WorldWideScience

Sample records for galactic cooling flows

  1. The absorption and emission spectrum of radiative cooling galactic fountain gas

    Science.gov (United States)

    Benjamin, Robert A.; Shapiro, Paul R.

    1993-01-01

    We have calculated the time-dependent, nonequilibrium thermal and ionization history of gas cooling radiatively from 10(exp 6) K in a one-dimensional, planar, steady-state flow model of the galactic fountain, including the effects of radiative transfer. Our previous optically thin calculations explored the effects of photoionization on such a flow and demonstrated that self-ionization was sufficient to cause the flow to match the observed galactic halo column densities of C 4, Si 4, and N 5 and UV emission from C 4 and O 3 in the constant density (isochoric) limit, which corresponded to cooling regions homogeneous on scales D less than or approximately equal to 1 kpc. Our new calculations which take full account of radiative transfer confirm the importance of self-ionization in enabling such a flow to match the data but allow a much larger range for cooling region sizes, i.e. D(sub 0) greater than or approximately equal to 15 pc. For an initial flow velocity v(sub 0) approximately equal to 100 km/s, comparable to the sound speed of a 10(exp 6) K gas, the initial density is found to be n(sub h,0) is approximately 2 x 10(exp -2) cm(exp -3), in reasonable agreement with other observation estimates, and D(sub 0) is approximately equal to 40 pc. We also compare predicted H(alpha) fluxes, UV line emission, and broadband x-ray fluxes with observed values. One dimensional numerical hydrodynamical calculations including the effects of radiative cooling are also presented.

  2. Evolution of hot galactic flows

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1987-01-01

    The time-dependent equations describing galactic flows, including detailed models for the evolving source terms, are integrated over a Hubble time for two elliptical galaxies with total masses of 3.1 x 10 to the 12th and 8.3 x 10 to the 12th solar masses, 90 percent of which resides in extended, nonluminous halos. The standard supernova rate of Tammann and a rate 4 times smaller are considered for each galaxy model. The combination of the extended gravitational potential of the dark halo and the time-dependent source terms generally lead to the development of massive, quasi-hydrostatic, nearly isothermal distributions of gas at about 10 to the 7th K with cooling inflows inside their galactic cores. For the less massive galaxy with the higher supernova rate, however, a low-luminosity supersonic galactic wind develops. The effects of a lowered metal abundance, thermal conduction, and the absence of a massive halo are explored separately for one of the present models. The X-ray luminosities of the hot gas in the models with dark halos and the lower supernova rate are in good agreement with Einstein observations of early-type galaxies. 42 references

  3. Models of steady state cooling flows in elliptical galaxies

    International Nuclear Information System (INIS)

    Vedder, P.W.; Trester, J.J.; Canizares, C.R.

    1988-01-01

    A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount. 37 references

  4. Magnetic braking in galactic flows

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1982-01-01

    The nuclear fireworks of active galaxies are believed to derive their power from the kinetic energy of gas falling onto a massive central objects; mass shed from evolving galactic stars is an obvious source of fuel for this process. But this ejected material shares the galactic rotation, and a centrifugal barrier will prevent it from reaching the nucleus, if its angular momentum is not removed. This paper shows that, if the large-scale galactic magnetic field has a strong enough radial component, magnetic torques can act to spin down the infalling matter. Rotation of the interstellar gas induces a toroidal magnetic field, and Maxwell stresses remove angular momentum from the flow; gas can then fall inward to the galactic center. In this way, the monster in the nucleus can be fed on gas from a galaxy's own stars. The magnetic fields in M87 and NGC 1275, giant elliptical galaxies which are accreting from an intracluster medium, appear to be strong enough to allow magnetic braking

  5. Cooling Timescale of Dust Tori in Dying Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Kohei [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Tazaki, Ryo, E-mail: k.ichikawa@astro.columbia.edu [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2017-07-20

    We estimate the dust torus cooling timescale once the active galactic nucleus (AGN) is quenched. In a clumpy torus system, once the incoming photons are suppressed, the cooling timescale of one clump from T {sub dust} = 1000 K to several 10 K is less than 10 years, indicating that the dust torus cooling time is mainly governed by the light crossing time of the torus from the central engine. After considering the light crossing time of the torus, the AGN torus emission at 12 μ m becomes over two orders of magnitude fainter within 100 years after the quenching. We also propose that those “dying” AGNs could be found using the AGN indicators with a different physical scale R such as 12 μ m band luminosity tracing AGN torus ( R ∼ 10 pc) and the optical [O iii] λ 5007 emission line tracing narrow line regions ( R = 10{sup 2–4} pc).

  6. ANISOTROPIC THERMAL CONDUCTION AND THE COOLING FLOW PROBLEM IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Parrish, Ian J.; Sharma, Prateek; Quataert, Eliot

    2009-01-01

    We examine the long-standing cooling flow problem in galaxy clusters with three-dimensional magnetohydrodynamics simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of ∼200 Myr or shorter-in order to prevent a cooling catastrophe the ICM must be heated by some mechanism such as active galactic nucleus feedback or thermal conduction from the thermal reservoir at large radii. The cores of galaxy clusters are linearly unstable to the heat-flux-driven buoyancy instability (HBI), which significantly changes the thermodynamics of the cluster core. The HBI is a convective, buoyancy-driven instability that rearranges the magnetic field to be preferentially perpendicular to the temperature gradient. For a wide range of parameters, our simulations demonstrate that in the presence of the HBI, the effective radial thermal conductivity is reduced to ∼<10% of the full Spitzer conductivity. With this suppression of conductive heating, the cooling catastrophe occurs on a timescale comparable to the central cooling time of the cluster. Thermal conduction alone is thus unlikely to stabilize clusters with low central entropies and short central cooling timescales. High central entropy clusters have sufficiently long cooling times that conduction can help stave off the cooling catastrophe for cosmologically interesting timescales.

  7. Forced flow cooling of ISABELLE dipole magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Aggus, J.; Brown, D.P.; Kassner, D.A.; Sondericker, J.H.; Strobridge, T.R.

    1976-01-01

    The superconducting magnets for ISABELLE will use a forced flow supercritical helium cooling system. In order to evaluate this cooling scheme, two individual dipole magnets were first tested in conventional dewars using pool boiling helium. These magnets were then modified for forced flow cooling and retested with the identical magnet coils. The first evaluation test used a l m-long ISA model dipole magnet whose pool boiling performance had been established. The same magnet was then retested with forced flow cooling, energizing it at various operating temperatures until quench occurred. The magnet performance with forced flow cooling was consistent with data from the previous pool boiling tests. The next step in the program was a full-scale ISABELLE dipole ring magnet, 4.25 m long, whose performance was first evaluated with pool boiling. For the forced flow test the magnet was shrunk-fit into an unsplit laminated core encased in a stainless steel cylinder. The high pressure gas is cooled below 4 K by a helium bath which is pumped below atmospheric pressure with an ejector nozzle. The performance of the full-scale dipole magnet in the new configuration with forced flow cooling, showed a 10 percent increase in the attainable maximum current as compared to the pool boiling data

  8. First detection of the white dwarf cooling sequence of the galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Calamida, A.; Sahu, K. C.; Anderson, J.; Casertano, S.; Brown, T.; Sokol, J.; Bond, H. E.; Ferguson, H.; Livio, M.; Valenti, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S.; Buonanno, R.; Pietrinferni, A. [Osservatorio Astronomico di Teramo—INAF, Via M. Maggini, I-64100 Teramo (Italy); Salaris, M. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Ferraro, I. [Osservatorio Astronomico di Roma—INAF, Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Clarkson, W., E-mail: calamida@stsci.edu [University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States)

    2014-08-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr{sup –1} (≈4 km s{sup –1}) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr{sup –1} (≈20 km s{sup –1}) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.

  9. First detection of the white dwarf cooling sequence of the galactic bulge

    International Nuclear Information System (INIS)

    Calamida, A.; Sahu, K. C.; Anderson, J.; Casertano, S.; Brown, T.; Sokol, J.; Bond, H. E.; Ferguson, H.; Livio, M.; Valenti, J.; Cassisi, S.; Buonanno, R.; Pietrinferni, A.; Salaris, M.; Ferraro, I.; Clarkson, W.

    2014-01-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr –1 (≈4 km s –1 ) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr –1 (≈20 km s –1 ) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.

  10. Topological charge using cooling and the gradient flow

    International Nuclear Information System (INIS)

    Alexandrou, C.; Athenodorou, A.; The Cyprus Institute, Nicosia; Jansen, K.

    2015-12-01

    The equivalence of cooling to the gradient flow when the cooling step n c and the continuous flow step of gradient flow τ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate n c and τ and show that the results for the topological charge become equivalent when rescaling τ ≅ n c /(3-15c 1 ) where c 1 is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with N f = 2 + 1 + 1 twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling τ ≅ n c /(3-15c 1 ) leads to equivalent results.

  11. Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings

    International Nuclear Information System (INIS)

    Zhan, Changhong; Duan, Zhiyin; Zhao, Xudong; Smith, Stefan; Jin, Hong; Riffat, Saffa

    2011-01-01

    This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research

  12. Effect of horizontal flow on the cooling of the moderator brick in the advanced gas-cooled reactor

    International Nuclear Information System (INIS)

    Ganesan, P.; He, S.; Hamad, F.; Gotts, J.

    2011-01-01

    The paper reports an investigation of the effect of the horizontal cross flow on the temperature of the moderator brick in UK Advanced Gas-cooled Reactor (AGR) using computational fluid dynamics (CFD) with a conjugate heat transfer model for the solid and fluid. The commercial software package of ANSYS Fluent is used for this purpose. The CFD model comprises the full axial length of one-half of a typical fuel channel (assuming symmetry) and part of neighbouring channels on either side. Two sets of simulations have been carried out, namely, one with cross flow and one without cross flow. The effect of cross flow has subsequently been derived by comparing the results from the two groups of simulations. The study shows that a small cross flow can have a significant effect on the cooling of the graphite brick, causing the peak temperature of the brick to reduce significantly. Two mechanisms are identified to be responsible for this. Firstly, the small cross flow causes a significant redistribution of the main axial downward flow and this leads to an enhancement of heat transfer in some of the small clearances, and an impairment in others although overall, the enhancement is dominant leading to a better cooling. Secondly, the cross flow makes effective use of the small clearances between the key/keyway connections which increases the effective heat transfer area, hence increasing the cooling. Under the conditions of no cross flow, these areas remain largely inactive in heat transfer. The study shows that the cooling of the moderator is significantly enhanced by the cross flow perpendicular to the main cooling flow. (author)

  13. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  14. Thermographic venous blood flow characterization with external cooling stimulation

    Science.gov (United States)

    Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh

    2018-05-01

    Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.

  15. A system for cooling electronic elements with an EHD coolant flow

    International Nuclear Information System (INIS)

    Tanski, M; Kocik, M; Barbucha, R; Garasz, K; Mizeraczyk, J; Kraśniewski, J; Oleksy, M; Hapka, A; Janke, W

    2014-01-01

    A system for cooling electronic components where the liquid coolant flow is forced with ion-drag type EHD micropumps was tested. For tests we used isopropyl alcohol as the coolant and CSD02060 diodes in TO-220 packages as cooled electronic elements. We have studied thermal characteristics of diodes cooled with EHD flow in the function of a coolant flow rate. The transient thermal impedance of the CSD02060 diode cooled with 1.5 ml/min EHD flow was 7.8°C/W. Similar transient thermal impedance can be achieved by applying to the diode a large RAD-A6405A/150 heat sink. We found out that EHD pumps can be successfully applied for cooling electronic elements.

  16. Modelling of flow and heat transfer in PV cooling channels

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.

  17. Flow directing means for air-cooled transformers

    Science.gov (United States)

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  18. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    Science.gov (United States)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  19. A flow cryostat for cooling of eight independent pipe guns

    DEFF Research Database (Denmark)

    Sørensen, H.; Hansen, J.E.; Sass, B.

    1991-01-01

    A flow cryostat allowing independent cooling of eight pipe guns in a multishot deuterium pellet injector is described. The pipe guns are placed symmetrically around the flow cryostat and with a liquid helium consumption of 4-5 l/h the cooling is sufficient for simultaneous formation of eight...

  20. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    International Nuclear Information System (INIS)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang

    2014-01-01

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  1. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang [Xi' an Jiaotong University, Xi' an (China)

    2014-01-15

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  2. ISM stripping from cluster galaxies and inhomogeneities in cooling flows

    Science.gov (United States)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.

    1990-01-01

    Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide

  3. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    Science.gov (United States)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  4. Flow distribution analysis on the cooling tube network of ITER thermal shield

    International Nuclear Information System (INIS)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-01

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly

  5. Large-eddy simulation of open channel flow with surface cooling

    International Nuclear Information System (INIS)

    Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.

    2014-01-01

    Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the

  6. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  7. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    International Nuclear Information System (INIS)

    Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie

    2017-01-01

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  8. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  9. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    Science.gov (United States)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  10. Device for preventing cooling water from flowing out of reactor

    International Nuclear Information System (INIS)

    Chinen, Masanori; Kotani, Koichi; Murase, Michio.

    1976-01-01

    Object: To provide emergency cooling system, which can prevent cooling water bearing radioactivity from flowing to the outside of the reactor at the time of breakage of feedwater pipe, thus eliminating the possibility of exposure of the fuel rod to provide high reliability and also reducing the possibility of causing radioactive pollution. Structure: The device for preventing cooling water from flowing out from the reactor features a jet nozzle inserted in a feedwater pipe adjacent to the inlet or outlet thereof immediately before the reactor container. The nozzle outlet is provided in the vicinity of the reactor wall and in a direction opposite to the direction of out-flow, and water supplied from a high pressure pump is jetted from it. (Nakamura, S.)

  11. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  12. ON THE ORIGIN OF THE EXTENDED Hα FILAMENTS IN COOLING FLOW CLUSTERS

    International Nuclear Information System (INIS)

    McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Rupke, David S. N.

    2010-01-01

    We present a high spatial resolution Hα survey of 23 cooling flow clusters using the Maryland Magellan Tunable Filter, covering 1-2 orders of magnitude in cooling rate, dM/dt, temperature, and entropy. We find that 8/23 (35%) of our clusters have complex, filamentary morphologies at Hα, while an additional 7/23 (30%) have marginally extended or nuclear Hα emission, in general agreement with previous studies of line emission in cooling flow cluster brightest cluster galaxies. A weak correlation between the integrated near-UV luminosity and the Hα luminosity is also found for our complete sample with a large amount of scatter about the expected relation for photoionization by young stars. We detect Hα emission out to the X-ray cooling radius, but no further, in several clusters and find a strong correlation between the Hα luminosity contained in filaments and the X-ray cooling flow rate of the cluster, suggesting that the warm ionized gas is linked to the cooling flow. Furthermore, we detect a strong enhancement in the cooling properties of the intracluster medium (ICM) coincident with the Hα emission, compared to the surrounding ICM at the same radius. While the filaments in a few clusters may be entrained by buoyant radio bubbles, in general, the radially infalling cooling flow model provides a better explanation for the observed trends. The correlation of the Hα and X-ray properties suggests that conduction may be important in keeping the filaments ionized. The thinness of the filaments suggests that magnetic fields are an important part of channeling the gas and shielding it from the surrounding hot ICM.

  13. Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-02-01

    Full Text Available As one of the most widely used units in water cooling systems, the closed wet cooling towers (CWCTs have two typical counter-flow constructions, in which the spray water flows from the top to the bottom, and the moist air and cooling water flow in the opposite direction vertically (parallel or horizontally (cross, respectively. This study aims to present a simplified calculation method for conveniently and accurately analyzing the thermal performance of the two types of counter-flow CWCTs, viz. the parallel counter-flow CWCT (PCFCWCT and the cross counter-flow CWCT (CCFCWCT. A simplified cooling capacity model that just includes two characteristic parameters is developed. The Levenberg–Marquardt method is employed to determine the model parameters by curve fitting of experimental data. Based on the proposed model, the predicted outlet temperatures of the process water are compared with the measurements of a PCFCWCT and a CCFCWCT, respectively, reported in the literature. The results indicate that the predicted values agree well with the experimental data in previous studies. The maximum absolute errors in predicting the process water outlet temperatures are 0.20 and 0.24 °C for the PCFCWCT and CCFCWCT, respectively. These results indicate that the simplified method is reliable for performance prediction of counter-flow CWCTs. Although the flow patterns of the two towers are different, the variation trends of thermal performance are similar to each other under various operating conditions. The inlet air wet-bulb temperature, inlet cooling water temperature, air flow rate, and cooling water flow rate are crucial for determining the cooling capacity of a counter-flow CWCT, while the cooling tower effectiveness is mainly determined by the flow rates of air and cooling water. Compared with the CCFCWCT, the PCFCWCT is much more applicable in a large-scale cooling water system, and the superiority would be amplified when the scale of water

  14. Analysis of Two Phase Natural Circulation Flow in the Cooling Channel of the PECS

    Energy Technology Data Exchange (ETDEWEB)

    Park, R. J; Ha, K. S; Rhee, B. W; Kim, H. Y [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Decay heat and sensible heat of the relocated and spread corium are removed by the natural circulation flow at the bottom and side wall of the core catcher and the top water cooling of the corium. The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. As shown in Fig. 1, the engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting in the PECS. To maintain the integrity of the ex-vessel core catcher, however, it is necessary that the coolant be sufficiently circulated along the inclined cooling channel to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. For this reason, a verification experiment on the cooling capability of the EU-APR1400 core catcher has been performed in the CE (Cooling Experiment)-PECS facility at KAERI. Preliminary simulations of two-phase natural circulation in the CE-PECS were performed to predict two-phase flow characteristics and to determine the natural circulation mass flow rate in the flow channel. In this study, simulations of two-phase natural circulation in a real core catcher of the PECS have been performed to determine the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code.

  15. Galactic models

    International Nuclear Information System (INIS)

    Buchler, J.R.; Gottesman, S.T.; Hunter, J.H. Jr.

    1990-01-01

    Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings

  16. Constructal tree-shaped two-phase flow for cooling a surface

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2003-07-01

    This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)

  17. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    International Nuclear Information System (INIS)

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  18. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  19. Observation of galactic far-infrared ray

    International Nuclear Information System (INIS)

    Maihara, Toshinori; Oda, Naoki; Okuda, Haruyuki; Sugiyama, Takuya; Sakai, Kiyomi.

    1978-01-01

    Galactic far-infrared was observed to study the spatial distribution of interstellar dust. Far-infrared is emitted by interstellar dust distributing throughout the galactic plane. The observation of far-infrared is very important to study the overall structure of the galaxy, that is the structure of the galactic arm and gas distribution. The balloon experiment was conducted on May 25, 1978. The detector was a germanium bolometer cooled by liquid helium. The size of the detector is 1.6 mm in diameter. The geometrical factor was 4 x 10 3 cm 2 sr. The result showed that the longitude distribution of far-infrared at 150 μm correlated with H 166 α recombination line. This indicates that the observed far-infrared is emitted by interstellar dust heated by photons of Lyman continuum. (Yoshimori, M.)

  20. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    Science.gov (United States)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  1. Concept of CFD model of natural draft wet-cooling tower flow

    Directory of Open Access Journals (Sweden)

    Hyhlík T.

    2014-03-01

    Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  2. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    International Nuclear Information System (INIS)

    Hunsbedt, A.; Boardman, C.E.

    1993-01-01

    A dual passive cooling system for liquid metal cooled nuclear fission reactors is described, comprising the combination of: a reactor vessel for containing a pool of liquid metal coolant with a core of heat generating fissionable fuel substantially submerged therein, a side wall of the reactor vessel forming an innermost first partition; a containment vessel substantially surrounding the reactor vessel in spaced apart relation having a side wall forming a second partition; a first baffle cylinder substantially encircling the containment vessel in spaced apart relation having an encircling wall forming a third partition; a guard vessel substantially surrounding the containment vessel and first baffle cylinder in spaced apart relation having a side wall forming a forth partition; a sliding seal at the top of the guard vessel edge to isolate the dual cooling system air streams; a second baffle cylinder substantially encircling the guard vessel in spaced part relationship having an encircling wan forming a fifth partition; a concrete silo substantially surrounding the guard vessel and the second baffle cylinder in spaced apart relation providing a sixth partition; a first fluid coolant circulating flow course open to the ambient atmosphere for circulating air coolant comprising at lent one down comer duct having an opening to the atmosphere in an upper area thereof and making fluid communication with the space between the guard vessel and the first baffle cylinder and at least one riser duct having an opening to the atmosphere in the upper area thereof and making fluid communication with the space between the first baffle cylinder and the containment vessel whereby cooling fluid air can flow from the atmosphere down through the down comer duct and space between the forth and third partitions and up through the space between the third and second partition and the riser duct then out into the atmosphere; and a second fluid coolant circulating flow

  3. Calculating the evaporated water flow in a wet cooling tower

    International Nuclear Information System (INIS)

    Grange, J.L.

    1994-04-01

    On a cooling tower, it is necessary to determine the evaporated water flow in order to estimate the water consumption with a good accuracy according to the atmospheric conditions, and in order to know the characteristics of the plume. The evaporated flow is small compared to the circulating flow. A direct measurement is very inaccurate and cannot be used. Only calculation can give a satisfactory valuation. The two usable theories are the Merkel's one in which there are some simplifying assumptions, and the Poppe's one which is more exact. Both theories are used in the numerical code TEFERI which has been developed and is run by Electricite de France. The results obtained by each method are compared and validated by measurements made in the hot air of a cooling tower. The consequences of each hypothesis of Merkel's theory are discussed. This theory does not give the liquid water content in the plume and it under-estimates the evaporated flow all the lower the ambient temperature is. On the other hand, the Poppe's method agrees very closely with the measurements as well for the evaporated flow than for the liquid water concentration. This method is used to establish the specific consumption curves of the great nuclear plants cooling towers as well as to calculate the emission of liquid water drops in the plumes. (author). 11 refs., 9 figs

  4. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    Science.gov (United States)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  5. An analytical model on thermal performance evaluation of counter flow wet cooling tower

    Directory of Open Access Journals (Sweden)

    Wang Qian

    2017-01-01

    Full Text Available This paper proposes an analytical model for simultaneous heat and mass transfer processes in a counter flow wet cooling tower, with the assumption that the enthalpy of the saturated air is a linear function of the water surface temperature. The performance of the proposed analytical model is validated in some typical cases. The validation reveals that, when cooling range is in a certain interval, the proposed model is not only comparable with the accurate model, but also can reduce computational complexity. In addition, with the proposed analytical model, the thermal performance of the counter flow wet cooling towers in power plants is calculated. The results show that the proposed analytical model can be applied to evaluate and predict the thermal performance of counter flow wet cooling towers.

  6. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  7. Experimental investigations on the contribution of the splash-zones in counter-flow cooling towers for water cooling

    International Nuclear Information System (INIS)

    Vladea, I.; Barbu, V.

    1976-01-01

    The relatively high cost of cooling tower packs has led to investigate the contribution of the splash-zones in counter-flow cooling towers, and thereby to determine whether the pack could not be reduced so far, as to be - under certain circumstance - completely eliminated. In this case, one would come to a pure splash cooling tower which would contain inside the equipment required for drop formation only. This problem was investigated experimentally, and it was found that the pack of such a cooling tower could not be eliminated without a reduction in tower effectiveness. (orig.) [de

  8. Design of the Flow Plates for a Dual Cooled Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Yoon, Kyung Ho; Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2009-01-01

    In a dual cooled fuel assembly, the array and position of fuels are changed from those of a conventional PWR fuel assembly to achieve a power uprating. The flow plate provides flow holes to direct the heated coolant into/out of the fuel assembly and structural intensity to insure that the fuel rod is axially restrained within the spacer grids. So, flow plates of top/bottom end pieces (TEP/BEP) have to be modified into proper shape. Because the flow holes' area of a flow plate affects pressure drop, the flow holes' area must be larger than/equal to that of conventional flow plates. And design criterion of the TEP/BEP says that the flow plate should withstand a 22.241 kN axial load during handling lest a calculated stress intensity should exceed the Condition I allowable stress. In this paper, newly designed flow plates of a TEP/BEP are suggested and stress analysis is conducted to evaluate strength robustness of the flow plates for the dual cooled fuel assembly

  9. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  10. Vortex Structure Effects on Impingement, Effusion, and Cross Flow Cooling of a Double Wall Configuration

    Science.gov (United States)

    Ligrani, P. M.

    2018-03-01

    A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.

  11. A photoionization model for the optical line emission from cooling flows

    Science.gov (United States)

    Donahue, Megan; Voit, G. M.

    1991-01-01

    The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.

  12. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  13. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  14. Skin cooling on contact with cold materials: the effect of blood flow during short-term exposures.

    Science.gov (United States)

    Jay, Ollie; Havenith, George

    2004-03-01

    This study investigates the effect of blood flow upon the short-term (cooling response in order to ascertain whether sufferers of circulatory disorders, such as the vasospastic disorder Raynaud's disease, are at a greater risk of cold injury than people with a normal rate of blood flow. Eight female volunteers participated, touching blocks of stainless steel and nylon with a finger contact force of 2.9 N at a surface temperature of -5 degrees C under occluded and vasodilated conditions. Contact temperature (Tc) of the finger pad was measured over time using a T-type thermocouple. Forearm blood flow was measured using strain gauge plethysmography. Contact cooling responses were analysed by fitting a modified Newtonian cooling curve. A significant difference was found between the starting skin temperatures for the two blood flow conditions (Peffect of blood flow was found upon any of the derived cooling curve parameters characterizing the skin cooling response (P>0.05). It is hypothesized that the finger contact force used (2.9 N) and the resultant pressure upon the tissue of the contact finger pad restricted the blood supply to the contact area under both blood flow conditions; therefore, no effect of blood flow was found upon the parameters describing the contact cooling response. Whilst the findings of this study are sufficient to draw a conclusion for those in a working environment, i.e. contact forces below 2.9 N will seldom be encountered, a further study will be required to ascertain conclusively whether blood flow does affect the contact cooling response at a finger contact force low enough to allow unrestricted blood flow to the finger pad. Further protocol improvements are also recommended.

  15. An efficient continuous flow helium cooling unit for Moessbauer experiments

    International Nuclear Information System (INIS)

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  16. Performance characteristics of counter flow wet cooling towers

    International Nuclear Information System (INIS)

    Khan, Jameel-Ur-Rehman; Yaqub, M.; Zubair, Syed M.

    2003-01-01

    Cooling towers are one of the biggest heat and mass transfer devices that are in widespread use. In this paper, we use a detailed model of counter flow wet cooling towers in investigating the performance characteristics. The validity of the model is checked by experimental data reported in the literature. The thermal performance of the cooling towers is clearly explained in terms of varying air and water temperatures, as well as the driving potential for convection and evaporation heat transfer, along the height of the tower. The relative contribution of each mode of heat transfer rate to the total heat transfer rate in the cooling tower is established. It is demonstrated with an example problem that the predominant mode of heat transfer is evaporation. For example, evaporation contributes about 62.5% of the total rate of heat transfer at the bottom of the tower and almost 90% at the top of the tower. The variation of air and water temperatures along the height of the tower (process line) is explained on psychometric charts

  17. Eocene cooling linked to early flow across the Tasmanian Gateway.

    Science.gov (United States)

    Bijl, Peter K; Bendle, James A P; Bohaty, Steven M; Pross, Jörg; Schouten, Stefan; Tauxe, Lisa; Stickley, Catherine E; McKay, Robert M; Röhl, Ursula; Olney, Matthew; Sluijs, Appy; Escutia, Carlota; Brinkhuis, Henk

    2013-06-11

    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.

  18. Flow-induced and acoustically induced vibration experience in operating gas-cooled reactors

    International Nuclear Information System (INIS)

    Halvers, L.J.

    1977-03-01

    An overview has been presented of flow-induced and acoustically induced vibration failures that occurred in the past in gas-cooled graphite-moderated reactors, and the importance of this experience for the Gas-Cooled Fast-Breeder Reactor (GCFR) project has been assessed. Until now only failures in CO 2 -cooled reactors have been found. No problems with helium-cooled reactors have been encountered so far. It is shown that most of the failures occurred because flow-induced and acoustically induced dynamic loads were underestimated, while at the same time not enough was known about the influence of environmental parameters on material behavior. All problems encountered were solved. The comparison of the influence of the gas properties on acoustically induced and flow-induced vibration phenomena shows that the interaction between reactor design and the thermodynamic properties of the primary coolant precludes a general preference for either carbon dioxide or helium. The acoustic characteristics of CO 2 and He systems are different, but the difference in dynamic loadings due to the use of one rather than the other remains difficult to predict. A slight preference for helium seems, however, to be justified

  19. Numerical Analysis of Rotating Pumping Flows in Inter-Coil Rotor Cavities and Short Cooling Grooves of a Generator

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2001-01-01

    Full Text Available An important characteristic of wall rotating-driven flows is the tendency of fluid with high angular momentum to be flung radially outward. For a generator, the rotor rotating-driven flow, usually referred to as the rotating pumping flow, plays an important role in rotor winding cooling. In this study, three-dimensional numerical analyzes are presented for turbulent pumping flow in the inter-coil rotor cavity and short cooling grooves of a generator. Calculations of the flow field and the mass flux distribution through the grooves were carried out in a sequence of four related cases Under an isothermal condition: (a pumping flow, which is the self-generated flow resulted from the rotor pumping action; (b mixing flow, which is the combination of the ventilating flow and pumping flow, under a constant density condition; (c mixing flow, with density modeled by the ideal gas law; and (d mixing flow, with different pressure differentials applied on the system. The comparisons of the results from these cases can provide useful information regarding the impacts of the ventilating flow, gas density, and system pressure differential on the mass flux distribution in the short cooling grooves. Results show that the pumping effect is strong enough to generate the cooling flow for rotor winding cooling. Therefore, for small- or mid-size generators ventilation fans may be eliminated. It also suggests that increasing the chimney dimension can improve the distribution uniformity of mass flux through the cooling grooves.

  20. Theoretical and experimental study of a cross-flow induced-draft cooling tower

    Directory of Open Access Journals (Sweden)

    Abo Elazm Mahmoud Mohamed

    2009-01-01

    Full Text Available The main objective of this study is to find a proper solution for the cross-flow water cooling tower problem, also to find an empirical correlation's controlling heat and mass transfer coefficients as functions of inlet parameters to the tower. This is achieved by constructing an experimental rig and a computer program. The computer simulation solves the problem numerically. The apparatus used in this study comprises a cross-flow cooling tower. From the results obtained, the 'characteristic curve' of cross-flow cooling towers was constructed. This curve is very helpful for designers in order to find the actual value of the number of transfer units, if the values of inlet water temperature or inlet air wet bulb temperature are changed. Also an empirical correlation was conducted to obtain the required number of transfer units of the tower in hot water operation. Another correlation was found to obtain the effectiveness in the wet bulb operation.

  1. Coupling model and solving approach for performance evaluation of natural draft counter-flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.

  2. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  3. Two-phase flow in the cooling circuit of a cryogenic rocket engine

    Science.gov (United States)

    Preclik, D.

    1992-07-01

    Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.

  4. Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Gyun; Jeon, Wan Ho [Technical Research Lab., CEDIC Co., Seoul (Korea, Republic of); Minorikawa, Gaku [Dept. of f Mechanical Engineering, Faculty of Science and Engineering, Hosei University, Tokyo (Japan)

    2016-10-15

    The recent development of small and lightweight rack mount servers and computers has resulted in the decrease of the size of cooling fans. However, internal fans still need to achieve a high performance to release the heat generated from interior parts, and they should emit low noise. On the contrary, measurement data, such as flow properties and flow visualizations, cannot be obtained easily when cooling fans are small. Thus, a numerical analysis approach is necessary for the performance evaluation and noise reduction of small cooling fans. In this study, the noise of a small cooling fan used for computers or servers was measured and then compared with the aeroacoustic noise result based on a numerical analysis. Three-dimensional Navier-Stokes equations were solved to predict the unsteady flow field and surface pressure fluctuation according to the blades and casing surface used. The simplified Ffowcs Williams and Hawkings equation was used to predict aeroacoustic noise by assuming that a dipole is the major cause of fan noise. Results of the aeroacoustic noise analysis agreed well with that of the experiment, and a tonal noise whose frequency was lower than the first blade passing frequency could be identified in the noise spectrum. This phenomenon is caused by the shape of the bell mouth. A coherence analysis was performed to examine the correlation between the shape of the cooling fan and the noise.

  5. Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer Characteristics of unsteady flow field and flow-induced noise for an axial cooling fan used in a rack mount server computer

    International Nuclear Information System (INIS)

    Lim, Tae Gyun; Jeon, Wan Ho; Minorikawa, Gaku

    2016-01-01

    The recent development of small and lightweight rack mount servers and computers has resulted in the decrease of the size of cooling fans. However, internal fans still need to achieve a high performance to release the heat generated from interior parts, and they should emit low noise. On the contrary, measurement data, such as flow properties and flow visualizations, cannot be obtained easily when cooling fans are small. Thus, a numerical analysis approach is necessary for the performance evaluation and noise reduction of small cooling fans. In this study, the noise of a small cooling fan used for computers or servers was measured and then compared with the aeroacoustic noise result based on a numerical analysis. Three-dimensional Navier-Stokes equations were solved to predict the unsteady flow field and surface pressure fluctuation according to the blades and casing surface used. The simplified Ffowcs Williams and Hawkings equation was used to predict aeroacoustic noise by assuming that a dipole is the major cause of fan noise. Results of the aeroacoustic noise analysis agreed well with that of the experiment, and a tonal noise whose frequency was lower than the first blade passing frequency could be identified in the noise spectrum. This phenomenon is caused by the shape of the bell mouth. A coherence analysis was performed to examine the correlation between the shape of the cooling fan and the noise

  6. The population of single and binary white dwarfs of the Galactic bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-05-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.

  7. Liquid Hydrogen Recirculation System for Forced Flow Cooling Test of Superconducting Conductors

    Science.gov (United States)

    Shirai, Y.; Kainuma, T.; Shigeta, H.; Shiotsu, M.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.; Yoshinaga, S.

    2017-12-01

    The knowledge of forced flow heat transfer characteristics of liquid hydrogen (LH2) is important and necessary for design and cooling analysis of high critical temperature superconducting devices. However, there are few test facilities available for LH2 forced flow cooling for superconductors. A test system to provide a LH2 forced flow (∼10 m/s) of a short period (less than 100 s) has been developed. The test system was composed of two LH2 tanks connected by a transfer line with a controllable valve, in which the forced flow rate and its period were limited by the storage capacity of tanks. In this paper, a liquid hydrogen recirculation system, which was designed and fabricated in order to study characteristics of superconducting cables in a stable forced flow of liquid hydrogen for longer period, was described. This LH2 loop system consists of a centrifugal pump with dynamic gas bearings, a heat exchanger which is immersed in a liquid hydrogen tank, and a buffer tank where a test section (superconducting wires or cables) is set. The buffer tank has LHe cooled superconducting magnet which can produce an external magnetic field (up to 7T) at the test section. A performance test was conducted. The maximum flow rate was 43.7 g/s. The lowest temperature was 22.5 K. It was confirmed that the liquid hydrogen can stably circulate for 7 hours.

  8. On the optimum performance of forced draft counter flow cooling towers

    International Nuclear Information System (INIS)

    Soeylemez, M.S.

    2004-01-01

    A thermo-hydraulic performance optimization analysis is presented, yielding simple algebraic formula for estimating the optimum performance point of counter current mechanical draft wet cooling towers. The effectiveness-Ntu method is used in the present study, together with the derivation of psychometric properties of moist air based on a numerical approximation method, for thermal performance analysis of wet cooling towers of the counter flow type

  9. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}} 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  10. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  11. Radio properties of central dominant galaxies in cluster cooling flows

    International Nuclear Information System (INIS)

    O'dea, C.P.; Baum, S.A.

    1986-01-01

    New VLA observations of central dominant (cd) galaxies currently thought to be in cluster cooling flows are combined with observations from the literature to examine the global properties of a heterogeneous sample of 31 cd galaxies. The radio sources tend to be of low or intermediate radio power and have small sizes (median extent about 25 kpc). The resolved sources tend to have distorted morphologies (e.g., wide-angle tails and S shapes). It is not yet clear whether the radio emission from these cd galaxies is significantly different from those not thought to be in cluster cooling flows. The result of Jones and Forman (1984), that there is a possible correlation between radio power and excess X-ray luminosity in the cluster center (above a King model fit to the X-ray surface brightness), is confirmed. 43 references

  12. Mapping the dark matter in the NGC 5044 group with ROSAT: Evidence for a nearly homogeneous cooling flow with a cooling wake

    Science.gov (United States)

    David, Laurence P.; Jones, Christine; Forman, William; Daines, Stuart

    1994-01-01

    The NGC 5044 group of galaxies was observed by the ROSAT Position Sensitive Proportional Counter (PSPC) for 30 ks during its reduced pointed phase (1991 July). Due to the relatively cool gas temperature in the group (kT = 0.98 +/- 0.02 keV) and the excellent photon statistics (65,000 net counts), we are able to determine precisely a number of fundamental properties of the group within 250 kpc of the central galaxy. In particular, we present model-independent measurements of the total gravitating mass, the temperature and abundance profiles of the gas, and the mass accretion rate. Between 60 and 250 kpc, the gas is nearly isothermal with T varies as r(exp (-0.13 +/- 0.03)). The total gravitating mass of the group can be unambiguously determined from the observed density and temperature profiles of the gas using the equation of hydrostatic equilibrium. Within 250 kpc, the gravitating mass is 1.6 x 10(exp 13) solar mass, yielding a mass-to-light ratio of 130 solar mass/solar luminosity. The baryons (gas and stars) comprise 12% of the total mass within this radius. At small radii, the temperature clearly increases outward and attains a maximum value at 60 kpc. The positive temperature gradient in the center of the group confirms the existence of a cooling flow. The cooling flow region extends well beyond the temperature maximum with a cooling radius between 100 and 150 kpc. There are two distinct regions in the cooling flow separated by the temperature maximum. In the outer region, the gas is nearly isothermal with a unifor m Fe abundance of approximately 80% solar, the flow is nearly homogeneous with dot-M= 20 to 25 solar mass/year, the X-ray contours are spherically symmetric, and rho(sub gas) varies as r(exp -1.6). In the inner region, the temperature profile has a positive gradient, the mass accretion rate decreases rapidly inward, the gas density profile is steeper, and the X-ray image shows some substrucutre. NGC 5044 is offset from the centroid of the outer X

  13. Performance Evaluation of a Mechanical Draft Cross Flow Cooling Towers Employed in a Subtropical Region

    Science.gov (United States)

    Muthukumar, Palanisamy; Naik, Bukke Kiran; Goswami, Amarendra

    2018-02-01

    Mechanical draft cross flow cooling towers are generally used in a large-scale water cooled condenser based air-conditioning plants for removing heat from warm water which comes out from the condensing unit. During this process considerable amount of water in the form of drift (droplets) and evaporation is carried away along with the circulated air. In this paper, the performance evaluation of a standard cross flow induced draft cooling tower in terms of water loss, range, approach and cooling tower efficiency are presented. Extensive experimental studies have been carried out in three cooling towers employed in a water cooled condenser based 1200 TR A/C plant over a period of time. Daily variation of average water loss and cooling tower performance parameters have been reported for some selected days. The reported average water loss from three cooling towers is 4080 l/h and the estimated average water loss per TR per h is about 3.1 l at an average relative humidity (RH) of 83%. The water loss during peak hours (2 pm) is about 3.4 l/h-TR corresponding to 88% of RH and the corresponding efficiency of cooling towers varied between 25% and 45%.

  14. Flow and Heat Transfer in Cooling Microchannels with Phase-Change

    Energy Technology Data Exchange (ETDEWEB)

    Peles, Y P; Yarin, L P; Hetsroni, G [Technion, Israel Institute of Technology, Haifa (Israel) Faculty of Engineering

    1998-05-19

    The subject of the present work is the parametrical investigation of hydrodynamic and thermal characteristics of laminar flow with phase-change in a heating microchannels. The study is based on the quasi-one-dimensional model of non-isothermal capillary flow. This model takes into account the evolution of flow, heating and evaporation of the liquid, as well as the influence of capillary, inertia, friction and gravity forces. The effect of various parameters (sizes of microchannel, initial temperature of cooling liquid, wall heat flux etc.) on hydrodynamic and thermal structures of the flow, the length of heating, evaporation and superheat regions is studied. Thc specific features of the phenomena is discussed.

  15. Flow and Heat Transfer in Cooling Microchannels with Phase-Change

    International Nuclear Information System (INIS)

    Peles, Y.P.; Yarin, L.P.; Hetsroni, G.

    1998-01-01

    The subject of the present work is the parametrical investigation of hydrodynamic and thermal characteristics of laminar flow with phase-change in a heating microchannels. The study is based on the quasi-one-dimensional model of non-isothermal capillary flow. This model takes into account the evolution of flow, heating and evaporation of the liquid, as well as the influence of capillary, inertia, friction and gravity forces. The effect of various parameters (sizes of microchannel, initial temperature of cooling liquid, wall heat flux etc.) on hydrodynamic and thermal structures of the flow, the length of heating, evaporation and superheat regions is studied. Thc specific features of the phenomena is discussed

  16. Experimental Flow Performance Evaluation of novel miniaturized Advanced Piezoelectric Dual Cooling Jet

    International Nuclear Information System (INIS)

    De Bock, H P J; Whalen, B P; Chamarthy, P; Jackson, J L

    2012-01-01

    In recent years, electronics systems have significantly reduced in size at maintained or increased functionality. This trend has led to an increased demand for smaller and more capable thermal management. However, miniaturization of conventional fan and heat sink cooling systems introduce significant size, weight and efficiency challenges. In this study the flow performance of a novel alternative thin form-factor cooling solution, the advanced piezoelectric dual cooling jet(DCJ), is evaluated. A DCJ is a system where two piezoelectric actuators are excited to produce air flow. The total height of the device is about 1mm. The design of the experimental method for evaluating the equivalent fan-curve of the DCJ device is described in detail. Experimental results in comparison to conventional fan solutions are provided. The DCJ is expected to be a good candidate for thermal management in next generation thin profile consumer electronics.

  17. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  18. Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study

    International Nuclear Information System (INIS)

    Valeh-e-Sheyda, Peyvand; Rahimi, Masoud; Karimi, Ebrahim; Asadi, Masomeh

    2013-01-01

    Highlights: ► Showing cooling potential of gas–liquid two-phase flow in microchannels for PV cell. ► Introducing the concept of using slug flow in microchannels for cooling of PV cells. ► In single-phase flow, increasing the liquid flow rate enhances the PV power. ► Showing that in two-phase flow the output power related the fluid flow regime. ► By coupling PV and microchannel an increase up to 38% in output power was observed. - Abstract: This paper reports the experimental data from performance of two-phase flows in a small hybrid microchannel solar cell. Using air and water as two-phase fluid, the experiments were conducted at indoor condition in an array of rectangular microchannels with a hydraulic diameter of 0.667 mm. The gas superficial velocity ranges were between 0 and 3.27 m s −1 while liquid flow rate was 0.04 m s −1 . The performance analysis of the PV cell at slug and transitional slug/annular flow regimes are the focus of this study. The influence of two-phase working fluid on PV cell cooling was compared with single-phase. In addition, the great potential of slug flow for heat removal enhancement in PV/T panel was investigated. The obtained data showed the proposed hybrid system could substantially increases the output power of PV solar cells

  19. Experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower

    International Nuclear Information System (INIS)

    Lemouari, M.; Boumaza, M.; Kaabi, A.

    2011-01-01

    Thermal and nuclear electric power plants as well as several industrial processes invariably discharge considerable energy to their surrounding by heat transfer. Although water drawn from a nearby river or lake can be employed to carry away this energy, cooling towers offer an excellent alternative particularly in locations where sufficient cooling water cannot be easily obtained from natural sources or where concern for the environment imposes some limits on the temperature at which cooling water can be returned to the surrounding. This paper concerns an experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower. The tower contains a 'VGA.' (Vertical Grid Apparatus) type packing which is 0.42 m high and consists of four (04) galvanised sheets having a zigzag form, between which are disposed three (03) metallic vertical grids in parallel with a cross sectional test area of 0.15 m x 0.148 m. The present investigation is focused mainly on the effect of the air and water flow rates on the hydraulic characteristics of the cooling tower, for different inlet water temperatures. The two hydrodynamic operating regimes which were observed during the air/water contact operation within the tower, namely the Pellicular Regime (PR) and the Bubble and Dispersion Regime (BDR) have enabled to distinguish two different states of pressure drop characteristics. The first regime is characterized by low pressure drop values, while in the second regime, the pressure drop values are relatively much higher than those observed in the first one. The dependence between the pressure drop characteristics and the combined heat and mass transport (air-water) through the packing inside the cooling tower is also highlighted. The obtained results indicate that this type of tower possesses relatively good hydraulic characteristics. This leads to the saving of energy. -- Highlights: → Cooling towers are widely used to reject waste heat from thermal and nuclear

  20. Experimental and numerical study of flow deflection effects on electronic air-cooling

    International Nuclear Information System (INIS)

    Arfaoui, Ahlem; Ben Maad, Rejeb; Hammami, Mahmoud; Rebay, Mourad; Padet, Jacques

    2009-01-01

    This work present a numerical and experimental investigation of the influence of transversal flow deflector on the cooling of a heated block mounted on a flat plate. The deflector is inclined and therefore it guides the air flow to the upper surface of the block. This situation is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic board. The electronic component are assumed dissipating a low or medium heat flux (with a density lower than 5000 W/m 2 ), as such the forced convection air cooling without fan or heat sink is still sufficient. The study details the effects of the angle of deflector on the temperature and the heat transfer coefficient along the surface of the block and around it. The results of the numerical simulations and the InfraRed camera measurements show that the deviation caused by deflector may significantly enhance the heat transfer on the top face of block

  1. Mathematical Model and Program for the Sizing of Counter-flow Natural Draft Wet Cooling Towers

    Directory of Open Access Journals (Sweden)

    Victor-Eduard Cenușă

    2017-08-01

    Full Text Available Assuring the necessary temperature and mass flow rate of the cooling water to the condenser represents an essential condition for the efficient operation of a steam power plant. The paper presents equations which describe the physical phenomena and the mathematical model for the design of counter-flow natural draft wet cooling towers. Following is given the flow-chart of the associated computer program. A case study is made to show the results of the computer program and emphasize the interdependence between the main design parameters.

  2. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    Science.gov (United States)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  3. Free convection flow and heat transfer in pipe exposed to cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mme, Uduak Akpan

    2010-10-15

    One of the challenges with thermal insulation design in subsea equipment is to minimize the heat loss through cold spots during production shut down. Cold spots are system components where insulation is difficult to implement, resulting in an insulation discontinuity which creates by nature a thermal bridge. It is difficult to avoid cold spots or thermal bridges in items like sensors, valves, connectors and supporting structures. These areas of reduced or no insulation are referred to as cold spots. Heat is drained faster through these spots, resulting in an increased local fluid density resulting in an internal fluid flow due to gravity and accelerated cool- down. This natural convection flow is important for both heat loss and internal distribution of the temperature. This thesis is presenting both experimental work and modelling work. A series of cool down tests and Computational Fluid Dynamics (CFD) simulations of these tests are presented. These tests and simulations were carried out in order to understand the flow physics involved in heat exchange processes caused by free convection flow in pipe exposed to cooling. Inclination of the pipe relative to the direction of gravity and temperature difference between cooling water and internal pipe water are the two main parameters investigated in this study. The experimental heat removal and temperature field is discussed and further interpreted by means of computational fluid dynamics. For prediction of the evolvement of the local temperature and heat flow, selection of an appropriate turbulence model is critical. Hence, different models and wall functions are investigated. The predicted temperature profiles and heat extraction rates are compered to the experiments for the selected turbulence models. Our main conclusions, supported by our experimental and CFD results, include: (i) Heat transfer from a localized cold spot in an inclined pipe is most efficient when the pipe orientation is close to horizontal. As the

  4. Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1977-08-01

    A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted

  5. Film cooling effects on the tip flow characteristics of a gas turbine blade

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-03-01

    Full Text Available An experimental investigation of the tip flow characteristics between a gas turbine blade tip and the shroud was conducted by a pressure-test system and a particle image velocimetry (PIV system. A three-times scaled profile of the GE-E3 blade with five film cooling holes was used as specimen. The effects on flow characteristics by the rim width and the groove depth of the squealer tip were revealed. The rim widths were (a 0.9%, (b 2.1%, and (c 3.0% of the axial chord, and the groove depths were (a 2.8%, (b 4.8%, and (c 10% of the blade span. Several pressure taps on the top plate above the blades were connected to pressure gauges. By a CCD camera the PIV system recorded the velocity field around the leading edge zone including the five cooling holes. The flow distributions both in the tip clearance and in the passage were revealed, and the influence of the inlet velocity was determined. In this work, the tip flow characteristics with and without film cooling were investigated. The effects of different global blowing ratios of M=0.5, 1.0, 1.3 and 2.5 were established. It was found that decreasing the rim width resulted in a lower mass flow rate of the leakage flow, and the pressure distributions from the leading edge to the trailing edge showed a linearly increasing trend. It was also found that if the inlet velocity was less than 1.5 m/s, the flow field in the passage far away from the suction side appeared as a stagnation zone.

  6. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  7. Heat Flow Characteristics of a Newly-Designed Cooling System with Multi-Fans and Thermal Baffle in the Wheel Loader

    Directory of Open Access Journals (Sweden)

    Yidai Liao

    2017-03-01

    Full Text Available In the traditional cooling case, there is usually one fan in charge of heat transfer and airflow for all radiators. However, this seems to be inappropriate, or even insufficient, for modern construction machinery, as its overall heat flow density is increasing but thermal distribution is becoming uneven. In order to ensure that the machine works in a better condition, this paper employs a new cooling system with multiple fans and an independent cooling region. Based on the thermal flow and performance requirements, seven fans are divided into three groups. The independent cooling region is segregated from the engine region by a thermal baffle to avoid heat flowing into the engine region and inducing an overheat phenomenon. The experiment validates the efficiency of the new cooling system and accuracy of simulation. After validation, the simulation then analyzes heat transfer and flow characteristics of the cooling system, changing with different cross-sections in different axis directions, as well as different distances of the fan central axes. Finally, thermal baffles are set among the fan groups and provided a better cooling effect. The research realizes a multi-fan scheme with an independent cooling region in a wheel loader, which is a new, but high-efficiency, cooling system and will lead to a new change of various configurations and project designs in future construction machinery.

  8. Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.

  9. Numerical simulation of flow field in cooling tower of passive residual heat removal system of HTGR

    International Nuclear Information System (INIS)

    Li Xiaowei; Zhang Li; Wu Xinxin; He Shuyan

    2011-01-01

    Environmental wind will influence the working conditions of natural convection cooling tower. The velocity and temperature fields in the natural convection cooling tower of the HTGR residual heat removal system at different environmental wind velocities were numerically simulated. The results show that, if there is no wind baffle, the flow in the cooling tower is blocked when environmental wind velocity is higher than 6 m/s, residual heat can hardly be removed, and when wind velocity is higher than 9 m/s, the air even flow downwards in the tower, so wind baffle is very necessary. With the wind baffle installed, the cooling tower works well at the wind speed even higher than 9 m/s. The optimum baffle size and positions are also analyzed. (authors)

  10. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  11. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  12. Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Xiong, Binyu

    2014-01-01

    Highlights: • A dynamic electro-thermal model is proposed for VRB with forced cooling. • The Foster network is adopted to model the battery cooling process. • Both the electrolyte temperature and terminal voltage can be accurately predicted. • The flow rate of electrolyte and coolant significantly impact battery performance. - Abstract: The present study focuses on the dynamic electro-thermal modeling for the all-vanadium redox flow battery (VRB) with forced cooling strategies. The Foster network is adopted to dynamically model the heat dissipation of VRB with heat exchangers. The parameters of Foster network are extracted by fitting the step response of it to the results of linearized CFD model. Then a complete electro-thermal model is proposed by coupling the heat generation model, Foster network and electrical model. Results show that the established model has nearly the same accuracy with the nonlinear CFD model in electrolyte temperature prediction but drastically improves the computational efficiency. The modeled terminal voltage is also benchmarked with the experimental data under different current densities. The electrolyte temperature is found to be significantly influenced by the flow rate of coolant. As compared, although the electrolyte flow rate has unremarkable impact on electrolyte temperature, its effect on system pressure drop and battery efficiency is significant. Increasing the electrolyte flow rate improves the coulombic efficiency, voltage efficiency and energy efficiency simultaneously but at the expense of higher pump power demanded. An optimal flow rate exists for each operating condition to maximize the system efficiency

  13. Numerical study of the thermo-flow performances of novel finned tubes for air-cooled condensers in power plant

    Science.gov (United States)

    Guo, Yonghong; Du, Xiaoze; Yang, Lijun

    2018-02-01

    Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.

  14. Wind tunnel experimental study on effect of inland nuclear power plant cooling tower on air flow and dispersion of pollutant

    International Nuclear Information System (INIS)

    Qiao Qingdang; Yao Rentai; Guo Zhanjie; Wang Ruiying; Fan Dan; Guo Dongping; Hou Xiaofei; Wen Yunchao

    2011-01-01

    A wind tunnel experiment for the effect of the cooling tower at Taohuajiang nuclear power plant on air flow and dispersion of pollutant was introduced in paper. Measurements of air mean flow and turbulence structure in different directions of cooling tower and other buildings were made by using an X-array hot wire probe. The effects of the cooling tower and its drift on dispersion of pollutant from the stack were investigated through tracer experiments. The results show that the effect of cooling tower on flow and dispersion obviously depends on the relative position of stack to cooling towers, especially significant for the cooling tower parallel to stack along wind direction. The variation law of normalized maximum velocity deficit and perturbations in longitudinal turbulent intensity in cooling tower wake was highly in accordance with the result of isolated mountain measured by Arya and Gadiyaram. Dispersion of pollutant in near field is significantly enhanced and plume trajectory is changed due to the cooling towers and its drift. Meanwhile, the effect of cooling tower on dispersion of pollutant depends on the height of release. (authors)

  15. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  16. Behavior of cross flow heat exchangers during the cooling and dehumidification of air

    Energy Technology Data Exchange (ETDEWEB)

    Ober, C [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Mess- und Regelungstechnik mit Maschinenlaboratorium

    1980-09-01

    The task of cross flow heat exchangers in room air engineering consists on the one hand in heating up the air and, on the other hand, in the simultaneous cooling and dehumidification. The facilities used for this purpose generally are multi-row finned pipe heat exchangers which when used for cooling contain cold water or brine as the working fluid. The use of directly evaporating freezing mixtures may not be included in this consideration. The model establishment for the dynamic and the static behavior of multi-row cross flow heat exchangers during cooling and dehumidification of air has been derived in this contribution. The representation is performed for the dynamic case in the complex, display range of the Laplace transformation. A comparison with experimental results can be done very simply by means of measurements of the frequency-responce curves in the form of Bode diagrams. The description of the static behaviour may be applied as a basis for humidity controls with more favourable energy utilization.

  17. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  18. Performance study of ejector cooling cycle at critical mode under superheated primary flow

    International Nuclear Information System (INIS)

    Tashtoush, Bourhan; Alshare, Aiman; Al-Rifai, Saja

    2015-01-01

    Highlights: • The ECC is modeled using EES Software and it is validated with published data. • Detailed analysis of the ECC with different refrigerants is conducted. • The constant pressure mixing is better than constant area mixing ejectors. • R134a is the selected refrigerant for the best cooling cycle performance. • The superheated primary flow at critical mode is achieved with EJ2 ejector used. - Abstract: In this work the performance of the ejector cooling cycle is investigated at critical mode, where, the effects of ejector geometry, refrigerant type, and operating condition are studied. The ejector cooling cycle is modeled with EES Software. The mass, momentum, and energy conservation principles are applied to the secondary and primary flows to investigate the performance of the ejector cooling cycle under superheated primary flow. The refrigerant R134 a is selected based on the merit of its environmental and performance characteristics. The primary working fluid in the refrigeration cycle is maintained at superheated conditions for optimal ejector performance. The solar generator temperature ranges are 80–100 °C. The operating temperature of evaporator range is 8–12 °C and the optimal condensation temperature is in the range of 28–40 °C. It is found that constant-pressure mixing ejector generates higher backpressure than constant-area mixing ejector for the same entrainment ratio and COP. The type of ejector is selected based on the performance criteria of the critical backpressure and choking condition of the primary flow, the so called EJ2 type ejector meets the criteria. The COP is found to be in the range of 0.59–0.67 at condenser backpressure of 24 bar due to higher critical condenser pressure and higher generator temperature

  19. Condition of the existence of cooling flow in galaxies

    International Nuclear Information System (INIS)

    Volkov, E.V.

    1986-01-01

    A criterion for the existence of subsonic spherical symmetrical flow of cooling gas in galaxies has been found. Some equations are given describing the behaviour of gas in the gravitational field of a galaxy in the framework of a stationary accretion model. The results of numerical calculations of a nonstationary accretion of gas on a cD galaxy are presented. The gas is initially in a hydrostatic equilibrium

  20. ISOTROPIC HEATING OF GALAXY CLUSTER CORES VIA RAPIDLY REORIENTING ACTIVE GALACTIC NUCLEUS JETS

    International Nuclear Information System (INIS)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-01-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 10 44–45 erg s –1 , typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  1. The age of the galactic disk

    International Nuclear Information System (INIS)

    Sandage, A.

    1988-07-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc

  2. Experimental investigation of cooling oil flow in disk-type transformer windings with zigzag flow passages. Paper no. IGEC-1-134

    International Nuclear Information System (INIS)

    Zhang, J.; Li, X.

    2005-01-01

    An experimental study has been conducted to investigate cooling dielectric oil flow in oil naturally cooled (ON) transformer windings. Static pressure in winding ducts has been measured at various strategic locations. Experimental results have been used for the validation of an existing hydraulic network simulation model developed earlier by the authors. It is found that minor losses in ON transformer windings are on the same order of magnitude as frictional loss. Since empirical correlations in literature overestimate the minor losses in low Reynolds number laminar flow regime, an implicit nonlinear optimization approach has been used to calibrate the existing hydraulic model. Consequently, an accurate correlation for minor loss coefficients has been developed, and is valid for Reynolds numbers ranging from 1.1 to 20.9 in horizontal cooling ducts and up to 102.0 in vertical ducts. It is shown that the improved hydraulic network model is in good agreement with the present experimental results and previous results in the literature. (author)

  3. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  4. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  5. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  6. Applying the sequential neural-network approximation and orthogonal array algorithm to optimize the axial-flow cooling system for rapid thermal processes

    International Nuclear Information System (INIS)

    Hung, Shih-Yu; Shen, Ming-Ho; Chang, Ying-Pin

    2009-01-01

    The sequential neural-network approximation and orthogonal array (SNAOA) were used to shorten the cooling time for the rapid cooling process such that the normalized maximum resolved stress in silicon wafer was always below one in this study. An orthogonal array was first conducted to obtain the initial solution set. The initial solution set was treated as the initial training sample. Next, a back-propagation sequential neural network was trained to simulate the feasible domain to obtain the optimal parameter setting. The size of the training sample was greatly reduced due to the use of the orthogonal array. In addition, a restart strategy was also incorporated into the SNAOA so that the searching process may have a better opportunity to reach a near global optimum. In this work, we considered three different cooling control schemes during the rapid thermal process: (1) downward axial gas flow cooling scheme; (2) upward axial gas flow cooling scheme; (3) dual axial gas flow cooling scheme. Based on the maximum shear stress failure criterion, the other control factors such as flow rate, inlet diameter, outlet width, chamber height and chamber diameter were also examined with respect to cooling time. The results showed that the cooling time could be significantly reduced using the SNAOA approach

  7. Mitigation of Autoignition Due to Premixing in a Hypervelocity Flow Using Active Wall Cooling

    Science.gov (United States)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2013-01-01

    Preinjection of fuel on the forebody of an airbreathing vehicle is a proposed method to gain access to hypervelocity flight Mach numbers. However, this creates the possibility of autoignition either near the wall or in the core of the flow, thereby consuming fuel prematurely as well as increasing the amount of pressure drag on the vehicle. The computational fluid dynamics code VULCAN was used to conduct three dimensional simulations of the reacting flow in the vicinity of hydrogen injectors on a flat plate at conditions relevant to a Mach 12 notional flight vehicle forebody to determine the location where autoignition occurs. Active wall cooling strategies were formulated and simulated in response to regions of autoignition. It was found that tangential film cooling using hydrogen or helium were both able to nearly or completely eliminate wall autoignition in the flow domain of interest.

  8. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  9. PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

    Science.gov (United States)

    Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.

    2018-01-01

    Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.

  10. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  11. Film-cooled turbine endwall in a transonic flow field; Filmgekuehlte Turbinenplattform in transsonischem Stroemungsfeld

    Energy Technology Data Exchange (ETDEWEB)

    Nicklas, M.

    2000-11-01

    Aero and thermodynamic measurements at the endwall of a turbine nozzle guide vane were carried out. These investigations are the first where the complete blade passage at the endwall in a transonic flow field is analysed for heat transfer and adiabatic film-cooling effectiveness. The aerodynamic measurements identify an intensive interaction between the coolant air and the secondary flow field. Similarly strong variations in heat transfer and film-cooling effectiveness were found. Analysis of the heat transfer measurements indicates that the heat transfer represents an indispensable tool for the evaluation of platform film-cooling design. On the basis of infrared temperature measurements, a procedure for accurate analysis of heat transfer and film-cooling effectiveness in a complex transonic flow field was developed. This measurement technique combines high accuracy with flexibility of application. These investigations have led to design improvements for film-cooling systems at the platform. (orig.) [German] Aero- und thermodynamische Messungen an einer Plattform eines Turbinenleitrads werden beschrieben. Erstmals wird in einem transsonischen Stroemungsfeld die komplette Seitenwand bezueglich des Waermeuebergangs und der adiabaten Filmkuehleffektivitaet untersucht. Die aerodynamischen Messungen zeigen eine intensive Wechselwirkung der Kuehlluft mit dem Sekundaerstroemungsfeld. Daraus resultierend treten starke Aenderungen des Waermeuebergangs und der Filmkuehleffektivitaet auf. Die Resultate der Waermeuebergangsmessungen zeigen, dass der Waermeuebergang eine wichtige Groesse fuer die Bewertung eines Filmkuehldesigns an einer Plattform darstellt. Ein Messverfahren auf der Grundlage von Infrarot-Temperaturmessungen fuer eine genaue Analyse des Waermeuebergangs und der Filmkuehleffektivitaet in den komplexen Verhaeltnissen einer transsonischen Stroemung wurde entwickelt. Mit der verwendeten Messtechnik wird eine hohe Genauigkeit bei der Ermittlung der quantitativen

  12. Exergy transfer and parametric study of counter flow wet cooling towers

    International Nuclear Information System (INIS)

    Wang Li; Li Nianping

    2011-01-01

    A thermodynamic analysis of the counter flow wet cooling tower (CWCT) is performed in this paper. Both energy and exergy formulations are developed and validated for the system. Four types of exergy transfer processes occurring inside the CWCT are investigated schematically. A parametric study is conducted under various operating conditions in order to investigate the effects of thermal efficiency and water-to-air ratio on the exergy performance of the CWCT. Unlike past studies, the transiting exergy contained in the inlet and outlet water is not considered. It is found that the exergy efficiency is always less than 25%. The exergy parameters including evaporation water loss, exergy efficiency, exergy input, internal and external exergy losses are very sensitive to the thermal efficiency when it is very close to 1.0 at lower water-to-air ratios. - Research highlights: → We model counter flow wet cooling towers and make a detailed exergy analysis. → Four types of exergy transfer processes are investigated schematically. → Only a small part of exergy input, less than 25%, is effectively utilized.

  13. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  14. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    Science.gov (United States)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  15. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  16. Comprehensive study of flow and heat transfer at the surface of circular cooling fin

    Science.gov (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  17. Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans

    Science.gov (United States)

    Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.

    2002-01-01

    Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P heat-stressed humans.

  18. Mixed convection in a two-phase flow cooling loop

    International Nuclear Information System (INIS)

    Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.

    2002-03-01

    This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N PCh - N Sub ) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the modelling of the interfacial area

  19. Mixed convection in a two-phase flow cooling loop

    Energy Technology Data Exchange (ETDEWEB)

    Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.

    2002-03-01

    This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N{sub PCh} - N{sub Sub}) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the

  20. Challenges and Opportunities in Gen3 Embedded Cooling with High-Quality Microgap Flow

    Science.gov (United States)

    Bar-Cohen, Avram; Robinson, Franklin L.; Deisenroth, David C.

    2018-01-01

    Gen3, Embedded Cooling, promises to revolutionize thermal management of advanced microelectronic systems by eliminating the sequential conductive and interfacial thermal resistances which dominate the present 'remote cooling' paradigm. Single-phase interchip microfluidic flow with high thermal conductivity chips and substrates has been used successfully to cool single transistors dissipating more than 40kW/sq cm, but efficient heat removal from transistor arrays, larger chips, and chip stacks operating at these prodigious heat fluxes would require the use of high vapor fraction (quality), two-phase cooling in intra- and inter-chip microgap channels. The motivation, as well as the challenges and opportunities associated with evaporative embedded cooling in realistic form factors, is the focus of this paper. The paper will begin with a brief review of the history of thermal packaging, reflecting the 70-year 'inward migration' of cooling technology from the computer-room, to the rack, and then to the single chip and multichip module with 'remote' or attached air- and liquid-cooled coldplates. Discussion of the limitations of this approach and recent results from single-phase embedded cooling will follow. This will set the stage for discussion of the development challenges associated with application of this Gen3 thermal management paradigm to commercial semiconductor hardware, including dealing with the effects of channel length, orientation, and manifold-driven centrifugal acceleration on the governing behavior.

  1. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    Science.gov (United States)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  2. Computational parametric study of an impinging jet in a cross-flow configuration for electronics cooling applications

    International Nuclear Information System (INIS)

    Larraona, Gorka S.; Rivas, Alejandro; Antón, Raúl; Ramos, Juan Carlos; Pastor, Ignacio; Moshfegh, Bahram

    2013-01-01

    A parametric study based on design of experiments (DoE) techniques was carried out by computational simulation in order to evaluate the effect that design parameters have on heat transfer and pressure loss of an impinging jet in a cross-flow configuration. The main effects of each parameter and the interactions between parameters were analyzed in detail through the Response Surface Methodology (RSM). Additionally, the potential of the impinging jet in a cross-flow configuration was assessed by calculating the optimal values of the parameters and comparing the cooling efficiency of the resulting configuration with the efficiency of the conventional cross-flow configuration. It was found that the degree to which the average heat transfer coefficient is enhanced as the result of adding an impinging jet depends on the height of the cooled component. Specifically, it was found that the higher the component, the more significant the enhancement. -- Highlights: ► Five design parameters of an impinging jet in a cross-flow (IJCF) have been considered. ► Channel and jet velocities are found to be the most influential parameters. ► Significant interactions exist between some of the parameters. ► Larger cooling efficiency is achieved with the IJCF compared to the cross-flow solely. ► The enhancement obtained with the IJCF depends on the height of the component

  3. Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow

    International Nuclear Information System (INIS)

    Fu Jia; Yi Shi-He; Wang Xiao-Hu; He Lin; Ge Yong

    2014-01-01

    The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot supersonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injection Mach number is 3.2, and total temperature is 300 K. A constant voltage circuit is developed to supply the temperature detectors instead of the normally used constant current circuit. The schlieren photographs are presented additionally to visualize the flow and help analyze the pressure relationship between the cooling flow and the main flow. The dependence of the film-cooling effectiveness on flow parameters, i.e. the blow ratio, the convective Mach number, and the attack angle, is determined. A semi-empirical formula is tested by the present data, and is improved for a better correlation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Galactic structure

    International Nuclear Information System (INIS)

    1989-01-01

    The occurrence of hot, apparently normal, massive stars far from the galactic plane has been a major puzzle in an understanding of galactic structure and evolution. Such stars have been discovered and studied at the South African Astronomical Observatory (SAAO) over a number of years. During 1989 further evidence has been obtained indicating that these stars are normal, massive objects. Other studies of galactic structure conducted by the SAAO have included research on: the central bulge region of our galaxy; populations of M giants in the galaxy; a faint blue object survey; a survey of the galactic plane for distant Cepheid variables; interstellar reddening, and K-type dwarfs as tracers for the gravitational force perpendicular to the galactic plane. 1 fig

  5. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    Science.gov (United States)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  6. Flow-Induced Vibration Measurement of an Inner Cladding Tube in a Simulated Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho; Kim, Jae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    To create an internal coolant flow passage in a dual cooled fuel rod, an inner cladding tube cannot have intermediate supports enough to relieve its vibration. Thus it can be suffered from a flow-induced vibration (FIV) more severely than an outer cladding tube which will be supported by series of spacer grids. It may cause a fatigue failure at welding joints on the cladding's end plug or fluid elastic instability of long, slender inner cladding due to decrease of a critical flow velocity. This is one of the challenging technical issues when a dual cooled fuel assembly is to be realized into a conventional reactor core To study an actual vibration phenomenon of a dual cooled fuel rod, FIV tests using a small-scale test bundle are being carried out. Measurement results of inner cladding tube of two typically simulated rods are presented. Causes of the differences in the vibration amplitude and response spectrum of the inner cladding tube in terms of intermediate support condition and pellet stacking are discussed.

  7. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    Science.gov (United States)

    Hyhlík, Tomáš

    2018-06-01

    The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  8. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2018-01-01

    Full Text Available The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  9. Ionized Absorbers as Evidence for Supernova-driven Cooling of the Lower Galactic Corona

    NARCIS (Netherlands)

    Fraternali, Filippo; Marasco, Antonino; Marinacci, Federico; Binney, James

    2013-01-01

    We show that the ultraviolet absorption features, newly discovered in Hubble Space Telescope spectra, are consistent with being formed in a layer that extends a few kpc above the disk of the Milky Way. In this interface between the disk and the Galactic corona, high-metallicity gas ejected from the

  10. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations

    International Nuclear Information System (INIS)

    Jan, Yih-Kuen; Liao, Fuyuan; Lee, Bernard; Foreman, Robert D

    2012-01-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague–Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = −10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. (paper)

  11. The effect of cooling management on blood flow to the dominant follicle and estrous cycle length at heat stress.

    Science.gov (United States)

    Honig, Hen; Ofer, Lior; Kaim, Moshe; Jacobi, Shamay; Shinder, Dima; Gershon, Eran

    2016-07-15

    The use of ultrasound imaging for the examination of reproductive organs has contributed substantially to the fertility management of dairy cows around the world. This method has many advantages such as noninvasiveness and immediate availability of information. Adding Doppler index to the ultrasound imaging examination, improved the estimation of blood volume and flow rate to the ovaries in general and to the dominant follicle in particular. The aim of this study was to examine changes in the blood flow to the dominant follicle and compare them to the follicular development throughout the cycle. We further set out to examine the effects of different types of cooling management during the summer on the changes in blood flow to the dominant follicle. For this purpose, 24 Israeli-Holstein dairy cows, under heat stress, were randomly assigned one of two groups: one was exposed to five cooling sessions per day (5CS) and the other to eight cooling sessions per day (8CS). Blood flow to the dominant follicle was measured daily using Doppler index throughout the estrous cycle. No differences in the preovulatory dominant follicle diameter were detected between the two cooling management regimens during the cycle. However, the length of the first follicular wave was significantly longer, whereas the second follicular wave was nonsignificantly shorter in the 5CS group as compared to the 8CS group. In addition, no difference in blood flow was found during the first 18 days of the cycle between the two groups. However, from Day 20 until ovulation a higher rate of blood flow was measured in the ovaries of cows cooled 8 times per day as compared to the 5CS group. No differences in progesterone levels were noted. Finally, the estrous cycle length was shorter in the 8CS group as compared to the 5CS group. Our data suggest that blood flow to the dominant follicle and estrous cycle length is affected by heat stress. Using the appropriate cooling management during heat stress can

  12. Liquid metal flows in insulating elements of self-cooled blankets

    International Nuclear Information System (INIS)

    Molokov, S.

    1995-01-01

    Liquid metal flows in insulating rectangular ducts in strong magnetic fields are considered with reference to poloidal concepts of self-cooled blankets. Although the major part of the flow in poloidal blanket concepts is close to being fully developed, manifolds, expansions, contractions, elbows, etc., which are necessary elements in blanket designs, cause three-dimensional effects. The present investigation demonstrates the flow pattern in basic insulating geometries for actual and more advanced liquid metal blanket concepts and discusses the ways to avoid pressure losses caused by flow redistribution. Flows in several geometries, such as symmetric and non-symmetric 180 turns with and without manifolds, sharp and linear expansions with and without manifolds, etc., have been considered. They demonstrate the attractiveness of poloidal concepts of liquid metal blankets, since they guarantee uniform conditions for heat transfer. If changes in the duct cross-section occur in the plane perpendicular to the magnetic field (ideally a coolant should always flow in the radial-poloidal plane), the disturbances are local and the slug velocity profile is reached roughly at a distance equivalent to one duct width from the manifolds, expansions, etc. The effects of inertia in these flows are unimportant for the determination of the pressure drop and velocity profiles in the core of the flow but may favour heat transfer characteristics via instabilities and strongly anisotropic turbulence. (orig.)

  13. Solar modulation of galactic cosmic rays: techniques and applications

    International Nuclear Information System (INIS)

    Perko, J.S.

    1984-01-01

    This thesis covers four topics in the theory of interplanetary cosmic-ray propagation: the first part involves the time-dependent, spherically-symmetric, solar modulation of galactic cosmic rays. A numerical technique was introduced for the solution of this problem. A model for the solar cycle variation in cosmic-ray intensity illustrated this method using enhanced particle scattering regions. The second section contains an attempt to explain recent observations which show that cosmic-ray electrons are returning to higher intensities, characteristic of solar minimum, faster than cosmic-ray protons of about the same energy, the reverse of the previous eleven-year cycle. The third section involves the solar modulation of galactic antiprotons. Using a steady-state, spherically-symmetric, numerical modulation code, a solution that reasonably fits the observed 1980 galactic proton spectrum at 1 AU implied that the modulation used for the data interpretation has been significantly underestimated. The final section contains a spherically-symmetric steady-state calculation of the effects of a strong termination shock in the heliosphere. In the end, high-energy particles cooling down in the upstream solar wind overwhelmed any accelerated low-energy particles

  14. Cooling flow measurement in fuel elements of the RA-6

    International Nuclear Information System (INIS)

    Brollo, F; Silin, N

    2009-01-01

    Under the UBERA6 project for the core change and power increase of the RA-6 reactor, the total coolant flow was increased to meet the requirements imposed by the new operating conditions. The flow through the fuel elements is an important parameter and is difficult to determine due to the geometric complexity of the core. To ensure safe operation of the reactor, adequate safety margins must be kept for all operating conditions. In the present work we performed the direct measurement of the cooling flow rate of a fuel in the reactor core, for which we used a turbine flowmeter built specifically for this use. This helped to confirm previous results obtained during the launch, made by an indirect method based on measuring the pressure difference of the core. The turbine flowmeter was chosen due to its robustness, ease of operation and low disturbance of the input stream to the fuel. We describe the calibration of this instrument and the results of flow measurements made on some of the RA6 reactor fuel elements under conditions of zero power. [es

  15. Closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1994-01-01

    A closed-cycle gas flow system for cooling a high-crit. temp. d.c.-superconducting quantum interference device (SQUID) magnetometer by means of a cryocooler has been designed, constructed and tested. The magnetometer is aimed to measure heart signals with a sensitivity of 0.1 pT/Hz1/2. The required

  16. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  17. Sodium flow measurement in large pipelines of sodium cooled fast breeder reactors with bypass type flow meters

    International Nuclear Information System (INIS)

    Rajan, K.K.; Jayakumar, T.; Aggarwal, P.K.; Vinod, V.

    2016-01-01

    Highlights: • Bypass type permanent magnet flow meters are more suitable for sodium flow measurement. • A higher sodium velocity through the PMFM sensor will increase its sensitivity and resolution. • By modifying the geometry of bypass line, higher sodium velocity through sensor is achieved. • With optimized geometry the sensitivity of bypass flow meter system was increased by 70%. - Abstract: Liquid sodium flow through the pipelines of sodium cooled fast breeder reactor circuits are measured using electromagnetic flow meters. Bypass type flow meter with a permanent magnet flow meter as sensor in the bypass line is selected for the flow measurement in the 800 NB main secondary pipe line of 500 MWe Prototype Fast Breeder Reactor (PFBR), which is at the advanced stage of construction at Kalpakkam. For increasing the sensitivity of bypass flow meters in future SFRs, alternative bypass geometry was considered. The performance enhancement of the proposed geometry was evaluated by experimental and numerical methods using scaled down models. From the studies it is observed that the new configuration increases the sensitivity of bypass flow meter system by around 70%. Using experimentally validated numerical tools the volumetric flow ratio for the bypass configurations is established for the operating range of Reynolds numbers.

  18. Galactic winds and the hubble sequence

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1978-01-01

    The conditions for maintenance of supernova-driven galactic winds have been investigated to assess their role in the morphology of disk-bulge galaxies. A fluid mechanical model with gas and stars which includes galactic rotation has been used to investigate several classes of winds. It is found that many galaxies, once their initial gas is depleted, can maintain a wind throughout the entire galaxy, a conditon most easily satisfied by systems with a small bulge-to-disk ratio. If the ratio of supernova heating to total mass loss falls below a critical value that depends on galaxy type and mass, only a partial wind exterior to a critical surface can exist, with infall occurring at interior points. Galaxies in which only the bulge was depleted of gas may support a bulge wind that does not interact with the colder and denser gas in the disk.These results indicate that if SO galaxies are a transition class between elliptical and spiral galaxies, it is probably because early galactic winds, which may initially deplete a galaxy of gas, are more prevalent in SO than in spiral galaxies. However, if SO's form a parallel sequence with spirals, the initial gas-depletion mechanism must be independent of bulge-to-disk ratio. These results are not strongly influenced by altering the galactic mass model, including electron conduction in the flow equations, or adding massive halos

  19. Investigation of the falling water flow with evaporation for the passive containment cooling system and its scaling-down criteria

    Science.gov (United States)

    Li, Cheng; Li, Junming; Li, Le

    2018-02-01

    Falling water evaporation cooling could efficiently suppress the containment operation pressure during the nuclear accident, by continually removing the core decay heat to the atmospheric environment. In order to identify the process of large-scale falling water evaporation cooling, the water flow characteristics of falling film, film rupture and falling rivulet were deduced, on the basis of previous correlation studies. The influences of the contact angle, water temperature and water flow rates on water converge along the flow direction were then numerically obtained and results were compared with the data for AP1000 and CAP1400 nuclear power plants. By comparisons, it is concluded that the water coverage fraction of falling water could be enhanced by either reducing the surface contact angle or increasing the water temperature. The falling water flow with evaporation for AP1000 containment was then calculated and the feature of its water coverage fraction was analyzed. Finally, based on the phenomena identification of falling water flow for AP1000 containment evaporation cooling, the scaling-down is performed and the dimensionless criteria were obtained.

  20. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  1. Dry cross-flow cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Fordyce, H E

    1975-01-23

    The invention deals with dry cooling towers in particular a circular cooling tower of the mechanical-draught construction whose operating characteristics should be independent of the wind direction. The recycling of the hot air should be as low as possible without necessitating high fan or natural-draught shafts, so that the costs of the tower can be brought down to a minimum.

  2. Heat conduction boundary layers of condensed clumps in cooling flows

    International Nuclear Information System (INIS)

    Boehringer, H.; Fabian, A.C.

    1989-01-01

    The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations. (author)

  3. Aero-thermal optimization of film cooling flow parameters on the suction surface of a high pressure turbine blade

    Science.gov (United States)

    El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid

    2012-11-01

    This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.

  4. A method and programme (BREACH) for predicting the flow distribution in water cooled reactor cores

    International Nuclear Information System (INIS)

    Randles, J.; Roberts, H.A.

    1961-03-01

    The method presented here of evaluating the flow rate in individual reactor channels may be applied to any type of water cooled reactor in which boiling occurs The flow distribution is calculated with the aid of a MERCURY autocode programme, BREACH, which is described in detail. This programme computes the steady state longitudinal void distribution and pressure drop in a single channel on the basis of the homogeneous model of two phase flow. (author)

  5. A method and programme (BREACH) for predicting the flow distribution in water cooled reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J; Roberts, H A [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1961-03-15

    The method presented here of evaluating the flow rate in individual reactor channels may be applied to any type of water cooled reactor in which boiling occurs The flow distribution is calculated with the aid of a MERCURY autocode programme, BREACH, which is described in detail. This programme computes the steady state longitudinal void distribution and pressure drop in a single channel on the basis of the homogeneous model of two phase flow. (author)

  6. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  7. Prediction, analysis and solution of flow inversion phenomenon in a typical MTR reactor with upward core cooling

    International Nuclear Information System (INIS)

    El-Morshedy, Salah El-Din

    2010-01-01

    Research reactors of power greater than 20 MW are usually designed to be cooled with upward coolant flow direction inside the reactor core. This is mainly to prevent flow inversion problems following a pump coast down. However, in some designs and under certain operating conditions, flow inversion phenomenon is predicted. In the present work, the best-estimate Material Testing Reactors Thermal-Hydraulic Analysis program (MTRTHA) is used to simulate a typical MTR reactor behavior with upward cooling under a hypothetical case of loss of off-site power. The flow inversion phenomenon is predicted under certain decay heat and/or pool temperature values below the design values. The reactor simulation under loss of off-site power is performed for two cases namely; two-flap valves open and one flap-valve fails to open. The model results for the flow inversion phenomenon prediction is analyzed and a solution of the problem is suggested. (orig.)

  8. Experimental investigations of flow distribution in coolant system of Helium-Cooled-Pebble-Bed Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Ilić, M.; Schlindwein, G., E-mail: georg.schlindwein@kit.edu; Meyder, R.; Kuhn, T.; Albrecht, O.; Zinn, K.

    2016-02-15

    Highlights: • Experimental investigations of flow distribution in HCPB TBM are presented. • Flow rates in channels close to the first wall are lower than nominal ones. • Flow distribution in central chambers of manifold 2 is close to the nominal one. • Flow distribution in the whole manifold 3 agrees well with the nominal one. - Abstract: This paper deals with investigations of flow distribution in the coolant system of the Helium-Cooled-Pebble-Bed Test Blanket Module (HCPB TBM) for ITER. The investigations have been performed by manufacturing and testing of an experimental facility named GRICAMAN. The facility involves the upper poloidal half of HCPB TBM bounded at outlets of the first wall channels, at outlet of by-pass pipe and at outlets of cooling channels in breeding units. In this way, the focus is placed on the flow distribution in two mid manifolds of the 4-manifold system: (i) manifold 2 to which outlets of the first wall channels and inlet of by-pass pipe are attached and (ii) manifold 3 which supplies channels in breeding units with helium coolant. These two manifolds are connected with cooling channels in vertical/horizontal grids and caps. The experimental facility has been built keeping the internal structure of manifold 2 and manifold 3 exactly as designed in HCPB TBM. The cooling channels in stiffening grids, caps and breeding units are substituted by so-called equivalent channels which provide the same hydraulic resistance and inlet/outlet conditions, but have significantly simpler geometry than the real channels. Using the conditions of flow similarity, the air pressurized at 0.3 MPa and at ambient temperature has been used as working fluid instead of HCPB TBM helium coolant at 8 MPa and an average temperature of 370 °C. The flow distribution has been determined by flow rate measurements at each of 28 equivalent channels, while the pressure distribution has been obtained measuring differential pressure at more than 250 positions. The

  9. Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elsayed

    2013-01-01

    Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.

  10. Problems of two-phase flows in water cooled and moderated reactors

    International Nuclear Information System (INIS)

    Syu, Yu.

    1984-01-01

    Heat exchange in two-phase flows of coolant in loss of coolant accidents in PWR and BWR reactors has been investigated. Three main stages of accident history are considered: blowdown, reflooding using emergency core cooling system and rewetting. Factors, determining the rate of coolant leakage and the rate of temperature increase in fuel cladding during blowdown, processes of vapour during reflooding and liquid priming by vapour during rewetting, are discussed

  11. Analysis of transient and hysteresis behavior of cross-flow heat exchangers under variable fluid mass flow rate for data center cooling applications

    International Nuclear Information System (INIS)

    Gao, Tianyi; Murray, Bruce; Sammakia, Bahgat

    2015-01-01

    Effective thermal management of data centers is an important aspect of reducing the energy required for the reliable operation of data processing and communications equipment. Liquid and hybrid (air/liquid) cooling approaches are becoming more widely used in today's large and complex data center facilities. Examples of these approaches include rear door heat exchangers, in-row and overhead coolers and direct liquid cooled servers. Heat exchangers are primary components of liquid and hybrid cooling systems, and the effectiveness of a heat exchanger strongly influences the thermal performance of a cooling system. Characterizing and modeling the dynamic behavior of heat exchangers is important for the design of cooling systems, especially for control strategies to improve energy efficiency. In this study, a dynamic thermal model is solved numerically in order to predict the transient response of an unmixed–unmixed crossflow heat exchanger, of the type that is widely used in data center cooling equipment. The transient response to step and ramp changes in the mass flow rate of both the hot and cold fluid is investigated. Five model parameters are varied over specific ranges to characterize the transient performance. The parameter range investigated is based on available heat exchanger data. The thermal response to the magnitude, time period and initial and final conditions of the transient input functions is studied in detail. Also, the hysteresis associated with the fluid mass flow rate variation is investigated. The modeling results and performance data are used to analyze specific dynamic performance of heat exchangers used in practical data center cooling applications. - Highlights: • The transient performance of a crossflow heat exchanger was modeled and studied. • This study provides design information for data center thermal management. • The time constant metric was used to study the impacts of many variable inputs. • The hysteresis behavior

  12. Observation of near and intermediate infrared galactic radiation by the rocket K-10-14

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Matsumoto, Toshio; Mizuno, Tomohisa; Murakami, Hiroshi; Noguchi, Kunio

    1981-01-01

    The spatial and the energy spectra of near and intermediate infrared radiation were observed by using a detector system loaded on a rocket. The detector system is a He-cooled infrared telescope, and consists of an optical system, a cryostat, an electronic system, and a star sensor. The system was loaded on the rocket K-10-14, and the observation was made for about 400 second on August 27, 1980. For the radiation with wavelength of 2.4 mu m and 4.6 mu m, the intensity of galactic light around 338, 9, 15 and 12 degree of galactic longitude was observed. For the wavelength of 7.6, 10.1 and 14.7 mu m, the data around 340 and 10 degree of galactic longitude were obtained. The latitudinal distribution of radiation of 2.4 and 4.6 mu m was measured. After the correction for interstellar absorption, it can be said that the galactic radiation of wavelength between 2.4 mu m and 7.6 mu m was mainly composed of the radiation from light balls of late type stars. (Kato, T.)

  13. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.; Hull, J.R.

    1994-01-01

    High-temperature superconductors (HTSs), consisting of Bi-2223 HTS tapes sheathed with Ag alloys are proposed for a 20-kA current lead for the planned stellarator WENDELSTEIN 7-X. Forced-flow He cooling is used, and 4-K He cooling of the whole lead as well as 60-K He cooling of the copper part of the lead, is discussed. Power consumption and behavior in case of loss of He flow are given

  14. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Blair D.; Kim, Tae-Sun; Wakker, Bart P. [Department of astronomy, University of Wisconsin, Madison, 475 North Charter Street, Madison, WI 53706 (United States); Fox, Andrew J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Massa, Derck [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Jenkins, Edward B. [Princeton University Observatory, Princeton, NJ 08544 (United States); Lehner, Nicolas [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Lockman, Felix J. [Green Bank Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Hernandez, Svea [Department of Astrophysics, Radboud University, Nijmegen, PO Box 9010, 6500 GL Nijmegen (Netherlands)

    2017-10-01

    Comparison of interstellar medium (ISM) absorption in the UV spectrum of LS 4825, a B1 Ib−II star d  = 21 ± 5 kpc from the Sun toward l  = 1.°67 and b  = −6.°63, with ISM absorption toward an aligned foreground star at d  < 7.0 ± 1.7 kpc, allows us to isolate and study gas associated with the Milky Way nuclear wind. Spectra from the Space Telescope Imaging Spectrograph show low-ionization absorption out to d  < 7 kpc (e.g., O i, C ii, Mg ii, Si ii, Fe ii, S ii) only between 0 and 40 km s{sup −1}, while absorption at d  > 7 kpc, ∼1 kpc below the Galactic plane, is complex and spans −290 to +94 km s{sup −1}. The intermediate and high ions Si iii, C iv, Si iv, and N v show extremely strong absorption with multiple components from −283 to 107 km s{sup −1}, implying that the ISM ∼1 kpc below the Galactic center has a substantial reservoir of plasma and more gas containing C iv and N v than in the Carina OB1 association at z  = 0 kpc. Abundances and physical conditions are presented for many absorption components. The high ion absorption traces cooling transition temperature plasma probably driven by the outflowing hot gas, while the extraordinarily large thermal pressure, p / k  ∼ 10{sup 5} cm{sup −3} K{sup −1}, in an absorption component at −114 km s{sup −1} probably arises from the ram pressure of the outflowing hot gas. The observations are consistent with a flow whose ionization structure in the high ions can be understood through a combination of nonequilibrium radiative cooling and turbulent mixing.

  15. Numerical simulation of flow characteristics of lean jet to cross-flow in safety injection of reactor cooling system

    International Nuclear Information System (INIS)

    Wang Haijun; He Huining; Luo Yushan; Wang Weishu

    2011-01-01

    In the present work, a numerical simulation was performed to study the flow characteristics of lean jet to cross flow in a main tube in the safety injection of reactor cooling system. The influence scope and mixing characteristics of the confined lean jet in cross-flow were studied. It can be concluded that three basic flow regimes are marked, namely the attached lean jet, lift-off lean jet and impinging lean jet. The velocity ratio V R is the key factor in the flow state. The depth and region of jet to main flow are enhanced with the increase of the velocity ratio. The jet flow penetrates through the main flow with the increase of the velocity ratio. At higher velocity ratio, the jet flow strikes the main flow bottom and circumfluence happens in upriver of main flow. The vortex flow characteristics dominate the flow near region of jet to cross-flow and the mixture of jet to cross-flow. At different velocity ratio V R , the vortex grows from the same displacement, but the vortex type and the vortex is different. At higher velocity ratio, the vortex develops fleetly, wears off sharp and dies out sharp. The study is very important to the heat transfer experiments of cross-flow jet and thermal stress analysis in the designs of nuclear engineering. (authors)

  16. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  17. An experimental investigation of natural circulated air flow in the passive containment cooling system

    International Nuclear Information System (INIS)

    Ryu, S.H.; Oh, S.M.; Park, G.C.

    2004-01-01

    The objective of this study is to investigate the effects of air inlet position and external conditions on the natural circulated air flow rate in a passive containment cooling system of the advanced passive reactor. Experiments have been performed with 1/36 scaled segment type passive containment test facility. The air velocities and temperatures are measured through the air flow path. Also, the experimental results are compared with numerical calculations and show good agreement. (author)

  18. Active galactic nucleus outflows in galaxy discs

    Science.gov (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  19. Numerical Predictions of Enhanced Impingement Jet Cooling with Ribs and Pins in Co-Flow and Cross-Flow Configurations

    Directory of Open Access Journals (Sweden)

    A. M. El-Jummah

    2017-02-01

    Full Text Available Numerical calculations relevant to gas turbine internal wall heat transfer cooling were conducted using conjugate heat transfer (CHT computational Fluid Dynamics (CFD commercial codes. The CHT CFD predictions were carried out for impingement heat transfer with different types of obstacle walls (fins on the target surfaces. A 10 × 10 row of impingement air jet holes (or hole density n of 4306 m-2 was used, which gives ten rows of holes in the cross-flow direction and only one heat transfer enhancement obstacle per impingement jet was investigated. Previously, four different shaped obstacles were investigated experimentally and were used to validate the present predictions. The obstacle walls, which were equally spaced on the centreline between each impingement jet are of the co-flow and cross-flow configurations. The impingement jet pitch X to diameter D, X/D and gap Z to diameter, Z/D ratios were kept constant at 4.66 and 3.06 for X, Z and D of 15.24, 10.00 and 3.27 mm, respectively. The obstacles investigated were ribs and rectangular pin-fins shapes, using two obstacles height H to diameter, H/D ratio of 1.38 and 2.45. Computations were carried out for three different mass flux G of 1.08, 1.48 and 1.94 kg/sm2. Relative pressure loss ∆P/P and surface average heat transfer coefficient (HTC h predictions for the range of G, showed good agreement with the experimental results. The prediction also reveals that obstacles not only increases the turbulent flows, but also takes away most of the cooling heat transfer that produces the regions with highest thermal gradients. It also reduces the impingement gap downstream cross-flow.

  20. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  1. Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling

    Science.gov (United States)

    Uzdensky, D. A.

    2018-03-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  2. Cool C-shocks and high-velocity flows in molecular clouds

    International Nuclear Information System (INIS)

    Smith, M.D.; Brand, P.W.J.L.

    1990-01-01

    C-shocks can be driven through dense clouds when the neutrals and magnetic field interact weakly due to a paucity of ions. We develop a method for calculating C-shock properties with the aim of interpreting the observed high-velocity molecular hydrogen. A high Mach number approximation, corresponding to low temperatures, is employed. Under strong cooling conditions the flow is continuous even though a subsonic region may be present downstream. Analytic expressions for the maximum temperature, dissociation fraction, self-ionization level and J-shock transition are derived. (author)

  3. Solving the heat transfer in the cold rain of a cross flow cooling tower. N3S code - cooling tower release

    International Nuclear Information System (INIS)

    Grange, J.L.

    1996-09-01

    A simplified model for heat and mass transfer in the lower rainfall of a counter-flow cooling toward had to be implemented in the N3S code-cooling tower release It is built from an old code: ZOPLU. The air velocity field is calculated by N3S. The air and water temperature fields are solved by a Runge-Kutta method on a mesh in an adequate number of vertical plans. Heat exchange and drags correlations are given. And all the necessary parameters are specified. All the subroutines are described. They are taken from ZOPLU and modified in order to adapt their abilities to the N3S requirements. (author). 6 refs., 3 figs., 3 tabs., 3 appends

  4. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  5. Incorporation of cooling-induced crystallisation into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, D. A.; Neuberg, J. W.; Bouvet de Maisonneuve, C.; Collinson, A.; Taisne, B.; Morgan, D. J.

    2015-12-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic systems. We shall investigate the thermal processes and timescales in a crystallizing, static magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/°C (runs 1 & 3) and 0.2MPa/°C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69e5 J/kg*K, 9.32e5 J/kg*K, and 9.49e5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the center of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10 m depth, it takes 4.1-9.2 years for the magma column to cool over 108-130oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and dominant latent heat producing crystallizing phases (Quartz), where run 1 cools fastest and run 3 cools slowest. Surface cooling by comparison has the strongest influence on the upper tens of meters in all

  6. Reverse primary-side flow in steam generators during natural circulation cooling

    International Nuclear Information System (INIS)

    Stumpf, H.; Motley, F.; Schultz, R.; Chapman, J.; Kukita, Y.

    1987-01-01

    A TRAC model of the Large Scale Test Facility with a 3-tube steam-generator model was used to analyze natural-circulation test ST-NC-02. For the steady state at 100% primary mass inventory, TRAC was in excellent agreement with the natural-circulation flow rate, the temperature distribution in the steam-generator tubes, and the temperature drop from the hot leg to the steam-generator inlet plenum. TRAC also predicted reverse flow in the long tubes. At reduced primary mass inventories, TRAC predicted the three natural-circulation flow regimes: single phase, two phase, and reflux condensation. TRAC did not predict the cyclic fill-and-dump phenomenon seen briefly in the test. TRAC overpredicted the two-phase natural-circulation flow rate. Since the core is well cooled at this time, the result is conservative. An important result of the analysis is that TRAC was able to predict the core dryout and heatup at approximately the same primary mass inventory as in the test. 4 refs., 8 figs., 2 tabs

  7. Galactic dynamics

    CERN Document Server

    Binney, James

    2008-01-01

    Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many section

  8. Unsteady-state analysis of a counter-flow dew point evaporative cooling system

    KAUST Repository

    Lin, J.

    2016-07-19

    Understanding the dynamic behavior of the dew point evaporative cooler is crucial in achieving efficient cooling for real applications. This paper details the development of a transient model for a counter-flow dew point evaporative cooling system. The transient model approaching steady conditions agreed well with the steady state model. Additionally, it is able to accurately predict the experimental data within 4.3% discrepancy. The transient responses of the cooling system were investigated under different inlet air conditions. Temporal temperature and humidity profiles were analyzed for different transient and step responses. The key findings from this study include: (1) the response trend and settling time is markedly dependent on the inlet air temperature, humidity and velocity; (2) the settling time of the transient response ranges from 50 s to 300 s when the system operates under different inlet conditions; and (3) the average transient wet bulb effectiveness (1.00–1.06) of the system is observed to be higher than the steady state wet bulb effectiveness (1.01) for our range of study. © 2016 Elsevier Ltd

  9. Critical heat flux analysis on change of plate temperature and cooling water flow rate for rectangular narrow gap with bilateral-heated cases

    International Nuclear Information System (INIS)

    M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan

    2013-01-01

    Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)

  10. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  11. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  12. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1985-01-01

    The innermost regions of the central engines in active galactic nuclei are examined, and it is shown how different modes of accretion with angular momentum may account for the diverse manifestations of activity in the nuclei of galaxies. These modes are subsequently compared with the observed properties of quasars, Type I Seyferts, and radio galaxies. It was found that the qualitative features of an accretion flow orbiting a massive black hole depend principally on the ratio of the actual accretion rate to the Eddington accretion rate. For a value of this ratio much less than one, the flow may become an ion torus supported by gas pressure; for a value much greater than one, the flow traps its radiative output and becomes an inefficient radiation torus. At intermediate values, the flow may settle into a thin accretion disk. 62 references

  13. Effects of Cooling Fluid Flow Rate on the Critical Heat Flux and Flow Stability in the Plate Fuel Type 2 MW TRIGA Reactor

    OpenAIRE

    H. P. Rahardjo; V. I. Sri Wardhani

    2017-01-01

    The conversion program of the 2 MW TRIGA reactor in Bandung consisted of the replacement of cylindrical fuel (produced by General Atomic) with plate fuel (produced by BATAN). The replacement led into the change of core cooling process from upward natural convection type to downward forced convection type, and resulted in different thermohydraulic safety criteria, such as critical heat flux (CHF) limit, boiling limit, and cooling fluid flow stability. In this paper, a thermohydraulic safety an...

  14. The low-power low-pressure flow resonance in a natural circulation cooled boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, T.H.J.J. van der; Stekelenburg, A.J.C. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    The last few years the possibility of flow resonances during the start-up phase of natural circulation cooled BWRs has been put forward by several authors. The present paper reports on actual oscillations observed at the Dodewaard reactor, the world`s only operating BWR cooled by natural circulation. In addition, results of a parameter study performed by means of a simple theoretical model are presented. The influence of relevant parameters on the resonance characteristics, being the decay ratio and the resonance frequency, is investigated and explained.

  15. The 1.4-2.7 micron spectrum of the point source at the galactic center

    Science.gov (United States)

    Treffers, R. R.; Fink, U.; Larson, H. P.; Gautier, T. N., III

    1976-01-01

    The spectrum of the 2-micron point source at the galactic center is presented over the range from 1.4 to 2.7 microns. The two-level-transition CO band heads are seen near 2.3 microns, confirming that the radiation from this source is due to a cool supergiant star. The heliocentric radial velocity is found to be - 173 (+ or -90) km/s and is consistent with the star being in orbit about a dense galactic nucleus. No evidence is found for Brackett-gamma emission, and no interstellar absorption features are seen. Upper limits for the column densities of interstellar H2, CH4, CO, and NH3 are derived.

  16. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon, E-mail: rjpark@kaeri.re.kr; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-03-15

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m{sup 2} s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  17. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-01-01

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m"2 s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  18. Wall-cooling-induced mixed-convection flow recirculation in a vertical square-array multi-rod channel

    International Nuclear Information System (INIS)

    Luangdilok, W.; Todreas, N.E.

    1989-01-01

    This work investigated the structure of penetrative flow recirculation and associated flow conditions in a multi-rod channel induced by interassembly heat transfer that causes cooling through channel walls. Three investigation approaches, experimental, numerical, and analytical were employed in a complimentary fashion. Physical experiments involved water flow visualization and temperature measurement in a 4x4 rod square channel. Numerical experiments involved 3-dimensional simulations of water and sodium flow in a 2x2-rod channels. An approximate reverse flow model including Prandtl number effect was developed. A correlating equation based on the model and experiments was verified for water to correctly predict the trend of the 4x4-rod experimental penetration depth data. (orig.)

  19. Atmospheric cooling tower with reduced plume

    International Nuclear Information System (INIS)

    Gautier, D.M.; Lagoutte, A.

    1985-01-01

    The cooling tower, usable in thermal-electric power plants, has a vertical chimney having a central water tower fed with water to be cooled, a pipe network distributing water coming from the water tower and dispersing it in flows streaming down on a packing, and a basin to receive the water cooled by contact with an air flow passing through apertures at the lower part of the chimney and flowing up through the chimney. The cooling tower has inlet air pipes for the said apertures to a zone of the chimney situated beyond the streaming zone, the said pipes being arranged such their surface is swept by water to be cooled [fr

  20. Study on dew point evaporative cooling system with counter-flow configuration

    International Nuclear Information System (INIS)

    Lin, J.; Thu, K.; Bui, T.D.; Wang, R.Z.; Ng, K.C.; Chua, K.J.

    2016-01-01

    Highlights: • Numerical model for a dew point evaporative cooler verified with experiments. • Saturation point of the working air is independent of the inlet air conditions. • The intensity of cooling capacity and water evaporation are studied. • The overall heat transfer coefficient for the working air is analyzed. • The conditions to achieve sub-wet bulb cooling are examined. - Abstract: Dew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3 m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100 W/(m"2·K) after the temperature of water film becomes higher than the working air temperature.

  1. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  2. Experimental convective heat transfer characterization of pulsating jet in cross flow: influence of Strouhal number excitation on film cooling effectiveness

    International Nuclear Information System (INIS)

    Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva

    2012-01-01

    In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.

  3. THERMAL AND DYNAMICAL PROPERTIES OF GAS ACCRETING ONTO A SUPERMASSIVE BLACK HOLE IN AN ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Mościbrodzka, M.; Proga, D.

    2013-01-01

    We study stability of gas accretion in active galactic nuclei (AGNs). Our grid-based simulations cover a radial range from 0.1 to 200 pc, which may enable linking the galactic/cosmological simulations with small-scale black hole (BH) accretion models within a few hundreds of Schwarzschild radii. Here, as in previous studies by our group, we include gas radiative cooling as well as heating by a sub-Eddington X-ray source near the central supermassive BH of 10 8 M ☉ . Our theoretical estimates and simulations show that for the X-ray luminosity, L X ∼ 0.008 L Edd , the gas is thermally and convectively unstable within the computational domain. In the simulations, we observe that very tiny fluctuations in an initially smooth, spherically symmetric, accretion flow, grow first linearly and then nonlinearly. Consequently, an initially one-phase flow relatively quickly transitions into a two-phase/cold-hot accretion flow. For L X = 0.015 L Edd or higher, the cold clouds continue to accrete but in some regions of the hot phase, the gas starts to move outward. For L X Edd , the cold phase contribution to the total mass accretion rate only moderately dominates over the hot phase contribution. This result might have some consequences for cosmological simulations of the so-called AGN feedback problem. Our simulations confirm the previous results of Barai et al. who used smoothed particle hydrodynamic (SPH) simulations to tackle the same problem. Here, however, because we use a grid-based code to solve equations in one dimension and two dimensions, we are able to follow the gas dynamics at much higher spacial resolution and for longer time compared with the three-dimensional SPH simulations. One of the new features revealed by our simulations is that the cold condensations in the accretion flow initially form long filaments, but at the later times, those filaments may break into smaller clouds advected outward within the hot outflow. Therefore, these simulations may serve as

  4. Nonlinear theory of nonstationary low Mach number channel flows of freely cooling nearly elastic granular gases.

    Science.gov (United States)

    Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady

    2008-02-01

    We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald

  5. Fluid-cooled heat sink for use in cooling various devices

    Science.gov (United States)

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2017-09-12

    The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  6. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  7. Air-cooled, hydrogen-air fuel cell

    Science.gov (United States)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  8. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling

  9. Wind dependence on the flow rate in a natural draught cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Ernst, G.; Wurz, D.

    1981-01-01

    The efficiency of a natural draught cooling tower depends, among other things, on the effect of the wind on the flow in the tower stack. Determinations were made on a natural draught wet cooling tower 100 metres high, for the purpose of studying this effects. As characteristic quantity, a typical height was determined, the values of which were worked out from the results of the measurements. The efficiency of the stack is affected the most in the case of average wind velocities (when the velocity of the wind is about equal to the mean velocity of the plume). This effect diminishes when the velocity of the wind increases. In the case of average wind velocities, the direction of the wind has an effect, owing to the neighbouring buildings; for slightly greater wind velocities, no effect could be found [fr

  10. HANARO cooling features: design and experience

    International Nuclear Information System (INIS)

    Park, Cheol; Chae, Hee-Taek; Han, Gee-Yang; Jun, Byung-Jin; Ahn, Guk-Hoon

    1999-01-01

    In order to achieve the safe core cooling during normal operation and upset conditions, HANARO adopted an upward forced convection cooling system with dual containment arrangements instead of the forced downward flow system popularly used in the majority of forced convection cooling research reactors. This kind of upward flow system was selected by comparing the relative merits of upward and downward flow systems from various points of view such as safety, performance, maintenance. However, several operational matters which were not regarded as serious at design come out during operation. In this paper are presented the design and operational experiences on the unique cooling features of HANARO. (author)

  11. Improved energy performance of air cooled centrifugal chillers with variable chilled water flow

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2008-01-01

    This paper considers how to apply optimum condensing temperature control and variable chilled water flow to increase the coefficient of performance (COP) of air cooled centrifugal chillers. A thermodynamic model for the chillers was developed and validated using a wide range of operating data and specifications. The model considers real process phenomena, including capacity control by the inlet guide vanes of the compressor and an algorithm to determine the number and speed of condenser fans staged based on a set point of condensing temperature. Based on the validated model, it was found that optimizing the control of condensing temperature and varying the evaporator's chilled water flow rate enable the COP to increase by 0.8-191.7%, depending on the load and ambient conditions. A cooling load profile of an office building in a subtropical climate was considered to assess the potential electricity savings resulting from the increased chiller COP and optimum staging of chillers and pumps. There is 16.3-21.0% reduction in the annual electricity consumption of the building's chiller plant. The results of this paper provide useful information on how to implement a low energy chiller plant

  12. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  13. Cooling system upon reactor isolation

    International Nuclear Information System (INIS)

    Yamamoto, Kohei; Oda, Shingo; Miura, Satoshi

    1992-01-01

    A water level indicator for detecting the upper limit value for a range of using a suppression pool and a thermometer for detecting the temperature of water at the cooling water inlet of an auxiliary device are disposed. When a detection signal is intaken and the water level in the suppression pool reach the upper limit value for the range of use, a secondary flow rate control value is opened and a primary flow rate control valve is closed. When the temperature of the water at the cooling water inlet of the auxiliary device reaches the upper limit value, the primary and the secondary flow rate control valves are opened. During a stand-by state, the first flow rate control valve is set open and the secondary flow rate control valve is set closed respectively. After reactor isolation, if a reactor water low level signal is received, an RCIC pump is actuated and cooling water is sent automatically under pressure from a condensate storage tank to the reactor and the auxiliary device requiring coolants by way of the primary flow rate control valve. Rated flow rate is ensured in the reactor and cooling water of an appropriate temperature can be supplied to the auxiliary device. (N.H.)

  14. Galactic sprinklers

    International Nuclear Information System (INIS)

    Vandeusen, W.

    1984-01-01

    It is believed by many astronomers that gravitation is responsible for holding a strong whirlpool of hot, dense material together at the center of the Milky Way galaxy. However, the galactic-sprinkler model suggests that the whirlpool is not being held together, and that the stars, gas and dust within the spirals are being thrown outward. It is also suggested that much of the ejected material eventually returns to the galactic center, as do stars within our stellar neighborhood. The material is believed to be subjected to extreme changes in the gravitational time rate which may cause it to follow an inbound spiral that is basically similar to the outbound spiral. Radio studies also indicate that the galactic arms on either side of the galactic center move at different velocities and in different directions with respect to our location and that the whole group of stars in the vicinity of the solar system may be moving outward from the galactic center at a velocity of about 40 kps. Through the use of velocity data in kps, and distance data in light years, the radial component of the sun's trajectory can be estimated with respect to time by a parabola. The spiral trajectory of the sun can be calculated and plotted on polar coordinates by combining both the radial component and tangential component (230 kps)

  15. Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration

    Directory of Open Access Journals (Sweden)

    Norbert Moritz

    2013-03-01

    Full Text Available Great efforts are still put into the design process of advanced film-cooling configurations. In particular, the vanes and blades of turbine front stages have to be cooled extensively for a safe operation. The conjugate calculation technique is used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The focus of the investigation is laid on the leading edge part of the blade. The numerical model consists of all internal flow passages and cooling hole rows at the leading edge. Furthermore, the radial gap flow is also part of the model. The comparison with thermal pyrometer measurements shows that with respect to regions with high thermal load a qualitatively and quantitatively good agreement of the conjugate results and the measurements can be found. In particular, the region in the vicinity of the mid-span section is exposed to a higher thermal load, which requires further improvement of the cooling arrangement. Altogether the achieved results demonstrate that the conjugate calculation technique is applicable for reasonable prediction of three-dimensional thermal load of complex cooling configurations for blades.

  16. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  17. A numerical study on buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls

    International Nuclear Information System (INIS)

    Aydin, O.; Uenal, A.; Ayhan, T.

    1999-01-01

    Buoyancy-driven flows in enclosures play a vital role in many engineering applications such as double glazing, ventilation of rooms, nuclear reactor insulation, solar energy collection, cooling of electronic components, and crystal growth in liquids. Here, numerical study on buoyancy-driven laminar flow in an inclined square enclosure heated from one side and cooled from the adjacent side is conducted using finite difference methods. The effect of inclination angle on fluid flow and heat transfer is investigated by varying the angle of inclination between 0 degree and 360degree, and the results are presented in the form of streamlines and isotherms for different inclination angles and Rayleigh numbers. On the basis of the numerical data, the authors determine the critical values of the inclination angle at which the rate of the transfer within the enclosure is either maximum or minimum

  18. Fuel Cooling in Absence of Forced Flow at Shutdown Condition with PHTS Partially Drained

    Energy Technology Data Exchange (ETDEWEB)

    Parasca, L.; Pecheanu, D.L., E-mail: laurentiu.parasca@cne.ro, E-mail: doru.pecheanu@cne.ro [Cernavoda Nuclear Power Plant, Cernavoda (Romania)

    2014-09-15

    During the plant outage for maintenance on primary side (e.g. for the main Heat Transport System pumps maintenance, the Steam Generators inspection), there are situations which require the primary heat transport system (HTS) drainage to a certain level for opening the circuit. The primary fuel heat sink for this configuration is provided by the shutdown cooling system (SDCS). In case of losing the forced cooling (e.g. due to the loss of SDCS, design basis earthquake-DBE), flow conditions in the reactor core may become stagnant. Inside the fuel channels, natural circulation phenomena known as Intermittent Buoyancy Induced Flow (IBIF) will initiate, providing an alternate heat sink mechanism for the fuel. However, this heat sink is effective only for a limited period of time (recall time). The recall time is defined as the elapsed time until the water temperature in the HTS headers exceeds a certain limit. Until then, compensatory measures need to be taken (e.g. by re-establishing the forced flow or initiate Emergency Core Cooling system injection) to preclude fuel failures. The present paper briefly presents the results of an analysis performed to demonstrate that fuel temperature remains within acceptable limits during IBIF transient. One of the objectives of this analysis was to determine the earliest moment since the reactor shut down when maintenance activities on the HTS can be started such that IBIF is effective in case of losing the forced circulation. The resulting peak fuel sheath and pressure tube temperatures due to fuel heat up shall be within the acceptable limits to preclude fuel defect or fuel channel defects.Thermalhydraulic circuit conditions were obtained using a CATHENA model for the primary side of HTS (drained to a certain level), an ECC system model and a system model for SDCS. A single channel model was developed in GOTHIC code for the fuel assessment analysis. (author)

  19. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  20. The influence and analysis of natural crosswind on cooling characteristics of the high level water collecting natural draft wet cooling tower

    Science.gov (United States)

    Ma, Libin; Ren, Jianxing

    2018-01-01

    Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.

  1. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  2. Study on dew point evaporative cooling system with counter-flow configuration

    KAUST Repository

    Lin, J.

    2015-12-18

    Dew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100W/(m2·K) after the temperature of water film becomes higher than the working air temperature.

  3. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  4. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Michael D.; Clemens, D. P., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  5. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    Science.gov (United States)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  6. Toward Cooling Uniformity: Investigation of Spiral, Sweeping Holes, and Unconventional Cooling Paradigms

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.

    2018-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.

  7. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  8. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  9. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    Science.gov (United States)

    Banooni, Salem; Chitsazan, Ali

    2016-11-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  10. Loss-of-Coolant and Loss-of-Flow Accidents in the SEAFP first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-01-01

    This paper presents the RELAP5/MOD3 thermal-hydraulic analysis of three Loss-of-Coolant Accidents (LOCAs) and three Loss-of-Flow Accidents (LOFAs) in the first wall/blanket cooling system of the SEAFP reactor design. The analyses deal with the transient thermal-hydraulic behaviour inside the cooling systems and the temperature development inside the nuclear components. As it appears, the temperature increase in the first wall Be-coating is limited to 30 K when an emergency plasma shutdown is initiated within 10 s following pump trip. (orig.)

  11. Loss-of-coolant and loss-of-flow accidents in the SEAFP first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1994-07-01

    This paper presents the RELAP5/MOD3 thermal-hydraulic analysis of three Loss-of-Coolant Accidents (LOCAs) and three Loss-of-Flow Accidents (LOFAs) in the first wall/blanket cooling system of the SEAFP reactor design. The analyses deal with the transient thermal-hydraulic behaviour inside the cooling systems and the temperature development inside the nuclear components. As it appears, the temperature increase in the first wall Be-coating is limited to 30 K when an emergency plasma shutdown is initiated within 10 s following pump trip. (orig.)

  12. Low flow velocity, fine-screen heat exchangers and vapor-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Steyert, W.A.; Stone, N.J.

    1978-09-01

    The design, construction, and testing of three compact, low temperature heat exchangers are reported. A method is given for the construction of a small (approximately = 20-cm 3 volume) exchanger that can handle 6 g/s helium flow with low pressure drops (ΔP/P = 10 percent) and adequate heat transfer (N/sub tu/ = 3). The use of screen for simple, vapor-cooled current leads into cryogenic systems is also discussed

  13. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  14. Thermodynamics of a closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    van den Bosch, P.J.; van den Bosch, P.J.; ter Brake, Hermanus J.M.; van den Eijkel, G.C.; Boelens, J.P.; Holland, Herman J.; Verberne, J.F.C.; Rogalla, Horst

    1994-01-01

    A multichannel high-Tc dc-SQUID based heart-magnetometer is currently under development in our laboratory. The system is cooled by a cooler that, due to its magnetic interference, has to be separated from the SQUID unit. In the present prototype system a closed-cycle gas flow was chosen as the

  15. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  16. Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes

    Science.gov (United States)

    Stimpson, Curtis K.

    Additive manufacturing (AM) enables fabrication of components that cannot be made with any other manufacturing method. Significant advances in metal-based AM systems have made this technology feasible for building production parts to be used use in commercial products. In particular, the gas turbine industry benefits from AM as a manufacturing technique especially for development of components subjected to high heat flux. It has been shown that the use of microchannels in high heat flux components can lead to more efficient cooling designs than those that presently exist. The current manufacturing methods have prevented the use of microchannels in such parts, but AM now makes them manufacturable. However, before such designs can become a reality, much research must be done to characterize impacts on flow and heat transfer of AM parts. The current study considers the effect on flow and heat transfer through turbine cooling features made with AM. Specifically, the performance of microchannels and film cooling holes made with laser powder bed fusion (L-PBF) is assessed. A number of test coupons containing microchannels were built from high temperature alloy powders on a commercially available L-PBF machine. Pressure drop and heat transfer experiments characterized the flow losses and convective heat transfer of air passing through the channels at various Reynolds numbers and Mach numbers. The roughness of the channels' surfaces was characterized in terms of statistical roughness parameters; the morphology of the roughness was examined qualitatively. Magnitude and morphology of surface roughness found on AM parts is unlike any form of roughness seen in the literature. It was found that the high levels of roughness on AM surfaces result in markedly augmented pressure loss and heat transfer at all Reynolds numbers, and conventional flow and heat transfer correlations produce erroneous estimates. The physical roughness measurements made in this study were correlated to

  17. Investigation on thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing in scramjet cooling channel based on wavelet entropy method

    Science.gov (United States)

    Zan, Hao; Li, Haowei; Jiang, Yuguang; Wu, Meng; Zhou, Weixing; Bao, Wen

    2018-06-01

    As part of our efforts to find ways and means to further improve the regenerative cooling technology in scramjet, the experiments of thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing have been conducted in horizontal circular tubes at different conditions. The experimental results indicate that there is a developing process from thermo-acoustic stability to instability. In order to have a deep understanding on the developing process of thermo-acoustic instability, the method of Multi-scale Shannon Wavelet Entropy (MSWE) based on Wavelet Transform Correlation Filter (WTCF) and Multi-Scale Shannon Entropy (MSE) is adopted in this paper. The results demonstrate that the developing process of thermo-acoustic instability from noise and weak signals is well detected by MSWE method and the differences among the stability, the developing process and the instability can be identified. These properties render the method particularly powerful for warning thermo-acoustic instability of hydrocarbon fuel flowing in scramjet cooling channels. The mass flow rate and the inlet pressure will make an influence on the developing process of the thermo-acoustic instability. The investigation on thermo-acoustic instability dynamic characteristics at supercritical pressure based on wavelet entropy method offers guidance on the control of scramjet fuel supply, which can secure stable fuel flowing in regenerative cooling system.

  18. CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells

    International Nuclear Information System (INIS)

    Ramos-Alvarado, Bladimir; Li Peiwen; Liu Hong; Hernandez-Guerrero, Abel

    2011-01-01

    A study of the heat transfer performance of liquid-cooled heat sinks with conventional and novel micro-channel flow field configurations for application in electronic devices, fuel cells, and concentrated solar cells is presented in this paper. The analyses were based on computations using the CFD software ANSYS FLUENT. The flow regime in heat sinks is constrained to laminar flow in the study. Details of the heat transfer performance, particularly, the uniformity of temperature distribution on the heating surface, as well as the pressure losses and pumping power in the operation of the studied heat sinks were obtained. Comparisons of the flow distribution uniformity in multiple flow channels, temperature uniformity on heating surfaces, and pumping power consumption of heat sinks with novel flow field configurations and conventional flow field configurations were conducted. It was concluded that the novel flow field configurations studied in this work exhibit appreciable benefits for application in heat sinks. - Highlights: → We present novel designs of flow channel configurations in liquid cooled heat sinks. → The flow and heat transfer in heat sinks were simulated using CFD tool. → The temperature and pressure loss in novel and conventional heat sinks were studied. → Figure of merit of heat sinks in different flow channel configurations was presented. → The heat sinks having our novel design of flow channel configurations are excellent.

  19. Two-phase flow experiments in emergency core cooling feed through the hot leg for developing numerical models

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2006-01-01

    When a leakage, a 'loss-of-coolant accident', occurs in a light water reactor, the emergency cooling system is able to supply large amounts of coolant to ensure residual heat removal. This supply can be routed through a special emergency cooling pipe, the 'scoop', into the horizontal section of the main coolant pipe, the 'hot leg'. At the same time, hot steam from the superheated, partly voided core flows against the coolant. This gives rise to a two-phase flow in the opposite direction. A factor of primary interest in this situation is whether the coolant supplied by the emergency cooling system will reach the reactor core. The research project is being conducted in order to compute the rate of water supply by numerical methods. The WENKA test facility has been designed and built at the Karlsruhe Research Center to verify numerical calculations. It can be used to study the fluid dynamics phenomena expected to arise in emergency coolant feeding into the hot leg; the necessary local data can be determined experimentally. An extensive database for validating the numerical calculations is then available to complete the experimental work. (orig.)

  20. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  1. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  2. Probing axions with the neutrino signal from the next galactic supernova

    International Nuclear Information System (INIS)

    Fischer, Tobias; Giannotti, Maurizio; Payez, Alexandre; Ringwald, Andreas

    2016-05-01

    We study the impact of axion emission in simulations of massive star explosions, as an additional source of energy loss complementary to the standard neutrino emission. The inclusion of this channel shortens the cooling time of the nascent protoneutron star and hence the duration of the neutrino signal. We treat the axion-matter coupling strength as a free parameter to study its impact on the protoneutron star evolution as well as on the neutrino signal. We furthermore analyze the observability of the enhanced cooling in current and next-generation underground neutrino detectors, showing that values of the axion mass m a >or similar 8 x 10 -3 eV can be probed. Therefore a galactic supernova neutrino observation would provide a valuable possibility to probe axion masses in a range within reach of the planned helioscope experiment, the International Axion Observatory (IAXO).

  3. Analysis of three loss-of-flow accidents in the first wall cooling system of NET/ITER

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1993-05-01

    This report presents the thermal-hydraulic analysis of three Loss-of-Flow Accidents (LOFAs) in the first wall cooling system of the Next European Torus (NET) design or the International Thermonuclear Experimental Reactor (ITER) design. The LOFAs considered result from a loss of the forced coolant flow caused by a loss of electrical power for the recirculation pump in the primary circuit. The analyses have been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the analyses, special attention has been paid to the transient thermal-hydraulic behaviour of the cooling system and the temperature development in the first wall. In the LOFA case without plasma shutdown, melting starts in the first wall about 150 s after accident initiation. In the LOFA case with delayed plasma shutdown, melting starts in the first wall when the plasma shutdown is initiated later than about 110 s after accident initiation. Melting does not occur in the first wall during a LOFA with prompt plasma scram. (orig.)

  4. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  5. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1981-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the galactic plane due to high space velocities imparted to the pulsars at birth. The evidence for this model is described and the various factors involved in estimating the total galactic population and the galactic birthrate of pulsars are discussed. The various estimates of the galactic population which cluster around 5 x 10 5 are seen to be critically dependent upon the cut-off at low luminosities and upon the value of the mean electron density within 500 pc of the Earth. Estimates of the lifetimes of pulsars are available from both the characteristic ages and proper motion measurements and both give values of about 5 million years. The implied birthrate of one in every 10 years is barely compatible with most estimates of the galactic supernova rate. (Auth.)

  6. Study on flow-induced vibration of large-diameter pipings in a sodium-cooled fast reactor. Influence of elbow curvature on velocity fluctuation field

    International Nuclear Information System (INIS)

    Ono, Ayako; Kimura, Nobuyuki; Kamide, Hideki; Tobita, Akira

    2010-02-01

    The main cooling system of Japan Sodium-cooled Fast Reactor (JSFR) consists of two loops to reduce the plant construction cost. In the design of JSFR, sodium coolant velocity is beyond 9m/s in the primary hot leg pipe with large-diameter (1.3m). The maximum Reynolds number in the piping reaches 4.2x10 7 . The hot leg pipe having a 90 degree elbow with curvature ratio of r/D=1.0, so-called 'short elbow', which enables a compact reactor vessel. In sodium cooled fast reactors, the system pressure is so low that thickness of pipings in the cooling system is thinner than that in LWRs. Under such a system condition in the cooling system, the flow-induced vibration (FIV) is concerned at the short elbow. The evaluation of the structural integrity of pipings in JSFR should be conducted based on a mechanistic approach of FIV at the elbow. It is significant to obtain the knowledge of the fluctuation intensity and spectra of velocity and pressure fluctuations in order to grasp the mechanism of the FIV. In this study, water experiments were conducted. Two types of 1/8 scaled elbows with different curvature ratio, r/D=1.0, 1.5, were used to investigate the influence of curvature on velocity fluctuation at the elbow. The velocity fields in the elbows were measured using a high speed PIV method. Unsteady behavior of secondary flow at the elbow outlet and separation flow at the inner wall of elbow were observed in the two types of elbows. It was found that the growth of secondary flow correlated with the flow fluctuation near the inside wall of the elbow. (author)

  7. Active Galactic Nucleus Feedback with the Square Kilometre Array ...

    Indian Academy of Sciences (India)

    ASIF IQBAL

    2017-11-27

    Nov 27, 2017 ... structure formation and in our understanding of cosmo- logical model. The future ... inflow of cool gas called cooling flow is expected to occur (Cowie .... arcsec will be enough to separate the AGN emission of the radio-quiet ...

  8. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    Science.gov (United States)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  9. Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation.

    Science.gov (United States)

    Aryana, Arash; O'Neill, Padraig Gearoid; Pujara, Deep K; Singh, Steve K; Bowers, Mark R; Allen, Shelley L; d'Avila, André

    2016-08-01

    The optimal irrigation flow rate (IFR) during epicardial radiofrequency (RF) ablation has not been established. This study specifically examined the impact of IFR and intrapericardial fluid (IPF) accumulation during epicardial RF ablation. Altogether, 452 ex vivo RF applications (10 g for 60 seconds) delivered to the epicardial surface of bovine myocardium using 3 open-irrigated ablation catheters (ThermoCool SmartTouch, ThermoCool SmartTouch-SF, and FlexAbility) and 50 in vivo RF applications delivered (ThermoCool SmartTouch-SF) in 4 healthy adult swine in the presence or absence of IPF were examined. Ex vivo, RF was delivered at low (≤3 mL/min), reduced (5-7 mL/min), and high (≥10 mL/min) IFRs using intermediate (25-35 W) and high (35-45 W) power. In vivo, applications were delivered (at 9.3 ± 2.2 g for 60 seconds at 39 W) using reduced (5 mL/min) and high (15 mL/min) IFRs. Ex vivo, surface lesion diameter inversely correlated with IFR, whereas maximum lesion diameter and depth did not differ. While steam pops occurred more frequently at low IFR using high power (ThermoCool SmartTouch and ThermoCool SmartTouch-SF), tissue disruption was rare and did not vary with IFR. In vivo, charring/steam pop was not detected. Although there were no discernible differences in lesion size with IFR, surface lesion diameter, maximum diameter, depth, and volume were all smaller in the presence of IPF at both IFRs. Cooled-tip epicardial RF ablation created using reduced IFRs (5-7 mL/min) yields lesion sizes similar to those created using high IFRs (≥10 mL/min) without an increase in steam pop/tissue disruption, whereas the presence of IPF significantly reduces the lesion size. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Robustness of discrete flows and caustics in cold dark matter cosmology

    International Nuclear Information System (INIS)

    Natarajan, Aravind; Sikivie, Pierre

    2005-01-01

    Although a simple argument implies that the distribution of dark matter in galactic halos is characterized by discrete flows and caustics, their presence is often ignored in discussions of galactic dynamics and of dark matter detection strategies. Discrete flows and caustics can in fact be irrelevant if the number of flows is very large. We estimate the number of dark matter flows as a function of galactocentric distance and consider the various ways in which that number can be increased, in particular, by the presence of structure on small scales (dark matter clumps) and the scattering of the flows by inhomogeneities in the matter distribution. We find that, when all complicating factors are taken into account, discrete flows and caustics in galactic halos remain a robust prediction of cold dark matter cosmology with extensive implications for observation and experiment

  11. Incorporation of velocity-dependent restitution coefficient and particle surface friction into kinetic theory for modeling granular flow cooling.

    Science.gov (United States)

    Duan, Yifei; Feng, Zhi-Gang

    2017-12-01

    Kinetic theory (KT) has been successfully used to model rapid granular flows in which particle interactions are frictionless and near elastic. However, it fails when particle interactions become frictional and inelastic. For example, the KT is not able to accurately predict the free cooling process of a vibrated granular medium that consists of inelastic frictional particles under microgravity. The main reason that the classical KT fails to model these flows is due to its inability to account for the particle surface friction and its inelastic behavior, which are the two most important factors that need be considered in modeling collisional granular flows. In this study, we have modified the KT model that is able to incorporate these two factors. The inelasticity of a particle is considered by establishing a velocity-dependent expression for the restitution coefficient based on many experimental studies found in the literature, and the particle friction effect is included by using a tangential restitution coefficient that is related to the particle friction coefficient. Theoretical predictions of the free cooling process by the classical KT and the improved KT are compared with the experimental results from a study conducted on an airplane undergoing parabolic flights without the influence of gravity [Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007 (2009)10.1209/0295-5075/86/60007]. Our results show that both the velocity-dependent restitution coefficient and the particle surface friction are important in predicting the free cooling process of granular flows; the modified KT model that integrates these two factors is able to improve the simulation results and leads to better agreement with the experimental results.

  12. Development of TPNCIRC code for Evaluation of Two-Phase Natural Circulation Flow Performance under External Reactor Vessel Cooling Conditions

    International Nuclear Information System (INIS)

    Choi, A-Reum; Song, Hyuk-Jin; Park, Jong-Woon

    2015-01-01

    During a severe accident, corium is relocated to the lower head of the nuclear reactor pressure vessel (RPV). Design concept of retaining the corium inside a nuclear reactor pressure vessel (RPV) through external cooling under hypothetical core melting accidents is called external reactor vessel cooling (ERVC). In this respect, validated two-phase natural circulation flow (TPNC) model is necessary to determine the adequacy of the ERVC design and operating conditions such as inlet area, form losses, gap distance, riser length and coolant conditions. The most important model generally characterizing the TPNC are void fraction and two-phase friction factors. Typical experimental and analytical studies to be referred to on two-phase circulation flow characteristics are those by Reyes, Gartia et al. based on Vijayan et al., Nayak et al. and Dubey et al. In the present paper, two-phase natural circulation (TPNC) flow characteristics under external reactor vessel cooling (ERVC) conditions are studied using two existing TPNC flow models of Reyes and Gartia et al. incorporating more improved void fraction and two-phase friction models. These models and correlations are integrated into a computer program, TPNCIRC, which can handle candidate ERVC design parameters, such as inlet, riser and downcomer flow lengths and areas, gap size between reactor vessel and surrounding insulations, minor loss factors and operating parameters of decay power, pressure and subcooling. Accuracy of the TPNCIRC program is investigated with respect to the flow rate and void fractions for existing measured data from a general experiment and ULPU specifically designed for the AP1000 in-vessel retention. Also, the effect of some important design parameters are examined for the experimental and plant conditions. Using the flow models and correlations are integrated into a computer program, TPNCIRC, a number of correlations have been examined. This seems coming from the differences of void fractions

  13. VERITAS Galactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gareth

    2013-06-15

    We report on recent Galactic results and discoveries made by the VERITAS collaboration. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma-ray observatory, located in southern Arizona, able to detect gamma rays of energies from 100 GeV up to 30 TeV. VERITAS has been fully operational since 2007 and its current sensitivity enables the detection of a 1% Crab Nebula flux at 5 sigma in under 30 hours. The observatory is well placed to view large parts of the galactic plane including its center, resulting in a strong galactic program. Objects routinely observed include Pulsars, Pulsar Wind Nebula, X-ray binaries and sources with unidentified counterparts in other wavelengths.

  14. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    Science.gov (United States)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  15. Core of a liquid-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Wright, J.R.; McFall, A.

    1975-01-01

    The core of a liquid-cooled nuclear reactor, e.g. of a sodium-cooled fast reactor, is protected in such a way that the recoil wave resulting from loss of coolant in a cooling channel and caused by released gas is limited to a coolant inlet chamber of this cooling channel. The channels essentially consist of the coolant inlet chamber and a fuel chamber - with a fission gas storage plenum - through which the coolant flows. Between the two chambers, a locking device within a tube is provided offering a much larger flow resistance to the backflow of gas or coolant than in flow direction. The locking device may be a hydraulic countertorque control system, e.g. a valvular line. Other locking devices have got radially helical vanes running around an annular flow space. Furthermore, the locking device may consist of a number of needles running parallel to each other and forming a circular grid. Though it can be expanded by the forward flow - the needles are spreading - , it acts as a solid barrier for backflows. (TK) [de

  16. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seon Oh; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-08-15

    The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  17. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  18. Passive Cooling of Body Armor

    Science.gov (United States)

    Holtz, Ronald; Matic, Peter; Mott, David

    2013-03-01

    Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.

  19. CFD simulations of moderator flow inside Calandria of the Passive Moderator Cooling System of an advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Eshita [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019 India (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: vijayanp@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2015-10-15

    Highlights: • CFD simulations in the Calandria of an advanced reactor under natural circulation. • Under natural convection, majority of the flow recirculates within the Calandria. • Maximum temperature is located at the top and center of the fuel channel matrix. • During SBO, temperature inside Calandria is stratified. - Abstract: Passive systems are being examined for the future Advanced Nuclear Reactor designs. One of such concepts is the Passive Moderator Cooling System (PMCS), which is designed to remove heat from the moderator in the Calandria vessel passively in case of an extended Station Black Out condition. The heated heavy-water moderator (due to heat transferred from the Main Heat Transport System (MHTS) and thermalization of neutrons and gamma from radioactive decay of fuel) rises upward due to buoyancy, gets cooled down in a heat exchanger and returns back to Calandria, completing a natural circulation loop. The natural circulation should provide sufficient cooling to prevent the increase of moderator temperature and pressure beyond safe limits. In an earlier study, a full-scale 1D transient simulation was performed for the reactor including the MHTS and the PMCS, in the event of a station blackout scenario (Kumar et al., 2013). The results indicate that the systems remain within the safe limits for 7 days. However, the flow inside a geometry like Calandria is quite complex due to its large size and inner complexities of dense fuel channel matrix, which was simplified as a 1D pipe flow in the aforesaid analysis. In the current work, CFD simulations are performed to study the temperature distributions and flow distribution of moderator inside the Calandria vessel using a three-dimensional CFD code, OpenFoam 2.2.0. First, a set of steady state simulation was carried out for a band of inlet mass flow rates, which gives the minimum mass flow rate required for removing the maximum heat load, by virtue of prediction of hot spots inside the Calandria

  20. Experimental investigation of heat transfer and flow using V and broken V ribs within gas turbine blade cooling passage

    Science.gov (United States)

    Kumar, Sourabh; Amano, R. S.

    2015-05-01

    Gas turbines are extensively used for aircraft propulsion, land-based power generation, and various industrial applications. With an increase in turbine rotor inlet temperatures, developments in innovative gas turbine cooling technology enhance the efficiency and power output; these advancements of turbine cooling have allowed engine designs to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream of gas are based on an increase in the heat transfer areas and on the promotion of turbulence of the cooling flow. In this study, an improvement in performance is obtained by casting repeated continuous V- and broken V-shaped ribs on one side of the two pass square channels into the core of the blade. A detailed experimental investigation is done for two pass square channels with a 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for a steady state experiment. Four different combinations of 60° V- and broken 60° V-ribs in a channel are considered. A series of thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for Reynolds numbers 16,000, 56,000 and 85,000 within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the rib. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. A series of experimental measurements is performed to predict the overall performance of the channel. This paper presents an attempt to collect information about the Nusselt number, the pressure drop and the overall performance of the eight different ribbed ducts at the specified Reynolds number. The main contribution of this study is to evaluate the best combination of rib arrangements

  1. A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air-Cooled Heat Exchangers

    DEFF Research Database (Denmark)

    Haertel, Jan Hendrik Klaas; Nellis, Gregory F.

    2017-01-01

    In this work, density-based topology optimization is applied to the design of the air-side surface of dry-cooled power plant condensers. A topology optimization model assuming a steady-state, thermally and fluid dynamically fully developed internal flow is developed and used for this application....

  2. Limits on turbulent propagation of energy in cool-core clusters of galaxies

    Science.gov (United States)

    Bambic, C. J.; Pinto, C.; Fabian, A. C.; Sanders, J.; Reynolds, C. S.

    2018-07-01

    We place constraints on the propagation velocity of bulk turbulence within the intracluster medium of three clusters and an elliptical galaxy. Using Reflection Grating Spectrometer measurements of turbulent line broadening, we show that for these clusters, the 90 per cent upper limit on turbulent velocities when accounting for instrumental broadening is too low to propagate energy radially to the cooling radius of the clusters within the required cooling time. In this way, we extend previous Hitomi-based analysis on the Perseus cluster to more clusters, with the intention of applying these results to a future, more extensive catalogue. These results constrain models of turbulent heating in active galactic nucleus feedback by requiring a mechanism which can not only provide sufficient energy to offset radiative cooling but also resupply that energy rapidly enough to balance cooling at each cluster radius.

  3. Stress Linearization and Strength Evaluation of the BEP's Flow Plates for a Dual Cooled Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Yoon, Kyung Ho; Kang, Heung Seok; Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2009-01-01

    A fuel assembly is composed of 5 major components, such as a top end piece (TEP), a bottom end piece (BEP), spacer grids (SGs), guide tubes (GTs) and an instrumentation tube (IT) and fuel rods (FRs). There are no ASME criteria about all components except for a TEP/BEP. The TEP/BEP should satisfy stress intensity limits in case of condition A and B of ASME, Section III, Division 1 . Subsection NB. In a dual cooled fuel assembly, the array and position of fuels are changed from those of a conventional PWR fuel assembly to achieve a power uprating. The flow plates of top/bottom end pieces (TEP/BEP) have to be modified into proper shape to provide flow holes to direct the heated coolant into/out of the fuel assembly but structural intensity of these plates within a 22.241 kN axial loading should satisfy Tresca stress limits in ASME code. In this paper, stress linearization procedure and strength evaluation of a newly designed BEP for the dual cooled fuel assembly are described

  4. Heat Transfer and Cooling Techniques at Low Temperature

    CERN Document Server

    Baudouy, B

    2014-07-17

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  5. Heat Transfer and Cooling Techniques at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B [Saclay (France)

    2014-07-01

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  6. 1-D Two-phase Flow Investigation for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Kim, Jae Cheol

    2007-02-01

    During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000. Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design. T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow. From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased. On the other hand, the simple analysis using the drift

  7. Gas Flows in Dual Active Galactic Nuclei

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  8. Initial clinical results with the ThermoCool® SmartTouch® Surround Flow catheter.

    Science.gov (United States)

    Gonna, Hanney; Domenichini, Giulia; Zuberi, Zia; Norman, Mark; Kaba, Riyaz; Grimster, Alexander; Gallagher, Mark M

    2017-08-01

    The Biosense Webster ThermoCool® SmartTouch® Surround Flow (STSF) catheter is a recently developed ablation catheter incorporating Surround Flow (SF) technology to ensure efficient cooling and force sensing to quantify tissue contact. In our unit, it superseded the ThermoCool® SF catheter from the time of its introduction in May 2015. Procedure-related data were collected prospectively for the first 100 ablation procedures performed in our department using the STSF catheter. From a database of 654 procedures performed in our unit using the SF catheter, we selected one to match each STSF procedure, matching for procedure type, operator experience, patient age, and gender. The groups were well matched for patient age, gender, and procedure type. Procedure duration was similar in both groups (mean 225.5 vs. 221.4 min, IQR 106.5 vs. 91.5, P = 0.55), but fluoroscopy duration was shorter in the STSF group (mean 25.8 vs. 30.0, IQR 19.6 vs. 18.5, P = 0.03). No complication occurred in the STSF group. Complications occurred in two cases in the SF group (one pericardial effusion requiring drainage and one need for permanent pacing). Complete procedural success was achieved in 98 cases in the STSF group and 94 cases in the SF group (P = 0.15). The composite endpoint of procedure failure or acute complication was less common in the STSF group (2 vs. 8, P = 0.05). The STSF catheter is safe and effective in treating a range of arrhythmias. Compared with the SF catheter, it shows a trend towards improved safety-efficacy balance. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  9. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  10. Innovation Incubator: LiquidCool Solutions Technical Evaluation. Laboratory Study and Demonstration Results of a Directed-Flow, Liquid Submerged Server for High-Efficiency Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric J [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-12

    LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.

  11. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  12. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  13. 40 CFR 92.108 - Intake and cooling air measurements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake and cooling air measurements....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used...

  14. Analysis of clad motion during a loss of flow (LOF) accident in a fast sodium cooled reactor

    International Nuclear Information System (INIS)

    Henkel, P.

    1985-10-01

    A new model describing clad motion during a Loss of Flow (LOF) accident in a Liquid Metal Cooled Fast (Breeder) Reactor (LMFBR) is presented. Its special features are Clad motion is treated within a fuel pin bundle. The bundle geometry is represented by an equivalent annular geometry which serves as the descriptional basis for the clad motion analysis; Several flow regimes are considered. These include a wave or film flow along the fuel pin surfaces as well as a drop flow within the coolant channels. A new entrainment criterion is successfully applied to describe the entrainment of molten cladding and the coolant flow is modelled as a two-dimensional, monstationary flow. Therefore, radial cross flows in a pin bundle can be calculated. Especially, thermal incoherency effects can be treated consistently. The analysis of clad motion in the two experiments STAR1 and STAR2 using the subsequently presented SANDCMOT model gives good agreement with the experimental data. (orig.) [de

  15. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Directory of Open Access Journals (Sweden)

    Seon Oh Yu

    2017-08-01

    Full Text Available The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  16. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    Science.gov (United States)

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  17. Secondary flows in the cooling channels of the high-performance light-water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Laurien, E.; Wintterle, Th. [Stuttgart Univ., Institute for Nuclear Technolgy and Energy Systems (IKE) (Germany)

    2007-07-01

    The new design of a High-Performance Light-Water Reactor (HPLWR) involves a three-pass core with an evaporator region, where the compressed water is heated above the pseudo-critical temperature, and two superheater regions. Due to the strong dependency of the supercritical water density on the temperature significant mass transfer between neighboring cooling channels is expected if the temperature is unevenly distributed across the fuel element. An inter-channel flow is then superimposed to the secondary flow vortices induced by the non-isotropy of turbulence. In order to gain insight into the resulting flow patterns as well as into temperature and density distributions within the various subchannels of the fuel element CFD (Computational Fluid Dynamics) calculations for the 1/8 fuel element are performed. For simplicity adiabatic boundary conditions at the moderator box and the fuel element box are assumed. Our investigation confirms earlier results obtained by subchannel analysis that the axial mass flux is significantly reduced in the corner subchannel of this fuel element resulting in a net mass flux towards the neighboring subchannels. Our results provide a first estimation of the magnitude of the secondary flows in the pseudo-critical region of a supercritical light-water reactor. Furthermore, it is demonstrated that CFD is an efficient tool for investigations of flow patterns within nuclear reactor fuel elements. (authors)

  18. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  19. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  20. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Li Teng; Lv Yong-Gang [Chinese Academy of Sciences, Beijing (China). Cryogenic Lab.; Chinese Academy of Sciences, Beijing (China). Graduate School; Liu Jing; Zhou Yi-Xin [Chinese Academy of Sciences, Beijing (China). Cryogenic Lab.

    2006-12-15

    With the improvement of computational speed, thermal management becomes a serious concern in computer system. CPU chips are squeezing into tighter and tighter spaces with no more room for heat to escape. Total power-dissipation levels now reside about 110 W, and peak power densities are reaching 400-500 W/mm{sup 2} and are still steadily climbing. As a result, higher performance and greater reliability are extremely tough to attain. But since the standard conduction and forced-air convection techniques no longer be able to provide adequate cooling for sophisticated electronic systems, new solutions are being looked into liquid cooling, thermoelectric cooling, heat pipes, and vapor chambers. In this paper, we investigated a novel method to significantly lower the chip temperature using liquid metal with low melting point as the cooling fluid. The liquid gallium was particularly adopted to test the feasibility of this cooling approach, due to its low melting point at 29.7 C, high thermal conductivity and heat capacity. A series of experiments with different flow rates and heat dissipation rates were performed. The cooling capacity and reliability of the liquid metal were compared with that of the water-cooling and very attractive results were obtained. Finally, a general criterion was introduced to evaluate the cooling performance difference between the liquid metal cooling and the water-cooling. The results indicate that the temperature of the computer chip can be significantly reduced with the increasing flow rate of liquid gallium, which suggests that an even higher power dissipation density can be achieved with a large flow of liquid gallium and large area of heat dissipation. The concept discussed in this paper is expected to provide a powerful cooling strategy for the notebook PC, desktop PC and large computer. It can also be extended to more wide area involved with thermal management on high heat generation rate. (orig.)

  1. Toward a comprehensive model for feedback by active galactic nuclei: New insights from M87 observations by LOFAR, Fermi, and H.E.S.S

    International Nuclear Information System (INIS)

    Pfrommer, Christoph

    2013-01-01

    Feedback by active galactic nuclei (AGNs) appears to be critical in balancing radiative cooling of the low-entropy gas at the centers of galaxy clusters and in mitigating the star formation of elliptical galaxies. New observations of M87 enable us to put forward a comprehensive model for the physical heating mechanism. Low-frequency radio observations by LOFAR revealed the absence of fossil cosmic-ray (CR) electrons in the radio halo surrounding M87. This puzzle can be resolved by accounting for the CR release from the radio lobes and the subsequent mixing of CRs with the dense ambient intracluster gas, which thermalizes the electrons on a timescale similar to the radio halo age of 40 Myr. Hadronic interactions of similarly injected CR protons with the ambient gas should produce an observable gamma-ray signal in accordance with the steady emission of the low state of M87 detected by Fermi and H.E.S.S. Hence, we normalize the CR population to the gamma-ray emission, which shows the same spectral slope as the CR injection spectrum probed by LOFAR, thereby supporting a common origin. We show that CRs, which stream at the Alfvén velocity with respect to the plasma rest frame, heat the surrounding thermal plasma at a rate that balances that of radiative cooling on average at each radius. However, the resulting global thermal equilibrium is locally unstable and allows for the formation of the observed cooling multi-phase medium through thermal instability. Provided that CR heating balances cooling during the emerging 'cooling flow', the collapse of the majority of the gas is halted around 1 keV—in accordance with X-ray data. We show that both the existence of a temperature floor and the similar radial scaling of the heating and cooling rates are generic predictions of the CR heating model.

  2. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    Science.gov (United States)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  3. Cooling joint width and secondary mineral infilling characteristics in four Grande Ronde Basalt flows at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.

    1988-09-01

    Widths were measured and percentages of secondary mineral infilling types were estimated 3194 cooling joints in basalt core of the Rocky Coulee, Cohassett, McCoy Canyon, and Umtanum basalt flows. The core was from core holes RRL-2, RRL-6, RRL-14, and DC-16 on the Hanford Site in Washington State. Joint width was characterized by determining the frequency distribution in each of 16 flow/core hole combination samples (4 flows by 4 core holes = 16 samples) and comparing the distributions between intraflow structures, between basalt flows, and between core holes. Joint infilling was characterized by determining the percentage of joints with each secondary mineral type present and then comparing flows and comparing intraflow instructures. Basalt flows, intraflow structures, and core holes cannot be differentiated consistently on the basis of joint width. There is only one population of widths that can be characterized by a log-normal distribution, an arithmetic mean of 0. 23 mm(9.0E-04in.), and a standard deviation of 0.49 mm (1.9E-03in.). Clay is the predominant infilling type followed by silica and zeolite. For example, 98.1% of the randomly selected joints from the Cohassett flow are filled predominately with clay, 6.5% have zeolite predominating, and 4.0% have silica predominating. Only 19(0.6%) of the 3194 joints measured have observable void space. Basalt flows and intraflow structures cannot be differentiated on the basis joint infilling types, except for the Umtanum entablature. Joint width and infilling types are correlated, and secondary minerals fill basalt cooling joints in a particular sequence

  4. Numerical Investigation on Supercritical Heat Transfer of RP3 Kerosene Flowing inside a Cooling Channel of Scramjet

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2014-06-01

    Full Text Available Supercritical convective heat transfer characteristics of hydrocarbon fuel play a fundamental role in the active cooling technology of scramjet. In this paper, a 2D-axisymmetric numerical study of supercritical heat transfer of RP3 flowing inside the cooling channels of scramjet has been conducted. The main thermophysical properties of RP3, including density, specific heat, and thermal conductivity, are obtained from experimental data, while viscosity is evaluated from a commercial code with a ten-species surrogate. Effects of heat flux, mass flow rate, and inlet temperature on supercritical heat transfer processes have been investigated. Results indicate that when the wall temperature rises above the pseudocritical temperature of RP3, heat transfer coefficient decreases as a result of drastic decrease of the specific heat. The conventional heat transfer correlations, that is, Gnielinski formula, are no longer proper for the supercritical heat transfer of RP3. The modified Jackson and Hall formula, which was proposed for supercritical CO2 and water, gives good prediction except when the wall temperature is near or higher than the pseudocritical temperature.

  5. Optimization of cooling tower performance analysis using Taguchi method

    Directory of Open Access Journals (Sweden)

    Ramkumar Ramakrishnan

    2013-01-01

    Full Text Available This study discuss the application of Taguchi method in assessing maximum cooling tower effectiveness for the counter flow cooling tower using expanded wire mesh packing. The experiments were planned based on Taguchi’s L27 orthogonal array .The trail was performed under different inlet conditions of flow rate of water, air and water temperature. Signal-to-noise ratio (S/N analysis, analysis of variance (ANOVA and regression were carried out in order to determine the effects of process parameters on cooling tower effectiveness and to identity optimal factor settings. Finally confirmation tests verified this reliability of Taguchi method for optimization of counter flow cooling tower performance with sufficient accuracy.

  6. Energy and water management in evaporative cooling systems in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Abdel-wahab S. (Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Hassa (Saudi Arabia))

    1994-11-01

    A mathematical model was developed to estimate water evaporation rate, airflow rate and cooling effect in an evaporative cooling system for farm structures. The model was only applied to evaporative cooling systems for greenhouses. The effect of ambient air temperature, solar radiation and system efficiency on water evaporation rate, airflow rate and the resulting cooling effect were studied. Generally, water flow rate and air flow rate are adjusted based on daily maximum temperature. However, a substantial saving in energy and water consumption in the cooling system would be achieved by regulating water flow rate and air flow rate to follow the diurnal variation on temperature. Improving the cooling efficiency and covering the roof of the greenhouse with an external shading would save an appreciable amount of energy and water consumption. The model could also be applied to other farm structures such as animal shelters

  7. Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2016-04-15

    Highlights: • Motivating alternative RHR heat exchanger tube-side flow path and determining required capacity. • Calculate NSSS and containment response during 24-h SBO for Chinshan BWR-4 plant. • RETRAN and GOTHIC models are developed for NSSS and containment, respectively. • Safety relief valve blowdown flow and energy to drywell are generated by RETRAN. • Analyses are performed with and without reactor depressurization, respectively. - Abstract: The extended Station Blackout (SBO) of 24 h has been analyzed with respect to the containment response, in particular the suppression pool temperature response, for the Chinshan BWR-4 plant of MARK-I containment. The Chinshan plant, owned by Taiwan Power Company, has twin units with rated core thermal power of 1840 MW each. The analysis is aimed at determining the required alternative cooling water flow capacity for the residual heat removal (RHR) heat exchanger when its tube-side sea water cooling flow path is blocked, due to some reason such as earthquake or tsunami, and is switched to the alternative raw water source. Energy will be dissipated to the suppression pool through safety relief valves (SRVs) of the main steam lines during SBO. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The shaft seals of the two recirculation pumps are conservatively assumed to fail due to loss of seal cooling and a total leakage flow rate of 36 gpm to the drywell is included in the GOTHIC model. Based on the given SRV blowdown conditions, the GOTHIC containment calculation is performed several times, through the adjustment of the heat transfer rate of the RHR heat exchanger, until the criterion that the maximum suppression pool temperature

  8. Performance of cooling installation for cyclotron Decy-13

    International Nuclear Information System (INIS)

    Edi Trijono Budisantoso; Suprapto; Sutadi

    2015-01-01

    Has been calculated the cooling installation performance of Decy-13 cyclotron. The cooling installation is analysed based on the technical specifications of each cooling component to proof the results of the design and implementation of installations meet the cooling requirement. Analysis of loss of pressure and flow rate in the piping installation is done empirically using Hazen-Williams equation while the analysis of heat transfer processes in the cooling tower is done using the help of psychometric charts that available. Cooling component consists of a condenser and associated piping systems with cooling towers and equipped with a pump to push the circulation of cooling. The calculations show that the installation of the condenser cooler uses the cooling tower LiangChi LBC-30 with a booster pump Grundfos 4 kW NF30-36T powered 47kW able to transfer heat with the coolant flow rate 136 lpm, input to output coolant pressure difference 2.1atm and the cooling temperature difference 5 °C. Conclusion of the calculation is the technical specifications of cooling components and installation already meets the needs of the cooling expected. (author)

  9. Experimental characterization of mass, work and heat flows in an air cooled, single cylinder engine

    International Nuclear Information System (INIS)

    Perez-Blanco, H.

    2004-01-01

    Small air cooled engines, although large in numbers, receive scant attention in the literature. Experimental data for a four stroke, air cooled, single cylinder engine are presented in this report. Air to fuel ratios, indicated and output power, exhaust composition and heat loss are determined to result in suitable thermal and mechanical efficiencies. The data obtained are discussed with the perspective obtained from other literature references. Exhaust composition figures appear reasonable, but the measurement of the transient exhaust flows is still a concern. Based on the measurements, a graph illustrating the different energy transformations in the engine is produced. Undergraduate students in the curriculum routinely use the engine and the present work allows one to conclude that the measurement approach produces reasonable results. These results could be used by engine modelers and others interested in this wide field of technology

  10. A homogeneous cooling scheme investigation for high power slab laser

    Science.gov (United States)

    He, Jianguo; Lin, Weiran; Fan, Zhongwei; Chen, Yanzhong; Ge, Wenqi; Yu, Jin; Liu, Hao; Mo, Zeqiang; Fan, Lianwen; Jia, Dan

    2017-10-01

    The forced convective heat transfer with the advantages of reliability and durability is widely used in cooling the laser gain medium. However, a flow direction induced temperature gradient always appears. In this paper, a novel cooling configuration based on longitudinal forced convective heat transfer is presented. In comparison with two different types of configurations, it shows a more efficient heat transfer and more homogeneous temperature distribution. The investigation of the flow rate reveals that the higher flow rate the better cooling performance. Furthermore, the simulation results with 20 L/min flow rate shows an adequate temperature level and temperature homogeneity which keeps a lower hydrostatic pressure in the flow path.

  11. Flow distribution experimental study on the emergency core cooling system of the IEA-R1m - IPEN-CNEN/SP - Brazil

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias; Ting, Daniel Kao Sun

    1999-01-01

    This paper presents a brief description of Emergency Core Cooling System designed by the IEA-R1m Reactor and the experimental results of flow distribution over the core. Several parameters were evaluated, such as: relative position of spray header to the reactor core; type and quantity of spray nozzles; spray nozzles position on spray header; and total spray flow. The main conclusions are presented. (author)

  12. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    International Nuclear Information System (INIS)

    Makida, Y; Shintomi, T; Hamajima, T; Tsuda, M; Miyagi, D; Ota, N; Katsura, M; Ando, K; Takao, T; Tsujigami, H; Fujikawa, S; Hirose, J; Iwaki, K; Komagome, T

    2015-01-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured. (paper)

  13. Thermal and flow design of helium-cooled reactors

    International Nuclear Information System (INIS)

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  14. Multifrequency VLA observations of PKS 0745-191: the archetypal 'cooling flow' radio source?

    International Nuclear Information System (INIS)

    Baum, S.A.; O'Dea, C.P.

    1991-01-01

    We present 90-, 20-, 6- and 2-cm VLA observations of the high radio luminosity, cooling flow radio source PKS 0745-191. We find that the radio source has a core with a very steep spectrum and diffuse emission with an even steeper spectrum without clear indications of the jets, hotspots or double lobes found in other radio sources of comparable luminosity. The appearance of the source is highly dependent on frequency and resolution. This dependence reflects both the diffuse nature of the extended emission and the steep, but position-dependent, spectrum of the radio emission. (author)

  15. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); D’Onghia, Elena, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.

  16. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  17. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  18. Numerical model for swirl flow cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    International Nuclear Information System (INIS)

    Milora, S.L.; Combs, S.K.; Foster, C.A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code has been used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter installed in the Medium Energy Test Facility, which has been subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cm 2 , has been modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/cm 2 occur at the water-cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes wih straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented

  19. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  20. Transition from annular flow to plug/slug flow in condensation of steam in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Xiaojun; Cheng, Ping; Wu, Huiying [School of Mechanical and Power Engineering, Shanghai Jiaotong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2008-02-15

    A visualization study has been conducted to investigate the transition from annular flow to plug/slug flow in the condensation of steam in two different sets of parallel microchannels, having hydraulic diameters of 90 {mu}m and 136 {mu}m, respectively. The steam in the parallel microchannels was cooled on the bottom by forced convection of water and by natural convection of air from the top. It is found that the location, where the transition from annular flow to plug/slug flow takes place, depends on mass flux and cooling rate of steam. The effects of mass flux and cooling rate on the occurrence frequency of the injection flow in a single microchannel, having a hydraulic diameter of 120 {mu}m and 128 {mu}m, respectively, are investigated. It is found that two different shapes of injection flow occur in the smooth annular flow in microchannels: injection flow with unsteady vapor ligament occurring at low mass flux (or high cooling rate) and injection flow with steady vapor ligament occurring at high mass flux (or low cooling rate). It is also found that increase of steam mass flux, decrease of cooling rate, or decrease of the microchannel diameter tends to enhance instability of the condensate film on the wall, resulting in occurrence of the injection flow further toward the outlet with an increase in occurrence frequency. (author)

  1. Semi-analytical investigation of electronics cooling using developing nanofluid flow in rectangular microchannels

    International Nuclear Information System (INIS)

    Mital, Manu

    2013-01-01

    Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using microchannels is an attractive alternative to bulky aluminum heat sinks. The channels can be integrated directly into a chip, and cooling can be further enhanced using nanofluids. The goals of this study are to evaluate heat transfer improvement of a rectangular channel nanofluid heat sink with developing laminar flow, taking into account the pumping power penalty. The proposed model uses semi-empirical correlations to calculate effective nanofluid thermophysical properties, which are then incorporated into heat transfer and friction factor correlations in literature for single-phase flows. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to predict the thermal resistance and pumping power as a function of four design variables that include the channel width, the wall width, the flow velocity and the particle volume fraction. The parameters are optimized using a Genetic Algorithm (GA) with minimum thermal resistance as the objective function, and fixed specified value of pumping power as the constraint. For a given value of pumping power, the benefit of nanoparticle addition is evaluated by independently optimizing the heat sink, first with nanofluid, and then with base fluid. Comparing the minimized thermal resistances revealed only a small benefit since the nanoparticles increase the pumping power which can alternately be diverted toward an increased velocity in a pure fluid heat sink. The benefit further diminishes with increase in available pumping power. -- Highlights: ► Validated model used to predict heat transfer and pumping power (p.p.) in nanofluids. ► Genetic algorithm used to minimize thermal resistance with p.p. constraint. ► Heat sink design independently optimized with nanofluid and base fluid coolant. ► No significant benefit through particle

  2. PROBING THE EXTREME REALM OF ACTIVE GALACTIC NUCLEUS FEEDBACK IN THE MASSIVE GALAXY CLUSTER, RX J1532.9+3021

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek-Larrondo, J.; Allen, S. W.; Canning, R. E. A.; Werner, N.; Ehlert, S.; Von der Linden, A. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Taylor, G. B.; Grimes, C. K. [Department of Physics and Astronomy, University of New-Mexico, Albuquerque, NM 87131 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Sanders, J. S., E-mail: juliehl@stanford.edu [Max-Planck-Institut fur extraterrestrische Physik (MPE), Giessenbachstrasse, D-85748 Garching (Germany)

    2013-11-10

    We present a detailed Chandra, XMM-Newton, Very Large Array (VLA) and Hubble Space Telescope analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z = 0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these active galactic nucleus (AGN) driven outflows is (22 ± 9) × 10{sup 44} erg s{sup –1}, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbors older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r ≈ 65 kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing-induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >10{sup 10} M{sub ☉} or a rapidly spinning black hole is favored to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.

  3. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  4. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  5. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Research Committee on Water Chemistry Standard; Naitoh, Masanori [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Computational Science and Engineering Div.; Uehara, Yasushi; Okada, Hidetoshi [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Hotta, Koji [ITOCHU Techno-Solutions Corporation (Japan); Ichikawa, Ryoko [Mizuho Information and Research Inst., Inc. (Japan); Koshizuka, Seiichi [Tokyo Univ. (Japan)

    2007-03-15

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  6. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Hotta, Koji; Ichikawa, Ryoko; Koshizuka, Seiichi

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  7. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  8. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  9. A systemic approach for optimal cooling tower operation

    International Nuclear Information System (INIS)

    Cortinovis, Giorgia F.; Paiva, Jose L.; Song, Tah W.; Pinto, Jose M.

    2009-01-01

    The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate.

  10. VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

    Directory of Open Access Journals (Sweden)

    NAM-IL TAK

    2013-11-01

    Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

  11. Cooling methods of station blackout scenario for LWR plants

    International Nuclear Information System (INIS)

    2012-01-01

    The objective of this study is to analyze the cooling method of station blackout scenario for both the BWR and PWR plants by RELAP5 code and to check the validity of the cooling method proposed by the utilities. In the BWR plant cooling scenario, the Reactor Core Isolation Cooling System (RCIC), which is operated with high pressure steam from the reactor, injects cooling water into the reactor to keep the core water level. The steam generated in the core is released into the suppression pool at containment vessel to condense. To restrict the containment vessel pressure rising, the ventilation from the wet-well is operated. The scenario is analyzed by RELAP5 and CONTEMPT-LT code. In the PWR plant scenario, the primary pressure is decreased by the turbine-driven auxiliary feed water system operated with secondary side steam of the steam generators (SGs). And the core cooling is kept by the natural circulation flow at the primary loop. The analytical method of un-uniform flow behavior among the SG U-tubes, which affects the natural circulation flow rate, is developed. (author)

  12. Cooling system for superconducting magnet

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  13. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  14. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  15. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  16. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  17. Liquid cooling applications on automotive exterior LED lighting

    Science.gov (United States)

    Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin

    2018-02-01

    In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.

  18. Towards new generation spectroscopic models of cool stars

    Science.gov (United States)

    Bergemann, Maria

    2018-06-01

    Abstract: Spectroscopy is a unique tool to determine the physical parameters of stars. Knowledge of stellar chemical abundances, masses, and ages is the key to understanding the evolution of their host populations. I will focus on the current outstanding problems in spectroscopy of cool stars, which are the most useful objects in studies of our local Galactic neighborhood but also very distant systems, like faint dwarf Spheroidal galaxies. Among the most debated issues is to what extent can we trust the techniques, which rely on the classical assumptions of local thermodynamic equilibrium and hydrostatic balance. I will summarise the ongoing efforts to improve the models of cool stars, with the emphasis on NLTE and 3D modelling. I will then discuss how these exciting observations impact our knowledge of abundances in the Milky Way and in dSph systems, and present outlook for the future studies.

  19. Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies

    Science.gov (United States)

    McDonald, M.; Gaspari, M.; McNamara, B. R.; Tremblay, G. R.

    2018-05-01

    We present a study of 107 galaxies, groups, and clusters spanning ∼3 orders of magnitude in mass, ∼5 orders of magnitude in central galaxy star formation rate (SFR), ∼4 orders of magnitude in the classical cooling rate ({\\dot{M}}cool}\\equiv {M}gas}(rsample, we measure the ICM cooling rate, {\\dot{M}}cool}, using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding {ε }cool}\\equiv {SFR}/{\\dot{M}}cool}=1.4 % +/- 0.4% for systems with {\\dot{M}}cool}> 30 M ⊙ yr‑1. For these systems, we measure a slope in the SFR–{\\dot{M}}cool} relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical versus radiative) of feedback. For systems with {\\dot{M}}cool}< 30 M ⊙ yr‑1, we find that the SFR and {\\dot{M}}cool} are uncorrelated and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at a fixed {\\dot{M}}cool} of 0.52 ± 0.06 dex (1σ rms), suggesting that cooling is tightly self-regulated over very long timescales but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (∼0.4 dex) for systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.

  20. Quasi One-Dimensional Model of Natural Draft Wet-Cooling Tower Flow, Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2015-01-01

    Full Text Available The article deals with the development of CFD (Computational Fluid Dynamics model of natural draft wet-cooling tower flow, heat and mass transfer. The moist air flow is described by the system of conservation laws along with additional equations. Moist air is assumed to be homogeneous mixture of dry air and water vapour. Liquid phase in the fill zone is described by the system of ordinary differential equations. Boundary value problem for the system of conservation laws is discretized in space using Kurganov-Tadmor central scheme and in time using strong stability preserving Runge-Kutta scheme. Initial value problems in the fill zone is solved by using standard fourth order Runge-Kutta scheme. The interaction between liquid water and moist air is done by source terms in governing equations.

  1. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  2. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  3. A device for emergency cooling visualization

    International Nuclear Information System (INIS)

    Rezende, Hugo Cesar; Ladeira, Luiz Carlos Duarte

    1995-01-01

    A test facility for rewetting experiments, Emergency Cooling Visualization Device, has been erected at CDTN, with the objective of Emergency Cooling visualization device performing visual observations of basic phenomena that occur during the reflood phase of a Loss of Coolant Accident (LOCA), in a Pressurised Water Reactor (PWR), utilizing annular test sections. It permits to film or photograph the advance of a wetting front and the flow and heat transfer conditions. Then it is possible to observe the heat transfer regions and flow zones: steam convection, fog cooling, film boiling, nucleate boiling and fluid convection. Finally, this facility is the first test facility, in the Thermohydraulics Laboratory of CDTN, that uses a indirectly heated fuel rod simulator. (author). 3 refs, 5 figs

  4. The effect of nerve blockade on forearm and finger skin blood flow during body heating and cooling.

    Science.gov (United States)

    Saumet, J L; Degoute, C S; Saumet, M; Abraham, P

    1992-08-01

    To determine the role of the active cutaneous vasodilatator response in forearm and finger skin, direct assessment of only skin blood flow was performed before and after musculocutaneous and median nerve blockade during whole body heating and cooling. Forearm laser Doppler flow (LDF forearm), forearm heat thermal clearance (HTC forearm), and finger laser Doppler flow (LDF finger) were monitored in the nerve blocked skin and contralateral untreated skin (control). In the pre-blockade period, no significant differences were found between experimental and control arm skin. After nerve block a significant increase occurred only in LDF finger, which rose from 4.3 +/- 0.6 to 6.0 +/- 0.5 volts (p less than 0.05). During whole body heating LDF forearm and HTC forearm increased significantly on both arms. The increase in LDF forearm was greater (p less than 0.05) in control (18.3 +/- 1.2 volts) than in nerve blocked skin (14.6 +/- 1.8 volts) and occurred earlier. The same tendency was observed in HTC forearm between nerve blocked skin (0.522 +/- 0.06 W.m-1.degrees C-1) and control 0.671 +/- 0.037 W.m-1.degrees C-1) (NS). LDF raise up to 6.6 +/- 0.5 and 6.8 +/- 0.5 volts in the blocked finger and in the control respectively. During cooling LDF finger in the control decreased to 1.3 +/- 0.1 volt and was significantly (p less than 0.05) lower than in the resting period, and lower than that in the nerve blocked finger (3.4 +/- 0.8 volts) (p less than 0.05). We conclude that the active vasodilatator system plays an important role as far as the timing and the amplitude of the cutaneous vasodilatator response to whole body heating in the forearm but not in the finger. At thermal neutrality, the vascular vasoconstrictor tone is high to the finger but not to the forearm. The vasoconstrictor response to cooling occurred only in the finger.

  5. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  6. Investigation of heat transfer and flow using ribs within gas turbine blade cooling passage: Experimental and hybrid LES/RANS modeling

    Science.gov (United States)

    Kumar, Sourabh

    Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped ribs on one side of the two pass square channel into the core of blade. Despite extensive research on ribs, only few papers have validated the numerical data with experimental results in two pass channel. In the present study, detailed experimental investigation is carried out for two pass square channels with 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for steady state experiment. Four different combinations of 60° and Broken 60° V ribs in channel are considered. Thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for various Reynolds numbers, within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the ribs with. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. Computational Fluid Dynamics (CFD) simulations were carried out for the same geometries using different turbulence models such as k-o Shear stress transport (SST) and Reynolds stress model (RSM). These CFD simulations were based on advanced computing in order to improve the accuracy of three dimensional metal

  7. Cooling tower modification for intermittent operation

    International Nuclear Information System (INIS)

    Midkiff, W.S.

    1975-03-01

    One of the cooling towers at Los Alamos Scientific Laboratory is being operated intermittently. The cooling tower has been modified to restrict air flow and to keep the tower from drying out. The modifications are relatively inexpensive, simple to operate, and have proved effective. (U.S.)

  8. Artificial neural network analysis based on genetic algorithm to predict the performance characteristics of a cross flow cooling tower

    Science.gov (United States)

    Wu, Jiasheng; Cao, Lin; Zhang, Guoqiang

    2018-02-01

    Cooling tower of air conditioning has been widely used as cooling equipment, and there will be broad application prospect if it can be reversibly used as heat source under heat pump heating operation condition. In view of the complex non-linear relationship of each parameter in the process of heat and mass transfer inside tower, In this paper, the BP neural network model based on genetic algorithm optimization (GABP neural network model) is established for the reverse use of cross flow cooling tower. The model adopts the structure of 6 inputs, 13 hidden nodes and 8 outputs. With this model, the outlet air dry bulb temperature, wet bulb temperature, water temperature, heat, sensible heat ratio and heat absorbing efficiency, Lewis number, a total of 8 the proportion of main performance parameters were predicted. Furthermore, the established network model is used to predict the water temperature and heat absorption of the tower at different inlet temperatures. The mean relative error MRE between BP predicted value and experimental value are 4.47%, 3.63%, 2.38%, 3.71%, 6.35%,3.14%, 13.95% and 6.80% respectively; the mean relative error MRE between GABP predicted value and experimental value are 2.66%, 3.04%, 2.27%, 3.02%, 6.89%, 3.17%, 11.50% and 6.57% respectively. The results show that the prediction results of GABP network model are better than that of BP network model; the simulation results are basically consistent with the actual situation. The GABP network model can well predict the heat and mass transfer performance of the cross flow cooling tower.

  9. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    Science.gov (United States)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  10. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  11. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  12. Passive cooling in modern nuclear reactors

    International Nuclear Information System (INIS)

    Rouai, N. M.

    1998-01-01

    This paper presents some recent experimental results performed with the aim of understanding the mechanism of passive cooling. The AP 600 passive containment cooling system is simulated by an electrically heated vertical pipe, which is cooled by a naturally induced air flow and by a water film descending under gravity. The results demonstrate that although the presence of the water film improved the heat transfer significantly, the mode of heat transfer was very dependent on the experimental parameters. Preheating the water improved both film stability and overall cooling performance

  13. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Riffat, S.B. [School of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Li, J.M. [Department of Thermal Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2008-10-15

    The paper presents numerical investigation of a novel counter-flow heat and mass exchanger used in the indirect evaporative dew point cooling systems, a potential alternative to the conventional mechanical compression air conditioning systems. Numeric simulation was carried out to optimise the geometrical sizes and operating conditions of the exchanger in order to enhance the cooling (dew point and wet bulb) effectiveness of the exchanger and maximise the energy efficiency of the dew point cooling system. The results of the simulations indicated that cooling (dew point and wet bulb) effectiveness and energy efficiency are largely dependent on the dimensions of the airflow passages, air velocity and working-to-intake-air ratio, and less dependent on the temperature of the feed water. It is recommended that exchanger intake air velocity should be controlled to a value below 0.3-0.5 m/s; height of air passage (channel) should be set to 6 mm or below and the length of the passage should be 200 time the height; the working-to-intake-air ratio should be around 0.4. Under the UK summer design condition, i.e., 28{sup o}C of dry bulb temperature, 20{sup o}C of wet bulb temperature and 16{sup o}C of dew point temperature, the exchanger can achieve wet-bulb effectiveness of up to 1.3 and dew-point effectiveness of up to 0.9. (author)

  14. Device for recirculation cooling of cooling water by natural or forced chaft

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, H; Honekamp, H; Katzmann, A

    1975-10-23

    The invention is concerned with a device for recirculation cooling of cooling water by natural or forced draft. Through a cascading system mounted on supporting columns at a vertical distance to ground level, cooling air is flowing in cross- or counterflow to the cooling water freely falling from the cascading system. The cooling water collecting zone below the cascading system has an absorption floor arranged nearly horizontal and/or inclined, with a cam-type profile on its upperside, which is bounded on its circumference by at least one cooling water release channel provided below its level and/or which is divided in the sense of a surface subdivision. By these means, a reduction of the amount of material required for the supporting columns and an increase of the stability of the columns is to be achieved. Furthermore, the deposition of mud is to be avoided as for as possible, and noise generation during operation is to be reduced considerably. For this purpose, the absorption floor may be made of material sound insulating and/or may be coated with such a material.

  15. Structure and content of the galaxy and galactic gamma rays

    International Nuclear Information System (INIS)

    1976-01-01

    The conference included papers on γ-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included

  16. The generation of intense heat fluxes by electron bombardment to evaluate the use of swirl flow in the cooling of accelerator targets

    International Nuclear Information System (INIS)

    Genis, G.J.

    1985-11-01

    The thermal performance of isotope production targets for accelerators has been shown to be the limiting factor with regard to the cost of isotopes and the specific activity achievable. To allow the investigation of basic aspects of target cooling and the evaluation of certain target concepts off-line from accelerators, an electron bombardment system, including a radial electron accelerator (REA) in a diode configuration, was developed as heat source. Methods were developed to characterise the performance of the REA to supply a homogeneous heat flux to an axial target by which a technique for the construction of thermocouple placement holes in the body of the target can be evaluated from the measured temperatures. Having identified high velocity swirl flow as the most suitable technique to enhance the convective heat transfer in targets, experiments were conducted to determine the heat-transfer coefficient at high heat fluxes to high velocity swirl flow. The heat-transfer results substantiate the advantages of swirl flow for target cooling. Different correlations obtained indicate the importance of using the film properties instead of the bulk coolant properties in correlations and identify centrifugal convection as one of the most important heat transfer mechanisms in swirl flow

  17. 3D Measurements of coupled freestream turbulence and secondary flow effects on film cooling

    Science.gov (United States)

    Ching, David S.; Xu, Haosen H. A.; Elkins, Christopher J.; Eaton, John K.

    2018-06-01

    The effect of freestream turbulence on a single round film cooling hole is examined at two turbulence levels of 5 and 8% and compared to a baseline low freestream turbulence case. The hole is inclined at 30° and has length to diameter ratio L/D=4 and unity blowing ratio. Turbulence is generated with grid upstream of the hole in the main channel. The three-dimensional, three-component mean velocity field is acquired with magnetic resonance velocimetry (MRV) and the three-dimensional temperature field is acquired with magnetic resonance thermometry (MRT). The 8% turbulence grid produces weak mean secondary flows in the mainstream (peak crossflow velocities are 7% of U_bulk) which push the jet close to the wall and significantly change the adiabatic effectiveness distribution. By contrast, the 5% grid has a simpler structure and does not produce a measurable secondary flow structure. The grid turbulence causes little change to the temperature field, indicating that the turbulence generated in the shear layers around the jet dominates the freestream turbulence. The results suggest that secondary flows induced by complex turbulence generators may have caused some of the contradictory results in previous works.

  18. Structure and content of the galaxy and galactic gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The conference included papers on ..gamma..-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included. (JFP)

  19. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.).

  20. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.)

  1. Solution and scope of utilization of the cross-stream cooling towers

    International Nuclear Information System (INIS)

    Zembaty, W.

    1995-01-01

    Technical solutions and operational properties of the cross-stream cooling towers as well as the scope of their utilization are presented. The differences within thermodynamic calculations of the cross-stream and counter-stream cooling towers due to the direction of the air flow as well as water flow in sprinkling system are discussed. The assessment of the capital and operational costs of the cross-stream cooling towers is given and compared with the cost of counter-stream cooling towers (utilizing as an example a calculation conducted for the cooling towers of the 720, 1100 and 1400 MW units). (author). 6 refs, 9 figs

  2. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  3. Effect of Cooling Units on the Performance of an Automotive Exhaust-Based Thermoelectric Generator

    Science.gov (United States)

    Su, C. Q.; Zhu, D. C.; Deng, Y. D.; Wang, Y. P.; Liu, X.

    2017-05-01

    Currently, automotive exhaust-based thermoelectric generators (AETEGs) are a hot topic in energy recovery. In order to investigate the influence of coolant flow rate, coolant flow direction and cooling unit arrangement in the AETEG, a thermoelectric generator (TEG) model and a related test bench are constructed. Water cooling is adopted in this study. Due to the non-uniformity of the surface temperature of the heat source, the coolant flow direction would affect the output performance of the TEG. Changing the volumetric flow rate of coolant can increase the output power of multi-modules connected in series or/and parallel as it can improve the temperature uniformity of the cooling unit. Since the temperature uniformity of the cooling unit has a strong influence on the output power, two cooling units are connected in series or parallel to research the effect of cooling unit arrangements on the maximum output power of the TEG. Experimental and theoretical analyses reveal that the net output power is generally higher with cooling units connected in parallel than cooling units connected in series in the cooling system with two cooling units.

  4. CFD Analyses on LHe Cooling for SCQ Magnets in BEPCII Upgrade

    International Nuclear Information System (INIS)

    He, Z.H.; Wang, L.; Tang, H.M.; Zhang, X.B.; Jia, L.X.

    2004-01-01

    A pair of superconducting interaction region quadrupole magnets in Beijing Electron-Positron Collider Upgrade (BEPCII) are to be cooled by supercritical helium in order to eliminate the flow instabilities in the constrained cooling channels. The fluid flow is simulated by the commercial computational dynamics fluid software. The heat loads to the superconducting quadrupole (SCQ) magnets from the radiation shields at 80 K and from the thermal conduction of mechanical supports are considered. The temperature distribution of the fluid in the liquid helium cooling channels, and the heat transfer in the SCQ magnet and by its supports are presented. The influence of mass flow rate on pressure drop in the cooling passage is analyzed

  5. Safety analysis for K reactor and impact of cooling tower installation

    International Nuclear Information System (INIS)

    Fields, C.C.; Wooten, L.A.; Geeting, M.W.; Morgan, C.E.; Buczek, J.A.; Smith, D.C.

    1993-01-01

    This paper describes the safety analysis of the Savannah River site K-reactor loss-of-cooling-water-supply (LOCWS) event and the impact on the analysis of a natural-draft cooling tower, which was installed in 1992. Historically (1954 to 1992), the K-reactor secondary cooling system [called the cooling water system (CWS)] used water from the Savannah River pumped to a 25-million-gal basin adjacent to the reactor. Approximately 170 000 gal/min were pumped from the basin through heat exchangers to remove heat from the primary cooling system. This water then entered a smaller basin, where it flowed over a weir and eventually returned to the Savannah River. The 25-million-gal basin is at a higher elevation than the heat exchangers and the smaller basin to supply cooling by gravity flow (which is sufficient to remove decay heat) if power to the CWS pumps is interrupted. Small amounts of cooling water are also used for other essential equipment such as diesels, motors, and oil coolers. With the cooling tower installed, ∼85% of the cooling water flows from the small basin by gravity to the cooling tower instead of returning to the Savannah River. After being cooled, it is pumped back to the 25-million-gal basin. River water is supplied only to make up for evaporation and the blowdown stream

  6. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    Science.gov (United States)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  7. A study of natural circulation cooling using a flow visualization rig

    International Nuclear Information System (INIS)

    Bowman, W.C.; Ferch, R.L.; Omar, A.M.

    1985-01-01

    A flow visualization rig has been built at Monserco Limited to provide visual insight into the thermalhydraulic phenomena which occur during single phase and two phase thermosyphoning in a figure-of-eight heat transport loop. Tests performed with the rig have provided design information for the scaling and instrumentation of a high pressure rig being investigated for simulating CANDU reactor conditions during natural circulation cooling. A videotape was produced, for viewing at this presentation, to show important thermalhydraulic features of the thermosyphoning process. The rig is a standard figure-of-eight loop with two steam generators and three heated channels per pass. An elevated surge tank open to atmosphere was used for pressure control. Two variable speed pumps provided forced circulation for warming up the rig, and for establishing the desired initial conditions for testing. Test rig power could be varied between 0 and 15 kW

  8. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of a 1400MW PWR for designing a scale-down test facility

    International Nuclear Information System (INIS)

    Rhee, Bo. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-01-01

    A scaling study on the steady state natural circulation flow along the flow path of the ex-vessel core catcher cooling system of 1400MWe PWR is described. The scaling criteria for reproducing the same thermalhydraulic characteristics of the natural circulation flow as the prototype core catcher cooling system in the scale-down test facility is derived and the resulting natural circulation flow characteristics of the prototype and scale-down facility analyzed and compared. The purpose of this study is to apply the similarity law to the prototype EU-APR1400 core catcher cooling system and the model test facility of this prototype system and derive a relationship between the heating channel characteristics and the down-comer piping characteristics so as to determine the down-comer pipe size and the orifice size of the model test facility. As the geometry and the heating wall heat flux of the heating channel of the model test facility will be the same as those of the prototype core catcher cooling system except the width of the heating channel is reduced, the axial distribution of the coolant quality (or void fraction) is expected to resemble each other between the prototype and model facility. Thus using this fact, the down-comer piping design characteristics of the model facility can be determined from the relationship derived from the similarity law

  9. Linac drift tube tank upgrade engineering - cooling solution

    International Nuclear Information System (INIS)

    Li, G.; Heilbrunn, W.; Potter, J.

    1999-01-01

    Components from the injector of the canceled SSC project are being modified by JPAW to make a commercial radioisotope production linac for I 3 in Denton, TX. The biggest challenge of the upgraded design is the increased average power of the DTL, 40 times the original. With the thermo-mechanical analysis backed by a thorough understanding of the thermal physics, 156 drift tubes have been redesigned according to the RF power deposition. Increasing flow rate in the original cooling channels and adding four flow paths reduces the average tank temperature to an acceptable level. The Δf tolerance budget is controlled without the use of additional temperature control units. The unfinished SSC endwall parts have been modified for additional cooling of the nose and the wall. The different LINAC cooling subsystems are connected to a manifold in parallel through independent flow control valves to balance the required flow rate for each branch

  10. Unsteady, Cooled Turbine Simulation Using a PC-Linux Analysis System

    Science.gov (United States)

    List, Michael G.; Turner, Mark G.; Chen, Jen-Pimg; Remotigue, Michael G.; Veres, Joseph P.

    2004-01-01

    The fist stage of the high-pressure turbine (HPT) of the GE90 engine was simulated with a three-dimensional unsteady Navier-Sokes solver, MSU Turbo, which uses source terms to simulate the cooling flows. In addition to the solver, its pre-processor, GUMBO, and a post-processing and visualization tool, Turbomachinery Visual3 (TV3) were run in a Linux environment to carry out the simulation and analysis. The solver was run both with and without cooling. The introduction of cooling flow on the blade surfaces, case, and hub and its effects on both rotor-vane interaction as well the effects on the blades themselves were the principle motivations for this study. The studies of the cooling flow show the large amount of unsteadiness in the turbine and the corresponding hot streak migration phenomenon. This research on the GE90 turbomachinery has also led to a procedure for running unsteady, cooled turbine analysis on commodity PC's running the Linux operating system.

  11. Determination of fan flow and water rate adjustment for off-design cooling tower tests

    International Nuclear Information System (INIS)

    Vance, J.M.

    1984-02-01

    The determination of the performance of a mechanical draft cooling tower requires that the air mass flow through the tower be known. Since this flow is not measured, it has been customary to use the manufacturer's design air flow and adjust it by the one-third power of the ratio of the design to test fan horsepower. The most nearly correct approximation of air flow through a tower can be obtained by incrementally moving through the tower from air inlet to outlet while calculating mass flows, energy balances, and pressure drops for each increment and then utilizing fan curves to determine volumetric and mass flows. This procedure would account for changes in air humidity and density through the tower, evaporation of water, effect of water rate on air pressure drop, and changes in fan characteristics. These type calculations may be within the capabilities of all in the near future, but for the interim, it is recommended that a more elementary approach be used which can be handled with a good calculator and without any proprietary data. This approach depends on certain assumptions which are acceptable if the tower test is conducted within CTI code requirements. The fan must be considered a constant suction volume blower for a given blade pitch. The total pressure at the fan, a function of volumetric flow and wet air density, must be assumed to be unaffected by other considerations, and the fan horsepower must be assumed to change only as volumetric flow and wet air density changes. Given these assumptions, along with design information normally provided with a tower, the determination of air flow through a tower in a test can be made from CTI test data. The air flow, and consequently the water rate adjustment and corrected water to air ratio, are derived and found to be direct functions of horsepower and density and an inverse function of wet air humidities

  12. Galactic structure and gamma radiation

    International Nuclear Information System (INIS)

    Casse, Michel; Cesarsky, Catherine; Paul Jacques

    1977-01-01

    A model of spiral structure of the Galaxy is outlined from radiosynchrotron and gamma observations. The most interesting observations in the galactic context, obtained by the SAS II American satellite are concerned with the distribution of the γ photoemission at energies higher than 10 8 eV, along the galactic equator. The model proposed is in quantitative agreement with the present ideas on the spiral structure of the Galaxy, the galactic magnetic field, and the confinement of cosmic rays by the magnetic field and of the magnetic field by matter. Following the American era, the European COS-B satellite opens the European phase towards an identification of the discrete gamma radiation sources [fr

  13. Estimation on the Pressure Loss of the Conceptual Primary Cooling System and Design of the Primary Cooling Pump for a Research Reactor

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Oh, Jae Min; Park, Jong Hark; Chae, Hee Taek; Seo, Jae Kwang; Park, Cheon Tae; Yoon, Ju Hyeon; Lee, Doo Jeong

    2009-01-01

    A new conceptual primary cooling system (PCS) for a research reactor has been designed for an adequate cooling to the reactor core which has various powers ranging from 30MW through 80MW. The developed primary cooling system consisted of decay tanks, pumps, heat exchangers, vacuum breakers, some isolation and check valves, connection piping, and instruments. Because the system flow rate should be determined by the thermal hydraulic design analysis for the core, the heads to design the primary cooling pumps (PCPs) in a PCS will be estimated by the variable system flow rates. The heads of the part of a research reactor vessel was evaluated by the previous study. The various pressure losses of the PCS can be calculated by the dimensional analysis of the pipe flow and the head loss coefficient of the components. The purpose of this research is to estimate the various pressure losses and to design the PCPs

  14. An Approach to Define the Heat Flow in Drilling with Different Cooling Systems Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Lauro

    2013-01-01

    Full Text Available The heat generated in the cutting zone with high-speed drilling causes damage in the machined part. The heat can affect the dimensions of the hole considering its diameter. Moreover, the heat reduces tool life of uncoated and coated tools. This paper shows experimental tests with high-speed drilling in hardened steel. Drilling was performed on AISI H13 steel with dimensions of 100 × 40 × 14 mm and 52 HRC. The work pieces were drilled with coated drills (TiAlN. A flooded lubricant system and the minimal quantity of lubricant (MQL were applied to investigate the ability to remove heat from the cutting zone and to compare with dry tests. FEM was applied to define the heat flow and the coefficient of convection for the cooling systems. A steepest descent method was employed to minimize the difference between empirical and simulation data. The results showed that the simulation technique used to find values for heat flow and the coefficient of convection were close to the literature reference. In addition, the adjustment errors of the simulated temperature curves were less than 10% when compared with trial curves. Furthermore, the MQL showed a capability of cooling 3.5 times higher than that of the flooded system.

  15. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  16. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  17. Cooling of superconducting devices by liquid storage and refrigeration unit

    Science.gov (United States)

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  18. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  19. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  20. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-01-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ∼14 km s –1 , and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ∼200 km s –1 in a Galactic wind.

  1. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    CERN Document Server

    Niinikoski, T O

    1998-01-01

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  2. Turbine airfoil having near-wall cooling insert

    Science.gov (United States)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    2017-09-12

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity toward the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.

  3. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  4. Pressure loss coefficient and flow rate of side hole in a lower end plug for dual-cooled annular nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang-Hwan, E-mail: shinch@kaeri.re.kr; Park, Ju-Yong, E-mail: juyong@kaeri.re.kr; In, Wang-Kee, E-mail: wkin@kaeri.re.kr

    2013-12-15

    Highlights: • A lower end plug with side flow holes is suggested to provide alternative flow paths of the inner channel. • The inlet loss coefficient of the lower end plug is estimated from the experiment. • The flow rate through the side holes is estimated in a complete entrance blockage of inner channel. • The consequence in the reactor core condition is evaluated with a subchannel analysis code. - Abstract: Dual-cooled annular nuclear fuel for a pressurized water reactor (PWR) has been introduced for a significant increase in reactor power. KAERI has been developing a dual-cooled annular fuel for a power uprate of 20% in an optimized PWR in Korea, the OPR1000. This annular fuel can help decrease the fuel temperature substantially relative to conventional cylindrical fuel at a power uprate. Annular fuel has dual flow channels around itself; however, the inner flow channel has a weakness in that it is isolated unlike the outer flow channel, which is open to other neighbouring outer channels for a coolant exchange in the reactor core. If the entrance of the inner channel is, as a hypothetical event, completely blocked by debris, the inner channel will then experience a rapid increase in coolant temperature such that a departure from nucleate boiling (DNB) may occur. Therefore, a remedy to avoid such a postulated accident is indispensable for the safety of annular fuel. A lower end plug with side flow holes was suggested to provide alternative flow paths in addition to the central entrance of the inner channel. In this paper, the inlet loss coefficient of the lower end plug and the flow rate through the side holes were estimated from the experimental results even in a complete entrance blockage of the inner channel. An optimization for the side hole was also performed, and the results are applied to a subchannel analysis to evaluate the consequence in the reactor core condition.

  5. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  6. Simultaneous prediction of internal and external aerodynamic and thermal flow fields of a natural-draft cooling tower in a cross-wind

    International Nuclear Information System (INIS)

    Radosavljevic, D.; Spalding, D.B.

    1989-01-01

    The quantitative simulation of cooling-tower performance is useful to designers, enabling them to make optimal choices regarding: the type, volume and shape of the packing (i.e. fill); and the shape and size of the tower. In order to simulate performance realistically, non-uniformities of distribution of water and air mass-flow rates across the tower radius must be taken into account. This necessitates at least 2D modeling; and in order to establish the influence of a cross-wind, boundary conditions must be far away from the tower inlet and outlet, and 3D modeling must be performed. This paper is concerned with large wet natural-draught cooling towers of the type used in many steam power stations for cooling large quantities of water by direct contact with the atmosphere. The aim of the present work has been to improve the procedures of calculation by using numerical integration of the heat and mass transfer equations, and to connect internal and external aerodynamics thus enabling wind influence to be studied. It permits predicting the performance of a proposed design of the tower over a range of operating conditions. PHOENICS, a general-purpose computer code for fluid-flow simulation, is used to provide numerical solutions to governing differential equations

  7. Analysis of Heat Transfer in Berman Flow of Nanofluids with Navier Slip, Viscous Dissipation, and Convective Cooling

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2014-01-01

    Full Text Available Heat transfer characteristics of a Berman flow of water based nanofluids containing copper (Cu and alumina (Al2O3 as nanoparticles in a porous channel with Navier slip, viscous dissipation, and convective cooling are investigated. It is assumed that the exchange of heat with the ambient surrounding takes place at the channel walls following Newton’s law of cooling. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using appropriate similarity transformations. These equations are solved analytically by regular perturbation methods with series improvement technique and numerically using an efficient Runge-Kutta Fehlberg integration technique coupled with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, pressure drop, and Nusselt numbers are presented graphically and discussed quantitatively.

  8. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1982-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the plane due to high space velocities imparted to the pulsars at birth. Statistical studies of the properties of large numbers of pulsars and proper motion measurements demonstrate that the effective magnetic dipole moments decay on a timescale of about 8 million years. This work provides a better knowledge of pulsar evolution and ages and shows that a birthrate of one pulsar every 20 to 50 years is required to sustain the observed galactic population of 300,000. This rate is comparable with most recent estimates of the galactic supernova rate, but requires nearly all supernovae to produce active pulsars. (orig.)

  9. Johnson screen for cooling water intakes

    International Nuclear Information System (INIS)

    Cook, L.E.

    1978-01-01

    Johnson surface-water screens provide an alternative to vertical traveling screens for power plant cooling water intakes. In this paper, flow field modeling is discussed, and a series of case studies is presented. The hydraulic information obtained is discussed as it applies to the exclusion of biota and debris from cooling water intake systems

  10. Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization

    Science.gov (United States)

    Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin

    2018-05-01

    Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.

  11. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  12. Cooling of pressurized water nuclear reactor vessels

    International Nuclear Information System (INIS)

    Curet, H.D.

    1978-01-01

    The improvement of pressurized water nuclear reactor vessels comprising flow dividers providing separate and distinct passages for the flow of core coolant water from each coolant water inlet, the flow dividers being vertically disposed in the annular flow areas provided by the walls of the vessel, the thermal shield (if present), and the core barrel is described. In the event of rupture of one of the coolant water inlet lines, water, especially emergency core coolant water, in the intact lines is thus prevented from by-passing the core by circumferential flow around the outermost surface of the core barrel and is instead directed so as to flow vertically downward through the annulus area between the vessel wall and the core barrel in a more normal manner to increase the probability of cooling of the core by the available cooling water in the lower plenum, thus preventing or delaying thermal damage to the core, and providing time for other appropriate remedial or damage preventing action by the operator

  13. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes...

  14. A simpler, safer, higher performance cooling system arrangement for water cooled divertors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Kothmann, R.E.; Green, L.; Zhan, N.J.; Stefani, F.; Roidt, R.M.

    1994-01-01

    A cooling system arrangement is presented which is specifically designed for high heat flux water cooled divertors. The motivation behind the proposed open-quotes unichannelclose quotes configuration is to provide maximum safety; this design eliminates flow instabilities liable to occur in parallel channel designs, it eliminates total blockage, it promotes cross flow to counteract the effects of partial blockage and/or local hot spots, and it is much more tolerant to the effects of debonding between the beryllium armor and the copper substrate. Added degrees of freedom allow optimization of the design, including the possibility of operating at very high heat transfer coefficients associated with nucleate boiling, while at the same time providing ample margin against departure from nucleate boiling. Projected pressure drop, pumping power, and maximum operating temperatures are lower than for conventional parallel channel designs

  15. KUEBEL. A Fortran program for computation of cooling-agent-distribution within reactor fuel-elements

    International Nuclear Information System (INIS)

    Inhoven, H.

    1984-12-01

    KUEBEL is a Fortran-program for computation of cooling-agent-distribution within reactor fuel-elements or -zones of theirs. They may be assembled of max. 40 cooling-channels with laminar up to turbulent type of flow (respecting Reynolds' coefficients up to 2.0E+06) at equal pressure loss. Flow-velocity, dynamic flow-, contraction- and friction-losses will be calculated for each channel and for the total zone. Other computations will present mean heat-up of cooling-agent, mean outlet-temperature of the core, boiling-temperature and absolute pressure at flow-outlet. All characteristic coolant-values, including the factor of safety for flow-instability of the most-loaded cooling gap are computed by 'KUEBEL' too. Absolute pressure at flow-outlet or is-factor may be defined as dependent or independent variables of the program alternatively. In latter case 3 variations of solution will be available: Adapted flow of cooling-agent, inlet-temperature of the core and thermal power. All calculations can be done alternatively with variation of parameters: flow of cooling-agent, inlet-temperature of the core and thermal power, which are managed by the program itself. 'KUEBEL' is able to distinguish light- and heavy-water coolant, flow-direction of coolant and fuel elements with parallel, rectangular, respectively concentric, cylindrical shape of their gaps. Required material specifics are generated by the program. Segments of fuel elements or constructively unconnected gaps can also be computed by means of interposition of S.C. 'phantom channels'. (orig.) [de

  16. Observation of galactic gamma radiation

    International Nuclear Information System (INIS)

    Paul, J.A.

    1982-09-01

    A complete and deep survey of the galactic high-energy gamma radiation is now available, thanks to the gamma-ray telescopes on board of the SAS-2 and COS-B spacecrafts. A comparison of the COS-B gamma-ray survey with a fully sampled CO survey together with an Hsub(I) survey is used to show that a simple model, in which uniformly distributed cosmic rays interact with the interstellar gas, can account for almost all the gamma-ray emission observed in the first galactic quadrant. At medium galactic latitudes, it is shown that a relationship exists between the gamma radiation and the interstellar absorption derived from galaxy counts. Therefore gamma rays from the local galactic environment can be used as a valuable probe of the content and structure of the local interstellar medium. The large scale features of the local interstellar gas are revealed, in particular wide concentrations of nearby molecular hydrogen. On a smaller scale, the detection of numerous localized gamma-ray sources focuses the attention on some particular phases of clusters of young and massive stars where diffuse processes of gamma-ray emission may also be at work

  17. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  18. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  19. Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm

    Science.gov (United States)

    Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.

    2014-08-26

    An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.

  20. CFD ANALYSES ON THE COOLING FOR SCQ MAGNETS IN BEPC II UPGRADE

    International Nuclear Information System (INIS)

    HE, Z.H.; WANG, L.; TANK, H.M.; ZHANG, X.B.; JIA, L.X.

    2003-01-01

    A pair of superconducting interaction region quadrupole magnets in Beijing Electron-Positron Collider Upgrade (BEPCII) are to be cooled by supercritical helium in order to eliminate the flow instabilities in the constrained cooling channels. The fluid flow is simulated by the commercial computational dynamics fluid software. The heat loads to the superconducting quadrupole (SCQ) magnets from the radiation shields at 80 K and from the thermal conduction of mechanical supports are considered. The temperature distribution of the fluid in the liquid helium cooling channels, and the heat transfer in the SCQ magnet and by its supports are presented. The influence of mass flow rate on pressure drop in the cooling passage is analyzed

  1. A Preliminary Heat Flow Model for Cooling a Batholith near Ica, Peru

    Science.gov (United States)

    Gonzalez, L. U.; Clausen, B. L.; Molano, J. C.; Martinez, A. M.; Poma, O.

    2014-12-01

    This research models the cooling of a suite in the Linga Super-unit located at the north end of the Arequipa segment in the Cretaceous Peruvian Coastal Batholith. The monzogabbro to granite Linga suite is approximately 50 km long and 15 km wide, with an estimated vertical extent of about 5 km originally intruded to a depth of 3 km. The emplacement was in andesitic volcanics on the west and the Pampahuasi diorite Super-unit on the east and has incorporated earlier gabbroic bodies. The Linga suite is thought to be the result of a sequence of three pulses: an elongate unit to the west then two elliptical units to the northeast and southeast. The data for modeling comes from field observations on internal and external contacts, some well-defined magma chamber walls and roof, pendant and stoped blocks, magma chamber zoning, the nature and distribution of enclaves and xenoliths, magmatic fabric, evidences of magma mingling, rock porosity, mineralogical associations in metamorphic aureoles, extensive mineralization and brecciated conduits, and the types of hydrothermal alteration varying with distance from contacts. More than forty hand samples, thin sections, and geochemical analyses were used to estimate water content, magma and country rock temperature, liquid density, and viscosity. Further data will come from: zircon U-Pb ages for country rock and magma batch timeframes, fluid inclusions for magma pressure and temperature, and δ18O data for source of hydrothermal fluids. Simple heat conduction calculations using MATLAB and HEAT 3D for a single tabular intrusion estimated a cooling time to solidus of about 300 k.y. More complex modeling includes magma convection and multiple intrusions. Extensive veining and pervasive alteration suggested the use of HYDROTHERM to model possible additional heat flow effects from hydrothermal fluids. Extensive propylitic and significant potassic alteration were observed and, with TerraSpec infrared spectroscopy to identify

  2. Experimental study of discharging PCM ceiling panels through nocturnal radiative cooling

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Péan, Thibault Q.; Gennari, Luca

    PhotoVoltaic/Thermal (PV/T) panels were used for cooling water through the principle of nocturnal radiative cooling. This water was utilised for discharging Phase Change Material (PCM) which was embedded in ceiling panels in a climate chamber. Three different sets of flow rates were examined...... for the solar and the PCM loops, for five days each. The highest examined water flow rate (210 l/h) in the PCM loop provided the best thermal environment in the climate chamber, namely 92% of the occupancy time was within the range of Category III of Standard EN 15251. Although the lowest examined water flow...... rate (96 l/h) in the solar loop provided the highest average cooling power, due to the significant variations in the weather conditions during the three experimental cases, made it impossible to determine to which extent the difference in the cooling power is due to the different water flow rate...

  3. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  4. Four foot septifoil cooling experiment unrestricted inlet/outlet case

    International Nuclear Information System (INIS)

    Foti, D.J.; Randolph, H.W.; Geiger, G.T.; Verebelyi, D.T.; Wooten, L.A.

    1992-02-01

    The ability to predict the behavior of reactor components to varying coolant flow scenarios constitutes a necessary skill for assessing reactor safety. One tool for performing these calculations is the Transient Reactor Analysis Code (TRAC). In order to benchmark the code, the Safety Analysis Group of SRL requested the Equipment Engineering Section (EES) of SRL to conduct a series of experiments to provide measurements of cooling parameters in a well defined physical system utilizing SRS reactor components. The configuration selected consisted of a short length of septifoil with both top and bottom fittings containing five simulated control rods in an open-quotes unseatedclose quotes configuration. Varying power levels were to be supplied to the rods with 3.5 kilowatts per foot the value targeted for modelling during the computer runs. The septifoil segment was to be operated with no forced flow in order to evaluate thermal-hydraulic cooling. Parameters to be measured for comparison with code predictions were basic cooling phenomena, incidence of film boiling, water flow rate, pressure rise, and ratio of heat transfer through the wall of the assembly vs. heat transfer to axial water flow through the assembly. This report documents testing done with unimpeded flow into and out of the septifoil in order to assess basic cooling phenomena, incidence of film boiling and pressure rise. Previous tests have evaluated water flow rate and the ratio of axial to azimuthal heat transfer

  5. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  6. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  7. Flow distribution and pressure loss in subchannels of a wire-wrapped 37-pin rod bundle for sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Euh, Dong Jin; Choi, Hae Seob; Kim, Hyung Mo; Choi, Sun Rock; Lee, Hyeong Yeon [Thermal-Hydraulic Safety Research Department, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and 60 degrees C (equivalent to Re ∼ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.

  8. Airfoil, platform, and cooling passage measurements on a rotating transonic high-pressure turbine

    Science.gov (United States)

    Nickol, Jeremy B.

    An experiment was performed at The Ohio State University Gas Turbine Laboratory for a film-cooled high-pressure turbine stage operating at design-corrected conditions, with variable rotor and aft purge cooling flow rates. Several distinct experimental programs are combined into one experiment and their results are presented. Pressure and temperature measurements in the internal cooling passages that feed the airfoil film cooling are used as boundary conditions in a model that calculates cooling flow rates and blowing ratio out of each individual film cooling hole. The cooling holes on the suction side choke at even the lowest levels of film cooling, ejecting more than twice the coolant as the holes on the pressure side. However, the blowing ratios are very close due to the freestream massflux on the suction side also being almost twice as great. The highest local blowing ratios actually occur close to the airfoil stagnation point as a result of the low freestream massflux conditions. The choking of suction side cooling holes also results in the majority of any additional coolant added to the blade flowing out through the leading edge and pressure side rows. A second focus of this dissertation is the heat transfer on the rotor airfoil, which features uncooled blades and blades with three different shapes of film cooling hole: cylindrical, diffusing fan shape, and a new advanced shape. Shaped cooling holes have previously shown immense promise on simpler geometries, but experimental results for a rotating turbine have not previously been published in the open literature. Significant improvement from the uncooled case is observed for all shapes of cooling holes, but the improvement from the round to more advanced shapes is seen to be relatively minor. The reduction in relative effectiveness is likely due to the engine-representative secondary flow field interfering with the cooling flow mechanics in the freestream, and may also be caused by shocks and other

  9. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  10. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  11. Use of dehumidifiers in desiccant cooling and dehumidification systems

    International Nuclear Information System (INIS)

    Van den Bulck, E.; Mitchell, J.W.; Klein, S.A.

    1986-01-01

    The use of rotary dehumidifiers in gas-fired open-cycle desiccant cooling systems is investigated by analyzing the performance of the rotary heat exchanger-rotary dehumidifier subsystem. For a given cooling load, the required regeneration heat supply can be minimized by choosing appropriate values for the regeneration air mass flow rate and the wheel rotation speed. A map is presented showing optimal values for rotational speed and regeneration flow rate as functions of the regeneration air inlet temperature and the process air inlet humidity ratio. This regeneration temperature is further optimized as a function of the process humidity ratio. In the analysis, the control strategy adjusts the process air mass flow rate to provide the required cooling load. Additional control options are considered and the sensitivity of the regeneration heat required to the wheel speed, regeneration air mass flow rate, and inlet temperature is discussed. Experimental data reported in the literature are compared with the analytical results and indicate good agreement

  12. Design Of Cooling Configuration For Military Aeroengine V-Gutter

    Directory of Open Access Journals (Sweden)

    Batchu Suresh

    2017-07-01

    Full Text Available Military aircraft engines employ afterburner system for increasing the thrust required during combat and take-off flight conditions. V-gutter is employed for stabilisation of the flame during reheat. For fifth generation aero engine the gas temperature at the start of the afterburner is be-yond the allowable material limits of the V-gutter so it is required to cool the V-gutter to obtain acceptable creep life. The design of cooling configuration for the given source pressure is worked out for different rib configurations to obtain the allowable metal temperature with minimum coolant mass flow.1D network analysis is used to estimate the cooling mass flow and metal temperature for design flight condition. CFD analysis is carried out for four cooling configurations with different rib orientations. Out of four configurations one configuration is selected for the best cooling configuration.

  13. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    CERN Document Server

    Marinelli, Antonio; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5\\sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the as...

  14. Improving the efficiency of natural draft cooling towers

    International Nuclear Information System (INIS)

    Smrekar, J.; Oman, J.; Sirok, B.

    2006-01-01

    This study shows how the efficiency of a natural draft cooling tower can be improved by optimising the heat transfer along the cooling tower (CT) packing using a suitable water distribution across the plane area of the cooling tower. On the basis of cooling air measurements, it is possible to distribute the water in such a way that it approaches the optimal local water/air mass flow ratio and ensures the homogeneity of the heat transfer and a reduction of entropy generation, thus minimising the amount of exergy lost. The velocity and temperature fields of the air flow were measured with the aid of a remote control mobile robot unit that was developed to enable measurements at an arbitrary point above the spray zone over the entire plane area of the cooling tower. The topological structures of the moist air velocity profiles and the temperature profiles above the spray zone were used as input data for calculation of the local entropy generation in the tower. On the basis of the measured boundary conditions, a numerical analysis of the influence of the water distribution across the cooling tower's plane area on entropy generation and exergy destruction in the cooling tower was conducted

  15. Improving the efficiency of natural draft cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Smrekar, J. [Faculty of Mechanical Engineering, Askerceva 6, SI-1000 Ljubljana (Slovenia); Oman, J. [Faculty of Mechanical Engineering, Askerceva 6, SI-1000 Ljubljana (Slovenia)]. E-mail: janez.oman@fs.uni-lj.si; Sirok, B. [Faculty of Mechanical Engineering, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2006-06-15

    This study shows how the efficiency of a natural draft cooling tower can be improved by optimising the heat transfer along the cooling tower (CT) packing using a suitable water distribution across the plane area of the cooling tower. On the basis of cooling air measurements, it is possible to distribute the water in such a way that it approaches the optimal local water/air mass flow ratio and ensures the homogeneity of the heat transfer and a reduction of entropy generation, thus minimising the amount of exergy lost. The velocity and temperature fields of the air flow were measured with the aid of a remote control mobile robot unit that was developed to enable measurements at an arbitrary point above the spray zone over the entire plane area of the cooling tower. The topological structures of the moist air velocity profiles and the temperature profiles above the spray zone were used as input data for calculation of the local entropy generation in the tower. On the basis of the measured boundary conditions, a numerical analysis of the influence of the water distribution across the cooling tower's plane area on entropy generation and exergy destruction in the cooling tower was conducted.

  16. Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection

    Energy Technology Data Exchange (ETDEWEB)

    Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.

  17. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  18. Study of core flow distribution for small modular natural circulation lead or lead-alloy cooled fast reactors

    International Nuclear Information System (INIS)

    Chen, Zhao; Zhao, Pengcheng; Zhou, Guangming; Chen, Hongli

    2014-01-01

    Highlights: • A core flow distribution calculation code for natural circulation LFRs was developed. • The comparison study between the channel method and the CFD method was conducted. • The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted. - Abstract: Small modular natural circulation lead or lead-alloy cooled fast reactor (LFR) is a potential candidate for LFR development. It has many attractive advantages such as reduced capital costs and inherent safety. The core flow distribution calculation is an important issue for nuclear reactor design, which will provide important input parameters to thermal-hydraulic analysis and safety analysis. The core flow distribution calculation of a natural circulation LFR is different from that of a forced circulation reactor. In a forced circulation reactor, the core flow distribution can be controlled and adjusted by the pump power and the flow distributor, while in a natural circulation reactor, the core flow distribution is automatically adjusted according to the relationship between the local power and the local resistance feature. In this paper, a non-uniform heated parallel channel flow distribution calculation code was developed and the comparison study between the channel method and the CFD method was carried out to assess the exactness of the developed code. The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted using the developed code. A core flow distribution optimization design scheme for a 10MW natural circulation LFR was proposed according to the optimization analysis results

  19. SDP_wlanger_3: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    Science.gov (United States)

    Langer, W.

    2011-09-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  20. KPOT_wlanger_1: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    Science.gov (United States)

    Langer, W.

    2007-10-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  1. Control of cooling processes with forced-air aimed at efficiency energetic and the cooling time of horticultural products

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Carlos Teles Ribeiro da; Mederos, Barbara Janet Teruel [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2008-07-01

    The application of cooling technologies for the conservation of horticultural products is one of the stages the Cold Chain. In Brazil particularly, as a country with tropical climate with average high temperature almost all year, the application of these technologies is very important because the shelf-life of fresh horticultural products, with quality that the market demands, is directly related to temperature. In particular, the systems of forced air cooling operate according to the flow of air predetermined in the project according to the quantity of product to cool. When actual conditions differ from considerations of the project, as to the quantity of product, a situation very common in agricultural properties and packing houses, the fan will continue providing the nominal flow rate, causing alteration of the cost-benefit relation of process. This project aims at the development of a micro-processing equipment (output current of 4 to 20 mA) to control the rotational speed of the motor of the fan systems, air forced through an inverter of frequency. The objective is development of a Man-Machine Interface, based on an algorithm, which, through the introduction of mass product data and the automatic acquisition of data from temperature of the product and the camera, is calculated the cooling time. The rotation of the engine fan will be amended automatically, to maintain air flow with a proper cost-benefit, in connection with the reduction of cooling time, energy consumption, for the increasing the shelf life of products. (author)

  2. Behavior of instantaneous lateral velocity and flow pulsation in duct flow with cylindrical rod

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    Recently, KAERI (Korea Atomic Energy Research Institute) has examined and developed a dual cooled annular fuel. Dual cooled annular fuel allows the coolant to flow through the inner channel as well as the outer channel. Due to inner channel, the outer diameter of dual cooled annular fuel (15.9 mm) is larger than that of conventional cylindrical solid fuel (9.5 mm). Hence, dual cooled annular fuel assembly becomes a tight lattice fuel bundle configuration to maintain the same array size and guide tube locations as cylindrical solid fuel assembly. P/Ds (pitch between rods to rod diameter ratio) of dual cooled annular and cylindrical solid fuel assemblies are 1.08 and 1.35, respectively. This difference of P/D could change the behavior of turbulent flow in rod bundle. Our research group has investigated a turbulent flow parallel to the fuel rods using two kinds of simulated 3x3 rod bundles. To measure the turbulent rod bundle flow, PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques were used. In a simulated dual cooled annular fuel bundle (i.e., P/D=1.08), the quasi periodic oscillating flow motion in the lateral direction, called the flow pulsation, was observed, which significantly increased the lateral turbulence intensity at the rod gap center. The flow pulsation was visualized and measured clearly and successfully by PIV and MIR techniques. Such a flow motion may have influence on the fluid induced vibration, heat transfer, CHF (Critical Heat Flux), and flow mixing between subchannels in rod bundle flow. On the other hand, in a simulated cylindrical solid fuel bundle (i.e., P/D=1.35), the peak of turbulence intensity at the gap center was not measured due to an irregular motion of the lateral flow. This study implies that the behavior of lateral velocity in rod bundle flow is greatly influenced by the P/D (i.e., gap distance). In this work, the influence of gap distance on behavior of instantaneous lateral velocity and flow

  3. Sequential cooling insert for turbine stator vane

    Science.gov (United States)

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  4. Measures against the adverse impact of natural wind on air-cooled condensers in power plant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.

  5. Cool-down performance of CICC superconducting coils for the CHMFL

    Science.gov (United States)

    Xie, Y.; Li, J.; Ouyang, Z. R.

    2017-10-01

    A hybrid magnet composed of a water-cooled magnet and a superconducting magnet was developed at the High Magnetic Field Laboratory of the Chinese Academy of Sciences. The superconducting coils made of Nb3Sn CICC were cooled by the forced flow of supercritical helium at 4.5 K. The paper presents the cryogenic system framework, and reports the characteristics of the supercritical helium in a cable-in-conduit conductor (CICC), including the friction factor change during the cooling process, the heat transfer coefficient from 4.6 K to 6.8 K, and the helium mass flow rate distribution. After the 23-day cooling process, the temperature reached 4.5 K. The operation process was introduced in the paper.

  6. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.

    Science.gov (United States)

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi

    2013-01-22

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to 40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.

  7. The galactic distribution of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Hidayat, B.; Supelli, K.; Hucht, K.A. van der

    1982-01-01

    On the basis of the most recent compilation of narrow-band photometry and absolute visual magnitudes of Wolf-Rayet stars, and adopting a normal interstellar extinction law in all directions, the galactic distribution of 132 of the 159 known galactic WR stars is presented and discussed. The spiral structure is found to be more clearly pronounced than in earlier studies. Furthermore the authors find an indication of two spiral arms at r=4 and 6 kpc. There appears to be an asymmetry of the z-distribution of single stars with respect to galactic longitude. The location of the WC8.5 and WC9 stars between 4.5 and 9 kpc from the galactic center is discussed in the context of Maeder's red supergiant to WR star scenario. (Auth.)

  8. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.

    1986-01-01

    Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; 1) lowering the density of helium in the magnet cooling tubes and 2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned

  9. Active cooling of microvascular composites for battery packaging

    Science.gov (United States)

    Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.

    2017-10-01

    Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.

  10. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans.

    Science.gov (United States)

    Nomura, Sadahiro; Fujii, Masami; Inoue, Takao; He, Yeting; Maruta, Yuichi; Koizumi, Hiroyasu; Suehiro, Eiichi; Imoto, Hirochika; Ishihara, Hideyuki; Oka, Fumiaki; Matsumoto, Mishiya; Owada, Yuji; Yamakawa, Takeshi; Suzuki, Michiyasu

    2014-05-01

    Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  11. Heat and momentum transfer in a gas coolant flow through a circular pipe in a high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1989-07-01

    In Japan Atomic Energy Research Institute (JAERI), a very high temperature gas cooled reactor (VHTR) has been researched and developed with a purpose of attaining a coolant temperature of around 1000degC at the reactor outlet. In order to design VHTR, comprehensive knowledge is required on thermo-hydraulic characteristics of laminar-turbulent transition, of coolant flow with large thermal property variation due to temperature difference, and of heat transfer deterioration. In the present investigation, experimental and analytical studies are made on a gas flow in a circular tube to elucidate the thermo-hydraulic characteristics. Friction factors and heat transfer coefficients in transitional flows are obtained. Influence of thermal property variation on the friction factor is qualitatively determined. Heat transfer deterioration in the turbulent flow subjected to intense heating is experimentally found to be caused by flow laminarization. The analysis based on a k-kL two-equation model of turbulence predicts well the experimental results on friction factors and heat transfer coefficients in flows with thermal property variation and in laminarizing flows. (author)

  12. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  13. Nuclear reactor core support incorporating also a cooling fluid flow system

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1975-01-01

    A description is given of a core bearing plate with several modular intake units having cooling fluid intake openings on their lower extensions, and on their upper ends located above the bearing plate, at least one fuel assembly which is thus in communication with the area under the bearing plate through the modular intake unit. The means for introducing the cooling fluid into the reactor vessel area are located under the bearing plate. The lower ends of the modular intake have ribs arranged essentially on a plane and join together with openings provided between the seals, in such a manner that the ribs form a barrier. The cooling fluid intake openings are located above this barrier, so that the cooling fluid is compelled to cross it before penetrating into the modular intake units [fr

  14. Simulation of Two-Phase Natural Circulation Loop for Core Cather Cooling Using Air Water

    International Nuclear Information System (INIS)

    Revankar, S. T.; Huang, S. F.; Song, K. W.; Rhee, B. W.; Park, R. J.; Song, J. H.

    2012-01-01

    A closed loop natural circulation system employs thermally induced density gradients in single phase or two-phase liquid form to induce circulation of the working fluid thereby obviating the need for any mechanical moving parts such as pumps and pump controls. This increases the reliability and safety of the cooling system and reduces installation, operation and maintenance costs. That is the reason natural circulation cooling has been considered in advanced reactor core cooling and in engineered safety systems. Natural circulation cooling has been proposed to remove reactor decay heat by external vessel cooling for in-vessel core retention during sever accident scenario. Recently in APR1400 reactor core catcher design natural circulation cooling is proposed to stabilize and cool the corium ejected from the reactor vessel following core melt and breach of reactor vessel. The natural circulation flow is similar to external vessel cooling where water flows through an inclined narrow gap below hot surface and is heated to produce boiling. The two-phase natural circulation enables cooling of the corium pool collected on core catcher. Due to importance of this problem this paper focuses simulation of the two-phase natural circulation through inclined gap using air-water system. Scaling criteria for air-water loop are derived that enable simulation of the flow regimes and natural circulation flow rates in such systems using air-water system

  15. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions

    International Nuclear Information System (INIS)

    Armellini, A.; Casarsa, L.; Mucignat, C.

    2011-01-01

    The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.

  16. Study on influence of flow rates on voids in waxy crude oil subjected to dynamic and static cooling

    Directory of Open Access Journals (Sweden)

    Girma T. Chala

    2015-12-01

    Full Text Available The assumption of constant yield stress in the conventional restart pressure equation neglects the effects of thermal shrinkage and gas voids formation, which in turn resulted in an over-designed production piping systems. This paper presents a study on the effects of flow rates on the formation of voids in gelled waxy crude oil. A flow loop rig simulating offshore waxy crude oil transportation was used to produce a gel. A Magnetic Resonance Imaging (MRI was used to scan the gelled crude oil over the three planes. Waxy crude oil underwent both dynamic and static cooling to observe the effects of volume flow rates on the voids formed in wax-oil gel. Volume flow rate was found to have different influences on the intra-gel voids in the pipeline. A volume flow rate of 5 L/min resulted in a maximum total voids volume of 6.98% while 20 L/min produced a minimum total voids volume of 5.67% in the entire pipe. Slow flow rates resulted in a larger voids volume near the pipe wall. In contrast, faster flow rates produced insignificantly higher voids volume around pipe core. Generally, slower flow rates favoured the formation of higher total voids volume following sufficient steady time of wax crystal formation, producing larger voids areas in gelled waxy crude oil.

  17. A Panoramic View of Star Formation in Milky Way: Recent Results from Galactic Plane FIR/Sub-mm Surveys

    Science.gov (United States)

    Elia, Davide

    2017-11-01

    The star formation process involves a continuous gas flow from galactic (kpc) down to stellar (AU) scales. While targeted observations of single star forming sources are needed to understand the steps of this process with increasing detail, large unbiased Galactic plane surveys permit to reconstruct the map of star forming sites across the Milky Way, considered as an unique star formation engine. On the one hand, such surveys provide the community with a huge number of candidate targets for future follow-up observations with state-of-the-art telescope facilities, on the other hand they can provide reliable estimates of global parameters, such as Galactic star formation efficiency and rate, through which it is possible to establish comparisons with other galaxies. In this talk I will review the main results of recent FIR/sub-mm continuum emission Galactic surveys, with special attention to the Hi-GAL Herschel project, having the advantage (but also the complication) of being a multi-wavelength survey covering the spectral range in which the cold interstellar dust is expected to emit. The subsequent VIALACTEA project represents an articulate effort to combine Hi-GAL with other continuum and line surveys to refine the census of star forming clumps in the Galactic plane, and to use it to describe the Milky Way as a whole. Interpretation limitations imposed by the loss of detail with increasing distance are also discussed.

  18. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  19. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  20. The distances of the Galactic Novae

    Science.gov (United States)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  1. Computer simulation of multiple stability regions in an internally cooled superconducting conductor and of helium replenishment in a bath-cooled conductor

    International Nuclear Information System (INIS)

    Turner, L.R.; Shindler, J.

    1984-09-01

    For upcoming fusion experiments and future fusion reactors, superconducting magnetic have been chosen or considered which employ cooling by pool-boiling HeI, by HeII, and by internally flowing HeI. The choice of conductor and cooling method should be determined in part by the response of the magnet to sudden localized heat pulses of various magnitudes. The paper describes the successful computer simulation of multiple stability in internally cooled conductors, as observed experimentally, using the computer code SSICC. It also describes the modeling of helium replenishment in the cooling channels of a bath-cooled conductor, using the computer code TASS

  2. Emergency reactor container cooling facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Matsumoto, Tomoyuki.

    1992-01-01

    The present invention concerns an emergency cooling facility for a nuclear reactor container having a pressure suppression chamber, in which water in the suppression chamber is effectively used for cooling the reactor container. That is, the lower portion of a water pool in the pressure suppression chamber and the inside of the reactor container are connected by a pipeline. The lower end of the pipeline and a pressurized incombustible gas tank disposed to the outside of the reactor container are connected by a pipeline by way of valves. Then, when the temperature of the lower end of the pressure vessel exceeds a predetermined value, the valves are opened. If the valves are opened, the incombustible gas flows into the lower end of the pipeline connecting the lower portion of the water pool in the pressure suppression chamber and the inside of the reactor container. Since the inside of the pipeline is a two phase flow comprising a mixture of a gas phase and a liquid phase, the average density is decreased. Therefore, the water level of the two phase flow is risen by the level difference between the inside and the outside of the pipeline and, finally, the two phase mixture is released into the reactor container. As a result, the reactor container can be cooled by water in the suppression chamber by a static means without requiring pumps. (I.S.)

  3. The Smith Cloud: surviving a high-speed transit of the Galactic disc

    Science.gov (United States)

    Tepper-García, Thor; Bland-Hawthorn, Joss

    2018-02-01

    The origin and survival of the Smith high-velocity H I cloud has so far defied explanation. This object has several remarkable properties: (i) its prograde orbit is ≈100 km s-1 faster than the underlying Galactic rotation; (ii) its total gas mass (≳ 4 × 106 M⊙) exceeds the mass of all other high-velocity clouds (HVCs) outside of the Magellanic Stream; (iii) its head-tail morphology extends to the Galactic H I disc, indicating some sort of interaction. The Smith Cloud's kinetic energy rules out models based on ejection from the disc. We construct a dynamically self-consistent, multi-phase model of the Galaxy with a view to exploring whether the Smith Cloud can be understood in terms of an infalling, compact HVC that has transited the Galactic disc. We show that while a dark-matter (DM) free HVC of sufficient mass and density can reach the disc, it does not survive the transit. The most important ingredient to survival during a transit is a confining DM subhalo around the cloud; radiative gas cooling and high spatial resolution (≲ 10pc) are also essential. In our model, the cloud develops a head-tail morphology within ∼10 Myr before and after its first disc crossing; after the event, the tail is left behind and accretes on to the disc within ∼400 Myr. In our interpretation, the Smith Cloud corresponds to a gas 'streamer' that detaches, falls back and fades after the DM subhalo, distorted by the disc passage, has moved on. We conclude that subhaloes with MDM ≲ 109 M⊙ have accreted ∼109 M⊙ of gas into the Galaxy over cosmic time - a small fraction of the total baryon budget.

  4. Dynamic response of a system with internal heat sources cooled by a flowing incompressible fluid

    International Nuclear Information System (INIS)

    Georgescu, R.; Dobrescu, C.

    1975-01-01

    The paper investigates the dynamic temperature response of an incompressible fluid which cools a duct with internal heat sources sinusoidally oscillated. The analytical results utilise the Laplace transformation technique. The experimental and calculated results are obtained by transfer function approach. Comparison of the calculated with the experimental data indicates agreement from 6 to 24 percent for the amplitude and up to 30 degree for the phase-shift. All the calculated data are below the experimental ones. The analytical method of transfer function approach presents interest and may be utilized for the initial calculations giving good results for flow rates above 1000 kg per hour

  5. The Galactic Club or Galactic Cliques? Exploring the limits of interstellar hegemony and the Zoo Hypothesis

    Science.gov (United States)

    Forgan, Duncan H.

    2017-10-01

    The Zoo solution to Fermi's Paradox proposes that extraterrestrial intelligences (ETIs) have agreed to not contact the Earth. The strength of this solution depends on the ability for ETIs to come to agreement, and establish/police treaties as part of a so-called `Galactic Club'. These activities are principally limited by the causal connectivity of a civilization to its neighbours at its inception, i.e. whether it comes to prominence being aware of other ETIs and any treaties or agreements in place. If even one civilization is not causally connected to the other members of a treaty, then they are free to operate beyond it and contact the Earth if wished, which makes the Zoo solution `soft'. We should therefore consider how likely this scenario is, as this will give us a sense of the Zoo solution's softness, or general validity. We implement a simple toy model of ETIs arising in a Galactic Habitable Zone, and calculate the properties of the groups of culturally connected civilizations established therein. We show that for most choices of civilization parameters, the number of culturally connected groups is >1, meaning that the Galaxy is composed of multiple Galactic Cliques rather than a single Galactic Club. We find in our models for a single Galactic Club to establish interstellar hegemony, the number of civilizations must be relatively large, the mean civilization lifetime must be several millions of years, and the inter-arrival time between civilizations must be a few million years or less.

  6. Magnetic Heat Pump Containing Flow Diverters

    Science.gov (United States)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  7. Galactic Habitable Zone and Astrobiological Complexity

    Science.gov (United States)

    Vukotic, B.

    2012-12-01

    This is a short thesis description and for the sake of brevity most things are left out. For more details, those interested are further directed to the thesis related papers in this article reference list. Thesis itself is available at the University of Belgrade library "Svetozar Markovic" (Serbian version only). In this thesis we study the astrobiological history of the Galactic habitable zone through the means of numerical modeling. First group of simulations are unidimensional (time-axis) toy models examine the influence of global regulation mechanisms (gamma-ray bursts and supernovae) on temporal evolution of Galactic astrobiological complexity. It is shown that under the assumption of global regulation classical anti SETI arguments can be undermined. Second group of simulations are more complex bidimensional probabilistic cellular automata models of the Galactic thin disk. They confirm the findings of the toy models and give some insights into the spatial clustering of astrobiological complexity. As a new emerging multidisciplinary science the basic concepts of astrobiology are poorly understood and although all the simulations present here do not include some basic physics (such as Galactic kinematics and dynamics), the input parameters are somewhat arbitrary and could use a future refinement (such as the boundaries of the Galactic habitable zone). This is the cause for low weight and high uncertainty in the output results of the simulations. However, the probabilistic cellular automata has shown as a highly adaptable modeling platform that can simulate various class of astrobiological models with great ease.

  8. Computer program for compressible flow network analysis

    Science.gov (United States)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  9. Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo

    Science.gov (United States)

    Cojocaru, Elena-Ruxandra

    2016-09-01

    White dwarfs are fossil stars that can encode valuable information about the formation, evolution and other properties of the different Galactic stellar populations. They are the direct descendants of main-sequence stars with masses ranging from ∼0.8 M⊙ to ∼10 M⊙, which means that over 95% of the stars in our Galaxy will eventually become white dwarfs. This fact, correlated with the excellent quality of modern white dwarf cooling models, clearly marks their potential as cosmic clocks for estimating the ages of Galactic stellar populations, as well as place white dwarfs as privileged objects in understanding several actual astrophysical problems. Stellar population synthesis methods (Tinsley, 1968) use theoretical evolutionary sequences to reproduce luminosities, temperatures and other parameters building up to a synthetic population that can be readily compared to an observed sample of stars. Such techniques are perfect for the study of the different white dwarf populations in our Galaxy and their strength has only grown in recent years, fueled both by improved evolutionary sequences and detailed cooling tracks and also by the ever growing samples of white dwarfs identified through modern survey missions. In particular, the work presented in this thesis uses an updated population synthesis code based on previous versions of the code from our group (García-Berro et al., 1999; Torres et al., 2002; García-Berro et al., 2004; Torres et al., 2005; Camacho et al., 2014). Our synthetic population code, based on Monte Carlo statistical techniques, has been extensively used in the study of the disk (García-Berro et al., 1! 999; Torres et al., 2001; Torres & García-Berro, 2016) and halo (Torres et al., 2002; García-Berro et al., 2004) single white-dwarf population, white dwarf plus main sequence stars (Camacho et al., 2014), as well as open clusters such as NGC 6791 (García-Berro et al., 2010; García-Berro et al., 2011) or globular clusters, as 47 Tuc (Garc

  10. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  11. Augmented cooling vest system subassembly: Design and analysis

    International Nuclear Information System (INIS)

    D’Angelo, Maurissa; D’Angelo, Joseph; Almajali, Mohammad; Lafdi, Khalid; Delort, Antoine; Elmansori, Mohamed

    2014-01-01

    Highlights: • Thermoelectric cooler (TEC) was employed to provide cooling air to cooling vest. • Aluminum cooling fins were used to exchange heat for hot and cold sides of TEC. • Performance of the system was determined and the experimental technique was described. • Heat sink is capable to remove additional heat and heat exchanger provides cooling air. • Future work is proposed to optimize the efficiency of the system. - Abstract: A prototype cooling engine consisting of thermoelectric coolers (TECs) was developed and designed. In this prototype, aluminum cooling fins were employed as the heat exchange method for both the hot and cold sides of the TEC. Aluminum fins were used to cool the ambient air through a heat exchanger and dissipate heat build up from the heat sink. This system was modeled and performance capabilities were determined. The experimental technique used to monitor parameters affecting the efficiency of the designed system was described. These parameters include the temperatures of the inlets and outlets of both heat exchanger and heat sink and the flow rate of the cooled air. The experiment was run under three input DC powers; 15 V, 18 V, and 21 V. As the power increased, both the flow rate and the temperature difference between the hot and cold side of thermoelectric cooler increased, demonstrating the heat sink capability to remove the additional heat. However, the temperature difference between the inlet and outlet of the heat exchanger decreases as the power increase. The findings demonstrated the effectiveness of this cooling system and future work is proposed to optimize the heat

  12. Measurement of air cooling characteristics for the several surface types of Li-ion battery

    International Nuclear Information System (INIS)

    Byelyayev, Andrey A.; Fedorchenko, Dmitrij V.; Khazhmuradov, Manap A.; Lukhanin, Olekdandr A.; Lukhanin, Oleksiy A.; Martynov, Sergey O.; Rudychev, Yegor V.; Sporov, Eugen O.; Rohatgi, Upendra S.

    2013-01-01

    The system of air cooling for Li-Ion batteries is considered. Experimental setup included thermal chamber and Li-Ion battery cell simulators with temperature sensors. We investigated static and dynamic cooling regimes for several types of cooling surfaces, for different gaps between the simulators and flow rates. Experimental results are compared to the data of computer modelling using SolidWorks Flow Simulation software. The cooling efficiencies of the various surfaces for static and transient heat emission modes are compared.

  13. Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System

    Science.gov (United States)

    Tipsaenporm, W.; Lertsatitthanakorn, C.; Bubphachot, B.; Rungsiyopas, M.; Soponronnarit, S.

    2012-06-01

    This paper presents the results of tests carried out to investigate the potential application of a direct evaporative cooling (DEC) system for improving the performance of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The DEC system produced cooling air that was used to assist the release of heat from the heat sinks at the hot side of the TE modules. The results showed that the cooling air dry bulb temperature from the DEC system achieved drops of about 5.9°C in parallel with about a 33.4% rise in relative humidity. The cooling efficiency of the DEC system varies between 72.1% and 81.5%. It increases the cooling capacity of the compact TE air conditioner from 53.0 W to 74.5 W. The 21.5 W (40.6%) increase represents the difference between the compact air conditioner operating with ambient air flowing through the TE module's heat sinks, and the compact air conditioner operating with the cooler air from the DEC system flowing through the TE module's heat sinks. In both scenarios, electric current of 4.5 A was supplied to the TE modules. It also has been experimentally proven that the coefficient of performance (COP) of the compact TE air conditioner can be improved by up to 20.9% by incorporating the DEC system.

  14. Optimization of cooling tower performance analysis using Taguchi method

    OpenAIRE

    Ramkumar Ramakrishnan; Ragupathy Arumugam

    2013-01-01

    This study discuss the application of Taguchi method in assessing maximum cooling tower effectiveness for the counter flow cooling tower using expanded wire mesh packing. The experiments were planned based on Taguchi’s L27 orthogonal array .The trail was performed under different inlet conditions of flow rate of water, air and water temperature. Signal-to-noise ratio (S/N) analysis, analysis of variance (ANOVA) and regression were carried out in order to determine the effects of process...

  15. Influence of flow on the synergistic effect of an inhibitive mixture used for water treatment in cooling circuits

    International Nuclear Information System (INIS)

    Ochoa, Nathalie; Pebere, Nadine; Moran, Francis; Tribollet, Bernard

    2004-01-01

    This work concerned an extensive study of the mechanism of inhibition of a carbon steel in a 200 mg l -1 NaCl solution by a non-toxic multicomponent inhibitor used for water treatment in cooling circuits. The inhibitive formulation was composed of 50 mg l -1 fatty amines associated with 200 mg l -1 phosphonocarboxylic acid salts. The influence of flow and immersion time was investigated by electrochemical impedance spectroscopy with a rotating disc electrode. The results were dependent on the experimental protocol used. Equivalent circuits were used to fit the experimental data. The properties of the protective layer were dependent on the electrode rotation rate and on the immersion time. This behaviour was related to the influence of flow on the anodic kinetics. (authors)

  16. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  17. Evidence for halo kinematics among cool carbon-rich dwarfs

    Science.gov (United States)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-04-01

    This paper reports preliminary yet compelling kinematical inferences for N ≳ 600 carbon-rich dwarf stars that demonstrate around 30% to 60% are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogs based on Gaia DR1 astrometry to generate estimates of their 3-D space velocities. The fraction of stars with halo-like kinematics is roughly 30% for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disk, but close to 60% of the sample lie below an old, metal-poor disk isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundances, and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favors low-mass stars as in the Galactic disk, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  18. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.

    1986-01-01

    Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; (1) lowering the density of helium in the magnet cooling tubes and (2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned. 10 refs., 1 fig., 5 tabs

  19. Frost protection for atmospheric cooling tower

    International Nuclear Information System (INIS)

    Legrand, G.

    1987-01-01

    When the atmospheric temperature is near or lower than zero it is necessary to reduce the air flow entering in a cooling tower. A wire netting mounted on the air inlet is sprinkled with cold water. The level of the ice curtain and consequently the air flow is regulated by aspersion by hot water [fr

  20. ACTIVE GALACTIC NUCLEUS FEEDBACK AND ENTROPY INJECTION IN GALAXY CLUSTER CORES

    International Nuclear Information System (INIS)

    Chaudhuri, Anya; Majumdar, Subhabrata; Nath, Biman B.

    2013-01-01

    We make the first estimate of non-gravitational energy profiles in galaxy cluster cores (and beyond) based on observational data. Comparing the observed entropy profiles within r 500 , from the Representative XMM-Newton Cluster Structure Survey to simulated base entropy profiles without feedback from both adaptive mesh refinement (AMR) and smoothed particle hydrodynamic (SPH) non-radiative simulations, we estimate the amount of additional non-gravitational energy, E ICM , contained in the intracluster medium (ICM), as well as the total energy feedback, E Feedback , from active galactic nuclei (AGNs; the central AGNs in most cases) into the clusters. The total feedback energy scales with the mean spectroscopic temperature as E Feedback ∝T sp 2.52±0.08 and E Feedback ∝T sp 2.17±0.11 for the SPH and AMR baseline profiles. The mean non-gravitational energy per particle within r 500 remaining in the ICM after energy lost during cooling is ε ICM = 2.8 ± 0.8 keV for the SPH theoretical relation and ε ICM = 1.7 ± 0.9 keV for the AMR theoretical relation. We use the NRAO/VLA Sky Survey source catalog to determine the radio luminosity, L R , at 1.4 GHz of the central source(s) of our sample. For T sp > 3 keV, the E Feedback correlates with L R , although with different normalization for cool-core and non-cool-core clusters. We show that AGNs could provide a significant portion of the feedback

  1. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 61-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Hyungmo; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Jeong, Ji-Young; Lee, Hyeong-Yeon

    2015-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are crucial factor for the design code verification and validation. Wrapped wires make a cross flow in a circumference of the fuel rod, and this effect lets flow be mixed. Therefore the sub-channel analysis method is commonly used for thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. To measure flow mixing characteristics, a wire mesh sensing technique can be useful method. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, the recent reports that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In this study, mixing experiments were conducted successfully at a hexagonally arrayed 61-pin wire-wrapped fuel rod bundle test section. Wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable

  2. NPR and ANSI Containment Study Using Passive Cooling Techniques

    International Nuclear Information System (INIS)

    Shin, J. J.; Iotti, R. C.; Wright, R. F.

    1993-01-01

    Passive containment cooling study of NPR (New Production Reactor) and ANSI (Advanced Neutron Source) following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally. All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified Contempt code Contempt-Npr. In order to verify proper heat transfer coefficient, temperature, heat flux and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and halt foot (1.7m) diameter outer cylinder. Comparison of Contempt-Npr and WGOTHIC was done for reduced scale Npr. It is concluded that Npr and ANSI containments can be passively cooled with air alone without extended cooling surfaces or passive water spray

  3. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  4. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  5. Evaluation of thermal hydraulics characteristics of natural cooling low level radioactive waste storage system

    International Nuclear Information System (INIS)

    Yoshii, Toshihiro; Iwaki, Chikako; Ikeda, Tatsumi; Ikeda, Hiroshi; Koyama, Tomonori; Usui, Nobuhiko; Watanabe, Hisao; Masaki, Yoshikazu

    2012-01-01

    It is necessary to design a low level radioactive waste storage system so that the decay heat of radioactive waste does not breach the structural safety limit. Currently, this waste storage system is designed as a natural cooling system, which continuously cools the radioactive waste without an active device. It consists simply of a storage pit for radioactive waste and air inlet and outlet ducts. The radioactive waste is cooled by natural convective air flow, which is generated by the buoyancy of heated air due to the decay heat of radioactive waste. It is important to clarify the flow characteristics in the systems in order to evaluate the cooling performance. The air mass flow rate through the system is determined by the balance between the natural convective flow force and pressure loss within the system. Therefore, the pressure drop and flow pattern in the waste storage pit are important flow characteristics. In this study, the pressure drop and air temperature distribution, greatly influenced by the flow pattern in the pit, were measured using a 1/5 scale model and compared with the results obtained from CFD. Flow network analysis, which is a simple model that simulates the flow by nodes and junctions, was conducted and its validity was confirmed by experimental results and CFD. (author)

  6. Safety actuator of the Cabri reactor as a function of its power and cooling fluid flow rate

    International Nuclear Information System (INIS)

    Bertrand, Jean; Da Costa Vieira, David; Tattegrain, Alain

    1969-04-01

    This report present a device which is to provide a stop command to the Cabri reactor when the rate of its power to the cooling fluid rate reaches a value determined with respect to water temperature in the circuit. The stop command is delivered by an actuator which opens a relay contact when the power reaches a specific value. The authors present the device, its characteristics, and principle. They also present the different amplifier circuits, the input and output circuits (flow rate input, temperature input, and output circuit), the energy supply, and the various adjustments

  7. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Johnston, S. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Bhat, N. D. R. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016 (Australia); Burgay, M.; Possenti, A.; Tiburzi, C. [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza, I-09047 Selargius (Italy); Burke-Spolaor, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Champion, D.; Ng, C. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Levin, L., E-mail: epetroff@astro.swin.edu.au [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2014-07-10

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  8. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    International Nuclear Information System (INIS)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F.; Johnston, S.; Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W.; Bhat, N. D. R.; Burgay, M.; Possenti, A.; Tiburzi, C.; Burke-Spolaor, S.; Champion, D.; Ng, C.; Levin, L.

    2014-01-01

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts

  9. Molecular diagnostics of Galactic star-formation regions

    Science.gov (United States)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  10. A synoptic view of galactic processes

    Science.gov (United States)

    Stecker, F. W.

    1981-01-01

    The power of using synoptic galactic surveys in many wavelength bands in order to obtain a more complete picture and a better understanding of the dynamics of the interstellar medium and to study galactic structure and evolution on a large scale is discussed. The implications of the picture presented by mm wave CO, far infrared and X ray surveys of the Galaxy are emphasized.

  11. Numerical modelling of series-parallel cooling systems in power plant

    Directory of Open Access Journals (Sweden)

    Regucki Paweł

    2017-01-01

    Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.

  12. Flow distribution of pebble bed high temperature gas cooled reactors using large eddy simulation

    International Nuclear Information System (INIS)

    Gokhan Yesilyurt; Hassan, Y.A.

    2003-01-01

    A High Temperature Gas-cooled Reactor (HTGR) is one of the renewed reactor designs to play a role in nuclear power generation. This reactor design concepts is currently under consideration and development worldwide. Since the HTGR concept offers inherent safety, has a very flexible fuel cycle with capability to achieve high burnup levels, and provides good thermal efficiency of power plant, it can be considered for further development and improvement as a reactor concept of generation IV. The combination of coated particle fuel, inert helium gas as coolant and graphite moderated reactor makes it possible to operate at high temperature yielding a high efficiency. In this study the simulation of turbulent transport for the gas through the gaps of the spherical fuel elements (fuel pebbles) will be performed. This will help in understanding the highly three-dimensional, complex flow phenomena in pebble bed caused by flow curvature. Under these conditions, heat transfer in both laminar and turbulent flows varies noticeably around curved surfaces. Curved flows would be present in the presence of contiguous curved surfaces. In the case of a laminar flow and of an appreciable effect of thermogravitional forces, the Nusselt (Nu) number depends significantly on the curvature shape of the surface. It changes with order of 10 times. The flow passages through the gap between the fuel balls have concave and convex configurations. Here the action of the centrifugal forces manifests itself differently on convex and concave parts of the flow path (suppression or stimulation of turbulence). The flow of this type has distinctive features. In such flow there is a pressure gradient, which strongly affects the boundary layer behavior. The transition from a laminar to turbulent flow around this curved flow occurs at deferent Reynolds (Re) numbers. Consequently, noncircular curved flows as in the pebble-bed situation, in detailed local sense, is interesting to be investigated. To the

  13. Numerical Analysis for Heat transfer characteristic of Helium cooling system in Helium cooled ceramic reflector Test Module Blanket (HCCR-TBM)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The main objectives of ITER project can be summarized into three types as follows - Plasma operation for a long time - Large tokamak device technology - Test blanket module (TBM) installation and verification The thermal-hydraulic analysis was performed in the He cooling channel in the BZ region of the HCCR TBM. The maximum temperature in the breeder material is equal to the limit temperature in the present design cooling channel. Nuclear fusion energy has advantage in terms of safety, resource availability, cost and waste management. There is not enough experimental results about the fusion reactor due to the severe experiments restrictions like vacuum environment, plasma production and significant nuclear heating at the same time. Much research and time is required for the commercial fusion reactor. For technical verification against the commercialization of fusion reactor, 7 countries which are EU, USA, Japan, Russia, China, India, and South Korea are building an ITER in the south of France. New designed cooling channels were proposed to improve the cooling performance. The swirl flow accelerates the mixture flow in the channels.

  14. On natural circulation in High Temperature Gas-Cooled Reactors and pebble bed reactors for different flow regimes and various coolant gases

    International Nuclear Information System (INIS)

    Melesed'Hospital, G.

    1983-01-01

    The use of CO 2 or N 2 (heavy gas) instead of helium during natural circulation leads to improved performance in both High Temperature Gas-Cooled Reactors (HTGR) and in Pebble Bed Reactors (PBR). For instance, the coolant temperature rise corresponding to a coolant pressure level and a rate of afterheat removal could be only 18% with CO 2 as compared to He, for laminar flow in HTGR; this value would be 40% in PBR. There is less difference between HTGR and PBR for turbulent flows; CO 2 is found to be always better than N 2 . These types of results derived from relationships between coolant properties, coolant flow, temperature rise, pressure, afterheat levels and core geometry, are obtained for HTGR and PBR for various flow regimes, both within the core and in the primary loop

  15. Imprint of Galactic dynamics on Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2006-01-01

    A connection between climate and the Solar system's motion perpendicular to the Galactic plane during the last 200 Myr years is studied. An imprint of galactic dynamics is found in a long-term record of the Earth's climate that is consistent with variations in the Solar system oscillation around...

  16. Device and method of cooling control rod drives

    International Nuclear Information System (INIS)

    Togashi, Hidetoshi; Mase, Noriaki; Matsumura, Yuichi.

    1985-01-01

    Purpose: To prevent the generation of local temperature rise depending on the reactor core position of the control rod drives and control the temperature to an averaged state in BWR type reactors. Method: Control rod drives having a large charging length of the housing in the pressure vessel involve such a factor that the temperature of the control rod drives is increased by the synergistic effect due to the radiation heat from the reactor core and to the unevenness of the cooling water flow rate, which renders an appropriate temperature control difficult for the reactor core position. A cooling water flow rate controlling device having a restriction mechanism is disposed on the cooling water feed path for each of the hydraulic control units of the control rod drives, so that flow rate to the control rod drives is increased at the center of the reactor core and decreased at the periphery thereof. As a result, average temperature state can be set, temperature increase due to cloggings can be prevented and the thermal effect can be eliminated to thereby improve the reliability. (Moriyama, K.)

  17. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  18. Heat transfer from a plate cooled by a water film with countercurrent air flow

    International Nuclear Information System (INIS)

    Ambrosini, W.; Manfredini, A.; Mariotti, F.; Oriolo, F.; Vigni, P.

    1995-01-01

    An experimental program at the University of Pisa provides specific data for the evaluation of heat and mass transfer by falling film evaporation. The problem is addressed primarily because of its relevance to the study of the behavior of passive containment cooling systems in simplified pressurized water reactors. In these plants, after an accident that releases vapor from the primary circuit, the steel containment envelope is cooled either by an ascending stream of air in natural circulation or by the combination of air flow and falling film evaporation. To qualify models for the prediction of the heat transfer capabilities in postulated accident conditions, researchers have built an experimental facility consisting of a flat heated plate with water sprays and a fan to simulate a countercurrent air stream. The range of relevant parameters to be investigated has been determined on the basis of integral calculations performed for the AP600 reactor containment. The facility has enabled the collection of data that confirm the adequacy of the classical heat and mass transfer analogy in predicting evaporation phenomena. Further developments in the research are needed to confirm the first results and to extend the experimental database by considering more subtle aspects of the phenomenon such as the characteristics of surface waviness of the water film and its effect on heat transfer

  19. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    OpenAIRE

    Xueping Du; Dongtai Han; Qiangmin Zhu

    2018-01-01

    To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to e...

  20. An Approach for Selection of Flow Regime and Models for Conservative Evaluation of a Vessel Integrity Monitoring System for Water-Cooled Vacuum Vessels

    International Nuclear Information System (INIS)

    Pointer, W. David; Ruggles, Arthur E.

    2003-01-01

    Thin-walled vacuum containment vessels cooled by circulating water jackets are often utilized in research and industrial applications where isolation of equipment or experiments from the influences of the surrounding environment is desirable. The development of leaks in these vessels can result in costly downtime for the facility. A Vessel Integrity Monitoring System (VIMS) is developed to detect leak formation and estimate the size of the leak to allow evaluation of the risk associated with continued operation. A wide range of leak configurations and fluid flow phenomena are considered in the evaluation of the rate at which a tracer gas dissolved in the cooling jacket water is transported into the vacuum vessel. A methodology is presented that uses basic fluid flow models and careful evaluation of their ranges of applicability to provide a conservative estimate of the transport rates for the tracer gas and hence the time required for the VIMS to detect a leak of a given size

  1. Atmospheric wet-type cooling tower with antifreeze system

    International Nuclear Information System (INIS)

    Coic, P.

    1985-01-01

    The cooling tower has air inlets at its base, a network of pipes which distributes the air to be cooled above the packing, and valves to isolate a part of the network. It includes also a bypass circuit, provided with means to control the flow rate fraction which is by-passed [fr

  2. Cooling the vertical surface by conditionally single pulses

    Science.gov (United States)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  3. Dynamics and evolution of galactic nuclei (princeton series in astrophysics)

    CERN Document Server

    Merritt, David

    2013-01-01

    Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the las...

  4. Study of design and technology factors influencing gas turbine blade cooling

    Science.gov (United States)

    Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.

    2017-11-01

    The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.

  5. Control-rod, pressure and flow-induced accident and transient analysis of a direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Kitoh, Kazuaki; Koshizuka, Seiichi; Oka, Yoshiaki

    1996-01-01

    The features of the direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor (SCFBR) are high thermal efficiency and simple reactor system. The safety principle is basically the same as that of an LWR since it is a water-cooled reactor. Maintaining the core flow is the basic safety requirement of the reactor, since its coolant system is the one through type. The transient behaviors at control rod, pressure and flow-induced abnormalities are analyzed and presented in this paper. The results of flow-induced transients of SCFBR were reported at ICONE-3, though pressure change was neglected. The change of fuel temperature distribution is also considered for the analysis of the rapid reactivity-induced transients such as control rod withdrawal. Total loss of flow and pump seizure are analyzed as the accidents. Loss of load, control rod withdrawal from the normal operation, loss of feedwater heating, inadvertent start of an auxiliary feedwater pump, partial loss of coolant flow and loss of external power are analyzed as the transients. The behavior of the flow-induced transients is not so much different from the analyses assuming constant pressure. Fly wheels should be equipped with the feedwater pumps to prolong the coast-down time more than 10s and to cope with the total loss of flow accident. The coolant density coefficient of the SCFBR is less than one tenth of a BWR in which the recirculation flow is used for the power control. The over pressurization transients at the loss of load is not so severe as that of a BWR. The power reaches 120%. The minimum deterioration heat flux ratio (MDHFR) and the maximum pressure are sufficiently lower than the criteria; MDHFR above 1.0 and pressure ratio below 1.10 of 27.5 MPa, maximum pressure for operation. Among the reactivity abnormalities, the control rod withdrawal transient from the normal operation is analyzed

  6. A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

    Science.gov (United States)

    Ameri, A. A.; Rigby, D. L.

    1999-01-01

    A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.

  7. Effect of Cooling Methods on Methane Conversion via Dielectric-Barrier Discharges

    International Nuclear Information System (INIS)

    Wang Baowei; Yang Kuanhui; Xu Genhui

    2008-01-01

    Effects of cooling methods on stability and methane conversion rate using dielectric-barrier discharges (DBD) were systematically investigated in this article. The results showed that the methane conversion rate was as high as 44.43% in a pure methane system at a flow rate of 100 mL ± min -1 and an input power of 234.2 W with air cooling. A dark greenish and soft film-like carbon was deposited on the outer surface of quartz tube when the outer electrode was water-cooled, which decreased the methane conversion. With air cooling of inner electrode the selectivity of C 2 hydrocarbons was higher than that with other cooling methods, while the C 3 hydrocarbons had higher selectivity with flowing water cooling. Cooling the inner electrode could restrain the carbon deposition, but would decrease the methane conversion rate. The stability of both reaction and plasma operation can be improved through cooling the reactor. From thermodynamic analysis, it was found that the effective collisions frequency among the reactant molecules and free electrons (e - ) increased with temperature, which in turn led to a higher methane conversion rate and a change in the distribution of products.

  8. Galactic synchrotron emission from WIMPs at radio frequencies

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10 −26 cm 3 s −1 , and masses M DM ∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined

  9. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  10. Planck 2013 results. XIII. Galactic CO emission

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2014-01-01

    Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensi...

  11. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    Science.gov (United States)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  12. Unraveling the Origin of Overionized Plasma in the Galactic Supernova Remnant W49B

    Science.gov (United States)

    Pearson, Sarah; Lopez, L. A.; Ramirez-Ruiz, E.; Castro, D.; Yamaguchi, H.; Slane, P. O.; Smith, R. K.

    2013-04-01

    In this presentation, I present maps of overionized plasma in the Galactic supernova remnant (SNR) W49B based on a recent 220 ks Chandra Advanced CCD Imaging Spectrometer observation. Overionized plasmas (those where ions are stripped of more electrons than they should be for a given electron temperature) have been found recently in several SNRs, and the physical origin of the rapid cooling necessary to produce them remains uncertain. To assess the cooling scenario responsible for overionization, we performed a spatially-resolved spectroscopic analysis of W49B, measuring the elec- tron temperature by modeling the bremsstrahlung continuum and comparing it to the temperature given by the flux ratio of He-like to H-like lines of sulfur, argon, and calcium. Using these results, we find that the west region of W49B is the most overionized, with a gradient of increasing overionization from East to West. As the ejecta expansion is impeded by molecular material in the east but not in the west, our overionization maps suggest the dominant cooling mechanism is adiabatic expansion of the hot plasma instead of thermal conduction. Furthermore, we find calcium has the greatest degree of overionization relative to argon and sulfur; this result arises because calcium has a longer recombination timescale. Thus, we caution that measurement of overionization is dependent on which elements one employs in their line ratio analysis.

  13. Solar journey: The significance of our galactic environment for the heliosphere and earth

    CERN Document Server

    Frisch, Priscilla C

    2006-01-01

    Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the ma...

  14. Tools for designing the cooling system of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Soupremanien, Ulrich; Le Person, Stéphane; Favre-Marinet, Michel; Bultel, Yann

    2012-01-01

    Proton exchange membrane fuel cell (PEMFC) requires a careful management of the heat distribution inside the stack. The proton exchange membrane is the most sensitive element of this thermal management and it must operate under specific conditions in order to increase the lifetime and also the output power of the fuel cell. These last decades, the enhancement of the output power of the PEMFC has led the manufacturers to greatly improve the heat transfer effectiveness for cooling such systems. In addition, homogenizing the bipolar plate temperature increases the lifetime of the system by limiting the occurrence of strong thermal gradients. In this context, using a fluid in boiling conditions to cool down the PEMFC seems to be very suitable for this purpose. In order to compare the thermal performances between a coolant used in single-phase flow or in boiling flow conditions, we have built an experimental set-up allowing the investigation of cooling flows for these two conditions. Moreover, the geometry of the cooling channels is one of the key parameters which allows the improvement of the thermal performances. Indeed, the size or the aspect ratio of these channels could be designed in order to decrease the thermal system response. The sizing of the fuel cell cooling system is of paramount importance in boiling flow conditions because it can modify, not only the pressure losses along the channel and the heat transfer coefficient like in a single-phase flow but also, the onset of nucleate boiling (ONB) and the dryout point or critical heat flux (CHF). Thus, in order to understand some heat transfer mechanisms, which are geometry-dependent, a parametric study was completed by considering flows in four different rectangular channels. Finally, this study allows a better insight on the optimization of the geometrical parameters which improve the thermal performances of a PEMFC, from a cooling strategy aspect point of view. - Highlights: ► Parameters for the using of a

  15. Innovative technologies for Faraday shield cooling

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-01-01

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm 2 ;. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach

  16. Constraints on Galactic populations from the unidentified EGRET sources

    International Nuclear Information System (INIS)

    Siegal-Gaskins, Jennifer M.; Pavlidou, Vasiliki; Brown, Carolyn; Olinto, Angela V.; Fields, Brian D.

    2007-01-01

    A significant fraction of the sources in the third EGRET catalog have not yet been identified with a low-energy counterpart. We evaluate the plausibility of a Galactic population accounting for some or all of the unidentified EGRET sources by making the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. Rather than focusing on the properties of a specific candidate emitter, we constrain the abundance and spatial distribution of proposed Galactic populations. We find that it is highly improbable that the unidentified EGRET sources contain more than a handful of members of a Galactic halo population, but that current observations are consistent with all of these sources being Galactic objects if they reside entirely in the disk and bulge. We discuss the additional constraints and new insights into the nature of Galactic gamma-ray emitting populations that GLAST is expected to provide

  17. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  18. Possible existence of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Islam, Nasarul [Danga High Madrasah, Department of Mathematics, Kolkata, West Bengal (India)

    2014-02-15

    Two observational results, the density profile from simulations performed in the ΛCDM scenario and the observed flat galactic rotation curves, are taken as input with the aim of showing that the galactic halo possesses some of the characteristics needed to support traversable wormholes. This result should be sufficient to provide an incentive for scientists to seek observational evidence for wormholes in the galactic halo region. (orig.)

  19. Supercritical Helium Cooling of the LHC Beam Screens

    CERN Document Server

    Hatchadourian, E; Tavian, L

    1998-01-01

    The cold mass of the LHC superconducting magnets, operating in pressurised superfluid helium at 1.9 K, must be shielded from the dynamic heat loads induced by the circulating particle beams, by means of beam screens maintained at higher temperature. The beam screens are cooled between 5 and 20 K by forced flow of weakly supercritical helium, a solution which avoids two-phase flow in the long, narr ow cooling channels, but still presents a potential risk of thermohydraulic instabilities. This problem has been studied by theoretical modelling and experiments performed on a full-scale dedicated te st loop.

  20. Compressional heating in magnetized disks neighborhood: from the galactic center to micro-quasars

    International Nuclear Information System (INIS)

    Belmont, Renaud

    2005-01-01

    Faint, magnetized and energetic plasmas are very common media in Astrophysics. This thesis is dedicated to two specific cases characterized by a thin disk geometry: the Galactic center and the corona of micro-quasars. In both cases, observations show evidence for a faint and very hot plasma (at 100 million and 1 billion degrees) whose origin is unknown; some clues seem also to indicate a strong, large scale bipolar magnetic field. At the Galactic Center, the gas temperature is such that, if it were collisional and mostly composed by hydrogen, it would escape quickly, so that the power required to sustain the related energy losses would be huge. We however show that the specific conditions of this region can lead to form a helium plasma that is confined by the Galactic potential. In this favorable situation, we study a possible heating mechanism based on the high viscosity of the hot plasma and friction with cold molecular clouds flowing in this region. The corona of micro-quasars is a very similar issue but it is probably weakly collisional. In this regime we study a heating by magnetic pumping, by which the resonance between the periodic motion of some coronal ions and the periodic excitation by an instability in the disc itself can energize the corona. We show that this mechanism is inefficient to explain the hot temperature. (author) [fr

  1. LOFA analyses for the water and helium cooled SEAFP reactors

    International Nuclear Information System (INIS)

    Sponton, L.; Sjoeberg, A.; Nordlinder, S.

    2001-01-01

    This study was performed in the frame of the European long-term fusion safety programme 1999 (SEAFP99). Loss of flow accidents (LOFA) have been studied for two cases, first for a helium cooled reactor with advanced dual-coolant (DUAL) blanket at 100% nominal power. The second case applies to a water-cooled reactor at 20% nominal power. Both transients were simulated with the code MELCOR 1.8.4. The results for the helium cooled reactor show that with a natural circulation flow of helium after the pump stops, the first wall temperature will stay below the temperature for excepted failure of the construction material. For the water cooled reactor, the results show that the pressurizer set point for its liquid volumetric inventory is reached before the plasma facing components attain a critical temperature. The pressurizer set point will induce a plasma shutdown

  2. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  3. Pressurized water reactor flow arrangement

    International Nuclear Information System (INIS)

    Gibbons, J.F.; Knapp, R.W.

    1980-01-01

    A flow path is provided for cooling the control rods of a pressurized water reactor. According to this scheme, a small amount of cooling water enters the control rod guide tubes from the top and passes downwards through the tubes before rejoining the main coolant flow and passing through the reactor core. (LL)

  4. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat.

    Science.gov (United States)

    Cotter, J D; Sleivert, G G; Roberts, W S; Febbraio, M A

    2001-04-01

    Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (Pcooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.

  5. Analysis of SONACO axial cooling experiments

    International Nuclear Information System (INIS)

    Sigg, B.; Dury, T.V.; Hudina, M.

    1994-01-01

    The SONACO test rig contained a sodium-cooled, electrically heated 37-pin bundle. On this rig, a series of forced, mixed and natural convection experiments have been performed with the aim of contributing to the understanding of thermal-hydraulic phenomena and providing data for code validation for a subassembly at decay heat power level with low flow or stagnant coolant. The test section and especially the heater pins were equipped with an extensive number of chromel-alumel thermocouples. In addition, special permanent-magnet probes were used for measuring local velocities. In this paper we give a survey of results from axial cooling experiments, where heat was removed by natural convection to a cooling coil situated in the coolant channel (plenum) above the bundle. The experimental conditions led to turbulent convection with a slowly varying, large scale flow pattern. It is shown that a power tilt in the bundle reduces these fluctuations but does not eliminate them. For the uniformly heated bundle, aglebraic expressions for the average turbulent heat flux as well as for temperature and velocity fluctuations are derived from a second-moments model and compared with experimental data. Furthermore, heat transfer in the plenum and the consequences of the SONACO experiments for the coolability of reactor fuel elements under loss-of-flow conditions are discussed. ((orig.))

  6. A simplified simulation model for a HPDC die with conformal cooling channels

    Science.gov (United States)

    Frings, Markus; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    In general, the cooling phase of the high-pressure die casting process is based on complex physical phenomena: so-lidification of molten material; heat exchange between cast part, die and cooling fluid; turbulent flow inside the cooling channels that needs to be considered when computing the heat flux; interdependency of properties and temperature of the cooling liquid. Intuitively understanding and analyzing all of these effects when designing HPDC dies is not feasible. A remedy that has become available is numerical design, based for example on shape optimization methods. However, current computing power is not sufficient to perform optimization while at the same time fully resolving all physical phenomena. But since in HPDC suitable objective functions very often lead to integral values, e.g., average die temperature, this paper identifies possible simplifications in the modeling of the cooling phase. As a consequence, the computational effort is reduced to an acceptable level. A further aspect that arises in the context of shape optimization is the evaluation of shape gradients. The challenge here is to allow for large shape deformations without remeshing. In our approach, the cooling channels are described by their center lines. The flow profile of the cooling fluid is then estimated based on experimental data found in literature for turbulent pipe flows. In combination, the heat flux throughout cavity, die, and cooling channel can be described by one single advection-diffusion equation on a fixed mesh. The parameters in the equation are adjusted based on the position of cavity and cooling channel. Both results contribute towards a computationally efficient, yet accurate method, which can be employed within the frame of shape optimization of cooling channels in HPDC dies.

  7. Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops

    Science.gov (United States)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji

    2018-06-01

    We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.

  8. Galactic synchrotron emission from WIMPs at radio frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, I-10125 Torino (Italy); Lineros, Roberto A.; Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@ific.uv.es [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10{sup −26} cm{sup 3} s{sup −1}, and masses M{sub DM}∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.

  9. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  10. Integrated cooling system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Johnson, B.; Chang, Y.

    1979-01-01

    The MFTF components that require water cooling include the neutral beam dumps, ion dumps, plasma dumps, baffle plates, magnet liners, gas boxes, streaming guns, and the neutral beam injectors. A total heat load of nearly 500 MW for 0.5 s dissipates over 4-min intervals. A steady-flow, closed-loop system is utilized. The design of the cooling system assumes that all components require cooling simultaneously. The cooling system contains process instrumentation for loop control. Alarms and safety interlocks are incorporated for the safe operation of the system

  11. Experimental and computational studies of film cooling with compound angle injection

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-10-01

    The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

  12. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    Science.gov (United States)

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Formation of perched lava ponds on basaltic volcanoes: Interaction between cooling rate and flow geometry allows estimation of lava effusion rates

    Science.gov (United States)

    Wilson, L.; Parfitt, E. A.

    1993-01-01

    Perched lava ponds are infrequent but distinctive topographic features formed during some basaltic eruptions. Two such ponds, each approximately 150 m in diameter, formed during the 1968 eruption at Napau Crater and the 1974 eruption of Mauna Ulu, both on Kilauea Volcano, Hawaii. Each one formed where a channelized, high volume flux lava flow encountered a sharp reduction of slope: the flow spread out radially and stalled, forming a well-defined terminal levee enclosing a nearly circular lava pond. We describe a model of how cooling limits the motion of lava spreading radially into a pond and compare this with the case of a channelized flow. The difference in geometry has a major effect, such that the size of a pond is a good indicator of the volume flux of the lava forming it. Lateral spreading on distal shallow slopes is a major factor limiting the lengths of lava flows.

  14. Steam exit flow design for aft cavities of an airfoil

    Science.gov (United States)

    Storey, James Michael; Tesh, Stephen William

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  15. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  16. Shutdown cooling temperature perturbation test for analysis of potential flow blockages

    International Nuclear Information System (INIS)

    Handbury, J.; Newman, C.; Shynot, T.

    1996-01-01

    This paper details the methods and results of the 'shutdown cooling test' in October 1995. This novel test was conducted at PLGS while the reactor was shutdown and shutdown cooling (SDC) waster was recirculating to find potential channel blockages resulting from the introduction of wood debris. This test discovered most of the channels that contained major wood and metal debris. (author)

  17. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  18. Heat Transfer and Friction Studies in a Tilted and Rib-Roughened Trailing-Edge Cooling Cavity with and without the Trailing-Edge Cooling Holes

    Directory of Open Access Journals (Sweden)

    M. E. Taslim

    2014-01-01

    Full Text Available Local and average heat transfer coefficients and friction factors were measured in a test section simulating the trailing-edge cooling cavity of a turbine airfoil. The test rig with a trapezoidal cross-sectional area was rib-roughened on two opposite sides of the trapezoid (airfoil pressure and suction sides with tapered ribs to conform to the cooling cavity shape and had a 22-degree tilt in the flow direction upstream of the ribs that affected the heat transfer coefficients on the two rib-roughened surfaces. The radial cooling flow traveled from the airfoil root to the tip while exiting through 22 cooling holes along the airfoil trailing-edge. Two rib geometries, with and without the presence of the trailing-edge cooling holes, were examined. The numerical model contained the entire trailing-edge channel, ribs, and trailing-edge cooling holes to simulate exactly the tested geometry. A pressure-correction based, multiblock, multigrid, unstructured/adaptive commercial software was used in this investigation. Realizable k-ε turbulence model in conjunction with enhanced wall treatment approach for the near wall regions was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. Comparisons are made between the experimental and numerical results.

  19. ANALYSIS OF WMAP 7 YEAR TEMPERATURE DATA: ASTROPHYSICS OF THE GALACTIC HAZE

    Energy Technology Data Exchange (ETDEWEB)

    Pietrobon, Davide; Gorski, Krzysztof M.; Bartlett, James; Colombo, Loris P. L.; Jewell, Jeffrey B.; Pagano, Luca; Rocha, Graca; Lawrence, Charles R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Banday, A. J. [Universie de Toulouse, UPS-OMP, IRAP, Toulouse (France); Dobler, Gregory [Kavli Institute for Theoretical Physics, University of California, Santa Barbara Kohn Hall, Santa Barbara, CA 93106 (United States); Hildebrandt, Sergi R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Eriksen, Hans Kristian [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Saha, Rajib, E-mail: davide.pietrobon@jpl.nasa.gov [Physics Department, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462023 (India)

    2012-08-10

    We perform a joint analysis of the cosmic microwave background (CMB) and Galactic emission from the WMAP 7 year temperature data. Using the Commander code, based on Gibbs sampling, we simultaneously derive the CMB and Galactic components on scales larger than 1 Degree-Sign with improved sensitivity over previous work. We conduct a detailed study of the low-frequency Galactic foreground, focusing on the 'microwave haze' emission around the Galactic center. We demonstrate improved performance in quantifying the diffuse Galactic emission when including Haslam 408 MHz data and when jointly modeling the spinning and thermal dust emission. We examine whether the hypothetical Galactic haze can be explained by a spatial variation of the synchrotron spectral index, and find that the excess of emission around the Galactic center is stable with respect to variations of the foreground model. Our results demonstrate that the new Galactic foreground component-the microwave haze-is indeed present.

  20. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  1. Cooling the vertical surface by conditionally single pulses

    Directory of Open Access Journals (Sweden)

    Karpov Pavel

    2017-01-01

    Full Text Available You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of “island” film cooling.

  2. Boiling induced mixed convection in cooling loops

    International Nuclear Information System (INIS)

    Knebel, J.U.; Janssens-Maenhout, G.; Mueller, U.

    2000-01-01

    This article describes the SUCO program performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. In case of a core melt accident, the sump cooling concept realises a decay heat removal system that is based on passive safety features within the containment. The article gives, first, results of the experiments in the 1:20 linearly scaled SUCOS-2D test facility. The experimental results are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. Second, the real height SUCOT test facility with a volume and power scale of 1:356 that is aimed at investigating the mixed single-phase and two-phase natural circulation flow in the reactor sump, together with first measurement results, are discussed. Finally, a numerical approach to model the subcooled nucleate boiling phenomena in the test facility SUCOT is presented. Physical models describing interfacial mass, momentum and-heat transfer are developed and implemented in the commercial software package CFX4.1. The models are validated for an isothermal air-water bubbly flow experiment and a subcooled boiling experiment in vertical annular water flow. (author)

  3. Modeling conductive cooling for thermally stressed dairy cows.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pai