WorldWideScience

Sample records for galaxies spitzer

  1. Discovering Massive z > 1 Galaxy Clusters with Spitzer and SPTpol

    Science.gov (United States)

    Bleem, Lindsey; Brodwin, Mark; Ashby, Matthew; Stalder, Brian; Klein, Matthias; Gladders, Michael; Stanford, Spencer; Canning, Rebecca

    2018-05-01

    We propose to obtain Spitzer/IRAC imaging of 50 high-redshift galaxy cluster candidates derived from two new completed SZ cluster surveys by the South Pole Telescope. Clusters from the deep SPTpol 500-square-deg main survey will extend high-redshift SZ cluster science to lower masses (median M500 2x10^14Msun) while systems drawn from the wider 2500-sq-deg SPTpol Extended Cluster Survey are some of the rarest most massive high-z clusters in the observable universe. The proposed small 10 h program will enable (1) confirmation of these candidates as high-redshift clusters, (2) measurements of the cluster redshifts (sigma_z/(1+z) 0.03), and (3) estimates of the stellar masses of the brightest cluster members. These observations will yield exciting and timely targets for the James Webb Space Telescope--and, combined with lower-z systems--will both extend cluster tests of dark energy to z>1 as well as enable studies of galaxy evolution in the richest environments for a mass-limited cluster sample from 0

  2. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  3. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    International Nuclear Information System (INIS)

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-01-01

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 3 μ m /S 1.6 μ m versus S 5 μ m /S 3 μ m criterion, we identify 42 sources where the rest-frame 1.6 μm emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10 11 M sun , and remarkably constant within the range 1 3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z ∼ 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 μm hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  4. A MID-INFRARED IMAGING SURVEY OF SUBMILLIMETER-SELECTED GALAXIES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Hainline, Laura J.; Blain, A. W.; Smail, Ian; Frayer, D. T.; Chapman, S. C.; Ivison, R. J.; Alexander, D. M.

    2009-01-01

    We present Spitzer-IRAC and MIPS mid-IR observations of a sample of 73 radio-detected submillimeter-selected galaxies (SMGs) with spectroscopic redshifts, the largest such sample published to date. From our data, we find that IRAC colors of SMGs are much more uniform as compared with rest-frame UV and optical colors, and z>1.5 SMGs tend to be redder in their mid-IR colors than both field galaxies and lower-z SMGs. However, the IRAC colors of the SMGs overlap those of field galaxies sufficiently that color-magnitude and color-color selection criteria suggested in the literature to identify SMG counterparts produce ambiguous counterparts within an 8'' radius in 20%-35% of cases. We use a rest-frame J-H versus H-K color-color diagram and a S 24 /S 8.0 versus S 8.0 /S 4.5 color-color diagram to determine that 13%-19% of our sample are likely to contain active galactic nuclei which dominate their mid-IR emission. We observe in the rest-frame JHK colors of our sample that the rest-frame near-IR emission of SMGs does not resemble that of the compact nuclear starburst observed in local ultraluminous IR galaxies and is consistent with more widely distributed star formation. We take advantage of the fact that many high-z galaxy populations selected at different wavelengths are detected by Spitzer to carry out a brief comparison of mid-IR properties of SMGs to UV-selected high-z galaxies, 24 μm-selected galaxies, and high-z radio galaxies, and find that SMGs have mid-IR fluxes and colors which are consistent with being more massive and more reddened than UV-selected galaxies, while the IRAC colors of SMGs are most similar to powerful high-z radio galaxies.

  5. OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

    International Nuclear Information System (INIS)

    Moustakas, John; Kennicutt, Robert C. Jr.; Tremonti, Christy A.; Dale, Daniel A.; Smith, John-David T.; Calzetti, Daniela

    2010-01-01

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publicly available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

  6. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    Science.gov (United States)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 250 μJy and 1.5 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  7. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    Science.gov (United States)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  8. Stellar mass estimation based on IRAC photometry for Spitzer SWIRE-field galaxies

    International Nuclear Information System (INIS)

    Zhu Yinan; Wu Hong; Li Haining; Cao Chen

    2010-01-01

    We analyze the feasibility of estimating the stellar mass of galaxies by mid-infrared luminosities based on a large sample of galaxies cross-identified from Spitzer SWIRE fields and the SDSS spectrographic survey. We derived the formulae to calculate the stellar mass by using IRAC 3.6 μm and 4.5 μm luminosities. The mass-to-luminosity ratios of IRAC 3.6 μm and 4.5 μm luminosities are more sensitive to the star formation history of galaxies than to other factors, such as the intrinsic extinction, metallicity and star formation rate. To remove the effect of star formation history, we used g - r color to recalibrate the formulae and obtain a better result. Researchers must be more careful when estimating the stellar mass of low metallicity galaxies using our formulae. Due to the emission from dust heated by the hottest young stars, luminous infrared galaxies present higher IRAC 4.5 μm luminosities compared to IRAC 3.6 μm luminosities. For most of type-II AGNs, the nuclear activity cannot enhance 3.6 μm and 4.5 μm luminosities compared with normal galaxies. Star formation in our AGN-hosting galaxies is also very weak, almost all of which are early-type galaxies.

  9. Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Lumninous Infrared Galaxy Candidates

    Science.gov (United States)

    Griffith, Roger L.; Kirkpatrick, J. Davy; Eisenhardt, Peter R. M.; Gelino, Christopher R.; Cushing, Michael C.; Benford, Dominic; Blain, Andrew; Bridge, Carrie R.; Cohen, Martin; Cutri, Roc M.; hide

    2012-01-01

    We present Spitzer 3.6 and 4.5 micrometer photometry and positions for a sample of 1510 brown dwarf candidates identified by the Wide-field Infrared Survey Explorer (WISE) all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12). Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify seven fainter (4.5 m to approximately 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy candidates. For this control sample, we find another six brown dwarf candidates, suggesting that the seven companion candidates are not physically associated. In fact, only one of these seven Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this, there is no evidence for any widely separated (greater than 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of 7.33 x 10(exp 5) objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 m photometry, along with positionally matched B and R photometry from USNO-B; J, H, and Ks photometry from Two Micron All-Sky Survey; and W1, W2, W3, and W4 photometry from the WISE all-sky catalog.

  10. A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC

    Science.gov (United States)

    Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.

    2006-12-01

    We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  11. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  12. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    International Nuclear Information System (INIS)

    Temi, Pasquale; Brighenti, Fabrizio; Mathews, William G.

    2009-01-01

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 μm) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 μm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  13. FINDING η CAR ANALOGS IN NEARBY GALAXIES USING SPITZER. I. CANDIDATE SELECTION

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.

    2013-01-01

    The late-stage evolution of the most massive stars such as η Carinae is controlled by the effects of mass loss, which may be dominated by poorly understood eruptive mass ejections. Understanding this population is challenging because no true analogs of η Car have been clearly identified in the Milky Way or other galaxies. We utilize Spitzer IRAC images of seven nearby (∼ 10 5 L ☉ in the IRAC bands (3.6 to 8.0 μm) and are not known to be background sources. Based on our estimates for the expected number of background sources, we expect that follow-up observations will show that most of these candidates are not dust enshrouded massive stars, with an expectation of only 6 ± 6 surviving candidates. Since we would detect true analogs of η Car for roughly 200 years post-eruption, this implies that the rate of eruptions like η Car is less than the core-collapse supernova rate. It is possible, however, that every M > 40 M ☉ star undergoes such eruptions given our initial results. In Paper II we will characterize the candidates through further analysis and follow-up observations, and there is no barrier to increasing the galaxy sample by an order of magnitude. The primary limitation of the present search is that Spitzer's resolution limits us to the shorter wavelength IRAC bands. With the James Webb Space Telescope, such surveys can be carried out at the far more optimal wavelengths of 10-30 μm, allowing identification of η Car analogs for millennia rather than centuries post-eruption.

  14. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Lelli, Federico; McGaugh, Stacy S. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schombert, James M., E-mail: federico.lelli@case.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  15. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  16. LOCAL LUMINOUS INFRARED GALAXIES. II. ACTIVE GALACTIC NUCLEUS ACTIVITY FROM SPITZER/INFRARED SPECTROGRAPH SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel [Centro de Astrobiologia, INTA-CSIC, E-28850 Torrejon de Ardoz, Madrid (Spain); Rieke, George H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Rigopoulou, Dimitra [Astrophysics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 {mu}m) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L{sub IR} = 10{sup 11}-10{sup 12} L{sub Sun }). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 {mu}m spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is {approx}62%. The derived AGN bolometric luminosities are in the range L{sub bol}(AGN) = (0.4-50) Multiplication-Sign 10{sup 43} erg s{sup -1}. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L{sub bol}[AGN]/L{sub IR} {<=} 0.05. Only {approx_equal} 8% of local LIRGs have a significant AGN bolometric contribution L{sub bol}[AGN]/L{sub IR} > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L{sub IR} = 10{sup 12}-10{sup 13} L{sub Sun }), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%{sub -3%}{sup +8%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of {Omega}{sup AGN

  17. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G)

    International Nuclear Information System (INIS)

    Kim, Taehyun; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Hinz, Joannah L.; Zaritsky, Dennis; Lee, Myung Gyoon; Gadotti, Dimitri A.; Knapen, Johan H.; Schinnerer, Eva; Ho, Luis C.; Madore, Barry F.; Laurikainen, Eija; Salo, Heikki; Athanassoula, E.; Bosma, Albert; De Swardt, Bonita; Comerón, Sébastien; Regan, Michael W.; Menéndez-Delmestre, Karín; De Paz, Armando Gil

    2012-01-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T ≤ 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S 4 G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes ∼3%-10% to the total 3.6 μm luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.

  18. Measuring the Stellar Masses of z ~ 7 Galaxies with the Spitzer UltRaFaint SUrvey Program (SURFS UP)

    Science.gov (United States)

    Ryan, R. E., Jr.; Gonzalez, A. H.; Lemaux, B. C.; Bradač, M.; Casertano, S.; Allen, S.; Cain, B.; Gladders, M.; Hall, N.; Hildebradt, H.; Hinz, J.; Huang, K.-H.; Lubin, L.; Schrabback, T.; Stiavelli, M.; Treu, T.; von der Linden, A.; Zaritsky, D.

    2014-05-01

    We present Spitzer/IRAC observations of nine z'-band dropouts highly magnified (2 ~ 7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star formation rate (SFR) of SFR ~ 1.3 M ⊙ yr-1 and stellar mass of M ~ 2.0 × 109 M ⊙, which gives a specific star formation rate of sSFR ~ 0.7 Gyr-1. If this galaxy had sustained this SFR since z ~ 20, it could have formed the observed stellar mass (to within a factor of ~2). We also discuss alternate star formation histories and argue that the exponentially increasing model is unlikely. Finally, based on the intrinsic SFR, we estimate that this galaxy has a likely [C II] flux of langf [C II]rang = 1.6 mJy. Observations were carried out using the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research is also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and NNX08AD79G. These observations are associated with programs Spitzer 3550, 60034, 90009, HST GO 10200, GO 10863, 11099, and 11591, and ESO Large Program 181.A-0485.

  19. THE SPITZER INFRARED NEARBY GALAXIES SURVEY: A HIGH-RESOLUTION SPECTROSCOPY ANTHOLOGY

    International Nuclear Information System (INIS)

    Dale, D. A.; Schlawin, E. A.; Cohen, S. A.; Johnson, L. C.; Staudaher, S.; Smith, J. D. T.; Armus, L.; Helou, G.; Jarrett, T. H.; Murphy, E. J.; Sheth, K.; Buckalew, B. A.; Moustakas, J.; Roussel, H.; Bot, C.; Calzetti, D.; Engelbracht, C. W.; Gordon, K. D.; Hollenbach, D. J.; Kennicutt, R. C.

    2009-01-01

    High-resolution mid-infrared spectra are presented for 155 nuclear and extranuclear regions from the Spitzer Infrared Nearby Galaxies Survey (SINGS). The fluxes for nine atomic forbidden and three molecular hydrogen mid-infrared emission lines are also provided, along with upper limits in key lines for infrared-faint targets. The SINGS sample shows a wide range in the ratio of [S III] 18.71 μm/[S III] 33.48 μm, but the average ratio of the ensemble indicates a typical interstellar electron density of 300-400 cm -3 on ∼23'' x 15'' scales and 500-600 cm -3 using ∼11'' x 9'' apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an active galactic nuclei (AGN) environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [Ne III] 15.56 μm/[Ne II] 12.81 μm, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [Ne III] 15.56 μm/[Ne II] 12.81 μm ratios. Finally, [Fe II] 25.99 μm/[Ne II] 12.81 μm versus [Si II] 34.82 μm/[S III] 33.48 μm also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [Ne III] 15.56 μm/[Ne II] 12.81 μm, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  20. LOCAL BENCHMARKS FOR THE EVOLUTION OF MAJOR-MERGER GALAXIES-SPITZER OBSERVATIONS OF A K-BAND SELECTED SAMPLE

    International Nuclear Information System (INIS)

    Xu, C. Kevin; Cheng Yiwen; Lu Nanyao; Mazzarella, Joseph M.; Cutri, Roc; Domingue, Donovan; Huang Jiasheng; Gao Yu; Sun, W.-H.; Surace, Jason

    2010-01-01

    We present Spitzer observations for a sample of close major-merger galaxy pairs (KPAIR sample) selected from cross-matches between the Two Micron All Sky Survey and Sloan Digital Sky Survey Data Release 3. The goals are to study the star formation activity in these galaxies and to set a local bench mark for the cosmic evolution of close major mergers. The Spitzer KPAIR sample (27 pairs, 54 galaxies) includes all spectroscopically confirmed spiral-spiral (S+S) and spiral-elliptical (S+E) pairs in a parent sample that is complete for primaries brighter than K = 12.5 mag, projected separations of 5 h -1 kpc ≤ s ≤ 20 h -1 kpc, and mass ratios ≤2.5. The Spitzer data, consisting of images in seven bands (3.6, 4.5, 5.8, 8, 24, 70, 160 μm), show very diversified IR emission properties. Compared to single spiral galaxies in a control sample, only spiral galaxies in S+S pairs show significantly enhanced specific star formation rate (sSFR = SFR/M), whereas spiral galaxies in S+E pairs do not. Furthermore, the SFR enhancement of spiral galaxies in S+S pairs is highly mass-dependent. Only those with M ∼> 10 10.5 M sun show significant enhancement. Relatively low-mass (M ∼ 10 10 M sun ) spirals in S+S pairs have about the same SFR/M compared to their counterparts in the control sample, while those with 10 11 M sun have on average a ∼3 times higher SFR/M than single spirals. There is evidence for a correlation between the global star formation activities (but not the nuclear activities) of the component galaxies in massive S+S major-merger pairs (the H olmberg effect ) . There is no significant difference in the SFR/M between the primaries and the secondaries, nor between spirals of SEP KPAIR =2.54 x 10 -4 (M sun yr -1 Mpc -3 ).

  1. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  2. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  3. Unveiling the structure of barred galaxies at 3.6 μm with the Spitzer survey of stellar structure in galaxies (S4G). I. Disk breaks

    International Nuclear Information System (INIS)

    Kim, Taehyun; Lee, Myung Gyoon; Gadotti, Dimitri A.; Muñoz-Mateos, Juan-Carlos; Sheth, Kartik; Athanassoula, E.; Bosma, Albert; Madore, Barry F.; Ho, Luis C.; Elmegreen, Bruce; Knapen, Johan H.; Cisternas, Mauricio; Erroz-Ferrer, Santiago; Zaritsky, Dennis; Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki; Holwerda, Benne; Hinz, Joannah L.; Buta, Ron

    2014-01-01

    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We find that ignoring the disk break and using a single disk scale length in the model fit for Type II (down-bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We find that for galaxies with B/T ≥ 0.1, the break radius to bar radius, r br /R bar , varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad resonance of the bar and thus moves outward as the bar grows. For galaxies with small bulges, B/T < 0.1, r br /R bar spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds.

  4. MID-INFRARED PROPERTIES OF OH MEGAMASER HOST GALAXIES. I. SPITZER IRS LOW- AND HIGH-RESOLUTION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-01-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 10 2.3 L sun . The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H 2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO 2 , HCN, C 2 H 2 , and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  5. Mid-Infrared Properties of OH Megamaser Host Galaxies. I. Spitzer IRS Low- and High-Resolution Spectroscopy

    Science.gov (United States)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 102.3 L sun. The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  6. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    Science.gov (United States)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  7. SPITZER INFRARED LOW-RESOLUTION SPECTROSCOPIC STUDY OF BURIED ACTIVE GALACTIC NUCLEI IN A COMPLETE SAMPLE OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi; Maiolino, Roberto; Nakagawa, Takao

    2010-01-01

    We present the results of Spitzer Infrared Spectrograph low-resolution infrared 5-35 μm spectroscopy of 17 nearby ultraluminous infrared galaxies (ULIRGs) at z 12 L sun , are found in eight sources. We combine these results with those of our previous research to investigate the energy function of buried AGNs in a complete sample of optically non-Seyfert ULIRGs in the local universe at z < 0.3 (85 sources). We confirm a trend that we previously discovered: that buried AGNs are more common in galaxies with higher infrared luminosities. Because optical Seyferts also show a similar trend, we argue more generally that the energetic importance of AGNs is intrinsically higher in more luminous galaxies, suggesting that the AGN-starburst connections are luminosity dependent. This may be related to the stronger AGN feedback scenario in currently more massive galaxy systems, as a possible origin of the galaxy downsizing phenomenon.

  8. Bright galaxies at z=9-11 from pure-parallel HST observations: Building a unique sample for JWST with Spitzer/IRAC

    Science.gov (United States)

    Bouwens, Rychard; Morashita, Takahiro; Stefanon, Mauro; Magee, Dan

    2018-05-01

    The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies with both HST and Spitzer/IRAC imaging is still small, particularly at the highest luminosities. We propose here to remedy this situation and use Spitzer/IRAC to efficiently follow up the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 210 independent lines of sight. The proposed new 3.6 micron observations will continue our Spitzer cycle 12 and 13 BORG911 programs, targeting 15 additional fields, leveraging over 200 new HST orbits to identify a final sample of about 8 bright galaxies at z >= 8.5. For optimal time use (just 20 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z 2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies investigating the ionization state of the distant universe through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.

  9. The optical spectra of 24 mu m galaxies in the cosmos field. I. Spitzer MIPS bright sources in the zCOSMOS-bright 10k catalog

    NARCIS (Netherlands)

    Caputi, K. I.; Lilly, S. J.; Aussel, H.; Sanders, D.; Frayer, D.; Le Fevre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Scoville, N.; Carollo, C. M.; Hasinger, G.; Iovino, A.; Le Brun, V.; Le Floc'h, E.; Maier, C.; Mainieri, V.; Mignoli, M.; Salvato, M.; Schiminovich, D.; Silverman, J.; Surace, J.; Tasca, L.; Abbas, U.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Cappi, A.; Cassata, P.; Cimatti, A.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Fumana, M.; Garilli, B.; Halliday, C.; Ilbert, O.; Kampczyk, P.; Kartaltepe, J.; Kneib, J. -P.; Knobel, C.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J. F.; Maccagni, D.; Marinoni, C.; McCracken, H.; Meneux, B.; Oesch, P.; Pello, R.; Perez-Montero, E.; Porciani, C.; Ricciardelli, E.; Scaramella, R.; Scarlata, C.; Tresse, L.; Vergani, D.; Walcher, J.; Zamojski, M.; Zucca, E.

    2008-01-01

    We study zCOSMOS-bright optical spectra for 609 Spitzer MIPS 24 mu m-selected galaxies with S-24 (mu m) > 0: 30 mJy and I <22.5 (AB mag) over 1.5 deg(2) of the COSMOS field. From emission-line diagnostics we find the following: (1) SFRs derived from the observed H alpha lambda 6563 and H beta lambda

  10. THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE

    International Nuclear Information System (INIS)

    Salo, Heikki; Laurikainen, Eija; Laine, Jarkko; Comerón, Sebastien; Gadotti, Dimitri A.; Kim, Taehyun; Buta, Ron; Sheth, Kartik; Muñoz-Mateos, Juan Carlos; Zaritsky, Dennis; Hinz, Joannah L.; Ho, Luis; Knapen, Johan; Cisternas, Mauricio; Athanassoula, E.; Bosma, Albert; Laine, Seppo; Regan, Michael; De Paz, Armando Gil; Menendez-Delmestre, Karin

    2015-01-01

    The Spitzer Survey of Stellar Structure in Galaxies (S 4 G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (<40 Mpc) galaxies. We describe the S 4 G data analysis pipeline 4, which is dedicated to two-dimensional structural surface brightness decompositions of 3.6 μm images, using GALFIT3.0. Besides automatic 1-component Sérsic fits, and 2-component Sérsic bulge + exponential disk fits, we present human-supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sérsic index and bulge-to-total light ratio (B/T), confirming earlier results. Here, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page (www.oulu.fi/astronomy/S4G-PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK-EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately

  11. The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology

    Science.gov (United States)

    Dale, Daniel A.; SINGS Team

    2009-05-01

    Results from high resolution mid-infrared spectroscopy are presented for 155 nuclear and extranuclear regions from SINGS. The SINGS sample shows a wide range in the ratio of [SIII]18.71/[SIII]33.48, but the average ratio of the ensemble indicates a typical interstellar electron density of 300--400 cm-3 on 23"x15" scales and 500--600 cm-3 using 11"x9" apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an AGN environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [NeIII]15.56/[NeII]12.81, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [NeIII]15.56/[NeII]12.81 ratios. Finally, [FeII]25.99/[NeII]12.81 versus [SiII]34.82/[SIII]33.48 also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [NeIII]15.56/[NeII]12.81, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  12. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z ≈ 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    International Nuclear Information System (INIS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S.

    2012-01-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 10 12 L ☉ ). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10 11.6 L ☉ IR (8-1000 μm) 13.6 L ☉ . 90% of the Herschel-detected DOGs in this sample are ULIRGs and 30% have L IR > 10 13 L ☉ . The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ∼25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR (8-1000 μm)/νL ν (8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up

  13. SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). II. IRAC-DETECTED LYMAN-BREAK GALAXIES AT 6 ≲ z ≲ 10 BEHIND STRONG-LENSING CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han; Bradač, Maruša; Hoag, Austin; Cain, Benjamin; Lubin, L. M.; Knight, Robert I. [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Lemaux, Brian C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ryan, R. E. Jr.; Brammer, Gabriel B. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Castellano, Marco; Amorin, Ricardo; Fontana, Adriano; Merlin, Emiliano [INAF—Osservatorio Astronomico di Roma Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Schrabback, Tim [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Treu, Tommaso [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Linden, Anja von der, E-mail: khhuang@ucdavis.edu, E-mail: astrokuang@gmail.com [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305 (United States)

    2016-01-20

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios  ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∼1.2–5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M{sub 1600} are between −21.2 and −18.9 mag, while their intrinsic stellar masses are between 2 × 10{sup 8}M{sub ⊙} and 2.9 × 10{sup 9}M{sub ⊙}. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at z{sub Lyα} = 6.76 (in RXJ 1347) and one at z{sub Lyα} = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]–[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  14. Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z ~ 7

    Science.gov (United States)

    Labbé, Ivo; Bouwens, Rychard; Illingworth, G. D.; Franx, M.

    2006-10-01

    Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins Deep Survey, we study z850-dropout sources in the Hubble Ultra Deep Field. After carefully removing contaminating flux from foreground sources, we clearly detect two z850 dropouts at 3.6 and 4.5 μm, while two others are marginally detected. The mid-infrared fluxes strongly support their interpretation as galaxies at z~7, seen when the universe was only 750 Myr old. The IRAC observations allow us for the first time to constrain the rest-frame optical colors, stellar masses, and ages of the highest redshift galaxies. Fitting stellar population models to the spectral energy distributions, we find photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4, V-band luminosities LV=(0.6-3)×1010 Lsolar, stellar masses (1-10)×109 Msolar, stellar ages 50-200 Myr, star formation rates up to ~25 Msolar yr-1, and low reddening AV~8, during the era of cosmic reionization, but the star formation rate density derived from their stellar masses and ages is not nearly sufficient to reionize the universe. The simplest explanation for this deficiency is that lower mass galaxies beyond our detection limit reionized the universe. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through contract 125790 issued by JPL/Caltech. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based on service mode observations collected at the European Southern Observatory, Paranal, Chile (ESO program 073.A-0764A).

  15. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    International Nuclear Information System (INIS)

    Webb, T. M. A.; O'Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison; Yee, H. K. C.; Gilbank, David; Ellingson, Erica; Gladders, Mike; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-01-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 14-15 M ☉ . We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10 11 M ☉ , assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z) 5.1±1.9 over the range 0.3 cluster ). The evolution is similar, with ΣSFR/M cluster ∼ (1 + z) 5.4±1.9 . We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M cluster ∼M cluster -1.5±0.4 ) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ∼ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ∼ 0.75 have the same

  16. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    Science.gov (United States)

    Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.

    2017-12-01

    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.

  17. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Webb, T. M. A.; O' Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison [McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4 (Canada); Gilbank, David [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Ellingson, Erica [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States); Gladders, Mike [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Muzzin, Adam [Leiden Observatory, University of Leiden, Niels Bohrweg 2, NL-2333 CA, Leiden (Netherlands); Wilson, Gillian [Department of Physics and Astronomy, University of California at Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Yan, Renbin [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 10{sup 14-15} M {sub ☉}. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10{sup 11} M {sub ☉}, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z){sup 5.1±1.9} over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M {sub cluster}). The evolution is similar, with ΣSFR/M {sub cluster} ∼ (1 + z){sup 5.4±1.9}. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M {sub cluster} (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M{sub cluster}∼M{sub cluster}{sup -1.5±0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR

  18. A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203

    International Nuclear Information System (INIS)

    Watson, D.; French, J.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Castro Cerón, J. M.; Christensen, L.; O'Halloran, B.; Michałowski, M.; Gordon, K. D.; Covino, S.; Reinfrank, R. F.

    2011-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG 031203. It is one of the nearest GRB hosts at z = 0.1055, allowing both low- and high-resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS). Medium-resolution UV to K-band spectroscopy with the X-shooter spectrograph on the Very Large Telescope is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and submillimeter observations. These data allow us to construct a UV to radio spectral energy distribution with almost complete spectroscopic coverage from 0.3 to 35 μm of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionization fine structure line emission indicative of a hard radiation field in the galaxy—in particular the [S IV]/[S III] and [Ne III]/[Ne II] ratios—suggestive of strong ongoing star formation and a very young stellar population. The absence of any polycyclic aromatic hydrocarbon emission supports these conclusions, as does the probable hot peak dust temperature, making HG 031203 similar to the prototypical blue compact dwarf galaxy (BCD), II Zw 40. The selection of HG 031203 via the presence of a GRB suggests that it might be a useful analog of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogs of star formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z ∼ 7 and z ∼ 8 galaxies in this context. The nebular line emission is so strong in HG 031203 that at z ∼ 7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 μm fluxes without the need to invoke a 4000 Å break. Indeed, photometry of HG 031203 shows elevation of the broadband V

  19. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    International Nuclear Information System (INIS)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Groves, B.; Delgado, R. Gonzalez

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 < z < 0.7), conducting a statistical investigation of the links between radio jet, active galactic nucleus (AGN), starburst activity and MFIR properties. This is part of an ongoing extensive study of powerful radio galaxies that benefits from both complete optical emission line information and a uniquely high detection rate in the far-infrared (far-IR). We find tight correlations between the MFIR and [O III]λ5007 emission luminosities, which are significantly better than those between MFIR and extended radio luminosities, or between radio and [O III] luminosities. Since [O III] is a known indicator of intrinsic AGN power, these correlations confirm AGN illumination of the circumnuclear dust as the primary heating mechanism for the dust producing thermal MFIR emission at both 24 and 70 μm. We demonstrate that AGN heating is energetically feasible, and identify the narrow-line region clouds as the most likely location of the cool, far-IR emitting dust. Starbursts make a major contribution to the heating of the cool dust in only 15%-28% of our targets. We also investigate the orientation dependence of the continuum properties, finding that the broad- and narrow-line objects in our sample with strong emission lines have similar distributions of MFIR luminosities and colors. Therefore our results are entirely consistent with the orientation-based unified schemes for powerful radio galaxies. However, the weak line radio galaxies form a separate class of objects with intrinsically low-luminosity AGNs in which both the optical emission lines and the MFIR continuum are weak.

  20. The Spitzer Survey of Stellar Structure in Galaxies (S4G): Precise Stellar Mass Distributions from Automated Dust Correction at 3.6 μm

    Science.gov (United States)

    Querejeta, Miguel; Meidt, Sharon E.; Schinnerer, Eva; Cisternas, Mauricio; Muñoz-Mateos, Juan Carlos; Sheth, Kartik; Knapen, Johan; van de Ven, Glenn; Norris, Mark A.; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Holwerda, Benne W.; Athanassoula, E.; Bosma, Albert; Groves, Brent; Ho, Luis C.; Gadotti, Dimitri A.; Zaritsky, Dennis; Regan, Michael; Hinz, Joannah; Gil de Paz, Armando; Menendez-Delmestre, Karin; Seibert, Mark; Mizusawa, Trisha; Kim, Taehyun; Erroz-Ferrer, Santiago; Laine, Jarkko; Comerón, Sébastien

    2015-07-01

    The mid-infrared is an optimal window to trace stellar mass in nearby galaxies and the 3.6 μ {{m}} IRAC band has been exploited to this effect, but such mass estimates can be biased by dust emission. We present our pipeline to reveal the old stellar flux at 3.6 μm and obtain stellar mass maps for more than 1600 galaxies available from the Spitzer Survey of Stellar Structure in Galaxies (S4G). This survey consists of images in two infrared bands (3.6 and 4.5 μ {{m}}), and we use the Independent Component Analysis (ICA) method presented in Meidt et al. to separate the dominant light from old stars and the dust emission that can significantly contribute to the observed 3.6 μ {{m}} flux. We exclude from our ICA analysis galaxies with low signal-to-noise ratio ({{S}}/{{N}}\\lt 10) and those with original [3.6]-[4.5] colors compatible with an old stellar population, indicative of little dust emission (mostly early Hubble types, which can directly provide good mass maps). For the remaining 1251 galaxies to which ICA was successfully applied, we find that as much as 10%-30% of the total light at 3.6 μ {{m}} typically originates from dust, and locally it can reach even higher values. This contamination fraction shows a correlation with specific star formation rates, confirming that the dust emission that we detect is related to star formation. Additionally, we have used our large sample of mass estimates to calibrate a relationship of effective mass-to-light ratio (M/L) as a function of observed [3.6]-[4.5] color: {log}({\\text{}}M/L) = -0.339(+/- 0.057) × ([3.6]-[4.5])-0.336(+/- 0.002). Our final pipeline products have been made public through IRSA, providing the astronomical community with an unprecedentedly large set of stellar mass maps ready to use for scientific applications.

  1. THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Heikki; Laurikainen, Eija; Laine, Jarkko; Comerón, Sebastien [Astronomy and Space Physics, University of Oulu, FI-90014 (Finland); Gadotti, Dimitri A.; Kim, Taehyun [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Buta, Ron [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Sheth, Kartik; Muñoz-Mateos, Juan Carlos [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Zaritsky, Dennis; Hinz, Joannah L. [University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Ho, Luis [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Knapen, Johan; Cisternas, Mauricio [Instituto de Astrofísica de Canarias, E-38205 La Laguna (Spain); Athanassoula, E.; Bosma, Albert [Aix Marseille Universite, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Laine, Seppo [Spitzer Science Center—Caltech, MS 314-6, Pasadena, CA 91125 (United States); Regan, Michael [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); De Paz, Armando Gil [Departamento de Astrofísica, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Menendez-Delmestre, Karin [Observatorio do Valongo, Universidade Federal de Rio de Janeiro, Ladeira Pedro Antonio, 43, Saude CEP 20080-090, Rio de Janeiro—RJ (Brazil); and others

    2015-07-20

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (<40 Mpc) galaxies. We describe the S{sup 4}G data analysis pipeline 4, which is dedicated to two-dimensional structural surface brightness decompositions of 3.6 μm images, using GALFIT3.0. Besides automatic 1-component Sérsic fits, and 2-component Sérsic bulge + exponential disk fits, we present human-supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sérsic index and bulge-to-total light ratio (B/T), confirming earlier results. Here, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page (www.oulu.fi/astronomy/S4G-PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK-EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately.

  2. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification

    Energy Technology Data Exchange (ETDEWEB)

    Dicken, D. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Tadhunter, C. [University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morganti, R. [ASTRON, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Axon, D.; Robinson, A.; Magagnoli, M. [Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Kharb, P. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Ramos Almeida, C. [Instituto de Astrofisica de Canarias (IAC), C/V ia Lactea, s/n, E-38205 La Laguna, Tenerife (Spain); Mingo, B. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Hardcastle, M. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Nesvadba, N. P. H.; Singh, V. [Institut d' Astrophysique Spatiale, CNRS, Université Paris Sud, F-91405 Orsay (France); Kouwenhoven, M. B. N. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Rose, M.; Spoon, H. [224 Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Inskip, K. J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Holt, J., E-mail: daniel.dicken@cea.fr [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2014-06-20

    It remains uncertain which continuum and emission line diagnostics best indicate the bolometric powers of active galactic nuclei (AGNs), especially given the attenuation caused by the circumnuclear material and the possible contamination by components related to star formation. Here we use mid-IR spectra along with multiwavelength data to investigate the merit of various diagnostics of AGN radiative power, including the mid-IR [Ne III] λ25.89 μm and [O IV] λ25.89 μm fine-structure lines, the optical [O III] λ5007 forbidden line, and mid-IR 24 μm, 5 GHz radio, and X-ray continuum emission, for complete samples of 46 2Jy radio galaxies (0.05 < z < 0.7) and 17 3CRR FRII radio galaxies (z < 0.1). We find that the mid-IR [O IV] line is the most reliable indicator of AGN power for powerful radio-loud AGNs. By assuming that the [O IV] is emitted isotropically, and comparing the [O III] and 24 μm luminosities of the broad- and narrow-line AGNs in our samples at fixed [O IV] luminosity, we show that the [O III] and 24 μm emission are both mildly attenuated in the narrow-line compared to the broad-line objects by a factor of ≈2. However, despite this attenuation, the [O III] and 24 μm luminosities are better AGN power indicators for our sample than either the 5 GHz radio or the X-ray continuum luminosities. We also detect the mid-IR 9.7 μm silicate feature in the spectra of many objects but not ubiquitously: at least 40% of the sample shows no clear evidence for these features. We conclude that, for the majority of powerful radio galaxies, the mid-IR lines are powered by AGN photoionization.

  3. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  4. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]{sub 18.7{sub μm}}, [O IV], [Fe II], [S III]{sub 33.5{sub μm}}, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z{sub ☉}, and ionization parameters of 2-8 × 10{sup 7} cm s{sup –1}. Based on the [S III]{sub 33.5{sub μm}}/[S III]{sub 18.7{sub μm}} ratios, the electron density in LIRG nuclei is typically one to a few hundred cm{sup –3}, with a median electron density of ∼300 cm{sup –3}, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s{sup –1}) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s{sup –1}. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential

  5. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Delgado, R. Gonzalez; Groves, B.

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05

  6. Spitzer Digs Up Galactic Fossil

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2 This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the visible-light image (left) shows a dark sky speckled

  7. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  8. The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES). II. Enhanced Nuclear Accretion Rate in Galaxy Groups at z ∼ 0.2

    Science.gov (United States)

    Baronchelli, I.; Rodighiero, G.; Teplitz, H. I.; Scarlata, C. M.; Franceschini, A.; Berta, S.; Barrufet, L.; Vaccari, M.; Bonato, M.; Ciesla, L.; Zanella, A.; Carraro, R.; Mancini, C.; Puglisi, A.; Malkan, M.; Mei, S.; Marchetti, L.; Colbert, J.; Sedgwick, C.; Serjeant, S.; Pearson, C.; Radovich, M.; Grado, A.; Limatola, L.; Covone, G.

    2018-04-01

    For a sample of star-forming galaxies in the redshift interval 0.15 < z < 0.3, we study how both the relative strength of the active galactic nucleus (AGN) infrared emission, compared to that due to the star formation (SF), and the numerical fraction of AGNs change as a function of the total stellar mass of the hosting galaxy group ({M}group}* ) between 1010.25 and 1011.9 M ⊙. Using a multicomponent spectral energy distribution SED fitting analysis, we separate the contribution of stars, AGN torus, and star formation to the total emission at different wavelengths. This technique is applied to a new multiwavelength data set in the SIMES field (23 not-redundant photometric bands), spanning the wavelength range from the UV (GALEX) to the far-IR (Herschel) and including crucial AKARI and WISE mid-IR observations (4.5 μm < λ < 24 μm), where the black hole thermal emission is stronger. This new photometric catalog, which includes our best photo-z estimates, is released through the NASA/IPAC Infrared Science Archive (IRSA). Groups are identified through a friends-of-friends algorithm (∼62% purity, ∼51% completeness). We identified a total of 45 galaxies requiring an AGN emission component, 35 of which are in groups and 10 in the field. We find the black hole accretion rate (BHAR) ∝ ({M}group}* {)}1.21+/- 0.27 and (BHAR/SFR) ∝ ({M}group}* {)}1.04+/- 0.24, while, in the same range of {M}group}* , we do not observe any sensible change in the numerical fraction of AGNs. Our results indicate that the nuclear activity (i.e., the BHAR and the BHAR/SFR ratio) is enhanced when galaxies are located in more massive and richer groups.

  9. Hunting Elusive SPRITEs with Spitzer

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events

  10. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  11. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  12. THE SPITZER DEEP, WIDE-FIELD SURVEY

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Brodwin, M.; Stern, D.; Griffith, R.; Eisenhardt, P.; Gorjian, V.; Kozlowski, S.; Kochanek, C. S.; Bock, J. J.; Borys, C.; Brand, K.; Grogin, N. A.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, A.; Eisenstein, D.; Gonzalez, A. H.; Ivison, R. J.

    2009-01-01

    The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of 10 deg. 2 in the Booetes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Spitzer Cycle 4 Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit-for the first time-the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z ∼ 3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS data sets will thus be especially useful for characterizing galaxy evolution beyond z ∼ 1.5. This paper explains the SDWFS observing strategy and data processing, presents the SDWFS mosaics and source catalogs, and discusses some early scientific findings. The publicly released, full-depth catalogs contain 6.78, 5.23, 1.20, and 0.96 x 10 5 distinct sources detected to the average 5σ, 4''-diameter, aperture-corrected limits of 19.77, 18.83, 16.50, and 15.82 Vega mag at 3.6, 4.5, 5.8, and 8.0 μm, respectively. The SDWFS number counts and color-color distribution are consistent with other, earlier Spitzer surveys. At the 6 minute integration time of the SDWFS IRAC imaging, >50% of isolated Faint Images of the Radio Sky at Twenty cm radio sources and >80% of on-axis XBooetes sources are detected out to 8.0 μm. Finally, we present the four highest proper motion IRAC-selected sources identified from the multi-epoch imaging, two of which are likely field brown dwarfs of mid-T spectral class.

  13. THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY

    International Nuclear Information System (INIS)

    Dale, D. A.; Cohen, S. A.; Johnson, L. C.; Schuster, M. D.; Calzetti, D.; Engelbracht, C. W.; Kennicutt, R. C.; Block, M.; Marble, A. R.; Gil de Paz, A.; Lee, J. C.; Begum, A.; Dalcanton, J. J.; Funes, J. G.; Gordon, K. D.; Johnson, B. D.; Sakai, S.; Skillman, E. D.; Van Zee, L.; Walter, F.

    2009-01-01

    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, Hα, and Hubble Space Telescope imaging from 11HUGS (11 Mpc Hα and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8 μm polycyclic aromatic hydrocarbon emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between the infrared-to-ultraviolet ratio and the ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.

  14. Spitzer Observations of GRB Hosts: A Legacy Approach

    Science.gov (United States)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  15. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David; Bally, John; Masci, Frank; Armus, Lee; Cody, Ann Marie; Bond, Howard E.; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph; Boyer, Martha; Cantiello, Matteo; Fox, Ori D.

    2017-01-01

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr −1 to >7 mag yr −1 . SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  16. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Masci, Frank; Armus, Lee [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Bond, Howard E. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Contreras, Carlos [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Boyer, Martha [NASA Goddard Space Flight Center, MC 665, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Cantiello, Matteo [Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  17. Spitzer ultra faint survey program (surfs up). I. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Bradač, Maruša; Huang, Kuang-Han; Cain, Benjamin; Hall, Nicholas; Lubin, Lori [Department of Physics, University of California, Davis, CA 95616 (United States); Ryan, Russell; Casertano, Stefano [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Schrabback, Tim; Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Auf Dem Hügel 71, D-53121 Bonn (Germany); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Allen, Steve; Von der Linden, Anja [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gladders, Mike [The University of Chicago, The Kavli Institute for Cosmological Physics, 933 East 56th Street, Chicago, IL 60637 (United States); Hinz, Joannah; Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Treu, Tommaso, E-mail: marusa@physics.ucdavis.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-04-20

    Spitzer UltRa Faint SUrvey Program is a joint Spitzer and Hubble Space Telescope Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z ≳ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest-frame optical light, which only Spitzer can probe for sources at z ≳ 7, for a large enough sample of typical galaxies. Our program consists of 550 hr of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ∼30 hr exposure time in both 3.6 μm and 4.5 μm in the central 4' × 4' field and ∼15 hr in the flanking fields. This results in 3σ sensitivity limits of ∼26.6 and ∼26.2 AB magnitudes for the central field in the IRAC 3.6 and 4.5 μm bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z ≳ 7 sources (using a z = 9.5 galaxy behind MACS J1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical point-spread function models. In the future we plan to release these data products for the entire survey.

  18. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Schombert, James M., E-mail: jschombe@uoregon.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  19. COLORS OF ELLIPTICALS FROM GALEX TO SPITZER

    International Nuclear Information System (INIS)

    Schombert, James M.

    2016-01-01

    Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.

  20. THE SPITZER-WISE SURVEY OF THE ECLIPTIC POLES

    International Nuclear Information System (INIS)

    Jarrett, T. H.; Masci, F.; Cutri, R. M.; Marsh, K.; Padgett, D.; Tsai, C. W.; Cohen, M.; Wright, E.; Petty, S.; Stern, D.; Eisenhardt, P.; Mainzer, A.; Ressler, M.; Benford, D.; Blain, A.; Carey, S.; Surace, J.; Lonsdale, C.; Skrutskie, M.; Stanford, S.

    2011-01-01

    We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg 2 for the EP-N and 1.28 deg 2 for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 μm, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of ∼1.5 deg 2 for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 μm channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 μm), W2 (4.6 μm), W3 (12 μm), and W4 (22 μm), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and the exceptionally deep (in total

  1. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L. [Department of Physics and Astronomy, Texas A and M University, College Station, TX, 77843-4242 (United States); Lacy, M. [North American ALMA Science Center, NRAO Headquarters, Charlottesville, VA 22903 (United States); Ciardullo, R.; Gronwall, C. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Bassett, R. [International Centre for Radio Astronomy Research, University of Western Australia, 7 Fairway, Crawley, WA 6009 (Australia); Behroozi, P. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Blanc, G. A. [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile); Jong, R. S. de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Gawiser, E. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hopp, U., E-mail: papovich@physics.tamu.edu, E-mail: papovich@tamu.edu [Max-Planck-Institut für Extraterrestrische Physik, D-85741, Garching (Germany); and others

    2016-06-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg{sup 2} of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc{sup 3} at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  2. THE SPITZER -HETDEX EXPLORATORY LARGE-AREA SURVEY

    International Nuclear Information System (INIS)

    Papovich, C.; Shipley, H. V.; Mehrtens, N.; Lanham, C.; DePoy, D. L.; Kawinwanichakij, L.; Lacy, M.; Ciardullo, R.; Gronwall, C.; Finkelstein, S. L.; Drory, N.; Gebhardt, K.; Hill, G. J.; Jogee, S.; Bassett, R.; Behroozi, P.; Blanc, G. A.; Jong, R. S. de; Gawiser, E.; Hopp, U.

    2016-01-01

    We present post-cryogenic Spitzer imaging at 3.6 and 4.5 μ m with the Infrared Array Camera (IRAC) of the Spitzer /HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers ≈24 deg 2 of the Sloan Digital Sky Survey “Stripe 82” region, and falls within the footprints of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R ∼ 800 spectroscopy will produce ∼200,000 redshifts from the Ly α emission for galaxies in the range 1.9 <  z  < 3.5, and an additional ∼200,000 redshifts from the [O ii] emission for galaxies at z  < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K -band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, the presence of active galactic nuclei, and environment over a co-moving volume of ∼0.5 Gpc 3 at 1.9 <  z  < 3.5. Here, we discuss the properties of the SHELA IRAC data set, including the data acquisition, reduction, validation, and source catalogs. Our tests show that the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 μ m images. The catalogs reach limiting sensitivities of 1.1  μ Jy at both 3.6 and 4.5 μ m (1 σ , for R = 2″ circular apertures). As a demonstration of the science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of the Spitzer Exploratory programs, we provide all of the images and catalogs as part of the publication.

  3. IRAC Imaging of LSB Galaxies

    Science.gov (United States)

    Schombert, James; McGaugh, Stacy; Lelli, Federico

    2017-04-01

    We propose a program to observe a large sample of Low Surface Brightness (LSB) galaxies. Large galaxy surveys conducted with Spitzer suffer from the unavoidable selection bias against LSB systems (e.g., the S4G survey). Even those programs thathave specifically targeted LSB galaxies have usually been restricted objects of intermediate surface brightness (between 22 and 23 B mag/ []). Our sample is selected to be of a more extreme LSB nature (with central surface brightness fainter than 23 Bmag/[]). Even warm, Spitzer is the ideal instrument to image these low contrast targets in the near infrared: our sample goes a considerable way towards remedying this hole in the Spitzer legacy archive, also increasing coverage in terms of stellar mass, gas mass, and SFR. The sample will be used to address the newly discovered radial acceleration relation (RAR) in disk galaxies. While issues involving the connection between baryons and dark matter have been known since the development of the global baryonic Tully-Fisher (bTF) relation, it is only in the last six months that the particle physics and theoretical communities have recognized and responded to the local coupling between dark and baryonic matter represented by the RAR. This important new correlation is effectively a new natural law for galaxies. Spitzer photometry has been at the forefront of resolving the stellar mass component in galaxies that make-up the RAR and is the primary reason for the discovery of this new kinematic law.

  4. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    International Nuclear Information System (INIS)

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard

    2012-01-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 Å emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  5. Exoplanet Characterization With Spitzer Eclipses

    Science.gov (United States)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  6. SPIRITS: SPitzer InfraRed Intensive Transients Survey

    Science.gov (United States)

    Kasliwal, Mansi; Jencson, Jacob; Lau, Ryan; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andrew; Hankins, Matthew; Goldman, Steven; Jacob, Jencson

    2018-05-01

    Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 78 explosive transients and 2457 eruptive variables. Of these 78 infrared transients, 60 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28 um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of those 106 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEs. Scaling from the SPIRITS discovery rate, we estimate finding 10 new SPRITEs and 2-3 new supernovae in Cycle 14. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.

  7. SPITZER, GAIA, AND THE POTENTIAL OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Price-Whelan, Adrian M.; Johnston, Kathryn V.

    2013-01-01

    Near-future data from ESA's Gaia mission will provide precise, full phase-space information for hundreds of millions of stars out to heliocentric distances of ∼10 kpc. This ''horizon'' for full phase-space measurements is imposed by the Gaia parallax errors degrading to worse than 10%, and could be significantly extended by an accurate distance indicator. Recent work has demonstrated how Spitzer observations of RR Lyrae stars can be used to make distance estimates accurate to 2%, effectively extending the Gaia, precise-data horizon by a factor of 10 in distance and a factor of 1000 in volume. This Letter presents one approach to exploit data of such accuracy to measure the Galactic potential using small samples of stars associated with debris from satellite destruction. The method is tested with synthetic observations of 100 stars from the end point of a simulation of satellite destruction: the shape, orientation, and depth of the potential used in the simulation are recovered to within a few percent. The success of this simple test with such a small sample in a single debris stream suggests that constraints from multiple streams could be combined to examine the Galaxy's dark matter halo in even more detail—a truly unique opportunity that is enabled by the combination of Spitzer and Gaia with our intimate perspective on our own Galaxy

  8. Spitzer - Hot & Colorful Student Activities

    Science.gov (United States)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  9. Spitzer ’s View of the Candidate Cluster and Protocluster Catalog (CCPC)

    Energy Technology Data Exchange (ETDEWEB)

    Franck, J. R.; McGaugh, S. S. [Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106 (United States)

    2017-02-10

    The Candidate Cluster and Protocluster Catalog contains 218 galaxy overdensities composed of more than 2000 galaxies with spectroscopic redshifts spanning the first few Gyr after the Big Bang (2.0 ≤ z < 6.6). We use Spitzer archival data to track the underlying stellar mass of these overdense regions in various temporal cross sections by building rest-frame near-infrared luminosity functions (LFs) across the span of redshifts. This exercise maps the stellar growth of protocluster galaxies, as halos in the densest environments should be the most massive from hierarchical accretion. The characteristic apparent magnitude, m *( z ), is relatively flat from 2.0 ≤ z < 6.6, consistent with a passive evolution of an old stellar population. This trend maps smoothly to lower redshift results of cluster galaxies from other works. We find no difference in the LFs of galaxies in the field versus protoclusters at a given redshift apart from their density.

  10. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    International Nuclear Information System (INIS)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.; Gallagher, S. C.; Johnson, K. E.; Reines, A. E.; Gronwall, C.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby ( -1 ) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR UV , of the total star formation rate, SFR TOTAL . We use Spitzer MIPS 24 μm photometry to estimate SFR IR , the component of SFR TOTAL that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR TOTAL estimates for all HCG galaxies. We obtain total stellar mass, M * , estimates by means of Two Micron All Sky Survey K s -band luminosities, and use them to calculate specific star formation rates, SSFR ≡ SFR TOTAL /M * . SSFR values show a clear and significant bimodality, with a gap between low (∼ -11 yr -1 ) and high-SSFR (∼>1.2 x 10 -10 yr -1 ) systems. We compare this bimodality to the previously discovered bimodality in α IRAC , the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 μm data for these galaxies. We find that all galaxies with α IRAC ≤ 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and α IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total

  11. Spitzer sage survey of the large magellanic cloud. II. Evolved stars and infrared color-magnitude diagrams

    NARCIS (Netherlands)

    Blum, R. D.; Mould, J. R.; Olsen, K. A.; Frogel, J. A.; Meixner, M.; Markwick-Kemper, F.; Indebetouw, R.; Whitney, B.; Meade, M.; Babler, B.; Churchwell, E. B.; Gordon, K.; Engelbracht, C.; For, B. -Q.; Misselt, K.; Vijh, U.; Leitherer, C.; Volk, K.; Points, S.; Reach, W.; Hora, J. L.; Bernard, J. -P.; Boulanger, F.; Bracker, S.; Cohen, M.; Fukui, Y.; Gallagher, J.; Gorjian, V.; Harris, J.; Kelly, D.; Kawamura, A.; Latter, W. B.; Madden, S.; Mizuno, A.; Mizuno, N.; Oey, M. S.; Onishi, T.; Paladini, R.; Panagia, N.; Perez-Gonzalez, P.; Shibai, H.; Sato, S.; Smith, L.; Staveley-Smith, L.; Tielens, A.G.G.M; Ueta, T.; Van Dyk, S.; Zaritsky, D.; Werner, M.J.

    Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 mu m epoch 1 data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in

  12. SPRITE: the Spitzer proposal review website

    Science.gov (United States)

    Crane, Megan K.; Storrie-Lombardi, Lisa J.; Silbermann, Nancy A.; Rebull, Luisa M.

    2008-07-01

    The Spitzer Science Center (SSC), located on the campus of the California Institute of Technology, supports the science operations of NASA's infrared Spitzer Space Telescope. The SSC issues an annual Call for Proposals inviting investigators worldwide to submit Spitzer Space Telescope proposals. The Spitzer Proposal Review Website (SPRITE) is a MySQL/PHP web database application designed to support the SSC proposal review process. Review panel members use the software to view, grade, and write comments about the proposals, and SSC support team members monitor the grading and ranking process and ultimately generate a ranked list of all the proposals. The software is also used to generate, edit, and email award letters to the proposers. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  13. THE TAURUS SPITZER SURVEY: NEW CANDIDATE TAURUS MEMBERS SELECTED USING SENSITIVE MID-INFRARED PHOTOMETRY

    International Nuclear Information System (INIS)

    Rebull, L. M.; Padgett, D. L.; McCabe, C.-E.; Noriega-Crespo, A.; Carey, S. J.; Brooke, T.; Hillenbrand, L. A.; Stapelfeldt, K. R.; Angione, J. R.; Huard, T.; Terebey, S.; Audard, M.; Baldovin-Saavedra, C.; Monin, J.-L.; Menard, F.; Bouvier, J.; Fukagawa, M.; Guedel, M.; Knapp, G. R.; Allen, L. E.

    2010-01-01

    We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in seven mid- and far-infrared bands with the Spitzer Space Telescope. There are 215 previously identified members of the Taurus star-forming region in our ∼44 deg 2 map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ∼20% of the bona fide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided by extensive optical, X-ray, and ultraviolet imaging, and found 148 new candidate members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, three probable new members, and 10 possible new members, an increase of 15%-20% in Taurus members. Of the objects for which we have spectroscopy, seven are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and active galactic nuclei.

  14. Spitzer Observations Of IC 2118

    Science.gov (United States)

    2010-09-01

    Micron All-Sky Survey ( 2MASS ; Skrutskie et al. 2006) photometric data in an effort to segregate YSOs from background galaxies. While one previously known T...Spectral Typea Other names IRAS 04591−0856 05 01 30.2 −08 52 14 . . . HHL 17, G13 2MASS 05020630−0850467 05 02 06.3 −08 50 47 M2 IV . . . RXJ 0502.4−0744b...05 02 20.8 −07 44 10 . . . 2MASS 05022084−0744099 2MASS 05060574−0646151c 05 06 05.7 −06 46 15 G8: (May not be a member of IC 2118; see Kun et al

  15. Physical Characterization of Warm Spitzer Observed Near-Earth Objects

    NARCIS (Netherlands)

    Thomas, C. A.; Emery, J. P.; Trilling, D. E.; Delbo, M.; Hora, J. L.; Mueller, M.

    2012-01-01

    We have undertaken a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program. The combination of Spitzer derived albedos and diameters with spectroscopic data will enhance our understanding of the NEO population.

  16. Emergent Exoplanet Flux: Review of the Spitzer Results

    OpenAIRE

    Deming, Drake

    2008-01-01

    Observations using the Spitzer Space Telescope provided the first detections of photons from extrasolar planets. Spitzer observations are allowing us to infer the temperature structure, composition, and dynamics of exoplanet atmospheres. The Spitzer studies extend from many hot Jupiters, to the hot Neptune orbiting GJ436. Here I review the current status of Spitzer secondary eclipse observations, and summarize the results from the viewpoint of what is robust, what needs more work, and what th...

  17. SPITZER PARALLAX of OGLE-2015-BLG-0966

    DEFF Research Database (Denmark)

    Street, R. A.; Udalski, A.; Novati, S. Calchi

    2016-01-01

    We report the detection of a cold Neptune mplanet = 21 ± 2 M⊕ orbiting a 0.38 M⊙ M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real...

  18. Spitzer/IRAC view of Sh 2-284. Searching for evidence of triggered star formation in an isolated region in the outer Milky Way

    NARCIS (Netherlands)

    Puga, E.; Hony, S.; Neiner, C.; Lenorzer, A.; Hubert, A.M.; Waters, L.B.F.M.; Cusano, F.; Ripepi, V.

    2009-01-01

    Aims. Using Spitzer/IRAC observations of a region to be observed by the CoRoT satellite, we have unraveled a new complex star-forming region at low metallicity in the outer Galaxy. We perform a study of S284 in order to outline the chain of events in this star-forming region. Methods. We used

  19. Dwarf Galaxies Swimming in Tidal Tails

    Science.gov (United States)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground. Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born. The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light. This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  20. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  1. Spitzer secondary eclipses of Qatar-1b

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.

    2018-02-01

    Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55

  2. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  3. FAR-INFRARED PROPERTIES OF SPITZER-SELECTED LUMINOUS STARBURSTS

    International Nuclear Information System (INIS)

    Kovacs, A.; Omont, A.; Fiolet, N.; Beelen, A.; Dole, H.; Lagache, G.; Lonsdale, C.; Polletta, M.; Greve, T. R.; Borys, C.; Dowell, C. D.; Bell, T. A.; Cox, P.; De Breuck, C.; Farrah, D.; Menten, K. M.; Owen, F.

    2010-01-01

    We present SHARC-2 350 μm data on 20 luminous z ∼ 2 starbursts with S 1.2 m m > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S 350 μ m > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass-temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6 μm-2 mm measurements of local starbursts. We find characteristic single-component temperatures T 1 ≅ 35.5 ± 2.2 K and integrated infrared (IR) luminosities around 10 12.9±0.1 L sun for the SWIRE-selected sources. Molecular gas masses are estimated at ≅4 x 10 10 M sun , assuming κ 850 μ m = 0.15 m 2 kg -1 and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply ∼>2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 μm flux densities, provides an effective means for the study of SMGs at z ∼ 1.5-2.5.

  4. Galaxies Gather at Great Distances

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Distant Galaxy Cluster Infrared Survey Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Bird's Eye View Mosaic Bird's Eye View Mosaic with Clusters [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 9.1 Billion Light-Years 8.7 Billion Light-Years 8.6 Billion Light-Years Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope at Kitt Peak National Observatory in Tucson, Ariz. The new sample represents a six-fold increase in the number of known galaxy clusters and groups at such extreme distances, and will allow astronomers to systematically study massive galaxies two-thirds of the way back to the Big Bang. A mosaic portraying a bird's eye view of the field in which the distant clusters were found is shown at upper left. It spans a region of sky 40 times larger than that covered by the full moon as seen from Earth. Thousands of individual images from Spitzer's infrared array camera instrument were stitched together to create this mosaic. The distant clusters are marked with orange dots. Close-up images of three of the distant galaxy clusters are shown in the adjoining panels. The clusters appear as a concentration of red dots near the center of each image. These images reveal the galaxies as they were over 8 billion years ago, since that's how long their light took to reach Earth and Spitzer's infrared eyes. These pictures are false-color composites, combining ground-based optical images captured by the Mosaic-I camera on the Mayall 4-meter telescope at Kitt Peak, with infrared pictures taken by Spitzer's infrared array camera. Blue and green represent visible light at wavelengths of 0.4 microns and 0.8 microns

  5. Rapid Coeval Black Hole and Host Galaxy Growth in MRC 1138-262 : The Hungry Spider

    NARCIS (Netherlands)

    Seymour, N.; Altieri, B.; De Breuck, C.; Barthel, P.; Coia, D.; Conversi, L.; Dannerbauer, H.; Dey, A.; Dickinson, M.; Drouart, G.; Galametz, A.; Greve, T. R.; Haas, M.; Hatch, N.; Ibar, E.; Ivison, R.; Jarvis, M.; Kovacs, A.; Kurk, J.; Lehnert, M.; Miley, G.; Nesvadba, N.; Rawlings, J. I.; Rettura, A.; Rottgering, H.; Rocca-Volmerange, B.; Sanchez-Portal, M.; Santos, J. S.; Stern, D.; Stevens, J.; Valtchanov, I.; Vernet, J.; Wylezalek, D.

    2012-01-01

    We present a detailed study of the infrared spectral energy distribution of the high-redshift radio galaxy MRC 1138-26 at z = 2.156, also known as the Spiderweb Galaxy. By combining photometry from Spitzer, Herschel, and LABOCA we fit the rest-frame 5-300 mu m emission using a two-component,

  6. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    Science.gov (United States)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  7. SPITZER SECONDARY ECLIPSES OF WASP-18b

    International Nuclear Information System (INIS)

    Nymeyer, Sarah; Harrington, Joseph; Hardy, Ryan A.; Stevenson, Kevin B.; Campo, Christopher J.; Blecic, Jasmina; Bowman, William C.; Britt, Christopher B. T.; Cubillos, Patricio; Madhusudhan, Nikku; Collier-Cameron, Andrew; Maxted, Pierre F. L.; Loredo, Thomas J.; Hellier, Coel; Anderson, David R.; Gillon, Michael; Hebb, Leslie; Wheatley, Peter J.; Pollacco, Don

    2011-01-01

    The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzer's Infrared Array Camera in the 3.6 μm and 5.8 μm bands on 2008 December 20, and in the 4.5 μm and 8.0 μm bands on 2008 December 24. We report eclipse depths of 0.30% ± 0.02%, 0.39% ± 0.02%, 0.37% ± 0.03%, 0.41% ± 0.02%, and brightness temperatures of 3100 ± 90, 3310 ± 130, 3080 ± 140, and 3120 ± 110 K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered—as hot as an M-class star. The planet's pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day side to the night side of the planet.

  8. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Kelson, Daniel D., E-mail: nchisari@astro.princeton.edu [Observatories of the Carnegie Institution of Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  9. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-01-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  10. Fundamental Properties of the SHIELD Galaxies

    Science.gov (United States)

    Cannon, John; Adams, Betsey; Giovanelli, Riccardo; Haynes, Martha; Jones, Michael; McQuinn, Kristen; Rhode, Katherine; Salzer, John; Skillman, Evan

    2018-05-01

    The ALFALFA survey has significantly advanced our knowledge of the HI mass function (HIMF), particularly at the low mass end. From the ALFALFA survey, we have constructed a sample of all of the galaxies with HI masses less than 20 million solar masses. Observations of this 82 galaxy sample allow, for the first time, a characterization of the lowest HI mass galaxies at redshift zero. Specifically, this sample can be used to determine the low HI-mass ends of various fundamental scaling relations, including the critical baryonic Tully Fisher relation (BTFR) and the mass-metallicity (M-Z) relation. The M-Z relation and the BTFR are cosmologically important, but current samples leave the low-mass parameter spaces severely underpopulated. A full understanding of these relationships depends critically on accurate stellar masses of this complete sample of uniformly-selected galaxies. Here, we request imaging of the 70 galaxies in our sample that have not been observed with Spitzer. The proposed imaging will allow us to measure stellar masses and inclinations of the sample galaxies using a uniform observational approach. Comparison with (existing and in progress) interferometric HI imaging and with ground-based optical imaging and spectroscopy will enable a robust mass decomposition in each galaxy and accurate placements on the aforementioned scaling relationships. The observations proposed here will allow us to populate the mass continuum between mini-halos and bona fide dwarf galaxies, and to address a range of fundamental questions in galaxy formation and near-field cosmology.

  11. SPITZER OBSERVATIONS OF HOTSPOTS IN RADIO LOBES

    International Nuclear Information System (INIS)

    Werner, Michael W.; Murphy, David W.; Livingston, John H.; Gorjian, Varoujan; Jones, Dayton L.; Meier, David L.; Lawrence, Charles R.

    2012-01-01

    We have carried out a systematic search with Spitzer Warm Mission and archival data for infrared emission from the hotspots in radio lobes that have been described by Hardcastle et al. These hotspots have been detected with both radio and X-ray observations, but an observation at an intermediate frequency in the infrared can be critical to distinguish between competing models for particle acceleration and radiation processes in these objects. Between the archival and warm mission data, we report detections of 18 hotspots; the archival data generally include detections at all four IRAC bands, the Warm Mission data only at 3.6 μm. Using a theoretical formalism adopted from Godfrey et al., we fit both archival and warm mission spectral energy distributions (SEDs)—including radio, X-ray, and optical data from Hardcastle as well as the Spitzer data—with a synchrotron self-Compton (SSC) model, in which the X-rays are produced by Compton scattering of the radio frequency photons by the energetic electrons which radiate them. With one exception, an SSC model requires that the magnetic field be less or much less than the equipartition value which minimizes total energy and has comparable amounts of energy in the magnetic field and in the energetic particles. This conclusion agrees with those of comparable recent studies of hotspots, and with the analysis presented by Hardcastle et al. We also show that the infrared data rule out the simplest synchrotron-only models for the SEDs. We briefly discuss the implications of these results and of alternate interpretations of the data.

  12. The SAURON project : XIX. Optical and near-infrared scaling relations of nearby elliptical, lenticular and Sa galaxies

    NARCIS (Netherlands)

    Falcon-Barroso, J.; van de Ven, G.; Peletier, R. F.; Bureau, M.; Jeong, H.; Bacon, R.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.; Krajnovic, D.; Kuntschner, H.; McDermid, R. M.; Sarzi, M.; Shapiro, K. L.; van den Bosch, R.C.E.; van der Wolk, G.; Weijmans, A.; Yi, S.

    2011-01-01

    We present ground-based MDM Observatory V-band and Spitzer/InfraRed Array Camera 3.6-mu m-band photometric observations of the 72 representative galaxies of the SAURON survey. Galaxies in our sample probe the elliptical E, lenticular S0 and spiral Sa populations in the nearby Universe, both in field

  13. The SAURON project - XIX. Optical and near-infrared scaling relations of nearby elliptical, lenticular and Sa galaxies

    NARCIS (Netherlands)

    Falcón-Barroso, J.; van de Ven, G.; Peletier, R. F.; Bureau, M.; Jeong, H.; Bacon, R.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.; Krajnović, D.; Kuntschner, H.; McDermid, R. M.; Sarzi, M.; Shapiro, K. L.; van den Bosch, R. C. E.; van der Wolk, G.; Weijmans, A.; Yi, S.

    2011-01-01

    We present ground-based MDM Observatory V-band and Spitzer/InfraRed Array Camera 3.6-?m-band photometric observations of the 72 representative galaxies of the SAURON survey. Galaxies in our sample probe the elliptical E, lenticular S0 and spiral Sa populations in the nearby Universe, both in field

  14. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  15. Sensitive Spitzer Photometry of Supermassive Black Holes at the Final Stage of Adolescence

    Science.gov (United States)

    Shemmer, Ohad; Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    2011-05-01

    We propose to obtain sensitive Spitzer snapshot observations of a unique sample of 35 Sloan Digital Sky Survey quasars at redshift 4.8 for which we obtained reliable, Mg II-based determinations of the supermassive black hole (SMBH) mass and normalized accretion rate (L/L_Edd). These quasars appear to mark the final stage of SMBH `adolescence' in the history of the Universe as their SMBHs are significantly less massive and their L/L_Edd values are significantly higher with respect to their counterparts at lower redshifts. Our observations will provide both 1) deep coverage of the fields around these quasars which will be utilized as crucial priors for our approved Herschel/SPIRE observations of these sources, and 2) coverage of the rest-frame optical SEDs of these fast accreting quasars. The results will maximize our ability to measure the star-formation rate in the host galaxies of these quasars using Herschel. We will thus be able to investigate correlations between SMBH growth and star-forming activity in the early Universe. The Spitzer photometry will also provide invaluable information about the shape of the rest-frame optical continuum in these quasars which will be used to search for extreme disk properties that may be signatures of the remarkably high accretion rates in these sources.

  16. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  17. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  18. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    Science.gov (United States)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  19. Spitzer Observations of the X-ray Sources of NGC 4485/90

    Science.gov (United States)

    Vazquez, Gerardo A.; Colbert, E.; Hornschemeier, A.; Malhotra, S.; Roberts, T.; Ward, M.

    2006-06-01

    The mechanism for forming (or igniting) so-called Ultra-Luminous X- ray sources (ULXs) is very poorly understood. In order to investigate the stellar and gaseous environment of ULXs, we have observed the nearby starburst galaxy system NGC 4485/90 with Spitzer's IRAC and IRS instruments. High-quality mid-infrared images and spectra are used to characterize the stellar history of stars near the ULXs, and the ionization state of the surrounding gas. NGC 4485/90 fortuitively hosts six ULXs, and we have analyzed IRAC images and IRS spectra of all six regions. We also observed two "comparison" regions with no X-ray sources. Here we present our preliminary findings on the similarities and differences between the stellar and gaseous components near the ULXs.

  20. Simulated galaxy interactions as probes of merger spectral energy distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Brassington, Nicola, E-mail: llanz@ipac.caltech.edu [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)

    2014-04-10

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.

  1. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Podigachoski, Pece; Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen (Netherlands); Haas, Martin [Astronomisches Institut, Ruhr Universität, D-44801 Bochum (Germany); Leipski, Christian [Max-Planck Institut für Astronomie (MPIA), D-69117 Heidelberg (Germany); Wilkes, Belinda, E-mail: podigachoski@astro.rug.nl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  2. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    International Nuclear Information System (INIS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-01-01

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies

  3. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  4. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  5. SPITZER IRS SPECTRA OF LUMINOUS 8 μm SOURCES IN THE LARGE MAGELLANIC CLOUD: TESTING COLOR-BASED CLASSIFICATIONS

    International Nuclear Information System (INIS)

    Buchanan, Catherine L.; Kastner, Joel H.; Hrivnak, Bruce J.; Sahai, Raghvendra

    2009-01-01

    We present archival Spitzer Infrared Spectrograph (IRS) spectra of 19 luminous 8 μm selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on Two Micron All Sky Survey (2MASS)/MSX (J, H, K, and 8 μm) colors in order to test the 'JHK8' (Kastner et al.) classification scheme. The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich AGB stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzer's warm mission through the use of IRAC [3.6]-[4.5] and 2MASS colors.

  6. The SPT+Herschel+ALMA+Spitzer Legacy Survey: The stellar content of high redshift strongly lensed systems

    Science.gov (United States)

    Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel

    2018-05-01

    The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.

  7. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  8. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  9. TOTAL INFRARED LUMINOSITY ESTIMATION OF RESOLVED AND UNRESOLVED GALAXIES

    International Nuclear Information System (INIS)

    Boquien, M.; Calzetti, D.; Bendo, G.; Dale, D.; Engelbracht, C.; Kennicutt, R.; Lee, J. C.; Van Zee, L.; Moustakas, J.

    2010-01-01

    The total infrared (TIR) luminosity from galaxies can be used to examine both star formation and dust physics. We provide here new relations to estimate the TIR luminosity from various Spitzer bands, in particular from the 8 μm and 24 μm bands. To do so, we use data for 45'' subregions within a subsample of nearby face-on spiral galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) that have known oxygen abundances as well as integrated galaxy data from the SINGS, the Local Volume Legacy survey (LVL), and Engelbracht et al. samples. Taking into account the oxygen abundances of the subregions, the star formation rate intensity, and the relative emission of the polycyclic aromatic hydrocarbons at 8 μm, the warm dust at 24 μm, and the cold dust at 70 μm and 160 μm, we derive new relations to estimate the TIR luminosity from just one or two of the Spitzer bands. We also show that the metallicity and the star formation intensity must be taken into account when estimating the TIR luminosity from two wave bands, especially when data longward of 24 μm are not available.

  10. The Characterization of Galaxy Structure

    Science.gov (United States)

    Zaritsky, Dennis

    There is no all-encompassing intuitive physical understanding of galactic structure. We cannot predict the size, surface brightness, or luminosity of an individual galaxy based on the mass of its halo, or other physical characteristics, from simple first principles or even empirical guidelines. We have come to believe that such an understanding is possible because we have identified a simple scaling relation that applies to all gravitationally bound stellar systems,from giant ellipticals to dwarf spheroidals, from spiral galaxies to globular clusters. The simplicity (and low scatter) of this relationship testifies to an underlying order. In this proposal, we outline what we have learned so far about this scaling relationship, what we need to do to refine it so that it has no free parameters and provides the strongest possible test of galaxy formation and evolution models, and several ways in which we will exploit the relationship to explore other issues. Primarily, the proposed work involves a study of the uniform IR surface photometry of several thousand stellar systems using a single data source (the Spitzer S4G survey) to address shortcomings posed by the current heterogeneous sample and combining these data with the GALEX database to study how excursions from this relationship are related to current or on-going star formation. This relationship, like its antecedents the Fundamental Plane or Tully-Fisher relationship, can also be used to estimate distances and stellar mass-to-light ratios. We will describe the key advantages our relationship has relative to the existing work and how we will exploit those using archival NASA data from the Spitzer, GALEX, and WISE missions.

  11. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  12. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto; Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas; Sayers, Jack; Bridge, Carrie; Benford, Dominic; Blain, Andrew; Petty, Sara; Lake, Sean; Bussmann, Shane; Comerford, Julia M.; Evans, Neal J. II; Lonsdale, Carol; Rho, Jeonghee; Stanford, S. Adam

    2012-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (∼1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 μm, yet are clearly detected at 12 and 22 μm. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 μm, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 μm, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10 13 L ☉ . These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  13. Submillimeter Follow-up of Wise-Selected Hyperluminous Galaxies

    Science.gov (United States)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2013-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approximately 1000 all-sky) population of galaxies at high redshift (peaks at zeta = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 micrometers, yet are clearly detected at 12 and 22 micrometers. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (zeta greater than 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 micrometers, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 micrometers, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) solar luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  14. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Sayers, Jack; Bridge, Carrie [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Petty, Sara; Lake, Sean [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Bussmann, Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS78, Cambridge, MA 02138 (United States); Comerford, Julia M.; Evans, Neal J. II [Department of Astronomy, University of Texas, Austin, TX 78731 (United States); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rho, Jeonghee [SETI Institute, 189 BERNARDO Avenue, Mountain View, CA 94043 (United States); Stanford, S. Adam, E-mail: jingwen.wu@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  15. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Novati, S. Calchi; Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W.; Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bryden, G.; Henderson, C. B.; Shvartzvald, Y. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Udalski, A.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Collaboration: Spitzer team; OGLE group; and others

    2015-12-01

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.

  16. STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH)

    Energy Technology Data Exchange (ETDEWEB)

    Steinhardt, Charles L.; Capak, Peter; Masters, Dan; Petric, Andreea [Caltech, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Speagle, Josh S.; Silverman, John D. [Kavli IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8583 (Japan); Carollo, Marcella [ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Dunlop, James [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Hashimoto, Yasuhiro [National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Rd., Taipei 11677, Taiwan R.O.C. (China); Hsieh, Bau-Ching; Lin, Lihwai; Lin, Yen-Ting [ASIAA Sinica, AS/NTU. No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C. (China); Ilbert, Olivier; Le Fevre, Olivier [Laboratoire d' Astrophysique de Marseille, 38 rue Frederic Joliot Curie, F-13388 Marseille (France); Le Floc' h, Emeric [Service d' Astrophysique, CEA-Saclay, Orme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette (France); Lee, Nicholas; Sanders, Dave [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); McCracken, Henry J. [Institut d' Astrophysique de Paris, 98 bis boulevard Arago, F-75014 Paris (France); Nagao, Tohru [Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Salvato, Mara [Max Planck Institute for Extraterrestrial Physics (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); and others

    2014-08-20

    Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam observations on the 1.8 deg{sup 2} Cosmological Evolution Survey we estimate the masses and star formation rates of 3398 M {sub *} > 10{sup 10} M {sub ☉} star-forming galaxies at 4 < z < 6 with a substantial population up to M {sub *} ≳ 10{sup 11.5} M {sub ☉}. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the ''main sequence'' of star-forming galaxies) extends to z ∼ 6. The observed relation and scatter is consistent with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to z ∼ 6 or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.

  17. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  18. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events

    Science.gov (United States)

    Novati, S. Calchi; Gould, A.; Udalski, A.; Menzies, J. W.; Bond, I. A.; Shvartzvald, Y.; Street, R. A.; Hundertmark, M.; Beichman, C. A.; Barry, R. K.

    2015-01-01

    We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was approximately 1 Astronomical Unit west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated.

  19. The Origin of the Infrared Emission in Radio Galaxies : III. Analysis of 3CRR Objects

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Robinson, A.; Morganti, R.; Kharb, P.

    2010-01-01

    We present Spitzer photometric data for a complete sample of 19 low-redshift (z <0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid-to far-infrared (MFIR) emission from radio-loud active galactic nuclei (AGNs). Our results show a correlation between AGN

  20. What kind of galaxies dominate the cosmic SFR density at z~2?

    Science.gov (United States)

    Perez-Gonzalez, P. G.; Rieke, George; Gonzalez, Anthony; Gallego, Jesus; Guzman, Rafael; Pello, Roser; Egami, Eiichi; Marcillac, D.; Pascual, S.

    2006-08-01

    We propose to obtain near-infrared (JHK-bands) spectroscopy with GEM-S+GNIRS for a sample of 12 galaxies representative of the 3 types of spitzer/MIPS 24 micron detections at 2.0≲z≲2.6: power-law galaxies, star-forming galaxies with prominent 1.6 micron bumps, and Distant Red Galaxies. These sources are located in the Chandra Deep Field South, a unique field for the study of galaxy evolution, given the top quality data available at all wavelengths. Our main goal is to characterize the mid-IR selected galaxy population at this epoch by measuring H(alpha), H(beta), [NII], and [OIII] fluxes and profiles, and combining these observations with the already merged x-ray, ultraviolet, optical, near- and mid-infrared imaging data, to obtain the most reliable estimations of the SFRs, metallicities, stellar and dynamical masses, AGN activity, and extinction properties of the luminous infrared galaxies detected by MIPS, which dominate the SFR density of the Universe at z≳2. Our targets are complementary to others selected in the rest-frame UV/optical at high-z, and they extend the H(alpha) observations of galaxies selected with ISO from z~1 to z~2.6. The work proposed here will help to interpret the results obtained by the spitzer surveys at z≳2, thus substantially improving our understanding of the formation of massive galaxies and their connection to AGN.

  1. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    International Nuclear Information System (INIS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bell, E. F.; Bouwens, R.; Cattaneo, A.; Croton, D.; Davé, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg 2 to a depth of 26 AB mag (3σ) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 μm. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 ± 1.0 and 4.4 ± 0.8 nW m –2 sr –1 at 3.6 and 4.5 μm to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  2. Older Galaxy Pair Has Surprisingly Youthful Glow

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again. Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright 'pupil' in the center and oval-shaped 'eyelids.' Dramatic 'beads on a string' features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years). The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies. This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.

  3. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    Science.gov (United States)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  4. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  5. The Size Distribution of Very Small Near Earth Objects As Measured by Warm Spitzer

    NARCIS (Netherlands)

    Trilling, David E.; Hora, J.; Burt, B.; Delbo, M.; Emery, J.; Fazio, G.; Fuentes, C.; Harris, A.; Mueller, M.; Mommert, M.; Smith, H.

    2013-01-01

    We have carried out a pilot search for Near Earth Objects (NEOs) with 84 hours of Warm Spitzer time in April, 2013. Results are obtained through a multi-step process: implanting synthetic objects in the Spitzer data stream; processing the Spitzer data; linking non-sidereal sources to form plausible

  6. NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Plavchan, Peter; Werner, M. W.; Stapelfeldt, K. R.; Chen, C. H.; Su, K. Y. L.; Stauffer, J. R.; Song, I.

    2009-01-01

    We present 24 μm and 70 μm Multiband Imaging Photometer for Spitzer (MIPS) observations of 70 A through M-type dwarfs with estimated ages from 8 Myr to 1.1 Gyr, as part of a Spitzer guaranteed time program, including a re-analysis of some previously published source photometry. Our sample is selected from stars with common youth indicators such as lithium abundance, X-ray activity, chromospheric activity, and rapid rotation. We compare our MIPS observations to empirically derived K s -[24] colors as a function of the stellar effective temperature to identify 24 μm and 70 μm excesses. We place constraints or upper limits on dust temperatures and fractional infrared luminosities with a simple blackbody dust model. We confirm the previously published 70 μm excesses for HD 92945, HD 112429, and AU Mic, and provide updated flux density measurements for these sources. We present the discovery of 70 μm excesses for five stars: HD 7590, HD 10008, HD 59967, HD 73350, and HD 135599. HD 135599 is also a known Spitzer IRS (InfraRed Spectrograph) excess source, and we confirm the excess at 24 μm. We also present the detection of 24 μm excesses for 10 stars: HD 10008, GJ 3400A, HD 73350, HD 112429, HD 123998, HD 175742, AT Mic, BO Mic, HD 358623 and Gl 907.1. We find that large 70 μm excesses are less common around stars with effective temperatures of less than 5000 K (3.7 +7.6 -1.1 %) than around stars with effective temperatures between 5000 K and 6000 K (21.4 +9.5 -5.7 %), despite the cooler stars having a younger median age in our sample (12 Myr vs. 340 Myr). We find that the previously reported excess for TWA 13A at 70 μm is due to a nearby background galaxy, and the previously reported excess for HD 177724 is due to saturation of the near-infrared photometry used to predict the mid-infrared stellar flux contribution. In the Appendix, we present an updated analysis of dust grain removal timescales due to grain-grain collisions and radiation pressure, Poynting

  7. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-01-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of

  8. ExploreNEOs: The Warm Spitzer Near Earth Object survey

    NARCIS (Netherlands)

    Mueller, M.; Trilling, D. E.; Hora, J. L.; Harris, A. W.; Benner, L. A. M.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbó, M.; Emery, J. P.; Fazio, G.; Hagen, A. R.; Kistler, J. L.; Mainzer, A.; Mommert, M.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2011-01-01

    We are carrying out the ExploreNEOs project in which we observe more than 600 near Earth Objects (NEOs) at 3.6 and 4.5 microns with Warm Spitzer. For each NEO we derive diameter and albedo. We present our results to date, which include studies of individual objects, results for our entire observed

  9. ExploreNEOs: The Warm Spitzer Near Earth Object Survey

    NARCIS (Netherlands)

    Trilling, D. E.; Hora, J. L.; Mueller, M.; Thomas, C. A.; Harris, A. W.; Hagen, A. R.; Mommert, M.; Benner, L.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo, M.; Emery, J. P.; Fazio, G.; Kistler, J. L.; Mainzer, A.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.

    2012-01-01

    We have observed some 600 near Earth objects (NEOs) at 3.6 and 4.5 microns with the Warm Spitzer Space Telescope. We derive the albedo and diameter for each NEO to characterize global properties of the NEO population, among other goals.

  10. Robert Spitzer and psychiatric classification: technical challenges and ethical dilemmas.

    Science.gov (United States)

    Jacob, K S

    2016-01-01

    Dr Robert Leopold Spitzer (May 22, 1932-December 25, 2015), the architect of modern psychiatric diagnostic criteria and classification, died recently at the age of 83 in Seattle. Under his leadership, the American Psychiatric Association's (APA) Diagnostic and Statistical Manuals (DSM) became the international standard.

  11. Physical characterization of Near Earth Objects with Spitzer

    Science.gov (United States)

    Trilling, David; Hora, Joseph; Mommert, Michael; Chesley, Steve; Emery, Joshua; Fazio, Giovanni; Harris, Alan; Mueller, Migo; Smith, Howard

    2018-05-01

    We propose here an efficient, flux-limited survey of 426 optically discovered NEOs in order to measure their diameters and albedos. We include only targets not previously detected by Spitzer or NEOWISE and includes all NEOs available to Spitzer in Cycle 14. This program will maintain the fraction of all known NEOs with measured diameters and albedos at around 20% even in the face of increasingly successful NEO discovery surveys. By the conclusion of this program nearly 3500 NEOs will have measured diameters and albedos, with nearly 3000 of those observations being made by Spitzer and our team. We will determine an independent size distribution of NEOs at 100 meters that is free from albedo assumptions, addressing a current controversy. We will also derive, through our albedo measurements, the compositional distribution of NEOs as a function of size. We will measure or constrain lightcurves for more than 400 NEOs, thus constraining their shapes in addition to sizes and compositions. This catalog will enable a number of other science cases to be pursued by us and other researchers. Our team has unmatched experience observing NEOs with Spitzer.

  12. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  13. Infrared Colors of Dwarf-Dwarf Galaxy Interactions

    Science.gov (United States)

    Liss, Sandra; Stierwalt, Sabrina; Johnson, Kelsey; Patton, Dave; Kallivayalil, Nitya

    2015-10-01

    We request Spitzer Warm Mission IRAC Channel 1 & 2 imaging for a sample of 60 isolated dwarf galaxy pairs as a key component of a larger, multi-wavelength effort to understand the role low-mass mergers play in galaxy evolution. A systematic study of dwarf-dwarf mergers has never been done, and we wish to characterize the impact such interactions have on fueling star formation in the nearby universe. The Spitzer imaging proposed here will allow us to determine the extent to which the 3.6 and 4.5 mum bands are dominated by stellar light and investigate a) the extent to which interacting pairs show IR excess and b) whether the excess is related to the pair separation. Second, we will use this IR photometry to constrain the processes contributing to the observed color excess and scatter in each system. We will take advantage of the wealth of observations available in the Spitzer Heritage Archive for 'normal' non-interacting dwarfs by comparing the stellar populations of those dwarfs with the likely interacting dwarfs in our sample. Ultimately, we can combine the Spitzer imaging proposed here with our current, ongoing efforts to obtain groundbased optical photometry to model the star formation histories of these dwarfs and to help constrain the timescales and impact dwarf-dwarf mergers have on fueling star formation. The sensitivity and resolution offered by Spitzer are necessary to determine the dust properties of these interacting systems, and how these properties vary as a function of pair separation, mass ratio, and gas fraction.

  14. THE SPITZER EXTRAGALACTIC REPRESENTATIVE VOLUME SURVEY: THE ENVIRONMENTS OF HIGH-z SDSS QUASI-STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Falder, J. T.; Stevens, J. A.; Jarvis, Matt J.; Bonfield, D. G.; Lacy, M.; Farrah, D.; Oliver, S.; Surace, J.; Mauduit, J.-C.; Vaccari, M.; Marchetti, L.; Gonzalez-Solares, E.; Afonso, J.; Cava, A.; Seymour, N.

    2011-01-01

    This paper presents a study of the environments of SDSS quasi-stellar objects (QSOs) in the Spitzer Extragalactic Representative Volume Survey (SERVS). We concentrate on the high-redshift QSOs as these have not been studied in large numbers with data of this depth before. We use the IRAC 3.6-4.5 μm color of objects and ancillary r-band data to filter out as much foreground contamination as possible. This technique allows us to find a significant (>4σ) overdensity of galaxies around QSOs in a redshift bin centered on z ∼ 2.0 and an (>2σ) overdensity of galaxies around QSOs in a redshift bin centered on z ∼ 3.3. We compare our findings to the predictions of a semi-analytic galaxy formation model, based on the ΛCDM MILLENNIUM simulation, and find for both redshift bins that the model predictions match well the source density we have measured from the SERVS data.

  15. Dust Evolution in Low-Metallicity Environments: Bridging the Gap Between Local Universe and Primordial Galaxies

    Science.gov (United States)

    Galliano, Frederic; Barlow, Mike; Bendo, George; Boselli, Alessandro; Buat, Veronique; Chanial, Pierre; Clements, David; Davies, Jon; Eales, Steve; Gomez, Haley; Isaak, Kate; Madden, Suzanne; Page, Mathew; Perez Fournon, Ismael; Sauvage, Marc; Spinoglio, Luigi; Vaccari, Mattia; Wilson, Christine

    2008-03-01

    The local galaxy Science Advisory Group (SAG 2) in the Herschel/SPIRE consortium, has constructed a Guaranteed Time Key Program using the PACS and SPIRE insruments to obtain 60 to 550 micron photometry of a statistically significant sample of 51 dwarf galaxies in our local universe chosen to cover an impressivly broad range of physical conditions. Here we propose the necessary complementary IRAC, MIPS and IRS Spitzer observations which together with the Herschel GT database will provide a rich database to the community to perform the dust and gas analyses in unprecedented detail in low metallicity galaxies ranging between 1/50 to 1 solar metallicity. Due to their chemical youth, and to the extreme conditions they experience, low metallicity environments constitute a keystone to understand dust evolution. The primary goal of this combined Herschel and Spitzer project is to study in details the physical processes at play within the ISM of these galaxies. We will take advantage of the powerful combination of Spitzer, Herschel and ancillary data to decompose the SED into the emission coming from the main phases of the ISM. Such a decomposition will provide reliable estimate of the abundances of the principal dust species, as a fonction of metallicity and physical conditions. These results will be exploited to compare the various evolutionary processes affecting the dust content of galaxies. All these outstanding scientific advances will be the true legacy value that this project brings to the community.

  16. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    Science.gov (United States)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  17. The Effects of Galaxy Interactions on Star Formation

    Science.gov (United States)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  18. Direct HST Dust Lane Detection in Powerful Narrow-Line Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Edgar A.; Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Tadhunter, Clive N. [Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom); Lopez-Rodriguez, Enrique [NASA Ames Research Center, SOFIA Science Center, SOFIA/USRA, Mountain View, CA (United States); Department of Astronomy, University of Texas at Austin, Austin, TX (United States); McDonald Observatory, University of Texas at Austin, Austin, TX (United States); Packham, Chris, E-mail: e.ramirez@inaoep.mx [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); National Astronomical Observatory of Japan, Tokyo (Japan)

    2017-11-22

    We present the analysis of near-infrared Hubble Space Telescope imaging of 10 Fanaroff Riley II powerful radio galaxies at low redshift (0.03 < z < 0.11) optically classified as narrow-line radio galaxies. The photometric properties of the host galaxy are measured using galfit, and compared with those from the literature. Our high resolution near-infrared observations provide new and direct information on the central kpc-scale dust lanes in our sample that could be connected to the pc-scale torus structure. Moreover, analyzing the infrared spectrograph Spitzer spectra of our sample, we suggest properties of the dust size of the torus.

  19. SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.

  20. Early 2017 observations of TRAPPIST-1 with Spitzer

    Science.gov (United States)

    Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.

    2018-04-01

    The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.

  1. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    Science.gov (United States)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  2. Deficiency of normal galaxies among Markaryan galaxies

    International Nuclear Information System (INIS)

    Iyeveer, M.M.

    1986-01-01

    Comparison of the morphological types of Markaryan galaxies and other galaxies in the Uppsala catalog indicates a strong deficiency of normal ellipticals among the Markaryan galaxies, for which the fraction of type E galaxies is ≤ 1% against 10% among the remaining galaxies. Among the Markaryan galaxies, an excess of barred galaxies is observed - among the Markaryan galaxies with types Sa-Scd, approximately half or more have bars, whereas among the remaining galaxies of the same types bars are found in about 1/3

  3. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  4. NEAR-INFRARED SPECTRA OF GALACTIC STELLAR CLUSTERS DETECTED ON SPITZER/GLIMPSE IMAGES

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Ivanov, Valentin D.; Schuller, Frederic; Menten, Karl M.; Habing, Harm J.; Petr-Gotzens, Monika G.

    2009-01-01

    We present near-infrared spectroscopic observations of massive stars in three stellar clusters located in the direction of the inner Galaxy. One of them, the Quartet, is a new discovery while the other two were previously reported as candidate clusters identified on mid-infrared Spitzer images (GLIMPSE20 and GLIMPSE13). Using medium-resolution (R = 900-1320) H and K spectroscopy, we firmly establish the nature of the brightest stars in these clusters, yielding new identifications of an early WC and two Ofpe/WN9 stars in the Quartet and an early WC star in GLIMPSE20. We combine this information with the available photometric measurements from Two Micron All Sky Survey, to estimate cluster masses, ages, and distances. The presence of several massive stars places the Quartet and GLIMPSE20 among the small sample of known Galactic stellar clusters with masses of a few 10 3 M sun , and ages from 3 to 8 Myr. We estimate a distance of about 3.5 kpc for GLIMPSE20 and 6.0 kpc for Quartet. The large number of giant stars identified in GLIMPSE13 indicates that it is another massive (∼6500 M sun ) cluster, but older, with an age between 30 and 100 Myr, at a distance of about 3 kpc.

  5. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W. [Now at Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA. (United States); Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M., E-mail: ianws@bu.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  6. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Wen, Z. L.; Han, J. L.

    2011-01-01

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 ∼ + - m 3.6 μ m colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z f ≥ 2 and evolved passively. The g' - z' and B - m 3.6μm colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z f ∼ 2, indicating star formation in high-redshift BCGs.

  7. Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis

    Science.gov (United States)

    Arendt, Richard; Kashlinsky, A.; Moseley, S.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale ([greater, similar]30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the [approx]1-5 [mu]m mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low ([greater, similar]1 nW m-2 sr-1 at 3-5 [mu]m), and thus consistent with current [gamma]-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs

  8. COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER INFRARED ARRAY CAMERA IMAGES: DATA PROCESSING AND ANALYSIS

    International Nuclear Information System (INIS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale (∼>30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the ∼1-5 μm mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low (∼>1 nW m -2 sr -1 at 3-5 μm), and thus consistent with current γ-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs inhabited by the populations producing these

  9. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  10. Spitzer Observations of M33 & M83 and the Hot Star, Hii Region Connection

    Science.gov (United States)

    Rubin, R.; Simpson, J.; Colgan, S.; Dufour, R.; Citron, R.; Ray, K.; Erickson, E.; Haas, M.; Pauldrach, A.

    2007-05-01

    H II regions play a crucial role in the measurement of current interstellar abundances. They also serve as laboratories for atomic physics and provide fundamental data about heavy element abundances that serve to constrain models of galactic chemical evolution. We observed emission lines of [S IV] 10.5, H (7-6) 12.4, [Ne II] 12.8, [Ne III] 15.6, & [S III] 18.7 micron cospatially with the Spitzer Space Telescope using the Infrared Spectrograph (IRS) in short-high mode (SH). Here we concentrate on the galaxy M33 and compare the results with our earlier similar study of M83. In each of these substantially face-on spirals, we observed ˜25 H II regions, covering a full range of galactocentric radii (RG). For most of the M33 H II regions, we were able to measure the H (7-6) line while none were detectable in M83. This limited our M83 study to a determination of the Ne++/Ne+, /, and S3+/S++ abundance ratios vs. RG. Angular brackets denote fractional ionizations. As well as having the addition of fluxes for the H(7-6) line, the M33 H II regions are generally of much higher ionization than those in M83, resulting in larger Ne++/Ne+ and S3+/ S++ abundance ratios. For M33, in addition to what we derived for those nebulae in M83, we are also able to derive Ne/H, S/H and Ne/S vs. RG. Important advantages compared with prior optical studies are: 1) the IR lines have a weak and similar electron temperature (Te) dependence while optical lines vary exponentially with Te and 2) the IR lines suffer far less from interstellar extinction. Additionally, these data may be used as constraints on the ionizing spectral energy distribution for the stars exciting these nebulae by comparing the above ionic ratios with predictions using stellar atmosphere models from several different non-LTE model sets. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407

  11. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  12. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Ave., Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2012-01-10

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 {mu}m. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 {mu}m. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 {mu}m observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of {approx}3 pc. Assuming a velocity of 100 km s{sup -1} for the jet material gives an age of 3 Multiplication-Sign 10{sup 4} yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  13. SPITZER OBSERVATIONS OF BOW SHOCKS AND OUTFLOWS IN RCW 38

    International Nuclear Information System (INIS)

    Winston, E.; Wolk, S. J.; Bourke, T. L.; Spitzbart, B.; Megeath, S. T.; Gutermuth, R.

    2012-01-01

    We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at Infrared Array Camera (IRAC) wavelengths, the fifth is only visible at 24 μm. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS 2, have caused an outflow to the northeast and southwest of the central subcluster. The southern lobe of hot ionized gas is detected in X-rays; shocked gas and heated dust from the shock front are detected with Spitzer at 4.5 and 24 μm. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 and 5.8 μm observations of the cluster DBS2003-124, northeast of RCW 38, where 33 candidate young stellar objects (YSOs) are identified. One star associated with the cluster drives a parsec-scale jet. Two Herbig-Haro objects associated with the jet are visible at IRAC and Multiband Imaging Photometer for Spitzer (MIPS) wavelengths. The jet extends over a distance of ∼3 pc. Assuming a velocity of 100 km s –1 for the jet material gives an age of 3 × 10 4 yr, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

  14. A Spitzer Survey for Dust in Type IIn Supernovae

    Science.gov (United States)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  15. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    International Nuclear Information System (INIS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets (∼15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ∼1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  16. Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.

    2000-01-01

    Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors

  17. Superclusters and galaxy formation

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Saar, E.

    1979-01-01

    The spatial distribution of Galaxies and Galaxy congestions in the southern galactic hemisphere is studied. The rich galaxy congestions, containing many elliptic Galaxies and radiogalaxies, are linked with each other by chains of scanty congestions with moderate content of elliptic Galaxies and radiogalaxies. The flat formation, linking the density pikes and the intermediate chains, can reasonably be called supercongestion. In the central region of supercongestions there is a thin layer of Galaxies consisting of only spiral Galaxies. The neighbouring supercongestions touch each other, while the intersupercongestion space contains no Galaxy congestions and almost no Galaxies. It is shown that such a structure was, apparently, formed before the formation of Galaxies

  18. S0 galaxies in Formax

    DEFF Research Database (Denmark)

    Bedregal...[], A. G.; Aragón-Salamanca, A.; Merrifield, M. R.

    2006-01-01

    Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1......Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1...

  19. Spitzer Secondary Eclipses of HAT-P-13b

    Science.gov (United States)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  20. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.

    2008-09-01

    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archived MIPS observations of Phoebe reproduces Cassini results very accurately, thereby validating our method. For all targets, the geometric albedo is found to be low, probably below 10% and clearly below 15%. Irregular satellites are much darker than the large regular satellites. Their albedo is, however, quite similar to that of small bodies in the outer Solar System (such as cometary nuclei, Jupiter Trojans, or TNOs). This is consistent with color measurements as well as dynamical considerations which suggest a common origin of the said populations. There appear to be significant object-to-object albedo differences. Similar albedos found for some members of dynamical clusters support the idea that they may have originated in the breakup of a parent body. For three satellites, thermal data at two wavelengths are available, enabling us to constrain their thermal properties. Sub-solar temperatures are similar to that found from Cassini's Phoebe fly-by. This suggests a rather low thermal inertia, as expected for regolith-covered objects. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL under a contract with NASA. Support for this work was provided by NASA.

  1. NASA Telescopes Help Identify Most Distant Galaxy Cluster

    Science.gov (United States)

    2011-01-01

    WASHINGTON -- Astronomers have uncovered a burgeoning galactic metropolis, the most distant known in the early universe. This ancient collection of galaxies presumably grew into a modern galaxy cluster similar to the massive ones seen today. The developing cluster, named COSMOS-AzTEC3, was discovered and characterized by multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space telescopes, and the ground-based W.M. Keck Observatory and Japan's Subaru Telescope. "This exciting discovery showcases the exceptional science made possible through collaboration among NASA projects and our international partners," said Jon Morse, NASA's Astrophysics Division director at NASA Headquarters in Washington. Scientists refer to this growing lump of galaxies as a proto-cluster. COSMOS-AzTEC3 is the most distant massive proto-cluster known, and also one of the youngest, because it is being seen when the universe itself was young. The cluster is roughly 12.6 billion light-years away from Earth. Our universe is estimated to be 13.7 billion years old. Previously, more mature versions of these clusters had been spotted at 10 billion light-years away. The astronomers also found that this cluster is buzzing with extreme bursts of star formation and one enormous feeding black hole. "We think the starbursts and black holes are the seeds of the cluster," said Peter Capak of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "These seeds will eventually grow into a giant, central galaxy that will dominate the cluster -- a trait found in modern-day galaxy clusters." Capak is first author of a paper appearing in the Jan. 13 issue of the journal Nature. Most galaxies in our universe are bound together into clusters that dot the cosmic landscape like urban sprawls, usually centered around one old, monstrous galaxy containing a massive black hole. Astronomers thought that primitive versions of these clusters, still forming and clumping

  2. Recent SPIRITS discoveries of Infrared Transients and Variables with Spitzer/IRAC

    Science.gov (United States)

    Jencson, J. E.; Kasliwal, M. M.; Adams, S.; Cook, D.; Tinyanont, S.; Kwan, S.; Prince, T.; Lau, R. M.; Perley, D.; Masci, F.; Helou, G.; Armus, L.; Surace, J.; Dyk, S. D. Van; Cody, A.; Boyer, M. L.; Bond, H. E.; Monson, A.; Bally, J.; Khan, R.; Levesque, E.; Fox, O.; Williams, R.; Whitelock, P. A.; Mohamed, S.; Gehrz, R. D.; Amodeo, S.; Shenoy, D.; Carlon, R.; Cass, A.; Corgan, D.; Dykhoff, D.; Faella, J.; Gburek, T.; Smith, N.; Cantiello, M.; Langer, N.; Ofek, E.; Johansson, J.; Parthasarathy, M.; Hsiao, E.; Phillips, M.; Morrell, N.; Gonzalez, C.; Contreras, C.

    2018-04-01

    We report the discoveries of mid-infrared transients/strong variables found in the course of the Spitzer InfraRed Intensive Transients Survey (SPIRITS) using Spitzer Early Release Data (ATel #6644, #7929, #8688, #8940, #9434, #10171, #10172, #10488, #10903).

  3. Galaxies Coming of Age in Cosmic Blobs

    Science.gov (United States)

    2009-06-01

    The "coming of age" of galaxies and black holes has been pinpointed, thanks to new data from NASA's Chandra X-ray Observatory and other telescopes. This discovery helps resolve the true nature of gigantic blobs of gas observed around very young galaxies. About a decade ago, astronomers discovered immense reservoirs of hydrogen gas -- which they named "blobs" - while conducting surveys of young distant galaxies. The blobs are glowing brightly in optical light, but the source of immense energy required to power this glow and the nature of these objects were unclear. A long observation from Chandra has identified the source of this energy for the first time. The X-ray data show that a significant source of power within these colossal structures is from growing supermassive black holes partially obscured by dense layers of dust and gas. The fireworks of star formation in galaxies are also seen to play an important role, thanks to Spitzer Space Telescope and ground-based observations. "For ten years the secrets of the blobs had been buried from view, but now we've uncovered their power source," said James Geach of Durham University in the United Kingdom, who led the study. "Now we can settle some important arguments about what role they played in the original construction of galaxies and black holes." Galaxies are believed to form when gas flows inwards under the pull of gravity and cools by emitting radiation. This process should stop when the gas is heated by radiation and outflows from galaxies and their black holes. Blobs could be a sign of this first stage, or of the second. Based on the new data and theoretical arguments, Geach and his colleagues show that heating of gas by growing supermassive black holes and bursts of star formation, rather than cooling of gas, most likely powers the blobs. The implication is that blobs represent a stage when the galaxies and black holes are just starting to switch off their rapid growth because of these heating processes. This

  4. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    Science.gov (United States)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  5. Crashing galaxies, cosmic fireworks

    International Nuclear Information System (INIS)

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined

  6. DEEP JHKs AND SPITZER IMAGING OF FOUR ISOLATED MOLECULAR CLOUD CORES

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Mundy, Lee G.

    2009-01-01

    We present observations in eight wavebands from 1.25 to 24 μm of four dense cores: L204C-2, L1152, L1155C-2, and L1228. Our goals are to study the young stellar object (YSO) population of these cores and to measure the mid-infrared extinction law. With our combined near-infrared and Spitzer photometry, we classify each source in the cores as, among other things, background stars, galaxies, or embedded YSOs. L1152 contains three YSOs and L1228 has seven, but neither L204C-2 nor L1155C-2 appear to contain any YSOs. We estimate an upper limit of 7 x 10 -5 to 5 x 10 -4 L sun for any undiscovered YSOs in our cores. We also compute the line-of-sight extinction law toward each background star. These measurements are averaged spatially, to create χ 2 maps of the changes in the mid-infrared extinction law throughout our cores, and also in different ranges of extinction. From the χ 2 maps, we identify two small regions in L1152 and L1228 where the outflows in those cores appear to be destroying the larger dust grains, thus altering the extinction law in those regions. On average, however, our extinction law is relatively flat from 3.6 to 24 μm for all ranges of extinction and in all four cores. From 3.6 to 8 μm, this law is consistent with a dust model that includes larger dust grains than the diffuse interstellar medium, which suggests grain growth has occurred in our cores. At 24 μm, our extinction law is two to four times higher than predicted by dust models. However, it is similar to other empirical measurements.

  7. SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Massa, D. L.; Sewilo, M.

    2009-01-01

    We present a catalog of 1750 massive stars in the Large Magellanic Cloud (LMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 to 24 μm in the UBVIJHK s +IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant, and luminous blue variable (LBV) stars are among the brightest infrared point sources in the LMC, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ∼900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/L sun ≥ 4) and the rare, dusty progenitors of the new class of optical transients (e.g., SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.

  8. Spitzer view of massive star formation in the tidally stripped Magellanic Bridge

    International Nuclear Information System (INIS)

    Chen, C.-H. Rosie; Indebetouw, Remy; Muller, Erik; Kawamura, Akiko; Gordon, Karl D.; Meixner, Margaret; Seale, Jonathan P.; Shiao, Bernie; Sewiło, Marta; Whitney, Barbara A.; Meade, Marilyn R.; Fukui, Yasuo; Madden, Suzanne C.; Oliveira, Joana M.; Van Loon, Jacco Th.; Robitaille, Thomas P.

    2014-01-01

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ∼10 M ☉ , <<45 M ☉ found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ∼3 × higher probability than the Bridge for N(H I) >12 × 10 20 cm –2 , but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.

  9. Spitzer view of massive star formation in the tidally stripped Magellanic Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-H. Rosie; Indebetouw, Remy [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Muller, Erik; Kawamura, Akiko [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Gordon, Karl D.; Meixner, Margaret; Seale, Jonathan P.; Shiao, Bernie [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Sewiło, Marta [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Whitney, Barbara A.; Meade, Marilyn R. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602 (Japan); Madden, Suzanne C. [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Oliveira, Joana M.; Van Loon, Jacco Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Robitaille, Thomas P., E-mail: rchen@mpifr-bonn.mpg.de [Max Planck Institute for Astronomy, D-69117 Heidelberg (Germany)

    2014-04-20

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ∼10 M {sub ☉}, <<45 M {sub ☉} found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ∼3 × higher probability than the Bridge for N(H I) >12 × 10{sup 20} cm{sup –2}, but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.

  10. Spherical galaxies.

    Science.gov (United States)

    Telles, J. E.; de Souza, R. E.; Penereiro, J. C.

    1990-11-01

    RESUMEN. Presentamos fotometria fotografica de 8 objetos y espectrosco- pla para 3 galaxias, las cuales son buenos candidatos para galaxias esfericas. Los resultados fotometricos se presentan en la forma de iso- fotas y de perfiles radiales promedlo, de los cuales se derivan para- metros estructurales. Estas observaciones combinadas con parametros di- namicos obtenidos de observaciones espectrosc6picas, son consistentes con el plano fundamental derivado por Djorgovski y Davis (1987). ABSTRACT. We present photographic surface photometry for 8 objects and spectroscopy for 3 galaxies which are good candidates for spherical galaxies. Photometric results are presented in the form of isophotes and mean radial profiles from which we derived structural parameters. These observations combined with dynamical parameters obtained from spectroscopic observations are consistent with the fundamental plane derived by Djorgovski and Davis (1987). Keq wo : CALAXIES-ELLIPTICAL

  11. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Brassington, Nicola [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Da Cunha, Elisabete [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg (Germany); Jonsson, Patrik, E-mail: llanz@head.cfa.harvard.edu [Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250 (United States)

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  12. New View of Distant Galaxy Reveals Furious Star Formation

    Science.gov (United States)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  13. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  14. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  15. Unusual Slowly Rotating Brown Dwarfs Discovered through Precision Spitzer Photometry

    Science.gov (United States)

    Heinze, Aren; Metchev, S.

    2014-01-01

    Many brown dwarfs exhibit low-amplitude rotationally modulated variability due to photospheric inhomogeneities caused by condensate clouds in their atmospheres. The Spitzer Space Telescope 'Weather on Other Worlds' (WoW) project has monitored 44 brown dwarfs at unprecedented photometric precision from space. We present one of several important new results from WoW: the discovery of brown dwarfs with unexpectedly slow rotation periods. While most brown dwarfs have periods of 2-12 hours, we have identified two with well-constrained periods of 13±1 and >20 hours, respectively, and 2 others that show more tentative evidence of longer than 20-hour periods. By serving as almost non-rotating standards, these objects will allow more accurate calibration of spectroscopic measurements of brown dwarfs' projected rotational velocities. The existence of such slowly-rotating objects also constrains models of brown dwarf formation and angular momentum evolution.

  16. THE ORIGIN OF THE 24 μm EXCESS IN RED GALAXIES

    International Nuclear Information System (INIS)

    Brand, Kate; Moustakas, John; Armus, Lee; Desai, Vandana; Assef, Roberto J.; Kochanek, Christopher S.; Soifer, B. T.; Brown, Michael J. I.; Cool, Richard R.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric; Melbourne, Jason; Papovich, Casey J.

    2009-01-01

    Observations with the Spitzer Space Telescope have revealed a population of red sequence galaxies with a significant excess in their 24 μm emission compared to what is expected from an old stellar population. We identify ∼900 red galaxies with 0.15 ≤ z ≤ 0.3 from the AGN and Galaxy Evolution Survey (AGES) selected from the NOAO Deep Wide-Field Survey Booetes field. Using Spitzer MIPS, we classify 89 (∼10%) with 24 μm infrared excess (f 24 ≥ 0.3 mJy). We determine the prevalence of active galactic nucleus (AGN) and star-formation activity in all the AGES galaxies using optical line diagnostics and mid-IR color-color criteria. Using the IRAC color-color diagram from the Spitzer Shallow Survey, we find that 64% of the 24 μm excess red galaxies are likely to have strong polycyclic aromatic hydrocarbon (PAH) emission features in the 8 μm IRAC band. This fraction is significantly larger than the 5% of red galaxies with f 24 < 0.3 mJy that are estimated to have strong PAH emission, suggesting that the infrared emission is largely due to star-formation processes. Only 15% of the 24 μm excess red galaxies have optical line diagnostics characteristic of star formation (64% are classified as AGN and 21% are unclassifiable). The difference between the optical and infrared results suggests that both AGN and star-formation activity are occurring simultaneously in many of the 24 μm excess red galaxies. These results should serve as a warning to studies that exclusively use optical line diagnostics to determine the dominant emission mechanism in the infrared and other bands. We find that ∼40% of the 24 μm excess red galaxies are edge-on spiral galaxies with high optical extinctions. The remaining sources are likely to be red galaxies whose 24 μm emission comes from a combination of obscured AGN and star-formation activity.

  17. The Galactic Distribution of Planets via Spitzer Microlensing Parallax

    Science.gov (United States)

    Gould, Andrew; Yee, Jennifer; Carey, Sean; Shvartzvald, Yossi

    2018-05-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 200 events, including 3 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by >1.5 AU in projection. The proposed observations are part of a campaign that we have conducted with Spitzer since 2014. The planets expected to be identified in this campaign when combined with previous work will yield a first statistically significant measurement of the frequency of planets in the Galactic bulge versus the Galactic disk. As we have demonstrated in three previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the KMTNet observing strategy that covers >85 sq.deg t >0.4/hr cadence, 24/7 from 3 southern observatories and a alert system KMTNet is implementing for 2019. This same observing program also provides a unique probe of dark objects. It will yield an improved measurement of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  18. Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends

    Science.gov (United States)

    Bean, Jacob; Parmentier, Vivien; Mansfield, Megan; Cowan, Nicolas; Kempton, Eliza; Desert, Jean-Michel; Swain, Mark; Dang, Lisa; Bell, Taylor; Keating, Dylan; Zellem, Robert; Fortney, Jonathan; Line, Michael; Kreidberg, Laura; Stevenson, Kevin

    2018-05-01

    The constraints on energy transport in exoplanet atmospheres from phase curve observations is sure to be one of Spitzer's enduring legacies. However, with phase curves for 17 planets now observed we find that the previously observed trends are not coming into sharper focus. Instead, these trends in hot spot offset and day-night flux contrast vs. the fundamental planetary parameters expected to control the energy transport (e.g., irradiation and rotational period) are becoming more uncertain due to the recent discovery of outliers. At the same time, there is a growing understanding that a number of factors like magnetic fields, aerosols, and molecular chemistry could be confounding the search for these correlations. We propose a final phase curve program to advance our understanding of energy transport in transiting exoplanet atmospheres and to cement Spitzer's legacy on this topic. This program tackles the outstanding questions in this area with a comprehensive, two-pronged approach: (1) a survey of an additional 10 high signal-to-noise planets that span a broad parameter space and (2) a search for magnetic field-induced variability in the planet HAT-P-7b. The expanded survey will bring additional statistical power to the search for trends and will enable us to determine if the recently-detected outliers are indeed oddities or are instead actually representative of the intrinsic sample diversity. The variability search will test the hypothesis that the atmospheric dynamics of the partially ionized atmospheres of close-in planets are influenced by magnetic fields, which could explain the observed scatter around the existing trends. All observations will be performed at 4.5 microns, which is the consensus best channel for these measurements. The dataset from this program will provide vital context for JWST observations and will not be superseded until ARIEL flies more than a decade from now.

  19. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    Science.gov (United States)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  20. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  1. Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Dale, D. A.; Turner, J. A. [Department of Physics and Astronomy, University of Wyoming, Laramie WY (United States); Cook, D. O. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena CA (United States); Roussel, H. [Institut d’Astrophysique de Paris, Sorbonne Universités, Paris (France); Armus, L.; Helou, G. [Spitzer Science Center, California Institute of Technology, Pasadena, CA (United States); Bolatto, A. D. [Department of Astronomy, University of Maryland, College Park, MD (United States); Boquien, M. [Unidad de Astronomía, Universidad de Antofagasta, Antofagasta (Chile); Brown, M. J. I. [School of Physics and Astronomy, Monash University, Victoria 3800 (Australia); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst MA (United States); Looze, I. De [Sterrenkundig Observatorium, Universiteit Gent, Gent (Belgium); Galametz, M. [European Southern Observatory, Garching (Germany); Gordon, K. D. [Space Telescope Science Institute, Baltimore MD (United States); Groves, B. A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Jarrett, T. H. [Astronomy Department, University of Capetown, Rondebosch (South Africa); Herrera-Camus, R. [Max-Planck-Institut für Extraterrestrische Physik, Garching (Germany); Hinz, J. L. [Steward Observatory, University of Arizona, Tucson AZ (United States); Hunt, L. K. [INAF—Osservatorio Astrofisico di Arcetri, Firenze (Italy); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Murphy, E. J., E-mail: ddale@uwyo.edu [National Radio Astronomy Observatory, Charlottesville, VA (United States); and others

    2017-03-01

    We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel ) and SINGS ( Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX , SDSS, Pan-STARRS1, NOAO , 2MASS, Wide-Field Infrared Survey Explorer , Spitzer , Herschel , Planck , JCMT , and the VLA. Improvements of note include recalibrations of previously published SINGS BVR {sub C} I {sub C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.

  2. Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    International Nuclear Information System (INIS)

    Dale, D. A.; Turner, J. A.; Cook, D. O.; Roussel, H.; Armus, L.; Helou, G.; Bolatto, A. D.; Boquien, M.; Brown, M. J. I.; Calzetti, D.; Looze, I. De; Galametz, M.; Gordon, K. D.; Groves, B. A.; Jarrett, T. H.; Herrera-Camus, R.; Hinz, J. L.; Hunt, L. K.; Kennicutt, R. C.; Murphy, E. J.

    2017-01-01

    We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel ) and SINGS ( Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX , SDSS, Pan-STARRS1, NOAO , 2MASS, Wide-Field Infrared Survey Explorer , Spitzer , Herschel , Planck , JCMT , and the VLA. Improvements of note include recalibrations of previously published SINGS BVR C I C and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.

  3. The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification - III

    Science.gov (United States)

    Jones, O. C.; Woods, P. M.; Kemper, F.; Kraemer, K. E.; Sloan, G. C.; Srinivasan, S.; Oliveira, J. M.; van Loon, J. Th.; Boyer, M. L.; Sargent, B. A.; McDonald, I.; Meixner, M.; Zijlstra, A. A.; Ruffle, P. M. E.; Lagadec, E.; Pauly, T.; Sewiło, M.; Clayton, G. C.; Volk, K.

    2017-09-01

    The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1000 spectra. 197 of these targets were observed as part of the SAGE-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and H II regions, post-main-sequence low-mass stars: (post-)asymptotic giant branch stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the LMC, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely used catalogues of objects contain considerable contamination and others are missing sources in our sample.

  4. AN EXTREME STARBURST IN THE CORE OF A RICH GALAXY CLUSTER AT z = 1.7

    International Nuclear Information System (INIS)

    Webb, Tracy; Bonaventura, Nina; Delahaye, Anna; Noble, Allison; Yee, H. K. C.; DeGroot, Andrew; Wilson, Gillian; Foltz, Ryan; Muzzin, Adam; Chapman, Scott; Cooper, Mike; Lidman, Chris; Surace, Jason; Dunne, Loretta; Geach, James; Hayden, Brian; Hildebrandt, Hendrik; Huang, Jiasheng; Pope, Alexandra; Smith, Matthew W. L.

    2015-01-01

    We have discovered an optically rich galaxy cluster at z = 1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey, and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of N gal (500 kpc) = 30 ± 8 implies a total halo mass, within 500 kpc, of ∼3.8 ± 1.2 × 10 14 M ⊙ , comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada–France–Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope. The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with L IR = 6.2 ± 0.9 × 10 12 L ⊙ . The detection of polycyclic aromatic hydrocarbons at z = 1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of ∼860 ± 130 M ⊙ yr −1 . The optical source corresponding to the IR emission is likely a chain of >10 individual clumps arranged as “beads on a string” over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy (BCG) imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times

  5. AN EXTREME STARBURST IN THE CORE OF A RICH GALAXY CLUSTER AT z = 1.7

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Tracy; Bonaventura, Nina; Delahaye, Anna [Department of Physics, McGill University, 3600 rue University, Montréal, Québec, H3P 1T3 (Canada); Noble, Allison; Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); DeGroot, Andrew; Wilson, Gillian; Foltz, Ryan [Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Muzzin, Adam; Chapman, Scott [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Cooper, Mike [Centre for Galaxy Evolution, Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Surace, Jason [Spitzer Space Science Centre, California Institute of Technology, Pasadena, CA 91125 (United States); Dunne, Loretta [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Geach, James [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Hayden, Brian [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Hildebrandt, Hendrik [Argelander-Institute fur Astronomie, Auf dem Hugel 71, D-53121 Bonn (Germany); Huang, Jiasheng [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Pope, Alexandra [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 011003 (United States); Smith, Matthew W. L. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); and others

    2015-08-20

    We have discovered an optically rich galaxy cluster at z = 1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey, and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of N{sub gal} (500 kpc) = 30 ± 8 implies a total halo mass, within 500 kpc, of ∼3.8 ± 1.2 × 10{sup 14} M{sub ⊙}, comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada–France–Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope. The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with L{sub IR} = 6.2 ± 0.9 × 10{sup 12} L{sub ⊙}. The detection of polycyclic aromatic hydrocarbons at z = 1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of ∼860 ± 130 M{sub ⊙} yr{sup −1}. The optical source corresponding to the IR emission is likely a chain of >10 individual clumps arranged as “beads on a string” over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy (BCG) imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times.

  6. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    Science.gov (United States)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; hide

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  7. Multi-wavelength study of infrared galaxies

    International Nuclear Information System (INIS)

    Marcillac, Delphine

    2005-01-01

    This thesis deals with a panchromatic study of luminous infrared galaxies (LIRGs) detected at 15 microns by ISOCAM (camera aboard ISO) and at 24 microns by MIPS (camera aboard the recently launched Spitzer satellite). These galaxies are today considered to be the Rosetta Stone of galaxy evolution since they are found to be far more numerous at high redshift and it is thought that a large part of stars seen in the local universe are born in such phases. The first part of this thesis presents a new study dedicated to dust emission of distant LIRGs in the mid-infrared range. Their dust emission has been compared to those of a local sample of LIRGs in addition to the prediction of several spectral energy distributions (SEDs) built on data available in the local universe. It has been shown that distant and local LIRGs present similar mid infrared spectral energy distribution: similar PAH bumps are detected in both local and distant LIRGs, however distant LIRGs show evidence of a stronger silicate absorption at 10 microns associated silicate grains. It also shows that distant LIRG mid infrared emission can be used together with local SEDs in order to estimate the total infrared luminosity. The second part of this thesis is dedicated to the burst of star formation and to the recent star formation history of these galaxies, which is responsible for the dust emission. This study was done thanks to a combination of high resolution spectra (R=2000 in the rest frame) obtained at VLT/FORS2 and the stellar population synthesis models called GALAXEV (Bruzual and Charlot, 2003). It has been shown that the burst of star formation has a duration of about 0.1 Gyear. About 10 % of the stellar content is formed during this burst of star formation. (author) [fr

  8. A Lyman Break Galaxy Candidate at z ~ 9

    Science.gov (United States)

    Henry, Alaina L.; Malkan, Matthew A.; Colbert, James W.; Siana, Brian; Teplitz, Harry I.; McCarthy, Patrick

    2008-06-01

    We report the discovery of a z ~ 9 Lyman break galaxy candidate, selected from the NICMOS Parallel Imaging Survey as a J-dropout with J110 - H160 = 1.7. Spitzer/IRAC photometry reveals that the galaxy has a blue H160 - 3.6 μm color and a spectral break between 3.6 and 4.5 μm. We interpret this break as the Balmer break and derive a best-fit photometric redshift of z ~ 9. We use Monte Carlo simulations to test the significance of this photometric redshift, and we show that there is a 96% probability of z >= 7. We estimate that the lower limit to the comoving number density of such galaxies at z ~ 9 is phi > 3.8 × 10-6 Mpc-3. If the high redshift of this galaxy is confirmed, this will indicate that the luminous end of the rest-frame UV luminosity function has not evolved substantially from z ~ 9 to z ~ 3. Still, some small degeneracy remains between this z ~ 9 model and models at z ~ 2-3 deep optical imaging (reaching IAB ~ 29) can rule out the lower z models. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This work is also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposals 9484, 9865, 10226, and 10899.

  9. Young Stars in the Camelopardalis Dust and Molecular Clouds. VI. YSOs Verified by Spitzer and Akari Infrared Photometry

    Directory of Open Access Journals (Sweden)

    Straižys V.

    2010-06-01

    Full Text Available Using photometric data of infrared surveys, young stellar object (YSO status is verified for 141 objects selected in our previous papers in the Cassiopeia and Camelopardalis segment of the Milky Way bounded by Galactic coordinates (l, b = (132-158°, ±12°. The area includes the known star- forming regions in the emission nebulae W3, W4 and W5 and the massive YSO AFGL490. Spectral energy distribution (SED curves between 700 nm and 160 μm, constructed from the GSC 2, 2MASS, IRAS, MSX, Spitzer and AKARI data, are used to estimate the evolutionary stages of these stars. We confirm the YSO status for most of the objects. If all of the investigated objects were YSOs, 45% of them should belong to Class I, 41% to class II and 14% to Class III. However, SEDs of some of these objects can be affected by nearby extended infrared sources, like compact H II regions, infrared clusters or dusty galaxies.

  10. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    Science.gov (United States)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  11. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  12. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    International Nuclear Information System (INIS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors

  13. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  14. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    International Nuclear Information System (INIS)

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-01-01

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 (micro)m and 8.0 (micro)m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B ∼ 170 (micro)G in spot A, and B ∼ 270 (micro)G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to ∼ 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of ∼ 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies ∼> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets

  15. THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION

    International Nuclear Information System (INIS)

    Stark, Daniel P.; Ellis, Richard S.; Targett, Tom; Benson, Andrew; Bunker, Andrew; Bundy, Kevin; Lacy, Mark

    2009-01-01

    We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z ≅ 4 and z ≅ 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ∼ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z ∼> 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z ≅ 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 ∼ 11 M sun ) z ≅ 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 ∼ 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs at z ≅ 2.

  16. Polar ring galaxies in the Galaxy Zoo

    Science.gov (United States)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  17. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  18. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  19. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    Science.gov (United States)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  20. RADIAL DISTRIBUTION OF STARS, GAS AND DUST IN SINGS GALAXIES. I. SURFACE PHOTOMETRY AND MORPHOLOGY

    International Nuclear Information System (INIS)

    Munoz-Mateos, J. C.; Gil de Paz, A.; Zamorano, J.

    2009-01-01

    We present ultraviolet through far-infrared (FIR) surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes Galaxy Evolution Explorer UV data, optical images from Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and Sloan Digital Sky Survey, near-IR data from Two Micron All Sky Survey, and mid- and FIR images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several nonparametric indicators of galaxy morphology: the concentration index (C 42 ), the asymmetry (A), the Gini coefficient (G), and the normalized second-order moment of the brightest 20% of the galaxy's flux (M-bar 20 ). In this paper, the first of a series, we describe the technical aspects regarding the surface photometry, and present a basic analysis of the global and structural properties of the SINGS galaxies at different wavelengths. The homogeneity in the acquisition, reduction, and analysis of the results presented here makes these data ideal for multiple unanticipated studies on the radial distribution of the properties of stars, dust, and gas in galaxies. Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C 42 -A-G-M-bar 20 parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric, and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of polycyclic aromatic hydrocarbons at 8.0 μm and very hot dust at 24 μm). In an accompanying paper by Munoz-Mateos et al., we focus on the radial distribution of dust

  1. The galaxy major merger fraction to {z} 1

    Science.gov (United States)

    López-Sanjuan, C.; Balcells, M.; Pérez-González, P. G.; Barro, G.; García-Dabó, C. E.; Gallego, J.; Zamorano, J.

    2009-07-01

    Aims: The importance of disc-disc major mergers in galaxy evolution remains uncertain. We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z 1 for luminosity- and mass-limited samples. Methods: We select disc-disc merger remnants on the basis of morphological asymmetries/distortions, and address three main sources of systematic errors: (i) we explicitly apply morphological K-corrections; (ii) we measure asymmetries in galaxies artificially redshifted to zd = 1.0 to deal with loss of morphological information with redshift; and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results: We obtain morphological merger fractions (f_m^mph) below 0.06 up to z 1. Parameterizing the merger fraction evolution with redshift as f_m^mph(z) = f_m^mph(0) (1+z)^m, we find that m = 1.8 ± 0.5 for MB ≤ -20 galaxies, while m = 5.4 ± 0.4 for Mstar ≥ 1010 M⊙ galaxies. When we translate our merger fractions to merger rates (Re_m^mph), their evolution, parameterized as Re_m^mph(z) = Re_m^mph(0) (1+z)^n, is quite similar in both cases: n = 3.3 ± 0.8 for MB ≤ -20 galaxies, and n = 3.5 ± 0.4 for Mstar ≥ 1010 M⊙ galaxies. Conclusions: Our results imply that only 8% of today's Mstar ≥ 1010 M⊙ galaxies have undergone a disc-disc major merger since z 1. In addition, 21% of Mstar ≥ 1010 M⊙ galaxies at z 1 have undergone one of these mergers since z 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of Mstar ≥ 1010 M⊙ galaxies since z 1, with only 0.2 disc-disc major mergers per galaxy, but may be an important process at z > 1, with ˜1 merger per galaxy at 1 < z < 3.

  2. Formation of galaxies

    International Nuclear Information System (INIS)

    Szalay, A.S.

    1984-12-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities and the correlation function of galaxies points to the possibility that galaxies do not form uniformly everywhere. Scale invariant properties of the cluster-cluster correlations are discussed. Comparing the correlation functions in a dimensionless way, galaxies appear to be stronger clustered, in contrast with the comparison of the dimensional amplitudes of the correlation functions. Theoretical implications of several observations as Lyman-α clouds, correlations of faint galaxies are discussed. None of the present theories of galaxy formation can account for all facts in a natural way. 29 references

  3. Spitzer observations of the thermal emission from WASP-43b

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Stevenson, Kevin B.; Hardy, Ryan A.; Cubillos, Patricio E.; Hardin, Matthew; Bowman, Oliver; Nymeyer, Sarah [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Anderson, David R.; Hellier, Coel; Smith, Alexis M. S. [Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Cameron, Andrew Collier, E-mail: jasmina@physics.ucf.edu [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom)

    2014-02-01

    WASP-43b is one of the closest-orbiting hot Jupiters, with a semimajor axis of a = 0.01526 ± 0.00018 AU and a period of only 0.81 days. However, it orbits one of the coolest stars with a hot Jupiter (T {sub *} = 4520 ± 120 K), giving the planet a modest equilibrium temperature of T {sub eq} = 1440 ± 40 K, assuming zero Bond albedo and uniform planetary energy redistribution. The eclipse depths and brightness temperatures from our jointly fit model are 0.347% ± 0.013% and 1670 ± 23 K at 3.6 μm and 0.382% ± 0.015% and 1514 ± 25 K at 4.5 μm. The eclipse timings improved the estimate of the orbital period, P, by a factor of three (P = 0.81347436 ± 1.4 × 10{sup –7} days) and put an upper limit on the eccentricity (e=0.010{sub −0.007}{sup +0.010}). We use our Spitzer eclipse depths along with four previously reported ground-based photometric observations in the near-infrared to constrain the atmospheric properties of WASP-43b. The data rule out a strong thermal inversion in the dayside atmosphere of WASP-43b. Model atmospheres with no thermal inversions and fiducial oxygen-rich compositions are able to explain all the available data. However, a wide range of metallicities and C/O ratios can explain the data. The data suggest low day-night energy redistribution in the planet, consistent with previous studies, with a nominal upper limit of about 35% for the fraction of energy incident on the dayside that is redistributed to the nightside.

  4. A Spitzer Search for Activity in Dormant Comets

    Science.gov (United States)

    Mommert, Michael; Trilling, David; Hora, Joseph; Smith, Howard

    2018-05-01

    Dormant comets are inactive cometary nuclei hiding in the asteroid populations. Due to their cometary origin, it is possible that volatiles are still retained in their interiors. This hypothesis is supported by the case of near-Earth asteroid Don Quixote, which had been known as an asteroid for 30 yr before activity was discovered in this team's prior Spitzer observations. Interestingly, Don Quixote showed outgassing of CO or CO2, but no dust activity. This significant observation was repeated in 2017 with the same result, suggesting that Don Quixote is continuously outgassing - and still an active comet. Don Quixote's case suggests that other dormant comets might be outgassing with low dust production rates, concealing their activity to optical surveys. The implication of this scenario is that the volatile inventory of the asteroid populations might be significantly larger than currently assumed. We propose 48.8 hr of deep IRAC observations of eight dormant comets in search of faint activity in them. For each target, we will (1) measure (or provide upper limits on) gas and dust production rates from our IRAC CH1 and CH2 observations, (2) derive the diameters and albedos of five of our targets using asteroid thermal modeling, (3) measure the near-infrared spectral slope between CH1 and CH2 for three of our targets, and (4) obtain lightcurve observations of the nuclei of all of our targets. Our observations, which are combined with ground-based observations as part of a NASA-funded program, will provide important constraints on the volatile content of the asteroid population, as well as the origin, evolution, and physical properties of cometary nuclei.

  5. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Most, Hans P.; Cannon, John M.; Engstrom, Eric; Fliss, Palmer [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L., E-mail: hmost@macalester.edu, E-mail: jcannon@macalester.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-15

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (M{sub B} {approx}> -17), ongoing star formation (based on emission-line selection by the H{alpha} or [O III] lines), and are nearby (mean velocity = 3315 km s{sup -1} {approx_equal} 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  6. Clusters of Galaxies

    Science.gov (United States)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  7. Cosmology and galaxy formation

    International Nuclear Information System (INIS)

    Rees, M.J.

    1977-01-01

    Implications of the massive halos and ''missing mass'' for galaxy formation are addressed; it is suggested that this mass consists of ''Population III'' stars that formed before the galaxies did. 19 references

  8. Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification

    Science.gov (United States)

    Alger, M. J.; Banfield, J. K.; Ong, C. S.; Rudnick, L.; Wong, O. I.; Wolf, C.; Andernach, H.; Norris, R. P.; Shabala, S. S.

    2018-05-01

    We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data.

  9. VizieR Online Data Catalog: Clusters of galaxies in SDSS-III (Wen+, 2012)

    Science.gov (United States)

    Wen, Z. L.; Han, J. L.; Liu, F. S.

    2012-06-01

    Wen et al. (2009, Cat. J/ApJS/183/197) identified 39668 galaxy clusters from the SDSS DR6 by the discrimination of member galaxies of clusters using photometric redshifts of galaxies. Wen & Han (2011ApJ...734...68W) improved the method and successfully identified the high-redshift clusters from the deep fields of the Canada-France-Hawaii Telescope (CFHT) Wide survey, the CHFT Deep survey, the Cosmic Evolution Survey, and the Spitzer Wide-area InfraRed Extragalactic survey. Here, we follow and improve the algorithm to identify clusters from SDSS-III (SDSS Data Release 8; Aihara et al. 2011ApJS..193...29A, see Cat. II/306). (1 data file).

  10. Properties of DRGs, LBGs, and BzK Galaxies in the GOODS South Field

    Science.gov (United States)

    Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Santini, P.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.

    2007-12-01

    We use the GOODS-MUSIC catalog with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, and spectroscopic or accurate photometric redshifts to select samples of BM/BX/LBGs, DRGs, and BzK galaxies. We discuss the overlap and the limitations of these selection criteria, which can be overcome with a criterion based on physical parameters (age and star formation timescale). We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. We also find that LBGs and DRGs contribute almost equally to the global Stellar Mass Density (SMD) at z≥ 2 and in general that star forming galaxies form a substantial fraction of the universal SMD.

  11. Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Ibata, R.; Murdin, P.

    2000-11-01

    The Sagittarius DWARF GALAXY is the closest member of the Milky Way's entourage of satellite galaxies. Discovered by chance in 1994, its presence had previously been overlooked because it is largely hidden by the most crowded regions of our own Galaxy with which it is merging....

  12. Tidal interaction of galaxies

    International Nuclear Information System (INIS)

    Kozlov, N.N.; Syunyaev, R.A.; Ehneev, T.M.

    1974-01-01

    One of the hypotheses explaining the occurrence of anomalous details in interacting galaxies has been investigated. Pairs of galaxies with 'tails' oppositely directed or neighbouring galaxies with cofferdams 'bridges', as if connecting the galaxies, are called interacting galaxies. The hypothesis connects the origin of cofferdams and 'tails' of interacting galaxies with tidal effects ; the action of power gravitational forces in the intergalactic space. A source of such forces may be neighbouring stellar systems or invisible bodies, for instance, 'dead' quasars after a gravitational collapse. The effect of large masses of matter on the galaxy evolution has been investigated in the Institute of Applied Mathematics of the Academy of Sciences of the USSSR in 1971-1972 by numerical simulation of the process on a digital computer with the subsequent data transmission on a display. Different versions of a massive body flight relative to a galaxy disk are considered. Photographs of a display screen at different moments of time are presented. As a result of mathematical simulation of galaxies gravitational interactions effects are discovered which resemble real structures in photographs of galaxies. It seems to be premature to state that namely these mechanisms cause the formation of 'tails' and cofferdams between galaxies. However, even now it is clear that the gravitational interaction strongly affects the dynamics of the stellar system evolution. Further studies should ascertain a true scale of this effect and its genuine role in galaxy evolution

  13. Extended Schmidt law holds for faint dwarf irregular galaxies

    Science.gov (United States)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong

    2017-12-01

    Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations

  14. ALMA Observations of the Host Galaxy of GRB 090423 at z = 8.23: Deep Limits on Obscured Star Formation 630 Million Years after the Big Bang

    Science.gov (United States)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Tanvir, N. R.; Stanway, E. R.; Levan, A. J.; Levesque, E. M.; Davies, J. E.

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F ν(222 GHz) Space Telescope rest-frame ultraviolet (UV) observations is SFRUV ~ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z >~ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  15. Multiwavelength search and studies of active galaxies and quasars

    Science.gov (United States)

    Mickaelian, Areg M.

    2017-12-01

    The Byurakan Astrophysical Observatory (BAO) has always been one of the centres for surveys and studies of active galaxies. Here we review our search and studies of active galaxies during last 30 years using various wavelength ranges, as well as some recent related works. These projects since late 1980s were focused on multiwavelength search and studies of AGN and Starbursts (SB). 1103 blue stellar objects (BSOs) on the basis of their UV-excess were selected using Markarian Survey (First Byurakan Survey, FBS) plates and Markarian's criteria used for the galaxies. Among many blue stars, QSOs and Seyfert galaxies were found by follow-up observations. 1577 IRAS point sources were optically identified using FBS low-dispersion spectra and many AGN, SB and high-luminosity IR galaxies (LIRG/ULIRG) were discovered. 32 extremely high IR/opt flux ratio galaxies were studies with Spitzer. 2791 ROSAT FSC sources were optically identified using Hamburg Quasar Survey (HQS) low-dispersion spectra and many AGN were discovered by follow-up observations. Fine analysis of emission line spectra was carried out using spectral line decomposition software to establish true profiles and calculate physical parameters for the emitting regions, as well as to study the spectral variability of these objects. X-ray and radio selection criteria were used to find new AGN and variable objects for further studies. We have estimated AGN content of X-ray sources as 52.9%. We have also combined IRAS PSC and FSC catalogs and compiled its extragalactic sample, which allowed us to estimate AGN content among IR sources as 23.7%. Multiwavelength approach allowed revealing many new AGN and SB and obtaining a number of interesting relations using their observational characteristics and physical properties.

  16. Large Area Survey for z = 7 Galaxies in SDF and GOODS-N: Implications for Galaxy Formation and Cosmic Reionization

    Science.gov (United States)

    Ouchi, Masami; Mobasher, Bahram; Shimasaku, Kazuhiro; Ferguson, Henry C.; Fall, S. Michael; Ono, Yoshiaki; Kashikawa, Nobunari; Morokuma, Tomoki; Nakajima, Kimihiko; Okamura, Sadanori; Dickinson, Mark; Giavalisco, Mauro; Ohta, Kouji

    2009-12-01

    We present results of our large area survey for z'-band dropout galaxies at z = 7 in a 1568 arcmin2 sky area covering the SDF and GOODS-N fields. Combining our ultra-deep Subaru/Suprime-Cam z'- and y-band (λeff = 1 μm) images with legacy data of Subaru and Hubble Space Telescope, we have identified 22 bright z-dropout galaxies down to y = 26, one of which has a spectroscopic redshift of z = 6.96 determined from Lyα emission. The z = 7 luminosity function yields the best-fit Schechter parameters of phi* = 0.69+2.62 -0.55 × 10-3 Mpc-3, M*UV = -20.10 ± 0.76 mag, and α = -1.72 ± 0.65, and indicates a decrease from z = 6 at a >95% confidence level. This decrease is beyond the cosmic variance in our two fields, which is estimated to be a factor of lsim2. We have found that the cosmic star formation rate density drops from the peak at z = 2-3 to z = 7 roughly by a factor of ~10 but not larger than ~100. A comparison with the reionization models suggests either that the universe could not be totally ionized by only galaxies at z = 7, or more likely that properties of galaxies at z = 7 are different from those at low redshifts having, e.g., a larger escape fraction (gsim0.2), a lower metallicity, and/or a flatter initial mass function. Our SDF z-dropout galaxies appear to form 60 Mpc long filamentary structures, and the z = 6.96 galaxy with Lyα emission is located at the center of an overdense region consisting of four UV bright dropout candidates, which might suggest an existence of a well-developed ionized bubble at z = 7. Based on data obtained with the Subaru Telescope, the NASA/ESA Hubble Space Telescope (HST), and Spitzer Space Telescope. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. HST is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology under a

  17. Exploring the Dust Content of Galactic Winds with Herschel. II. Nearby Dwarf Galaxies*

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-03-01

    We present results from analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches ˜60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  18. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-06-01

    We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  19. Discovery of a Very Bright Strongly Lensed Galaxy Candidate at z ≈ 7.6

    Science.gov (United States)

    Bradley, L. D.; Bouwens, R. J.; Ford, H. C.; Illingworth, G. D.; Jee, M. J.; Benítez, N.; Broadhurst, T. J.; Franx, M.; Frye, B. L.; Infante, L.; Motta, V.; Rosati, P.; White, R. L.; Zheng, W.

    2008-05-01

    Using Hubble Space Telescope (HST) and Spitzer IRAC imaging, we report the discovery of a very bright strongly lensed Lyman break galaxy (LBG) candidate at z ~ 7.6 in the field of the massive galaxy cluster Abell 1689 (z = 0.18). The galaxy candidate, which we refer to as A1689-zD1, shows a strong z850 - J110 break of at least 2.2 mag and is completely undetected (= 25). A1689-zD1 has an observed (lensed) magnitude of 24.7 AB (8 σ) in the NICMOS H160 band and is ~1.3 mag brighter than the brightest known z850-dropout galaxy. When corrected for the cluster magnification of ~9.3 at z ~ 7.6, the candidate has an intrinsic magnitude of H160 = 27.1 AB, or about an L* galaxy at z ~ 7.6. The source-plane deprojection shows that the star formation is occurring in compact knots of size lesssim300 pc. The best-fit stellar population synthesis models yield a median redshift of 7.6, stellar masses (1.6-3.9) × 109 M⊙, stellar ages 45-320 Myr, star formation rates lesssim7.6 M⊙ yr-1, and low reddening with AV 7.0 galaxy candidate found to date. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  20. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    Science.gov (United States)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  1. COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. K.; Shupe, D. L.; Bock, J.; Bridge, C.; Cooray, A.; Lu, N.; Schulz, B.; Béthermin, M.; Aussel, H.; Elbaz, D.; Le Floc'h, E.; Riguccini, L.; Berta, S.; Lutz, D.; Magnelli, B.; Conley, A.; Franceschini, A.; Marsden, G.; Oliver, S. J.; Pozzi, F.

    2012-01-01

    The infrared (IR) emission of 'M * galaxies' (10 10.4 ≤ M star ≤ 10 11.0 M ☉ ) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single-disk galaxies in well-matched control samples to study the cosmic evolution of the star formation enhancement induced by galaxy-galaxy interaction. Both the mean IR spectral energy distribution and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star formation enhancement in S+S pairs to decrease with increasing redshift. Between z = 0 and z = 1, this decline of interaction-induced star formation enhancement occurs in parallel with the dramatic increase (by a factor of ∼10) of the sSFR of single SFGs, both of which can be explained by the higher gas fraction in higher-z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the intergalactic medium (IGM) in the dark matter halos hosting these pairs.

  2. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    Science.gov (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  3. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  4. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  5. Star Formation in the Central Regions of Galaxies

    Science.gov (United States)

    Tsai, Mengchun

    2015-08-01

    Seyfert galaxy with inner structure as an example. In this thesis, we present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1-0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 micron dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.

  6. Galaxy Mission Completes Four Star-Studded Years in Space

    Science.gov (United States)

    2007-01-01

    's launch, the spacecraft is performing magnificently. The mission results have been simply amazing as it helps us to unlock the secrets of galaxies, the building blocks of our universe,' says Kerry Erickson, GALEX project manager. M81 and Holberg IX are located approximately 12 million light-years away in the northern constellation Ursa Major. In addition to leading the GALEX observations of M81, Huchra and his team also took observations of the region with NASA's Spitzer and Hubble space telescopes. By combining all these views of M81, Huchra hopes to gain a better understanding about how M81 has developed into the spiral galaxy we see today. The California Institute of Technology in Pasadena, Calif., leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. Researchers from South Korea and France collaborated on this mission.

  7. Probing the Build-Up of Quiescent Galaxies at z>3

    Science.gov (United States)

    Finkelstein, Steven

    We propose to perform the most robust investigation to date into the evolution of massive quiescent and star-forming galaxies at z > 3, at a time when the universe was less than two billion years old. The build-up of quiescent galaxies in particular is poorly understood, primarily due to large Poisson and cosmic variance issues that have plagued previous studies that probed small volumes, leading to a disagreement on the quiescent fraction by a factor of >3 in the literature. Our proposed work is only now possible due to a new legacy survey led by our team: the Spitzer-HETDEX Exploratory Large Area Survey (SHELA), which is imaging a 23 deg^2 area of the sky at optical, and near, mid and far-infrared, and X-ray wavelengths. In particular, the wide area coverage of the Spitzer/IRAC data allows us to be sensitive to massive galaxies at very high redshifts, the Herschel data allows us to rule out lower-redshift counterparts, and the XMM-Newton data allows us to remove quasar contaminants from our sample. This survey covers a volume >14X that of the largest previous survey for quiescent galaxies at z=3.5, and ~6X larger than that of the largest previous survey for star-forming galaxies at z=4. All of these data exist in the region soon to be observed by the Hobby Eberly Telescope Dark Energy Experiment (HETDEX), which will provide high-precision measures of halo masses and local density at z~3. Using this exquisite multi-wavelength dataset, we will measure the abundance of massive quiescent galaxies at z ~ 3-5, and, combining with measures of the halo masses and environment, compare properties of quiescent galaxies to star-forming galaxies to investigate the physical cause behind the quenching. We will also investigate the onset of quenching in star-forming galaxies in two ways, first by studying the relation between star formation rate and stellar mass, to search for a break in the typically-linear relation at high masses, and second by constraining the feedback

  8. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  9. THE SPITZER SPECTROSCOPIC SURVEY OF THE SMALL MAGELLANIC CLOUD (S{sup 4}MC): PROBING THE PHYSICAL STATE OF POLYCYCLIC AROMATIC HYDROCARBONS IN A LOW-METALLICITY ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Karin M. [Max Planck Institut fuer Astronomie, D-69117 Heidelberg (Germany); Bolatto, Alberto D. [Department of Astronomy and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Bot, Caroline [Universite de Strasbourg, Observatoire Astronomique de Strasbourg, F-67000 Strasbourg (France); Draine, B. T. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ingalls, James G. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Israel, Frank P.; Tielens, A. G. G. M. [Sterrewacht Leiden, Leiden University, 2300 RA Leiden (Netherlands); Jackson, James M. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65213 (United States); Rubio, Monica [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Simon, Joshua D. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Smith, J. D. T. [Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43603 (United States); Stanimirovic, Snezana [Department of Astronomy, University of Wisconsin, Madison, Madison, WI 53703 (United States); Van Loon, Jacco Th., E-mail: sandstrom@mpia.de [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2012-01-01

    We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC (S{sup 4}MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 {mu}m features relative to the 11.3 {mu}m feature and weak 8.6 and 17.0 {mu}m features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted toward smaller PAHs cannot be the result of processing in the interstellar medium, but instead reflects differences in the formation of PAHs at low metallicity. Finally, we discuss the implications of our observations for our understanding of the PAH life-cycle in low-metallicity galaxies-namely that the observed deficit of PAHs may be a consequence of PAHs forming with smaller average sizes and therefore being more susceptible to destruction under typical interstellar medium conditions.

  10. Measuring the X-shaped structures in edge-on galaxies

    Science.gov (United States)

    Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.

    2017-11-01

    We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.

  11. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Dicken, Daniel [Institut de Astrophysique Spatiale, Paris (France); Storchi-Bergmann, Thaisa [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil)

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  12. A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS

    International Nuclear Information System (INIS)

    Beirão, P.; Armus, L.; Helou, G.; Appleton, P. N.; Smith, J.-D. T.; Croxall, K. V.; Murphy, E. J.; Dale, D. A.; Draine, B. T.; Aniano, G.; Wolfire, M. G.; Bolatto, A. D.; Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H.-W.; Brandl, B. R.; Crocker, A. F.; Hinz, J. L.; Kennicutt, R. C.

    2012-01-01

    NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 μm and [O I]63 μm lines and mid-infrared H 2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 μm+[O I]63 μm)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 μm PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 μm/PAH(5.5-14 μm) is found. PAHs in the ring are responsible for a factor of two more [C II]158 μm and [O I]63 μm emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G 0 ∼ 10 2.3 and n H ∼ 10 3.5 cm –3 in the ring. For these values of G 0 and n H , PDR models cannot reproduce the observed H 2 emission. Much of the H 2 emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks.

  13. Isolated galaxies, pairs, and groups of galaxies

    International Nuclear Information System (INIS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G 1 be any galaxy and G 2 be its nearest neighbor at a distance R 2 . If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G 1 is an isolated galaxy. Let the midpoint of G 1 and G 2 be O 2 and r 2 =R 2 2. For the volume V 2 , defined with the radius r 2 , the density D 2 less than k mu, the galaxy G 2 is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3)), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten

  14. Neon Abundances from a Spitzer/IRS Survey of Wolf-Rayet Stars

    NARCIS (Netherlands)

    Ignace, R.; Cassinelli, J.P.; Tracy, G.; Churchwell, E.B.; Lamers, H.J.G.L.M.

    2007-01-01

    We report on neon abundances derived from Spitzer high resolution spectral data of eight Wolf-Rayet (WR) stars using the forbidden line of [Ne III] 15.56 μm. Our targets include four WN stars of subtypes 4-7, and four WC stars of subtypes 4-7. We derive ion fraction abundances γ of Ne2+ for the

  15. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Harris, A. W.

    2006-01-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a

  16. SPITZER survey of dust grain processing in stable discs around binary post-AGB stars

    NARCIS (Netherlands)

    Gielen, C.; van Winckel, H.; Min, M.; Waters, L.B.F.M.; Lloyd Evans, T.

    2008-01-01

    Aims. We investigate the mineralogy and dust processing in the circumbinary discs of binary post-AGB stars using high-resolution TIMMI2 and SPITZER infrared spectra. Methods: We perform a full spectral fitting to the infrared spectra using the most recent opacities of amorphous and crystalline dust

  17. Bulk Densities of Binary Asteroids from the Warm Spitzer NEO Survey

    NARCIS (Netherlands)

    Kistler, John; Trilling, D. E.; Mueller, M.; Hora, J. L.; Harris, A. W.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Emery, J. P.; Fazo, G.; Mainzer, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2010-01-01

    The Warm Spitzer NEO survey, ExploreNEOs, will observe approximately 700 Near Earth Asteroids. Several of these objects are known to be binary asteroid systems. Binary systems are interesting due to the unique opportunity they present for determining the masses and densities of their constituent

  18. Random walks, Brownian motion, and interacting particle systems: a festschrift in honor of Frank Spitzer

    National Research Council Canada - National Science Library

    Durrett, Richard; Kesten, Harry; Spitzer, Frank

    1991-01-01

    ..., made the transparency used in the printing process. STUDENTS OF FRANK SPITZERSTUDENTS OF FRANK SPITZER 1957 J. W. Lamperti, On the asymptotic behavior of recurrent and almostrecurrent events. 1964 W. W. Whitman, Some strong laws for random walks and Brownian motion. 1965 J. C. Mineka, The existence and uniqueness of positive solutions to the Wien...

  19. Cold disks : Spitzer spectroscopy of disks around young stars with large gaps

    NARCIS (Netherlands)

    Blake, G. A.; Dullemond, C. P.; Merin, B.; Augereau, J. C.; Boogert, A. C. A.; Evans, N. J.; Geers, V. C.; Lahuis, F.; Kessler-Silacci, J. E.; Pontoppidan, K. M.; van Dishoeck, E. F.; Brown, J.M.

    2007-01-01

    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type and were uncovered as part of the Spitzer Space Telescope "Cores to Disks" Legacy Program Infrared Spectrograph (IRS) first-look survey of similar to 100 pre -

  20. SPITZER OBSERVATIONS OF OGLE-2015-BLG-1212 REVEAL A NEW PATH TOWARD BREAKING STRONG MICROLENS DEGENERACIES

    DEFF Research Database (Denmark)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.

    2016-01-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter s...

  1. Visible photometry of NEOs in support of a Warm Spitzer program

    Science.gov (United States)

    Trilling, David E.; Jones, Sarah; Penprase, Bryan; Emery, Josh; Harris, Alan; Spahr, Tim; Delbo, Marco

    2009-08-01

    Near Earth Objects (NEOs) may act as dynamical and compositional tracers of the history of near-Earth space. However, despite their scientific importance, key characteristics of the NEO population -- such as the size distribution, mix of albedos and mineralogies, and contributions from so-called dead or dormant comets -- remain largely unexplored; some 99% of all presently known NEOs are essentially uncharacterized. We have been awarded 500 hours of Warm Spitzer time to study some 700 NEOs. The Spitzer data will allow us to measure thermal fluxes and, in combination with optical data, derive albedos and diameters for a large fraction of all known NEOs. Remarkably, the primary uncertainty in our Spitzer results will derive from a lack of good optical photometry for our targets. Fortunately, our targets are generally bright, and obtaining good V band measurements of them requires only a modest amount of time on modest aperture telescopes. We propose here for 36 hours of SMARTS 1.3-m time or 54 hours of SMARTS 0.9-m time to obtain visible photometry of the 72 southern moderately bright ``B'' semester targets in our Warm Spitzer program. These program is ideal for queue/service observing because each observation requires only ~30 minutes and our targets are all over the sky.

  2. THE NATURE OF THE SECOND PARAMETER IN THE IRX-β RELATION FOR LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Grasha, Kathryn; Calzetti, Daniela; Andrews, Jennifer E.; Lee, Janice C.; Dale, Daniel A.

    2013-01-01

    We present an analysis of 98 galaxies of low-dust content, selected from the Spitzer Local Volume Legacy survey, aimed at examining the relation between the ultraviolet (UV) color and dust attenuation in normal star-forming galaxies. The IRX-β diagram relates the total dust attenuation in a galaxy, traced by the far-IR (FIR) to UV ratio, to the observed UV color, indicated by β. Previous research has indicated that while starburst galaxies exhibit a relatively tight IRX-β relation, normal star-forming galaxies do not, and have a much larger spread in the total-IR to far-UV (FUV) luminosity for a fixed UV color. We examine the role that the age of the stellar population plays as the ''second parameter'' responsible for the observed deviation and spread of star-forming galaxies from the starburst relation. We model the FUV to FIR spectral energy distribution of each galaxy according to two broad bins of star formation history (SFH): constant and instantaneous burst. We find clear trends between stellar population mean age estimators (extinction-corrected FUV/NIR, U – B, and EW(Hα)) and the UV color β; the trends are mostly driven by the galaxies best-described by instantaneous burst populations. We also find a significant correlation between β and the mean age directly determined from the best-fit instantaneous models. As already indicated by other authors, the UV attenuation in star-forming galaxies may not be recovered with the UV color alone and is highly influenced by the stellar population's mean age and SFH. Overall, the scatter in the IRX-β diagram is better correlated with β than with the perpendicular distance, d p

  3. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  4. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  5. Cosmological simulations of isotropic conduction in galaxy clusters

    International Nuclear Information System (INIS)

    Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.

    2013-01-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  6. The origin of galaxies

    International Nuclear Information System (INIS)

    Carr, B.J.

    1982-01-01

    The existence of galaxies implies that the early Universe must have contained initial density fluctuations. Overdense regions would then expand more slowly than the background and eventually - providing the fluctuations were not damped out first - they would stop expanding altogether and collapse to form bound objects. To understand how galaxies form we therefore need to know: how the initial density fluctuations arise, under what circumstances they evolve into bound objects, and how the bound objects develop the observed characteristics of galaxies. (author)

  7. Galaxy correlations and cosmology

    International Nuclear Information System (INIS)

    Fall, S.M.

    1979-01-01

    Correlations in the distribution of galaxies provide some important clues about the structure and evolution of the Universe on scales larger than individual galaxies. In recent years much effort has been devoted to estimating and interpreting galaxy correlations. This is a review of these efforts. It is meant to provide both an introductory overview of the subject and a critical assessment of some recent developments

  8. Neighbours of our galaxy

    International Nuclear Information System (INIS)

    Wielebinski, R.

    1982-01-01

    Large telescope and radio-astronomy bring remote regions of the universe into view. Radio waves are emitted by all celestial objects. Precise examination of our own galaxy, the Milky Way, is useful for investigating more remote objects. Some of the remote galaxies are noteworthy, because they emit up to 1,000 times more radio waves than their neighbours. Centaurus A is an example of such an active galaxy. (orig.)

  9. Featured Image: A Molecular Cloud Outside Our Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What do molecular clouds look like outside of our own galaxy? See for yourself in the images above and below of N55, a molecular cloud located in the Large Magellanic Cloud (LMC). In a recent study led by Naslim Neelamkodan (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists explore N55 to determine how its cloud properties differ from clouds within the Milky Way. The image above reveals the distribution of infrared-emitting gas and dust observed in three bands by the Spitzer Space Telescope. Overplotted in cyan are observations from the Atacama Submillimeter Telescope Experiment tracing the clumpy, warm molecular gas. Below, new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the sub-parsec-scale molecular clumps in greater detail, showing the correlation of massive clumps with Spitzer-identified young stellar objects (crosses). The study presented here indicates that this cloud in the LMC is the site of massive star formation, with properties similar to equivalent clouds in the Milky Way. To learn more about the authors findings, check out the article linked below.CitationNaslim N. et al 2018 ApJ 853 175. doi:10.3847/1538-4357/aaa5b0

  10. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  11. ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z = 3 to 0.5

    Science.gov (United States)

    Papovich, C.; Labbé, I.; Quadri, R.; Tilvi, V.; Behroozi, P.; Bell, E. F.; Glazebrook, K.; Spitler, L.; Straatman, C. M. S.; Tran, K.-V.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Ferguson, H. C.; Finkelstein, S. L.; Gawiser, E.; Inami, H.; Faber, S. M.; Kacprzak, G. G.; Kawinwanichakij, L.; Kocevski, D.; Koekemoer, A.; Koo, D. C.; Kurczynski, P.; Lotz, J. M.; Lu, Y.; Lucas, R. A.; McIntosh, D.; Mehrtens, N.; Mobasher, B.; Monson, A.; Morrison, G.; Nanayakkara, T.; Persson, S. E.; Salmon, B.; Simons, R.; Tomczak, A.; van Dokkum, P.; Weiner, B.; Willner, S. P.

    2015-04-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ⊙ (defined here to be MW-mass) and 1011 M ⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth

  12. ZFOURGE/CANDELS: ON THE EVOLUTION OF M* GALAXY PROGENITORS FROM z = 3 TO 0.5

    International Nuclear Information System (INIS)

    Papovich, C.; Quadri, R.; Tilvi, V.; Tran, K.-V.; Labbé, I.; Straatman, C. M. S.; Behroozi, P.; Ferguson, H. C.; Bell, E. F.; Glazebrook, K.; Kacprzak, G. G.; Spitler, L.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Inami, H.; Finkelstein, S. L.; Gawiser, E.; Faber, S. M.

    2015-01-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 10 10 M ☉ (defined here to be MW-mass) and 10 11 M ☉ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ∼ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ∼ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the

  13. SPITZER'S MID-INFRARED VIEW ON AN OUTER-GALAXY INFRARED DARK CLOUD CANDIDATE TOWARD NGC 7538

    NARCIS (Netherlands)

    Frieswijk, W. F.; Spaans, M.; Shipman, R. F.; Teyssier, D.; Carey, S. J.; Tielens, A. G. G. M.

    2008-01-01

    Infrared dark clouds (IRDCs) represent the earliest observed stages of clustered star formation, characterized by large column densities of cold and dense molecular material observed in silhouette against a bright background of mid-IR emission. Up to now, IRDCs were predominantly known toward the

  14. The formation of galaxies

    International Nuclear Information System (INIS)

    Gunn, J.E.

    1983-01-01

    The presently fashionable ideas for galaxy formation are reviewed briefly, and it is concluded that the standard isothermal heirarchy fits the available data best. A simple infall picture is presented which explains many of the observed properties of disk galaxies. (orig.)

  15. The galaxy builders

    Science.gov (United States)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  16. The Evolution of Galaxies

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan

    2007-01-01

    Roč. 17, - (2007), s. 34-40 ISSN 1220-5168. [Heliospere and galaxy. Sinaia, 03.05.2007-05.05.2007] R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : ISM structure * stars formation * evolution of galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  17. Dwarf Elliptical Galaxies

    Science.gov (United States)

    Caldwell, N.; Murdin, P.

    2000-11-01

    DWARF SPHEROIDAL GALAXIES were first identified by Shapley, who had noticed two very diffuse collections of stars on Harvard patrol plates. Although these systems had about as many stars as a GLOBULAR CLUSTER, they were of much lower density, and hence much larger radius, and thus were considered distinct galaxies. These two, named Fornax and Sculptor after the constellations in which they ap...

  18. Hubble's Menagerie of Galaxies

    Indian Academy of Sciences (India)

    Srimath

    astronom ers have even w ondered ifH ubble's galaxy typ es form an evolutionary sequence: does one type of galaxy evolve into another? 1. T he D iscovery of G alaxies. A stronom ers began to ponder these issues only after they discovered w hat ...

  19. Our galaxy is exploding

    International Nuclear Information System (INIS)

    Closets, Francois de.

    1977-01-01

    Improvements made in radioastronomy, and infrared, X and γ emission studies of the Galaxy have allowed to study the galactic nucleus, which is characterized by an intense activity. The most recent hypotheses made to explain this activity and replace it in the general context of the evolution of the galaxies are presented [fr

  20. Our aging galaxy

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1980-01-01

    The origin and evolution of the galaxies is described, according to the presently prevailing theories. The various types of galaxy and their structures are described, and also the formation of stars from the gas clouds. The spiral structure and the evolution of the disc are discussed. Finally the future development on the time scale of thousands of millions of years is briefly discussed. (JIW)

  1. The Seyfert galaxy population

    International Nuclear Information System (INIS)

    Meurs, E.

    1982-01-01

    A large sample of Seyfert galaxies, many of which are Markarian galaxies, has been observed with the WSRT in lambda 21 cm continuum radiation. The results are presented, and the number of radio detected Seyferts has now increased considerably. A number of accurate optical positions are given that were needed to identify radio sources with the Seyfert galaxies observed. Optical and radio luminosity functions of Seyfert galaxies are derived. The results are compared with such functions for other categories of objects that may be related to these galaxies. The discussions focus on the possible connections between normal galaxies, Seyferts, and optically selected quasars. Three investigations are reported on individual objects that are related to Seyfert galaxies. WSRT observations of four bright, optically selected quasars are presented. The identification of an X-ray discovered BL Lacertae object is discussed. Its radio emission is on a much lower level than for other BL Lacs. Perhaps it is a radio-quiet object in this class, suggesting a comparable difference in radio emission for BL Lacs as is known for quasars. Photo-electric photometry for the Seyfert galaxy NGC 1566 is reported. Besides a monitoring programme, multi-aperture photometry is described. (Auth.)

  2. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  3. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  4. Starbursts and IRAS galaxies

    International Nuclear Information System (INIS)

    Belfort, P.

    1987-01-01

    Several observational hints suggest that most of the IRAS galaxies are undergoing bursts of star formation. A simple photometric model of starburst galaxy was developed in order to check whether starburst events are really able to account for the far-infrared and optical properties of all the IRAS galaxies with HII region-like spectra. FIR activities up to a few hundred are actually easily reached with rather small bursts in red host-galaxies, and L IR /L B , EW(Hα) and U-B) versus (B-V) diagrams can be used to estimate burst strength and extinction. But more observations are required to conclude about the most extreme cases. Four typical infrared-selected IRAS galaxies are presented and their burst strength and extinction estimated

  5. MULTIPLE GALAXY COLLISIONS

    Science.gov (United States)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  6. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  7. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  8. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    Science.gov (United States)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  9. Are the brightest Lyman Alpha Emitters at z=5.7 primeval galaxies?

    Science.gov (United States)

    Lidman, Christopher; Jones, Heath; Meisenheimer, Klaus; Pompei, Emanuela; Tapken, Christian; Vanzi, Leonardo; Westra, Eduard

    2008-03-01

    Wide-field, narrow-band surveys have proven to be effective at finding very high redshift galaxies that emit brightly in the Lyman alpha line, the so-called Lyman alpha emitters (LAEs). It was through this technique that the most distant spectroscopically confirmed galaxy, a galaxy at z=6.96, was discovered. Considerable effort is currently being spent on discovering these galaxies at ever higher redshifts by extending this technique into the near-IR. In contrast to this effort, there has been relatively little work on understanding these galaxies. In particular, how do LAEs relate to other high redshift galaxies, such as the galaxies discovered through broad band drop out techniques, and, perhaps, more importantly, what role do LAEs play in re-ionising the universe. We recently discovered two extremely luminous LAEs at z=5.7. These LAEs are among the brightest LAEs ever discovered at this redshift. In a recent paper by Mao et al. the brightest LAEs are associated to the most massive halos. We propose to use the IRAC 3.6 micron imager on Spitzer to measure the rest-frame optical flux of the these LAEs. With additional data from the near-IR (rest-frame UV) and very deep optical spectra around the Lyman alpha line, we propose to make a detailed study of the spectral energy distribution from the Lyman alpha line to the rest frame optical of these exceptional LAEs. These data will enable us to estimate the age and mass of the stellar burst that produces the Lyman alpha line, to estimate the contribution from an older stellar population, if any, and to estimate the fraction of Lyman continuum photons that can escape the galaxy and are thus available to reionise the universe.

  10. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    Science.gov (United States)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; hide

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  11. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  12. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  13. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    Science.gov (United States)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  14. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    Science.gov (United States)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  15. THE STAR FORMATION HISTORIES OF z ∼ 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Gonzalez, A. H.; Melbourne, J.

    2012-01-01

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z ∼ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M * ) of two populations of Spitzer-selected ULIRGs that have extremely red R – [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 μm associated with stellar emission ( b ump DOGs ) , while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ( p ower-law DOGs ) . We measure M * by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M * values for SMGs, bump DOGs, and power-law DOGs are log(M * /M ☉ ) = 10.42 +0.42 –0.36 , 10.62 +0.36 –0.32 , and 10.71 +0.40 –0.34 , respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z ∼ 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z ∼ 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M * , a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  16. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexíco, Unidad Académica en Ensenada, Km 103 Carr. Tijuana-Ensenada, 22860 Ensenada BC (Mexico); Lada, Elizabeth A., E-mail: jybarra@astro.unam.mx [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

    2014-10-20

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.

  17. SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.; Lada, Elizabeth A.

    2014-01-01

    The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H 2 and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H 2 emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysis of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster

  18. Computation of the Spitzer function in stellarators and tokamaks with finite collisionality

    Directory of Open Access Journals (Sweden)

    Kernbichler Winfried

    2015-01-01

    Full Text Available The generalized Spitzer function, which determines the current drive efficiency in toka- maks and stellarators is modelled for finite plasma collisionality with help of the drift kinetic equation solver NEO-2 [1]. The effect of finite collisionality on the global ECCD efficiency in a tokamak is studied using results of the code NEO-2 as input to the ray tracing code TRAVIS [2]. As it is known [3], specific features of the generalized Spitzer function, which are absent in asymptotic (collisionless or highly collisional regimes result in current drive from a symmetric microwave spectrum with respect to parallel wave numbers. Due to this effect the direction of the current may become independent of the microwave beam launch angle in advanced ECCD scenarii (O2 and X3 where due to relatively low optical depth a significant amount of power is absorbed by trapped particles.

  19. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  20. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  1. VizieR Online Data Catalog: Dust properties of major-merger galaxy pairs (Domingue+, 2016)

    Science.gov (United States)

    Domingue, D. L.; Cao, C.; Xu, C. K.; Jarrett, T. H.; Ronca, J.; Hill, E.; Jacques, A.

    2018-04-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by Ks magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission (CIGALE) software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. (1 data file).

  2. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z ∼ 2 DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-01-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ∼3 x 10 8 M sun . In comparison to other dusty z ∼ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10 13 L sun versus 6 x 10 12 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ∼30 K) and lower inferred dust masses (3 x 10 8 M sun versus 3 x 10 9 M sun ). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ∼ 2 involves a submillimeter bright, cold-dust, and star

  3. Serendipitous discovery of an infrared bow shock near PSR J1549–4848 with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongxiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Morrell, Nidia [Las Campanas Observatory, Observatories of the Carnegie Institution of Washington, La Serena (Chile); Kaspi, Victoria M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada)

    2013-06-01

    We report on the discovery of an infrared cometary nebula around PSR J1549–4848 in our Spitzer survey of a few middle-aged radio pulsars. Following the discovery, multi-wavelength imaging and spectroscopic observations of the nebula were carried out. We detected the nebula in Spitzer Infrared Array Camera 8.0, Multiband Imaging Photometer for Spitzer 24 and 70 μm imaging, and in Spitzer IRS 7.5-14.4 μm spectroscopic observations, and also in the Wide-field Infrared Survey Explorer all-sky survey at 12 and 22 μm. These data were analyzed in detail, and we find that the nebula can be described with a standard bow shock shape, and that its spectrum contains polycyclic aromatic hydrocarbon and H{sub 2} emission features. However, it is not certain which object drives the nebula. We analyze the field stars and conclude that none of them can be the associated object because stars with a strong wind or mass ejection that usually produce bow shocks are much brighter than the field stars. The pulsar is approximately 15'' away from the region in which the associated object is expected to be located. In order to resolve the discrepancy, we suggest that a highly collimated wind could be emitted from the pulsar and produce the bow shock. X-ray imaging to detect the interaction of the wind with the ambient medium- and high-spatial resolution radio imaging to determine the proper motion of the pulsar should be carried out, which will help verify the association of the pulsar with the bow shock nebula.

  4. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  5. SPITZER IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Chen, Christine H.; Mittal, Tushar; Lisse, Carey M. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Rd., Mumbai 400005 (India); Watson, Dan [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Nesvold, Erika; Kuchner, Marc [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  6. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  7. VizieR Online Data Catalog: Deconvolved Spitzer images of 89 protostars (Velusamy+, 2014)

    Science.gov (United States)

    Velusamy, T.; Langer, W. D.; Thompson, T.

    2016-03-01

    The sample of Class 0 protostars, H2 jets, and outflow sour selected for HiRes deconvolution of Spitzer images are listed in Table1. The majority of our target protostellar objects were selected from "The Youngest Protostars" webpage hosted by the University of Kent (http://astro.kent.ac.uk/protostars/old/), which are based on the young Class 0 objects compiled by Froebrich 2005 (cat. J/ApJS/156/169). In addition to these objects, our sample includes some Herbig-Haro (HH) sources and a few well known jet outflow sources. Our sample also includes one high-mass protostar (IRAS20126+4104; cf. Caratti o Garatti et al., 2008A&A...485..137C) to demonstrate the use of HiRes for such sources. Our choice for target selection was primarily based on the availability of Spitzer images in IRAC and MIPS bands in the archives and the feasibility for reprocessing based on the published Spitzer images wherever available. (1 data file).

  8. Dwarf galaxies : Important clues to galaxy formation

    NARCIS (Netherlands)

    Tolstoy, E

    2003-01-01

    The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous

  9. THE SPITZER SPECTROSCOPIC SURVEY OF THE SMALL MAGELLANIC CLOUD (S4MC): PROBING THE PHYSICAL STATE OF POLYCYCLIC AROMATIC HYDROCARBONS IN A LOW-METALLICITY ENVIRONMENT

    International Nuclear Information System (INIS)

    Sandstrom, Karin M.; Bolatto, Alberto D.; Bot, Caroline; Draine, B. T.; Ingalls, James G.; Israel, Frank P.; Tielens, A. G. G. M.; Jackson, James M.; Leroy, Adam K.; Li, Aigen; Rubio, Mónica; Simon, Joshua D.; Smith, J. D. T.; Stanimirović, Snežana; Van Loon, Jacco Th.

    2012-01-01

    We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC (S 4 MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9 μm features relative to the 11.3 μm feature and weak 8.6 and 17.0 μm features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted toward smaller PAHs cannot be the result of processing in the interstellar medium, but instead reflects differences in the formation of PAHs at low metallicity. Finally, we discuss the implications of our observations for our understanding of the PAH life-cycle in low-metallicity galaxies—namely that the observed deficit of PAHs may be a consequence of PAHs forming with smaller average sizes and therefore being more susceptible to destruction under typical interstellar medium conditions.

  10. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Radburn-Smith, David [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dolphin, Andrew [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu [Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-03-10

    We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.

  11. VizieR Online Data Catalog: Herschel FIR spectra of GOALS galaxies (Diaz-Santos+, 2017)

    Science.gov (United States)

    Diaz-Santos, T.; Armus, L.; Charmandaris, V.; Lu, N.; Stierwalt, S.; Stacey, G.; Malhotra, S.; van der Werf, P. P.; Howell, J. H.; Privon, G. C.; Mazzarella, J. M.; Goldsmith, P. F.; Murphy, E. J.; Barcos-Munoz, L.; Linden, S. T.; Inami, H.; Larson, K. L.; Evans, A. S.; Appleton, P.; Iwasawa, K.; Lord, S.; Sanders, D. B.; Surace, J. A.

    2018-04-01

    We have obtained FIR spectroscopic observations for 200 luminous infrared galaxies (LIRG) systems from the Great Observatories All-Sky LIRG Survey (GOALS; Armus+ 2009PASP..121..559A) using the Integral Field Spectrometer (IFS) of the PACS instrument on board Herschel. Since some targets contain multiple components, there are 241 individual galaxies with available spectra in at least one emission line. Most of the data were collected as part of our OT1 and OT2 programs (OT1larmus1, OT2larmus1; P.I.: L. Armus), accounting for more than 200hr of observing time in total. Additional observations that are publicly available in the Herschel archive were included from various projects. The main programs from where these complementary data were gathered are KPGTesturm1 (P.I.: E. Sturm), KPOTpvanderw1 (PI: P. van der Werf), and OT1dweedman1 (P.I.: D. Weedman). The IFS on PACS is able to perform simultaneous spectroscopy in the 51-73 or 70-105um and the 102-210um ranges. In addition to the PACS/IFS spectra, we obtained observations of the [NII]205 emission line using the SPIRE FTS for 121 galaxies in the GOALS sample (Lu+ 2017, J/ApJS/230/1 ; OT1nlu1; P.I.: N. Lu). As part of the Spitzer GOALS legacy program, all galaxies observed with Herschel/PACS have available Spitzer/IRS low-resolution, R~60-120 (SL module: 5.2-14.5um; LL module: 14-38um), and medium-resolution, R~600 (SH module: 9.9-19.6um; LH module: 18.7-37.2um), slit spectroscopy. (3 data files).

  12. Superclusters and galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Einasto, J; Joeveer, M; Saar, E [Tartu Astrophysical Observatory, Toravere, Estonia (USSR)

    1980-01-03

    A study of the structure of superclusters in the Southern galactic hemisphere using Zwicky clusters as principal tracers of the large-scale structure of the Universe is reported. The data presented suggest that the formation of galaxies was a two stage process involving larger spatial dimensions than earlier workers have postulated. In the first stage proto-superclusters and big holes had to form from the non-dissipative dark matter while in the second hot gas, by cooling and settling down into the potential wells caused by dark matter, will form galaxies and clusters of galaxies.

  13. OPEN CLUSTERS IN THE MILKY WAY OUTER DISK: NEWLY DISCOVERED AND UNSTUDIED CLUSTERS IN THE SPITZER GLIMPSE-360, CYG-X, AND SMOG SURVEYS

    International Nuclear Information System (INIS)

    Zasowski, G.; Beaton, R. L.; Hamm, K. K.; Majewski, S. R.; Patterson, R. J.; Babler, B.; Churchwell, E.; Meade, M.; Whitney, B. A.; Benjamin, R. A.; Watson, C.

    2013-01-01

    Open stellar clusters are extremely valuable probes of Galactic structure, star formation, kinematics, and chemical abundance patterns. Near-infrared (NIR) data have enabled the detection of hundreds of clusters hidden from optical surveys, and mid-infrared (MIR) data are poised to offer an even clearer view into the most heavily obscured parts of the Milky Way. We use new MIR images from the Spitzer GLIMPSE-360, Cyg-X, and SMOG surveys to visually identify a large number of open cluster candidates in the outer disk of the Milky Way (65° < l < 265°). Using NIR color-magnitude diagrams, stellar isochrones, and stellar reddening estimates, we derive cluster parameters (metallicity, distance, reddening) for those objects without previous identification and/or parameters in the literature. In total, we present coordinates and sizes of 20 previously unknown open cluster candidates; for 7 of these we also present metallicity, distance, and reddening values. In addition, we provide the first estimates of these values for nine clusters that had been previously cataloged. We compare our cluster sizes and other derived parameters to those in the open cluster catalog of Dias et al. and find strong similarities except for a higher mean reddening for our objects, which signifies our increased detection sensitivity in regions of high extinction. The results of this cluster search and analysis demonstrate the ability of MIR imaging and photometry to augment significantly the current census of open clusters in the Galaxy

  14. A TWO-COMPONENT POWER LAW COVERING NEARLY FOUR ORDERS OF MAGNITUDE IN THE POWER SPECTRUM OF SPITZER FAR-INFRARED EMISSION FROM THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Block, David L.; Puerari, Ivanio; Elmegreen, Bruce G.; Bournaud, Frederic

    2010-01-01

    Power spectra of Large Magellanic Cloud (LMC) emission at 24, 70, and 160 μm observed with the Spitzer Space Telescope have a two-component power-law structure with a shallow slope of -1.6 at low wavenumber, k, and a steep slope of -2.9 at high k. The break occurs at k -1 ∼ 100-200 pc, which is interpreted as the line-of-sight thickness of the LMC disk. The slopes are slightly steeper for longer wavelengths, suggesting the cooler dust emission is smoother than the hot emission. The power spectrum (PS) covers ∼3.5 orders of magnitude, and the break in the slope is in the middle of this range on a logarithmic scale. Large-scale driving from galactic and extragalactic processes, including disk self-gravity, spiral waves, and bars, presumably causes the low-k structure in what is effectively a two-dimensional geometry. Small-scale driving from stellar processes and shocks causes the high-k structure in a three-dimensional geometry. This transition in dimensionality corresponds to the observed change in PS slope. A companion paper models the observed power law with a self-gravitating hydrodynamics simulation of a galaxy like the LMC.

  15. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    International Nuclear Information System (INIS)

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-01-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  16. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  17. The AKARI FU-HYU galaxy evolution program: first results from the GOODS-N field

    Science.gov (United States)

    Pearson, C. P.; Serjeant, S.; Negrello, M.; Takagi, T.; Jeong, W.-S.; Matsuhara, H.; Wada, T.; Oyabu, S.; Lee, H. M.; Im, M. S.

    2010-05-01

    The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands. We present the initial results for the FU-HYU survey in the GOODS-N field. We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 micron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produce a bimodal distribution where an excess at 11 microns preferentially selects moderate redshift star-forming galaxies. These powerful colour-colour diagnostics are further used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field showing that dusty starbursts can be selected of specific redshift ranges (z = 1.2-1.6) by mid-infrared drop-out techniques. The FU-HYU catalogue will be made publically available to the astronomical community.

  18. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-08-01

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescope optical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies based on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully–Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties.

  19. Cosmology and galaxy formation

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Gonzalez, E.M.

    1985-05-01

    The aim of the present series of lectures is to be unashamedly pedagogical and present, in simple terms, an overview of our current thinking about our universe and the way in which we believe galaxies have formed. (orig./WL)

  20. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  1. Interpretation of galaxy counts

    International Nuclear Information System (INIS)

    Tinsely, B.M.

    1980-01-01

    New models are presented for the interpretation of recent counts of galaxies to 24th magnitude, and predictions are shown to 28th magnitude for future comparison with data from the Space Telescope. The results supersede earlier, more schematic models by the author. Tyson and Jarvis found in their counts a ''local'' density enhancement at 17th magnitude, on comparison with the earlier models; the excess is no longer significant when a more realistic mixture of galaxy colors is used. Bruzual and Kron's conclusion that Kron's counts show evidence for evolution at faint magnitudes is confirmed, and it is predicted that some 23d magnitude galaxies have redshifts greater than unity. These may include spheroidal systems, elliptical galaxies, and the bulges of early-type spirals and S0's, seen during their primeval rapid star formation

  2. Automated galaxy surface photometry

    International Nuclear Information System (INIS)

    Cawson, M.G.M.; Kibblewhite, E.J.; Disney, M.J.; Phillipps, S.

    1987-01-01

    Two-dimensional surface photometry of a very large number of galaxies on a deep Schmidt plate has been obtained using the Automatic Plate Measuring System (APM). A method of photometric calibration, suitable for APM measurements, via pixel-by-pixel comparison with CCD frames of a number of the brighter galaxies is described and its advantages are discussed. The same method is used to demonstrate the consistency of measurement of the APM machine when used for surface photometry. (author)

  3. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD: HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    International Nuclear Information System (INIS)

    Oliveira, Isa; Van Dishoeck, Ewine F.; Lahuis, Fred; Pontoppidan, Klaus M.; MerIn, Bruno; Geers, Vincent C.; Joergensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 μm) spectra of a complete flux-limited sample (≥3 mJy at 8 μm) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and classified. Background stars (with slope consistent with a reddened stellar spectrum and silicate features in absorption), galaxies (with redshifted polycyclic aromatic hydrocarbon (PAH) features), and a planetary nebula (with high ionization lines) amount to 22% of contamination in this sample, leaving 115 true YSOs. Sources with rising spectra and ice absorption features, classified as embedded Stage I protostars, amount to 18% of the sample. The remaining 82% (94) of the disk sources are analyzed in terms of spectral energy distribution shapes, PAHs, and silicate features. The presence, strength, and shape of these silicate features are used to infer disk properties for these systems. About 8% of the disks have 30/13 μm flux ratios consistent with cold disks with inner holes or gaps, and 3% of the disks show PAH emission. Comparison with models indicates that dust grains in the surface of these disks have sizes of at least a few μm. The 20 μm silicate feature is sometimes seen in the absence of the 10 μm feature, which may be indicative of very small holes in these disks. No significant difference is found in the distribution of silicate feature shapes and strengths between sources in clusters and in the field. Moreover, the results in Serpens are compared with other well-studied samples: the c2d IRS sample distributed over five clouds and a large sample of disks in the Taurus star-forming region. The remarkably similar distributions of silicate feature characteristics in samples with different environment and median ages-if significant-imply that the dust population in the disk surface results from an equilibrium between dust growth and destructive collision processes

  4. A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS

    Energy Technology Data Exchange (ETDEWEB)

    Beirao, P.; Armus, L. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Helou, G. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. N. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Smith, J.-D. T.; Croxall, K. V. [Department of Physics and Astronomy, Mail Drop 111, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Murphy, E. J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Draine, B. T.; Aniano, G. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wolfire, M. G.; Bolatto, A. D. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H.-W. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Brandl, B. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Crocker, A. F. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hinz, J. L. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Kennicutt, R. C., E-mail: pedro@ipac.caltech.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2012-06-01

    NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [C II]158 {mu}m and [O I]63 {mu}m lines and mid-infrared H{sub 2} emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([C II]158 {mu}m+[O I]63 {mu}m)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 {mu}m PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [C II]158 {mu}m/PAH(5.5-14 {mu}m) is found. PAHs in the ring are responsible for a factor of two more [C II]158 {mu}m and [O I]63 {mu}m emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G{sub 0} {approx} 10{sup 2.3} and n{sub H} {approx} 10{sup 3.5} cm{sup -3} in the ring. For these values of G{sub 0} and n{sub H}, PDR models cannot reproduce the observed H{sub 2} emission. Much of the H{sub 2} emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks.

  5. Are the brightest Lyman Alpha Emitters at zD5.7 primeval galaxies?

    Science.gov (United States)

    Lidman, Christopher; Hayes, Matthew; Jones, Heath; Meisenheimer, Klaus; Tapken, Christian; Westra, Eduard

    2009-04-01

    Wide-field, narrow-band surveys have proven to be effective at finding very high redshift galaxies that emit brightly in the Lyman alpha line - the so-called Lyman alpha emitters (LAEs). It was through this technique that the most distant spectroscopically confirmed galaxy, a galaxy at zD6.96 (Iye et al. 2006), was discovered. Considerable effort is currently being spent on discovering these galaxies at ever higher redshifts by extending this technique into the near-IR. In contrast to this effort, there has been relatively little work on understanding these galaxies. In particular, how do LAEs relate to other high redshift galaxies, such as those discovered through drop out techniques, and, more importantly, what role LAEs play in re-ionising the universe, if any. We recently discovered two extremely luminous LAEs at zD5.7. These LAEs are among the brightest LAEs ever discovered at this redshift. In a recent paper by Mao et al. (2007), the brightest LAEs are associated to the most massive halos. One of these targets was successfully observed with the IRAC 3.6 micron imager on Spitzer during cycle 5. These data, when combined with constraints that we derive from our deep ground-based spectroscopic data, indicate that the bulk of the flux at 3.6 microns comes from a stellar population that is considserably older than the stars that dominate the flux in the UV. We propose to complete the project and image the second target. These data will enable us to estimate the age and mass of the stellar burst that produces the Lyman alpha line, to estimate the contribution from an older stellar population and to estimate the fraction of Lyman continuum photons that escape the galaxy and are thus available to re-ionise the universe.

  6. PASCHEN-α EMISSION IN THE GRAVITATIONALLY LENSED GALAXY SMM J163554.2+661225

    International Nuclear Information System (INIS)

    Papovich, Casey; Finkelstein, Steven L.; Rudnick, Gregory; Rigby, Jane R.; Willmer, Christopher N. A.; Egami, Eiichi; Rieke, Marcia; Smith, J.-D. T.

    2009-01-01

    We report the detection of the Paα emission line in the z = 2.515 galaxy SMM J163554.2+661225 using Spitzer spectroscopy. SMM J163554.2+661225 is a submillimeter-selected infrared-luminous galaxy maintaining a high star formation rate (SFR), with no evidence of an active galactic nucleus from optical or infrared spectroscopy, nor X-ray emission. This galaxy is lensed gravitationally by the cluster Abell 2218, making it accessible to Spitzer spectroscopy. We measure a line luminosity, L(Paα) = (2.05 ± 0.33) x 10 42 erg s -1 , corrected for gravitational lensing. Comparing the Hα and Paα luminosities, we derive a nebular extinction, A(V) = 3.6 ± 0.4 mag. The dust-corrected luminosity, L(Paα) = (2.57 ± 0.43) x 10 42 erg s -1 , corresponds to an ionization rate, Q 0 = (1.6 ± 0.3) x 10 55 γ s -1 . The instantaneous SFR is ψ = 171 ± 28 M sun yr -1 , assuming a Salpeter-like initial mass function from 0.1 to 100 M sun yr -1 . The total IR luminosity derived using 70, 450, and 850 μm data is L IR = (5-10) x 10 11 L sun , corrected for gravitational lensing. This corresponds to ψ = 90-180 M sun yr -1 , where the upper range is consistent with that derived from the Paα luminosity. While the L(8 μm)/L(Paα) ratio is consistent with the extrapolated relation observed in local galaxies and star-forming regions, the rest-frame 24 μm luminosity is significantly lower with respect to local galaxies of comparable Paα luminosity. Thus, SMM J163554.2+661225 arguably lacks a warmer dust component (T D ∼ 70 K), which is associated with deeply embedded star formation, and which contrasts with local galaxies with comparable SFRs. Rather, the starburst in SMM J163554.2+661225 is consistent with star-forming local galaxies with intrinsic luminosities, L IR ∼ 10 10 L sun , but 'scaled up' by a factor of ∼10-100.

  7. CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 < z < 3 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, A. J.; Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Johnson, B. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Elbaz, D., E-mail: abattist@astro.umass.edu [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu, CNRS, Université Paris Diderot, Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France)

    2015-02-20

    We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since there are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.

  8. Evolution of galaxies

    International Nuclear Information System (INIS)

    Palous, J.

    1987-01-01

    The proceedings contain 87 papers divided into 8 chapters. The chapter Bipolar outflows and star formations contains papers on optical and infrared observations of young bipolar outflow objects and the theory thereof, and on observations of cometary nebulae. The chapter Masers and early stellar evolution discusses molecular masers and star forming regions. The following chapter contains papers on initial mass function and star formation rates in galaxies. The chapter Clusters and star formation contains data on OB associations and open star clusters, their development and observations, CO and H 2 in our galaxy, the four vector model of radio emission and an atlas of the wavelength dependence of ultraviolet extinction in the Galaxy. The most voluminous is the chapter Evolution of galaxies. It contains papers on the theories of the physical and chemodynamic development of galaxies of different types, rotation research and rotation velocities of galaxies and their arms, and on mathematical and laboratory models of morphological development. Chapter seven contains papers dealing with active extragalactic objects, quasars and active galactic nuclei. The last chapter discusses cosmological models, the theory of the inflationary universe, and presents an interpretation of the central void and X-ray background. (M.D.). 299 figs., 48 tabs., 1651 refs

  9. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  10. PEARS Emission Line Galaxies

    Science.gov (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  11. The Milky Way galaxy

    International Nuclear Information System (INIS)

    Woerden, H. van; Allen, R.J.; Burton, W.B.

    1985-01-01

    IAU Symposium 106, held at the Kapteyn Institute in Groningen, presents an overview of all major aspects of galactic astronomy. The vast subject is covered in 20 authoritative review papers and 22 invited papers, each with discussion, plus 81 shorter contributions. The book opens with 4 reviews by historians of science, outlining the history of galactic research. Part 2 deals with (i) galactic rotation, (ii) the large-scale distributions of matter, of both old and young stellar populations, and of the atomic, molecular and high-energy components of the interstellar medium, (iii) small-scale structure in the gas, (iv) the galactic nucleus, (v) the high-velocity clouds. Part 3 discusses the dynamics of the local group of Galaxies and of the Milky Way-Magellanic clouds system, the dynamical and chemical evolution of the Galaxy and of its disk and halo components and the formation of the Galaxy. The controversial subject of spiral structure and star formation is analyzed in several extensive reviews and lively discussions, featuring both observational and theoretical developments. Results of extragalactic research are blended with studies of our Galaxy throughout the book, and there is a separate comparison between Andromeda and Milky Way Galaxies. The Symposium featured the first maps produced by IRAS, and results from most major telescopes in a variety of wavebands. Many review papers present material not published elsewhere. The book closes with a lecture on life in the Galaxy and with an imaginative symposium summary. (orig.)

  12. ALMA Observations of Gas-rich Galaxies in z ∼ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments

    Energy Technology Data Exchange (ETDEWEB)

    Noble, A. G.; McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Muzzin, A. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON MJ3 1P3 (Canada); Nantais, J. [Departamento de Ciencias Físicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes 7591538, Santiago, Región Metropolitana (Chile); Rudnick, G. [The University of Kansas, Department of Physics and Astronomy, 1251 Wescoe Hall Drive, Lawrence, KS 66045 (United States); Van Kampen, E.; Manilla-Robles, A. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Webb, T. M. A.; Delahaye, A. [Department of Physics, McGill University, 3600 rue University, Montréal, QC H3A 2T8 (Canada); Wilson, G.; DeGroot, A.; Foltz, R. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Boone, K.; Hayden, B.; Perlmutter, S. [Department of Physics, University of California Berkeley, 366 LeConte Hall, MC 7300, Berkeley, CA 94720-7300 (United States); Cooper, M. C. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Demarco, R. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Región del Biobío (Chile); Lidman, C., E-mail: noble@mit.edu [Australian Astronomical Observatory, 105 Delhi Road, North Ryde, NSW 2113 (Australia)

    2017-06-20

    We present ALMA CO (2–1) detections in 11 gas-rich cluster galaxies at z ∼ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5 σ detections of the CO (2–1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ∼ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5–2 × 10{sup 11} M {sub ☉} in these objects, with high gas fractions ( f {sub gas}) and long depletion timescales ( τ ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ∼4 σ , but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.

  13. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  14. INTERACTIONS OF GALAXIES IN THE GALAXY CLUSTER ENVIRONMENT

    International Nuclear Information System (INIS)

    Park, Changbom; Hwang, Ho Seong

    2009-01-01

    We study the dependence of galaxy properties on the clustercentric radius and the environment attributed to the nearest neighbor galaxy using the Sloan Digital Sky Survey galaxies associated with the Abell galaxy clusters. We find that there exists a characteristic scale where the properties of galaxies suddenly start to depend on the clustercentric radius at fixed neighbor environment. The characteristic scale is 1-3 times the cluster virial radius depending on galaxy luminosity. Existence of the characteristic scale means that the local galaxy number density is not directly responsible for the morphology-density relation in clusters because the local density varies smoothly with the clustercentric radius and has no discontinuity in general. What is really working in clusters is the morphology-clustercentric radius-neighbor environment relation, where the neighbor environment means both neighbor morphology and the local mass density attributed to the neighbor. The morphology-density relation appears working only because of the statistical correlation between the nearest neighbor distance and the local galaxy number density. We find strong evidence that the hydrodynamic interactions with nearby early-type galaxies is the main drive to quenching star formation activity of late-type galaxies in clusters. The hot cluster gas seems to play at most a minor role down to one tenth of the cluster virial radius. We also find that the viable mechanisms which can account for the clustercentric radius dependence of the structural and internal kinematics parameters are harassment and interaction of galaxies with the cluster potential. The morphology transformation of the late-type galaxies in clusters seems to have taken place through both galaxy-galaxy hydrodynamic interactions and galaxy-cluster/galaxy-galaxy gravitational interactions.

  15. INTERACTIONS OF GALAXIES IN THE GALAXY CLUSTER ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Changbom; Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)], E-mail: cbp@kias.re.kr, E-mail: hshwang@kias.re.kr

    2009-07-10

    We study the dependence of galaxy properties on the clustercentric radius and the environment attributed to the nearest neighbor galaxy using the Sloan Digital Sky Survey galaxies associated with the Abell galaxy clusters. We find that there exists a characteristic scale where the properties of galaxies suddenly start to depend on the clustercentric radius at fixed neighbor environment. The characteristic scale is 1-3 times the cluster virial radius depending on galaxy luminosity. Existence of the characteristic scale means that the local galaxy number density is not directly responsible for the morphology-density relation in clusters because the local density varies smoothly with the clustercentric radius and has no discontinuity in general. What is really working in clusters is the morphology-clustercentric radius-neighbor environment relation, where the neighbor environment means both neighbor morphology and the local mass density attributed to the neighbor. The morphology-density relation appears working only because of the statistical correlation between the nearest neighbor distance and the local galaxy number density. We find strong evidence that the hydrodynamic interactions with nearby early-type galaxies is the main drive to quenching star formation activity of late-type galaxies in clusters. The hot cluster gas seems to play at most a minor role down to one tenth of the cluster virial radius. We also find that the viable mechanisms which can account for the clustercentric radius dependence of the structural and internal kinematics parameters are harassment and interaction of galaxies with the cluster potential. The morphology transformation of the late-type galaxies in clusters seems to have taken place through both galaxy-galaxy hydrodynamic interactions and galaxy-cluster/galaxy-galaxy gravitational interactions.

  16. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  17. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE

    Energy Technology Data Exchange (ETDEWEB)

    Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Spitler, Lee R. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Allen, Rebecca; Glazebrook, Karl; Kacprzak, Glenn G. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Altieri, Bruno [European Space Astronomy Centre (ESAC)/ESA, Villanueva de la Cañada, 28691, Madrid (Spain); Brammer, Gabriel B. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago (Chile); Dickinson, Mark; Inami, Hanae [National Optical Astronomy Observatory, Tucson, AZ (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Kawinwanichakij, Lalit; Mehrtens, Nicola; Papovich, Casey [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andy; Murphy, David; Persson, S. Eric; Quadri, Ryan, E-mail: straatman@strw.leidenuniv.nl [Carnegie Observatories, Pasadena, CA 91101 (United States); and others

    2014-03-01

    We report the likely identification of a substantial population of massive M ∼ 10{sup 11} M {sub ☉} galaxies at z ∼ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10{sup –11} yr{sup –1}. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ∼ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10{sup –5} Mpc{sup –3} to a limit of log{sub 10} M/M {sub ☉} ≥ 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (∼35%) of z ∼ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 10{sup 11} M {sub ☉}, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M {sub ☉} yr{sup –1}, far exceeding that of similarly abundant UV-bright galaxies at z ≥ 4. This suggests that most of the star formation in the progenitors of quiescent z ∼ 4 galaxies was obscured by dust.

  18. H1 in RSA galaxies

    Science.gov (United States)

    Richter, OTTO-G.

    1993-01-01

    The original Revised Shapley-Ames (RSA) galaxy sample of almost 1300 galaxies has been augmented with further bright galaxies from the RSA appendix as well as newer galaxy catalogs. A complete and homogeneous, strictly magnitude-limited all-sky sample of 2345 galaxies brighter than 13.4 in apparent blue magnitude was formed. New 21 cm H1 line observations for more than 600 RSA galaxies have been combined with all previously available H1 data from the literature. This new extentise data act allows detailed tests of widely accepted 'standard' reduction and analysis techniques.

  19. Statistical measures of galaxy clustering

    International Nuclear Information System (INIS)

    Porter, D.H.

    1988-01-01

    Consideration is given to the large-scale distribution of galaxies and ways in which this distribution may be statistically measured. Galaxy clustering is hierarchical in nature, so that the positions of clusters of galaxies are themselves spatially clustered. A simple identification of groups of galaxies would be an inadequate description of the true richness of galaxy clustering. Current observations of the large-scale structure of the universe and modern theories of cosmology may be studied with a statistical description of the spatial and velocity distributions of galaxies. 8 refs

  20. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Scott, Douglas; Magnelli, Benjamin; Popesso, Paola [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741, Garching (Germany); Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Dannerbauer, Helmut [Universitaet Wien, Institut fuer Astrophysik, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dickinson, Mark; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  1. Spitzer deep and wide legacy mid- and far-infrared number counts and lower limits of cosmic infrared background

    Science.gov (United States)

    Béthermin, M.; Dole, H.; Beelen, A.; Aussel, H.

    2010-03-01

    Aims: We aim to place stronger lower limits on the cosmic infrared background (CIB) brightness at 24 μm, 70 μm and 160 μm and measure the extragalactic number counts at these wavelengths in a homogeneous way from various surveys. Methods: Using Spitzer legacy data over 53.6 deg2 of various depths, we build catalogs with the same extraction method at each wavelength. Completeness and photometric accuracy are estimated with Monte-Carlo simulations. Number count uncertainties are estimated with a counts-in-cells moment method to take galaxy clustering into account. Furthermore, we use a stacking analysis to estimate number counts of sources not detected at 70 μm and 160 μm. This method is validated by simulations. The integration of the number counts gives new CIB lower limits. Results: Number counts reach 35 μJy, 3.5 mJy and 40 mJy at 24 μm, 70 μm, and 160 μm, respectively. We reach deeper flux densities of 0.38 mJy at 70, and 3.1 at 160 μm with a stacking analysis. We confirm the number count turnover at 24 μm and 70 μm, and observe it for the first time at 160 μm at about 20 mJy, together with a power-law behavior below 10 mJy. These mid- and far-infrared counts: 1) are homogeneously built by combining fields of different depths and sizes, providing a legacy over about three orders of magnitude in flux density; 2) are the deepest to date at 70 μm and 160 μm; 3) agree with previously published results in the common measured flux density range; 4) globally agree with the Lagache et al. (2004) model, except at 160 μm, where the model slightly overestimates the counts around 20 and 200 mJy. Conclusions: These counts are integrated to estimate new CIB firm lower limits of 2.29-0.09+0.09 nW m-2 sr-1, 5.4-0.4+0.4 nW m-2 sr-1, and 8.9-1.1+1.1 nW m-2 sr-1 at 24 μm, 70 μm, and 160 μm, respectively, and extrapolated to give new estimates of the CIB due to galaxies of 2.86-0.16+0.19 nW m-2 sr-1, 6.6-0.6+0.7 nW m-2 sr-1, and 14.6-2.9+7.1 nW m-2 sr-1

  2. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Justtanont, Kay [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Glasse, Alistair [UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2017-05-20

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  3. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); Cao, Chen [School of Space Science and Physics, Shandong University, Weihai, Weihai, Shandong 264209 (China); Xu, C. Kevin [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Jarrett, Thomas H. [University of Cape Town, Private Bag X3, Rondebosch 7701, Republic of South Africa (South Africa)

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K {sub s} magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  4. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    International Nuclear Information System (INIS)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.

    2016-01-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  5. DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF Hα AND INFRARED TRACERS

    International Nuclear Information System (INIS)

    Kennicutt, Robert C.; Hao, C.-N.; Johnson, Benjamin D.; Calzetti, Daniela; Moustakas, John; Dale, Daniel A.; Bendo, George; Engelbracht, Charles W.; Lee, Janice C.

    2009-01-01

    We combine Hα emission-line and infrared (IR) continuum measurements of two samples of nearby galaxies to derive dust attenuation-corrected star formation rates (SFRs). We use a simple energy balance based method that has been applied previously to H II regions in the Spitzer Infrared Nearby Galaxies Survey, and extend the methodology to integrated measurements of galaxies. We find that our composite Hα + IR based SFRs are in excellent agreement with attenuation-corrected SFRs derived from integrated spectrophotometry, over the full range of SFRs (0.01-80 M sun yr -1 ) and attenuations (0-2.5 mag) studied. We find that the combination of Hα and total IR luminosities provides the most robust SFR measurements, but combinations of Hα measurements with monochromatic luminosities at 24 μm and 8 μm perform nearly as well. The calibrations differ significantly from those obtained for H II regions, with the difference attributable to a more evolved population of stars heating the dust. Our results are consistent with a significant component of diffuse dust (the 'IR cirrus' component) that is heated by a non-star-forming population. The same methodology can be applied to [O II]λ3727 emission-line measurements, and the radio continuum fluxes of galaxies can be applied in place of IR fluxes when the latter are not available. We assess the precision and systematic reliability of all of these composite methods.

  6. SPITZER TRANSITS OF THE SUPER-EARTH GJ1214b AND IMPLICATIONS FOR ITS ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Fraine, Jonathan D.; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gillon, Michaeel; Jehin, Emmanueel [Institute d' Astrophysique et de Geophysique, Universite de Liege, Liege (Belgium); Demory, Brice-Olivier; Benneke, Bjoern; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Desert, Jean-Michel, E-mail: jfraine@astro.umd.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2013-03-10

    We observed the transiting super-Earth exoplanet GJ1214b using warm Spitzer at 4.5 {mu}m wavelength during a 20 day quasi-continuous sequence in 2011 May. The goals of our long observation were to accurately define the infrared transit radius of this nearby super-Earth, to search for the secondary eclipse, and to search for other transiting planets in the habitable zone of GJ1214. We here report results from the transit monitoring of GJ1214b, including a reanalysis of previous transit observations by Desert et al. In total, we analyze 14 transits of GJ1214b at 4.5 {mu}m, 3 transits at 3.6 {mu}m, and 7 new ground-based transits in the I+z band. Our new Spitzer data by themselves eliminate cloudless solar composition atmospheres for GJ1214b, and methane-rich models from Howe and Burrows. Using our new Spitzer measurements to anchor the observed transit radii of GJ1214b at long wavelengths, and adding new measurements in I+z, we evaluate models from Benneke and Seager and Howe and Burrows using a {chi}{sup 2} analysis. We find that the best-fit model exhibits an increase in transit radius at short wavelengths due to Rayleigh scattering. Pure water atmospheres are also possible. However, a flat line (no atmosphere detected) remains among the best of the statistically acceptable models, and better than pure water atmospheres. We explore the effect of systematic differences among results from different observational groups, and we find that the Howe and Burrows tholin-haze model remains the best fit, even when systematic differences among observers are considered.

  7. Spitzer/IRS Observations Of Multiple Main-Belt And Binary Near-Earth Asteroids

    Science.gov (United States)

    Enriquez, J. Emilio; Marchis, F.; Emery, J. P.; Im, S.

    2010-10-01

    Since the discovery of Ida's companion in 1993, 195 companions of asteroids have been discovered. To understand the formation process of these interesting bodies, their physical properties such as their bulk density, size, shape, and surface roughness need to be determined. During the Spitzer Cycle-4, we obtained IRS thermal emission spectra (5-42 um) of 23 known binary systems. The majority of asteroids are from the main-belt (16), while the rest are NEOs (7). After extracting the thermal spectra, we used a modified Standard Thermal Model (STM) to calculate their equivalent diameter (from 0.8 km to 237 km), their albedo (from 0.04 for C-type to 0.394 for a V-type) and their beaming factor related to the surface roughness and thermal inertia. We derive their emissivity spectra, which is useful to detect silicate features. Combining these measurements with 3D-models of these multiple asteroid systems obtained by lightcurve inversion, we should be able to derive an accurate estimate of their bulk-density and contrast them with their taxonomic classes. Preliminary studies by Marchis et al. (2008)1, suggested a relationship between bulk density and the taxonomic class of asteroids, which varies from 0.9 g/cc for C-complex to 2.4 g/cc for S-complex asteroids. The National Science Foundation supported this research under award number AAG-0807468. It was conducted with the Spitzer space telescope, which is operated by JPL under a contract with NASA. 1 Marchis et al. , 2008, "Mid-infrared Spectra of Binary Asteroids With Spitzer/IRS", 40th DPS Meeting, Bulletin of the American Astronomical Society, 40, 508

  8. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas, E-mail: xuepeng.chen@yale.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  9. A SPITZER c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES

    International Nuclear Information System (INIS)

    Merin, Bruno; Brown, Joanna M.; Herczeg, Gregory J.; Van Dishoeck, Ewine F.; Oliveira, Isa; Lahuis, Fred; Bottinelli, Sandrine; Augereau, Jean-Charles; Olofsson, Johan; Evans, Neal J.; Harvey, Paul M.; Cieza, Lucas; Spezzi, Loredana; Prusti, Timo; Alcala, Juan M.; Blake, Geoffrey A.; Bayo, Amelia; Geers, Vincent G.; Walter, Frederick M.; Chiu, Kuenley

    2010-01-01

    Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 μm feature strength above the continuum declines for holes with radii larger than ∼7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases.

  10. USING THE 1.6 μm BUMP TO STUDY REST-FRAME NEAR-INFRARED-SELECTED GALAXIES AT REDSHIFT 2

    International Nuclear Information System (INIS)

    Sorba, Robert; Sawicki, Marcin

    2010-01-01

    We explore the feasibility and limitations of using the 1.6 μm bump as a photometric redshift indicator and selection technique, and use it to study the rest-frame H-band galaxy luminosity and stellar mass functions (SMFs) at redshift z ∼ 2. We use publicly available Spitzer/IRAC images in the GOODS fields and find that color selection in the IRAC bandpasses alone is comparable in completeness and contamination to BzK selection. We find that the shape of the 1.6 μm bump is robust, and photometric redshifts are not greatly affected by choice of model parameters. Comparison with spectroscopic redshifts shows photometric redshifts to be reliable. We create a rest-frame NIR-selected catalog of galaxies at z ∼ 2 and construct a galaxy SMF. Comparisons with other SMFs at approximately the same redshift but determined using shorter wavelengths show good agreement. This agreement suggests that selection at bluer wavelengths does not miss a significant amount of stellar mass in passive galaxies. Comparison with SMFs at other redshifts shows evidence for the downsizing scenario of galaxy evolution. We conclude by pointing out the potential for using the 1.6 μm bump technique to select high-redshift galaxies with the JWST, whose λ>0.6 μm coverage will not be well suited to selecting galaxies using techniques that require imaging at shorter wavelengths.

  11. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  12. Seeing Baby Dwarf Galaxies

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left

  13. A MINUET OF GALAXIES

    Science.gov (United States)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  14. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  15. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Morello, G.; Waldmann, I. P.; Tinetti, G., E-mail: giuseppe.morello.11@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT (United Kingdom)

    2016-04-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  16. Reduction of the general Spitzer-Haerm problem in plasma physics

    International Nuclear Information System (INIS)

    Ferreira, A.

    1988-01-01

    The general Spitzer-Haerm problem is unfolded through a redefinition of the dependent variable into two separate simpler problems. The first takes the form of a second order differential equation, and the second, that of an integration over the solution of the first problem, which provides the distribution function or, directly, the current and the heat flow. It is shown that the current and the heat flow can in general by synthesized from the solutions of the differential equation for two specific forms of the driving term. (author)

  17. Hot electron transport modelling in fast ignition relevant targets with non-Spitzer resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D A; Hoarty, D J; Swatton, D J R [Plasma Physics Department, AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Hughes, S J, E-mail: david.chapman@awe.co.u [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2010-08-01

    The simple Lee-More model for electrical resistivity is implemented in the hybrid fast electron transport code THOR. The model is shown to reproduce experimental data across a wide range of temperatures using a small number of parameters. The effect of this model on the heating of simple Al targets by a short-pulse laser is studied and compared to the predictions of the classical Spitzer-Haerm resistivity. The model is then used in simulations of hot electron transport experiments using buried layer targets.

  18. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    Science.gov (United States)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  19. REPEATABILITY OF SPITZER/IRAC EXOPLANETARY ECLIPSES WITH INDEPENDENT COMPONENT ANALYSIS

    International Nuclear Information System (INIS)

    Morello, G.; Waldmann, I. P.; Tinetti, G.

    2016-01-01

    The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelengths >3 μm, have been taken with Spitzer. In some cases, in past years, repeated observations and multiple reanalyses of the same data sets led to discrepant results, raising questions about the accuracy and reproducibility of such measurements. Morello et al. (2014, 2015) proposed a blind-source separation method based on the Independent Component Analysis of pixel time series (pixel-ICA) to analyze InfraRed Array Camera (IRAC) data, obtaining coherent results when applied to repeated transit observations previously debated in the literature. Here we introduce a variant to the pixel-ICA through the use of wavelet transform, wavelet pixel-ICA, which extends its applicability to low-signal-to-noise-ratio cases. We describe the method and discuss the results obtained over 12 eclipses of the exoplanet XO3b observed during the “Warm Spitzer” era in the 4.5 μm band. The final results are reported, in part, also in Ingalls et al. (2016), together with results obtained with other detrending methods, and over 10 synthetic eclipses that were analyzed for the “IRAC Data Challenge 2015.” Our results are consistent within 1σ with the ones reported in Wong et al. (2014) and with most of the results reported in Ingalls et al. (2016), which appeared on arXiv while this paper was under review. Based on many statistical tests discussed in Ingalls et al. (2016), the wavelet pixel-ICA method performs as well as or better than other state-of-art methods recently developed by other teams to analyze Spitzer/IRAC data, and, in particular, it appears to be the most repeatable and the most reliable, while reaching the photon noise limit, at least for the particular data set analyzed. Another strength of the ICA approach is its highest

  20. Irregular Dwarf Galaxy IC 1613

    Science.gov (United States)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  1. Cosmic rings from colliding galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mitton, S

    1976-11-18

    Research on two ring galaxies has led to the proposal of an interaction model to account for the rings. It is envisaged that this class of galaxy is created when a compact galaxy crashes through the disc of a spiral galaxy. The results of a spectroscopic investigation of the galaxy known as the Cartwheel and of another ring galaxy 11 NZ 4 are discussed. The general picture of ring galaxies which emerges from these studies of a massive starry nucleus with a necklace of emitting gas and some spokes and along the spin axis of the wheel a small companion galaxy that is devoid of interstellar gas. An explanation of these properties is considered.

  2. Velocity-metallicity correlation for high-z DLA galaxies

    DEFF Research Database (Denmark)

    Ledoux, C.; Petitjean, P.; Fynbo, J.P.U.

    2006-01-01

    Galaxies: halos, galaxies: high-redshift, galaxies: ISM, quasars: absorption lines, cosmology: observations Udgivelsesdato: Oct.......Galaxies: halos, galaxies: high-redshift, galaxies: ISM, quasars: absorption lines, cosmology: observations Udgivelsesdato: Oct....

  3. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  4. CALIBRATING UV STAR FORMATION RATES FOR DWARF GALAXIES FROM STARBIRDS

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Mitchell, Noah P. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Dolphin, Andrew E., E-mail: kmcquinn@astro.umn.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color–magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV–SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ∼53% larger than previous relations.

  5. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. I. PROFILES AND STATISTICS

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2013-01-01

    Radial surface brightness profiles of spiral galaxies are classified into three types: (I) single exponential, or the light falls off with one exponential to a break before falling off (II) more steeply, or (III) less steeply. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing out to a break before falling off. Here we re-examine the stellar disk profiles of 141 dwarfs: 96 dwarf irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 19 Magellanic-type spirals (Sms). We fit single, double, or even triple exponential profiles in up to 11 passbands: GALEX FUV and NUV, ground-based UBVJHK and Hα, and Spitzer 3.6 and 4.5 μm. We find that more luminous galaxies have brighter centers, larger inner and outer scale lengths, and breaks at larger radii; dwarf trends with M B extend to spirals. However, the V-band break surface brightness is independent of break type, M B , and Hubble type. Dwarf Type II and III profiles fall off similarly beyond the breaks but have different interiors and IIs break ∼twice as far as IIIs. Outer Type II and III scale lengths may have weak trends with wavelength, but pure Type II inner scale lengths clearly decrease from the FUV to visible bands whereas Type III inner scale lengths increase with redder bands. This suggests the influence of different star formation histories on profile type, but nonetheless the break location is approximately the same in all passbands. Dwarfs continue trends between profile and Hubble types such that later-type galaxies have more Type II but fewer Type I and III profiles than early-type spirals. BCDs and Sms are over-represented as Types III and II, respectively, compared to dIms

  6. Optical photometry of galaxies

    International Nuclear Information System (INIS)

    Comte, G.

    1981-01-01

    The present status of the optical and near-infrared photometry of galaxies is reviewed. Part I introduces to the goals and general methods of both photographic surface photometry and integrated multicolor aperture photoelectric photometry for extended stellar systems, with a summary of the necessary corrections to the observed magnitudes and colors. Part II (surface photometry) summarizes recent results on the empirical luminosity laws for spheroidal systems and the separation of components in disk-plus-bulge systems. Part III (color problems) discusses integrated color effects (color and gas content, color-absolute magnitude relation for early-type systems, colors of interacting galaxies) and color gradient across spheroidal and disk galaxies. In part IV are summarized some constraints on the luminosity function of the stellar population in spheroidal systems given by narrow-band photometry [fr

  7. Creating lenticular galaxies with mergers

    NARCIS (Netherlands)

    Querejeta, Miguel; Eliche-Moral, M. Carmen; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús

    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular

  8. Cold gas accretion in galaxies

    NARCIS (Netherlands)

    Sancisi, Renzo; Fraternali, Filippo; Oosterloo, Tom; van der Hulst, Thijs

    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by

  9. Lopsided spiral galaxies

    International Nuclear Information System (INIS)

    Jog, Chanda J.; Combes, Francoise

    2009-01-01

    The light distribution in the disks of many galaxies is 'lopsided' with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed

  10. Spectroscopy of the galaxy components of N and Seyfert galaxies

    International Nuclear Information System (INIS)

    Boroson, T.A.; Oke, J.B.; Palomar Observatory, Pasadena, CA)

    1987-01-01

    Nuclear and off-nuclear spectra of nine active galaxies are presented. The sample consists of four Seyfert galaxies, two N galaxies, one Seyfert radio galaxy, and one liner/Seyfert 2 galaxy. All of the objects show continuum emission off the nucleus. Four clearly show absorption features from a stellar population. Velocities have been measured for the off-nuclear emission and absorption lines. In the case of I Zw 1, the absorption-line velocities are inconsistent with 21-cm H I measurements of this object. 26 references

  11. The impact of endorsing Spitzer's proposed criteria for PTSD in the forthcoming DSM-V on male and female Veterans.

    Science.gov (United States)

    Miller, Lyndsey N; Chard, Kathleen M; Schumm, Jeremiah A; O'Brien, Carol

    2011-06-01

    This study explored differences between Spitzer's proposed model of posttraumatic stress disorder (PTSD) and the current DSM-IV diagnostic classification scheme in 353 Veterans. The majority of Veterans (89%) diagnosed with PTSD as specified in the DSM-IV also met Spitzer's proposed criteria. Veterans who met both DSM-IV and Spitzer's proposed criteria had significantly higher Clinician Administered PTSD Scale severity scores than Veterans only meeting DSM-IV criteria. Logistic regression indicated that being African American and having no comorbid diagnosis of major depressive disorder or history of a substance use disorder were found to predict those Veterans who met current, but not proposed criteria. These findings have important implications regarding proposed changes to the diagnostic classification criteria for PTSD in the forthcoming DSM-V. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    International Nuclear Information System (INIS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Dasyra, Kalliopi M.; Calzoletti, Luca; Malkan, Matthew A.; Tommasin, Silvia

    2015-01-01

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10 4  cm –3 . Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions

  13. Galaxy S II

    CERN Document Server

    Gralla, Preston

    2011-01-01

    Unlock the potential of Samsung's outstanding smartphone with this jargon-free guide from technology guru Preston Gralla. You'll quickly learn how to shoot high-res photos and HD video, keep your schedule, stay in touch, and enjoy your favorite media. Every page is packed with illustrations and valuable advice to help you get the most from the smartest phone in town. The important stuff you need to know: Get dialed in. Learn your way around the Galaxy S II's calling and texting features.Go online. Browse the Web, manage email, and download apps with Galaxy S II's 3G/4G network (or create you

  14. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  15. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  16. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    Science.gov (United States)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  17. NEAR-INFRARED POLARIMETRY OF A NORMAL SPIRAL GALAXY VIEWED THROUGH THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Clemens, Dan P.; Cashman, L. R.; Pavel, M. D.

    2013-01-01

    Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6 μm) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined (∼75°) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction A V of 2.00 ± 0.10 mag and reddening E(H – K) of 0.125 ± 0.009 mag were also assessed and removed, based on analysis of Two Micron All Sky Survey, UKIRT Infrared Deep Sky Survey, Spitzer, and Wide-field Infrared Survey Explorer photometry using the Near-Infrared Color Excess, NICE-Revisited, and Rayleigh-Jeans Color Excess methods. Corrected for the polarized foreground, the galaxy polarization values range from 0% to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kiloparsec coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short-wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.

  18. Study of turbulent and shock heated IGM gas with emission line spectroscopy in the Taffy galaxies

    Science.gov (United States)

    Joshi, Bhavin; Appleton, Phil; Blanc, Guillermo; Guillard, Pierre; Freeland, Emily; Peterson, Bradley; Alatalo, Katherine

    2018-01-01

    We present our results from optical IFU observations of the Taffy system (UGC 12914/15); named so because of the radio emission that stretches between the two galaxies. The Taffy galaxies are a major merger pair of galaxies where two gas-rich spiral galaxies have collided face on and passed through each other. The pair presents an unusually low IR luminosity (L_FIR ~ 4.5 x 10^{10} L_solar) and SFR (~ 0.23 M_solar / yr) for a typical post merger system. It was also found from Spitzer and Chandra observations that the Taffy "bridge" between the galaxies contains large amounts of warm molecular Hydrogen, >4.5 x 10^8 M_solar at 150-175K, and also shows soft X-ray emission. These results hinted at shock heating as a likely mechanism for heating the large amounts of gas in the Taffy bridge and keeping it at these temperatures, after other sources of heating are ruled out. The data we present in this paper are from the VIRUS-P instrument (now called GCMS) on the Harlan J. Smith 2.7m telescope at McDonald Observatory. We detect ionized gas all throughout the Taffy galaxies and in the bridge between them. Interestingly, the ionized gas shows emission line profiles with two velocity components almost all throughout the system. We also show evidence, through line diagnostic (BPT) diagrams, that the velocity component with lower velocity is likely excited by star formation whereas the velocity component with higher velocity is likely excited by shocks. We also find evidence for post-starburst populations in parts of the Taffy system.

  19. STAR FORMATION PROPERTIES IN BARRED GALAXIES (SFB). I. ULTRAVIOLET TO INFRARED IMAGING AND SPECTROSCOPIC STUDIES OF NGC 7479

    International Nuclear Information System (INIS)

    Zhou Zhimin; Meng Xianmin; Wu Hong; Cao Chen

    2011-01-01

    Large-scale bars and minor mergers are important drivers for the secular evolution of galaxies. Based on ground-based optical images and spectra as well as ultraviolet data from the Galaxy Evolution Explorer and infrared data from the Spitzer Space Telescope, we present a multi-wavelength study of star formation properties in the barred galaxy NGC 7479, which also has obvious features of a minor merger. Using various tracers of star formation, we find that under the effects of both a stellar bar and a minor merger, star formation activity mainly takes place along the galactic bar and arms, while the star formation rate changes from the bar to the disk. With the help of spectral synthesis, we find that strong star formation took place in the bar region about 100 Myr ago, and the stellar bar might have been ∼10 Gyr old. By comparing our results with the secular evolutionary scenario from Jogee et al., we suggest that NGC 7479 is possibly in a transitional stage of secular evolution at present, and it may eventually become an earlier type galaxy or a luminous infrared galaxy. We also note that the probable minor merger event happened recently in NGC 7479, and we find two candidates for minor merger remnants.

  20. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  1. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  2. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE II LEGACY SURVEY

    International Nuclear Information System (INIS)

    Zhang Yong; Sun Kwok

    2009-01-01

    We report the result of a search for the infrared counterparts of 37 planetary nebulae (PNs) and PN candidates in the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire II (GLIMPSE II) survey. The photometry and images of these PNs at 3.6, 4.5, 5.8, 8.0, and 24 μm, taken through the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS), are presented. Most of these nebulae are very red and compact in the IRAC bands, and are found to be bright and extended in the 24 μm band. The infrared morphology of these objects are compared with Hα images of the Macquarie-AAO-Strasbourg (MASH) and MASH II PNs. The implications for morphological difference in different wavelengths are discussed. The IRAC data allow us to differentiate between PNs and H II regions and be able to reject non-PNs from the optical catalog (e.g., PNG 352.1 - 00.0). Spectral energy distributions are constructed by combing the IRAC and MIPS data with existing near-, mid-, and far-IR photometry measurements. The anomalous colors of some objects allow us to infer the presence of aromatic emission bands. These multi-wavelength data provide useful insights into the nature of different nebular components contributing to the infrared emission of PNs.

  3. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    Science.gov (United States)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  4. SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Shvartzvald, Y.; Bryden, G.; Henderson, C. B. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Fausnaugh, M.; Gaudi, B. S.; Pogge, R. W.; Wibking, B.; Zhu, W. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bozza, V.; Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Friedmann, M. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hundertmark, M. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen K (Denmark); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Carey, S. [Spitzer, Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Kerr, T.; Varricatt, W. [UKIRT, 660 N. Aohoku Place, University Park, Hilo, HI 96720 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Collaboration: and; Spitzer team; OGLE group; KMTNet group; Wise group; RoboNet; MiNDSTEp; and others

    2015-12-01

    We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M{sub 1} > 1.35 M{sub ⊙} (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r{sub ⊥} = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the “microlens parallax” effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

  5. VizieR Online Data Catalog: Spitzer observations of Taurus members (Luhman+, 2010)

    Science.gov (United States)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2016-03-01

    For our census of the disk population in Taurus, we use images at 3.6, 4.5, 5.8, and 8.0um obtained with Spitzer's Infrared Array Camera (IRAC) and images at 24um obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The cameras produced images with FWHM=1.6"-1.9" from 3.6 to 8.0um and FWHM=5.9" at 24um. The available data were obtained through Guaranteed Time Observations for PID = 6, 36, 37 (G. Fazio), 53 (G. Rieke), 94 (C. Lawrence), 30540 (G. Fazio, J. Houck), and 40302 (J. Houck), Director's Discretionary Time for PID = 462 (L. Rebull), Legacy programs for PID = 139, 173 (N. Evans), and 30816 (D. Padgett), and General Observer programs for PID = 3584 (D. Padgett), 20302 (P. Andre), 20386 (P. Myers), 20762 (J. Swift), 30384 (T. Bourke), 40844 (C. McCabe), and 50584 (D. Padgett). The IRAC and MIPS observations were performed through 180 and 137 Astronomical Observation Requests (AORs), respectively. The characteristics of the resulting images are summarized in Tables 1 and 2. (6 data files).

  6. RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. III. MODELING THE EVOLUTION OF THE STELLAR COMPONENT IN GALAXY DISKS

    International Nuclear Information System (INIS)

    Munoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Gallego, J.; Kennicutt, R. C. Jr; Moustakas, J.; Prantzos, N.

    2011-01-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ∼ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr -1 , although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  7. Radial Distribution of Stars, Gas, and Dust in SINGS Galaxies. III. Modeling the Evolution of the Stellar Component in Galaxy Disks

    Science.gov (United States)

    Muñoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Kennicutt, R. C., Jr.; Moustakas, J.; Prantzos, N.; Gallego, J.

    2011-04-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ~ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr-1, although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  8. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    Science.gov (United States)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  9. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    Science.gov (United States)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; hide

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  10. Galaxy number counts: Pt. 2

    International Nuclear Information System (INIS)

    Metcalfe, N.; Shanks, T.; Fong, R.; Jones, L.R.

    1991-01-01

    Using the Prime Focus CCD Camera at the Isaac Newton Telescope we have determined the form of the B and R galaxy number-magnitude count relations in 12 independent fields for 21 m ccd m and 19 m ccd m 5. The average galaxy count relations lie in the middle of the wide range previously encompassed by photographic data. The field-to-field variation of the counts is small enough to define the faint (B m 5) galaxy count to ±10 per cent and this variation is consistent with that expected from galaxy clustering considerations. Our new data confirm that the B, and also the R, galaxy counts show evidence for strong galaxy luminosity evolution, and that the majority of the evolving galaxies are of moderately blue colour. (author)

  11. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  12. From gas to galaxies

    NARCIS (Netherlands)

    van der Hulst, J.M.; Sadler, E.M.; Jackson, C.A.; Hunt, L.K.; Verheijen, M.; van Gorkom, J.H.

    2004-01-01

    The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from

  13. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.; Yale Univ., New Haven, CT

    1982-01-01

    A number of N-body simulations of mergers of equal and unequal galaxies are presented. A new code is presented which determines the potential from a mass distribution by a fourth-order expansion in Tesseral harmonics in three dimensions as an approximation to a collisionless system. The total number of particles in the system is 1200. Two galaxies, each a spherical non-rotating system with isothermal or Hubble density profile, are put in orbit around each other where tidal effects and dynamical friction lead to merging. The final system has a Hubble profile, and in some mergers an 'isothermal' halo forms as found in cD galaxies. Equal mass mergers are more flattened than unequal mass mergers. The central surface brightness decreases except in a merger of isothermal galaxies which shows a major redistribution of energy towards a Hubble profile. Mixing is severe in equal mass mergers, where radial gradients are weakened, while in unequal mass encounters gradients can build up due to less mixing and the formation of a halo. Oblate systems with strong rotation form in high angular momentum encounters while prolate systems with little rotation are formed in near head-on collisions. (author)

  14. Formation of Triaxial Galaxy

    Directory of Open Access Journals (Sweden)

    Jang-Hyeon Park

    1987-06-01

    Full Text Available Results of N-body simulation of dissipationless cold collapse of spherical gravitating system are presented. We compared the results with properties of elliptical galaxies. The system gradually evolved to triaxial system. The projected density profile is in good agreement with observations. In addition to triaxial instability, it seems that there is another instability.

  15. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    which are rapidly rotating neutron stars emitting narrow beams of radiation. Images of ... rized into starburst galaxies and AGN powered by SMBHs. The ..... swer lies in the relativistic motion of the jets which boosts the flux density of .... radio cores, detection of ... to as synchrotron self-Compton or SSC, or those of the cosmic.

  16. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  17. Outskirts of galaxies

    CERN Document Server

    Lee, Janice; Paz, Armando

    2017-01-01

    This book consists of invited reviews written by world-renowned experts on the subject of the outskirts of galaxies, an upcoming field which has been understudied so far. These regions are faint and hard to observe, yet hide a tremendous amount of information on the origin and early evolution of galaxies. They thus allow astronomers to address some of the most topical problems, such as gaseous and satellite accretion, radial migration, and merging. The book is published in conjunction with the celebration of the end of the four-year DAGAL project, an EU-funded initial training network, and with a major international conference on the topic held in March 2016 in Toledo. It thus reflects not only the views of the experts, but also the scientific discussions and progress achieved during the project and the meeting. The reviews in the book describe the most modern observations of the outer regions of our own Galaxy, and of galaxies in the local and high-redshift Universe. They tackle disks, haloes, streams, and a...

  18. Galaxy Masses : A Review

    NARCIS (Netherlands)

    Courteau, Stephane; Cappellari, Michele; Jong, Roelof S. de; Dutton, Aaron A.; Koopmans, L.V.E.

    2013-01-01

    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The dierent sections on masses from stellar populations, dynamical masses of gas-rich and

  19. The baryonic Tully-Fisher relationship for S{sup 4}G galaxies and the 'condensed' baryon fraction of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Courtois, Helene; Sorce, Jenny [Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire, Lyon (France); Muñoz-Mateos, Juan-Carlos; Kim, T.; Mizusawa, T.; Sheth, K. [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Erroz-Ferrer, S. [Instituto de Astrofísica de Canarias, Vía Láctea s/n 38205 La Laguna (Spain); Comerón, S.; Laurikainen, E.; Laine, J.; Salo, H. [Astronomy Division, Department of Physical Sciences, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Gadotti, D. A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Gil de Paz, A. [Departamento de Astrofísica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Hinz, J. L. [MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Menéndez-Delmestre, K. [Universidade Federal do Rio de Janeiro, Observatório do Valongo, Ladeira Pedro Antônio, 43, CEP 20080-090, Rio de Janeiro (Brazil); Regan, M. W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Seibert, M. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Athanassoula, E.; Bosma, A., E-mail: dennis.zaritsky@gmail.com [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); and others

    2014-06-01

    We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of H I spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 ± 0.2 (Δlog M {sub baryon}/Δlog v{sub c} ), implies that on average a nearly constant fraction (∼0.4) of all baryons expected to be in a halo are 'condensed' onto the central region of rotationally supported galaxies. The condensed baryon fraction, M {sub baryon}/M {sub total}, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, v {sub c} , between 60 and 250 km s{sup –1}, but is extended to v{sub c} ∼ 10 km s{sup –1} using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally ≤ a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v{sub c} < 250 km s{sup –1} and typically introduce no more than a factor of two range in the resulting M {sub baryon}/M {sub total}. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models

  20. Selection and Physical Properties of High-redshift Galaxies

    Science.gov (United States)

    Fang, G. W.

    2014-09-01

    galaxies; and the clustering amplitude of OGs is a factor of ˜2 larger than DGs. In Chapter 3, we pick out 1609 star-forming galaxies (sgzKs: gzK=(z-K)_{AB}-1.4(g-z)_{AB}≥ 0.2) and 422 passively evolving galaxies (pgzKs: gzK2.7) at z˜2 in the AEGIS field (K_{AB} rate (SFR) and specific SFR (sSFR) of sgzKs increase with redshift at all masses, implying that star-forming galaxies were much more active on average in the past. Moreover, the sSFR of massive galaxies is lower at all redshifts, suggesting that the mass growth of low-mass galaxies is more attributed to the star formation while comparing with high-mass galaxies. From the HST WFC3/F160W imaging data, we find that gzKs not only have diffuse structures, but also have single-object morphologies, implying that there are morphological variety and different formation processes for these galaxies at z˜2. In addition, we also find ˜ 10% of 828 gzKs can be classified as AGNs. In Chapter 4, we present Spitzer/IRS spectra of a sample of 14 ULIRGs with 0.2 {mJy} 10^{11} M_{⊙} and 410 M_⊙\\cdot yr^{-1}< SFR <1022 M_⊙\\cdot yr^{-1}, respectively. Their rest-frame optical morphologies are very diversified including string-like, extended/diffused, and even early type spiral morphologies, implying that there are different formation processes for these galaxies. We also search for active galactic nucleus (AGN) signature in our sample using X-ray, radio, and mid-infrared (MIR) observations. EGS22, EGS25, EGS27, and EGS34 are detected in the X-ray imaging. The X-ray luminosities for EGS22 and EGS34 can be accounted for by their intensive star formation. EGS25 and EGS27 have higher L_{2-10 keV}, indicating that they harbor AGNs. About 14% to 29% of the sample show signatures of AGNs in X-ray, MIR or radio. Finally, the summary of the whole thesis and outlook are presented in Chapter 5.

  1. STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Strandet, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Saliwanchik, B. R., E-mail: jingzhema@ufl.edu [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-10-10

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ∼5 ×10{sup 10} M{sub ⊙}. The intrinsic IR luminosities range from 4 × 10{sup 12} L{sub ⊙} to 4 × 10{sup 13} L{sub ⊙}. They all have prodigious intrinsic SFRs of 510–4800 M{sub ⊙} yr{sup −1}. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.

  2. Dark matter halo properties from galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Brimioulle, Fabrice

    2013-01-01

    The scientific results over the past years have shown that the Universe is by far not only composed of baryonic matter. In fact the major energy content of 72% of the Universe appears to be represented by so-called dark energy, while even from the remaining components only about one fifth is of baryonic origin, whereas 80% have to be attributed to dark matter. Originally appearing in observations of spiral galaxy rotation curves, the need for dark matter has also been verified investigating elliptical galaxies and galaxy clusters. In fact, it appears that dark matter played a major role during structure formation in the early Universe. Shortly after the Big Bang, when the matter distribution was almost homogeneous, initially very small inhomogeneities in the matter distribution formed the seeds for the gravitational collapse of the matter structures. Numerical n-body simulations, for instance, clearly indicate that the presently observable evolutionary state and complexity of the matter structure in the Universe would not have been possible without dark matter, which significantly accelerated the structure collapse due to its gravitational interaction. As dark matter does not interact electromagnetically and therefore is non-luminous but only interacts gravitationally, the gravitational lens effect provides an excellent opportunity for its detection and estimation of its amount. Weak gravitational lensing is a technique that makes use of the random orientation of the intrinsic galaxy ellipticities and thus their uniform distribution. Gravitational tidal forces introduce a coherent distortion of the background object shapes, leading to a deviation from the uniform distribution which depends on the lens galaxy properties and therefore can be used to study them. This thesis describes the galaxy-galaxy lensing analysis of 89deg 2 of optical data, observed within the CFHTLS-WIDE survey. In the framework of this thesis the data were used in order to create photometric

  3. Origin, structure and evolution of galaxies

    International Nuclear Information System (INIS)

    Zhi, F.L.

    1988-01-01

    Recent developments of the origin, structure and evolution of galaxies have been reviewed. The contents of this book are: Inflationary Universe; Cosmic String; Active Galaxies; Intergalactic Medium; Waves in Disk Galaxies; Dark Matter; Gas Dynamics in Disk Galaxies; Equilibrium and Stability of Spiral Galaxies

  4. The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4

    NARCIS (Netherlands)

    Oberg, Karin I.; Boogert, A. C. Adwin; Pontoppidan, Klaus M.; Blake, Geoffrey A.; Evans, Neal J.; Lahuis, Fred; van Dishoeck, Ewine F.

    2008-01-01

    CH4 is proposed to be the starting point of a rich organic chemistry. Solid CH4 abundances have previously been determined mostly toward high-mass star-forming regions. Spitzer IRS now provides a unique opportunity to probe solid CH4 toward low-mass star-forming regions as well. Infrared spectra

  5. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD : HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    NARCIS (Netherlands)

    Oliveira, Isa; Pontoppidan, Klaus M.; Merin, Bruno; van Dishoeck, Ewine F.; Lahuis, Fred; Geers, Vincent C.; Jorgensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 mu m) spectra of a complete flux-limited sample (>= 3 mJy at 8 mu m) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and

  6. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    International Nuclear Information System (INIS)

    Sargsyan, Lusine A.; Weedman, Daniel W.

    2009-01-01

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 μm polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z ν (7.7 μm)] - 42.57 ± 0.2, for SFR in M sun yr -1 and νL ν (7.7 μm) the luminosity at the peak of the 7.7 μm PAH feature in erg s -1 , is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 ± 0.05)log [νL ν (7.7 μm)] - 21.5 ± 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between νL ν (7.7 μm) and L ir , this becomes log [SFR(PAH)/SFR(UV)]= (0.53 ± 0.05)log L ir - 4.11 ± 0.18, for L ir in L sun . Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of ∼10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z ∼ 2.5. Application of this factor explains why the most luminous starbursts discovered by Spitzer at z ∼ 2.5 are optically faint; with this amount of extinction, the optical magnitude of a starburst

  7. The Arecibo Galaxy Environment Survey IX: the isolated galaxy sample

    Czech Academy of Sciences Publication Activity Database

    Minchin, R.F.; Auld, R.; Davies, J.I.; Karachentsev, I.D.; Keenan, O.; Momjian, E.; Rodriguez, R.; Taber, T.; Taylor, Rhys

    2016-01-01

    Roč. 455, č. 4 (2016), s. 3430-3435 ISSN 0035-8711 R&D Projects: GA MŠk LG14013; GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : individual galaxies NGC 1156 * individual galaxies NGC 5523 * individual galaxies UGC 2082 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  8. Nearby Galaxies: Templates for Galaxies Across Cosmic Time

    OpenAIRE

    Lockman, F. J.; Ott, J.

    2009-01-01

    Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star formation. Yet despite decades of work, many of the most basic aspects of galaxies and their environments remain a mystery. In this paper we describe some outstanding problems in this area and the ways in which large radio facilities will contribute ...

  9. The dependence of bar frequency on galaxy mass, colour, and gas content - and angular resolution - in the local universe

    Science.gov (United States)

    Erwin, Peter

    2018-03-01

    I use distance- and mass-limited subsamples of the Spitzer Survey of Stellar Structure in Galaxies (S4G) to investigate how the presence of bars in spiral galaxies depends on mass, colour, and gas content and whether large, Sloan Digital Sky Survey (SDSS)-based investigations of bar frequencies agree with local data. Bar frequency reaches a maximum of fbar ≈ 0.70 at M⋆ ˜ 109.7M⊙, declining to both lower and higher masses. It is roughly constant over a wide range of colours (g - r ≈ 0.1-0.8) and atomic gas fractions (log (M_{H I}/ M_{\\star }) ≈ -2.5 to 1). Bars are thus as common in blue, gas-rich galaxies are they are in red, gas-poor galaxies. This is in sharp contrast to many SDSS-based studies of z ˜ 0.01-0.1 galaxies, which report fbar increasing strongly to higher masses (from M⋆ ˜ 1010 to 1011M⊙), redder colours, and lower gas fractions. The contradiction can be explained if SDSS-based studies preferentially miss bars in, and underestimate the bar fraction for, lower mass (bluer, gas-rich) galaxies due to poor spatial resolution and the correlation between bar size and stellar mass. Simulations of SDSS-style observations using the S4G galaxies as a parent sample, and assuming that bars below a threshold angular size of twice the point spread function full width at half-maximum cannot be identified, successfully reproduce typical SDSS fbar trends for stellar mass and gas mass ratio. Similar considerations may affect high-redshift studies, especially if bars grow in length over cosmic time; simulations suggest that high-redshift bar fractions may thus be systematically underestimated.

  10. SPITZER OBSERVATIONS OF WHITE DWARFS: THE MISSING PLANETARY DEBRIS AROUND DZ STARS

    International Nuclear Information System (INIS)

    Xu, S.; Jura, M.

    2012-01-01

    We report a Spitzer/Infrared Array Camera search for infrared excesses around white dwarfs, including 14 newly observed targets and 16 unpublished archived stars. We find a substantial infrared excess around two warm white dwarfs—J220934.84+122336.5 and WD 0843+516, the latter apparently being the hottest white dwarf known to display a close-in dust disk. Extending previous studies, we find that the fraction of white dwarfs with dust disks increases as the star's temperature increases; for stars cooler than 10,000 K, even the most heavily polluted ones do not have ∼1000 K dust. There is tentative evidence that the dust disk occurrence is correlated with the volatility of the accreted material. In the Appendix, we modify a previous analysis to clarify how Poynting-Robertson drag might play an important role in transferring materials from a dust disk into a white dwarf's atmosphere.

  11. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    Science.gov (United States)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  12. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    International Nuclear Information System (INIS)

    Helton, L. Andrew; Vacca, William D.; Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P.; Wagner, R. Mark; Evans, Aneurin; Krautter, Joachim; Schwarz, Greg J.; Starrfield, Sumner

    2012-01-01

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  13. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Helton, L. Andrew; Vacca, William D. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N232-11, Moffett Field, CA 94035 (United States); Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Wagner, R. Mark [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Evans, Aneurin [Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Krautter, Joachim [Landessternwarte-Zentrum fuer Astronomie der Universitaet, Koenigstuhl, D-69117 Heidelberg (Germany); Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009 (United States); Starrfield, Sumner, E-mail: ahelton@sofia.usra.edu [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States)

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  14. Spitzer spectral line mapping of the HH211 outflow

    DEFF Research Database (Denmark)

    Dionatos, Odyssefs; Nisini, Brunella; Cabrit, Sylvie

    2010-01-01

    of emission line diagnostics and an existing grid of molecular shock models. The physical properties of the warm gas are compared against other molecular jet tracers and to the results of a similar study towards the L1448-C outflow. Results: We have detected and mapped the v=0-0 S(0) - S(7) H2 lines and fine...... compared to solar abundances by a factor ~10-50. Conclusions: Spitzer spectral mapping observations reveal for the first time a cool H$_2$ component towards the CO jet of HH211 consistent with the CO material being fully molecular and warm at ~ 300 K. The maps also reveal for the first time the existence...... uncertainties on jet speed and shock conditions are too large for a definite conclusion....

  15. Spitzer MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+12

    Science.gov (United States)

    Bryden, G.; Beichman, C. A.; Rieke, G. H.; Stansberry, J. A.; Stapelfeldt, K. R.; Trilling, D. E.; Turner, N. J.; Wolszczan, A.

    2006-01-01

    With the MIPS camera on Spitzer, we have searched for far-infrared emission from dust in the planetary system orbiting pulsar PSR B1257+12. With accuracies of 0.05 mJy at 24 microns and 1.5 mJy at 70 microns, photometric measurements find no evidence for emission at these wavelengths. These observations place new upper limits on the luminosity of dust with temperatures between 20 and 1000 K. They are particularly sensitive to dust temperatures of 100-200 K, for which they limit the dust luminosity to below 3 x 10(exp -5) of the pulsar's spin-down luminosity, 3 orders of magnitude better than previous limits. Despite these improved constraints on dust emission, an asteroid belt similar to the solar system's cannot be ruled out.

  16. Observations of Hot-Jupiter occultations combining Spitzer and Kepler photometry

    Directory of Open Access Journals (Sweden)

    Knutson H.

    2011-02-01

    Full Text Available We present the status of an ongoing program which aim at measuring occultations by their parent stars of transiting hot giant exoplanets discovered recently by Kepler. The observations are obtained in the near infrared with WarmSpitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of measuring the mid-occultation times and the relative occultation depths in each band-passes. Our measurements of occultations depths in the Kepler bandpass is turned into the determination of the optical geometric albedo Ag in this wavelength domain. The brightness temperatures of these planets are deduced from the infrared observations. We combine the optical and near infrared planetary emergent fluxes to obtain broad band emergent spectra of individual planet. We finally compare these spectra to hot Jupiter atmospheric models in order broadly distinguishing these atmospheres between different classes of models.

  17. SPITZER ANALYSIS OF H II REGION COMPLEXES IN THE MAGELLANIC CLOUDS: DETERMINING A SUITABLE MONOCHROMATIC OBSCURED STAR FORMATION INDICATOR

    International Nuclear Information System (INIS)

    Lawton, B.; Gordon, K. D.; Meixner, M.; Sewilo, M.; Shiao, B.; Babler, B.; Bracker, S.; Meade, M.; Block, M.; Engelbracht, C. W.; Misselt, K.; Bolatto, A. D.; Carlson, L. R.; Hora, J. L.; Robitaille, T.; Indebetouw, R.; Madden, S. C.; Oey, M. S.; Oliveira, J. M.; Vijh, U. P.

    2010-01-01

    H II regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. To study the H II regions, we compute the bolometric infrared flux, or total infrared (TIR), by integrating the flux from 8 to 500 μm. The TIR provides a measure of the obscured star formation because the UV photons from hot young stars are absorbed by dust and re-emitted across the mid-to-far-infrared (IR) spectrum. We aim to determine the monochromatic IR band that most accurately traces the TIR and produces an accurate obscured SFR over large spatial scales. We present the spatial analysis, via aperture/annulus photometry, of 16 Large Magellanic Cloud (LMC) and 16 Small Magellanic Cloud (SMC) H II region complexes using the Spitzer Space Telescope's IRAC (3.6, 4.5, 8 μm) and MIPS (24, 70, 160 μm) bands. Ultraviolet rocket data (1500 and 1900 A) and SHASSA Hα data are also included. All data are convolved to the MIPS 160 μm resolution (40 arcsec full width at half-maximum), and apertures have a minimum radius of 35''. The IRAC, MIPS, UV, and Hα spatial analysis are compared with the spatial analysis of the TIR. We find that nearly all of the LMC and SMC H II region spectral energy distributions (SEDs) peak around 70 μm at all radii, from ∼10 to ∼400 pc from the central ionizing sources. As a result, we find the following: the sizes of H II regions as probed by 70 μm are approximately equal to the sizes as probed by TIR (∼70 pc in radius); the radial profile of the 70 μm flux, normalized by TIR, is constant at all radii (70 μm ∼ 0.45TIR); the 1σ standard deviation of the 70 μm fluxes, normalized by TIR, is a lower fraction of the mean (0.05-0.12 out to ∼220 pc) than the normalized 8, 24, and 160 μm normalized fluxes (0.12-0.52); and these results are the same for the LMC and the

  18. GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.; Dickinson, M.; Kartaltepe, J. [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States); Elbaz, D.; Daddi, E.; Magdis, G.; Aussel, H.; Dannerbauer, H.; Dasyra, K.; Hwang, H. S. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CE-Saclay, F-91191, Gif-sur-Yvette (France); Morrison, G. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Giavalisco, M. [Astronomy Department, University of Massachusetts, Amherst, Amherst, MA 01003 (United States); Ivison, R. [UK Astronomy Technology Centre, Science and Technology Facilities Council, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Papovich, C. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Buat, V.; Burgarella, D. [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-Marseille, CNRS, 38 Rue Frederic Joliot-Curie, 13388 Marseille Cedex 13 (France); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Murphy, E. [Spitzer Science Center, MC 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, 28691 Madrid (Spain); and others

    2012-01-10

    We take advantage of the sensitivity and resolution of the Herschel Space Observatory at 100 and 160 {mu}m to directly image the thermal dust emission and investigate the infrared luminosities (L{sub IR}) and dust obscuration of typical star-forming (L*) galaxies at high redshift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5 {<=} z{sub spec} < 2.6 in the GOODS-North field. Supplemented with deep Very Large Array and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 {mu}m, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L{sub UV} {approx}> 10{sup 10} L{sub Sun} at z {approx} 2 are luminous infrared galaxies with a median L{sub IR} = (2.2 {+-} 0.3) Multiplication-Sign 10{sup 11} L{sub Sun }. Their median ratio of L{sub IR} to rest-frame 8 {mu}m luminosity (L{sub 8}) is L{sub IR}/L{sub 8} = 8.9 {+-} 1.3 and is Almost-Equal-To 80% larger than that found for most star-forming galaxies at z {approx}< 2. This apparent redshift evolution in the L{sub IR}/L{sub 8} ratio may be tied to the trend of larger infrared luminosity surface density for z {approx}> 2 galaxies relative to those at lower redshift. Typical galaxies at 1.5 {<=} z < 2.6 have a median dust obscuration L{sub IR}/L{sub UV} = 7.1 {+-} 1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2 {+-} 0.6. This result is similar to that inferred from previous investigations of the UV, H{alpha}, 24 {mu}m, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope ({beta}) implies that L* galaxies with redder spectral slopes are also dustier and that the correlation between {beta} and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame {approx_equal} 30 and

  19. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    Science.gov (United States)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; hide

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  20. Source-plane reconstruction of the giant gravitational arc in A2667: A candidate Wolf-Rayet galaxy at z ∼ 1

    International Nuclear Information System (INIS)

    Cao, Shuo; Zhu, Zong-Hong; Federico II, Via Cinthia, I-80126 Napoli (Italy))" data-affiliation=" (Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Via Cinthia, I-80126 Napoli (Italy))" >Covone, Giovanni; Jullo, Eric; Richard, Johan; Izzo, Luca

    2015-01-01

    We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of its counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z 850 band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec –2 and a characteristic radius r s = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.

  1. A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.; Lust, Nate B.; Hardy, Ryan A.; Bowman, M. Oliver [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku, E-mail: pcubillos@fulbrightmail.org [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

    2014-12-10

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.

  2. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    Science.gov (United States)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  3. Spitzer Observations of a 24 μm Shadow: Bok Globule CB 190

    Science.gov (United States)

    Stutz, Amelia M.; Bieging, John H.; Rieke, George H.; Shirley, Yancy L.; Balog, Zoltan; Gordon, Karl D.; Green, Elizabeth M.; Keene, Jocelyn; Kelly, Brandon C.; Rubin, Mark; Werner, Michael W.

    2007-08-01

    We present Spitzer observations of the dark globule CB 190 (LDN 771). We observe a roughly circular 24 μm shadow with a 70" radius. The extinction profile of this shadow matches the profile derived from 2MASS photometry at the outer edges of the globule and reaches a maximum of ~32 visual magnitudes at the center. The corresponding mass of CB 190 is ~10 Msolar. Our 12CO and 13CO J=2-1 data over a 10'×10' region centered on the shadow show a temperature ~10 K. The thermal continuum indicates a similar temperature for the dust. The molecular data also show evidence of freezeout onto dust grains. We estimate a distance to CB 190 of 400 pc using the spectroscopic parallax of a star associated with the globule. Bonnor-Ebert fits to the density profile, in conjunction with this distance, yield ξmax=7.2, indicating that CB 190 may be unstable. The high temperature (56 K) of the best-fit Bonnor-Ebert model is in contradiction with the CO and thermal continuum data, leading to the conclusion that the thermal pressure is not enough to prevent free-fall collapse. We also find that the turbulence in the cloud is inadequate to support it. However, the cloud may be supported by the magnetic field, if this field is at the average level for dark globules. Since the magnetic field will eventually leak out through ambipolar diffusion, it is likely that CB 190 is collapsing or in a late precollapse stage. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  4. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Forrest, William J.; Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A., E-mail: cchen@stsci.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  5. SPATIAL VARIATIONS OF PAH PROPERTIES IN M17SW REVEALED BY SPITZER /IRS SPECTRAL MAPPING

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Chuo-ku, Sagamihara 252-5210 (Japan); Kaneda, H.; Ishihara, D.; Oyabu, S.; Suzuki, T.; Nishimura, A.; Kohno, M. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Onaka, T.; Ohashi, S. [Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagayama, T.; Matsuo, M. [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Umemoto, T.; Minamidani, T.; Fujita, S. [Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Tsuda, Y., E-mail: yamagish@ir.isas.jaxa.jp [Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-0042 (Japan)

    2016-12-20

    We present Spitzer /IRS mid-infrared spectral maps of the Galactic star-forming region M17 as well as IRSF/SIRIUS Br γ and Nobeyama 45 m/FOREST {sup 13}CO ( J = 1–0) maps. The spectra show prominent features due to polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, 11.3, 12.0, 12.7, 13.5, and 14.2  μ m. We find that the PAH emission features are bright in the region between the H ii region traced by Br γ and the molecular cloud traced by {sup 13}CO, supporting that the PAH emission originates mostly from photo-dissociation regions. Based on the spatially resolved Spitzer /IRS maps, we examine spatial variations of the PAH properties in detail. As a result, we find that the interband ratio of PAH 7.7  μ m/PAH 11.3  μ m varies locally near M17SW, but rather independently of the distance from the OB stars in M17, suggesting that the degree of PAH ionization is mainly controlled by local conditions rather than the global UV environments determined by the OB stars in M17. We also find that the interband ratios of the PAH 12.0  μ m, 12.7  μ m, 13.5  μ m, and 14.2  μ m features to the PAH 11.3  μ m feature are high near the M17 center, which suggests structural changes of PAHs through processing due to intense UV radiation, producing abundant edgy irregular PAHs near the M17 center.

  6. A Comparison of BLISS and PLD on Low-SNR WASP-29b Spitzer Observations

    Science.gov (United States)

    Challener, Ryan; Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Deming, Drake; Hellier, Coel

    2018-01-01

    We present an analysis of Spitzer secondary eclipse observations of exoplanet WASP-29b. WASP-29b is a Saturn-sized, short-period exoplanet with mass 0.24 ± 0.02 Jupiter masses and radius 0.84 ± 0.06 Jupiter radii (Hellier et al., 2010). We measure eclipse depths and midpoints using our Photometry for Orbits, Eclipses, and Transits (POET) code, which does photometry and light-curve modeling with a BiLinearly Interpolated Subpixel Sensitivity (BLISS) map, and our Zen Eliminates Noise (ZEN) code, which takes POET photometry and applies Pixel-Level Decorrelation (PLD). BLISS creates a physical map of pixel gain variations, and is thereby independent of any astrophysical effects. PLD takes a mathematical approach, using relative variations in pixel values near the target to eliminate position-correlated noise. The results are consistent between the methods, except in one outlier observation where neither model could effectively remove correlated noise in the light curve. Using the eclipse timings, along with previous transit observations and radial velocity data, we further refine the orbit of WASP-29b, and, when excluding the outlier, determine an eccentricity between 0.037 and 0.056. We performed atmospheric retrieval with our Bayesian Atmospheric Radiative Transfer (BART) code but find that, when the outlier is discarded, the planet is consistent with a blackbody, and molecular abundances cannot be constrained. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  7. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive Baltimore, MD 21218 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M., E-mail: cchen@stsci.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  8. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Ryan; Currie, Thayne; Jayawardhana, Ray [University of Toronto, 50 St. George Street, Toronto, ON, M5S 2J7 (Canada); Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Kenyon, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02140 (United States); Balog, Zoltan, E-mail: cloutier@cita.utoronto.ca, E-mail: currie@astro.utoronto.ca, E-mail: grieke@as.arizona.edu, E-mail: skenyon@cfa.harvard.edu [Max Planck Institute for Astrophysics, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ{sub 0}) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M {sub ☉} stars appear lower than for 1-2.5 M {sub ☉} stars in other 10-30 Myr old clusters.

  9. REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa [Spitzer Science Center, California Institute of Technology, 1200 E California Boulevard, Mail Code 314-6, Pasadena, CA 91125 (United States); Buzasi, Derek [Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Diamond-Lowe, Hannah; Stevenson, Kevin B. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Evans, Thomas M. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Morello, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1 E6BT (United Kingdom); Wong, Ian, E-mail: ingalls@ipac.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μ m data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble,  5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  10. Galaxy mapping the cosmos

    CERN Document Server

    Geach, James

    2014-01-01

    Each night, we are able to gaze up at the night sky and look at the thousands of stars that stretch to the end of our individual horizons. But the stars we see are only those that make up our own Milky Way galaxy-but one of hundreds of billions in the whole of the universe, each separated  by inconceivably huge tracts of empty space. In this book, astronomer James Geach tells the rich stories of both the evolution of galaxies and our ability to observe them, offering a fascinating history of how we've come to realize humanity's tiny place in the vast universe.             Taking us on a compel

  11. The Galaxy's Eating Habits

    Science.gov (United States)

    Putman, M. E.; Thom, C.; Gibson, B. K.; Staveley-Smith, L.

    2004-06-01

    The possibility of a gaseous halo stream which was stripped from the Sagittarius dwarf galaxy is presented. The total mass of the neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic Anti-Center is 4 - 10 × 106 M⊙ (at 36 kpc, the distance to the stellar debris in this region). Both the stellar and gaseous components have negative velocities in this part of the sky, but the gaseous component extends to higher negative velocities. We suggest this gaseous stream was stripped from the main body of the dwarf 0.2 - 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10-4 cm-3. The gas would then represent the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.

  12. EGG: Empirical Galaxy Generator

    Science.gov (United States)

    Schreiber, C.; Elbaz, D.; Pannella, M.; Merlin, E.; Castellano, M.; Fontana, A.; Bourne, N.; Boutsia, K.; Cullen, F.; Dunlop, J.; Ferguson, H. C.; Michałowski, M. J.; Okumura, K.; Santini, P.; Shu, X. W.; Wang, T.; White, C.

    2018-04-01

    The Empirical Galaxy Generator (EGG) generates fake galaxy catalogs and images with realistic positions, morphologies and fluxes from the far-ultraviolet to the far-infrared. The catalogs are generated by egg-gencat and stored in binary FITS tables (column oriented). Another program, egg-2skymaker, is used to convert the generated catalog into ASCII tables suitable for ingestion by SkyMaker (ascl:1010.066) to produce realistic high resolution images (e.g., Hubble-like), while egg-gennoise and egg-genmap can be used to generate the low resolution images (e.g., Herschel-like). These tools can be used to test source extraction codes, or to evaluate the reliability of any map-based science (stacking, dropout identification, etc.).

  13. Entropy and galaxy clustering

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1988-01-01

    The notion of a p-particle entropy Sp introduced by Kandrup (1987) is applied here to a Newtonian cosmology modeled as an expanding system of identical point masses studying the time dependence of S1 and S2 in the framework of the linearized theory considered by Fall and Saslaw (1976). It is found that if, at some initial time t0, the galaxy-galaxy correlation function vanished, then S1(t0) = S2(t0). At least for short times t - t0 thereafter, S1 and Delta S = S1 - S2 increase on a characteristic time scale. For all times t after t0, S1(t) = S2(t) or greater. 13 references

  14. Structure in radio galaxies

    International Nuclear Information System (INIS)

    Breugel, W. van.

    1980-01-01

    It is shown that radio jets are a rather common phenomenon in radio galaxies. Jets can be disguised as trails in head-tail sources, bridges in double sources or simply remain undetected because of lack of resolution and sensitivity. It is natural to associate these jets with the channels which had previously been suggested to supply energy to the extended radio lobes. The observations of optical emission suggest that a continuous non-thermal spectrum extending from 10 9 to 10 15 Hz is a common property of jets. Because significant amounts of interstellar matter are also observed in each of the galaxies surveyed it seems that models for jets which involve an interaction with this medium may be most appropriate. New information about the overall structure of extended radio sources has been obtained from the detailed multifrequency study with the WSRT. (Auth.)

  15. Galaxy clusters and cosmology

    CERN Document Server

    White, S

    1994-01-01

    Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...

  16. The environments of Markarian galaxies

    International Nuclear Information System (INIS)

    Mackenty, J.W.; Simpson, C.; Mclean, B.

    1990-01-01

    The extensively studied Markarian sample of 1500 ultraviolet excess galaxies contains many Seyfert, starburst, and peculiar galaxies. Using the 20 minute V plates obtained for the construction of the Hubble Space Telescope Guide Star Catalog, the authors investigated the morphologies of the Markarian galaxies and the environments in which they are located. The relationship between the types of nuclear activity and the morphologies and environments of the Markarian galaxies is discussed. The authors conclude that the type of nuclear activity present in the galaxies of the Markarian sample is not dependent on either the morphology or the local environment of the galaxy. This is not to imply that nuclear activity per se is not influenced by the environment in which the nucleus is located. Rather the type of nuclear activity (at least in the Markarian population) does not appear to be determined by the environment

  17. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.

    1982-01-01

    This work is a theoretical investigation of the mechanisms and results of mergers of elliptical galaxies. An N-body code is developed to simulate the dynamics of centrally concentrated collisionless systems. It is used for N-body simulations of the mergers of galaxies with mass ratios of 1:1, 2:1 and 3:1 with a total of 1200 or 2400 particles. The initial galaxies are spherical and non-rotating with Hubble type profiles and isotropic velocity distributions. The remnants are flattened (up to E4) and are oblate, triaxial or prolate depending on the impact parameter. Equal mass mergers are more flattened than unequal mass mergers and have significant velocity anisotropies. The remnants have Hubble type profiles with decreased central surface brightness and increased core radii and tidal radii. In some unequal mass mergers ''isothermal'' haloes tend to form. The density profiles are inconsistent with De Vaucouleurs profiles even though the initial profiles were not. The central velocity dispersion increases in 1:1 and 2:1 mass mergers but decreases in 3:1 mass mergers. Near head-on mergers lead to prolate systems with little rotation while high angular momentum mergers lead to oblate systems with strong rotation. The rotation curves show solid body rotation out to the half mass radius followed by a slow decline. Radial mixing is strong in equal mass mergers where it will weaken radial gradients. In unequal mass mergers there is little radial mixing but matter from the smaller galaxy ends up in the outer parts of the system where it can give rise to colour gradient

  18. Galaxies with long tails

    International Nuclear Information System (INIS)

    Schweizer, F.

    1978-01-01

    Two types of galaxies with long tails are described. The first occurs in pairs, each individual one having a long tail and the second occurs on its own with two tails. NGC 7252 shows several characteristics which one would expect of a merger: a pair of tidal tails despite the splendid isolation, a single nucleus, tail motions in opposite directions relative to the nucleus, and chaotic motions of a strangely looped main body. (C.F.)

  19. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.; Consiglio Nazionale delle Ricerche, Frascati

    1989-01-01

    In principle, a good model of galactic chemical evolution should fulfil the majority of well established observational constraints. The goal of this paper is to review the observational data together with the existing chemical evolution models for the Milky Way (the disk), Blue Compact and Elliptical galaxies and to show how well the models can account for the observations. Some open problems and future prospects are also discussed. (author)

  20. GALAXY CLUSTERS IN THE IRAC DARK FIELD. II. MID-INFRARED SOURCES

    International Nuclear Information System (INIS)

    Krick, J. E.; Surace, J. A.; Yan, L.; Thompson, D.; Ashby, M. L. N.; Hora, J. L.; Gorjian, V.

    2009-01-01

    We present infrared (IR) luminosities, star formation rates (SFR), colors, morphologies, locations, and active galactic nuclei (AGNs) properties of 24 μm detected sources in photometrically detected high-redshift clusters in order to understand the impact of environment on star formation (SF) and AGN evolution in cluster galaxies. We use three newly identified z = 1 clusters selected from the IRAC dark field; the deepest ever mid-IR survey with accompanying, 14 band multiwavelength data including deep Hubble Space Telescope imaging and deep wide-area Spitzer MIPS 24 μm imaging. We find 90 cluster members with MIPS detections within two virial radii of the cluster centers, of which 17 appear to have spectral energy distributions dominated by AGNs and the rest dominated by SF. We find that 43% of the star-forming sample have IR luminosities L IR > 10 11 L sun (luminous IR galaxies). The majority of sources (81%) are spirals or irregulars. A large fraction (at least 25%) show obvious signs of interactions. The MIPS-detected member galaxies have varied spatial distributions as compared to the MIPS-undetected members with one of the three clusters showing SF galaxies being preferentially located on the cluster outskirts, while the other two clusters show no such trend. Both the AGN fraction and the summed SFR of cluster galaxies increase from redshift zero to one, at a rate that is a few times faster in clusters than over the same redshift range in the field. Cluster environment does have an effect on the evolution of both AGN fraction and SFR from redshift one to the present, but does not affect the IR luminosities or morphologies of the MIPS sample. SF happens in the same way regardless of environment making MIPS sources look the same in the cluster and field, however the cluster environment does encourage a more rapid evolution with time as compared to the field.

  1. THE NATURE OF EXTREMELY RED H - [4.5] > 4 GALAXIES REVEALED WITH SEDS AND CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Caputi, K. I.; Dunlop, J. S.; McLure, R. J.; Cirasuolo, M. [SUPA, Institute for Astronomy, The University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Huang, J.-S.; Fazio, G. G.; Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Castellano, M.; Fontana, A. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio (Italy); Almaini, O. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Donley, J. L.; Ferguson, H. C.; Grogin, N. A.; Koekemoer, A. M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Faber, S. M.; Kocevski, D. D.; Koo, D. C. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Giavalisco, M., E-mail: karina@astro.rug.nl [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2012-05-01

    We have analyzed a sample of 25 extremely red H - [4.5] > 4 galaxies, selected using 4.5 {mu}m data from the Spitzer SEDS survey and deep H-band data from the Hubble Space Telescope CANDELS survey, over {approx}180 arcmin{sup 2} of the UKIDSS Ultra-Deep Survey field. Our aim is to investigate the nature of this rare population of mid-infrared (mid-IR) sources that display such extreme near-to-mid-IR colors. Using up to 17-band photometry (U through 8.0 {mu}m), we have studied in detail their spectral energy distributions, including possible degeneracies in the photometric redshift/internal extinction (z{sub phot}-A{sub V} ) plane. Our sample appears to include sources of very different nature. Between 45% and 75% of them are dust-obscured, massive galaxies at 3 < z{sub phot} < 5. All of the 24 {mu}m detected sources in our sample are in this category. Two of these have S(24 {mu}m)>300 {mu}Jy, which at 3 < z{sub phot} < 5 suggests that they probably host a dust-obscured active galactic nucleus. Our sample also contains four highly obscured (A{sub V} > 5) sources at z{sub phot} < 1. Finally, we analyze in detail two z{sub phot} {approx} 6 galaxy candidates, and discuss their plausibility and implications. Overall, our red galaxy sample contains the tip of the iceberg of a larger population of z > 3 galaxies to be discovered with the future James Webb Space Telescope.

  2. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter [Spitzer Science Center-Caltech, MS 314-6, Pasadena, CA 91125 (United States); Arendt, Richard G. [CRESST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Romanowsky, Aaron J. [Department of Physics and Astronomy, San José State University, One Washington Square, San Jose, CA 95192 (United States); Martínez-Delgado, David [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Ashby, Matthew L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davies, James E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Majewski, Stephen R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); GaBany, R. Jay, E-mail: seppo@ipac.caltech.edu [Black Bird Observatory, 5660 Brionne Drive, San Jose, CA 95118 (United States)

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distribution with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.

  3. SHARDS: a spectro-photometric analysis of distant red and dead massive galaxies

    Science.gov (United States)

    Pérez-González, P. G.; Cava, A.; The Shards Team

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey carried out with GTC/OSIRIS and designed to select and study massive passively evolving galaxies at z= 1.0--2.5 in the GOODS-N field. The survey uses a set of 24 medium band filters (FWHM ˜15 nm) covering the 500--950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ˜280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) construct for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg(UV) or D(4000) indices; (3) measure their redshift with an accuracy Δ z/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  4. Clustering of galaxies around gamma-ray burst sight-lines

    DEFF Research Database (Denmark)

    Sudilovsky, V.; Greiner, J.; Rau, A.

    2013-01-01

    -lines, as strong MgII tends to trace these sources. In this work, we test this expectation by calculating the two point angular correlation function of galaxies within 120'' (~470 h Kpc470h71-1Kpc at z ~ 0.4) of GRB afterglows. We compare the gamma-ray burst optical and near-infrared detector (GROND) GRB afterglow.......3. This result is contrary to the expectations from the MgII excess derived from GRB afterglow spectroscopy, although many confirmed galaxy counterparts to MgII absorbers may be too faint to detect in our sample-especially those at z > 1. We note that the addition of higher sensitivity Spitzer/IRAC or HST/WFC3......There is evidence of an overdensity of strong intervening MgII absorption line systems distributed along the lines of sight toward gamma-ray burst (GRB) afterglows relative to quasar sight-lines. If this excess is real, one should also expect an overdensity of field galaxies around GRB sight...

  5. YOUNG, ULTRAVIOLET-BRIGHT STARS DOMINATE DUST HEATING IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A.

    2011-01-01

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region-the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  6. ARCHANGEL: Galaxy Photometry System

    Science.gov (United States)

    Schombert, James

    2011-07-01

    ARCHANGEL is a Unix-based package for the surface photometry of galaxies. While oriented for large angular size systems (i.e. many pixels), its tools can be applied to any imaging data of any size. The package core contains routines to perform the following critical galaxy photometry functions: sky determination; frame cleaning; ellipse fitting; profile fitting; and total and isophotal magnitudes. The goal of the package is to provide an automated, assembly-line type of reduction system for galaxy photometry of space-based or ground-based imaging data. The procedures outlined in the documentation are flux independent, thus, these routines can be used for non-optical data as well as typical imaging datasets. ARCHANGEL has been tested on several current OS's (RedHat Linux, Ubuntu Linux, Solaris, Mac OS X). A tarball for installation is available at the download page. The main routines are Python and FORTRAN based, therefore, a current installation of Python and a FORTRAN compiler are required. The ARCHANGEL package also contains Python hooks to the PGPLOT package, an XML processor and network tools which automatically link to data archives (i.e. NED, HST, 2MASS, etc) to download images in a non-interactive manner.

  7. Triaxiality in elliptical galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Benacchio, L; Galletta, G [Padua Univ. (Italy). Ist. di Astronomia

    1980-12-01

    The existence of a triaxial shape for elliptical galaxies has been considered in recent years to explain the new kinematical and geometrical findings, i.e. (a) the low rotation/velocity dispersion ratio found also in some flat systems, (b) the presence of twisting in the isophotes, (c) the recently found correlation between maximum twisting and maximum flattening, (d) the presence of rotation along the minor axis. A simple geometrical model of elliptical galaxies having shells with different axial ratios c/a, b/a has been produced to interpret three fundamental key-features of elliptical galaxies: (i) the distribution of the maximum flattening observed; (ii) the percentage of ellipticals showing twisting; and (iii) the correlation between maximum twisting and maximum flattening. The model has been compared with observational data for 348 elliptical systems as given by Strom and Strom. It is found that a triaxial ellipsoid with coaxial shells having axial ratios c/a and b/a mutually dependent in a linear way can satisfy the observations.

  8. Angular momentum content of galaxies

    International Nuclear Information System (INIS)

    Shaya, E.J.; Tully, R.B.

    1984-01-01

    A schema of galaxy formation is developed in which the environmental influence of large-scale structure plays a dominant role. This schema was motivated by the observation that the fraction of E and S0 galaxies is much higher in clusters than in low-density regions and by an inference that those spirals that are found in clusters probably have fallen in relatively recently from the low-density regions. It is proposed that the tidal field of the Local Supercluster acts to determine the morphology of galaxies through two complementary mechanisms. In the first place, the supercluster can apply torques to protogalaxies. Galaxies which collapsed while expanding away from the central cluster decoupled from the external tidal field and conserved the angular momentum that they acquired before collapse. Galaxies which formed in the cluster while the cluster collapsed continued to feel the tidal field. In the latter case, the spin of outer collapsing layers can be halted and reversed, and tends to cancel the spin of inner layers. The result is a reduction of the total angular momentum content of the galaxy. In addition, the supercluster tidal field can regulate accretion of fresh material onto the galaxies since the field creates a Roche limit about galaxies and material beyond this limit is lost. Any material that has not collapsed onto a galaxy by the time the galaxy falls into a cluster will be tidally stripped. The angular momentum content of that part of the protogalactic cloud which has not yet collapsed . continues to grow linearly with time due to the continued torquing by the supercluster and neighbors. Galaxies at large distances from the cluster core can continue to accrete this high angular momentum material until the present, but galaxies that enter the cluster are cut off from replenishing material

  9. Dynamical processes in galaxy centers

    International Nuclear Information System (INIS)

    Combes, Francoise

    2012-01-01

    How does the gas get in nuclear regions to fuel black holes? How efficient is the feedback? The different processes to cause rapid gas inflow (or outflow) in galaxy centers are reviewed. Non axisymmetries can be created or maintained by internal disk instabilities, or galaxy interactions. Simulations and observations tell us that the fueling is a chaotic and intermittent process, with different scenarios and time-scales, according to the various radial scales across a galaxy.

  10. Dynamical aspects of galaxy clustering

    International Nuclear Information System (INIS)

    Fall, S.M.

    1980-01-01

    Some recent work on the origin and evolution of galaxy clustering is reviewed, particularly within the context of the gravitational instability theory and the hot big-bang cosmological model. Statistical measures of clustering, including correlation functions and multiplicity functions, are explained and discussed. The close connection between galaxy formation and clustering is emphasized. Additional topics include the dependence of galaxy clustering on the spectrum of primordial density fluctuations and the mean mass density of the Universe. (author)

  11. The evolution of the rest-frame J- and H-band luminosity function of galaxies to z=3.5

    OpenAIRE

    Stefanon, Mauro; Marchesini, Danilo

    2011-01-01

    We present the rest-frame J- and H-band luminosity function (LF) of field galaxies, based on a deep multi-wavelength composite sample from the MUSYC, FIRES and FIREWORKS survey public catalogues, covering a total area of 450 arcmin^2. The availability of flux measurements in the Spitzer IRAC 3.6, 4.5, 5.8, and 8 um channels allows us to compute absolute magnitudes in the rest-frame J and H bands up to z=3.5 minimizing the dependence on the stellar evolution models. We compute the LF in the fo...

  12. Galaxy Alignments: Theory, Modelling & Simulations

    Science.gov (United States)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  13. Nature of galaxy spiral arms

    International Nuclear Information System (INIS)

    Efremov, Yu.N.

    1984-01-01

    The nature of galaxy spiral arms is discussed in a popular form. Two approaches in the theory of spiral arms are considered; they are related to the problem of differential galaxy rotation and the spiral structure wave theory. The example of Galaxy M31 is considered to compare the structural peculiarity of its spiral arms with the wave theory predictions. The situation in the central and south-eastern part of arm S4 in Galaxy M31 noted to be completely explained by the wave theory and modern concepts on the origin of massive stars

  14. Galaxies a very short introduction

    CERN Document Server

    Gribbin, John

    2008-01-01

    Galaxies: A Very Short Introduction explores the building blocks of the Universe. Standing like islands in space, each is made up of many hundreds of millions of stars in which the chemical elements are made, around which planets form, and where on at least one of those planets intelligent life has emerged. Our own galaxy, the Milky Way, is just one of several hundred million other galaxies. Yet it was only in the 1920s that we realised that there is more to the Universe. Since then, many exciting discoveries have been made about our own galaxy and about those beyond.

  15. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki

    1987-01-01

    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  16. Globular clusters and galaxy halos

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1984-01-01

    Using semipartial correlation coefficients and bootstrap techniques, a study is made of the important features of globular clusters with respect to the total number of galaxy clusters and dependence of specific galaxy cluster on parent galaxy type, cluster radii, luminosity functions and cluster ellipticity. It is shown that the ellipticity of LMC clusters correlates significantly with cluster luminosity functions, but not with cluster age. The cluter luminosity value above which globulars are noticeably flattened may differ by a factor of about 100 from galaxy to galaxy. Both in the Galaxy and in M31 globulars with small core radii have a Gaussian distribution over luminosity, whereas clusters with large core radii do not. In the cluster systems surrounding the Galaxy, M31 and NGC 5128 the mean radii of globular clusters was found to increase with the distance from the nucleus. Central galaxies in rich clusters have much higher values for specific globular cluster frequency than do other cluster ellipticals, suggesting that such central galaxies must already have been different from normal ellipticals at the time they were formed

  17. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  18. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    Science.gov (United States)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  19. The intrinsic shape of galaxies in SDSS/Galaxy Zoo

    Science.gov (United States)

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-09-01

    By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.

  20. THE DENSEST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Seth, Anil C. [University of Utah, Salt Lake City, UT 84112 (United States); Forbes, Duncan A.; Pota, Vincenzo; Usher, Christopher [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Fabbiano, Giuseppina; Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Romanowsky, Aaron J. [Department of Physics and Astronomy, San José State University, San Jose, CA 95192 (United States); Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories/Lick Observatory, Santa Cruz, CA 95064 (United States); Conroy, Charlie, E-mail: strader@pa.msu.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-09-20

    We report the discovery of a remarkable ultra-compact dwarf galaxy around the massive Virgo elliptical galaxy NGC 4649 (M60), which we call M60-UCD1. With a dynamical mass of 2.0 × 10{sup 8} M {sub ☉} but a half-light radius of only ∼24 pc, M60-UCD1 is more massive than any ultra-compact dwarfs of comparable size, and is arguably the densest galaxy known in the local universe. It has a two-component structure well fit by a sum of Sérsic functions, with an elliptical, compact (r{sub h} = 14 pc; n ∼ 3.3) inner component and a round, exponential, extended (r{sub h} = 49 pc) outer component. Chandra data reveal a variable central X-ray source with L{sub X} ∼ 10{sup 38} erg s{sup –1} that could be an active galactic nucleus associated with a massive black hole or a low-mass X-ray binary. Analysis of optical spectroscopy shows the object to be old (∼> 10 Gyr) and of solar metallicity, with elevated [Mg/Fe] and strongly enhanced [N/Fe] that indicates light-element self-enrichment; such self-enrichment may be generically present in dense stellar systems. The velocity dispersion (σ ∼ 70 km s{sup –1}) and resulting dynamical mass-to-light ratio (M/L{sub V} = 4.9 ± 0.7) are consistent with—but slightly higher than—expectations for an old, metal-rich stellar population with a Kroupa initial mass function. The presence of a massive black hole or a mild increase in low-mass stars or stellar remnants is therefore also consistent with this M/L{sub V} . The stellar density of the galaxy is so high that no dynamical signature of dark matter is expected. However, the properties of M60-UCD1 suggest an origin in the tidal stripping of a nucleated galaxy with M{sub B} ∼ –18 to –19.

  1. Where do galaxies end?

    Energy Technology Data Exchange (ETDEWEB)

    Shull, J. Michael, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USAAND (United States); Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom)

    2014-04-01

    Our current view of galaxies considers them as systems of stars and gas embedded in extended halos of dark matter, much of it formed by the infall of smaller systems at earlier times. The true extent of a galaxy remains poorly determined, with the 'virial radius' (R {sub vir}) providing a characteristic separation between collapsed structures in dynamical equilibrium and external infalling matter. Other physical estimates of the extent of gravitational influence include the gravitational radius, gas accretion radius, and 'galactopause' arising from outflows that stall at 100-200 kpc over a range of outflow parameters and confining gas pressures. Physical criteria are proposed to define bound structures, including a more realistic definition of R {sub vir}(M {sub *}, M{sub h} , z{sub a} ) for stellar mass M {sub *} and halo mass M{sub h} , half of which formed at 'assembly redshifts' ranging from z{sub a} ≈ 0.7-1.3. We estimate the extent of bound gas and dark matter around L* galaxies to be ∼200 kpc. The new virial radii, with mean (R {sub vir}) ≈ 200 kpc, are 40%-50% smaller than values estimated in recent Hubble Space Telescope/Cosmic Origins Spectrograph detections of H I and O VI absorbers around galaxies. In the new formalism, the Milky Way stellar mass, log M {sub *} = 10.7 ± 0.1, would correspond to R{sub vir}=153{sub −16}{sup +25} kpc for half-mass halo assembly at z{sub a} = 1.06 ± 0.03. The frequency per unit redshift of low-redshift O VI absorption lines in QSO spectra suggests absorber sizes ∼150 kpc when related to intervening 0.1L* galaxies. This formalism is intended to clarify semantic differences arising from observations of extended gas in galactic halos, circumgalactic medium (CGM), and filaments of the intergalactic medium (IGM). Astronomers should refer to bound gas in the galactic halo or CGM, and unbound gas at the CGM-IGM interface, on its way into the IGM.

  2. Star Formation Rates and Stellar Masses of z = 7-8 Galaxies from IRAC Observations of the WFC3/IR Early Release Science and the HUDF Fields

    Science.gov (United States)

    Labbé, I.; González, V.; Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Trenti, M.; Oesch, P. A.; van Dokkum, P. G.; Stiavelli, M.; Carollo, C. M.; Kriek, M.; Magee, D.

    2010-06-01

    We investigate the Spitzer/IRAC properties of 36 z ~ 7 z 850-dropout galaxies and three z ~ 8 Y 098 galaxies derived from deep/wide-area WFC3/IR data of the Early Release Science, the ultradeep HUDF09, and wide-area NICMOS data. We fit stellar population synthesis models to the spectral energy distributions to derive mean redshifts, stellar masses, and ages. The z ~ 7 galaxies are best characterized by substantial ages (>100 Myr) and M/LV ≈ 0.2. The main trend with decreasing luminosity is that of bluing of the far-UV slope from β ~ -2.0 to β ~ -3.0. This can be explained by decreasing metallicity, except for the lowest luminosity galaxies (0.1L* z = 3), where low metallicity and smooth star formation histories (SFHs) fail to match the blue far-UV and moderately red H - [3.6] color. Such colors may require episodic SFHs with short periods of activity and quiescence ("on-off" cycles) and/or a contribution from emission lines. The stellar mass of our sample of z ~ 7 star-forming galaxies correlates with star formation rate (SFR) according to log M* = 8.70(±0.09) + 1.06(±0.10)log SFR, implying that star formation may have commenced at z > 10. No galaxies are found with SFRs much higher or lower than the past averaged SFR suggesting that the typical star formation timescales are probably a substantial fraction of the Hubble time. We report the first IRAC detection of Y 098-dropout galaxies at z ~ 8. The average rest-frame U - V ≈ 0.3 (AB) of the three galaxies are similar to faint z ~ 7 galaxies, implying similar M/L. The stellar mass density to M UV,AB Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11563, 9797. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through contract 125790 issued by JPL/Caltech. Based on service

  3. Interactions between intergalactic medium and galaxies

    International Nuclear Information System (INIS)

    Einasto, J.; Saar, E.

    1977-01-01

    The interaction of galaxies with the environmental gas both in clusters and in small groups of galaxies is investigated. Interaction between galaxies and the ambient medium can be considered simply as final touches in the process of galaxy formation. Large relative velocities of galaxies in their clusters and of the intercluster gas result in a loss of the intergalactic gas, that in its turn affects the morphology of cluster galaxies. Interaction between the coronal clouds and the gas in the disk of spiral galaxies may result in regular patterns of star formation and in the bending of planes of galaxies

  4. The present-day galaxy population in spiral galaxies

    NARCIS (Netherlands)

    Peletier, Reynier; Antonelli, LA; Limongi, M; Menci, N; Tornambe, A; Brocato, E; Raimondo, G

    2009-01-01

    Although there are many more stellar population studies of elliptical and lenticular galaxies, studies of spiral galaxies are catching up, due to higher signal to noise data on one hand, and better analysis methods on the other. Here I start by discussing some modern methods of analyzing integrated

  5. Ultraviolet Extinction in Backlit Galaxies - from Galaxy Zoo to GALEX

    Science.gov (United States)

    Keel, William C.; Manning, A.; Holwerda, B. W.; Lintott, C.; Schawinski, K.; Galaxy Zoo Team

    2012-01-01

    We examine the ultraviolet extinction of galaxies on large scales, combining optical and GALEX UV data on backlit galaxies (most found in the Galaxy Zoo citizen-science project). We analyze the images in matching ways, modelling both foreground and background galaxies by symmetry or elliptical isophote families as appropriate, and using the non-overlapping regions of the galaxies to estimate errors in the derived transmission T=e-κ. Spirals appear less symmetric in the UV, as star-forming regions become more dominant, so that our most reliable results are mean values across multiple regions and multiple galaxies. Our mean effective extinction curve is dominated by the contribution of luminous spirals,and shows a fairly flat gray" extinction law into the ultraviolet. For example, the median of κNUV/κB in spiral arms is only 1.3. Along with previous high-resolution HST studies of a few nearby backlit galaxies, this suggests that on kpc scales the effective extinction is dominated by the dust clumping rather than the intrinsic reddening law. This implies that extrapolation of local properties to short wavelengths, a step toward the history of dust in galaxies through comparison of local properties with a similar analysis in deep HST fields, can be done without introducing much additional error. This work was supported by NASA Astrophysics Data Analysis Program grant NNX10AD54G.

  6. The dwarf galaxy population of nearby galaxy clusters

    NARCIS (Netherlands)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass

  7. Mid-infrared spectroscopy of starbursts : from Spitzer-IRS to JWST-MIRI

    NARCIS (Netherlands)

    Martínez-Galarza, Juan Rafael

    2012-01-01

    The Spectral Energy Distributions (SEDs) of star-forming regions and starburst galaxies are unique tracers of the star formation processes in these environments, since they contain information on the escaping and processed photons emitted by newly formed massive stars. Understanding these internal

  8. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.