaries of medical and environmental sociology, (2) linking social science and environmental health science, and (3) crossing the boundary of research and advocacy. These boundary crossings are discussed in light of conceptual and theoretical developments of popular epidemiology, contested illnesses, and health social movements. This interdisciplinary work offers a more comprehensive sociological lens for understanding complex problems and a practical ability to join with scientists, activists, and officials to meet public health needs for amelioration and prevention of environmental health threats.
An integral boundary layer method for modelling the effects of vortex generators
Baldacchino, D.; Ragni, D.; Simao Ferreira, C.J.; Van Bussel, G.J.W.
2015-01-01
In this work, the measured modulated integral boundary layer (IBL) characteristics of low-profile vortex generators (VGs) are used to validate new developments in a viscousinviscid interaction code which is modified to incorporate the effect of the passive mixing devices. The motivations are laid
Directory of Open Access Journals (Sweden)
Archana Chauhan
2012-12-01
Full Text Available In this article, we establish a general framework for finding solutions for impulsive fractional integral boundary-value problems. Then, we prove the existence and uniqueness of solutions by applying well known fixed point theorems. The obtained results are illustrated with an example for their feasibility.
On the boundary conditions and optimization methods in integrated digital image correlation
Kleinendorst, S.M.; Verhaegh, B.J.; Hoefnagels, J.P.M.; Ruybalid, A.; van der Sluis, O.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.
2018-01-01
In integrated digital image correlation (IDIC) methods attention must be paid to the influence of using a correct geometric and material model, but also to make the boundary conditions in the FE simulation match the real experiment. Another issue is the robustness and convergence of the IDIC
M. Denche; A. L. Marhoune
2003-01-01
In this paper, we study a mixed problem with integral boundary conditions for a high order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on energy inequality, and on the density of the range of the operator generated by the considered problem.
Kuijpers, A.H.W.M.; Verbeek, G.; Verheij, J.W.
1997-01-01
Effective use of the Fourier series boundary element method (FBEM) for everyday applications is hindered by the significant numerical problems that have to be overcome for its implementation. In the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need to be
Energy Technology Data Exchange (ETDEWEB)
Chen, Ke [Univ. of Liverpool (United Kingdom)
1996-12-31
We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.
Numerical solution of the helmholtz equation for the superellipsoid via the galerkin method
Directory of Open Access Journals (Sweden)
Hy Dinh
2013-01-01
Full Text Available The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes was: $x=cos(xsin(y^{n},y=sin(xsin(y^{n},z=cos(y$ where $n$ varied from 0.5 to 4. The Helmholtz equation, which is the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition, we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equation, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green's theorem to solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method, such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala , Warnapala and Morgan .
Description of internal flow problems by a boundary integral method with dipole panels
International Nuclear Information System (INIS)
Krieg, R.; Hailfinger, G.
1979-01-01
In reactor safety studies the failure of single components is postulated or sudden accident loadings are assumed and the consequences are investigated. Often as a first consequence highly transient three dimensional flow problems occur. In contrast to classical flow problems, in most of the above cases the fluid velocities are relatively small whereas the accelerations assume high values. As a consequence both, viscosity effects and dynamic pressures which are proportional to the square of the fluid velocities are usually negligible. For cases, where the excitation times are considerably longer than the times necessary for a wave to traverse characteristic regions of the fluid field, also the fluid compressibility is negligible. Under these conditions boundary integral methods are an appropriate tool to deal with the problem. Flow singularities are distributed over the fluid boundaries in such a way that pressure and velocity fields are obtained which satisfy the boundary conditions. In order to facilitate the numerical treatment the fluid boundaries are approximated by a finite number of panels with uniform singularity distributions on each of them. Consequently the pressure and velocity field of the given problem may be obtained by superposition of the corresponding fields due to these panels with their singularity intensities as unknown factors. Then satisfying the boundary conditions in so many boundary points as panels have been introduced, yields a system of linear equations which in general allows for a unique determination of the unknown intensities. (orig./RW)
An h-p Taylor-Galerkin finite element method for compressible Euler equations
Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.
1991-01-01
An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.
The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation
Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi
2014-01-01
We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...
On the elastostatic significance of four boundary integrals involving biharmonic functions
DEFF Research Database (Denmark)
Christiansen, Søren
1998-01-01
For a biharmonic function U, depending upon two space variables, it is known that four curve integrals, which involve U and some derivatives of U evaluated at a closed boundary, must be equal to zero. When U plays the role of an Airy stress function, we investigate the elastostatic significance o...... with the values of the four integrals. The computer algebra system Maple V has been an invaluable tool. By suitable comparisons among the various results obtained we are led to the conclusions about the elastostatic significance of the integrals....
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates
Kitahara, M
1985-01-01
The boundary integral equation (BIE) method has been used more and more in the last 20 years for solving various engineering problems. It has important advantages over other techniques for numerical treatment of a wide class of boundary value problems and is now regarded as an indispensable tool for potential problems, electromagnetism problems, heat transfer, fluid flow, elastostatics, stress concentration and fracture problems, geomechanical problems, and steady-state and transient electrodynamics.In this book, the author gives a complete, thorough and detailed survey of the method. It pro
A Galerkin least squares approach to viscoelastic flow.
Energy Technology Data Exchange (ETDEWEB)
Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schunk, Peter Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-01
A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.
Adaptive discontinuous Galerkin methods for non-linear reactive flows
Uzunca, Murat
2016-01-01
The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.
Element free Galerkin formulation of composite beam with longitudinal slip
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad [Department of Civil Engineering, Universiti Selangor, Bestari Jaya, Selangor (Malaysia); Badli, Mohd Iqbal; Yassin, Airil Y. Mohd [Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor (Malaysia)
2015-05-15
Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.
On the solvability of initial boundary value problems for nonlinear ...
African Journals Online (AJOL)
In this paper, we study the initial boundary value problems for a non-linear time dependent Schrödinger equation with Dirichlet and Neumann boundary conditions, respectively. We prove the existence and uniqueness of solutions of the initial boundary value problems by using Galerkin's method. Keywords: Initial boundary ...
Li, Xiaofan; Nie, Qing
2009-07-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.
Hybridized Multiscale Discontinuous Galerkin Methods for Multiphysics
2015-09-14
local approximation spaces of the hybridizable discontinuous Galerkin methods with precomputed phases which are solutions of the eikonal equation in...geometrical optics. Second, we propose a systematic procedure for computing multiple solutions of the eikonal equation. Third, we utilize the eigenvalue
Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver
Directory of Open Access Journals (Sweden)
Ma Yanfeng
2016-10-01
Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.
Galerkin v. discrete-optimal projection in nonlinear model reduction
Energy Technology Data Exchange (ETDEWEB)
Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)
2015-04-01
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.
Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.
2013-01-01
We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561
Muskhelishvili, N I
2011-01-01
Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem
An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
International Nuclear Information System (INIS)
Shi Ting-Yu; Ge Hong-Xia; Cheng Rong-Jun
2013-01-01
A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method
Active flow control insight gained from a modified integral boundary layer equation
Seifert, Avraham
2016-11-01
Active Flow Control (AFC) can alter the development of boundary layers with applications (e.g., reducing drag by separation delay or separating the boundary layers and enhancing vortex shedding to increase drag). Historically, significant effects of steady AFC methods were observed. Unsteady actuation is significantly more efficient than steady. Full-scale AFC tests were conducted with varying levels of success. While clearly relevant to industry, AFC implementation relies on expert knowledge with proven intuition and or costly and lengthy computational efforts. This situation hinders the use of AFC while simple, quick and reliable design method is absent. An updated form of the unsteady integral boundary layer (UIBL) equations, that include AFC terms (unsteady wall transpiration and body forces) can be used to assist in AFC analysis and design. With these equations and given a family of suitable velocity profiles, the momentum thickness can be calculated and matched with an outer, potential flow solution in 2D and 3D manner to create an AFC design tool, parallel to proven tools for airfoil design. Limiting cases of the UIBL equation can be used to analyze candidate AFC concepts in terms of their capability to modify the boundary layers development and system performance.
Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)
Energy Technology Data Exchange (ETDEWEB)
Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.
1997-04-01
This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.
Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)
International Nuclear Information System (INIS)
Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.
1997-01-01
This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications
Numerical solution of fuzzy boundary value problems using Galerkin ...
Indian Academy of Sciences (India)
Home; Journals; Sadhana; Volume 42; Issue 1 ... College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China; Department of Mathematics, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751 024, India; Department of Mathematics, National Institute of Technology, Rourkela, ...
Solution of the Stokes system by boundary integral equations and fixed point iterative schemes
International Nuclear Information System (INIS)
Chidume, C.E.; Lubuma, M.S.
1990-01-01
The solution to the exterior three dimensional Stokes problem is sought in the form of a single layer potential of unknown density. This reduces the problem to a boundary integral equation of the first kind whose operator is the velocity component of the single layer potential. It is shown that this component is an isomorphism between two appropriate Sobolev spaces containing the unknown densities and the data respectively. The isomorphism corresponds to a variational problem with coercive bilinear form. The latter property allows us to consider various fixed point iterative schemes that converge to the unique solution of the integral equation. Explicit error estimates are also obtained. The successive approximations are also considered in a more computable form by using the product integration method of Atkinson. (author). 47 refs
Leise, Tanya L.
2009-08-19
We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.
On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis
International Nuclear Information System (INIS)
Ignatyev, M. Yu.
2013-01-01
This paper is concerned with the Korteweg–de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.
Discontinuous Galerkin Method for Hyperbolic Conservation Laws
Mousikou, Ioanna
2016-11-11
Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.
Discontinuous Galerkin Method for Hyperbolic Conservation Laws
Mousikou, Ioanna
2016-01-01
Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.
Duijn, M.; Rijnveld, M.
2008-01-01
Knowledge transfer and integration is the main challenge in many knowledge management projects. This challenge follows from the observation that it is difficult to determine how and what knowledge may transfer from one person to another, from one team to another and from one network or organization
Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation
Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads
2016-03-01
Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.
The boundary integral equations method for analysis of high-frequency vibrations of an elastic layer
Czech Academy of Sciences Publication Activity Database
Sorokin, S.; Kolman, Radek; Kopačka, Ján
2017-01-01
Roč. 87, č. 4 (2017), s. 737-750 ISSN 0939-1533 R&D Projects: GA ČR(CZ) GA16-03823S; GA MŠk(CZ) EF15_003/0000493 Institutional support: RVO:61388998 Keywords : an elastic layer * symmetric and skew-symmetric waves * the Green’s matrix * boundary integral equations * eigen frequencies Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 1.490, year: 2016 https://link.springer.com/article/10.1007/s00419-016-1220-y
Boundary integral equation methods and numerical solutions thin plates on an elastic foundation
Constanda, Christian; Hamill, William
2016-01-01
This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...
Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.
1986-01-01
A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.
Russell, John
2000-11-01
A modified Orr-Sommerfeld equation that applies to the asymptotic suction boundary layer was reported by Bussmann & Münz in a wartime report dated 1942 and by Hughes & Reid in J.F.M. ( 23, 1965, p715). Fundamental systems of exact solutions of the Orr-Sommerfeld equation for this mean velocity distribution were reported by D. Grohne in an unpublished typescript dated 1950. Exact solutions of the equation of Bussmann, Münz, Hughes, & Reid were reported by P. Baldwin in Mathematika ( 17, 1970, p206). Grohne and Baldwin noticed that these exact solutions may be expressed either as Barnes integrals or as convolution integrals. In a later paper (Phil. Trans. Roy. Soc. A, 399, 1985, p321), Baldwin applied the convolution integrals in the contruction of large-Reynolds number asymptotic approximations that hold uniformly. The present talk discusses the subtleties that arise in the construction of such convolution integrals, including several not reported by Grohne or Baldwin. The aim is to recover the full set of seven solutions (one well balanced, three balanced, and three dominant-recessive) postulated by W.H. Reid in various works on the uniformly valid solutions.
Directory of Open Access Journals (Sweden)
Imen Boutana
2007-12-01
Full Text Available This paper provide some applications of Pettis integration to differential inclusions in Banach spaces with three point boundary conditions of the form $$ ddot{u}(t in F(t,u(t,dot u(t+H(t,u(t,dot u(t,quad hbox{a.e. } t in [0,1], $$ where $F$ is a convex valued multifunction upper semicontinuous on $Eimes E$ and $H$ is a lower semicontinuous multifunction. The existence of solutions is obtained under the non convexity condition for the multifunction $H$, and the assumption that $F(t,x,ysubset Gamma_{1}(t$, $H(t,x,ysubset Gamma_{2}(t$, where the multifunctions $Gamma_{1},Gamma_{2}:[0,1] ightrightarrows E$ are uniformly Pettis integrable.
The D(D3)-anyon chain: integrable boundary conditions and excitation spectra
International Nuclear Information System (INIS)
Finch, Peter E; Frahm, Holger
2013-01-01
Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D 3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z 4 parafermion or a M (5,6) minimal model. (paper)
Bardhan, Jaydeep P; Knepley, Matthew G; Brune, Peter
2015-01-01
In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online.
Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter
2015-01-01
In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581
Discontinuous Galerkin finite element methods for hyperbolic differential equations
van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.
2002-01-01
In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas
A Comprehensive Review of Boundary Integral Formulations of Acoustic Scattering Problems
Directory of Open Access Journals (Sweden)
S.I. Zaman
2000-12-01
Full Text Available This is a review presenting an overview of the developments in boundary integral formulations of the acoustic scattering problems. Generally, the problem is formulated in one of two ways viz. Green’s representation formula, and the Layer-theoretic formulation utilizing either a simple-layer or a double-layer potential. The review presents and expounds the major contributions in this area over the last four decades. The need for a robust and improved formulation of the exterior scattering problem (Neumann or Dirichlet arose due to the fact that the classical formulation failed to yield a unique solution at (acoustic wave-numbers which correspond to eigenvalues (eigenfrequencies of the corresponding interior scattering problem. Moreover, this correlation becomes more pronounced as the wave-numbers become larger i.e. as the (acoustic frequency increases. The robust integral formulations which are discussed here yield Fredholms integral equations of the second kind which are more amenable to computation than the first kind. However, the integral equation involves a hypersingular kernel which creates ill-conditioning in the final matrix representation. This is circumvented by a regularisation technique. An extensive useful list of references is also presented here for researchers in this area.
Spacetime Discontinuous Galerkin FEM: Spectral Response
International Nuclear Information System (INIS)
Abedi, R; Omidi, O; Clarke, P L
2014-01-01
Materials in nature demonstrate certain spectral shapes in terms of their material properties. Since successful experimental demonstrations in 2000, metamaterials have provided a means to engineer materials with desired spectral shapes for their material properties. Computational tools are employed in two different aspects for metamaterial modeling: 1. Mircoscale unit cell analysis to derive and possibly optimize material's spectral response; 2. macroscale to analyze their interaction with conventional material. We compare two different approaches of Time-Domain (TD) and Frequency Domain (FD) methods for metamaterial applications. Finally, we discuss advantages of the TD method of Spacetime Discontinuous Galerkin finite element method (FEM) for spectral analysis of metamaterials
The Galerkin finite element method for a multi-term time-fractional diffusion equation
Jin, Bangti
2015-01-01
© 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.
An Element Free Galerkin method for an elastoplastic coupled to damage analysis
Directory of Open Access Journals (Sweden)
Sendi Zohra
2016-01-01
Full Text Available In this work, a Meshless approach for nonlinear solid mechanics is developed based on the Element Free Galerkin method. Furthermore, Meshless is combined with an elastoplastic model coupled to ductile damage. The efficiency of the proposed methodology is evaluated through various numerical examples. Besides these, two-dimensional tensile tests under several boundary conditions were studied and solved by a Dynamic-Explicit resolution scheme. Finally, the results obtained from the numerical simulations are analyzed and critically compared with Finite Element Method results.
A time-domain finite element boundary integral approach for elastic wave scattering
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
Directory of Open Access Journals (Sweden)
Alsaedi Ahmed
2009-01-01
Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.
An implicit boundary integral method for computing electric potential of macromolecules in solvent
Zhong, Yimin; Ren, Kui; Tsai, Richard
2018-04-01
A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.
Boundary-integral equation formulation for time-dependent inelastic deformation in metals
Energy Technology Data Exchange (ETDEWEB)
Kumar, V; Mukherjee, S
1977-01-01
The mathematical structure of various constitutive relations proposed in recent years for representing time-dependent inelastic deformation behavior of metals at elevated temperatues has certain features which permit a simple formulation of the three-dimensional inelasticity problem in terms of real time rates. A direct formulation of the boundary-integral equation method in terms of rates is discussed for the analysis of time-dependent inelastic deformation of arbitrarily shaped three-dimensional metallic bodies subjected to arbitrary mechanical and thermal loading histories and obeying constitutive relations of the kind mentioned above. The formulation is based on the assumption of infinitesimal deformations. Several illustrative examples involving creep of thick-walled spheres, long thick-walled cylinders, and rotating discs are discussed. The implementation of the method appears to be far easier than analogous BIE formulations that have been suggested for elastoplastic problems.
Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki
2014-01-13
Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.
A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS
Munoz, Cesar A.; Narkawicz, Anthony; Chamberlain, James; Consiglio, Maria; Upchurch, Jason
2014-01-01
The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defines the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. For these models, algorithms that predict well-clear violations along aircraft current trajectories are provided. These algorithms are analogous to conflict detection algorithms but instead of predicting loss of separation, they predict whether well-clear violations will occur during a given lookahead time interval. Analytical techniques are used to study the properties and relationships satisfied by the models.
A hybrid Pade-Galerkin technique for differential equations
Geer, James F.; Andersen, Carl M.
1993-01-01
A three-step hybrid analysis technique, which successively uses the regular perturbation expansion method, the Pade expansion method, and then a Galerkin approximation, is presented and applied to some model boundary value problems. In the first step of the method, the regular perturbation method is used to construct an approximation to the solution in the form of a finite power series in a small parameter epsilon associated with the problem. In the second step of the method, the series approximation obtained in step one is used to construct a Pade approximation in the form of a rational function in the parameter epsilon. In the third step, the various powers of epsilon which appear in the Pade approximation are replaced by new (unknown) parameters (delta(sub j)). These new parameters are determined by requiring that the residual formed by substituting the new approximation into the governing differential equation is orthogonal to each of the perturbation coordinate functions used in step one. The technique is applied to model problems involving ordinary or partial differential equations. In general, the technique appears to provide good approximations to the solution even when the perturbation and Pade approximations fail to do so. The method is discussed and topics for future investigations are indicated.
Guermond, Jean-Luc; Kanschat, Guido
2010-01-01
We revisit some results from M. L. Adams [Nu cl. Sci. Engrg., 137 (2001), pp. 298- 333]. Using functional analytic tools we prove that a necessary and sufficient condition for the standard upwind discontinuous Galerkin approximation to converge to the correct limit solution in the diffusive regime is that the approximation space contains a linear space of continuous functions, and the restrictions of the functions of this space to each mesh cell contain the linear polynomials. Furthermore, the discrete diffusion limit converges in the Sobolev space H1 to the continuous one if the boundary data is isotropic. With anisotropic boundary data, a boundary layer occurs, and convergence holds in the broken Sobolev space H with s < 1/2 only © 2010 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Leinonen, Matti; Hakula, Harri; Hyvönen, Nuutti
2014-01-01
The aim of electrical impedance tomography is to determine the internal conductivity distribution of some physical body from boundary measurements of current and voltage. The most accurate forward model for impedance tomography is the complete electrode model, which consists of the conductivity equation coupled with boundary conditions that take into account the electrode shapes and the contact resistances at the corresponding interfaces. If the reconstruction task of impedance tomography is recast as a Bayesian inference problem, it is essential to be able to solve the complete electrode model forward problem with the conductivity and the contact resistances treated as a random field and random variables, respectively. In this work, we apply a stochastic Galerkin finite element method to the ensuing elliptic stochastic boundary value problem and compare the results with Monte Carlo simulations
Taneja, Ankur; Higdon, Jonathan
2018-01-01
A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.
Cheng, Jian; Yue, Huiqiang; Yu, Shengjiao; Liu, Tiegang
2018-06-01
In this paper, an adjoint-based high-order h-adaptive direct discontinuous Galerkin method is developed and analyzed for the two dimensional steady state compressible Navier-Stokes equations. Particular emphasis is devoted to the analysis of the adjoint consistency for three different direct discontinuous Galerkin discretizations: including the original direct discontinuous Galerkin method (DDG), the direct discontinuous Galerkin method with interface correction (DDG(IC)) and the symmetric direct discontinuous Galerkin method (SDDG). Theoretical analysis shows the extra interface correction term adopted in the DDG(IC) method and the SDDG method plays a key role in preserving the adjoint consistency. To be specific, for the model problem considered in this work, we prove that the original DDG method is not adjoint consistent, while the DDG(IC) method and the SDDG method can be adjoint consistent with appropriate treatment of boundary conditions and correct modifications towards the underlying output functionals. The performance of those three DDG methods is carefully investigated and evaluated through typical test cases. Based on the theoretical analysis, an adjoint-based h-adaptive DDG(IC) method is further developed and evaluated, numerical experiment shows its potential in the applications of adjoint-based adaptation for simulating compressible flows.
Directory of Open Access Journals (Sweden)
Min Jia
2012-01-01
Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t, 0
Cowdell, Fiona; Booth, Andrew; Appleby, Ben
2017-11-01
To review published literature to identify when and how patients and healthcare practitioners have been involved in knowledge mobilization activity and the impact this may have had on their care. Improving patient outcomes, satisfaction and quality of care is increasingly reliant on shared decision-making between health professionals and patients. Knowledge mobilization, at its simplest: "moving knowledge to where it can be most useful" is a growing field of academic study. To date, it appears that much effort has focused on moving knowledge from researchers to healthcare practitioners. Knowledge mobilization to patients is currently under-researched. Integrative review. Methods of integrative review will be used to address the review problem. PRISMA guidelines were used as a general framework to guide structuring and reporting the review. Elements of method-specific reporting guidelines for specific streams of evidence will be used as required. This review will aim to provide a broad and deep understanding of patient-practitioner-researcher engagement in knowledge mobilization activity. This synthesis of the extant literature should offer insights into the optimum characteristics of methods for bridging patient-practitioner-researcher boundaries in knowledge mobilization action. © 2017 John Wiley & Sons Ltd.
On the Theoretical Integration of Accounting Discipline and the Boundary of Accounting
Institute of Scientific and Technical Information of China (English)
CAO Wei
2016-01-01
The discipline of accounting has formed many branches,and from it split some independent majors as well,such as financial management,auditing and so on.However,due to lacking of comprehensive thinking and theoretical summary,some of the basic relationships between accounting branches still cannot be explained clearly in theory,thus making people have difficulty in understanding clearly the hierarchical structure of the accounting discipline and the nature and boundary of accounting.The idea of theoretical integration presented by this study is:to reconstruct (or return to) the basic theoretical structure of accounting,and on this basis to establish the basic accounting;to shape some accounting branches through the cross links between the basic accounting and other related disciplines;to form a narrow-sense accounting with the external and internal two information systems of the accounting entity,which should be developed on the basis of the basic accounting;and to integrate such disciplines as the narrow-sense accounting,financial management and auditing into a generalized accounting through the value management of the accounting entity,which is necessary.Some interdisciplinary subjects shaped by the accounting information system with some related crossing disciplines (such as national economic accounting,forensic accounting,etc.) belong to a more generalized accounting.
A highly accurate boundary integral equation method for surfactant-laden drops in 3D
Sorgentone, Chiara; Tornberg, Anna-Karin
2018-05-01
The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.
Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry
Kitzmann, D.; Bolte, J.; Patzer, A. B. C.
2016-11-01
The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.
Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.
Energy Technology Data Exchange (ETDEWEB)
Choi, Youngsoo [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlberg, Kevin Thomas [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.
2017-09-01
Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over all space and time in a weighted ℓ^{2}-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.
Liu, Meilin
2012-08-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.
Liu, Meilin; Sirenko, Kostyantyn; Bagci, Hakan
2012-01-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.
On cell entropy inequality for discontinuous Galerkin methods
Jiang, Guangshan; Shu, Chi-Wang
1993-01-01
We prove a cell entropy inequality for a class of high order discontinuous Galerkin finite element methods approximating conservation laws, which implies convergence for the one dimensional scalar convex case.
Gao, Y.; Balaram, P.; Islam, S.
2009-12-01
Water issues and problems have bewildered humankind for a long time yet a systematic approach for understanding such issues remain elusive. This is partly because many water-related problems are framed from a contested terrain in which many actors (individuals, communities, businesses, NGOs, states, and countries) compete to protect their own and often conflicting interests. We argue that origin of many water problems may be understood as a dynamic consequence of competition, interconnections, and feedback among variables in the Natural and Societal Systems (NSSs). Within the natural system, we recognize that triple constraints on water- water quantity (Q), water quality (P), and ecosystem (E)- and their interdependencies and feedback may lead to conflicts. Such inherent and multifaceted constraints of the natural water system are exacerbated often at the societal boundaries. Within the societal system, interdependencies and feedback among values and norms (V), economy (C), and governance (G) interact in various ways to create intractable contextual differences. The observation that natural and societal systems are linked is not novel. Our argument here, however, is that rigid disciplinary boundaries between these two domains will not produce solutions to the water problems we are facing today. The knowledge needed to address water problems need to go beyond scientific assessment in which societal variables (C, G, and V) are treated as exogenous or largely ignored, and policy research that does not consider the impact of natural variables (E, P, and Q) and that coupling among them. Consequently, traditional quantitative methods alone are not appropriate to address the dynamics of water conflicts, because we cannot quantify the societal variables and the exact mathematical relationships among the variables are not fully known. On the other hand, conventional qualitative study in societal domain has mainly been in the form of individual case studies and therefore
Sorokin, Sergey V
2011-03-01
Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America
Class of reconstructed discontinuous Galerkin methods in computational fluid dynamics
International Nuclear Information System (INIS)
Luo, Hong; Xia, Yidong; Nourgaliev, Robert
2011-01-01
A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness. (author)
Galerkin FEM for Fractional Order Parabolic Equations with Initial Data in H − s , 0 ≤ s ≤ 1
Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi
2013-01-01
We investigate semi-discrete numerical schemes based on the standard Galerkin and lumped mass Galerkin finite element methods for an initial-boundary value problem for homogeneous fractional diffusion problems with non-smooth initial data. We assume that Ω ⊂ ℝd , d = 1,2,3 is a convex polygonal (polyhedral) domain. We theoretically justify optimal order error estimates in L2- and H1-norms for initial data in H-s (Ω), 0 ≤ s ≤ 1. We confirm our theoretical findings with a number of numerical tests that include initial data v being a Dirac δ-function supported on a (d-1)-dimensional manifold. © 2013 Springer-Verlag.
Energy Technology Data Exchange (ETDEWEB)
Jin, Shi, E-mail: sjin@wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Hanqing, E-mail: hanqing@math.wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2017-04-01
In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (in the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.
Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering
AbdulJabbar, Mustafa Abdulmajeed
2018-03-27
Algorithmic and architecture-oriented optimizations are essential for achieving performance worthy of anticipated energy-austere exascale systems. In this paper, we present an extreme scale FMM-accelerated boundary integral equation solver for wave scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory, targeting emerging Intel extreme performance HPC architectures. We extract the potential thread- and data-level parallelism of the key Helmholtz kernels of FMM. Our application code is well optimized to exploit the AVX-512 SIMD units of Intel Skylake and Knights Landing architectures. We provide different performance models for tuning the task-based tree traversal implementation of FMM, and develop optimal architecture-specific and algorithm aware partitioning, load balancing, and communication reducing mechanisms to scale up to 6,144 compute nodes of a Cray XC40 with 196,608 hardware cores. With shared memory optimizations, we achieve roughly 77% of peak single precision floating point performance of a 56-core Skylake processor, and on average 60% of peak single precision floating point performance of a 72-core KNL. These numbers represent nearly 5.4x and 10x speedup on Skylake and KNL, respectively, compared to the baseline scalar code. With distributed memory optimizations, on the other hand, we report near-optimal efficiency in the weak scalability study with respect to both the logarithmic communication complexity as well as the theoretical scaling complexity of FMM. In addition, we exhibit up to 85% efficiency in strong scaling. We compute in excess of 2 billion DoF on the full-scale of the Cray XC40 supercomputer.
The influence of a scaled boundary response on integral system transient behavior
International Nuclear Information System (INIS)
Dimenna, R.A.; Kullberg, C.M.
1989-01-01
Scaling relationships associated with the thermal-hydraulic response of a closed-loop system are applied to a calculational assessment of a feed-and-bleed recovery in a nuclear reactor integral effects test. The analysis demonstrates both the influence of scale on the system response and the ability of the thermal-hydraulics code to represent those effects. The qualitative response of the fluid is shown to be coupled to the behavior of the bounding walls through the energy equation. The results of the analysis described in this paper influence the determination of computer code applicability. The sensitivity of the code response to scaling variations introduced in the analysis is found to be appropriate with respect to scaling criteria determined from the scaling literature. Differences in the system response associated with different scaling criteria are found to be plausible and easily explained using well-known principles of heat transfer. Therefore, it is concluded that RELAP5/MOD2 can adequately represent the scaled effects of heat transfer boundary conditions of the thermal-hydraulic calculations through the mechanism of communicating walls. The results of the analysis also serve to clarify certain aspects of experiment and facility design
Measuring brain atrophy with a generalized formulation of the boundary shift integral.
Prados, Ferran; Cardoso, Manuel Jorge; Leung, Kelvin K; Cash, David M; Modat, Marc; Fox, Nick C; Wheeler-Kingshott, Claudia A M; Ourselin, Sebastien
2015-01-01
Brain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative diseases. In this work, we present a generalized and extended formulation of the boundary shift integral (gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain segmentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate the proposed method by comparing the sample size requirements for a hypothetical clinical trial of Alzheimer's disease to that needed for the current implementation of BSI as well as a fuzzy implementation of BSI. The gBSI method results in a modest but reduced sample size, providing increased sensitivity to disease changes through the use of the probabilistic exclusive OR region. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope
International Nuclear Information System (INIS)
Kotko, P.; Serino, M.; Staśto, A.M.
2016-01-01
One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.
International Nuclear Information System (INIS)
Esmaeilzadeh, Hamid; Arzi, Ezatollah; Légaré, François; Hassani, Alireza
2013-01-01
In this paper, using the boundary integral method (BIM), we simulate the effect of temperature fluctuation on the sensitivity of microstructured optical fibre (MOF) surface plasmon resonance (SPR) sensors. The final results indicate that, as the temperature increases, the refractometry sensitivity of our sensor decreases from 1300 nm/RIU at 0 °C to 1200 nm/RIU at 50 °C, leading to ∼7.7% sensitivity reduction and the sensitivity temperature error of 0.15% °C −1 for this case. These results can be used for biosensing temperature-error adjustment in MOF SPR sensors, since biomaterials detection usually happens in this temperature range. Moreover, the signal-to-noise ratio (SNR) of our sensor decreases from 0.265 at 0 °C to 0.154 at 100 °C with the average reduction rate of ∼0.42% °C −1 . The results suggest that at lower temperatures the sensor has a higher SNR. (paper)
Pelties, Christian
2012-02-18
Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.
Hess, G. D.; Garratt, J. R.
Data for the cross-isobaric angle 0, the geostrophic drag coefficient Cg, and the functions A and B of Rossby number similarity theory, obtained from meteorological field experiments, are used to evaluate a range of models of the neutral, barotropic planetary boundary layer. The data give well-defined relationships for 0, Cg, and the integrated dissipation rate over the boundary layer, as a function of the surface Rossby number. Lettau's first-order closure mixing-length model gives an excellent fit to the data; other simple models give reasonable agreement. However more sophisticated models, e.g., higher-order closure, large-eddy simulation, direct numerical simulation and laboratory models, give poor fits to the data. The simplemodels have (at least) one free parameter in their turbulence closure that is matched toatmospheric observations; the more sophisticated models either base their closure onmore general flows or have no free closure parameters. It is suggested that all of theatmospheric experiments that we could locate violate the strict simplifying assumptionsof steady, homogeneous, neutral, barotropic flow required by the sophisticated models.The angle 0 is more sensitive to violations of the assumptions than is Cg.The behaviour of the data varies in three latitude regimes. In middle and high latitudes the observed values of A and B exhibit little latitudinal dependence; the best estimates are A = 1.3 and B = 4.4. In lower latitudes the neutral, barotropic Rossby number theory breaks down. The value of B increases towards the Equator; the determination of A is ambiguous - the trend can increase or decrease towards the Equator. Between approximately 5° and 30° latitude, the scatter in the data is thought to be primarily due to the inherent presence of baroclinicity. The presence of the trade-wind inversion, thermal instability and the horizontal component of the Earth's rotation ΩH also contribute.Marked changes in the values of A and B occur in the
Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils
DEFF Research Database (Denmark)
Frére, A.; Sørensen, Niels N.; Hillewaert, K.
2016-01-01
This paper aims at evaluating the potential of the Discontinuous Galerkin (DG) methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is however not used in the wind energy...... sector yet. The present study aims at evaluating this methodology on an application which is relevant for that sector and focuses on blade section aerodynamics characterization. To be pertinent for large wind turbines, the simulations would need to be at low Mach numbers (M ≤ 0.3) where compressible...... at low and high Reynolds numbers and compares the results to state-of-the-art models used in industry, namely the panel method (XFOIL with boundary layer modeling) and Reynolds Averaged Navier-Stokes (RANS). At low Reynolds number (Re = 6 × 104), involving laminar boundary layer separation and transition...
Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers
Auteri, F; Quartapelle, L
2003-01-01
A new Galerkin-Legendre direct spectral solver for the Neumann problem associated with Laplace and Helmholtz operators in rectangular domains is presented. The algorithm differs from other Neumann spectral solvers by the high sparsity of the matrices, exploited in conjunction with the direct product structure of the problem. The homogeneous boundary condition is satisfied exactly by expanding the unknown variable into a polynomial basis of functions which are built upon the Legendre polynomials and have a zero slope at the interval extremes. A double diagonalization process is employed pivoting around the eigenstructure of the pentadiagonal mass matrices in both directions, instead of the full stiffness matrices encountered in the classical variational formulation of the problem with a weak natural imposition of the derivative boundary condition. Nonhomogeneous Neumann data are accounted for by means of a lifting. Numerical results are given to illustrate the performance of the proposed spectral elliptic solv...
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
Directory of Open Access Journals (Sweden)
TIAN Jialei
2015-11-01
Full Text Available By using the ground as the boundary, Molodensky problem usually gets the solution in form of series. Higher order terms reflect the correction between a smooth surface and the ground boundary. Application difficulties arise from not only computational complexity and stability maintenance, but also data-intensiveness. Therefore, in this paper, starting from the application of external gravity disturbance, Green formula is used on digital terrain surface. In the case of ignoring the influence of horizontal component of the integral, the expression formula of external disturbance potential determined by boundary value consisted of ground gravity anomalies and height anomaly difference are obtained, whose kernel function is reciprocal of distance and Poisson core respectively. With this method, there is no need of continuation of ground data. And kernel function is concise, and suitable for the stochastic computation of external disturbing gravity field.
Yang, S A
2002-10-01
This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.
Studying the active deformation of distributed plate boundaries by integration of GNSS networks
D'Agostino, Nicola; Avallone, Antonio; Cecere, Gianpaolo; D'Anastasio, Elisabetta
2013-04-01
In the last decade GNSS networks installed for different purposes have proliferated in Italy and now provide a large amount of data available to geophysical studies. In addition to the existing regional and nation-wide scientific GNSS networks developed by ASI (http://geodaf.mt.asi.it), INGV (http://ring.gm.ingv.it) and OGS (http://crs.inogs.it/frednet), a large number (> 400) of continuously-operating GPS stations have been installed in the framework of regional and national networks, both publicly-operated and commercial, developed to provide real-time positioning capability to surveyors. Although the quality of the data and metadata associated to these stations is generally lower with respect to the "scientific" CGPS stations, the increased density and redundancy in crustal motion information, resulting in more than 500 stations with more than 2.5 years of observations, significantly increase the knowledge of the active deformation of the Italian territory and provides a unique image of the crustal deformation field. The obtained GPS velocity field is analysed and various features ranging from the definition of strain distribution and microplate kinematics within the plate boundary, to the evaluation of tectonic strain accumulation on active faults are presented in this work. Undeforming, aseismic regions (Sardinia, Southern Apulia) provide test sites to evaluate the lower bound on the accuracy achievable to measure tectonic deformation. Integration of GNSS networks significantly improves the resolution of the strain rate field in Central Italy showing that active deformation is concentrated in a narrow belt along the crest of the Apennines, consistently with the distribution of the largest historical and recent earthquakes. Products derived from dense GPS velocity and strain rate fields include map of earthquake potential developed under the assumption that the rate of seismic moment accumulation measured from geodesy distributes into earthquake sizes that
Comparison of two Galerkin quadrature methods
International Nuclear Information System (INIS)
Morel, J. E.; Warsa, J. S.; Franke, B. C.; Prinja, A. K.
2013-01-01
We compare two methods for generating Galerkin quadrature for problems with highly forward-peaked scattering. In Method 1, the standard Sn method is used to generate the moment-to-discrete matrix and the discrete-to-moment is generated by inverting the moment-to-discrete matrix. In Method 2, which we introduce here, the standard Sn method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. Method 1 has the advantage that it preserves both N eigenvalues and N eigenvectors (in a pointwise sense) of the scattering operator with an N-point quadrature. Method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator with an N-point quadrature. Our computational results indicate that these two methods are quite comparable for the test problem considered. (authors)
Directory of Open Access Journals (Sweden)
A. Becker
2003-01-01
Full Text Available In this paper a hybrid method combining the FDTD/FIT with a Time Domain Boundary-Integral Marching-on-in-Time Algorithm (TD-BIM is presented. Inhomogeneous regions are modelled with the FIT-method, an alternative formulation of the FDTD. Homogeneous regions (which is in the presented numerical example the open space are modelled using a TD-BIM with equivalent electric and magnetic currents flowing on the boundary between the inhomogeneous and the homogeneous regions. The regions are coupled by the tangential magnetic fields just outside the inhomogeneous regions. These fields are calculated by making use of a Mixed Potential Integral Formulation for the magnetic field. The latter consists of equivalent electric and magnetic currents on the boundary plane between the homogeneous and the inhomogeneous region. The magnetic currents result directly from the electric fields of the Yee lattice. Electric currents in the same plane are calculated by making use of the TD-BIM and using the electric field of the Yee lattice as boundary condition. The presented hybrid method only needs the interpolations inherent in FIT and no additional interpolation. A numerical result is compared to a calculation that models both regions with FDTD.
Modeling Storm Surges Using Discontinuous Galerkin Methods
2016-06-01
layer non-reflecting boundary condition (NRBC) on the right wall of the model. A NRBC is when an artificial boundary , B, is created, which truncates the... applications ,” Journal of Computational Physics, 2004. [30] P. L. Butzer and R. Weis, “On the lax equivalence theorem equipped with orders,” Journal of...closer to the shoreline. In our simulation, we also learned of the effects spurious waves can have on the results. Due to boundary conditions, a
Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya
2009-01-01
interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation
Directory of Open Access Journals (Sweden)
Volodymyr S. Il'kiv
2016-11-01
Full Text Available We study a problem with integral boundary conditions in the time coordinate for a system of Lame equations of dynamic elasticity theory of an arbitrary dimension. We find necessary and sufficient conditions for the existence and uniqueness of solution in the class of almost periodic functions in the spatial variables. To solve the problem of small denominators arising while constructing solutions, we use the metric approach.
A high-order Petrov-Galerkin method for the Boltzmann transport equation
International Nuclear Information System (INIS)
Pain, C.C.; Candy, A.S.; Piggott, M.D.; Buchan, A.; Eaton, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de
2005-01-01
We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov-Galerkin
The dimension split element-free Galerkin method for three-dimensional potential problems
Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.
2018-02-01
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
Nonlinear vibration of a traveling belt with non-homogeneous boundaries
Ding, Hu; Lim, C. W.; Chen, Li-Qun
2018-06-01
Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.
Bardhan, Jaydeep P
2008-10-14
The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement
In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.
Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine
2017-02-01
Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.
Implicit Boundary Integral Methods for the Helmholtz Equation in Exterior Domains
2016-06-01
solve the Helmholtz equation as ∂Ω goes through significant change in its shape and topology — applications for which implicit representation of the...boundary-value problems for the wave equation and maxwell’s equations. Russian Math . Surv., 1965. [16] S. Reutskiy. The method of fundamental
Thomas B. Lynch; Jeffrey H. Gove
2014-01-01
The typical "double counting" application of the mirage method of boundary correction cannot be applied to sampling systems such as critical height sampling (CHS) that are based on a Monte Carlo sample of a tree (or debris) attribute because the critical height (or other random attribute) sampled from a mirage point is generally not equal to the critical...
POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media
Wang, Yi
2017-01-25
Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.
A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Diffusion
Huynh, H. T.
2009-01-01
We introduce a new approach to high-order accuracy for the numerical solution of diffusion problems by solving the equations in differential form using a reconstruction technique. The approach has the advantages of simplicity and economy. It results in several new high-order methods including a simplified version of discontinuous Galerkin (DG). It also leads to new definitions of common value and common gradient quantities at each interface shared by the two adjacent cells. In addition, the new approach clarifies the relations among the various choices of new and existing common quantities. Fourier stability and accuracy analyses are carried out for the resulting schemes. Extensions to the case of quadrilateral meshes are obtained via tensor products. For the two-point boundary value problem (steady state), it is shown that these schemes, which include most popular DG methods, yield exact common interface quantities as well as exact cell average solutions for nearly all cases.
Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations
Iliev, Oleg P.
2010-01-01
We present a two-scale finite element method for solving Brinkman\\'s equations with piece-wise constant coefficients. This system of equations model fluid flows in highly porous, heterogeneous media with complex topology of the heterogeneities. We make use of the recently proposed discontinuous Galerkin FEM for Stokes equations by Wang and Ye in [12] and the concept of subgrid approximation developed for Darcy\\'s equations by Arbogast in [4]. In order to reduce the error along the coarse-grid interfaces we have added a alternating Schwarz iteration using patches around the coarse-grid boundaries. We have implemented the subgrid method using Deal.II FEM library, [7], and we present the computational results for a number of model problems. © 2010 Springer-Verlag Berlin Heidelberg.
Divergence-Conforming Discontinuous Galerkin Methods and $C^0$ Interior Penalty Methods
Kanschat, Guido
2014-01-01
© 2014 Society for Industrial and Applied Mathematics. In this paper, we show that recently developed divergence-conforming methods for the Stokes problem have discrete stream functions. These stream functions in turn solve a continuous interior penalty problem for biharmonic equations. The equivalence is established for the most common methods in two dimensions based on interior penalty terms. Then, extensions of the concept to discontinuous Galerkin methods defined through lifting operators, for different weak formulations of the Stokes problem, and to three dimensions are discussed. Application of the equivalence result yields an optimal error estimate for the Stokes velocity without involving the pressure. Conversely, combined with a recent multigrid method for Stokes flow, we obtain a simple and uniform preconditioner for harmonic problems with simply supported and clamped boundary.
A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems
Liu, Zuolin; Xu, Jian
2018-04-01
In the paper, a new parameter identification method is proposed for mechanical systems. Based on the idea of Galerkin finite-element method, the displacement over time history is approximated by piecewise linear functions, and the second-order terms in model equation are eliminated by integrating by parts. In this way, the lost function of integration form is derived. Being different with the existing methods, the lost function actually is a quadratic sum of integration over the whole time history. Then for linear or nonlinear systems, the optimisation of the lost function can be applied with traditional least-squares algorithm or the iterative one, respectively. Such method could be used to effectively identify parameters in linear and arbitrary nonlinear mechanical systems. Simulation results show that even under the condition of sparse data or low sampling frequency, this method could still guarantee high accuracy in identifying linear and nonlinear parameters.
A Level Set Discontinuous Galerkin Method for Free Surface Flows
DEFF Research Database (Denmark)
Grooss, Jesper; Hesthaven, Jan
2006-01-01
We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation...
Clearance gap flow: Simulations by discontinuous Galerkin method and experiments
Czech Academy of Sciences Publication Activity Database
Hála, Jindřich; Luxa, Martin; Bublík, O.; Prausová, H.; Vimmr, J.
2016-01-01
Roč. 92, May (2016), 02073-02073 ISSN 2100-014X. [EFM14 – Experimental Fluid Mechanics 2014. Český Krumlov, 18.11.2014-21.11.2014] Institutional support: RVO:61388998 Keywords : compressible fluid flow * narrow channel flow * discontinuous Galerkin finite element method Subject RIV: BK - Fluid Dynamics
Non-Galerkin Coarse Grids for Algebraic Multigrid
Energy Technology Data Exchange (ETDEWEB)
Falgout, Robert D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, Jacob B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-06-26
Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.
DEFF Research Database (Denmark)
Aarhus, Rikke; Ballegaard, Stinne Aaløkke
2010-01-01
to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...
Determination of stable shapes of a thin liquid metal layer using a boundary integral method
Energy Technology Data Exchange (ETDEWEB)
Hinaje, M [Groupe de Recherche en Electrotechnique et Electronique de Nancy, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France); Vinsard, G [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France); Dufour, S [Groupe de Recherche en Electrotechnique et Electronique de Nancy, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)
2006-03-21
This paper deals with a thin liquid metal layer submitted to an ac magnetic field. Experimentally, we have noticed that even if the system (inductor+liquid metal) is axisymmetric, when an ac magnetic field is applied the symmetry is broken. The observed deformations of the liquid metal are in three dimensions. Therefore, our aim is to investigate this deformation using a numerical method as boundary element method in three dimensions.
Determination of stable shapes of a thin liquid metal layer using a boundary integral method
International Nuclear Information System (INIS)
Hinaje, M; Vinsard, G; Dufour, S
2006-01-01
This paper deals with a thin liquid metal layer submitted to an ac magnetic field. Experimentally, we have noticed that even if the system (inductor+liquid metal) is axisymmetric, when an ac magnetic field is applied the symmetry is broken. The observed deformations of the liquid metal are in three dimensions. Therefore, our aim is to investigate this deformation using a numerical method as boundary element method in three dimensions
International Nuclear Information System (INIS)
Pereira, Luis Carlos Martins
1998-06-01
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
Wong, Rene; Breiner, Petra; Mylopoulos, Maria
2014-09-01
This article reports on research into the relationships that emerged between hospital-based and community-based interprofessional diabetes programs involved in inter-agency care. Using constructivist grounded theory methodology we interviewed a purposive theoretical sample of 21 clinicians and administrators from both types of programs. Emergent themes were identified through a process of constant comparative analysis. Initial boundaries were constructed based on contrasts in beliefs, practices and expertise. In response to bureaucratic and social pressures, boundaries were redefined in a way that created role uncertainty and disempowered community programs, ultimately preventing collaboration. We illustrate the dynamic and multi-dimensional nature of social and symbolic boundaries in inter-agency diabetes care and the tacit ways in which hospitals can maintain a power position at the expense of other actors in the field. As efforts continue in Canada and elsewhere to move knowledge and resources into community sectors, we highlight the importance of hospitals seeing beyond their own interests and adopting more altruistic models of inter-agency integration.
Hess, G. D.; Garratt, J. R.
The steady-state, horizontally homogeneous, neutral, barotropiccase forms the foundation of our theoretical understanding of the planetary boundary layer (PBL).While simple analytical models and first-order closure models simulate atmospheric observationsof this case well, more sophisticated models, in general, do not. In this paperwe examine how well three higher-order closure models, E - - l, E - l, and LRR - l,which have been especially modified for PBL applications, perform in predicting the behaviour of thecross-isobaric angle 0, the geostrophic drag coefficient Cg, and the integral of the dissipationrate over the boundary layer, as a function of the surface Rossby number Ro. For comparison we alsoexamine the performance of three first-order closure mixing-length models, two proposed byA. K. Blackadar and one by H. H. Lettau, and the performance of the standard model forsecond-order closure and a modification of it designed to reduce the overprediction of turbulence inthe upper part of the boundary layer.
Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan
2017-11-01
Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.
Botti, L.; Colombo, A.; Bassi, F.
2017-10-01
In this work we exploit agglomeration based h-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.
Energy-preserving H1-Galerkin schemes for shallow water wave equations with peakon solutions
International Nuclear Information System (INIS)
Miyatake, Yuto; Matsuo, Takayasu
2012-01-01
New energy-preserving Galerkin schemes for the Camassa–Holm and the Degasperis–Procesi equations which model shallow water waves are presented. The schemes can be implemented only with cheap H 1 elements, which is expected to be sufficient to catch the characteristic peakon solutions. The keys of the derivation are the Hamiltonian structures of the equations and an L 2 -projection technique newly employed in the present Letter to mimic the Hamiltonian structures in a discrete setting, so that the desired energy-preserving property rightly follows. Numerical examples confirm the effectiveness of the schemes. -- Highlights: ► Numerical integration of the Camassa–Holm and Degasperis–Procesi equation. ► New energy-preserving Galerkin schemes for these equations are proposed. ► They can be implemented only with P1 elements. ► They well capture the characteristic peakon solutions over long time. ► The keys are the Hamiltonian structures and L 2 -projection technique.
Directory of Open Access Journals (Sweden)
Yurii M. Streliaiev
2016-06-01
Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.
Directory of Open Access Journals (Sweden)
Adel A.K. Mohsen
2010-07-01
Full Text Available The problem of nonuniqueness (NU of the solution of exterior acoustic problems via boundary integral equations is discussed in this article. The efficient implementation of the CHIEF (Combined Helmholtz Integral Equations Formulation method to axisymmetric problems is studied. Interior axial fields are used to indicate the solution error and to select proper CHIEF points. The procedure makes full use of LU-decomposition as well as the forward solution derived in the solution. Implementations of the procedure for hard spheres are presented. Accurate results are obtained up to a normalised radius of ka = 20.983, using only one CHIEF point. The radiation from a uniformly vibrating sphere is also considered. Accurate results for ka up to 16.927 are obtained using two CHIEF points.
An Integral Method and Its Application to Some Three-Dimensional Boundary-Layer Flows,
1979-07-18
M. Scala Dr. H. Lew Mr. J. W. Faust A . Martellucci W. Daskin J. D. Cresswell J. B. Arnaiz L. A . Marshall J. Cassanto R. Hobbs C. Harris F. George P.O...RESEARCH AND TECHNOLOGY DEPARTMENT 18 JULY 1979 Approved for public release, distribution unlimited DTICEILECTE1 APR 2 5 1930,, A NAVAL SURFACE WEAPONS...TITLE (end Subtlle) S. TYPE OF REPORT A PERIOD COVERED I INVTEGRAL M.ETHOD AND ITS 4PPLICATION TO SSOME THREE-DIMENSIONAL BOUNDARY-LAYER FLOWS 6
Directory of Open Access Journals (Sweden)
Kresno Wikan Sadono
2016-12-01
Full Text Available Persamaan differensial banyak digunakan untuk menggambarkan berbagai fenomena dalam bidang sains dan rekayasa. Berbagai masalah komplek dalam kehidupan sehari-hari dapat dimodelkan dengan persamaan differensial dan diselesaikan dengan metode numerik. Salah satu metode numerik, yaitu metode meshfree atau meshless berkembang akhir-akhir ini, tanpa proses pembuatan elemen pada domain. Penelitian ini menggabungkan metode meshless yaitu radial basis point interpolation method (RPIM dengan integrasi waktu discontinuous Galerkin method (DGM, metode ini disebut RPIM-DGM. Metode RPIM-DGM diaplikasikan pada advection equation pada satu dimensi. RPIM menggunakan basis function multiquadratic function (MQ dan integrasi waktu diturunkan untuk linear-DGM maupun quadratic-DGM. Hasil simulasi menunjukkan, metode ini mendekati hasil analitis dengan baik. Hasil simulasi numerik dengan RPIM DGM menunjukkan semakin banyak node dan semakin kecil time increment menunjukkan hasil numerik semakin akurat. Hasil lain menunjukkan, integrasi numerik dengan quadratic-DGM untuk suatu time increment dan jumlah node tertentu semakin meningkatkan akurasi dibandingkan dengan linear-DGM. [Title: Numerical solution of advection equation with radial basis interpolation method and discontinuous Galerkin method for time integration] Differential equation is widely used to describe a variety of phenomena in science and engineering. A variety of complex issues in everyday life can be modeled with differential equations and solved by numerical method. One of the numerical methods, the method meshfree or meshless developing lately, without making use of the elements in the domain. The research combines methods meshless, i.e. radial basis point interpolation method with discontinuous Galerkin method as time integration method. This method is called RPIM-DGM. The RPIM-DGM applied to one dimension advection equation. The RPIM using basis function multiquadratic function and time
Lagrange–Galerkin methods for the incompressible Navier-Stokes equations: a review
Directory of Open Access Journals (Sweden)
Bermejo Rodolfo
2016-09-01
Full Text Available We review in this paper the development of Lagrange-Galerkin (LG methods to integrate the incompressible Navier-Stokes equations (NSEs for engineering applications. These methods were introduced in the computational fluid dynamics community in the early eighties of the past century, and at that time they were considered good methods for both their theoretical stability properties and the way of dealing with the nonlinear terms of the equations; however, the numerical experience gained with the application of LG methods to different problems has identified drawbacks of them, such as the calculation of specific integrals that arise in their formulation and the calculation of the ow trajectories, which somehow have hampered the applicability of LG methods. In this paper, we focus on these issues and summarize the convergence results of LG methods; furthermore, we shall briefly introduce a new stabilized LG method suitable for high Reynolds numbers.
Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering
AbdulJabbar, Mustafa Abdulmajeed; Al Farhan, Mohammed; Al-Harthi, Noha A.; Chen, Rui; Yokota, Rio; Bagci, Hakan; Keyes, David E.
2018-01-01
scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory
Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles
Moffitt, Nicholas J.
This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate
Directory of Open Access Journals (Sweden)
A. Anguraj
2014-02-01
Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.
Tello-Leal, Edgar; Chiotti, Omar; Villarreal, Pablo David
2012-12-01
The paper presents a methodology that follows a top-down approach based on a Model-Driven Architecture for integrating and coordinating healthcare services through cross-organizational processes to enable organizations providing high quality healthcare services and continuous process improvements. The methodology provides a modeling language that enables organizations conceptualizing an integration agreement, and identifying and designing cross-organizational process models. These models are used for the automatic generation of: the private view of processes each organization should perform to fulfill its role in cross-organizational processes, and Colored Petri Net specifications to implement these processes. A multi-agent system platform provides agents able to interpret Colored Petri-Nets to enable the communication between the Healthcare Information Systems for executing the cross-organizational processes. Clinical documents are defined using the HL7 Clinical Document Architecture. This methodology guarantees that important requirements for healthcare services integration and coordination are fulfilled: interoperability between heterogeneous Healthcare Information Systems; ability to cope with changes in cross-organizational processes; guarantee of alignment between the integrated healthcare service solution defined at the organizational level and the solution defined at technological level; and the distributed execution of cross-organizational processes keeping the organizations autonomy.
Modeling shallow water flows using the discontinuous Galerkin method
Khan, Abdul A
2014-01-01
Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fie...
A Streaming Language Implementation of the Discontinuous Galerkin Method
Barth, Timothy; Knight, Timothy
2005-01-01
We present a Brook streaming language implementation of the 3-D discontinuous Galerkin method for compressible fluid flow on tetrahedral meshes. Efficient implementation of the discontinuous Galerkin method using the streaming model of computation introduces several algorithmic design challenges. Using a cycle-accurate simulator, performance characteristics have been obtained for the Stanford Merrimac stream processor. The current Merrimac design achieves 128 Gflops per chip and the desktop board is populated with 16 chips yielding a peak performance of 2 Teraflops. Total parts cost for the desktop board is less than $20K. Current cycle-accurate simulations for discretizations of the 3-D compressible flow equations yield approximately 40-50% of the peak performance of the Merrimac streaming processor chip. Ongoing work includes the assessment of the performance of the same algorithm on the 2 Teraflop desktop board with a target goal of achieving 1 Teraflop performance.
Directory of Open Access Journals (Sweden)
Lee HyunYoung
2010-01-01
Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.
Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
Antonietti, Paola F.
2015-11-21
We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.
The discrete maximum principle for Galerkin solutions of elliptic problems
Czech Academy of Sciences Publication Activity Database
Vejchodský, Tomáš
2012-01-01
Roč. 10, č. 1 (2012), s. 25-43 ISSN 1895-1074 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete maximum principle * monotone methods * Galerkin solution Subject RIV: BA - General Mathematics Impact factor: 0.405, year: 2012 http://www.springerlink.com/content/x73624wm23x4wj26
Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem
Antonietti, Paola F.; Ayuso de Dios, Blanca; Mazzieri, Ilario; Quarteroni, Alfio
2015-01-01
We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.
Petrov-Galerkin mixed formulations for bidimensional elasticity
International Nuclear Information System (INIS)
Toledo, E.M.; Loula, A.F.D.; Guerreiro, J.N.C.
1989-10-01
A new formulation for two-dimensional elasticity in stress and displacements is presented. Consistently adding to the Galerkin classical formulation residuals forms of constitutive and equilibrium equations, the original saddle point is transformed into a minimization problem without any restrictions. We also propose a stress post processing technique using both equilibrium and constitutive equations. Numerical analysis error estimates and numerical results are presented confirming the predicted rates of convergence. (A.C.A.S.) [pt
A discontinuous Galerkin method on kinetic flocking models
Tan, Changhui
2014-01-01
We study kinetic representations of flocking models. They arise from agent-based models for self-organized dynamics, such as Cucker-Smale and Motsch-Tadmor models. We prove flocking behavior for the kinetic descriptions of flocking systems, which indicates a concentration in velocity variable in infinite time. We propose a discontinuous Galerkin method to treat the asymptotic $\\delta$-singularity, and construct high order positive preserving scheme to solve kinetic flocking systems.
A Galerkin approximation for linear elastic shallow shells
Figueiredo, I. N.; Trabucho, L.
1992-03-01
This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.
Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation
Pagán Muñoz, Raúl; Hornikx, Maarten
2017-11-01
The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.
The Blurred Boundaries and Multiple Effects of European Integration and Globalisation
DEFF Research Database (Denmark)
Lynggaard, Kennet
2015-01-01
of how European integration contribute to, and are effected by, globalisation. By means of concrete research examples the chapter discusses the advantages of the research strategies and tools typically applied on the area and the challenges we face in this regard. This includes discussions of top......This chapter presents analytical strategies for the study of European integration and Globalisation in concert. This is an increasingly important as well as a highly diverse field of inquiry. The chapter presents a series of research clusters in various ways concerned with the fundamental questions......-down and bottom-up research designs, process tracing, counterfactual analysis, comparative designs and comparative temporal analysis. The chapter gives special attention to the promotion of cross-fertilisation in this otherwise dispersed area of research and concludes by giving pointers to potential areas...
International Nuclear Information System (INIS)
Hudson, S.R.
2002-01-01
For stellarators to be feasible candidates for fusion power stations it is essential that the magnetic field lines lie on nested flux surfaces; however, the lack of a continuous symmetry implies that magnetic islands, caused by Pfirsch-Schlueter currents, diamagnetic currents and resonant coil fields, are guaranteed to exist. The challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary full-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the PIES code [Comp. Phys. Comm., 43:157, 1986] which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to lie in the nullspace of certain measures of engineering acceptability and kink stability. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible. The method is applied to a candidate plasma and coil design for NCSX [Phys. Plas., 7:1911, 2000]. (author)
Directory of Open Access Journals (Sweden)
Noella J. Gray
2016-08-01
Full Text Available Marine protected areas (MPAs are an increasingly popular tool for management of the marine commons. Effective governance is essential if MPAs are to achieve their objectives, yet many MPAs face conflicts and governance challenges, including lack of trust and knowledge integration between fishers, scientists, and policy makers. This paper considers the role of a boundary organization in facilitating knowledge integration in a co-managed MPA, the Gladden Spit and Silk Cayes Marine Reserve in Belize. Boundary organizations can play an important role in resource management, by bridging the science-policy divide, facilitating knowledge integration, and enabling communication in conditions of uncertainty. Drawing on ethnographic research conducted in Belize, the paper identifies four challenges for knowledge integration. First, actors have divergent perspectives on whether and how knowledge is being integrated. Second, actors disagree on resource conditions within the MPA and how these should be understood. Third, in order to maintain accountability with multiple actors, including fishers, government, and funders, the boundary organization has promoted the importance of different types of knowledge for different purposes (science and fishers’ knowledge, rather than the integration of these. Finally, a lack of trust and uneven power relations make it difficult to separate knowledge claims from political claims. However, even if knowledge integration proves difficult, boundary organizations may still play an important role by maintaining accountability, providing space for conflicting understandings to co-exist, and ultimately for governance institutions to evolve.
A hybrid perturbation-Galerkin technique for partial differential equations
Geer, James F.; Anderson, Carl M.
1990-01-01
A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.
Dual-scale Galerkin methods for Darcy flow
Wang, Guoyin; Scovazzi, Guglielmo; Nouveau, Léo; Kees, Christopher E.; Rossi, Simone; Colomés, Oriol; Main, Alex
2018-02-01
The discontinuous Galerkin (DG) method has found widespread application in elliptic problems with rough coefficients, of which the Darcy flow equations are a prototypical example. One of the long-standing issues of DG approximations is the overall computational cost, and many different strategies have been proposed, such as the variational multiscale DG method, the hybridizable DG method, the multiscale DG method, the embedded DG method, and the Enriched Galerkin method. In this work, we propose a mixed dual-scale Galerkin method, in which the degrees-of-freedom of a less computationally expensive coarse-scale approximation are linked to the degrees-of-freedom of a base DG approximation. We show that the proposed approach has always similar or improved accuracy with respect to the base DG method, with a considerable reduction in computational cost. For the specific definition of the coarse-scale space, we consider Raviart-Thomas finite elements for the mass flux and piecewise-linear continuous finite elements for the pressure. We provide a complete analysis of stability and convergence of the proposed method, in addition to a study on its conservation and consistency properties. We also present a battery of numerical tests to verify the results of the analysis, and evaluate a number of possible variations, such as using piecewise-linear continuous finite elements for the coarse-scale mass fluxes.
Bardhan, Jaydeep P; Knepley, Matthew G
2011-09-28
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics
A nearest-neighbour discretisation of the regularized stokeslet boundary integral equation
Smith, David J.
2018-04-01
The method of regularized stokeslets is extensively used in biological fluid dynamics due to its conceptual simplicity and meshlessness. This simplicity carries a degree of cost in computational expense and accuracy because the number of degrees of freedom used to discretise the unknown surface traction is generally significantly higher than that required by boundary element methods. We describe a meshless method based on nearest-neighbour interpolation that significantly reduces the number of degrees of freedom required to discretise the unknown traction, increasing the range of problems that can be practically solved, without excessively complicating the task of the modeller. The nearest-neighbour technique is tested against the classical problem of rigid body motion of a sphere immersed in very viscous fluid, then applied to the more complex biophysical problem of calculating the rotational diffusion timescales of a macromolecular structure modelled by three closely-spaced non-slender rods. A heuristic for finding the required density of force and quadrature points by numerical refinement is suggested. Matlab/GNU Octave code for the key steps of the algorithm is provided, which predominantly use basic linear algebra operations, with a full implementation being provided on github. Compared with the standard Nyström discretisation, more accurate and substantially more efficient results can be obtained by de-refining the force discretisation relative to the quadrature discretisation: a cost reduction of over 10 times with improved accuracy is observed. This improvement comes at minimal additional technical complexity. Future avenues to develop the algorithm are then discussed.
International Nuclear Information System (INIS)
Hudson, S.R.; Monticello, D.A.; Reiman, A.H.; Strickler, D.J.; Hirshman, S.P.; Ku, L-P; Lazarus, E.; Brooks, A.; Zarnstorff, M.C.; Boozer, A.H.; Fu, G-Y.; Neilson, G.H.
2003-01-01
For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schluter currents, diamagnetic currents, and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [Reiman and Greenside, Comp. Phys. Comm. 43 (1986) 157] which iterate s the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator Experiment [Reiman, et al., Phys. Plasmas 8 (May 2001) 2083
Self-Trail, J. M.; Robinson, M. M.; Edwards, L. E.; Powars, D. S.; Wandless, G. A.; Willard, D. A.
2013-12-01
An exceptional Paleocene-Eocene boundary section occurs in a cluster of six short (color from gray to alternating gray and pink also occurs within the CIE transition. These alternating changes in color coincide with cyclic peaks in the carbon isotope and percent calcium carbonate curves, where gray color corresponds to a positive shift in carbon isotope values and to a corresponding increase in percent benthic and planktic foraminifera. The upper third of the Marlboro Clay is barren of all calcareous microfossil material, although the presence of foraminiferal molds and linings proves that deposition occurred in a marine environment. Co-occurrence of the dinoflagellates Apectodinium augustum and Phthanoperidinium crenulatum at the top of the Marlboro Clay suggests that the Marlboro Clay at Mattawoman Creek is truncated. This is corroborated by the absence in the Marlboro of specimens of the calcareous nannofossil Rhomboaster-Discoaster assemblage, which is restricted to early Eocene Zone NP9b. Based on planktic/benthic foraminifera ratios, deposition of sediments at Mattawoman Creek occurred predominantly in an inner neritic environment, at water depths between 25-50 m. Occasional deepening to approximately 75m (middle neritic environment) occurred in the early Eocene, as represented by the basal Marlboro Clay. The planktic/benthic ratio, however, could also be affected by surface productivity and/or river runoff. The gradual shift up-section in core color from gray to alternating gray and red, to dark red, coupled with dissolution of calcareous microfossil assemblages, is possibly secondary and may represent lysocline shoaling in a nearshore environment. This would suggest that lysocline shoaling continued after the CIE and well into the early Eocene.
International Nuclear Information System (INIS)
Hudson, S.R.; Monticello, D.A.; Reiman, A.H.
2003-01-01
For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schlueter currents, diamagnetic currents and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver (Reiman and Greenside 1986 Comput. Phys. Commun. 43 157) which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment (Reiman et al 2001 Phys. Plasma 8 2083). (author)
International Nuclear Information System (INIS)
Fleming, K. N.; Gamble, R.; Gosselin, S.; Fletcher, J.; Broom, N.
2008-01-01
The purpose of this paper is to present the results of a study to establish strategies for the reliability and integrity management (RIM) of passive metallic components for the PBMR. The RIM strategies investigated include design elements, leak detection and testing approaches, and non-destructive examinations. Specific combinations of strategies are determined to be necessary and sufficient to achieve target reliability goals for passive components. This study recommends a basis for the RIM program for the PBMR Demonstration Power Plant (DPP) and provides guidance for the development by the American Society of Mechanical Engineers (ASME) of RIM requirements for Modular High Temperature Gas-Cooled Reactors (MHRs). (authors)
A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics
Brovont, Aaron D.
The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.
Johnson, Ryan; Kercher, Andrew; Schwer, Douglas; Corrigan, Andrew; Kailasanath, Kazhikathra
2017-11-01
This presentation focuses on the development of a Discontinuous Galerkin (DG) method for application to chemically reacting flows. The in-house code, called Propel, was developed by the Laboratory of Computational Physics and Fluid Dynamics at the Naval Research Laboratory. It was designed specifically for developing advanced multi-dimensional algorithms to run efficiently on new and innovative architectures such as GPUs. For these results, Propel solves for convection and diffusion simultaneously with detailed transport and thermodynamics. Chemistry is currently solved in a time-split approach using Strang-splitting with finite element DG time integration of chemical source terms. Results presented here show canonical unsteady reacting flow cases, such as co-flow and splitter plate, and we report performance for higher order DG on CPU and GPUs.
An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations
Pani, Amiya K.
2010-06-06
In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.
Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow
Directory of Open Access Journals (Sweden)
Yingyun Sun
2016-03-01
Full Text Available An intrusive spectral method of probabilistic load flow (PLF is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.
An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations
Pani, Amiya K.; Yadav, Sangita
2010-01-01
In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.
Directory of Open Access Journals (Sweden)
Möhlenkamp Stefan
2006-06-01
Full Text Available Abstract Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD. The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal
Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights.
Kolodny, Oren; Feldman, Marcus W; Creanza, Nicole
2018-04-05
Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).
GOSWAMI, DEEPJYOTI; PANI, AMIYA K.; YADAV, SANGITA
2014-01-01
AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.
Study of pollutant transport in surface boundary layer by generalized integral transform technique
International Nuclear Information System (INIS)
Guerrero, Jesus S.P.; Heilbron Filho, Paulo F.L.; Pimentel, Luiz C.G.; Cataldi, Marcio
2001-01-01
A theoretical study was developed to obtain solutions of the atmospheric diffusion equation for various point source, considering radioactive decay and axial diffusion, under neutral atmospheric conditions. It was used an algebraic turbulence model available in the literature, based on Monin-Obukhov similarity theory, for the representation of the turbulent transport in the vertical direction, in the longitudinal directions was considered a constant mass eddy diffusivity . The bi-dimensional transient partial differential equation, representative of the physical phenomena, was transformed into a coupled one-dimensional transient equation system by applying the Generalized Integral Transform Technique. The coupled system was solved numerically using a subroutine based in the lines method. In order to evaluate the computational algorithm were analyzed some representative physical situations. (author)
A collocation--Galerkin finite element model of cardiac action potential propagation.
Rogers, J M; McCulloch, A D
1994-08-01
A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.
International Nuclear Information System (INIS)
Werby, M.F.; Broadhead, M.K.; Strayer, M.R.; Bottcher, C.
1992-01-01
The Helmholtz-Poincarf Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWECs. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can be obtained in matrix form by expanding all relevant terms in partial wave expansions, including a bi-orthogonal expansion of the Green's function. However some freedom in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways so long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermitian operator. The methodology will be explained in detail and examples will be presented
Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew
2015-09-01
We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.
When do letter features migrate? A boundary condition for feature-integration theory.
Butler, B E; Mewhort, D J; Browse, R A
1991-01-01
Feature-integration theory postulates that a lapse of attention will allow letter features to change position and to recombine as illusory conjunctions (Treisman & Paterson, 1984). To study such errors, we used a set of uppercase letters known to yield illusory conjunctions in each of three tasks. The first, a bar-probe task, showed whole-character mislocations but not errors based on feature migration and recombination. The second, a two-alternative forced-choice detection task, allowed subjects to focus on the presence or absence of subletter features and showed illusory conjunctions based on feature migration and recombination. The third was also a two-alternative forced-choice detection task, but we manipulated the subjects' knowledge of the shape of the stimuli: In the case-certain condition, the stimuli were always in uppercase, but in the case-uncertain condition, the stimuli could appear in either upper- or lowercase. Subjects in the case-certain condition produced illusory conjunctions based on feature recombination, whereas subjects in the case-uncertain condition did not. The results suggest that when subjects can view the stimuli as feature groups, letter features regroup as illusory conjunctions; when subjects encode the stimuli as letters, whole items may be mislocated, but subletter features are not. Thus, illusory conjunctions reflect the subject's processing strategy, rather than the architecture of the visual system.
Energy Technology Data Exchange (ETDEWEB)
Guirao, Julio, E-mail: julio@natec-ingenieros.com [Numerical Analysis Technologies S.L. (NATEC), Gijon (Spain); Iglesias, Silvia; Vacas, Christian; Udintsev, Victor [CHD, Diagnostic Division, ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Pak, Sunil [Diagnostic and Control Team, National Fusion Research Institute, Daejeon (Korea, Republic of); Maquet, Philippe [CHD, Diagnostic Division, ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Rodriguez, Eduardo; Roces, Jorge [Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon (Spain)
2015-10-15
Highlights: • A parametric submodel of the spot under study is developed. • The associated macro has the capability to successively re-build the submodel implementing the crack with the geometry of the updated crack front as a function of the predicted increments of length in the apexes of the crack from the calculated stress intensity factor at the crack front. • The analysis incorporates the crack behavior model to predict the evolution of the postulated defect under the application of the different transients. • The analysis is based on the Elasto-Plastic Fracture Mechanics (EPFM) theory to account for the ductility of the materials (316LN type stainless steel). - Abstract: This paper demonstrates structural integrity of the first confinement boundary in Generic Upper Port Plug structures against cracking during service. This constitutes part of the justification to demonstrate that the non-aggression to the confinement barrier requirement may be compatible with the absent of a specific in-service inspections (ISI) program in the trapezoidal section. Since the component will be subjected to 100% volumetric inspections it can be assumed that no defects below the threshold of applied Nondestructive Evaluation techniques will be present before its commissioning. Cracks during service would be associated to defects under Code acceptance limit. This limit can be reasonably taken as 2 mm. Using elastic–plastic fracture mechanics an initial defect is postulated at the worst location in terms of probability and impact on the confinement boundary. Its evolution is simulated through finite element analysis and final dimension at the end of service is estimated. Applying the procedures in RCC-MR 2007 (App-16) the stability of the crack is assessed. As relative high safety margin was achieved, a complementary assessment postulating an initial defect of 6 mm was also conducted. New margin calculated provides a more robust design.
Sun, Daner; Looi, Chee-Kit
2018-01-01
This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…
International Nuclear Information System (INIS)
Guerreiro, J.N.C.; Loula, A.F.D.
1988-12-01
The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt
van der Vegt, Jacobus J.W.; van der Ven, H.
1998-01-01
A new discretization method for the three-dimensional Euler equations of gas dynamics is presented, which is based on the discontinuous Galerkin finite element method. Special attention is paid to an efficient implementation of the discontinuous Galerkin method that minimizes the number of flux
Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming
1990-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
Dodig, H.
2017-11-01
This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.
Symmetric-Galerkin BEM simulation of fracture with frictional contact
CSIR Research Space (South Africa)
Phan, AV
2003-06-14
Full Text Available FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2003; 57:835?851 (DOI: 10.1002/nme.707) Symmetric-Galerkin BEM simulation of fracture with frictional contact A.-V. Phan1;asteriskmath;?, J. A. L. Napier2, L. J. Gray3 and T. Kaplan3 1Department... Methods in Engineering 1975; 9:495?507. 35. Barsoum RS. On the use of isoparametric FFnite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering 1976; 10:25?37. 36. Gray LJ, Phan A-V, Paulino GH, Kaplan T...
Galerkin algorithm for multidimensional plasma simulation codes. Informal report
International Nuclear Information System (INIS)
Godfrey, B.B.
1979-03-01
A Galerkin finite element differencing scheme has been developed for a computer simulation of plasmas. The new difference equations identically satisfy an equation of continuity. Thus, the usual current correction procedure, involving inversion of Poisson's equation, is unnecessary. The algorithm is free of many numerical Cherenkov instabilities. This differencing scheme has been implemented in CCUBE, an already existing relativistic, electromagnetic, two-dimensional PIC code in arbitrary separable, orthogonal coordinates. The separability constraint is eliminated by the new algorithm. The new version of CCUBE exhibits good stability and accuracy with reduced computer memory and time requirements. Details of the algorithm and its implementation are presented
Error Analysis of Galerkin's Method for Semilinear Equations
Directory of Open Access Journals (Sweden)
Tadashi Kawanago
2012-01-01
Full Text Available We establish a general existence result for Galerkin's approximate solutions of abstract semilinear equations and conduct an error analysis. Our results may be regarded as some extension of a precedent work (Schultz 1969. The derivation of our results is, however, different from the discussion in his paper and is essentially based on the convergence theorem of Newton’s method and some techniques for deriving it. Some of our results may be applicable for investigating the quality of numerical verification methods for solutions of ordinary and partial differential equations.
International Nuclear Information System (INIS)
Doikou, Anastasia
2010-01-01
We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.
Planet-disc interactions with Discontinuous Galerkin Methods using GPUs
Velasco Romero, David A.; Veiga, Maria Han; Teyssier, Romain; Masset, Frédéric S.
2018-05-01
We present a two-dimensional Cartesian code based on high order discontinuous Galerkin methods, implemented to run in parallel over multiple GPUs. A simple planet-disc setup is used to compare the behaviour of our code against the behaviour found using the FARGO3D code with a polar mesh. We make use of the time dependence of the torque exerted by the disc on the planet as a mean to quantify the numerical viscosity of the code. We find that the numerical viscosity of the Keplerian flow can be as low as a few 10-8r2Ω, r and Ω being respectively the local orbital radius and frequency, for fifth order schemes and resolution of ˜10-2r. Although for a single disc problem a solution of low numerical viscosity can be obtained at lower computational cost with FARGO3D (which is nearly an order of magnitude faster than a fifth order method), discontinuous Galerkin methods appear promising to obtain solutions of low numerical viscosity in more complex situations where the flow cannot be captured on a polar or spherical mesh concentric with the disc.
Memon, Sajid; Nataraj, Neela; Pani, Amiya Kumar
2012-01-01
In this article, a posteriori error estimates are derived for mixed finite element Galerkin approximations to second order linear parabolic initial and boundary value problems. Using mixed elliptic reconstructions, a posteriori error estimates in L∞(L2)- and L2(L2)-norms for the solution as well as its flux are proved for the semidiscrete scheme. Finally, based on a backward Euler method, a completely discrete scheme is analyzed and a posteriori error bounds are derived, which improves upon earlier results on a posteriori estimates of mixed finite element approximations to parabolic problems. Results of numerical experiments verifying the efficiency of the estimators have also been provided. © 2012 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Lee, J.; Cho, W.
2003-01-01
This paper deals with a numerical investigation of incident wave interactions with a moored pontoon-type floating breakwater. The element-free Galerkin method, in which only nodal data are required to analyze the problem, is employed to solve the diffraction and radiation boundary value problems addressed by the modified Helmholtz equation. The numerical model includes the hydrodynamic and mooring analyses, and it is validated by previous numerical and experimental results. Using the numerical model, we are able to assess the hydrodynamic performance of a moored pontoon-type floating breakwater in regular waves. Numerical results are presented to show the effects of wave conditions and mooring system configuration. This paper also presents the simple forms of stiffness coefficients of a slack mooring line. The influence of mooring line condition on the performance of a floating breakwater is highlighted. (author)
Li, Ping; Jiang, Li Jun; Bagci, Hakan
2018-01-01
It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.
Li, Ping
2018-04-13
It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.
A stochastic Galerkin method for the Euler equations with Roe variable transformation
Pettersson, Per; Iaccarino, Gianluca; Nordströ m, Jan
2014-01-01
The Euler equations subject to uncertainty in the initial and boundary conditions are investigated via the stochastic Galerkin approach. We present a new fully intrusive method based on a variable transformation of the continuous equations. Roe variables are employed to get quadratic dependence in the flux function and a well-defined Roe average matrix that can be determined without matrix inversion.In previous formulations based on generalized polynomial chaos expansion of the physical variables, the need to introduce stochastic expansions of inverse quantities, or square roots of stochastic quantities of interest, adds to the number of possible different ways to approximate the original stochastic problem. We present a method where the square roots occur in the choice of variables, resulting in an unambiguous problem formulation.The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, the Roe formulation is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. For certain stochastic basis functions, the proposed method can be made more effective and well-conditioned. This leads to increased robustness for both choices of variables. We use a multi-wavelet basis that can be chosen to include a large number of resolution levels to handle more extreme cases (e.g. strong discontinuities) in a robust way. For smooth cases, the order of the polynomial representation can be increased for increased accuracy. © 2013 Elsevier Inc.
Terraneo, Tullia Isotta
2015-12-01
In the present study the species boundaries of the scleractinian coral genus Goniopora from the Saudi Arabian Red Sea were investigated. An integrated morpho-molecular approach was used to better clarify the complex scenario derived from traditional classification efforts based on skeletal morphology. Traditional taxonomy of this genus considers skeletal morphology first and polyp morphology as a secondary discriminating character. This leads to potential complication due to plasticity in skeletal features within a species. To address this issue, molecular analyses of evolutionary relationships between nine traditional morphospecies of Goniopora from the Red Sea were performed and were used to re-evaluate the informativeness of macromorphological and micromorphological features. Between four and six putative molecular lineages were identified within Goniopora samples from the Saudi Arabian Red Sea on the basis of four molecular markers: the mitochondrial intergenic spacer between Cytochrome b and the NADH dehydrogenase subunit 2, the entire nuclear ribosomal internal transcribed spacer region, the ATP synthase subunit β gene, and a portion of the Calmodulin gene. The results were strongly corroborated by three distinct analyses of species delimitation. Subsequent analyses of micromorphological and microstructural skeletal features identified the presence of distinctive characters in each of the molecular clades. Unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. The proposed re-organization of Goniopora will resolve several taxonomic problems in this genus while reconciling molecular and morphological evidence. Reliable species-level identification of Goniopora spp. can be achieved with polyp morphology under the proposed revision.
Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles
2014-11-01
A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).
A zonal Galerkin-free POD model for incompressible flows
Bergmann, Michel; Ferrero, Andrea; Iollo, Angelo; Lombardi, Edoardo; Scardigli, Angela; Telib, Haysam
2018-01-01
A domain decomposition method which couples a high and a low-fidelity model is proposed to reduce the computational cost of a flow simulation. This approach requires to solve the high-fidelity model in a small portion of the computational domain while the external field is described by a Galerkin-free Proper Orthogonal Decomposition (POD) model. We propose an error indicator to determine the extent of the interior domain and to perform an optimal coupling between the two models. This zonal approach can be used to study multi-body configurations or to perform detailed local analyses in the framework of shape optimisation problems. The efficiency of the method to perform predictive low-cost simulations is investigated for an unsteady flow and for an aerodynamic shape optimisation problem.
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.
2018-06-01
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.
A Resistive Boundary Condition Enhanced DGTD Scheme for the Transient Analysis of Graphene
Li, Ping
2015-04-24
In this paper, the electromagnetic (EM) features of graphene are characterized by a discontinuous Galerkin timedomain (DGTD) algorithm with a resistive boundary condition (RBC). The atomically thick graphene is equivalently modeled using a RBC by regarding the graphene as an infinitesimally thin conductive sheet. To incorporate RBC into the DGTD analysis, the surface conductivity of the graphene composed of contributions from both intraband and interband terms is firstly approximated by rational basis functions using the fastrelaxation vector-fitting (FRVF) method in the Laplace-domain. Next, through the inverse Laplace transform, the corresponding time-domain matrix equations in integral can be obtained. Finally, these matrix equations are solved by time-domain finite integral technique (FIT). For elements not touching the graphene sheet, however, the well-known Runge-Kutta (RK) method is employed to solve the two first-order time-derivative Maxwell’s equations. The application of the surface boundary condition significantly alleviates the memory consuming and the limitation of time step size required by Courant-Friedrichs-Lewy (CFL) condition. To validate the proposed algorithm, various numerical examples are presented and compared with available references.
A Resistive Boundary Condition Enhanced DGTD Scheme for the Transient Analysis of Graphene
Li, Ping; Jiang, Li; Bagci, Hakan
2015-01-01
In this paper, the electromagnetic (EM) features of graphene are characterized by a discontinuous Galerkin timedomain (DGTD) algorithm with a resistive boundary condition (RBC). The atomically thick graphene is equivalently modeled using a RBC by regarding the graphene as an infinitesimally thin conductive sheet. To incorporate RBC into the DGTD analysis, the surface conductivity of the graphene composed of contributions from both intraband and interband terms is firstly approximated by rational basis functions using the fastrelaxation vector-fitting (FRVF) method in the Laplace-domain. Next, through the inverse Laplace transform, the corresponding time-domain matrix equations in integral can be obtained. Finally, these matrix equations are solved by time-domain finite integral technique (FIT). For elements not touching the graphene sheet, however, the well-known Runge-Kutta (RK) method is employed to solve the two first-order time-derivative Maxwell’s equations. The application of the surface boundary condition significantly alleviates the memory consuming and the limitation of time step size required by Courant-Friedrichs-Lewy (CFL) condition. To validate the proposed algorithm, various numerical examples are presented and compared with available references.
Li, Ping; Jiang, Li Jun; Bagci, Hakan
2017-01-01
In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split
Implementation of the entropy viscosity method with the discontinuous Galerkin method
Zingan, Valentin
2013-01-01
The notion of entropy viscosity method introduced in Guermond and Pasquetti [21] is extended to the discontinuous Galerkin framework for scalar conservation laws and the compressible Euler equations. © 2012 Elsevier B.V.
Bä ck, Joakim; Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul
2010-01-01
Much attention has recently been devoted to the development of Stochastic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantification. An open and relevant research topic is the comparison of these two methods
application of the galerkin-vlasov method to the flexural analysis
African Journals Online (AJOL)
user
In this research, the Galerkin-Vlasov variational method was used to present a general formulation of the Kirchhoff plate problem with simply supported edges and under distributed ..... analysed for elastic, dynamic and stability behaviour,.
Interior penalty discontinuous Galerkin method for coupled elasto-acoustic media
Dudouit , Yohann; Giraud , Luc; Millot , Florence; Pernet , Sébastien
2016-01-01
We introduce a high order interior penalty discontinuous Galerkin scheme for the nu- merical solution of wave propagation in coupled elasto-acoustic media. A displacement formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same framework. Weakly imposing the correct transmission condition is achieved by the derivation of adapted numerical fluxes. This generalization does not weaken the discontinuous Galerkin method, thus hp-non-conforming m...
Directory of Open Access Journals (Sweden)
GIULIO PAVIA
2004-03-01
Full Text Available This paper deals with a definition of the lower boundary stratotype of the Tithonian Stage in the Upper Jurassic succession of Monte Inici, Western Sicily. The upper member of the Rosso Ammonitico Fm. is 27 m thick and shows a typical nodular-calcareous lithofacies; its lower beds have been sampled for biostratigraphic and paleomagnetic purposes. Though the succession is affected by high stratigraphic condensation, the resulting hiatuses have been shown to be below biochronological resolution and thus do not hinder any biostratigraphic definition. The biostratigraphic analysis has been based on the rich ammonite assemblages in which the common genus Hybonoticeras is the index-key for characterizing the Kimmeridgian-Tithonian boundary. Four ammonite biozones have been identified; the basal Tithonian one is defined by the assemblage of Hybonoticeras gr. hybonotum and Haploceras staszycii. The recorded calcareous nannofossil bioevents allow recognition of the V. stradneri and C. mexicana Zones, whose boundary is located a little below the identified Tithonian lower boundary. The paleomagnetic record shows normal polarity in the S. darwini/V. albertinum Zone and mainly reverse polarity in the H. beckeri and H. hybonotum Zones, with three minor normal polarity intervals; the lower boundary of the Tithonian falls in the oldest of these intervals. The integrated multidisciplinary stratigraphic information gathered from the Contrada Fornazzo section defines the lower boundary of the H. hybonotum Zone at the base of Bed 110, and supplies elements of chrono-correlation sufficient to regard this section as a possible G.S.S.P. of the Tithonian Stage.
International Nuclear Information System (INIS)
Valyaev, A.N.; Kiselev, V.P.; Gerasimenko, N.N.; Dzhamanbalin, K.K.
2003-01-01
The present paper is devoted to description of basic works carrying out within framework of the International project 'Ecological monitoring of Russia and Kazakhstan boundary regions'. In 2002 the works were conducted by three directions: preparation of necessary boundary areas' electronic maps; overview of existing information sources (Kostanai and Chelyabinsk cities are as an example); implementation of ecological information data bases structures on boundary areas. The geographic information system MapInfo was selected in the capacity of geo-information system. The implementation information-simulating complex is planing as open developing system. In the framework of the complex the combined operation of a set of different-scale special-purpose information, simulating and geo-information systems have been provided
Directory of Open Access Journals (Sweden)
Hyun Young Lee
2010-01-01
Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ℓ∞(L2 error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Luis Carlos Martins
1998-06-15
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel
2017-08-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
Energy Technology Data Exchange (ETDEWEB)
Mezzacappa, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Endeve, Eirik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauck, Cory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xing, Yulong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-02-01
We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.
Shih, D.; Yeh, G.
2009-12-01
This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.
Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef
2018-05-01
This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.
CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
Energy Technology Data Exchange (ETDEWEB)
Anninos, Peter; Lau, Cheuk [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 (United States); Bryant, Colton [Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Holgado, A. Miguel [Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 (United States); Nemergut, Daniel [Operations and Engineering Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2017-08-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
International Nuclear Information System (INIS)
Anninos, Peter; Lau, Cheuk; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Nemergut, Daniel
2017-01-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems
Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri
2018-05-01
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.
Yang, Tung-Mou
2011-01-01
Information sharing and integration has long been considered an important approach for increasing organizational efficiency and performance. With advancements in information and communication technologies, sharing and integrating information across organizations becomes more attractive and practical to organizations. However, achieving…
Mark D. Nelson; W. Keith Moser
2007-01-01
The USDA Forest Service's Forest Inventory and Analysis (FIA) program conducts strategic inventories of our Nation's forest resources. There is increasing need to assess effects of forest disturbance from catastrophic events, often within geographic extents not typically addressed by strategic forest inventories. One such event occurred within the Boundary...
Directory of Open Access Journals (Sweden)
Giai Giang Vo
2015-01-01
Full Text Available This paper is devoted to the study of a wave equation with a boundary condition of many-point type. The existence of weak solutions is proved by using the Galerkin method. Also, the uniqueness and the stability of solutions are established.
International Nuclear Information System (INIS)
Mello, Kelen Berra de
2005-02-01
In this work is shown the solution of the advection-diffusion equation to simulate a pollutant dispersion in the Planetary Boundary Layer. The solution is obtained through of the GILTT (Generalized Integral Laplace Transform Technique) analytic method and of the numerical inversion Gauss Quadrature. The validity of the solution is proved using concentration obtained from the model with concentration obtained for Copenhagen experiment. In this comparison was utilized potential and logarithmic wind profile and eddy diffusivity derived by Degrazia et al (1997) [17] and (2002) [19]. The best results was using the potential wind profile and the eddy diffusivity derived by Degrazia et al (1997). The vertical velocity influence is shown in the plume behavior of the pollutant concentration. Moreover, the vertical and longitudinal velocity provided by Large Eddy Simulation (LES) was stood in the model to simulate the turbulent boundary layer more realistic, the result was satisfactory when compared with contained in the literature. (author)
Zwanenburg, Philip; Nadarajah, Siva
2016-02-01
The aim of this paper is to demonstrate the equivalence between filtered Discontinuous Galerkin (DG) schemes and the Energy Stable Flux Reconstruction (ESFR) schemes, expanding on previous demonstrations in 1D [1] and for straight-sided elements in 3D [2]. We first derive the DG and ESFR schemes in strong form and compare the respective flux penalization terms while highlighting the implications of the fundamental assumptions for stability in the ESFR formulations, notably that all ESFR scheme correction fields can be interpreted as modally filtered DG correction fields. We present the result in the general context of all higher dimensional curvilinear element formulations. Through a demonstration that there exists a weak form of the ESFR schemes which is both discretely and analytically equivalent to the strong form, we then extend the results obtained for the strong formulations to demonstrate that ESFR schemes can be interpreted as a DG scheme in weak form where discontinuous edge flux is substituted for numerical edge flux correction. Theoretical derivations are then verified with numerical results obtained from a 2D Euler testcase with curved boundaries. Given the current choice of high-order DG-type schemes and the question as to which might be best to use for a specific application, the main significance of this work is the bridge that it provides between them. Clearly outlining the similarities between the schemes results in the important conclusion that it is always less efficient to use ESFR schemes, as opposed to the weak DG scheme, when solving problems implicitly.
High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations
Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek
2018-04-01
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.
Transient Thermal Analysis of 3-D Integrated Circuits Packages by the DGTD Method
Li, Ping; Dong, Yilin; Tang, Min; Mao, Junfa; Jiang, Li Jun; Bagci, Hakan
2017-01-01
Since accurate thermal analysis plays a critical role in the thermal design and management of the 3-D system-level integration, in this paper, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed to achieve this purpose
Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.
2018-03-01
Accurate numerical computation of wave traveltimes in heterogeneous media is of major interest for a large range of applications in seismics, such as phase identification, data windowing, traveltime tomography and seismic imaging. A high level of precision is needed for traveltimes and their derivatives in applications which require quantities such as amplitude or take-off angle. Even more challenging is the anisotropic case, where the general Eikonal equation is a quartic in the derivatives of traveltimes. Despite their efficiency on Cartesian meshes, finite-difference solvers are inappropriate when dealing with unstructured meshes and irregular topographies. Moreover, reaching high orders of accuracy generally requires wide stencils and high additional computational load. To go beyond these limitations, we propose a discontinuous-finite-element-based strategy which has the following advantages: (1) the Hamiltonian formalism is general enough for handling the full anisotropic Eikonal equations; (2) the scheme is suitable for any desired high-order formulation or mixing of orders (p-adaptivity); (3) the solver is explicit whatever Hamiltonian is used (no need to find the roots of the quartic); (4) the use of unstructured meshes provides the flexibility for handling complex boundary geometries such as topographies (h-adaptivity) and radiation boundary conditions for mimicking an infinite medium. The point-source factorization principles are extended to this discontinuous Galerkin formulation. Extensive tests in smooth analytical media demonstrate the high accuracy of the method. Simulations in strongly heterogeneous media illustrate the solver robustness to realistic Earth-sciences-oriented applications.
Tuma, Julio R
2011-12-01
The intersection of ELSI and science forms a complicated nexus yet their integration is an important goal both for society and for the successful advancement of science. In what follows, I present a heuristic that makes boundary identification and crossing an important tool in the discovery of potential areas of ethical, legal, and social concern in science. A dynamic and iterative application of the heuristic can lead towards a fuller integration and appreciation of the concerns of ELSI and of science from both sides of the divide.
ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics
Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.
2018-03-01
We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.
Adaptive stochastic Galerkin FEM with hierarchical tensor representations
Eigel, Martin
2016-01-08
PDE with stochastic data usually lead to very high-dimensional algebraic problems which easily become unfeasible for numerical computations because of the dense coupling structure of the discretised stochastic operator. Recently, an adaptive stochastic Galerkin FEM based on a residual a posteriori error estimator was presented and the convergence of the adaptive algorithm was shown. While this approach leads to a drastic reduction of the complexity of the problem due to the iterative discovery of the sparsity of the solution, the problem size and structure is still rather limited. To allow for larger and more general problems, we exploit the tensor structure of the parametric problem by representing operator and solution iterates in the tensor train (TT) format. The (successive) compression carried out with these representations can be seen as a generalisation of some other model reduction techniques, e.g. the reduced basis method. We show that this approach facilitates the efficient computation of different error indicators related to the computational mesh, the active polynomial chaos index set, and the TT rank. In particular, the curse of dimension is avoided.
Zhang, H; Urakami, T; Tsuchiya, Y; Lu, Z; Hiruma, T
1999-01-01
Continued work on time-integrated spectroscopy (TIS) is presented to quantify absorber concentrations in turbid media. We investigated the applicability of the TIS method to small-size media that have different boundary conditions by measuring two 20×20×50 mm3 cuboid liquid tissue-like phantoms at various absorption levels (absorption coefficients of the phantom from 2.5×10-3 to 4.4×10-2 mm-1 at 782 nm and from 3.1×10-3 to 2.7×10-2 mm-1 at 831 nm). The scattering and absorbing solution was filled into ordinary and black-anodized aluminum containers to provide different boundary conditions. By means of a single equation, the absorber concentrations have been recovered within errors of a few percent in both cases. This demonstrates that the TIS method can quantify absorbers in small-size media having different boundary conditions. © 1999 Society of Photo-Optical Instrumentation Engineers.
Suryantini; Rachmawati, C.; Abdurrahman, M.
2017-12-01
Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is
Tinto, K. J.; Siddoway, C. S.; Bell, R. E.; Lockett, A.; Wilner, J.
2017-12-01
Now submerged within marine plateaus and rises bordering Antarctica, Australia and Zealandia, the East Gondwana accretionary margin was a belt of terranes and stitched by magmatic arcs, later stretched into continental ribbons separated by narrow elongate rifts. This crustal architecture is known from marine geophysical exploration and ocean drilling of the mid-latitude coastal plateaus and rises. A concealed sector of the former East Gondwana margin that underlies the Ross Ice Shelf (RIS), Antarctica, is the focus of ROSETTA-ICE, a new airborne data acquisition campaign that explores the crustal makeup, tectonic boundaries and seafloor bathymetry beneath RIS. Gravimeters and a magnetometer are deployed by LC130 aircraft surveying along E-W lines spaced at 10 km, and N-S tie lines at 55 km, connect 1970s points (RIGGS) for controls on ocean depth and gravity. The ROSETTA-ICE survey, 2/3 completed thus far, provides magnetic anomalies, Werner depth-to-basement solutions, a new gravity-based bathymetric model at 20-km resolution, and a new crustal density map tied to the 1970s data. Surprisingly, the data reveal that the major lithospheric boundary separating East and West Antarctica lies 300 km east of the Transantarctic Mountains, beneath the floating RIS. The East and West regions have contrasting geophysical characteristics and bathymetry, with relatively dense lithosphere, low amplitude magnetic anomalies, and deep bathymetry on the East Antarctica side, and high amplitude magnetic anomalies, lower overall density and shallower water depths on the West Antarctic side. The Central High, a basement structure cored at DSDP Site 270 and seismically imaged in the Ross Sea, continues beneath RIS as a faulted but coherent crustal ribbon coincident with the tectonic boundary. The continuity of Gondwana margin crustal architecture discovered beneath the West Antarctic Ice Sheet requires a revision of the existing tectonic framework. The sub-RIS narrow rift basins and
International Nuclear Information System (INIS)
Hughes, T.J.R.; Hulbert, G.M.; Franca, L.P.
1988-10-01
Galerkin/least-squares finite element methods are presented for advective-diffusive equations. Galerkin/least-squares represents a conceptual simplification of SUPG, and is in fact applicable to a wide variety of other problem types. A convergence analysis and error estimates are presented. (author) [pt
Super-convergence of Discontinuous Galerkin Method Applied to the Navier-Stokes Equations
Atkins, Harold L.
2009-01-01
The practical benefits of the hyper-accuracy properties of the discontinuous Galerkin method are examined. In particular, we demonstrate that some flow attributes exhibit super-convergence even in the absence of any post-processing technique. Theoretical analysis suggest that flow features that are dominated by global propagation speeds and decay or growth rates should be super-convergent. Several discrete forms of the discontinuous Galerkin method are applied to the simulation of unsteady viscous flow over a two-dimensional cylinder. Convergence of the period of the naturally occurring oscillation is examined and shown to converge at 2p+1, where p is the polynomial degree of the discontinuous Galerkin basis. Comparisons are made between the different discretizations and with theoretical analysis.
Schiemenz, Alan R.
High-order methods are emerging in the scientific computing community as superior alternatives to the classical finite difference, finite volume, and continuous finite element methods. The discontinuous Galerkin (DG) method in particular combines many of the positive features of all of these methods. This thesis presents two projects involving the DG method. First, a Hybrid scheme is presented, which implements DG areas where the solution is considered smooth, while dropping the order of the scheme elsewhere and implementing a finite volume scheme with high-order, non-oscillatory solution reconstructions suitable for unstructured mesh. Two such reconstructions from the ENO class are considered in the Hybrid. Successful numerical results are presented for nonlinear systems of conservation laws in one dimension. Second, the high-order discontinuous Galerkin and Fourier spectral methods are applied to an application modeling three-phase fluid flow through a porous medium, undergoing solid-fluid reaction due to the reactive infiltration instability (RII). This model incorporates a solid upwelling term and an equation to track the abundance of the reacting mineral orthopyroxene (opx). After validating the numerical discretization, results are given that provide new insight into the formation of melt channels in the Earth's mantle. Mantle heterogeneities are observed to be one catalyst for the development of melt channels, and the dissolution of opx produces interesting bifurcations in the melt channels. An alternative formulation is considered where the mass transfer rate relative to velocity is taken to be infinitely large. In this setting, the stiffest terms are removed, greatly reducing the cost of time integration.
Galerkin projection methods for solving multiple related linear systems
Energy Technology Data Exchange (ETDEWEB)
Chan, T.F.; Ng, M.; Wan, W.L.
1996-12-31
We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.
Analysis of circular fibers with an arbitrary index profile by the Galerkin method.
Guo, Shangping; Wu, Feng; Ikram, Khalid; Albin, Sacharia
2004-01-01
We propose a full-vectorial Galerkin method for the analysis of circular symmetric fibers with arbitrary index profiles. A set of orthogonal Laguerre-Gauss functions is used to calculate the dispersion relation and mode fields of TE and TM modes. Examples are given for both standard step-index fibers and Bragg fibers. For standard step-index fiber with low or high index contrast, the Galerkin method agrees well with the analytical results. In the case of the TE mode of a Bragg fiber it agrees well with the asymptotic results.
Stochastic Galerkin methods for the steady-state Navier–Stokes equations
Energy Technology Data Exchange (ETDEWEB)
Sousedík, Bedřich, E-mail: sousedik@umbc.edu [Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Elman, Howard C., E-mail: elman@cs.umd.edu [Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 (United States)
2016-07-01
We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmark problems.
International Nuclear Information System (INIS)
Obradovic, D.
1970-04-01
In the study of the nuclear reactors space-time behaviour the modal analysis is very often used though some basic mathematical problems connected with application of this methods are still unsolved. In this paper the modal analysis is identified as a set of the methods in the mathematical literature known as the Galerkin methods (or projection methods, or sometimes direct methods). Using the results of the mathematical investigations of these methods the applicability of the Galerkin type methods to the calculations of the eigenvalue and eigenvectors of the stationary and non-stationary diffusion operator, as well as for the solutions of the corresponding functional equations, is established (author)
Directory of Open Access Journals (Sweden)
Zeng-Rong Hao
2014-11-01
Full Text Available The performance of modern heavy-duty gas turbines is greatly determined by the accurate numerical predictions of thermal loading on the hot-end components. The purpose of this paper is: (1 to present an approach applying a novel numerical technique—the discontinuous Galerkin (DG method—to conjugate heat transfer (CHT simulations, develop the engineering-oriented numerical platform, and validate the feasibility of the methodology and tool preliminarily; and (2 to utilize the constructed platform to investigate the aerothermodynamic features of a typical transonic turbine vane with convection cooling. Fluid dynamic and solid heat conductive equations are discretized into explicit DG formulations. A centroid-expanded Taylor basis is adopted for various types of elements. The Bassi-Rebay method is used in the computation of gradients. A coupled strategy based on a data exchange process via numerical flux on interface quadrature points is simply devised. Additionally, various turbulence Reynolds-Averaged-Navier-Stokes (RANS models and the local-variable-based transition model γ-Reθ are assimilated into the integral framework, combining sophisticated modelling with the innovative algorithm. Numerical tests exhibit good consistency between computational and analytical or experimental results, demonstrating that the presented approach and tool can handle well general CHT simulations. Application and analysis in the turbine vane, focusing on features around where there in cluster exist shock, separation and transition, illustrate the effects of Bradshaw’s shear stress limitation and separation-induced-transition modelling. The general overestimation of heat transfer intensity behind shock is conjectured to be associated with compressibility effects on transition modeling. This work presents an unconventional formulation in CHT problems and achieves its engineering applications in gas turbines.
Li, Ping
2017-03-22
In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.
Goswami, Deepjyoti
2011-09-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis is based on energy arguments without using parabolic duality. Further, it follows the spirit of the proof technique used for deriving optimal error estimates for finite element approximations to parabolic problems with smooth initial data and hence, it unifies both theories, that is, one for smooth initial data and other for nonsmooth data. Moreover, the proposed technique is also extended to a semidiscrete mixed method for linear parabolic problems. In both cases, optimal L2-error estimates are derived, when the initial data is in L2. A superconvergence phenomenon is also observed, which is then used to prove L∞-estimates for linear parabolic problems defined on two-dimensional spatial domain again with rough initial data. Copyright © Taylor & Francis Group, LLC.
Vragov’s boundary value problem for an implicit equation of mixed type
Egorov, I. E.
2017-10-01
We study a Vragov boundary value problem for a third-order implicit equation of mixed type with an arbitrary manifold of type switch. These Sobolev-type equations arise in many important applied problems. Given certain constraints on the coefficients and the right-hand side of the equation, we demonstrate, using nonstationary Galerkin method and regularization method, the unique regular solvability of the boundary value problem. We also obtain an error estimate for approximate solutions of the boundary value problem in terms of the regularization parameter and the eigenvalues of the Dirichlet spectral problem for the Laplace operator.
Directory of Open Access Journals (Sweden)
Jelena Ačanski
2016-10-01
Full Text Available Several recent studies have detected and described complexes of cryptic and sibling species in the genus Merodon (Diptera, Syrphidae. One representative of these complexes is the Merodon avidus complex that contains four sibling species, which have proven difficult to distinguish using traditional morphological characters. In the present study, we use two geometric morphometric approaches, as well as molecular characters of the 5’-end of the mtDNA COI gene, to delimit sibling taxa. Analyses based on these data were used to strengthen species boundaries within the complex, and to validate the status of a previously-recognized cryptic taxon from Lesvos Island (Greece, here described as Merodon megavidus Vujić & Radenković sp. nov. Geometric morphometric results of both wing and surstylus shape confirm the present classification for three sibling species－M. avidus (Rossi, 1790, M. moenium Wiedemann in Meigen, 1822 and M. ibericus Vujić, 2015－and, importantly, clearly discriminate the newly-described taxon Merodon megavidus sp. nov. In addition to our geometric morphometric results, supporting characters were obtained from molecular analyses of mtDNA COI sequences, which clearly differentiated M. megavidus sp. nov. from the other members of the M. avidus complex. Molecular analyses revealed that the earliest divergence of M. ibericus occurred around 800 ky BP, while the most recent separation happened between M. avidus and M. moenium around 87 ky BP.
Wang, J.; Song, J.; Gao, M.; Zhu, L.
2014-02-01
The trans-boundary area between Northern China, Mongolia and eastern Siberia of Russia is a continuous geographical area located in north eastern Asia. Many common issues in this region need to be addressed based on a uniform resources and environmental data warehouse. Based on the practice of joint scientific expedition, the paper presented a data integration solution including 3 steps, i.e., data collection standards and specifications making, data reorganization and process, data warehouse design and development. A series of data collection standards and specifications were drawn up firstly covering more than 10 domains. According to the uniform standard, 20 resources and environmental survey databases in regional scale, and 11 in-situ observation databases were reorganized and integrated. North East Asia Resources and Environmental Data Warehouse was designed, which included 4 layers, i.e., resources layer, core business logic layer, internet interoperation layer, and web portal layer. The data warehouse prototype was developed and deployed initially. All the integrated data in this area can be accessed online.
International Nuclear Information System (INIS)
Wang, J; Song, J; Gao, M; Zhu, L
2014-01-01
The trans-boundary area between Northern China, Mongolia and eastern Siberia of Russia is a continuous geographical area located in north eastern Asia. Many common issues in this region need to be addressed based on a uniform resources and environmental data warehouse. Based on the practice of joint scientific expedition, the paper presented a data integration solution including 3 steps, i.e., data collection standards and specifications making, data reorganization and process, data warehouse design and development. A series of data collection standards and specifications were drawn up firstly covering more than 10 domains. According to the uniform standard, 20 resources and environmental survey databases in regional scale, and 11 in-situ observation databases were reorganized and integrated. North East Asia Resources and Environmental Data Warehouse was designed, which included 4 layers, i.e., resources layer, core business logic layer, internet interoperation layer, and web portal layer. The data warehouse prototype was developed and deployed initially. All the integrated data in this area can be accessed online
Huang, Melin; Huang, Bormin; Huang, Allen H.
2014-10-01
The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.
Niemi, Antti H.
2011-02-01
We study the applicability of the discontinuous Petrov-Galerkin (DPG) variational framework for thin-body problems in structural mechanics. Our numerical approach is based on discontinuous piecewise polynomial finite element spaces for the trial functions and approximate, local computation of the corresponding \\'optimal\\' test functions. In the Timoshenko beam problem, the proposed method is shown to provide the best approximation in an energy-type norm which is equivalent to the L2-norm for all the unknowns, uniformly with respect to the thickness parameter. The same formulation remains valid also for the asymptotic Euler-Bernoulli solution. As another one-dimensional model problem we consider the modelling of the so called basic edge effect in shell deformations. In particular, we derive a special norm for the test space which leads to a robust method in terms of the shell thickness. Finally, we demonstrate how a posteriori error estimator arising directly from the discontinuous variational framework can be utilized to generate an optimal hp-mesh for resolving the boundary layer. © 2010 Elsevier B.V.
An H1(Ph)-Coercive Discontinuous Galerkin Formulation for the Poisson Problem : 1-D Analysis
Van der Zee, K.G.; Van Brummelen, E.H.
2005-01-01
Discontinuous Galerkin (DG) methods are finite element techniques for the solution of partial differential equations. They allow shape functions which are discontinuous across inter-element edges. In principle, DG methods are ideally suited for hp-adaptivity, as they handle nonconforming meshes and
Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation
P.W. Hemker (Piet); M.H. van Raalte (Marc)
2002-01-01
textabstractIn this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the
Fourier two-level analysis for discontinuous Galerkin discretization with linear elements
P.W. Hemker (Piet); W. Hoffmann; M.H. van Raalte (Marc)
2002-01-01
textabstractIn this paper we study the convergence of a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence fordifferent block-relaxation strategies. In addition to an
Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretisation
P.W. Hemker (Piet); W. Hoffmann; M.H. van Raalte (Marc)
2002-01-01
textabstractIn this paper we study a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, andwe give a detailed analysis of the convergence for different block-relaxation strategies.We find that point-wise
The Stochastic Galerkin Method for Darcy Flow Problem with Log-Normal Random
Czech Academy of Sciences Publication Activity Database
Beres, Michal; Domesová, Simona
2017-01-01
Roč. 15, č. 2 (2017), s. 267-279 ISSN 1336-1376 R&D Projects: GA MŠk LQ1602 Institutional support: RVO:68145535 Keywords : Darcy flow * Gaussian random field * Karhunen-Loeve decomposition * polynomial chaos * Stochastic Galerkin method Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://advances.utc.sk/index.php/AEEE/article/view/2280
Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.
We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the formulation is that if the system of nonconservative partial
Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.
2008-01-01
We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the weak formulation is that if the system of nonconservative partial
Discontinuous Galerkin Approximations for Computing Electromagnetic Bloch Modes in Photonic Crystals
Lu, Zhongjie; Cesmelioglu, A.; van der Vegt, Jacobus J.W.; Xu, Yan
We analyze discontinuous Galerkin finite element discretizations of the Maxwell equations with periodic coefficients. These equations are used to model the behavior of light in photonic crystals, which are materials containing a spatially periodic variation of the refractive index commensurate with
hpGEM -- A software framework for discontinuous Galerkin finite element methods
Pesch, L.; Bell, A.; Sollie, W.E.H.; Ambati, V.R.; Bokhove, Onno; van der Vegt, Jacobus J.W.
2006-01-01
hpGEM, a novel framework for the implementation of discontinuous Galerkin finite element methods, is described. We present structures and methods that are common for many (discontinuous) finite element methods and show how we have implemented the components as an object-oriented framework. This
A study on discontinuous Galerkin finite element methods for elliptic problems
Janivita Joto Sudirham, J.J.S.; Sudirham, J.J.; van der Vegt, Jacobus J.W.; van Damme, Rudolf M.J.
2003-01-01
In this report we study several approaches of the discontinuous Galerkin finite element methods for elliptic problems. An important aspect in these formulations is the use of a lifting operator, for which we present an efficient numerical approximation technique. Numerical experiments for two
Error analysis of some Galerkin - least squares methods for the elasticity equations
International Nuclear Information System (INIS)
Franca, L.P.; Stenberg, R.
1989-05-01
We consider the recent technique of stabilizing mixed finite element methods by augmenting the Galerkin formulation with least squares terms calculated separately on each element. The error analysis is performed in a unified manner yielding improved results for some methods introduced earlier. In addition, a new formulation is introduced and analyzed [pt
Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.
2017-12-01
The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.
DEFF Research Database (Denmark)
Løvschal, Mette
2014-01-01
of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...
DEFF Research Database (Denmark)
Brodkin, Evelyn; Larsen, Flemming
2013-01-01
project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...
Analysis of Direct Extrusion Operation Using The Bubnov-Galerkin ...
African Journals Online (AJOL)
... was obtained in a matrix form from the weighted residual, boundary condition were now applied to obtain the pressure distribution across the cross-section of the blank. Finite element results were obtained for a particular values of coefficient of friction and blank diameter and compared with the exact solution on a graph.
Yurkin, Maxim A.; Mishchenko, Michael I.
2018-04-01
We present a general derivation of the frequency-domain volume integral equation (VIE) for the electric field inside a nonmagnetic scattering object from the differential Maxwell equations, transmission boundary conditions, radiation condition at infinity, and locally-finite-energy condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic materials and embedded in a passive host medium, including those with edges, corners, and intersecting internal interfaces. This is a substantially more general type of scatterer than in all previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the entire discussion accessible to the applied scattering community. We also consider the known results on the existence and uniqueness of VIE solution and conjecture a general sufficient condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object by means of a continuous transformation of the everywhere smooth refractive-index function into a discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art understanding of various analytical aspects of the VIE.
Raghupathy, Arun; Ghia, Karman; Ghia, Urmila
2008-11-01
Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.
Barton, Michael; Calo, Victor M.
2016-01-01
We introduce Gaussian quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. By definition, these spaces are of even degrees. The optimal quadrature rules we recently derived
Niemi, Antti H.; Bramwell, Jamie A.; Demkowicz, Leszek F.
2011-01-01
We study the applicability of the discontinuous Petrov-Galerkin (DPG) variational framework for thin-body problems in structural mechanics. Our numerical approach is based on discontinuous piecewise polynomial finite element spaces for the trial
Niemi, Antti; Collier, Nathan; Calo, Victor M.
2011-01-01
We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can
Pagano, Anthony S; Laitman, Jeffrey T
2015-01-01
The nasopharynx is a centrally located but understudied upper respiratory tract component. This study tested hypotheses related to the functional integration of the nasopharyngeal boundaries with the facial skeleton and external basicranium over the course of development in humans and nonhuman hominoids. It was hypothesized that facial morphology (width, length, and kyphosis) is related to nasopharyngeal width and choanal morphology, whereas relative external basicranial proportions are related to nasopharyngeal depth. Human infants were used as models of extreme orthognathy and external basicranial retroflexion, whereas nonhuman hominoids were used to model greater relative prognathism and external basicranial retroflexion. Both of these groups were contrasted against adult humans, who exhibit both extreme orthognathy and external basicranial flexion. Three-dimensional landmark coordinate data were collected from age-graded series of Homo, Pan, Gorilla, Pongo, and Hylobates. Generalized Procrustes Analysis was performed, and multivariate shape differences were evaluated via principal components analysis. Additionally, linear measures were extracted from the Procrustes-corrected sets of landmark data. Results indicate that human adults are indeed distinct from all groups in possessing a relatively shallow nasopharyngeal roof and shorter, more flexed external basicranial axis. Human adults and infants both exhibit greater relative choanal and nasopharyngeal width. Nonhuman hominoid faces tended to become airorhynch into adulthood, whereas humans exhibited the opposite trend. When pooling all the hominoids, facial width and palate length were strongly correlated with choanal and nasopharyngeal width, whereas facial kyphosis was strongly correlated with choanal orientation. The hypotheses were supported as the results indicated a morphologic relationship among nasopharyngeal boundaries, the facial skeleton, and the external basicranium. © 2014 Wiley Periodicals, Inc.
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
DEFF Research Database (Denmark)
Zølner, Mette
The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....
A second order discontinuous Galerkin fast sweeping method for Eikonal equations
Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai
2008-09-01
In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.
Beck, Joakim; Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul
2014-01-01
In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.
Mollified birth in natural-age-grid Galerkin methods for age-structured biological systems
International Nuclear Information System (INIS)
Ayati, Bruce P; Dupont, Todd F
2009-01-01
We present natural-age-grid Galerkin methods for a model of a biological population undergoing aging. We use a mollified birth term in the method and analysis. The error due to mollification is of arbitrary order, depending on the choice of mollifier. The methods in this paper generalize the methods presented in [1], where the approximation space in age was taken to be a discontinuous piecewise polynomial subspace of L 2 . We refer to these methods as 'natural-age-grid' Galerkin methods since transport in the age variable is computed through the smooth movement of the age grid at the natural dimensionless velocity of one. The time variable has been left continuous to emphasize this smooth motion, as well as the independence of the time and age discretizations. The methods are shown to be superconvergent in the age variable
Numerical and experimental validation of a particle Galerkin method for metal grinding simulation
Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng
2018-03-01
In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.
Discontinuous Galerkin Approaches for Stokes Flow and Flow in Porous Media
Lehmann, Ragnar; Kaus, Boris; Lukacova, Maria
2014-05-01
Firstly, we present results of a study comparing two different numerical approaches for solving the Stokes equations with strongly varying viscosity: the continuous Galerkin (i.e., FEM) and the discontinuous Galerkin (DG) method. Secondly, we show how the latter method can be extended and applied to flow in porous media governed by Darcy's law. Nonlinearities in the viscosity or other material parameters can lead to discontinuities in the velocity-pressure solution that may not be approximated well with continuous elements. The DG method allows for discontinuities across interior edges of the underlying mesh. Furthermore, depending on the chosen basis functions, it naturally enforces local mass conservation, i.e., in every mesh cell. Computationally, it provides the capability to locally adapt the polynomial degree and needs communication only between directly adjacent mesh cells making it highly flexible and easy to parallelize. The methods are compared for several geophysically relevant benchmarking setups and discussed with respect to speed, accuracy, computational efficiency.
Topology optimization using the improved element-free Galerkin method for elasticity*
International Nuclear Information System (INIS)
Wu Yi; Ma Yong-Qi; Feng Wei; Cheng Yu-Min
2017-01-01
The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function. In a topology optimization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin (EFG) method. The central processing unit (CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown. (paper)
Beck, Joakim
2014-03-01
In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.
Dual and primal mixed Petrov-Galerkin finite element methods in heat transfer problems
International Nuclear Information System (INIS)
Loula, A.F.D.; Toledo, E.M.
1988-12-01
New mixed finite element formulations for the steady state heat transfer problem are presented with no limitation in the choice of conforming finite element spaces. Adding least square residual forms of the governing equations of the classical Galerkin formulation the original saddle point problem is transformed into a minimization problem. Stability analysis, error estimates and numerical results are presented, confirming the error estimates and the good performance of this new formulation. (author) [pt
Zhang, Shuhua; Sun, Shuyu; Yang, Hongtao
2014-01-01
A discontinuous Galerkin method is considered to simulate materials flow in a supply chain network problem which is governed by a system of conservation laws. By means of a novel interpolation and superclose analysis technique, the optimal and superconvergence error estimates are established under two physically meaningful assumptions on the connectivity matrix. Numerical examples are presented to validate the theoretical results. © 2014 Elsevier Ltd. All rights reserved.
Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations
Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran
2018-06-01
This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.
Zhang, Shuhua
2014-09-01
A discontinuous Galerkin method is considered to simulate materials flow in a supply chain network problem which is governed by a system of conservation laws. By means of a novel interpolation and superclose analysis technique, the optimal and superconvergence error estimates are established under two physically meaningful assumptions on the connectivity matrix. Numerical examples are presented to validate the theoretical results. © 2014 Elsevier Ltd. All rights reserved.
A weak Galerkin least-squares finite element method for div-curl systems
Li, Jichun; Ye, Xiu; Zhang, Shangyou
2018-06-01
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.
Directory of Open Access Journals (Sweden)
Ilaria Iaconeta
2017-09-01
Full Text Available The simulation of large deformation problems, involving complex history-dependent constitutive laws, is of paramount importance in several engineering fields. Particular attention has to be paid to the choice of a suitable numerical technique such that reliable results can be obtained. In this paper, a Material Point Method (MPM and a Galerkin Meshfree Method (GMM are presented and verified against classical benchmarks in solid mechanics. The aim is to demonstrate the good behavior of the methods in the simulation of cohesive-frictional materials, both in static and dynamic regimes and in problems dealing with large deformations. The vast majority of MPM techniques in the literatrue are based on some sort of explicit time integration. The techniques proposed in the current work, on the contrary, are based on implicit approaches, which can also be easily adapted to the simulation of static cases. The two methods are presented so as to highlight the similarities to rather than the differences from “standard” Updated Lagrangian (UL approaches commonly employed by the Finite Elements (FE community. Although both methods are able to give a good prediction, it is observed that, under very large deformation of the medium, GMM lacks robustness due to its meshfree natrue, which makes the definition of the meshless shape functions more difficult and expensive than in MPM. On the other hand, the mesh-based MPM is demonstrated to be more robust and reliable for extremely large deformation cases.
Institute of Scientific and Technical Information of China (English)
ZHANG RongPei; YU XiJun; LI MingJun; LI XiangGui
2017-01-01
In this study,we present a conservative local discontinuous Galerkin (LDG) method for numerically solving the two-dimensional nonlinear Schr(o)dinger (NLS) equation.The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux.The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central,alternative and upwind-based flux.We will propose two kinds of time discretization methods for the semi-discrete formulation.One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation.The other one is Krylov implicit integration factor (ⅡF) method which demands much less computational effort.Various numerical experiments are presented to demonstrate the conservation law of mass and energy,the optimal rates of convergence,and the blow-up phenomenon.
Gerbi, Sté phane; Said-Houari, Belkacem
2013-01-01
The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.
Gerbi, Stéphane
2013-01-15
The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.
Fast multipole acceleration of the MEG/EEG boundary element method
International Nuclear Information System (INIS)
Kybic, Jan; Clerc, Maureen; Faugeras, Olivier; Keriven, Renaud; Papadopoulo, Theo
2005-01-01
The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the symmetric boundary element method (BEM). It creates a hierarchical structure of the elements and approximates far interactions using spherical harmonics expansions. The accelerated method is shown to be as accurate as the direct method, yet for large problems it is both faster and more economical in terms of memory consumption
International Nuclear Information System (INIS)
Park, Jai Hak
2009-01-01
SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook
DEFF Research Database (Denmark)
Neergaard, Ulla; Nielsen, Ruth
2010-01-01
of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....
The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.
Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.
2009-04-01
Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D
Deckers, Jef; Van Noten, Koen; Schiltz, Marco; Lecocq, Thomas; Vanneste, Kris
2018-01-01
The Grote Brogel Fault (GBF) is a major WNW-ESE striking normal fault in Belgium that diverges westward from the NW-SE striking western border fault system of the Roer Valley Graben. The GBF delimits the topographically higher Campine Block from the subsiding Roer Valley Graben, and is expressed in the Digital Terrain Model (DTM) by relief gradients or scarps. By integrating DTM, Electrical Resistivity Tomography (ERT), Cone Penetration Test (CPT) and borehole data, we studied the Quaternary activity of the GBF and its effects on local hydrogeology. In the shallow subsurface (< 50 m) underneath these scarps, fault splays of the GBF were interpreted on newly acquired ERT profiles at two investigation sites: one on the eastern section and the other on the western section, near the limit of the visible surface trace of the fault. Borehole and CPT data enabled stratigraphic interpretations of the ERT profiles and thereby allowed measuring vertical fault offsets at the base of Pleistocene fluvial deposits of up to 12 m. Groundwater measurements in the boreholes and CPTs indicate that the GBF acts as a hydrologic boundary that prevents groundwater flow from the elevated footwall towards the hangingwall, resulting in hydraulic head differences of up to 12.7 m. For the two investigation sites, the hydraulic head changes correlate with the relief gradient, which in turn correlates with the Quaternary vertical offset of the GBF. ERT profiles at the eastern site also revealed a local soft-linked stepover in the shallow subsurface, which affects groundwater levels in the different fault blocks, and illustrates the complex small-scale geometry of the GBF.
International Nuclear Information System (INIS)
Rosato, Antonio; Sibilio, Sergio; Scorpio, Michelangelo
2014-01-01
Highlights: • A building-integrated micro-cogeneration system was dynamically simulated. • Simulation data were analyzed from both environmental and economic point of views. • The proposed system was compared with a conventional supply system. • The proposed system reduces the environmental impact under heat-led operation. • The proposed system reduces the operating costs whatever the control logic is. - Abstract: This work examines the performance of a residential building-integrated micro-cogeneration system during the winter by means of a whole building simulation software. The cogeneration unit was coupled with a multi-family house composed of three floors, compliant with the transmittance values of both walls and windows suggested by the Italian Law; a stratified combined tank for both heating purposes and domestic hot water production was also used for storing heat. Simulations were performed considering the transient nature of the building and occupant driven loads as well as the part-load characteristics of the cogeneration unit. This system was described in detail and analyzed from an energy point of view in the companion paper. In this paper the simulation results were evaluated in terms of both carbon dioxide equivalent emissions and operating costs; detailed analyses were performed in order to estimate the influence of the most significant boundary conditions on both environmental and economic performance of the proposed system: in particular, three volumes of the hot water storage, four climatic zones corresponding to four Italian cities, two electric demand profiles, as well as two control strategies micro-cogeneration unit were considered. The assessment of environmental impact was performed by using the standard emission factors approach, neglecting the effects of local pollutants. The operating costs due to both natural gas and electric energy consumption were evaluated in detail, whereas both the capital and maintenance costs were
Mirinejad, Hossein; Gaweda, Adam E; Brier, Michael E; Zurada, Jacek M; Inanc, Tamer
2017-09-01
Anemia is a common comorbidity in patients with chronic kidney disease (CKD) and is frequently associated with decreased physical component of quality of life, as well as adverse cardiovascular events. Current treatment methods for renal anemia are mostly population-based approaches treating individual patients with a one-size-fits-all model. However, FDA recommendations stipulate individualized anemia treatment with precise control of the hemoglobin concentration and minimal drug utilization. In accordance with these recommendations, this work presents an individualized drug dosing approach to anemia management by leveraging the theory of optimal control. A Multiple Receding Horizon Control (MRHC) approach based on the RBF-Galerkin optimization method is proposed for individualized anemia management in CKD patients. Recently developed by the authors, the RBF-Galerkin method uses the radial basis function approximation along with the Galerkin error projection to solve constrained optimal control problems numerically. The proposed approach is applied to generate optimal dosing recommendations for individual patients. Performance of the proposed approach (MRHC) is compared in silico to that of a population-based anemia management protocol and an individualized multiple model predictive control method for two case scenarios: hemoglobin measurement with and without observational errors. In silico comparison indicates that hemoglobin concentration with MRHC method has less variation among the methods, especially in presence of measurement errors. In addition, the average achieved hemoglobin level from the MRHC is significantly closer to the target hemoglobin than that of the other two methods, according to the analysis of variance (ANOVA) statistical test. Furthermore, drug dosages recommended by the MRHC are more stable and accurate and reach the steady-state value notably faster than those generated by the other two methods. The proposed method is highly efficient for
A fractional spline collocation-Galerkin method for the time-fractional diffusion equation
Directory of Open Access Journals (Sweden)
Pezza L.
2018-03-01
Full Text Available The aim of this paper is to numerically solve a diffusion differential problem having time derivative of fractional order. To this end we propose a collocation-Galerkin method that uses the fractional splines as approximating functions. The main advantage is in that the derivatives of integer and fractional order of the fractional splines can be expressed in a closed form that involves just the generalized finite difference operator. This allows us to construct an accurate and efficient numerical method. Several numerical tests showing the effectiveness of the proposed method are presented.
Discontinuous Galerkin time-domain analysis of power/ground plate pairs with wave port excitation
Li, Ping; Jiang, Li Jun; Bagci, Hakan
2018-01-01
In this work, a discontinuous Galerkin time-domain method is developed to analyze the power/ground plate pairs taking into account arbitrarily shaped antipads. To implement proper source excitations over the antipads, the magnetic surface current expanded by the electric eigen-modes supported by the corresponding antipad is employed as the excitation. For irregularly shaped antipads, the eigen-modes are obtained by numerical approach. Accordingly, the methodology for the S-parameter extraction is derived based on the orthogonal properties of the different modes. Based on the approach, the transformation between different modes can be readily evaluated.
Approximate solution of the transport equation by methods of Galerkin type
International Nuclear Information System (INIS)
Pitkaranta, J.
1977-01-01
Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form
Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients
Beck, Joakim
2011-12-22
In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new effective class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids.
Wheeler, Mary
2013-11-16
We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.
Directory of Open Access Journals (Sweden)
Liquan Mei
2014-01-01
Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.
A cubic B-spline Galerkin approach for the numerical simulation of the GEW equation
Directory of Open Access Journals (Sweden)
S. Battal Gazi Karakoç
2016-02-01
Full Text Available The generalized equal width (GEW wave equation is solved numerically by using lumped Galerkin approach with cubic B-spline functions. The proposed numerical scheme is tested by applying two test problems including single solitary wave and interaction of two solitary waves. In order to determine the performance of the algorithm, the error norms L2 and L∞ and the invariants I1, I2 and I3 are calculated. For the linear stability analysis of the numerical algorithm, von Neumann approach is used. As a result, the obtained findings show that the presented numerical scheme is preferable to some recent numerical methods.
Discontinuous Galerkin time-domain analysis of power/ground plate pairs with wave port excitation
Li, Ping
2018-04-06
In this work, a discontinuous Galerkin time-domain method is developed to analyze the power/ground plate pairs taking into account arbitrarily shaped antipads. To implement proper source excitations over the antipads, the magnetic surface current expanded by the electric eigen-modes supported by the corresponding antipad is employed as the excitation. For irregularly shaped antipads, the eigen-modes are obtained by numerical approach. Accordingly, the methodology for the S-parameter extraction is derived based on the orthogonal properties of the different modes. Based on the approach, the transformation between different modes can be readily evaluated.
And still, a new beginning: the Galerkin least-squares gradient method
International Nuclear Information System (INIS)
Franca, L.P.; Carmo, E.G.D. do
1988-08-01
A finite element method is proposed to solve a scalar singular diffusion problem. The method is constructed by adding to the standard Galerkin a mesh-dependent term obtained by taking the gradient of the Euler-lagrange equation and multiplying it by its least-squares. For the one-dimensional homogeneous problem the method is designed to develop nodal exact solution. An error estimate shows that the method converges optimaly for any value of the singular parameter. Numerical results demonstrate the good stability and accuracy properties of the method. (author) [pt
International Nuclear Information System (INIS)
Rao, Y.F.; Fukuda, K.; Hasegawa, S.
1986-01-01
Steady and transient analytical investigation with the Galerkin method has been performed on natural convection in a horizontal porous annulus heated from the inner surface. Three families of convergent solutions, appearing one after another with increasing RaDa numbers, were obtained corresponding to different initial conditions. Despite the fact that the flow structures of two branching solutions are quite different, there exists a critical RaDa number at which their overall heat transfer rates have the same value. The bifurcation point was determined numerically, which coincided very well with that from experimental observation. The solutions in which higher wavenumber modes are dominant agree better with experimental data of overall heat transfer
Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jaechil [Univ. of Wisconsin, Madison, WI (United States)
1996-12-31
Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.
Townsend, Alan R.; Porder, Stephen
2011-03-01
What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine
Directory of Open Access Journals (Sweden)
Mehmet Camurdan
1998-01-01
are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.
Spanning organizational boundaries to manage creative processes:
DEFF Research Database (Denmark)
Andersen, Poul Houman; Kragh, Hanne; Lettl, Christopher
2013-01-01
In order to continue to be innovative in the current fast-paced and competitive environment, organizations are increasingly dependent on creative inputs developed outside their boundaries. The paper addresses the boundary spanning activities that managers undertake to a) select and mobilize...... creative talent, b) create shared identity, and c) combine and integrate knowledge in innovation projects involving external actors. We study boundary spanning activities in two creative projects in the LEGO group. One involves identifying and integrating deep, specialized knowledge, the other focuses...... actors, and how knowledge is integrated across organizational boundaries. We discuss implications of our findings for managers and researchers in a business-to-business context...
Chremmos, Ioannis
2010-01-01
The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.
Study of flow over object problems by a nodal discontinuous Galerkin-lattice Boltzmann method
Wu, Jie; Shen, Meng; Liu, Chen
2018-04-01
The flow over object problems are studied by a nodal discontinuous Galerkin-lattice Boltzmann method (NDG-LBM) in this work. Different from the standard lattice Boltzmann method, the current method applies the nodal discontinuous Galerkin method into the streaming process in LBM to solve the resultant pure convection equation, in which the spatial discretization is completed on unstructured grids and the low-storage explicit Runge-Kutta scheme is used for time marching. The present method then overcomes the disadvantage of standard LBM for depending on the uniform meshes. Moreover, the collision process in the LBM is completed by using the multiple-relaxation-time scheme. After the validation of the NDG-LBM by simulating the lid-driven cavity flow, the simulations of flows over a fixed circular cylinder, a stationary airfoil and rotating-stationary cylinders are performed. Good agreement of present results with previous results is achieved, which indicates that the current NDG-LBM is accurate and effective for flow over object problems.
Ching, Eric; Lv, Yu; Ihme, Matthias
2017-11-01
Recent interest in human-scale missions to Mars has sparked active research into high-fidelity simulations of reentry flows. A key feature of the Mars atmosphere is the high levels of suspended dust particles, which can not only enhance erosion of thermal protection systems but also transfer energy and momentum to the shock layer, increasing surface heat fluxes. Second-order finite-volume schemes are typically employed for hypersonic flow simulations, but such schemes suffer from a number of limitations. An attractive alternative is discontinuous Galerkin methods, which benefit from arbitrarily high spatial order of accuracy, geometric flexibility, and other advantages. As such, a Lagrangian particle method is developed in a discontinuous Galerkin framework to enable the computation of particle-laden hypersonic flows. Two-way coupling between the carrier and disperse phases is considered, and an efficient particle search algorithm compatible with unstructured curved meshes is proposed. In addition, variable thermodynamic properties are considered to accommodate high-temperature gases. The performance of the particle method is demonstrated in several test cases, with focus on the accurate prediction of particle trajectories and heating augmentation. Financial support from a Stanford Graduate Fellowship and the NASA Early Career Faculty program are gratefully acknowledged.
Yang, Xiaoquan; Cheng, Jian; Liu, Tiegang; Luo, Hong
2015-11-01
The direct discontinuous Galerkin (DDG) method based on a traditional discontinuous Galerkin (DG) formulation is extended and implemented for solving the compressible Navier-Stokes equations on arbitrary grids. Compared to the widely used second Bassi-Rebay (BR2) scheme for the discretization of diffusive fluxes, the DDG method has two attractive features: first, it is simple to implement as it is directly based on the weak form, and therefore there is no need for any local or global lifting operator; second, it can deliver comparable results, if not better than BR2 scheme, in a more efficient way with much less CPU time. Two approaches to perform the DDG flux for the Navier- Stokes equations are presented in this work, one is based on conservative variables, the other is based on primitive variables. In the implementation of the DDG method for arbitrary grid, the definition of mesh size plays a critical role as the formation of viscous flux explicitly depends on the geometry. A variety of test cases are presented to demonstrate the accuracy and efficiency of the DDG method for discretizing the viscous fluxes in the compressible Navier-Stokes equations on arbitrary grids.
Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method
Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.
2017-02-01
Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.
Discontinuous Galerkin methods and a posteriori error analysis for heterogenous diffusion problems
International Nuclear Information System (INIS)
Stephansen, A.F.
2007-12-01
In this thesis we analyse a discontinuous Galerkin (DG) method and two computable a posteriori error estimators for the linear and stationary advection-diffusion-reaction equation with heterogeneous diffusion. The DG method considered, the SWIP method, is a variation of the Symmetric Interior Penalty Galerkin method. The difference is that the SWIP method uses weighted averages with weights that depend on the diffusion. The a priori analysis shows optimal convergence with respect to mesh-size and robustness with respect to heterogeneous diffusion, which is confirmed by numerical tests. Both a posteriori error estimators are of the residual type and control the energy (semi-)norm of the error. Local lower bounds are obtained showing that almost all indicators are independent of heterogeneities. The exception is for the non-conforming part of the error, which has been evaluated using the Oswald interpolator. The second error estimator is sharper in its estimate with respect to the first one, but it is slightly more costly. This estimator is based on the construction of an H(div)-conforming Raviart-Thomas-Nedelec flux using the conservativeness of DG methods. Numerical results show that both estimators can be used for mesh-adaptation. (author)
A simplified model of the Martian atmosphere - Part 2: a POD-Galerkin analysis
Directory of Open Access Journals (Sweden)
S. G. Whitehouse
2005-01-01
Full Text Available In Part I of this study Whitehouse et al. (2005 performed a diagnostic analysis of a simplied model of the Martian atmosphere, in which topography was absent and in which heating was modelled as Newtonian relaxation towards a zonally symmetric equilibrium temperature field. There we derived a reduced-order approximation to the vertical and the horizonal structure of the baroclinically unstable Martian atmosphere, retaining only the barotropic mode and the leading order baroclinic modes. Our objectives in Part II of the study are to incorporate these approximations into a Proper Orthogonal Decomposition-Galerkin expansion of the spherical quasi-geostrophic model in order to derive hierarchies of nonlinear ordinary differential equations for the time-varying coefficients of the spatial structures. Two different vertical truncations are considered, as well as three different norms and 3 different Galerkin truncations. We investigate each in turn, using tools from bifurcation theory, to determine which of the systems most closely resembles the data for which the original diagnostics were performed.
Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations
Bonnasse-Gahot, Marie; Calandra, Henri; Diaz, Julien; Lanteri, Stéphane
2018-04-01
Discontinuous Galerkin (DG) methods are nowadays actively studied and increasingly exploited for the simulation of large-scale time-domain (i.e. unsteady) seismic wave propagation problems. Although theoretically applicable to frequency-domain problems as well, their use in this context has been hampered by the potentially large number of coupled unknowns they incur, especially in the 3-D case, as compared to classical continuous finite element methods. In this paper, we address this issue in the framework of the so-called hybridizable discontinuous Galerkin (HDG) formulations. As a first step, we study an HDG method for the resolution of the frequency-domain elastic wave equations in the 2-D case. We describe the weak formulation of the method and provide some implementation details. The proposed HDG method is assessed numerically including a comparison with a classical upwind flux-based DG method, showing better overall computational efficiency as a result of the drastic reduction of the number of globally coupled unknowns in the resulting discrete HDG system.
Stochastic Least-Squares Petrov--Galerkin Method for Parameterized Linear Systems
Energy Technology Data Exchange (ETDEWEB)
Lee, Kookjin [Univ. of Maryland, College Park, MD (United States). Dept. of Computer Science; Carlberg, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Elman, Howard C. [Univ. of Maryland, College Park, MD (United States). Dept. of Computer Science and Inst. for Advanced Computer Studies
2018-03-29
Here, we consider the numerical solution of parameterized linear systems where the system matrix, the solution, and the right-hand side are parameterized by a set of uncertain input parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to minimize any measure of the solution error. As a remedy for this, we propose a novel stochatic least-squares Petrov--Galerkin (LSPG) method. The proposed method is optimal in the sense that it produces the solution that minimizes a weighted $\\ell^2$-norm of the residual over all solutions in a given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution error in different weighted $\\ell^2$-norms by simply applying a weighting function within the least-squares formulation. In addition, a goal-oriented seminorm induced by an output quantity of interest can be minimized by defining a weighting function as a linear functional of the solution. We establish optimality and error bounds for the proposed method, and extensive numerical experiments show that the weighted LSPG method outperforms other spectral methods in minimizing corresponding target weighted norms.
Rankin, Pressley Robinson, IV
2013-01-01
How individuals manage work/life boundaries when they live at the place they work, as opposed to working from home, is a gap in both work/life literature and in higher education literature. An obvious example from higher education is the resident life professional that lives in the residential facility that she or he oversees. Living in a…
Kiani, Keivan
2017-09-01
Large deformation regime of micro-scale slender beam-like structures subjected to axially pointed loads is of high interest to nanotechnologists and applied mechanics community. Herein, size-dependent nonlinear governing equations are derived by employing modified couple stress theory. Under various boundary conditions, analytical relations between axially applied loads and deformations are presented. Additionally, a novel Galerkin-based assumed mode method (AMM) is established to solve the highly nonlinear equations. In some particular cases, the predicted results by the analytical approach are also checked with those of AMM and a reasonably good agreement is reported. Subsequently, the key role of the material length scale on the load-deformation of microbeams is discussed and the deficiencies of the classical elasticity theory in predicting such a crucial mechanical behavior are explained in some detail. The influences of slenderness ratio and thickness of the microbeam on the obtained results are also examined. The present work could be considered as a pivotal step in better realizing the postbuckling behavior of nano-/micro- electro-mechanical systems consist of microbeams.
DEFF Research Database (Denmark)
Emerek, Ruth
2004-01-01
Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...
van der Vegt, Jacobus J.W.; Rhebergen, Sander
2011-01-01
The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space-(time) discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the
DEFF Research Database (Denmark)
Marhadi, Kun Saptohartyadi; Evgrafov, Anton; Sørensen, Mads Peter
2011-01-01
We demonstrate the use of a C0 discontinuous Galerkin method for topology optimization of nano-mechanical sensors, namely temperature, surface stress, and mass sensors. The sensors are modeled using classical thin plate theory, which requires C1 basis functions in the standard finite element method...
Geevers, Sjoerd; van der Vegt, J.J.W.
2017-01-01
We present sharp and sucient bounds for the interior penalty term and time step size to ensure stability of the symmetric interior penalty discontinuous Galerkin (SIPDG) method combined with an explicit time-stepping scheme. These conditions hold for generic meshes, including unstructured
Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-02-01
Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Calo, Victor M.; Collier, Nathan; Niemi, Antti H.
2014-01-01
We analyze the discontinuous Petrov-Galerkin (DPG) method with optimal test functions when applied to solve the Reissner-Mindlin model of plate bending. We prove that the hybrid variational formulation underlying the DPG method is well-posed (stable
Boscheri, Walter; Dumbser, Michael
2017-10-01
We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total
Gómez Rodríguez, Rafael Ángel
2014-01-01
To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.
Brain response to prosodic boundary cues depends on boundary position
Directory of Open Access Journals (Sweden)
Julia eHolzgrefe
2013-07-01
Full Text Available Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer’s syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name as compared to later in the utterance (i.e., after the second name. A closure positive shift (CPS — marking the processing of a prosodic phrase boundary — was elicited only for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context.
Tricritical Ising model with a boundary
International Nuclear Information System (INIS)
De Martino, A.; Moriconi, M.
1998-03-01
We study the integrable and supersymmetric massive φ (1,3) deformation of the tricritical Ising model in the presence of a boundary. We use constraints from supersymmetry in order to compute the exact boundary S-matrices, which turn out to depend explicitly on the topological charge of the supersymmetry algebra. We also solve the general boundary Yang-Baxter equation and show that in appropriate limits the general reflection matrices go over the supersymmetry preserving solutions. Finally, we briefly discuss the possible connection between our reflection matrices and boundary perturbations within the framework of perturbed boundary conformal field theory. (author)
Directory of Open Access Journals (Sweden)
Carlos Humberto Galeano Urueña
2009-05-01
Full Text Available This article describes the streamline upwind Petrov-Galerkin (SUPG method as being a stabilisation technique for resolving the diffusion-advection-reaction equation by finite elements. The first part of this article has a short analysis of the importance of this type of differential equation in modelling physical phenomena in multiple fields. A one-dimensional description of the SUPG me- thod is then given to extend this basis to two and three dimensions. The outcome of a strongly advective and a high numerical complexity experiment is presented. The results show how the version of the implemented SUPG technique allowed stabilised approaches in space, even for high Peclet numbers. Additional graphs of the numerical experiments presented here can be downloaded from www.gnum.unal.edu.co.
Chung, Eric T.
2017-02-07
Offline computation is an essential component in most multiscale model reduction techniques. However, there are multiscale problems in which offline procedure is insufficient to give accurate representations of solutions, due to the fact that offline computations are typically performed locally and global information is missing in these offline information. To tackle this difficulty, we develop an online local adaptivity technique for local multiscale model reduction problems. We design new online basis functions within Discontinuous Galerkin method based on local residuals and some optimally estimates. The resulting basis functions are able to capture the solution efficiently and accurately, and are added to the approximation iteratively. Moreover, we show that the iterative procedure is convergent with a rate independent of physical scales if the initial space is chosen carefully. Our analysis also gives a guideline on how to choose the initial space. We present some numerical examples to show the performance of the proposed method.
On discontinuous Galerkin approach for atmospheric flow in the mesoscale with and without moisture
Directory of Open Access Journals (Sweden)
Dieter Schuster
2014-09-01
Full Text Available We present and discuss discontinuous Galerkin (DG schemes for dry and moist atmospheric flows in the mesoscale. We derive terrain-following coordinates on the sphere in strong-conservation form, which makes it possible to perform the computation on a Cartesian grid and yet conserves the momentum density on an f$f$-plane. A new DG model, i.e. DG-COSMO, is compared to the operational model COSMO of the Deutscher Wetterdienst (DWD. A simplified version of the suggested terrain-following coordinates is implemented in DG-COSMO and is compared against the DG dynamical core implemented within the DUNE framework, which uses unstructured grids to capture orography. Finally, a few idealised test cases, including 3d and moisture, are used for validation. In addition an estimate of efficiency for locally adaptive grids is derived for locally and non-locally occurring phenomena.
A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations
International Nuclear Information System (INIS)
Liu, Hongwei; Xu, Kun
2007-01-01
This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method
Directory of Open Access Journals (Sweden)
Fakhrodin Mohammadi
2017-10-01
Full Text Available Stochastic fractional differential equations (SFDEs have been used for modeling many physical problems in the fields of turbulance, heterogeneous, flows and matrials, viscoelasticity and electromagnetic theory. In this paper, an efficient wavelet Galerkin method based on the second kind Chebyshev wavelets are proposed for approximate solution of SFDEs. In this approach, operational matrices of the second kind Chebyshev wavelets are used for reducing SFDEs to a linear system of algebraic equations that can be solved easily. Convergence and error analysis of the proposed method is considered. Some numerical examples are performed to confirm the applicability and efficiency of the proposed method.
A class of discontinuous Petrov–Galerkin methods. Part III: Adaptivity
Demkowicz, Leszek
2012-04-01
We continue our theoretical and numerical study on the Discontinuous Petrov-Galerkin method with optimal test functions in context of 1D and 2D convection-dominated diffusion problems and hp-adaptivity. With a proper choice of the norm for the test space, we prove robustness (uniform stability with respect to the diffusion parameter) and mesh-independence of the energy norm of the FE error for the 1D problem. With hp-adaptivity and a proper scaling of the norms for the test functions, we establish new limits for solving convection-dominated diffusion problems numerically: ε=10 -11 for 1D and ε=10 -7 for 2D problems. The adaptive process is fully automatic and starts with a mesh consisting of few elements only. © 2011 IMACS. Published by Elsevier B.V. All rights reserved.
Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids
Ma, Xinrong; Duan, Zhijian
2018-04-01
High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.
Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries
International Nuclear Information System (INIS)
Field, Scott E; Hesthaven, Jan S; Lau, Stephen R
2009-01-01
Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) method for solving the distributionally forced 1+1 wave equations which arise when modeling EMRBs via the perturbation theory of Schwarzschild black holes. Despite the presence of jump discontinuities in the relevant polar and axial gravitational 'master functions', our dG method achieves global spectral accuracy, provided that we know the instantaneous position, velocity and acceleration of the small particle. Here these variables are known, since we assume that the particle follows a timelike geodesic of the Schwarzschild geometry. We document the results of several numerical experiments testing our method, and in our concluding section discuss the possible inclusion of gravitational self-force effects.
International Nuclear Information System (INIS)
Fournier, Damien; Le-Tellier, Romain; Herbin, Raphaele
2013-01-01
This paper presents an hp-refinement method for a first order scalar transport reaction equation discretized by a discontinuous Galerkin method. First, the theoretical rates of convergence of h- and p-refinement are recalled and numerically tested. Then, in order to design some meshes, we propose two different estimators of the local error on the spatial domain. These quantities are analyzed and compared depending on the regularity of the solution so as to find the best way to lead the refinement process and the best strategy to choose between h- and p-refinement. Finally, the different possible refinement strategies are compared first on analytical examples and then on realistic applications for neutron transport in a nuclear reactor core. (authors)
A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems
Efendiev, Yalchin R.
2015-08-01
We design a multiscale model reduction framework within the hybridizable discontinuous Galerkin finite element method. Our approach uses local snapshot spaces and local spectral decomposition following the concept of Generalized Multiscale Finite Element Methods. We propose several multiscale finite element spaces on the coarse edges that provide a reduced dimensional approximation for numerical traces within the HDG framework. We provide a general framework for systematic construction of multiscale trace spaces. Using local snapshots, we avoid high dimensional representation of trace spaces and use some local features of the solution space in constructing a low dimensional trace space. We investigate the solvability and numerically study the performance of the proposed method on a representative number of numerical examples.
Hozman, J.; Tichý, T.
2016-12-01
The paper is based on the results from our recent research on multidimensional option pricing problems. We focus on European option valuation when the price movement of the underlying asset is driven by a stochastic volatility following a square root process proposed by Heston. The stochastic approach incorporates a new additional spatial variable into this model and makes it very robust, i.e. it provides a framework to price a variety of options that is closer to reality. The main topic is to present the numerical scheme arising from the concept of discontinuous Galerkin methods and applicable to the Heston option pricing model. The numerical results are presented on artificial benchmarks as well as on reference market data.
Bäck, Joakim
2010-09-17
Much attention has recently been devoted to the development of Stochastic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantification. An open and relevant research topic is the comparison of these two methods. By introducing a suitable generalization of the classical sparse grid SC method, we are able to compare SG and SC on the same underlying multivariate polynomial space in terms of accuracy vs. computational work. The approximation spaces considered here include isotropic and anisotropic versions of Tensor Product (TP), Total Degree (TD), Hyperbolic Cross (HC) and Smolyak (SM) polynomials. Numerical results for linear elliptic SPDEs indicate a slight computational work advantage of isotropic SC over SG, with SC-SM and SG-TD being the best choices of approximation spaces for each method. Finally, numerical results corroborate the optimality of the theoretical estimate of anisotropy ratios introduced by the authors in a previous work for the construction of anisotropic approximation spaces. © 2011 Springer.
hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes
Cangiani, Andrea; Georgoulis, Emmanuil H; Houston, Paul
2017-01-01
Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and elemen...
International Nuclear Information System (INIS)
Asadzadeh, M.; Thevenot, L.
2010-01-01
The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.
Kou, Jisheng; Sun, Shuyu
2013-01-01
A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.
Working with boundaries in systems psychodynamic consulting
Directory of Open Access Journals (Sweden)
Henk Struwig
2012-03-01
Research purpose: The purpose of the research was to produce a set of theoretical assumptions about organisational boundaries and boundary management in organisations and, from these, to develop a set of hypotheses as a thinking framework for practising consulting psychologists when they work with boundaries from a systems psychodynamic stance. Motivation for the study: The researcher used the belief that organisational boundaries reflect the essence of organisations. Consulting to boundary managers could facilitate a deep understanding of organisational dynamics. Research design, approach and method: The researcher followed a case study design. He used systems psychodynamic discourse analysis. It led to six working hypotheses. Main findings: The primary task of boundary management is to hold the polarities of integration and differentiation and not allow the system to become fragmented or overly integrated. Boundary management is a primary task and an ongoing activity of entire organisations. Practical/managerial implications: Organisations should work actively at effective boundary management and at balancing integration and differentiation. Leaders should become aware of how effective boundary management leads to good holding environments that, in turn, lead to containing difficult emotions in organisations. Contribution/value-add: The researcher provided a boundary-consulting framework in order to assist consultants to balance the conceptual with the practical when they consult.
DEFF Research Database (Denmark)
Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina
2003-01-01
.After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....
Microlocal methods in the analysis of the boundary element method
DEFF Research Database (Denmark)
Pedersen, Michael
1993-01-01
The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...
He, Ying; Puckett, Elbridge Gerry; Billen, Magali I.
2017-02-01
Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG
Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping
2018-04-01
An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.
International Nuclear Information System (INIS)
Loula, A.F.D.; Toledo, E.M.; Franca, L.P.; Garcia, E.L.M.
1989-08-01
A variationaly consistent finite element formulation for constrained problems free from shear or membrane locking is applied to axisymetric shells subjected to arbitrary loading. The governing equations are writen according to Love's classical theory for a problem of bending of axisymetric thin and moderately thick shells accounting for shear deformation. The mixed variational formulation, in terms of stresses and displacements here presented consists of classical Galerkin method plus mesh-dependent least-square type terms employed with equal-order finite element polynomials. The additional terms enhance stability and accuracy of the original Galerkin method, as already proven theoretically and confirmed trough numerical experiments. Numerical results of some examples are presented to demonstrate the good stability and accuracy of the formulation. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
Cullum, J. [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States)
1994-12-31
Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.
Recent advances in boundary element methods
Manolis, GD
2009-01-01
Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).
Kou, Jisheng; Sun, Shuyu
2013-01-01
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.
Kou, Jisheng
2013-06-20
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.
Time-integration methods for finite element discretisations of the second-order Maxwell equation
Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.
This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic
A simple finite element method for boundary value problems with a Riemann–Liouville derivative
Jin, Bangti; Lazarov, Raytcho; Lu, Xiliang; Zhou, Zhi
2016-01-01
© 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-^{1} in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and ^{L2}(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.
A simple finite element method for boundary value problems with a Riemann–Liouville derivative
Jin, Bangti
2016-02-01
© 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-^{1} in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and ^{L2}(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.
Dishron, Joseph B.
2011-12-01
The Delaware Basin of the Permian Basin is a classic intra-cratonic basin of West Texas and Southeast New Mexico. Hydrocarbon exploration and production have occurred in the region since the early 1920s, and, as a result, the formations related to these oil and gas reserves have been studied in great detail. Some formations in the Delaware Basin, however, have not been studied in such detail, and this thesis examines one, lesser-known unit that could have economic potential. The Lamar Limestone (Lamar Lime) of the Bell Canyon Formation has commonly been dismissed as a production interval; rather, it has been described as a source and seal rock for the Ramsey Sand of the lower Bell Canyon Formation. However, recent studies found that the Lamar Lime was contributing to production, and it has been described by Trentham (2006) as a potentia "mini Barnett" reservoir. The depths of these deposits are in a range that is ideal for oil accumulation. This study made use of data from wells and test holes drilled in the western Delaware Basin, Culberson County, Texas. Many oil and gas wells have been drilled in the western Delaware Basin, but they are concentrated in the north and east portions of Culberson County. In addition, sulfur wells were drilled in the area in the late 1960s and early 1970s. Analyses of the well logs of these wells and of core and outcrop studies were completed to gain a better understanding of the distribution and economic potential of the Lamar. Both datasets were combined to provide information not readily available in the oil and gas dataset. The Lamar Lime is an excellent marker bed because it underlies thick evaporites. The evaporite sequences are Ochoan in age, and, therefore, the contact of the Lamar Lime (Bell Canyon Formation) and the Castile Formation is the approximate boundary for the Guadalupian-Ochoan Series. The Castile Formation, the Salado Formation, and the Rustler Formation (from oldest to youngest) are the evaporite units that
Stoykova, Kristalina; Idakieva, Vyara; Ivanov, Marin; Reháková, Daniela
2018-04-01
Calcareous nannofossil, calpionellid and ammonite occurrences have been directly constrained across the Jurassic-Cretaceous boundary interval in the section of Kopanitsa, SW Bulgaria. This section reveals a continuous and expanded sedimentary record through the Upper Tithonian and Lower Berriasian, besides an excellent calcareous nannofossil and ammonite record. The topmost part of the NJT 16b and the base of NJT 17a nannofossil Subzones correspond to the ammonite Microcanthum / Transitorius Subzone. The major part of the NJT 17a Subzone equates to the Durangites spp. ammonite Zone, whereas the NJT 17b Subzone correlates to the lower part of the B. jacobi ammonite Zone. The NKT nannofossil Zone approximately corresponds to the upper part of the B. jacobi Zone and the NK-1 nannofossil Zone correlates at least to the lowest part of the T. occitanica Zone. The FOs of Nannoconus globulus minor, N. wintereri, N. kamptneri minor, N. steinmannii minor, N. kamptneri kamptneri and N. steinmannii steinmannii are confirmed as reliable bio-horizons for correlations in the Mediterranean Tethys area. The first occurrence of Nannoconus wintereri is regarded as an almost concomitant event with the first occurrence of Berriasella jacobi. We suggest it could be the most useful nannofossil proxy for approximating the base of the B. jacobi Zone. Rare, but relatively well preserved calpionellids and calcareous dinoflagellates together with microfacies analysis were used additionally for stratigraphical and palaeoenvironmental interpretations. The investigated sediments are typical for the steep slope of a steepened ramp, with accumulation of hemipelagic and gravitational deposits.
Directory of Open Access Journals (Sweden)
Stoykova Kristalina
2018-04-01
Full Text Available Calcareous nannofossil, calpionellid and ammonite occurrences have been directly constrained across the Jurassic–Cretaceous boundary interval in the section of Kopanitsa, SW Bulgaria. This section reveals a continuous and expanded sedimentary record through the Upper Tithonian and Lower Berriasian, besides an excellent calcareous nannofossil and ammonite record. The topmost part of the NJT 16b and the base of NJT 17a nannofossil Subzones correspond to the ammonite Microcanthum / Transitorius Subzone. The major part of the NJT 17a Subzone equates to the Durangites spp. ammonite Zone, whereas the NJT 17b Subzone correlates to the lower part of the B. jacobi ammonite Zone. The NKT nannofossil Zone approximately corresponds to the upper part of the B. jacobi Zone and the NK-1 nannofossil Zone correlates at least to the lowest part of the T. occitanica Zone. The FOs of Nannoconus globulus minor, N. wintereri, N. kamptneri minor, N. steinmannii minor, N. kamptneri kamptneri and N. steinmannii steinmannii are confirmed as reliable bio-horizons for correlations in the Mediterranean Tethys area. The first occurrence of Nannoconus wintereri is regarded as an almost concomitant event with the first occurrence of Berriasella jacobi. We suggest it could be the most useful nannofossil proxy for approximating the base of the B. jacobi Zone. Rare, but relatively well preserved calpionellids and calcareous dinoflagellates together with microfacies analysis were used additionally for stratigraphical and palaeoenvironmental interpretations. The investigated sediments are typical for the steep slope of a steepened ramp, with accumulation of hemipelagic and gravitational deposits.
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
International Nuclear Information System (INIS)
Efimov, V.N.; Schulz, H.
1976-01-01
It is shown that in the framework of the boundary condition models (BCM) for the two-particle interaction the Schroedinger equation for the system of three identical bosons can be reduced to the one-dimensional integral equation in an exact way. The method used for obtaining such an equation is based on a special consideration of the two-particle off-shell wave functions. The binding energy of the simple three-particle system is calculated. It is indicated that by means of the equation obtained it is possible to change the off-shell behaviour of the two-particle t-matrix and therefore to simulate three particle effects. (Auth.)
Consistent boundary conditions for open strings
International Nuclear Information System (INIS)
Lindstroem, Ulf; Rocek, Martin; Nieuwenhuizen, Peter van
2003-01-01
We study boundary conditions for the bosonic, spinning (NSR) and Green-Schwarz open string, as well as for (1+1)-dimensional supergravity. We consider boundary conditions that arise from (1) extremizing the action, (2) BRST, rigid or local supersymmetry, or κ(Siegel)-symmetry of the action, (3) closure of the set of boundary conditions under the symmetry transformations, and (4) the boundary limits of bulk Euler-Lagrange equations that are 'conjugate' to other boundary conditions. We find corrections to Neumann boundary conditions in the presence of a bulk tachyon field. We discuss a boundary superspace formalism. We also find that path integral quantization of the open string requires an infinite tower of boundary conditions that can be interpreted as a smoothness condition on the doubled interval; we interpret this to mean that for a path-integral formulation of open strings with only Neuman boundary conditions, the description in terms of orientifolds is not just natural, but is actually fundamental
International Nuclear Information System (INIS)
Ibáñez, Daniel Iglesias; García Orden, Juan C.; Brañas, B.; Carmona, J.M.; Molla, J.
2013-01-01
Highlights: • The paper presents a novel application of meshfree methods, valid for its implementation on a multibody framework. • Coupled nonlinear thermo-mechanical formulation is detailed and described in the reference configuration, as this allows to compute the shape functions only once. • We show the conditions in which future information induces inefficiency. • Beam parameters are the only information needed to apply the thermal load. • The solution procedure takes charge of updating the volumetric heat rate as the body moves and deforms. -- Abstract: Beam facing elements of the International Fusion Materials Irradiation Facility (IFMIF) Linear Particle Accelerator prototype (LIPAc) must stop 5–40 MeV D + ions with a peak current of 125 mA. The duty cycle of the beam loading varies from 0.1% to 100% (CW), depending on the device, with the ions being stopped in the first hundreds microns of the beam facing material. For intermediate duty cycles up to CW, the thermal load can be considered a heat flux load on the boundary, but this approximation gets too conservative as the duty cycle is reduced because the thermal diffusion becomes more important. Instant heat flux produced by the beam can reach up to 3 GW/m 2 in elements such as the beam dump and slits during short times of hundredths of microseconds. In these cases, the accuracy of the volumetric heat generation is critical for obtaining realistic results. Meshfree Galerkin methods discretize a continuum using scattered nodes. As opposed to FEM, no predefined connectivity is needed between the nodes, so C ∞ (infinitely differentiable) locally supported shape functions can be used to approximate both the trial and the test functions. This feature makes these type of methods well suited for those problems where the domain experiences very large deformations or has high gradients of the state variables. Radial basis (RBF) and moving least squares (MLS) functions have been applied to the
A Newton--Galerkin Method for Fluid Flow Exhibiting Uncertain Periodic Dynamics
Schick, M.; Heuveline, V.; Le Ma, O. P.
2014-01-01
The determination of stable limit-cycles plays an important role in quantifying the characteristics of dynamical systems. In practice, exact knowledge of model parameters is rarely available leading to parameter uncertainties, which can be modeled as an input of random variables. This has the effect that the limit-cycles become stochastic themselves, resulting in almost surely time-periodic solutions with a stochastic period. In this paper we introduce a novel numerical method for the computation of stable stochastic limit-cycles based on the spectral stochastic finite element method using polynomial chaos (PC). We are able to overcome the difficulties of PC regarding its well-known convergence breakdown for long term integration. To this end, we introduce a stochastic time scaling which treats the stochastic period as an additional random variable and controls the phase-drift of the stochastic trajectories, keeping the necessary PC order low. Based on the rescaled governing equations, we aim at determining an initial condition and a period such that the trajectories close after completion of one stochastic cycle. Furthermore, we verify the numerical method by computation of a vortex shedding of a flow around a circular domain with stochastic inflow boundary conditions as a benchmark problem. The results are verified by comparison to purely deterministic reference problems and demonstrate high accuracy up to machine precision in capturing the stochastic variations of the limit-cycle.
Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes
Zhu, Jun; Zhong, Xinghui; Shu, Chi-Wang; Qiu, Jianxian
2013-09-01
In this paper we generalize a new type of limiters based on the weighted essentially non-oscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [32] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the entire polynomials of the DG solutions from the troubled cell and its immediate neighboring cells, and then apply the classical WENO procedure to form a convex combination of these polynomials based on smoothness indicators and nonlinear weights, with suitable adjustments to guarantee conservation. The main advantage of this new limiter is its simplicity in implementation, especially for the unstructured meshes considered in this paper, as only information from immediate neighbors is needed and the usage of complicated geometric information of the meshes is largely avoided. Numerical results for both scalar equations and Euler systems of compressible gas dynamics are provided to illustrate the good performance of this procedure.
Kubatko, Ethan J.; Yeager, Benjamin A.; Ketcheson, David I.
2013-01-01
Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.
International Nuclear Information System (INIS)
Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert
2017-01-01
A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.
Moura, Rodrigo; Fernandez, Pablo; Mengaldo, Gianmarco
2017-11-01
We investigate the dispersion and diffusion characteristics of hybridized discontinuous Galerkin (DG) methods. This provides us with insights to develop robust and accurate high-order DG discretizations for under-resolved flow simulations. Using the eigenanalysis technique introduced in (Moura et al., JCP, 2015 and Mengaldo et al., Computers & Fluids, 2017), we present a dispersion-diffusion analysis for the linear advection-diffusion equation. The effect of the accuracy order, the Riemann flux and the viscous stabilization are investigated. Next, we examine the diffusion characteristics of hybridized DG methods for under-resolved turbulent flows. The implicit large-eddy simulation (iLES) of the inviscid and viscous Taylor-Green vortex (TGV) problems are considered to this end. The inviscid case is relevant in the limit of high Reynolds numbers Re , i.e. negligible molecular viscosity, while the viscous case explores the effect of Re on the accuracy and robustness of the simulations. The TGV cases considered here are particularly crucial to under-resolved turbulent free flows away from walls. We conclude the talk with a discussion on the connections between hybridized and standard DG methods for under-resolved flow simulations.
Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, M. S.
2018-03-01
A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the computation of viscoelastic wavefields in complex geological media. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact solution of the heterogeneous Riemann problem. Our implementation offers capabilities for modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial scale with little logistical overhead. It allows the import of external tetrahedral meshes provided by independent meshing software and can be run in a parallel computing environment. Computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical solutions and results from a spectral element method. The capabilities of the NDG method are demonstrated through a 3-D example case taken from tunnel seismics which considers high-frequency elastic wave propagation around a curved underground tunnel cutting through inclined and faulted sedimentary strata. The NDG method was coded into the open-source software package NEXD and is available from GitHub.
Discontinuous Galerkin methods for plasma physics in the scrape-off layer of tokamaks
International Nuclear Information System (INIS)
Michoski, C.; Meyerson, D.; Isaac, T.; Waelbroeck, F.
2014-01-01
A new parallel discontinuous Galerkin solver, called ArcOn, is developed to describe the intermittent turbulent transport of filamentary blobs in the scrape-off layer (SOL) of fusion plasma. The model is comprised of an elliptic subsystem coupled to two convection-dominated reaction–diffusion–convection equations. Upwinding is used for a class of numerical fluxes developed to accommodate cross product driven convection, and the elliptic solver uses SIPG, NIPG, IIPG, Brezzi, and Bassi–Rebay fluxes to formulate the stiffness matrix. A novel entropy sensor is developed for this system, designed for a space–time varying artificial diffusion/viscosity regularization algorithm. Some numerical experiments are performed to show convergence order on manufactured solutions, regularization of blob/streamer dynamics in the SOL given unstable parameterizations, long-time stability of modon (or dipole drift vortex) solutions arising in simulations of drift-wave turbulence, and finally the formation of edge mode turbulence in the scrape-off layer under turbulent saturation conditions
A discontinuous Galerkin method for P-wave modeling in tilted TI media
Amler, Thomas; Alkhalifah, Tariq Ali; Hoteit, Ibrahim
2014-01-01
The acoustic approximation is an efficient alternative to the equations of elastodynamics for modeling Pwave propagation in weakly anisotropic media. We present a stable discontinuous Galerkin (DG) method for solving the acoustic approximation in tilted TI media (acoustic TI approximation). The acoustic TI approximation is considered as a modification of the equations of elastodynamics from which a modified energy is derived. The modified energy is obtained by eliminating the shear stress in the coordinates determined by the tilt angle and finding an energy for the remaining unknowns. This construction is valid if the medium is not elliptically anisotropic, a requirement frequently found in the literature. In the fully discrete setting, the modified energy is also conserved in time the presence of sharp contrasts in material parameters. By construction, the scheme can be coupled to the (fully) acoustic wave equation in the same way as the equations of elastodynamics. Hence, the number of unknowns can be reduced in acoustic regions. Our numerical examples confirm the conservation of energy in the discrete setting and the stability of the scheme.
Jiang, Zhen-Hua; Yan, Chao; Yu, Jian
2013-08-01
Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.
Ayuso Dios, Blanca
2013-10-30
We introduce and analyze two-level and multilevel preconditioners for a family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with large jumps in the diffusion coefficient. Our approach to IPDG-type methods is based on a splitting of the DG space into two components that are orthogonal in the energy inner product naturally induced by the methods. As a result, the methods and their analysis depend in a crucial way on the diffusion coefficient of the problem. The analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes; dealing simultaneously with the jump in the diffusion coefficient and the non-nested character of the relevant discrete spaces presents additional difficulties in the analysis, which precludes a simple extension of existing results. However, we are able to establish robustness (with respect to the diffusion coefficient) and near-optimality (up to a logarithmic term depending on the mesh size) for both two-level and BPX-type preconditioners, by using a more refined Conjugate Gradient theory. Useful by-products of the analysis are the supporting results on the construction and analysis of simple, efficient and robust two-level and multilevel preconditioners for non-conforming Crouzeix-Raviart discretizations of elliptic problems with jump coefficients. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods. © 2013 American Mathematical Society.
On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods
Beck, Joakim; Tempone, Raul; Nobile, Fabio; Tamellini, Lorenzo
2012-01-01
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.
Ayuso Dios, Blanca; Holst, Michael; Zhu, Yunrong; Zikatanov, Ludmil
2013-01-01
We introduce and analyze two-level and multilevel preconditioners for a family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with large jumps in the diffusion coefficient. Our approach to IPDG-type methods is based on a splitting of the DG space into two components that are orthogonal in the energy inner product naturally induced by the methods. As a result, the methods and their analysis depend in a crucial way on the diffusion coefficient of the problem. The analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes; dealing simultaneously with the jump in the diffusion coefficient and the non-nested character of the relevant discrete spaces presents additional difficulties in the analysis, which precludes a simple extension of existing results. However, we are able to establish robustness (with respect to the diffusion coefficient) and near-optimality (up to a logarithmic term depending on the mesh size) for both two-level and BPX-type preconditioners, by using a more refined Conjugate Gradient theory. Useful by-products of the analysis are the supporting results on the construction and analysis of simple, efficient and robust two-level and multilevel preconditioners for non-conforming Crouzeix-Raviart discretizations of elliptic problems with jump coefficients. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods. © 2013 American Mathematical Society.
Hu, Wei; Lin, Lin; Yang, Chao
2015-12-21
With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.
Fernandez, P.; Nguyen, N. C.; Peraire, J.
2017-05-01
We present a high-order Implicit Large-Eddy Simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.
Kubatko, Ethan J.
2013-10-29
Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.
Energy Technology Data Exchange (ETDEWEB)
Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-06-21
A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.
Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods
Pazner, Will; Persson, Per-Olof
2018-02-01
In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.
Directory of Open Access Journals (Sweden)
Jinfeng Wang
2014-01-01
Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.
On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods
Beck, Joakim
2012-09-01
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.
International Nuclear Information System (INIS)
Rhebergen, S.; Bokhove, O.; Vegt, J.J.W. van der
2008-01-01
We present space- and space-time discontinuous Galerkin finite element (DGFEM) formulations for systems containing nonconservative products, such as occur in dispersed multiphase flow equations. The main criterium we pose on the weak formulation is that if the system of nonconservative partial differential equations can be transformed into conservative form, then the formulation must reduce to that for conservative systems. Standard DGFEM formulations cannot be applied to nonconservative systems of partial differential equations. We therefore introduce the theory of weak solutions for nonconservative products into the DGFEM formulation leading to the new question how to define the path connecting left and right states across a discontinuity. The effect of different paths on the numerical solution is investigated and found to be small. We also introduce a new numerical flux that is able to deal with nonconservative products. Our scheme is applied to two different systems of partial differential equations. First, we consider the shallow water equations, where topography leads to nonconservative products, in which the known, possibly discontinuous, topography is formally taken as an unknown in the system. Second, we consider a simplification of a depth-averaged two-phase flow model which contains more intrinsic nonconservative products
Liu, Yong; Shu, Chi-Wang; Zhang, Mengping
2018-02-01
We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.
DEFF Research Database (Denmark)
Olwig, Karen Fog
2011-01-01
, while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....
A new approach to implement absorbing boundary condition in biomolecular electrostatics.
Goni, Md Osman
2013-01-01
This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.
Boundary layer flow past a circular cylinder in axial flow
International Nuclear Information System (INIS)
Sawchuk, S.P.; Zamir, M.; Camiletti, S.E.
1985-01-01
This paper discusses a study of the laminar boundary layer on a semi-infinite circular cylinder in axial incompressible flow. Unlike previous studies, the present study investigates a full range of this boundary layer problem to determine skin friction, heat transfer and other integral properties of the boundary layer
Political State Boundary (National)
Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...
Allegheny County Municipal Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...
Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...
State Agency Administrative Boundaries
Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...
Beauchamp, Catherine; Beauchamp, Miriam H.
2013-01-01
Within the emerging field of educational neuroscience, concerns exist that the impact of neuroscience research on education has been less effective than hoped. In seeking a way forward, it may be useful to consider the problems of integrating two complex fields in the context of disciplinary boundaries. Here, a boundary perspective is used as a…
The Effect of Recessions on Firms’ Boundaries
DEFF Research Database (Denmark)
Knudsen, Eirik Sjåholm; Foss, Kirsten
2014-01-01
The economic theory of the firm offers conflicting predictions of how the two major effects of recessions, changes in demand and access to credit, affect firm boundaries. Using data on Norwegian firms in the recent recession, we find support for both increased and reduced vertical integration...... explanation for the conflicting theoretical predictions regarding vertical integration in response to demand and credit shocks....
Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.
2017-07-01
Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion
Hou, Jiangyong
2016-02-05
In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.
Hou, Jiangyong; Chen, Jie; Sun, Shuyu; Chen, Zhangxin
2016-01-01
In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.
International Nuclear Information System (INIS)
Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar
2010-01-01
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.
Discontinuous Galerkin modeling of the Columbia River's coupled estuary-plume dynamics
Vallaeys, Valentin; Kärnä, Tuomas; Delandmeter, Philippe; Lambrechts, Jonathan; Baptista, António M.; Deleersnijder, Eric; Hanert, Emmanuel
2018-04-01
The Columbia River (CR) estuary is characterized by high river discharge and strong tides that generate high velocity flows and sharp density gradients. Its dynamics strongly affects the coastal ocean circulation. Tidal straining in turn modulates the stratification in the estuary. Simulating the hydrodynamics of the CR estuary and plume therefore requires a multi-scale model as both shelf and estuarine circulations are coupled. Such a model has to keep numerical dissipation as low as possible in order to correctly represent the plume propagation and the salinity intrusion in the estuary. Here, we show that the 3D baroclinic discontinuous Galerkin finite element model SLIM 3D is able to reproduce the main features of the CR estuary-to-ocean continuum. We introduce new vertical discretization and mode splitting that allow us to model a region characterized by complex bathymetry and sharp density and velocity gradients. Our model takes into account the major forcings, i.e. tides, surface wind stress and river discharge, on a single multi-scale grid. The simulation period covers the end of spring-early summer of 2006, a period of high river flow and strong changes in the wind regime. SLIM 3D is validated with in-situ data on the shelf and at multiple locations in the estuary and compared with an operational implementation of SELFE. The model skill in the estuary and on the shelf indicate that SLIM 3D is able to reproduce the key processes driving the river plume dynamics, such as the occurrence of bidirectional plumes or reversals of the inner shelf coastal currents.
Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
International Nuclear Information System (INIS)
Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D.
2016-01-01
A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.
Niemi, Antti
2011-05-14
We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the so called optimal test space norm by using an element subgrid discretization. This should make the DPG method not only stable but also robust, that is, uniformly stable with respect to the Ṕeclet number in the current application. The e_ectiveness of the algorithm is demonstrated on two problems for the linear advection-di_usion equation.
International Nuclear Information System (INIS)
Fournier, D.; Le Tellier, R.; Suteau, C.
2011-01-01
We present an error estimator for the S N neutron transport equation discretized with an arbitrary high-order discontinuous Galerkin method. As a starting point, the estimator is obtained for conforming Cartesian meshes with a uniform polynomial order for the trial space then adapted to deal with non-conforming meshes and a variable polynomial order. Some numerical tests illustrate the properties of the estimator and its limitations. Finally, a simple shielding benchmark is analyzed in order to show the relevance of the estimator in an adaptive process.
Resolution of the Vlasov-Maxwell system by PIC discontinuous Galerkin method on GPU with OpenCL
Directory of Open Access Journals (Sweden)
Crestetto Anaïs
2013-01-01
Full Text Available We present an implementation of a Vlasov-Maxwell solver for multicore processors. The Vlasov equation describes the evolution of charged particles in an electromagnetic field, solution of the Maxwell equations. The Vlasov equation is solved by a Particle-In-Cell method (PIC, while the Maxwell system is computed by a Discontinuous Galerkin method. We use the OpenCL framework, which allows our code to run on multicore processors or recent Graphic Processing Units (GPU. We present several numerical applications to two-dimensional test cases.
Czech Academy of Sciences Publication Activity Database
Kosík, Adam; Feistauer, M.; Hadrava, Martin; Horáček, Jaromír
2015-01-01
Roč. 267, September (2015), s. 382-396 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : discontinuous Galerkin method * nonlinear elasticity * compressible viscous flow * fluid–structure interaction Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315002453/pdfft?md5=02d46bc730e3a7fb8a5008aaab1da786&pid=1-s2.0-S0096300315002453-main.pdf
International Nuclear Information System (INIS)
Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji
2009-01-01
The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)
Boundary element method for modelling creep behaviour
International Nuclear Information System (INIS)
Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora
2002-01-01
A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)
Optimization of boundary controls of string vibrations
Energy Technology Data Exchange (ETDEWEB)
Il' in, V A; Moiseev, E I [Department of Computing Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2005-12-31
For a large time interval T boundary controls of string vibrations are optimized in the following seven boundary-control problems: displacement control at one end (with the other end fixed or free); displacement control at both ends; elastic force control at one end (with the other end fixed or free); elastic force control at both ends; combined control (displacement control at one end and elastic force control at the other). Optimal boundary controls in each of these seven problems are sought as functions minimizing the corresponding boundary-energy integral under the constraints following from the initial and terminal conditions for the string at t=0 and t=T, respectively. For all seven problems, the optimal boundary controls are written out in closed analytic form.
Energy Technology Data Exchange (ETDEWEB)
Stephansen, A.F
2007-12-15
In this thesis we analyse a discontinuous Galerkin (DG) method and two computable a posteriori error estimators for the linear and stationary advection-diffusion-reaction equation with heterogeneous diffusion. The DG method considered, the SWIP method, is a variation of the Symmetric Interior Penalty Galerkin method. The difference is that the SWIP method uses weighted averages with weights that depend on the diffusion. The a priori analysis shows optimal convergence with respect to mesh-size and robustness with respect to heterogeneous diffusion, which is confirmed by numerical tests. Both a posteriori error estimators are of the residual type and control the energy (semi-)norm of the error. Local lower bounds are obtained showing that almost all indicators are independent of heterogeneities. The exception is for the non-conforming part of the error, which has been evaluated using the Oswald interpolator. The second error estimator is sharper in its estimate with respect to the first one, but it is slightly more costly. This estimator is based on the construction of an H(div)-conforming Raviart-Thomas-Nedelec flux using the conservativeness of DG methods. Numerical results show that both estimators can be used for mesh-adaptation. (author)
Hoteit, Hussein
2017-12-29
Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the crossflow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite difference (FD) methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local discontinuous Galerkin (LDG) method instead of the MFE calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed.
Atkins, H. L.; Helenbrook, B. T.
2005-01-01
This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.
Hoteit, Hussein; Firoozabadi, Abbas
2017-01-01
Computation of the distribution of species in hydrocarbon reservoirs from diffusions (thermal, molecular, and pressure) and natural convection is an important step in reservoir initialization. Current methods, which are mainly based on the conventional finite difference approach, may not be numerically efficient in fractured and other media with complex heterogeneities. In this work, the discontinuous Galerkin (DG) method combined with the mixed finite element (MFE) method is used for the calculation of compositional variation in fractured hydrocarbon reservoirs. The use of unstructured gridding allows efficient computations for fractured media when the crossflow equilibrium concept is invoked. The DG method has less numerical dispersion than the upwind finite difference (FD) methods. The MFE method ensures continuity of fluxes at the interface of the grid elements. We also use the local discontinuous Galerkin (LDG) method instead of the MFE calculate the diffusion fluxes. Results from several numerical examples are presented to demonstrate the efficiency, robustness, and accuracy of the model. Various features of convection and diffusion in homogeneous, layered, and fractured media are also discussed.
Adib, Arash; Poorveis, Davood; Mehraban, Farid
2018-03-01
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.
International Nuclear Information System (INIS)
Johnson, K.; Bittorf, K.J.
2002-01-01
A novel approach for computer aided modeling and optimizing mixing process has been developed using Galerkin least-squares finite element technology. Computer aided mixing modeling and analysis involves Lagrangian and Eulerian analysis for relative fluid stretching, and energy dissipation concepts for laminar and turbulent flows. High quality, conservative, accurate, fluid velocity, and continuity solutions are required for determining mixing quality. The ORCA Computational Fluid Dynamics (CFD) package, based on a finite element formulation, solves the incompressible Reynolds Averaged Navier Stokes (RANS) equations. Although finite element technology has been well used in areas of heat transfer, solid mechanics, and aerodynamics for years, it has only recently been applied to the area of fluid mixing. ORCA, developed using the Galerkin Least-Squares (GLS) finite element technology, provides another formulation for numerically solving the RANS based and LES based fluid mechanics equations. The ORCA CFD package is validated against two case studies. The first, a free round jet, demonstrates that the CFD code predicts the theoretical velocity decay rate, linear expansion rate, and similarity profile. From proper prediction of fundamental free jet characteristics, confidence can be derived when predicting flows in a stirred tank, as a stirred tank reactor can be considered a series of free jets and wall jets. (author)
Franchina, N.; Savini, M.; Bassi, F.
2016-06-01
A new formulation of multicomponent gas flow computation, suited to a discontinuous Galerkin discretization, is here presented and discussed. The original key feature is the use of L2-projection form of the (perfect gas) equation of state that allows all thermodynamic variables to span the same functional space. This choice greatly mitigates problems encountered by the front-capturing schemes in computing discontinuous flow field, retaining at the same time their conservation properties at the discrete level and ease of use. This new approach, combined with an original residual-based artificial dissipation technique, shows itself capable, through a series of tests illustrated in the paper, to both control the spurious oscillations of flow variables occurring in high-order accurate computations and reduce them increasing the degree of the polynomial representation of the solution. This result is of great importance in computing reacting gaseous flows, where the local accuracy of temperature and species mass fractions is crucial to the correct evaluation of the chemical source terms contained in the equations, even if the presence of the physical diffusivities somewhat brings relief to these problems. The present work can therefore also be considered, among many others already presented in the literature, as the authors' first step toward the construction of a new discontinuous Galerkin scheme for reacting gas mixture flows.
Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.
Energy Technology Data Exchange (ETDEWEB)
Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2017-02-15
The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.
International Nuclear Information System (INIS)
Dimitrov, O.
1975-01-01
Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr
Steeneveld, G.J.
2012-01-01
Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...
Zhebel, E.; Minisini, S.; Mulder, W.A.
2012-01-01
We solve the three-dimensional acoustic wave equation, discretized on tetrahedral meshes. Two methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method (SIP-DG). Combining the spatial discretization with the leap-frog
Kashiwabara, Takahito
Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.
Contrasting Boundary Scavenging in two Eastern Boundary Current Regimes
Anderson, R. F.; Fleisher, M. Q.; Pavia, F. J.; Vivancos, S. M.; Lu, Y.; Zhang, P.; Cheng, H.; Edwards, R. L.
2016-02-01
We use data from two US GEOTRACES expeditions to compare boundary scavenging intensity in two eastern boundary current systems: the Canary Current off Mauritania and the Humboldt Current off Peru. Boundary scavenging refers to the enhanced removal of trace elements from the ocean by sorption to sinking particles in regions of greater than average particle abundance. Both regimes experience high rates of biological productivity and generation of biogenic particles, with rates of productivity potentially a little greater off Peru, whereas dust fluxes are an order of magnitude greater off NW Africa (see presentation by Vivancos et al., this meeting). Despite greater productivity off Peru, we find greater intensity of scavenging off NW Africa as measured by the residence time of dissolved 230Th integrated from the surface to a depth of 2500 m (10-11 years off NW Africa vs. 15-17 years off Peru). Dissolved 231Pa/230Th ratios off NW Africa (Hayes et al., Deep Sea Res.-II 116 (2015) 29-41) are nearly twice the values observed off Peru. We attribute this difference to the well-known tendency for lithogenic phases (dust) to strongly fractionate in favor of Th uptake during scavenging and removal, leaving the dissolved phase enriched in Pa. This behavior needs to be considered when interpreting sedimentary 231Pa/230Th ratios as a paleo proxy.