WorldWideScience

Sample records for gait speed decline

  1. Statin Use and Decline in Gait Speed in Community-Dwelling Older Adults

    DEFF Research Database (Denmark)

    Lo-Ciganic, W. H.; Perera, S.; Gray, S. L.

    2015-01-01

    ObjectivesTo examine the association between statin use and objectively assessed decline in gait speed in community-dwelling older adults. DesignLongitudinal cohort study. SettingHealth, Aging and Body Composition (Health ABC) Study. ParticipantsTwo thousand five participants aged 70-79 at baseli...

  2. Gray matter volume covariance patterns associated with gait speed in older adults: a multi-cohort MRI study.

    Science.gov (United States)

    Blumen, Helena M; Brown, Lucy L; Habeck, Christian; Allali, Gilles; Ayers, Emmeline; Beauchet, Olivier; Callisaya, Michele; Lipton, Richard B; Mathuranath, P S; Phan, Thanh G; Pradeep Kumar, V G; Srikanth, Velandai; Verghese, Joe

    2018-04-09

    Accelerated gait decline in aging is associated with many adverse outcomes, including an increased risk for falls, cognitive decline, and dementia. Yet, the brain structures associated with gait speed, and how they relate to specific cognitive domains, are not well-understood. We examined structural brain correlates of gait speed, and how they relate to processing speed, executive function, and episodic memory in three non-demented and community-dwelling older adult cohorts (Overall N = 352), using voxel-based morphometry and multivariate covariance-based statistics. In all three cohorts, we identified gray matter volume covariance patterns associated with gait speed that included brain stem, precuneus, fusiform, motor, supplementary motor, and prefrontal (particularly ventrolateral prefrontal) cortex regions. Greater expression of these gray matter volume covariance patterns linked to gait speed were associated with better processing speed in all three cohorts, and with better executive function in one cohort. These gray matter covariance patterns linked to gait speed were not associated with episodic memory in any of the cohorts. These findings suggest that gait speed, processing speed (and to some extent executive functions) rely on shared neural systems that are subject to age-related and dementia-related change. The implications of these findings are discussed within the context of the development of interventions to compensate for age-related gait and cognitive decline.

  3. Physical Inactivity Predicts Slow Gait Speed in an Elderly Multi-Ethnic Cohort Study: The Northern Manhattan Study.

    Science.gov (United States)

    Willey, Joshua Z; Moon, Yeseon P; Kulick, Erin R; Cheung, Ying Kuen; Wright, Clinton B; Sacco, Ralph L; Elkind, Mitchell S V

    2017-01-01

    Gait speed is associated with multiple adverse outcomes of aging. We hypothesized that physical inactivity would be prospectively inversely associated with gait speed independently of white matter hyperintensity volume and silent brain infarcts on MRI. Participants in the Northern Manhattan Study MRI sub-study had physical activity assessed when they were enrolled into the study. A mean of 5 years after the MRI, participants had gait speed measured via a timed 5-meter walk test. Physical inactivity was defined as reporting no leisure-time physical activity. Multi-variable logistic and quantile regression was performed to examine the associations between physical inactivity and future gait speed adjusted for confounders. Among 711 participants with MRI and gait speed measures (62% women, 71% Hispanic, mean age 74.1 ± 8.4), the mean gait speed was 1.02 ± 0.26 m/s. Physical inactivity was associated with a greater odds of gait speed in the lowest quartile (Physical inactivity is associated with slower gait speed independently of osteoarthritis, grip strength, and subclinical ischemic brain injury. Modifying sedentary behavior poses a target for interventions aimed at reducing decline in mobility. © 2017 S. Karger AG, Basel.

  4. Predictors of Gait Speeds and the Relationship of Gait Speeds to Falls in Men and Women with Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Samuel T. Nemanich

    2013-01-01

    Full Text Available Gait difficulties and falls are commonly reported in people with Parkinson disease (PD. Reduction in gait speed is a major characteristic of Parkinsonian gait, yet little is known about its underlying determinants, its ability to reflect an internal reservation about walking, or its relationship to falls. To study these issues, we selected age, disease severity, and nonmotor factors (i.e., depression, quality of life, balance confidence, and exercise beliefs and attitudes to predict self-selected (SELF, fast-as-possible (FAST, and the difference (DIFF between these walking speeds in 78 individuals with PD. We also examined gender differences in gait speeds and evaluated how gait speeds were related to a retrospective fall report. Age, disease severity, and balance confidence were strong predictors of SELF, FAST, and, to a lesser extent, DIFF. All three parameters were strongly associated with falling. DIFF was significantly greater in men compared to women and was significantly associated with male but not female fallers. The results supported the clinical utility of using a suite of gait speed parameters to provide insight into the gait difficulties and differentiating between fallers in people with PD.

  5. Improving Sensitivity to Detect Mild Cognitive Impairment: Cognitive Load Dual-Task Gait Speed Assessment.

    Science.gov (United States)

    MacAulay, Rebecca K; Wagner, Mark T; Szeles, Dana; Milano, Nicholas J

    2017-07-01

    Longitudinal research indicates that cognitive load dual-task gait assessment is predictive of cognitive decline and thus might provide a sensitive measure to screen for mild cognitive impairment (MCI). However, research among older adults being clinically evaluated for cognitive concerns, a defining feature of MCI, is lacking. The present study investigated the effect of performing a cognitive task on normal walking speed in patients presenting to a memory clinic with cognitive complaints. Sixty-one patients with a mean age of 68 years underwent comprehensive neuropsychological testing, clinical interview, and gait speed (simple- and dual-task conditions) assessments. Thirty-four of the 61 patients met criteria for MCI. Repeated measure analyses of covariance revealed that greater age and MCI both significantly associated with slower gait speed, pscognitive dual task within a clinically representative population. Cognitive load dual-task gait assessment may provide a cost efficient and sensitive measure to detect older adults at high risk of a dementia disorder. (JINS, 2017, 23, 493-501).

  6. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    Science.gov (United States)

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  7. 36-Item Short Form Survey (SF-36) Versus Gait Speed As Predictor of Preclinical Mobility Disability in Older Women: The Women's Health Initiative.

    Science.gov (United States)

    Laddu, Deepika R; Wertheim, Betsy C; Garcia, David O; Woods, Nancy F; LaMonte, Michael J; Chen, Bertha; Anton-Culver, Hoda; Zaslavsky, Oleg; Cauley, Jane A; Chlebowski, Rowan; Manson, JoAnn E; Thomson, Cynthia A; Stefanick, Marcia L

    2018-04-01

    To compare the value of clinically measured gait speed with that of the self-reported Medical Outcomes Study 36-item Short-Form Survey Physical Function Index (SF-36 PF) in predicting future preclinical mobility disability (PCMD) in older women. Prospective cohort study. Forty clinical centers in the United States. Women aged 65 to 79 enrolled in the Women's Health Initiative Clinical Trials with gait speed and SF-36 assessed at baseline (1993-1998) and follow-up Years 1, 3, and 6 (N = 3,587). Women were categorized as nondecliners or decliners based on changes (from baseline to Year 1) in gait speed and SF-36 PF scores. Logistic regression models were used to estimate incident PCMD (gait speed 36 PF with that of measured gait speed. Slower baseline gait speed and lower SF-36 PF scores were associated with higher adjusted odds of PCMD at Years 3 and 6 (all P 36, decliners were 1.42 times as likely to have developed PCMD by Year 3 and 1.49 times as likely by Year 6. Baseline gait speed (AUC = 0.713) was nonsignificantly better than SF-36 (AUC = 0.705) at predicting PCMD over 6 years (P = .21); including measures at a second time point significantly improved model discrimination for predicting PCMD (all P 36 PF did, although the results may be limited given that gait speed served as a predictor and to define the PCMD outcome. Nonetheless, monitoring trajectories of change in mobility are better predictors of future mobility disability than single measures. © 2018, Copyright the Authors Journal compilation © 2018, The American Geriatrics Society.

  8. Associations between physical performance and executive function in older adults with mild cognitive impairment: gait speed and the timed "up & go" test.

    Science.gov (United States)

    McGough, Ellen L; Kelly, Valerie E; Logsdon, Rebecca G; McCurry, Susan M; Cochrane, Barbara B; Engel, Joyce M; Teri, Linda

    2011-08-01

    Older adults with amnestic mild cognitive impairment (aMCI) are at higher risk for developing Alzheimer disease. Physical performance decline on gait and mobility tasks in conjunction with executive dysfunction has implications for accelerated functional decline, disability, and institutionalization in sedentary older adults with aMCI. The purpose of this study was to examine whether performance on 2 tests commonly used by physical therapists (usual gait speed and Timed "Up & Go" Test [TUG]) are associated with performance on 2 neuropsychological tests of executive function (Trail Making Test, part B [TMT-B], and Stroop-Interference, calculated from the Stroop Word Color Test) in sedentary older adults with aMCI. The study was a cross-sectional analysis of 201 sedentary older adults with memory impairment participating in a longitudinal intervention study of cognitive function, aging, exercise, and health promotion. Physical performance speed on gait and mobility tasks was measured via usual gait speed and the TUG (at fast pace). Executive function was measured with the TMT-B and Stroop-Interference measures. Applying multiple linear regression, usual gait speed was associated with executive function on both the TMT-B (β=-0.215, P=.003) and Stroop-Interference (β=-0.195, P=.01) measures, indicating that slower usual gait speed was associated with lower executive function performance. Timed "Up & Go" Test scores (in logarithmic transformation) also were associated with executive function on both the TMT-B (β=0.256, Pfunction performance. All associations remained statistically significant after adjusting for age, sex, depressive symptoms, medical comorbidity, and body mass index. The cross-sectional nature of this study does not allow for inferences of causation. Physical performance speed was associated with executive function after adjusting for age, sex, and age-related factors in sedentary older adults with aMCI. Further research is needed to determine

  9. Gait speed as a measure of functional status in COPD patients

    Directory of Open Access Journals (Sweden)

    Karpman C

    2014-11-01

    Full Text Available Craig Karpman, Roberto Benzo Mindful Breathing Laboratory, Mayo Clinic, Division of Pulmonary and Critical Care Medicine, Rochester, MN, USA Abstract: Chronic obstructive pulmonary disease (COPD is a disease associated with dyspnea, fatigue, and exercise intolerance. The degree of functional debility and level of exercise capacity greatly influences quality of life and mortality in patients with COPD, and the measures of exercise capacity are to be an integral part of patient assessment but often not feasible in routine daily practice, resulting in likely suboptimal care. There is a need for simple ways to identify functional decline in the clinical setting in order to guide resources to preventive interventions or proper care, including palliative care. Gait speed, or measuring how long it takes for a patient to walk a short distance, takes very little time and space, and can serve as a candidate measure of physical function in COPD. Gait speed has been shown to be an indicator of disability, health care utilization, and survival in older adults. It is a simple, reliable, and feasible measure to perform in the clinic and has been promoted as the next vital sign, providing insight into patients' functional capacity. Gait speed is mainly determined by exercise capacity but reflects global well-being as it captures many of the multisystemic effects of disease severity in COPD rather than pulmonary impairment alone. It is an excellent screening measure for exercise capacity and frailty; in COPD, the usual gait speed (4-m course with rolling start has been very accurate in identifying clinically relevant benchmarks of the 6-minute walk test, poor (<350 m and very poor (<200 m 6-minute walk test distances. A specific cut-off point of 0.8 m⋅s-1 had a positive predictive value of 69% and negative predictive value of 98% in predicting very poor exercise capacity. The increasing evidence on gait speed is promising as a simple test that can inform the

  10. Effects of Three Types of Exercise Interventions on Healthy Old Adults' Gait Speed : A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Lesinski, Melanie; Gäbler, Martijn; VanSwearingen, Jessie M.; Malatesta, Davide; Granacher, Urs

    2015-01-01

    Background Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose Our objective was to determine the effects of strength, power, coordination,

  11. Gait Rather Than Cognition Predicts Decline in Specific Cognitive Domains in Early Parkinson's Disease.

    Science.gov (United States)

    Morris, Rosie; Lord, Sue; Lawson, Rachael A; Coleman, Shirley; Galna, Brook; Duncan, Gordon W; Khoo, Tien K; Yarnall, Alison J; Burn, David J; Rochester, Lynn

    2017-11-09

    Dementia is significant in Parkinson's disease (PD) with personal and socioeconomic impact. Early identification of risk is of upmost importance to optimize management. Gait precedes and predicts cognitive decline and dementia in older adults. We aimed to evaluate gait characteristics as predictors of cognitive decline in newly diagnosed PD. One hundred and nineteen participants recruited at diagnosis were assessed at baseline, 18 and 36 months. Baseline gait was characterized by variables that mapped to five domains: pace, rhythm, variability, asymmetry, and postural control. Cognitive assessment included attention, fluctuating attention, executive function, visual memory, and visuospatial function. Mixed-effects models tested independent gait predictors of cognitive decline. Gait characteristics of pace, variability, and postural control predicted decline in fluctuating attention and visual memory, whereas baseline neuropsychological assessment performance did not predict decline. This provides novel evidence for gait as a clinical biomarker for PD cognitive decline in early disease. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America.

  12. Baseline Cerebral Small Vessel Disease Is Not Associated with Gait Decline After Five Years

    NARCIS (Netherlands)

    Van Der Holst, Helena M.; Van Uden, Ingeborg W.M.; de Laat, Karlijn F.; Van Leijsen, Esther M.C.; van Norden, Anouk G.W.; Norris, David G.; Van DIjk, Ewoud J.; Tuladhar, Anil M.; de Leeuw, Frank-Erik

    2017-01-01

    Background Cerebral small vessel disease (SVD) is cross-sectionally associated with gait disturbances, however, the relation between baseline SVD and gait decline over time is uncertain. Furthermore, diffusion tensor imaging (DTI) studies on gait decline are currently lacking. Objective To

  13. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations

    NARCIS (Netherlands)

    Hak, L.; Houdijk, J.H.P.; Steenbrink, F.; van der Wurff, P.; Beek, P.J.; van Dieen, J.H.

    2012-01-01

    It has frequently been proposed that lowering walking speed is a strategy to enhance gait stability and to decrease the probability of falling. However, previous studies have not been able to establish a clear relation between walking speed and gait stability. We investigated whether people do

  14. Development and decline of upright gait stability

    Directory of Open Access Journals (Sweden)

    Marco eIosa

    2014-02-01

    Full Text Available Upright gait is a peculiar characteristic of humans that requires the ability to manage upper body dynamic balance while walking, despite the perturbations that are generated by movements of the lower limbs. Most of the studies on upright gait stability have compared young adults and the elderly to determine the effects of aging. In other studies the comparison was between healthy subjects and patients to examine specific pathologies. Fewer researches have also investigated the development of upright gait stability in children.This review discusses these studies in order to provide an overview of this relevant aspect of human locomotion. A clear trend from development to decline of upright gait stability has been depicted across the entire lifespan, from toddlers at first steps to elderly. In old individuals, even if healthy, the deterioration of skeletal muscle, combined with sensorial and cognitive performance, reduces the ability to maintain an upright trunk during walking, increasing the instability and the risk of falls. Further, the pathological causes of altered development or of a sudden loss of gait stability, as well as the environmental influence are investigated. The last part of this review is focused on the control of upper body accelerations during walking, a particularly interesting topic for the recent development of low-cost wearable accelerometers.

  15. A longitudinal study on dual-tasking effects on gait: cognitive change predicts gait variance in the elderly.

    Directory of Open Access Journals (Sweden)

    Rebecca K MacAulay

    Full Text Available Neuropsychological abilities have found to explain a large proportion of variance in objective measures of walking gait that predict both dementia and falling within the elderly. However, to this date there has been little research on the interplay between changes in these neuropsychological processes and walking gait overtime. To our knowledge, the present study is the first to investigate intra-individual changes in neurocognitive test performance and gait step time at two-time points across a one-year span. Neuropsychological test scores from 440 elderly individuals deemed cognitively normal at Year One were analyzed via repeated measures t-tests to assess for decline in cognitive performance at Year Two. 34 of these 440 individuals neuropsychological test performance significantly declined at Year Two; whereas the "non-decliners" displayed improved memory, working memory, attention/processing speed test performance. Neuropsychological test scores were also submitted to factor analysis at both time points for data reduction purposes and to assess the factor stability overtime. Results at Year One yielded a three-factor solution: Language/Memory, Executive Attention/Processing Speed, and Working Memory. Year Two's test scores also generated a three-factor solution (Working Memory, Language/Executive Attention/Processing Speed, and Memory. Notably, language measures loaded on Executive Attention/Processing Speed rather than on the Memory factor at Year Two. Hierarchal multiple regression revealed that both Executive Attention/Processing Speed and sex significantly predicted variance in dual task step time at both time points. Remarkably, in the "decliners", the magnitude of the contribution of the neuropsychological characteristics to gait variance significantly increased at Year Two. In summary, this study provides longitudinal evidence of the dynamic relationship between intra-individual cognitive change and its influence on dual task gait

  16. Relative association of processing speed, short-term memory and sustained attention with task on gait speed: a study of community-dwelling people 50 years and older.

    Science.gov (United States)

    Killane, Isabelle; Donoghue, Orna A; Savva, George M; Cronin, Hilary; Kenny, Rose Anne; Reilly, Richard B

    2014-11-01

    For single gait tasks, associations have been reported between gait speed and cognitive domains. However, few studies have evaluated if this association is altered in dual gait tasks given gait speed changes with complexity and nature of task. We evaluated relative contributions of specific elements of cognitive function (including sustained attention and processing speed) to dual task gait speed in a nationally representative population of community-dwelling adults over 50 years. Gait speed was obtained using the GaitRite walkway during three gait tasks: single, cognitive (alternate letters), and motor (carrying a filled glass). Linear regression models, adjusted for covariates, were constructed to predict the relative contributions of seven neuropsychological tests to gait speed differences and to investigate gait task effects. The mean age and gait speed of the population (n = 4,431, 55% women) was 62.4 years (SD = 8.2) and 135.85 cm/s (SD = 20.20, single task), respectively. Poorer processing speed, short-term memory, and sustained attention were major cognitive contributors to slower gait speed for all gait tasks. Both dual gait tasks were robust to covariate adjustment and had a significant additional executive function element not found for the single gait task. For community-dwelling older adults processing speed, short-term memory and sustained attention were independently associated with gait speed for all gait tasks. Dual gait tasks were found to highlight specific executive function elements. This result forms a baseline value for dual task gait speed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Independent influence of gait speed and step length on stability and fall risk.

    Science.gov (United States)

    Espy, D D; Yang, F; Bhatt, T; Pai, Y-C

    2010-07-01

    With aging, individuals' gaits become slower and their steps shorter; both are thought to improve stability against balance threats. Recent studies have shown that shorter step lengths, which bring the center of mass (COM) closer to the leading foot, improve stability against slip-related falls. However, a slower gait, hence lower COM velocity, does the opposite. Due to the inherent coupling of step length and speed in spontaneous gait, the extent to which the benefit of shorter steps can offset the slower speed is unknown. The purpose of this study was to investigate, through decoupling, the independent effects of gait speed and step length on gait stability and the likelihood of slip-induced falls. Fifty-seven young adults walked at one of three target gait patterns, two of equal speed and two of equal step length; at a later trial, they encountered an unannounced slip. The results supported our hypotheses that faster gait as well as shorter steps each ameliorates fall risk when a slip is encountered. This appeared to be attributable to the maintenance of stability from slip initiation to liftoff of the recovery foot during the slip. Successful decoupling of gait speed from step length reveals for the first time that, although slow gait in itself leads to instability and falls (a one-standard-deviation decrease in gait speed increases the odds of fall by 4-fold), this effect is offset by the related decrease in step length (the same one-standard-deviation decrease in step length lowers fall risk by 6 times). Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The Comparison of Falling Risk of Elderly by Speed Gait Test Under Dual Tasks Conditions

    Directory of Open Access Journals (Sweden)

    Zahra Fathi Rezaie

    2010-07-01

    Full Text Available Objectives: This study aimed to compare elderly fallers and non fallers by balance test under dual tasks conditions. Methods & Materials: This study was a analyse-comparative study. Subjects were chosen from three parks of Tehran. Subjects were 20 older adults with no history of falls (aged 72.60±5 years and 21 older adults with a history of 2 or more falls in the last one year (aged 74.50±6 Years. All subjects performed speed gait test under 3 conditions (speed gait, speed gait with numbers counter randomly [speed gait cognitive], and speed gait while carrying a full cup of water [speed gait manual]. Data was analysed from multivariate analysis with SPSS 17. Results: The results showed significant difference between elderly fallers and non fallers in fall risk composed dependent variable (P=0.0005, as the non fallers had greater score than elderly fallers. Conclusion: Consequently, we can apply the Gait Speed test under both dual task conditions (Cognitive and Motor for identification of risk of falling in elderly adults with and without of falling history.

  19. Effects of walking speed on asymmetry and bilateral coordination of gait

    Science.gov (United States)

    Plotnik, Meir; Bartsch, Ronny P.; Zeev, Aviva; Giladi, Nir; Hausdorff, Jeffery M.

    2013-01-01

    The mechanisms regulating the bilateral coordination of gait in humans are largely unknown. Our objective was to study how bilateral coordination changes as a result of gait speed modifications during over ground walking. 15 young adults wore force sensitive insoles that measured vertical forces used to determine the timing of the gait cycle events under three walking conditions (i.e., usual-walking, fast and slow). Ground reaction force impact (GRFI) associated with heel-strikes was also quantified, representing the potential contribution of sensory feedback to the regulation of gait. Gait asymmetry (GA) was quantified based on the differences between right and left swing times and the bilateral coordination of gait was assessed using the phase coordination index (PCI), a metric that quantifies the consistency and accuracy of the anti-phase stepping pattern. GA was preserved in the three different gait speeds. PCI was higher (reduced coordination) in the slow gait condition, compared to usual-walking (3.51% vs. 2.47%, respectively, p=0.002), but was not significantly affected in the fast condition. GRFI values were lower in the slow walking as compared to usual-walking and higher in the fast walking condition (pgait related changes in PCI were not associated with the slowed gait related changes in GRFI. The present findings suggest that left-right anti-phase stepping is similar in normal and fast walking, but altered during slowed walking. This behavior might reflect a relative increase in attention resources required to regulate a slow gait speed, consistent with the possibility that cortical function and supraspinal input influences the bilateral coordination of gait. PMID:23680424

  20. Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in older adults.

    Science.gov (United States)

    Holtzer, Roee; Mahoney, Jeannette; Verghese, Joe

    2014-08-01

    The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19-38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = -.606; 95% CI = -1.11 to -.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = -.901; 95% CI = -1.557 to -.245). Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Resting State Default Mode Network Connectivity, Dual Task Performance, Gait Speed, and Postural Sway in Older Adults with Mild Cognitive Impairment.

    Science.gov (United States)

    Crockett, Rachel A; Hsu, Chun Liang; Best, John R; Liu-Ambrose, Teresa

    2017-01-01

    Aging is associated with an increased risk of falling. In particular, older adults with mild cognitive impairment (MCI) are more vulnerable to falling compared with their healthy counterparts. Major contributors to this increased falls risk include a decline in dual task performance, gait speed, and postural sway. Recent evidence highlights the potential influence of the default mode network (DMN), the frontoparietal network (FPN), and the supplementary motor area (SMA) on dual task performance, gait speed, and postural sway. The DMN is active during rest and deactivates during task-oriented processes, to maintain attention and stay on task. The FPN and SMA are involved in top-down attentional control, motor planning, and motor execution. The DMN shows less deactivation during task in older adults with MCI. This lack of deactivation is theorized to increase competition for resources between the DMN and task-related brain regions (e.g., the FPN and SMA), increasing distraction from the task and reducing task performance. However, no study has yet investigated the relationship between the between-network connectivity of the DMN with these regions and dual task walking, gait speed or postural sway. We hypothesized that greater functional connectivity both within the DMN and between DMN-FPN and DMN-SMA, will be associated with poorer performance during dual task walking, slower gait speed, and greater postural sway in older adults with MCI. Forty older adults with MCI were measured on a dual task-walking paradigm, gait speed over a 4-m walk, and postural sway using a sway-meter. Greater within-DMN connectivity was significantly correlated with poorer dual task performance. Furthermore, greater inter-network connectivity between the DMN and SMA was significantly correlated with slower gait speed and greater postural sway on the eyes open floor sway task. Thus, greater resting state DMN functional connectivity may be an underlying neural mechanism for reduced dual task

  2. Physiotherapy Effects in Gait Speed in Patients with Knee Osteoarthritis.

    Science.gov (United States)

    Tani, Klejda; Kola, Irena; Dhamaj, Fregen; Shpata, Vjollca; Zallari, Kiri

    2018-03-15

    Knee osteoarthritis is a chronic degenerative disease, known as the most common cause of difficulty walking in older adults and subsequently is associated with slow walking. Also one of the main symptoms is a degenerative and mechanics type of pain. Pain is very noticeable while walking in rugged terrain, during ascent and descent of stairs, when changing from sitting to standing position as well as staying in one position for a long time. Many studies have shown that the strength of the quadriceps femoris muscle can affect gait, by improving or weakening it. Kinesio Tape is a physiotherapeutic technique, which reduces pain and increases muscular strength by irritating the skin receptors. The aims of this study was first to verify if the application of Kinesio Tape on quadriceps femoris muscle increases gait speed in patients with knee osteoarthritis and secondly if applying Kinesio Tape on quadriceps femoris muscle reduces pain while walking. Seventy-four patients with primary knee osteoarthritis, aged 50 - 73 years, participated in this study. Firstly we observed the change of gait speed, while walking for 10 meters at normal speed for each patient, before, one day and three days after the application of Kinesio Tape on quadriceps femoris muscle, with the help of the 10 - meter walk test. Secondly, we observed the change of pain, while walking for 10 meters at normal speed for each patient, before, one day and three days after the application, with the help of Numerical Pain Rating Scale - NRS. Our results indicated that there was a significant increase in gait speed while walking for 10 meters one day and also three days after application of Kinesio Tape on quadriceps femoris muscle. Also, there was a significant reduction of pain level 1 and 3 days after application of Kinesio Tape, compared to the level of pain before its application. Our results indicated that there was a significant decrease in pain and increase of gait speed while walking for 10 meters

  3. Walking smoothness is associated with self-reported function after accounting for gait speed.

    Science.gov (United States)

    Lowry, Kristin A; Vanswearingen, Jessie M; Perera, Subashan; Studenski, Stephanie A; Brach, Jennifer S

    2013-10-01

    Gait speed has shown to be an indicator of functional status in older adults; however, there may be aspects of physical function not represented by speed but by the quality of movement. The purpose of this study was to determine the relations between walking smoothness, an indicator of the quality of movement based on trunk accelerations, and physical function. Thirty older adults (mean age, 77.7±5.1 years) participated. Usual gait speed was measured using an instrumented walkway. Walking smoothness was quantified by harmonic ratios derived from anteroposterior, vertical, and mediolateral trunk accelerations recorded during overground walking. Self-reported physical function was recorded using the function subscales of the Late-Life Function and Disability Instrument. Anteroposterior smoothness was positively associated with all function components of the Late-Life Function and Disability Instrument, whereas mediolateral smoothness exhibited negative associations. Adjusting for gait speed, anteroposterior smoothness remained associated with the overall and lower extremity function subscales, whereas mediolateral smoothness remained associated with only the advanced lower extremity subscale. These findings indicate that walking smoothness, particularly the smoothness of forward progression, represents aspects of the motor control of walking important for physical function not represented by gait speed alone.

  4. Combining Gait Speed and Recall Memory to Predict Survival in Late Life: Population-Based Study.

    Science.gov (United States)

    Marengoni, Alessandra; Bandinelli, Stefania; Maietti, Elisa; Guralnik, Jack; Zuliani, Giovanni; Ferrucci, Luigi; Volpato, Stefano

    2017-03-01

    To evaluate the relationship between gait speed, recall memory, and mortality. A cohort study (last follow-up December 2009). Tuscany, Italy. Individual data from 1,014 community-dwelling older adults aged 60 years or older with baseline gait speed and recall memory measurements and follow-up for a median time of 9.10 (IQR 7.1;9.3) years. Participants were a mean (SD) age of 73.9 (7.3) years, and 55.8% women. Participants walking faster than 0.8 m/s were defined as fast walkers; good recall memory was defined as a score of 2 or 3 in the 3-word delayed recall section of the Mini-Mental State Examination. All-cause mortality. There were 302 deaths and the overall 100 person-year death rate was 3.77 (95% CI: 3.37-4.22). Both low gait speed and poor recall memory were associated with mortality when analysed separately (HR = 2.47; 95% CI: 1.87-3.27 and HR = 1.47; 95% CI: 1.16-1.87, respectively). When we grouped participants according to both recall and gait speed, death rates (100 person-years) progressively increased from those with both good gait speed and memory (2.0; 95% CI: 1.6-2.5), to those with fast walk but poor memory (3.4; 95% CI: 2.8-4.2), to those with slow walk and good memory (8.8; 95% CI: 6.4-12.1), to those with both slow walk and poor memory (13.0; 95% CI: 10.6-16.1). In multivariate analysis, poor memory significantly increases mortality risk among persons with fast gait speed (HR = 1.40; 95% CI: 1.04-1.89). In older persons, gait speed and recall memory are independent predictors of expected survival. Information on memory function might better stratify mortality risk among persons with fast gait speed. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  5. [Gait speed and the appearance of neurocognitive disorders in older adults: Results of a Peruvian cohort].

    Science.gov (United States)

    Parodi, José F; Nieto-Gutierrez, Wendy; Tellez, Walter A; Ventocilla-Gonzales, Iris; Runzer-Colmenares, Fernando M; Taype-Rondan, Alvaro

    The prevention and management of neurocognitive disorders (NCD) among older adults can be improved by early identification of risk factors such as walking speed. The objective of the study is to assess the association between gait speed and NCD onset in a population of Peruvian older adults. Cohort conducted in older adults who attended the geriatrics service of Naval Medical Center (Callao, Peru). During the baseline assessment, participants' gait speed was recorded. Subsequently, participants were followed-up annually for 5 years, with a mean of 21 months. NCD onset was defined as the occurrence of a score ≤24 points on the Mini Mental State Examination (screening test) during follow-up. The hazard ratios (HR) and their 95% confidence intervals (95% CI) were calculated using Cox regression. The study included 657 participants, with a mean age of 73.4±9.2 (SD) years, of whom 47.0% were male, 47.8% had a gait speed <0.8 m/s, and 20.1% developed NCD during the follow up. It was found that older adults who had gait speed <0.8 m/s at baseline were more likely to develop NCD than those who had a gait speed ≥0.8 m/s (adjusted HR=1.41, 95% CI=1.34-1.47). A longitudinal association was found between decreased gait speed and NCD onset, suggesting that gait speed could be useful to identify patients at risk of NCD onset. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Changes in executive functions and self-efficacy are independently associated with improved usual gait speed in older women

    Directory of Open Access Journals (Sweden)

    Hsu Chun

    2010-05-01

    Full Text Available Abstract Background Improved usual gait speed predicts substantial reduction in mortality. A better understanding of the modifiable factors that are independently associated with improved gait speed would ensure that intervention strategies are developed based on a valid theoretical framework. Thus, we examined the independent association of change in executive functions and change in falls-related self-efficacy with improved gait speed among community-dwelling senior women. Methods A secondary analysis of the 135 senior women aged 65 to 75 years old who completed a 12-month randomized controlled trial of resistance training. Usual gait speed was assessed using a 4-meter walk. Three executive processes were assessed by standard neuropsychological tests: 1 set shifting; 2 working memory; and 3 selective attention and response inhibition. A linear regression model was constructed to determine the independent association of change in executive functions and falls-related self-efficacy with change in gait speed. Results Improved selective attention and conflict resolution, and falls-related self-efficacy, were independently associated with improved gait speed after accounting for age, global cognition, baseline gait speed, and change in quadriceps strength. The total variance explained was 24%. Conclusions Interventions that target executive functions and falls-related self-efficacy, in addition to physical functions, to improve gait speed may be more efficacious than those that do not. Trial Registration ClinicalTrials.gov Identifier: NCT00426881

  7. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks

    DEFF Research Database (Denmark)

    Bellardita, Carmelo; Kiehn, Ole

    2015-01-01

    behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three...... distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter......-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides...

  8. Socioeconomic disparities in gait speed and associated characteristics in early old age.

    Science.gov (United States)

    Plouvier, S; Carton, M; Cyr, D; Sabia, S; Leclerc, A; Zins, M; Descatha, A

    2016-04-23

    A few studies have documented associations between socioeconomic position and gait speed, but the knowledge about factors from various domains (personal factors, lifestyle, occupation…) which contribute to these disparities is limited. Our objective was to assess socioeconomic disparities in usual gait speed in a general population in early old age in France, and to identify potential contributors to the observed disparities, including occupational factors. The study population comprised 397 men and 339 women, aged 55 to 69, recruited throughout France for the field pilot of the CONSTANCES cohort. Gait speed was measured in meters/second. Socioeconomic position was based on self-reported occupational class. Information on personal characteristics, lifestyle, comorbidities and past or current occupational physical exposure came either from the health examination, from interview or from self-administered questionnaire. Four groups were considered according to sex-specific distributions of speed (the two slowest thirds versus the fastest third, for each gender). Logistic regression models adjusted for health screening center and age allowed to the study of cross-sectional associations between: 1- slower speed and occupational class; 2- slower speed and each potential contributor; 3- occupational class and selected potential contributors. The association between speed and occupational class was then further adjusted for the factors significantly associated both with speed and occupational class, in order to assess the potential contribution of these factors to disparities. With reference to managers/executives, gait speed was reduced in less skilled categories among men (OR 1.21 [0.72-2.05] for Intermediate/Tradesmen, 1.95 [0.80-4.76] for Clerks, Sale/service workers, 2.09 [1.14-3.82] for Blue collar/Craftsmen) and among women (OR 1.12 [0.55-2.28] for Intermediate/Tradesmen, 2.33 [1.09-4.97] for Clerks, 2.48 [1.18-5.24] for Sale/service workers/Blue collar

  9. Callosal hyperintensities and gait speed gain from two types of mobility interventions in older adults.

    Science.gov (United States)

    Nadkarni, Neelesh K; Perera, Subashan; Studenski, Stephanie A; Rosano, Caterina; Aizenstein, Howard J; VanSwearingen, Jessie M

    2015-06-01

    To assess whether the volume of callosal hyperintensities in the genu and splenium of older adults with mobility impairment is differentially associated with the degree of gain in gait speed after 2 types of gait interventions. Single-blind randomized controlled trial of 2 types of gait exercises in older adults. Research center in an academic institution. Ambulatory adults (N=44) aged ≥65 years with a slow and variable gait. Twelve-week physical therapist-guided trial of a conventional walking, endurance, balance, and strength (WEBS) intervention (n=20) versus a timing and coordination of gait (TC) intervention (n=22). Gain in gait speed after the intervention and its relation to callosal hyperintensities in the genu and splenium of the corpus callosum. Gait speed improved in both the WEBS group (mean change, 0.16m/s) and the TC group (mean change, 0.21m/s; both PMobility impaired older adults with genual hyperintensities may benefit from a rehabilitation program focused on motor skill learning rather than on strength and endurance training. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    Science.gov (United States)

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.

    Science.gov (United States)

    Krasny, Darren P; Orin, David E

    2004-08-01

    Over the past several decades, there has been a considerable interest in investigating high-speed dynamic gaits for legged robots. While much research has been published, both in the biomechanics and engineering fields regarding the analysis of these gaits, no single study has adequately characterized the dynamics of high-speed running as can be achieved in a realistic, yet simple, robotic system. The goal of this paper is to find the most energy-efficient, natural, and unconstrained gallop that can be achieved using a simulated quadrupedal robot with articulated legs, asymmetric mass distribution, and compliant legs. For comparison purposes, we also implement the bound and canter. The model used here is planar, although we will show that it captures much of the predominant dynamic characteristics observed in animals. While it is not our goal to prove anything about biological locomotion, the dynamic similarities between the gaits we produce and those found in animals does indicate a similar underlying dynamic mechanism. Thus, we will show that achieving natural, efficient high-speed locomotion is possible even with a fairly simple robotic system. To generate the high-speed gaits, we use an efficient evolutionary algorithm called set-based stochastic optimization. This algorithm finds open-loop control parameters to generate periodic trajectories for the body. Several alternative methods are tested to generate periodic trajectories for the legs. The combined solutions found by the evolutionary search and the periodic-leg methods, over a range of speeds up to 10.0 m/s, reveal "biological" characteristics that are emergent properties of the underlying gaits.

  12. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    Science.gov (United States)

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob

    2014-01-01

    Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302

  13. Human Skeleton Model Based Dynamic Features for Walking Speed Invariant Gait Recognition

    Directory of Open Access Journals (Sweden)

    Jure Kovač

    2014-01-01

    Full Text Available Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometrics can be captured at public places from a distance without subject's collaboration, awareness, and even consent. Although current approaches give encouraging results, we are still far from effective use in real-life applications. In general, methods set various constraints to circumvent the influence of covariate factors like changes of walking speed, view, clothing, footwear, and object carrying, that have negative impact on recognition performance. In this paper we propose a skeleton model based gait recognition system focusing on modelling gait dynamics and eliminating the influence of subjects appearance on recognition. Furthermore, we tackle the problem of walking speed variation and propose space transformation and feature fusion that mitigates its influence on recognition performance. With the evaluation on OU-ISIR gait dataset, we demonstrate state of the art performance of proposed methods.

  14. [Calf circumference and its association with gait speed in elderly participants at Peruvian Naval Medical Center].

    Science.gov (United States)

    Díaz Villegas, Gregory Mishell; Runzer Colmenares, Fernando

    2015-01-01

    To evaluate the association between calf circumference and gait speed in elderly patients 65 years or older at Geriatric day clinic at Peruvian Centro Médico Naval. Cross-sectional, retrospective study. We assessed 139 participants, 65 years or older at Peruvian Centro Médico Naval including calf circumference, gait speed and Short Physical Performance Battery. With bivariate analyses and logistic regression model we search for association between variables. The age mean was 79.37 years old (SD: 8.71). 59.71% were male, the 30.97% had a slow walking speed and the mean calf circumference was 33.42cm (SD: 5.61). After a bivariate analysis, we found a calf circumference mean of 30.35cm (SD: 3.74) in the slow speed group and, in normal gait group, a mean of 33.51cm (SD: 3.26) with significantly differences. We used logistic regression to analyze association with slow gait speed, founding statistically significant results adjusting model by disability and age. Low calf circumference is associated with slow speed walk in population over 65 years old. Copyright © 2014. Published by Elsevier Espana.

  15. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    Science.gov (United States)

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  16. Interaction of obstructive sleep apnoea and cognitive impairment with slow gait speed in middle-aged and older adults.

    Science.gov (United States)

    Lee, Sunghee; Shin, Chol

    2017-07-01

    to investigate whether slow gait speed is associated with cognitive impairment and further whether the association is modified by obstructive sleep apnoea (OSA). in total, 2,222 adults aged 49-80 years, free from dementia, stroke and head injury were asked to walk a 4-m course at fast and usual gait speeds. The time taken to walk was measured. All participants completed the Korean Mini-Mental State Examination, which was validated in the Korean language, to assess cognitive function. Additionally, the participants completed a polysomnography test to ascertain OSA (defined as an apnoea-hypopnoea index ≥15). Multivariable linear regression models were utilised to test the associations. time taken to walk 4 m showed significant inverse associations with cognitive scores (P value = 0.001 at fast gait speed and P = 0.002 at usual gait speed). Furthermore, a significant interaction according to OSA on the association between time to walk and cognitive impairment was found (P value for interaction = 0.003 at fast gait speed and P value for interaction = 0.007 at usual gait speed). we found that the inverse association between the time taken to walk 4 m and a cognitive score became significantly stronger, if an individual had OSA. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Physiotherapy Effects in Gait Speed in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Klejda Tani

    2018-03-01

    CONCLUSIONS: Our results indicated that there was a significant decrease in pain and increase of gait speed while walking for 10 meters. Kinesio Tape can be used in patients with knee osteoarthritis, especially when changing walking stereotypes is a long-term goal of the treatment.

  18. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  19. Spatiotemporal Gait Characteristics Associated with Cognitive Impairment: A Multicenter Cross-Sectional Study, the Intercontinental "Gait, cOgnitiOn & Decline" Initiative.

    Science.gov (United States)

    Beauchet, Olivier; Blumen, Helena M; Callisaya, Michele L; De Cock, Anne-Marie; Kressig, Reto W; Srikanth, Velandai; Steinmetz, Jean-Paul; Verghese, Joe; Allali, Gilles

    2018-01-23

    The study aims to determine the spatiotemporal gait parameters and/or their combination(s) that best differentiate between cognitively healthy individuals (CHI), patients with mild cognitive impairment (MCI) and those with mild and moderate dementia, regardless of the etiology of cognitive impairment. A total of 2099 participants (1015 CHI, 478 patients with MCI, 331 patients with mild dementia and 275 with moderate dementia) were selected from the intercontinental "Gait, cOgnitiOn & Decline" (GOOD) initiative, which merged different databases from seven cross-sectional studies. Mean values and coefficients of variation (CoV) of spatiotemporal gait parameters were recorded during usual walking with the GAITRite® system. The severity of cognitive impairment was associated with worse performance on all gait parameters. Stride velocity had the strongest association with cognitive impairment, regardless of cognitive status. High mean value and CoV of stride length characterized moderate dementia, whereas increased CoV of stride time was specific to MCI status. The findings support the existence of specific cognitive impairment-related gait disturbances with differences related to stages of cognitive impairment, which may be used to screen individuals with cognitive impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka

    2016-03-01

    We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).

  1. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.

    Science.gov (United States)

    Tsukahara, Atsushi; Hasegawa, Yasuhisa; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2015-03-01

    This paper proposes a novel gait intention estimator for an exoskeleton-wearer who needs gait support owing to walking impairment. The gait intention estimator not only detects the intention related to the start of the swing leg based on the behavior of the center of ground reaction force (CoGRF), but also infers the swing speed depending on the walking velocity. The preliminary experiments categorized into two stages were performed on a mannequin equipped with the exoskeleton robot [Hybrid Assistive Limb: (HAL)] including the proposed estimator. The first experiment verified that the gait support system allowed the mannequin to walk properly and safely. In the second experiment, we confirmed the differences in gait characteristics attributed to the presence or absence of the proposed swing speed profile. As a feasibility study, we evaluated the walking capability of a severe spinal cord injury patient supported by the system during a 10-m walk test. The results showed that the system enabled the patient to accomplish a symmetrical walk from both spatial and temporal standpoints while adjusting the speed of the swing leg. Furthermore, the critical differences of gait between our system and a knee-ankle-foot orthosis were obtained from the CoGRF distribution and the walking time. Through the tests, we demonstrated the effectiveness and practical feasibility of the gait support algorithms.

  2. Altered spatiotemporal characteristics of gait in older adults with chronic low back pain.

    Science.gov (United States)

    Hicks, Gregory E; Sions, J Megan; Coyle, Peter C; Pohlig, Ryan T

    2017-06-01

    Previous studies in older adults have identified that chronic low back pain (CLBP) is associated with slower gait speed. Given that slower gait speed is a predictor of greater morbidity and mortality among older adults, it is important to understand the underlying spatiotemporal characteristics of gait among older adults with CLBP. The purposes of this study were to determine (1) if there are differences in spatiotemporal parameters of gait between older adults with and without CLBP during self-selected and fast walking and (2) whether any of these gait characteristics are correlated with performance of a challenging walking task, e.g. stair negotiation. Spatiotemporal characteristics of gait were evaluated using a computerized walkway in 54 community-dwelling older adults with CLBP and 54 age- and sex-matched healthy controls. Older adults with CLBP walked slower than their pain-free peers during self-selected and fast walking. After controlling for body mass index and gait speed, step width was significantly greater in the CLBP group during the fast walking condition. Within the CLBP group, step width and double limb support time are significantly correlated with stair ascent/descent times. From a clinical perspective, these gait characteristics, which may be indicative of balance performance, may need to be addressed to improve overall gait speed, as well as stair-climbing performance. Future longitudinal studies confirming our findings are needed, as well as investigations focused on developing interventions to improve gait speed and decrease subsequent risk of mobility decline. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Time Course of Knee Swelling Post Total Knee Arthroplasty and Its Associations with Quadriceps Strength and Gait Speed.

    Science.gov (United States)

    Pua, Yong-Hao

    2015-07-01

    This study examines the time course of knee swelling post total knee arthroplasty (TKA) and its associations with quadriceps strength and gait speed. Eighty-five patients with unilateral TKA participated. Preoperatively and on post-operative days (PODs) 1, 4, 14, and 90, knee swelling was measured using bioimpedance spectrometry. Preoperatively and on PODs 14 and 90, quadriceps strength was measured using isokinetic dynamometry while fast gait speed was measured using the timed 10-meter walk. On POD1, knee swelling increased ~35% from preoperative levels after which, knee swelling reduced but remained at ~11% above preoperative levels on POD90. In longitudinal, multivariable analyses, knee swelling was associated with quadriceps weakness (P<0.01) and slower gait speed (P=0.03). Interventions to reduce post-TKA knee swelling may be indicated to improve quadriceps strength and gait speed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Viability of gait speed test in hospitalized elderly patients

    Directory of Open Access Journals (Sweden)

    Bruno Prata Martinez

    Full Text Available ABSTRACT Objective: The gait speed test (GST is a physical test that can predict falls and aid in the diagnosis of sarcopenia in the elderly. However, to our knowledge, there have been no studies evaluating its reproducibility in hospitalized elderly patients. The objective of this study was to evaluate the safety and reproducibility of the six-meter GST (6GST in hospitalized elderly patients. Methods: This repeated measures study involved hospitalized elderly patients (≥ 60 years of age who underwent the 6GST by the fifth day of hospitalization, were able to walk without assistance, and presented no signs of dyspnea or pain that would prevent them from performing the test. The 6GST was performed three times in sequence, with a rest period between each test, in a level corridor. Gait speed was measured in meters/second. Reproducibility was assessed by comparing the means, intraclass correlation coefficients (ICCs and Bland-Altman plots. Results: We evaluated 110 elderly patients in a total of 330 tests. All participants completed all of the tests. The comparisons between the speeds obtained during the three tests showed high ICCs and a low mean bias (Bland-Altman plots. The correlation and accuracy were greatest when the mean maximum speed was compared with that obtained in the third test (1.26 ± 0.44 m/s vs. 1.22 ± 0.44 m/s; ICC = 0.99; p = 0.001; mean bias = 0.04; and limits of agreement = −0.27 to 0.15. Conclusions: The 6GST was proven to be safe and to have good reproducibility in this sample of hospitalized elderly patients. The third measurement seems to correspond to the maximum speed, since the first two measurements underestimated the actual performance.

  5. Energy Expenditure of Trotting Gait Under Different Gait Parameters

    Science.gov (United States)

    Chen, Xian-Bao; Gao, Feng

    2017-07-01

    Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.

  6. Altered kinematics of arm swing in Parkinson's disease patients indicates declines in gait under dual-task conditions.

    Science.gov (United States)

    Baron, Elise I; Miller Koop, Mandy; Streicher, Matthew C; Rosenfeldt, Anson B; Alberts, Jay L

    2018-03-01

    Declines in simultaneous performance of a cognitive and motor task are present in Parkinson's disease due to compromised basal ganglia function related to information processing. The aim of this project was to determine if biomechanical measures of arm swing could be used as a marker of gait function under dual-task conditions in Parkinson's disease patients. Twenty-three patients with Parkinson's disease completed single and dual-task cognitive-motor tests while walking on a treadmill at a self-selected rate. Multiple cognitive domains were evaluated with five cognitive tests. Cognitive tests were completed in isolation (single-task) and simultaneously with gait (dual-task). Upper extremity biomechanical data were gathered using the Motek CAREN system. Primary outcomes characterizing arm swing were: path length, normalized jerk, coefficient of variation of arm swing time, and cognitive performance. Performance on the cognitive tasks were similar across single and dual-task conditions. However, biomechanical measures exhibited significant changes between single and dual-task conditions, with the greatest changes occurring in the most challenging conditions. Arm swing path length decreased significantly from single to dual-task, with the greatest decrease of 21.16%. Jerk, characterizing smoothness, increased significantly when moving from single to dual-task conditions. The simultaneous performance of a cognitive and gait task resulted in decrements in arm swing while cognitive performance was maintained. Arm swing outcomes provide a sensitive measure of declines in gait function in Parkinson's disease under dual-task conditions. The quantification of arm swing is a feasible approach to identifying and evaluating gait related declines under dual-task conditions. Copyright © 2017. Published by Elsevier Ltd.

  7. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    Science.gov (United States)

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  8. A 9-Week Jaques-Dalcroze Eurhythmics Intervention Improves Single and Dual-Task Gait Speed in Community-Dwelling Older People.

    Science.gov (United States)

    Ferguson-Stegall, Lisa; Vang, Mandy; Wolfe, Anthony S; Thomsen, Kathy M

    2017-09-01

    Falls are a major public health concern among older adults, and most occur while walking, especially under dualtask conditions. Jaques-Dalcroze eurhythmics (JDE) is a music-based movement training program that emphasizes multitask coordinated movement. A previous 6-mo JDE study in older people demonstrated improved gait and balance; however, the effects of short-term JDE interventions on fall risk-related outcomes are largely unknown. We conducted a preliminary investigation on whether a 9-week JDE intervention improved gait and stability in a community-dwelling older cohort, hypothesizing that improvements would occur in all outcome measures. Nine participants (78.9 ± 12.3 y) completed the supervised JDE intervention (once/week for 60 min). Gait speed was determined by the 6-m timed walk test (6MTW); dual-task gait speed was determined by another 6MTW while counting backward from 50 aloud; and coordinated stability was assessed using a Swaymeter-like device. Gait speed (0.92 ± 0.11 vs 1.04 ± 0.12 m/sec, P = .04) and dual-task gait speed (0.77 ± 0.09 vs 0.92 ± 0.11 m/sec, P = .0005) significantly improved. This novel intervention is an effective short-term physical activity option for those that plan physical activity or fall-risk reduction programs for the older people.

  9. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.

    Science.gov (United States)

    Yoon, Jungwon; Park, Hyung-Soon; Damiano, Diane Louise

    2012-08-28

    Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was

  10. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Yoon Jungwon

    2012-08-01

    Full Text Available Abstract Background Virtual reality (VR technology along with treadmill training (TT can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW to more closely simulate over ground walking (OGW during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW, which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities

  11. The Influence of Video Game Training with and without Subpatelar Bandage in Mobility and Gait Speed on Elderly Female Fallers.

    Science.gov (United States)

    de Carvalho, Isabela Feitosa; Leme, Gianluca Loyolla Montanari; Scheicher, Marcos Eduardo

    2018-01-01

    The aim of the study was to investigate the effect of balance training with Nintendo Wii technology, with and without the use of additional sensory information (subpatellar bandage), in the functional mobility and gait speed of elderly female fallers. Twenty elderly women were divided into two groups: group I: trained with the use of the Nintendo Wii; group II: trained using the Nintendo Wii and the addition of sensory information (subpatellar bandage). The functional mobility was assessed with the Timed up and Go test (TUG) and gait speed with the 10 m test. The tests were carried out with and without the use of the subpatellar bandage. The training was carried out within sessions of 30 minutes, twice a week, using three different games ( Penguin Slide , Table Tilt , and Tightrope ). There was an increase in the gait speed and a decrease in the TUG time in both groups, independently of the sensory condition used ( p < 0.05). In the short term, the subpatellar bandage improved the TUG time ( p < 0.05) and the gait speed ( p < 0.01). The training for postural balance with virtual reality was effective for improving functional mobility and gait speed of elderly female fallers. The subpatellar bandage did not maximize the effect of training.

  12. Evaluation of gait characteristics and ground reaction forces in cognitively declined older adults with an emphasis on slip-induced falls.

    Science.gov (United States)

    Lockhart, Thurmon; Kim, Sukwon; Kapur, Radhika; Jarrott, Shannon

    2009-01-01

    The objective of the present study was to evaluate the relationship between gait adaptation and slip/fall risk of older adults with cognitive impairments. The study investigated the gait characteristics of six healthy older adults and five older adults with dementia. Participants walked on an instrumented walkway at their preferred walking speeds. After ensuring that the preferred walking speeds were consistent, participants' natural posture and ground reaction forces were measured. The results suggested that participants with dementia walked more cautiously yet demanded more friction at the shoe/floor interface at the time of heel contact, increasing the risk of slip initiation. To reduce the risk of slip-induced falls among older adults with dementia, specific gait training to reduce friction demand requirements by increasing the transfer speed of the whole body mass is suggested.

  13. Tooth loss associated with physical and cognitive decline in older adults.

    Science.gov (United States)

    Tsakos, Georgios; Watt, Richard G; Rouxel, Patrick L; de Oliveira, Cesar; Demakakos, Panayotes

    2015-01-01

    To examine the effect of total tooth loss (edentulousness) on decline in physical and cognitive functioning over 10 years in older adults in England. Secondary data analysis. English Longitudinal Study of Ageing, a national prospective cohort study of community-dwelling people aged 50 and older. Individuals aged 60 and older (N = 3,166). Cognitive function (memory) was measured using a 10-word recall test. Physical function was assessed using gait speed (m/s). Generalized estimating equations were used to model associations between baseline edentulousness and six repeated measurements of gait speed and memory from 2002-03 to 2012-13. Models were sequentially adjusted for time, demographic characteristics, socioeconomic status, comorbidities, health behaviors, depressive symptoms, and anthropometric measurements and mutually adjusted for gait speed or memory. Edentulous participants recalled 0.88 fewer words and were 0.09 m/s slower than dentate participants after adjusting for time and demographics. Only the latter association remained significant after full adjustment, with edentulous participants being 0.02 m/s slower than dentate participants. In age-stratified analyses, baseline edentulousness was associated with both outcomes in fully adjusted models in participants aged 60 to 74 but not in those aged 75 and older. Supplementary analysis indicated significant associations between baseline edentulousness and 4-year change in gait speed and memory in participants aged 60 to 74; the former was fully explained in the fully adjusted model and the latter after adjusting for socioeconomic status. Total tooth loss was independently associated with physical and cognitive decline in older adults in England. Tooth loss is a potential early marker of decline in older age. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  14. Effects of different frequencies of rhythmic auditory cueing on the stride length, cadence, and gait speed in healthy young females.

    Science.gov (United States)

    Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng

    2015-02-01

    [Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.

  15. The Influence of Video Game Training with and without Subpatelar Bandage in Mobility and Gait Speed on Elderly Female Fallers

    Directory of Open Access Journals (Sweden)

    Isabela Feitosa de Carvalho

    2018-01-01

    Full Text Available Objectives. The aim of the study was to investigate the effect of balance training with Nintendo Wii technology, with and without the use of additional sensory information (subpatellar bandage, in the functional mobility and gait speed of elderly female fallers. Methods. Twenty elderly women were divided into two groups: group I: trained with the use of the Nintendo Wii; group II: trained using the Nintendo Wii and the addition of sensory information (subpatellar bandage. The functional mobility was assessed with the Timed up and Go test (TUG and gait speed with the 10 m test. The tests were carried out with and without the use of the subpatellar bandage. The training was carried out within sessions of 30 minutes, twice a week, using three different games (Penguin Slide, Table Tilt, and Tightrope. Results. There was an increase in the gait speed and a decrease in the TUG time in both groups, independently of the sensory condition used (p<0.05. In the short term, the subpatellar bandage improved the TUG time (p<0.05 and the gait speed (p<0.01. Conclusion. The training for postural balance with virtual reality was effective for improving functional mobility and gait speed of elderly female fallers. The subpatellar bandage did not maximize the effect of training.

  16. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: results from the National Health and Nutrition Examination Survey, 1999-2002.

    Science.gov (United States)

    Kalyani, Rita Rastogi; Tra, Yolande; Yeh, Hsin-Chieh; Egan, Josephine M; Ferrucci, Luigi; Brancati, Frederick L

    2013-05-01

    To examine the independent association between diabetes mellitus (and its duration and severity) and quadriceps strength, quadriceps power, and gait speed in a national population of older adults. Cross-sectional nationally representative survey. United States. Two thousand five hundred seventy-three adults aged 50 and older in the National Health and Nutrition Examination Survey 1999-2002 who had assessment of quadriceps strength. Diabetes mellitus was ascertained according to questionnaire. Measurement of isokinetic knee extensor (quadriceps) strength was performed at 60º/s. Gait speed was assessed using a 20-foot walk test. Multiple linear regression analyses were used to assess the association between diabetes mellitus status and outcomes, adjusting for potential confounders or mediators. Older U.S. adults with diabetes mellitus had significantly slower gait speed (0.96 ± 0.02 m/s) than those without (1.08 ± 0.01 m/s; P diabetes mellitus was also associated with significantly lower quadriceps strength (-4.6 ± 1.9 Nm; P = .02) and power (-4.9 ± 2.0 W; P = .02) and slower gait speed (-0.05 ± 0.02 m/s; P = .002). Associations remained significant after adjusting for physical activity and C-reactive protein. After accounting for comorbidities (cardiovascular disease, peripheral neuropathy, amputation, cancer, arthritis, fracture, chronic obstructive pulmonary disease), diabetes mellitus was independently associated only with gait speed (-0.04 ± 0.02 m/s; P = .02). Diabetes mellitus duration in men and women was negatively associated with age-adjusted quadriceps strength (-5.7 and -3.5 Nm/decade of diabetes mellitus, respectively) and power (-6.1 and -3.8 W/decade of diabetes mellitus, respectively) (all P ≤ .001, no significant interactions according to sex). Glycosylated hemoglobin was not associated with outcomes after accounting for body weight. Older U.S. adults with diabetes mellitus have lower quadriceps strength and quadriceps power that is related

  17. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    Science.gov (United States)

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45test revealed that CR was significantly correlated with speed, cadence, stride length, and toe-out angle. Gait speed, stride length, and toe-out angle can serve as useful indexes for evaluating progressive gait abnormality in cervical myelopathy. Our findings suggest that CR≤0.25 is associated with significantly poorer gait performance. Nevertheless, future prospective studies are needed to determine a potential benefit from decompressive surgery in such severe compression patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Global and regional associations of smaller cerebral gray and white matter volumes with gait in older people.

    Directory of Open Access Journals (Sweden)

    Michele L Callisaya

    Full Text Available BACKGROUND: Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people. METHODS: In a population-based study, participants aged >60 years without Parkinson's disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait. RESULTS: There were 305 participants, mean age 71.4 (6.9 years, 54% male, mean gait speed 1.16 (0.22 m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001 and step length (p<0.001, but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates. CONCLUSION: Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.

  19. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    Science.gov (United States)

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  20. Does dance-based therapy increase gait speed in older adults with chronic lower extremity pain: a feasibility study.

    Science.gov (United States)

    Krampe, Jean; Wagner, Joanne M; Hawthorne, Kelly; Sanazaro, Deborah; Wong-Anuchit, Choochart; Budhathoki, Chakra; Lorenz, Rebecca A; Raaf, Soren

    2014-01-01

    A decreased gait speed in older adults can lead to dependency when the individuals are no longer able to participate in activities or do things for themselves. Thirty-seven senior apartment residents (31 females; Mean age=80.6 years; SD=8.9) with lower extremity pain/stiffness participated in a feasibility and preliminary efficacy study of 12 weeks (24 sessions). Healthy-Steps dance therapy compared to a wait-list control group. Small improvements in gait speed ([ES]=0.33) were noted for participants completing 19-24 dance sessions. Improvements in gait speed measured by a 10 Meter Walk Test (0.0517 m/s) exceeded 0.05 m/s, a value deemed to be meaningful in community dwelling older adults. These feasibility study findings support the need for additional research using dance-based therapy for older adults with lower extremity pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults

    DEFF Research Database (Denmark)

    Hvid, Lars G; Strotmeyer, Elsa S; Skjødt, Mathias

    2016-01-01

    Incomplete voluntary muscle activation may contribute to impaired muscle mechanical function and physical function in older adults. Exercise interventions have been shown to increase voluntary muscle activation, although the evidence is sparse for mobility-limited older adults, particularly...... in association with physical function. This study examined the effects of 12weeks of power training on outcomes of voluntary muscle activation and gait speed in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 37 older men and women with a usual gait speed...... in TG (r=0.67, pactivation is improved in mobility-limited older adults following 12-weeks of progressive power training, and is associated with improved maximal gait speed. Incomplete voluntary muscle activation should be considered one of the key mechanisms...

  2. 4-Meter Gait Speed Test in Chronic Obstructive Pulmonary Disease: INTERRATER RELIABILITY USING A STOPWATCH.

    Science.gov (United States)

    Bisca, Gianna Waldrich; Fava, Lucas Rodrigues; Morita, Andrea Akemi; Machado, Felipe Vilaça Cavallari; Pitta, Fabio; Hernandes, Nidia Aparecida

    2017-12-14

    4-meter gait speed (4MGS) is increasingly used to assess functional performance in patients with chronic obstructive pulmonary disease. However, the current literature lacks information regarding some technical standards for this test. Therefore, the purpose of this study was to compare and to evaluate the interrater reliability between a stopwatch and video recording used as timing systems for the 4MGS in patients with chronic obstructive pulmonary disease, as well as to verify the interrater reliability between 2 observers measuring the 4MGS time using a manual stopwatch. Fifty-one patients performed the 4MGS using 4 different protocols (random order): walking at the usual and maximum speed in a 4-meter course and walking at the same 2 speeds on an 8-m course using a 2-m acceleration zone, a 4-meter timing area, and a 2-m deceleration zone. Gait speed was measured simultaneously using a stopwatch and a video recording. In a subanalysis (n = 24), 2 independent observers timed the 4MGS using a stopwatch. There was no significant difference in comparison between the 2 timing methods (P > .05 for all), and the reliability between video recording and stopwatch was excellent in all 4MGS studied protocols (intraclass correlation coefficient ≥ 0.91). Moreover, when comparing gait speed measured by 2 observers using a stopwatch, no significant difference was found among all proposed protocols (P > .05 for all), and there was also excellent reliability between the 2 independent observers (intraclass correlation coefficient ≥ 0.94). The stopwatch, a low-cost and feasible tool, is reliable as a timing device for the 4MGS in patients with chronic obstructive pulmonary disease.

  3. Locomotion in degus on terrestrial substrates varying in orientation - implications for biomechanical constraints and gait selection.

    Science.gov (United States)

    Schmidt, André

    2014-04-01

    To gain new insights into running gaits on sloped terrestrial substrates, metric and selected kinematic parameters of the common degu (Octodon degus) were examined. Individuals were filmed at their maximum voluntary running speed using a high-speed camera placed laterally to the terrestrial substrate varying in orientations from -30° to +30°, at 10° increments. Degus used trotting, lateral-sequence (LS) and diagonal-sequence (DS) running gaits at all substrate orientations. Trotting was observed across the whole speed range whereas DS running gaits occurred at significantly higher speeds than LS running gaits. Metric and kinematic changes on sloped substrates in degus paralleled those noted for most other mammals. However, the timing of metric and kinematic locomotor adjustments differed significantly between individual degus. In addition, most of these adjustments took place at 10° rather than 30° inclines and declines, indicating significant biomechanical demands even on slightly sloped terrestrial substrates. The results of this study suggest that DS and LS running gaits may represent an advantage in small to medium-sized mammals for counteracting some level of locomotor instability. Finally, changes in locomotor parameters of the forelimbs rather than the hindlimbs seem to play an important role in gait selection in small to medium-sized mammals. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Effect of sports bra type and gait speed on breast discomfort, bra discomfort and perceived breast movement in Chinese women.

    Science.gov (United States)

    Chen, Xiaona; Gho, Sheridan A; Wang, Jianping; Steele, Julie R

    2016-01-01

    This study investigated the effect of sports bra type (encapsulation versus compression) and gait speed on perceptions of breast discomfort, bra discomfort and breast movement reported by Chinese women. Visual analogue scales were used to evaluate breast discomfort, bra component discomfort and perceived breast movement of 21 Chinese participants when they wore an encapsulation or a compression sports bra, while static and while exercising at three different gait speeds. Participants perceived less breast discomfort and breast movement when wearing a compression bra compared to an encapsulation bra at a high gait speed, suggesting that compression bras are likely to provide the most effective support for Chinese women. However, significantly higher bra discomfort was perceived in the compression bra compared to the encapsulation bra when static and at the lower gait speed, implying that ways to modify the design of sports bras, particularly the straps, should be investigated to provide adequate and comfortable breast support. The compression sports bra provided more comfortable support than the encapsulation sports bra for these Chinese women when running on a treadmill. However, these women perceived higher bra discomfort when wearing the compression bra when stationary. Further research is needed to modify the design of sports bras, particularly the straps, to provide adequate and comfortable breast support.

  5. Comparison of Electromyographic Activity Pattern of Knee Two-Joint Muscles between Youngs and Olders in Gait Different Speeds

    Directory of Open Access Journals (Sweden)

    Hamideh Khodaveisi

    2016-01-01

    Full Text Available Objective: In recent years, it has been focused much attention on gait analysis. Factors such as speed, age and gender affect gait parameters. The purpose of the present study was to compare the electromyographic activity pattern of knee two-joint muscles between younger and older subjects in different gait speeds. Matterials & Methods: The method of current study was analytical cross-sectional method in which 15 healthy young men and 15 old men, were selected conveniently. Electromyographic activity of rectus femoris, biceps femoris, semitendinus and gastrocenemius were recorded during walking with preferred (100%, slow (80% and fast (120% speeds in a 10 meter walkway. Normalized RMSs of muscles were compared using RM-ANOVA and Tokey’s tests by SPSS 18 software. Results: According to results, RMSs of rectus femoris in midstance (P<0.01 and gastrocenemius in loading response (P=0.02 phases in all walking speeds were higher in older subjects than in younger ones, and it increased with speed in both age groups (P<0.01. Biceps femoris RMS in terminal stance at 80% speed, was lower in older subjects than in younger ones (P=0.01 and it increased with walking speed (P=0.01. Semitendinus activity in loading and midstance phases at 120% speed was higher in older subjects than in younger ones (P<0.01, and it increased with speed in both age groups in swing phase (P<0.05. Conclusion: According to the results, older subjects have more muscle co-contraction around knee at high speed in midstance phase than younger subjects. These age-related changes in muscle activity, leads to increase in joint stiffness and stability during single support, and probably play a role in reducing push off power at faster speeds.

  6. Cross-Cultural Investigation of Male Gait Perception in Relation to Physical Strength and Speed

    Directory of Open Access Journals (Sweden)

    Bernhard Fink

    2017-08-01

    Full Text Available Previous research documents that men and women can accurately judge male physical strength from gait, but also that the sexes differ in attractiveness judgments of strong and weak male walkers. Women’s (but not men’s attractiveness assessments of strong male walkers are higher than for weak male walkers. Here, we extend this research to assessments of strong and weak male walkers in Chile, Germany, and Russia. Men and women judged videos of virtual characters, animated with the walk movements of motion-captured men, on strength and attractiveness. In two countries (Germany and Russia, these videos were additionally presented at 70% (slower and 130% (faster of their original speed. Stronger walkers were judged to be stronger and more attractive than weak walkers, and this effect was independent of country (but not sex. Women tended to provide higher attractiveness judgments to strong walkers, and men tended to provide higher attractiveness judgments to weak walkers. In addition, German and Russian participants rated strong walkers most attractive at slow and fast speed. Thus, across countries men and women can assess male strength from gait, although they tended to differ in attractiveness assessments of strong and weak male walkers. Attractiveness assessments of male gait may be influenced by society-specific emphasis on male physical strength.

  7. Association between the metabolic syndrome and its components and gait speed among U.S. adults aged 50 years and older: a cross-sectional analysis

    Directory of Open Access Journals (Sweden)

    Strine Tara W

    2006-11-01

    Full Text Available Abstract Background To examine the relationship between the metabolic syndrome and its components and gait speed among older U.S. men and women. Whether these associations are independent of physical activity was also explored. Methods Eight hundred and thirty-five men and 850 women aged ≥50 years from the continuous National Health and Nutrition Examination Survey 1999–2002 were examined. We used the definition of the metabolic syndrome developed by the U.S. National Cholesterol Education Program Adult Treatment Panel III. Gait speed was measured with a 6.10-meter timed walk examination. Results The prevalence of the metabolic syndrome was 40.2% in men and 45.6% in women (P = .127. The prevalence of gait speed impairment was 29.3% in men and 12.5% in women (P Conclusion Among women, gait speed impairment is associated with low HDL cholesterol and inversely with abdominal obesity. These associations may be sex-dependent and warrant further research.

  8. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed

    Directory of Open Access Journals (Sweden)

    Newman Anne B

    2005-07-01

    Full Text Available Abstract Background Decreased gait speed and increased stride time, stride length, double support time, and stance time variability have consistently been associated with falling whereas step width variability has not been strongly related to falls. The purpose was to examine the linear and nonlinear associations between gait variability and fall history in older persons and to examine the influence of gait speed. Methods Gait characteristics and fall history were obtained in 503 older adults (mean age = 79; 61% female participating in the Cardiovascular Health Study who could ambulate independently. Gait characteristics were recorded from two trials on a 4 meter computerized walkway at the subject's self-selected walking speed. Gait variability was calculated as the coefficient of variation. The presence of a fall in the past 12 months was determined by interview. The nonlinear association between gait variability and fall history was examined using a simple three level classification derived from the distribution of the data and from literature based cut-points. Multivariate logistic regression was used to examine the association between step width variability (extreme or moderate and fall history stratifying by gait speed (1.0 m/s and controlling for age and gender. Results Step length, stance time, and step time variability did not differ with respect to fall history (p > .33. Individuals with extreme step width variability (either low or high step width variability were more likely to report a fall in the past year than individuals with moderate step width variability. In individuals who walked ≥ 1.0 m/s (n = 281, after controlling for age, gender, and gait speed, compared to individuals with moderate step width variability individuals with either low or high step width variability were more likely to have fallen in the past year (OR and 95% CI 4.38 [1.79–10.72]. The association between step width variability and fall history was not

  9. Predictive neuromechanical simulations indicate why walking performance declines with ageing.

    Science.gov (United States)

    Song, Seungmoon; Geyer, Hartmut

    2018-04-01

    Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  10. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    OpenAIRE

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the ot...

  11. Imaging gait analysis: An fMRI dual task study.

    Science.gov (United States)

    Bürki, Céline N; Bridenbaugh, Stephanie A; Reinhardt, Julia; Stippich, Christoph; Kressig, Reto W; Blatow, Maria

    2017-08-01

    In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite © electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. Behavioral results showed that the parameters of both gait analyses, GAITRite © and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite © gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.

  12. Effect of walking speed on the gait of king penguins: An accelerometric approach.

    Science.gov (United States)

    Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán

    2015-12-21

    Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reduced dual-task gait speed is associated with visual Go/No-Go brain network activation in children and adolescents with concussion.

    Science.gov (United States)

    Howell, David R; Meehan, William P; Barber Foss, Kim D; Reches, Amit; Weiss, Michal; Myer, Gregory D

    2018-05-31

    To investigate the association between dual-task gait performance and brain network activation (BNA) using an electroencephalography (EEG)-based Go/No-Go paradigm among children and adolescents with concussion. Participants with a concussion completed a visual Go/No-Go task with collection of electroencephalogram brain activity. Data were treated with BNA analysis, which involves an algorithmic approach to EEG-ERP activation quantification. Participants also completed a dual-task gait assessment. The relationship between dual-task gait speed and BNA was assessed using multiple linear regression models. Participants (n = 20, 13.9 ± 2.3 years of age, 50% female) were tested at a mean of 7.0 ± 2.5 days post-concussion and were symptomatic at the time of testing (post-concussion symptom scale = 40.4 ± 21.9). Slower dual-task average gait speed (mean = 82.2 ± 21.0 cm/s) was significantly associated with lower relative time BNA scores (mean = 39.6 ± 25.8) during the No-Go task (β = 0.599, 95% CI = 0.214, 0.985, p = 0.005, R 2  = 0.405), while controlling for the effect of age and gender. Among children and adolescents with a concussion, slower dual-task gait speed was independently associated with lower BNA relative time scores during a visual Go/No-Go task. The relationship between abnormal gait behaviour and brain activation deficits may be reflective of disruption to multiple functional abilities after concussion.

  14. Combined Dual-Task Gait Training and Aerobic Exercise to Improve Cognition, Mobility, and Vascular Health in Community-Dwelling Older Adults at Risk for Future Cognitive Decline1.

    Science.gov (United States)

    Gregory, Michael A; Boa Sorte Silva, Narlon C; Gill, Dawn P; McGowan, Cheri L; Liu-Ambrose, Teresa; Shoemaker, J Kevin; Hachinski, Vladimir; Holmes, Jeff; Petrella, Robert J

    2017-01-01

    This 6-month experimental case series study investigated the effects of a dual-task gait training and aerobic exercise intervention on cognition, mobility, and cardiovascular health in community-dwelling older adults without dementia. Participants exercised 40 min/day, 3 days/week for 26 weeks on a Biodex GaitTrainer2 treadmill. Participants were assessed at baseline (V0), interim (V1: 12-weeks), intervention endpoint (V2: 26-weeks), and study endpoint (V3: 52-weeks). The study outcomes included: cognition [executive function (EF), processing speed, verbal fluency, and memory]; mobility: usual & dual-task gait (speed, step length, and stride time variability); and vascular health: ambulatory blood pressure, carotid arterial compliance, and intima-media thickness (cIMT). Fifty-six participants [age: 70(6) years; 61% female] were included in this study. Significant improvements following the exercise program (V2) were observed in cognition: EF (p = 0.002), processing speed (p coding (p memory [immediate recall (p dual-task gait speed (p = 0.002 and p dual-task gait training and aerobic exercise improved performance on a number of cognitive outcomes, while increasing usual & dual-task gait speed and step length in a sample of older adults without dementia.

  15. Gait asymmetry detection in older adults using a light ear-worn sensor

    International Nuclear Information System (INIS)

    Atallah, L; Lo, B; Yang, G-Z; Wiik, A; Cobb, J P; Amis, A A

    2014-01-01

    Measuring gait asymmetry is an important feature when characterizing functional imbalance between limbs. This could be due to pathologies, such as osteoarthritis, stroke, or associated with the effects of surgeries such as hip arthroplasty. Generally, the study of asymmetry or imbalance has required the use of a gait lab or force plates, which could be expensive and difficult to use in home settings. This work validates the use of a light weight ear sensor (7.4 g) with an instrumented treadmill for 64 subjects (age (60.04 (15.36)) including healthy subjects (14) as well as subjects who had been treated for hip (17), knee-replacement surgery (21) and knee osteoarthritis (12). Subjects performed treadmill walking at several speeds on flat surfaces, inclines and declines. Accelerometer data from the ear sensor were segmented into consecutive steps and temporal features were extracted. The measures of gait cycle time and step-period asymmetry obtained from the ear sensor matched well those of the treadmill for flat surfaces, inclines and declines. The key implication of the study is that the proposed method could replace expensive equipment for monitoring temporal gait features in clinics as well as free-living environments, which is important for monitoring rehabilitation after surgery and the progress of diseases affecting limb imbalance. (note)

  16. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.

    Science.gov (United States)

    Yokoyama, Hikaru; Sato, Koji; Ogawa, Tetsuya; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Kawashima, Noritaka

    2018-01-01

    The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients.

  17. Influence of Body Mass Index on Sagittal Knee Range of Motion and Gait Speed Recovery 1-Year After Total Knee Arthroplasty.

    Science.gov (United States)

    Bonnefoy-Mazure, Alice; Martz, Pierre; Armand, Stéphane; Sagawa, Yoshimasa; Suva, Domizio; Turcot, Katia; Miozzari, Hermes H; Lübbeke, Anne

    2017-08-01

    The purpose of this prospective study was to investigate the influence of body mass index (BMI) on gait parameters preoperatively and 1 year after total knee arthroplasty (TKA). Seventy-nine patients were evaluated before and 1 year after TKA using clinical gait analysis. The gait velocity, the knee range of motion (ROM) during gait, their gains (difference between baseline and 1 year after TKA), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), quality of life, and patient satisfaction were assessed. Nonobese (BMI gait speed and ROM gains. Adjustment was performed for gender, age, and WOMAC pain improvement. At baseline, gait velocity and knee ROM were significantly lower in obese compared with those in the nonobese patients (0.99 ± 0.27 m/s vs 1.11 ± 0.18 m/s; effect size, 0.53; P = .021; and ROM, 41.33° ± 9.6° vs 46.05° ± 8.39°; effect size, 0.52; P = .022). Univariate and multivariate linear regressions did not show any significant relation between gait speed gain or knee ROM gain and BMI. At baseline, obese patients were more symptomatic than nonobese (WOMAC pain: 36.1 ± 14.0 vs 50.4 ± 16.9; effect size, 0.9; P < .001), and their improvement was significantly higher (WOMAC pain gain, 44.5 vs 32.3; effect size, 0.59; P = .011). These findings show that all patients improved biomechanically and clinically, regardless of their BMI. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  19. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket.

    Science.gov (United States)

    Silsupadol, Patima; Teja, Kunlanan; Lugade, Vipul

    2017-10-01

    The assessment of spatiotemporal gait parameters is a useful clinical indicator of health status. Unfortunately, most assessment tools require controlled laboratory environments which can be expensive and time consuming. As smartphones with embedded sensors are becoming ubiquitous, this technology can provide a cost-effective, easily deployable method for assessing gait. Therefore, the purpose of this study was to assess the reliability and validity of a smartphone-based accelerometer in quantifying spatiotemporal gait parameters when attached to the body or in a bag, belt, hand, and pocket. Thirty-four healthy adults were asked to walk at self-selected comfortable, slow, and fast speeds over a 10-m walkway while carrying a smartphone. Step length, step time, gait velocity, and cadence were computed from smartphone-based accelerometers and validated with GAITRite. Across all walking speeds, smartphone data had excellent reliability (ICC 2,1 ≥0.90) for the body and belt locations, with bag, hand, and pocket locations having good to excellent reliability (ICC 2,1 ≥0.69). Correlations between the smartphone-based and GAITRite-based systems were very high for the body (r=0.89, 0.98, 0.96, and 0.87 for step length, step time, gait velocity, and cadence, respectively). Similarly, Bland-Altman analysis demonstrated that the bias approached zero, particularly in the body, bag, and belt conditions under comfortable and fast speeds. Thus, smartphone-based assessments of gait are most valid when placed on the body, in a bag, or on a belt. The use of a smartphone to assess gait can provide relevant data to clinicians without encumbering the user and allow for data collection in the free-living environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Resilience in the Disabling Effect of Gait Speed Among Older Turkish and Moroccan Immigrants and Native Dutch.

    Science.gov (United States)

    Klokgieters, Silvia S; van Tilburg, Theo G; Deeg, Dorly J H; Huisman, Martijn

    2018-06-01

    To investigate the factors that inhibit the disabling effect of impairments among citizens who have migrated from Turkey and Morocco and native Dutch according to a resilience perspective. Using data from the Longitudinal Aging Study Amsterdam with 928 native Dutch, 255 Turks, and 199 Moroccans aged 55 to 65, linear regression analysis assessed whether country of origin, mastery, income, and contact frequency modified the relationship between gait speed and activity limitations. Turks, but not Moroccans, demonstrated stronger associations between gait speed and activity limitations than the Dutch. Mastery modified the association among the Dutch and the Turks. Income modified the association only among the Dutch. Effect modification by contact frequency was not observed. Moroccans and Dutch appeared to be more resilient against impairments than Turks. As none of the resilience factors buffered in all three populations, we conclude that resilience mechanisms are not universal across populations.

  1. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.

    Science.gov (United States)

    Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent

    2017-01-31

    Gait disorders and gait analysis under single and dual-task conditions are topics of great interest, but very few studies have looked for the relevance of gait analysis under dual-task conditions in elderly people on the basis of a clinical approach. An observational study including 103 patients (mean age 76.3 ± 7.2, women 56%) suffering from gait disorders or memory impairment was conducted. Gait analysis under dual-task conditions was carried out for all patients. Brain MRI was performed in the absence of contra-indications. Three main gait variables were measured: walking speed, stride frequency, and stride regularity. For each gait variable, the dual task cost was computed and a quartile analysis was obtained. Nonparametric tests were used for all the comparisons (Wilcoxon, Kruskal-Wallis, Fisher or Chi 2 tests). Four clinical subgroups were identified: gait instability (45%), recurrent falls (29%), memory impairment (18%), and cautious gait (8%). The biomechanical severity of these subgroups was ordered according to walking speed and stride regularity under both conditions, from least to most serious as follows: memory impairment, gait instability, recurrent falls, cautious gait (p < 0.01 for walking speed, p = 0.05 for stride regularity). According to the established diagnoses of gait disorders, 5 main pathological subgroups were identified (musculoskeletal diseases (n = 11), vestibular diseases (n = 6), mild cognitive impairment (n = 24), central nervous system pathologies, (n = 51), and without diagnosis (n = 8)). The dual task cost for walking speed, stride frequency and stride regularity were different among these subgroups (p < 0.01). The subgroups mild cognitive impairment and central nervous system pathologies both showed together a higher dual task cost for each variable compared to the other subgroups combined (p = 0.01). The quartile analysis of dual task cost for stride frequency and stride regularity

  2. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.

    Science.gov (United States)

    Lee, Su-Hyun; Lee, Hwang-Jae; Chang, Won Hyuk; Choi, Byung-Ok; Lee, Jusuk; Kim, Jeonghun; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-11-28

    A robotic exoskeleton device is an intelligent system designed to improve gait performance and quality of life for the wearer. Robotic technology has developed rapidly in recent years, and several robot-assisted gait devices were developed to enhance gait function and activities of daily living in elderly adults and patients with gait disorders. In this study, we investigated the effects of the Gait-enhancing Mechatronic System (GEMS), a new wearable robotic hip-assist device developed by Samsung Electronics Co, Ltd., Korea, on gait performance and foot pressure distribution in elderly adults. Thirty elderly adults who had no neurological or musculoskeletal abnormalities affecting gait participated in this study. A three-dimensional (3D) motion capture system, surface electromyography and the F-Scan system were used to collect data on spatiotemporal gait parameters, muscle activity and foot pressure distribution under three conditions: free gait without robot assistance (FG), robot-assisted gait with zero torque (RAG-Z) and robot-assisted gait (RAG). We found increased gait speed, cadence, stride length and single support time in the RAG condition. Reduced rectus femoris and medial gastrocnemius muscle activity throughout the terminal stance phase and reduced effort of the medial gastrocnemius muscle throughout the pre-swing phase were also observed in the RAG condition. In addition, walking with the assistance of GEMS resulted in a significant increase in foot pressure distribution, specifically in maximum force and peak pressure of the total foot, medial masks, anterior masks and posterior masks. The results of the present study reveal that GEMS may present an alternative way of restoring age-related changes in gait such as gait instability with muscle weakness, reduced step force and lower foot pressure in elderly adults. In addition, GEMS improved gait performance by improving push-off power and walking speed and reducing muscle activity in the lower

  3. Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS

    Directory of Open Access Journals (Sweden)

    Jennifer A. Foley

    2017-01-01

    Full Text Available Objective. Reduced verbal fluency is a strikingly uniform finding following deep brain stimulation (DBS for Parkinson’s disease (PD. The precise cognitive mechanism underlying this reduction remains unclear, but theories have suggested reduced motivation, linguistic skill, and/or executive function. It is of note, however, that previous reports have failed to consider the potential role of any changes in speed of processing. Thus, the aim of this study was to examine verbal fluency changes with a particular focus on the role of cognitive speed. Method. In this study, 28 patients with PD completed measures of verbal fluency, motivation, language, executive functioning, and speed of processing, before and after DBS. Results. As expected, there was a marked decline in verbal fluency but also in a timed test of executive functions and two measures of speed of processing. Verbal fluency decline was associated with markers of linguistic and executive functioning, but not after speed of processing was statistically controlled for. In contrast, greater decline in verbal fluency was associated with higher levels of apathy at baseline, which was not associated with changes in cognitive speed. Discussion. Reduced generativity and processing speed may account for the marked reduction in verbal fluency commonly observed following DBS.

  4. Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS

    Science.gov (United States)

    Foltynie, Tom; Zrinzo, Ludvic; Hyam, Jonathan A.; Limousin, Patricia

    2017-01-01

    Objective. Reduced verbal fluency is a strikingly uniform finding following deep brain stimulation (DBS) for Parkinson's disease (PD). The precise cognitive mechanism underlying this reduction remains unclear, but theories have suggested reduced motivation, linguistic skill, and/or executive function. It is of note, however, that previous reports have failed to consider the potential role of any changes in speed of processing. Thus, the aim of this study was to examine verbal fluency changes with a particular focus on the role of cognitive speed. Method. In this study, 28 patients with PD completed measures of verbal fluency, motivation, language, executive functioning, and speed of processing, before and after DBS. Results. As expected, there was a marked decline in verbal fluency but also in a timed test of executive functions and two measures of speed of processing. Verbal fluency decline was associated with markers of linguistic and executive functioning, but not after speed of processing was statistically controlled for. In contrast, greater decline in verbal fluency was associated with higher levels of apathy at baseline, which was not associated with changes in cognitive speed. Discussion. Reduced generativity and processing speed may account for the marked reduction in verbal fluency commonly observed following DBS. PMID:28408788

  5. Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS.

    Science.gov (United States)

    Foley, Jennifer A; Foltynie, Tom; Zrinzo, Ludvic; Hyam, Jonathan A; Limousin, Patricia; Cipolotti, Lisa

    2017-01-01

    Objective . Reduced verbal fluency is a strikingly uniform finding following deep brain stimulation (DBS) for Parkinson's disease (PD). The precise cognitive mechanism underlying this reduction remains unclear, but theories have suggested reduced motivation, linguistic skill, and/or executive function. It is of note, however, that previous reports have failed to consider the potential role of any changes in speed of processing. Thus, the aim of this study was to examine verbal fluency changes with a particular focus on the role of cognitive speed. Method . In this study, 28 patients with PD completed measures of verbal fluency, motivation, language, executive functioning, and speed of processing, before and after DBS. Results . As expected, there was a marked decline in verbal fluency but also in a timed test of executive functions and two measures of speed of processing. Verbal fluency decline was associated with markers of linguistic and executive functioning, but not after speed of processing was statistically controlled for. In contrast, greater decline in verbal fluency was associated with higher levels of apathy at baseline, which was not associated with changes in cognitive speed. Discussion . Reduced generativity and processing speed may account for the marked reduction in verbal fluency commonly observed following DBS.

  6. Effects of Continuous and Interval Training on Running Economy, Maximal Aerobic Speed and Gait Kinematics in Recreational Runners.

    Science.gov (United States)

    González-Mohíno, Fernando; González-Ravé, José M; Juárez, Daniel; Fernández, Francisco A; Barragán Castellanos, Rubén; Newton, Robert U

    2016-04-01

    The purpose of this study was to evaluate the effects on running economy (RE), V[Combining Dot Above]O2max, maximal aerobic speed (MAS), and gait kinematics (step length [SL] and frequency, flight and contact time [CT]) in recreational athletes, with 2 different training methods, Interval and Continuous (CON). Eleven participants were randomly distributed in an interval training group (INT; n = 6) or CON training group (CON; n = 5). Interval training and CON performed 2 different training programs (95-110% and 70-75% of MAS, respectively), which consisted of 3 sessions per week during 6 weeks with the same external workload (%MAS × duration). An incremental test to exhaustion was performed to obtain V[Combining Dot Above]O2max, MAS, RE, and gait variables (high speed camera) before and after the training intervention. There was a significant improvement (p ≤ 0.05) in RE at 60 and 90% of MAS by the CON group; without changes in gait. The INT group significantly increased MAS and higher stride length at 80, 90, and 100% of MAS and lower CT at 100% of MAS. As expected, training adaptations are highly specific to the overload applied with CON producing improvements in RE at lower percentage of MAS whereas INT produces improvements in MAS. The significantly increased stride length and decreased CT for the INT group are an important outcome of favorable changes in running gait.

  7. Gait Speed rather than Dynapenia Is a Simple Indicator for Complex Care Needs: A Cross-sectional Study Using Minimum Data Set.

    Science.gov (United States)

    Huang, Tzu-Ya; Liang, Chih-Kuang; Shen, Hsiu-Chu; Chen, Hon-I; Liao, Mei-Chen; Chou, Ming-Yueh; Lin, Yu-Te; Chen, Liang-Kung

    2017-08-21

    The impact of dynapenia on the complexity of care for residents of long-term care facilities (LTCF) remains unclear. The present study evaluated associations between dynapenia, care problems and care complexity in 504 residents of Veterans Care Homes (VCHs) in Taiwan. Subjects with dynapenia, defined as low muscle strength (handgrip strength 1 m/s). Significantly slow gait speed was associated with RAP triggers, including cognitive loss, poor communication ability, rehabilitation needs, urinary incontinence, depressed mood, falls, pressure ulcers, and use of psychotropic drugs. In conclusion, slow gait speed rather than dynapenia is a simple indicator for higher complexity of care needs of older male LTCF residents.

  8. Development of a novel virtual reality gait intervention.

    Science.gov (United States)

    Boone, Anna E; Foreman, Matthew H; Engsberg, Jack R

    2017-02-01

    Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance. To develop a feasible, engaging, VR gait intervention for improving gait variables. Completing this investigation involved four steps: 1) identify gait variables that could be manipulated to improve gait speed and kinematics using the Microsoft Kinect and free software, 2) identify free internet videogames that could successfully manipulate the chosen gait variables, 3) experimentally evaluate the ability of the videogames and software to manipulate the gait variables, and 4) evaluate the enjoyment and motivation from a small sample of persons without disability. The Kinect sensor was able to detect stride length, cadence, and joint angles. FAAST software was able to identify predetermined gait variable thresholds and use the thresholds to play free online videogames. Videogames that involved continuous pressing of a keyboard key were found to be most appropriate for manipulating the gait variables. Five participants without disability evaluated the effectiveness for modifying the gait variables and enjoyment and motivation during play. Participants were able to modify gait variables to permit successful videogame play. Motivation and enjoyment were high. A clinically feasible and engaging virtual intervention for improving gait speed and kinematics has been developed and initially tested. It may provide an engaging avenue for achieving thousands of repetitions necessary for neural plastic changes and improved gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    Science.gov (United States)

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  10. A Combined Cognitive Stimulation and Physical Exercise Programme (MINDVital) in Early Dementia: Differential Effects on Single- and Dual-Task Gait Performance.

    Science.gov (United States)

    Tay, Laura; Lim, Wee Shiong; Chan, Mark; Ali, Noorhazlina; Chong, Mei Sian

    2016-01-01

    Gait disorders are common in early dementia, with particularly pronounced dual-task deficits, contributing to the increased fall risk and mobility decline associated with cognitive impairment. This study examines the effects of a combined cognitive stimulation and physical exercise programme (MINDVital) on gait performance under single- and dual-task conditions in older adults with mild dementia. Thirty-nine patients with early dementia participated in a multi-disciplinary rehabilitation programme comprising both physical exercise and cognitive stimulation. The programme was conducted in 8-week cycles with participants attending once weekly, and all participants completed 2 successive cycles. Cognitive, functional performance and behavioural symptoms were assessed at baseline and at the end of each 8-week cycle. Gait speed was examined under both single- (Timed Up and Go and 6-metre walk tests) and dual-task (animal category and serial counting) conditions. A random effects model was performed for the independent effect of MINDVital on the primary outcome variable of gait speed under dual-task conditions. The mean age of patients enroled in the rehabilitation programme was 79 ± 6.2 years; 25 (64.1%) had a diagnosis of Alzheimer's dementia, and 26 (66.7%) were receiving a cognitive enhancer therapy. There was a significant improvement in cognitive performance [random effects coefficient (standard error) = 0.90 (0.31), p = 0.003] and gait speed under both dual-task situations [animal category: random effects coefficient = 0.04 (0.02), p = 0.039; serial counting: random effects coefficient = 0.05 (0.02), p = 0.013], with reduced dual-task cost for gait speed [serial counting: random effects coefficient = -4.05 (2.35), p = 0.086] following successive MINDVital cycles. No significant improvement in single-task gait speed was observed. Improved cognitive performance over time was a significant determinant of changes in dual-task gait speed [random effects coefficients

  11. Gait analysis in demented subjects: Interests and perspectives

    Directory of Open Access Journals (Sweden)

    Olivier Beauchet

    2008-03-01

    Full Text Available Olivier Beauchet1, Gilles Allali2, Gilles Berrut3, Caroline Hommet4, Véronique Dubost5, Frédéric Assal21Department of Geriatrics, Angers University Hospital, France; 2Department of Neurology, Geneva University Hospital, France; 3Department of Geriatrics, Nantes University Hospital, France; 4Department of Internal Medicine and Geriatrics, Tours University Hospital, France; 5Department of Geriatrics, Dijon University Hospital, FranceAbstract: Gait disorders are more prevalent in dementia than in normal aging and are related to the severity of cognitive decline. Dementia-related gait changes (DRGC mainly include decrease in walking speed provoked by a decrease in stride length and an increase in support phase. More recently, dual-task related changes in gait were found in Alzheimer’s disease (AD and non-Alzheimer dementia, even at an early stage. An increase in stride-to-stride variability while usual walking and dual-tasking has been shown to be more specific and sensitive than any change in mean value in subjects with dementia. Those data show that DRGC are not only associated to motor disorders but also to problem with central processing of information and highlight that dysfunction of temporal and frontal lobe may in part explain gait impairment among demented subjects. Gait assessment, and more particularly dual-task analysis, is therefore crucial in early diagnosis of dementia and/or related syndromes in the elderly. Moreover, dual-task disturbances could be a specific marker of falling at a pre-dementia stage.Keywords: gait, prediction of dementia, risk of falling, older adult

  12. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    Science.gov (United States)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  13. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly.

    Science.gov (United States)

    Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2018-06-01

    Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.

  14. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions.

    Science.gov (United States)

    Ivanenko, Y P; Cappellini, G; Poppele, R E; Lacquaniti, F

    2008-06-01

    Here we studied the spatiotemporal organization of motoneuron (MN) activity during different human gaits. We recorded the electromyographic (EMG) activity patterns in 32 ipsilateral limb and trunk muscles from normal subjects while running and walking on a treadmill (3-12 km/h). In addition, we recorded backward walking and skipping, a distinct human gait that comprises the features of both walking and running. We mapped the recorded EMG activity patterns onto the spinal cord in approximate rostrocaudal locations of the MN pools. The activation of MNs tends to occur in bursts and be segregated by spinal segment in a gait-specific manner. In particular, sacral and cervical activation timings were clearly gait-dependent. Swing-related activity constituted an appreciable fraction (> 30%) of the total MN activity of leg muscles. Locomoting at non-preferred speeds (running and walking at 5 and 9 km/h, respectively) showed clear differences relative to preferred speeds. Running at low speeds was characterized by wider sacral activation. Walking at high non-preferred speeds was accompanied by an 'atypical' locus of activation in the upper lumbar spinal cord during late stance and by a drastically increased activation of lumbosacral segments. The latter findings suggest that the optimal speed of gait transitions may be related to an optimal intensity of the total MN activity, in addition to other factors previously described. The results overall support the idea of flexibility and adaptability of spatiotemporal activity in the spinal circuitry with constraints on the temporal functional connectivity of hypothetical pulsatile burst generators.

  15. Effects of Gait and Cognitive Task Difficulty on Cognitive-Motor Interference in Aging

    Directory of Open Access Journals (Sweden)

    Prudence Plummer-D'Amato

    2012-01-01

    Full Text Available Although gait-related dual-task interference in aging is well established, the effect of gait and cognitive task difficulty on dual-task interference is poorly understood. The purpose of this study was to examine the effect of gait and cognitive task difficulty on cognitive-motor interference in aging. Fifteen older adults (72.1 years, SD 5.2 and 20 young adults (21.7 years, SD 1.6 performed three walking tasks of varying difficulty (self-selected speed, fast speed, and fast speed with obstacle crossing under single- and dual-task conditions. The cognitive tasks were the auditory Stroop task and the clock task. There was a significant Group × Gait Task × Cognitive Task interaction for the dual-task effect on gait speed. After adjusting for education, there were no significant effects of gait or cognitive task difficulty on the dual-task effects on cognitive task performance. The results of this study provide evidence that gait task difficulty influences dual-task effects on gait speed, especially in older adults. Moreover, the effects of gait task difficulty on dual-task interference appear to be influenced by the difficulty of the cognitive task. Education is an important factor influencing cognitive-motor interference effects on cognition, but not gait.

  16. Visual function and cognitive speed of processing mediate age-related decline in memory span and fluid intelligence.

    Science.gov (United States)

    Clay, Olivio J; Edwards, Jerri D; Ross, Lesley A; Okonkwo, Ozioma; Wadley, Virginia G; Roth, David L; Ball, Karlene K

    2009-06-01

    To evaluate the relationship between sensory and cognitive decline, particularly with respect to speed of processing, memory span, and fluid intelligence. In addition, the common cause, sensory degradation and speed of processing hypotheses were compared. Structural equation modeling was used to investigate the complex relationships among age-related decrements in these areas. Cross-sectional data analyses included 842 older adult participants (M = 73 years). After accounting for age-related declines in vision and processing speed, the direct associations between age and memory span and between age and fluid intelligence were nonsignificant. Older age was associated with visual decline, which was associated with slower speed of processing, which in turn was associated with greater cognitive deficits. The findings support both the sensory degradation and speed of processing accounts of age-related, cognitive decline. Furthermore, the findings highlight positive aspects of normal cognitive aging in that older age may not be associated with a loss of fluid intelligence if visual sensory functioning and processing speed can be maintained.

  17. Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, J; Orantes-Gonzalez, E; Soto-Hermoso, V M

    2016-03-01

    To analyze how fibromyalgia affected the variability, asymmetry, and bilateral coordination of gait walking at comfortable and fast speeds. 65 fibromyalgia (FM) patients and 50 healthy women were analyzed. Gait analysis was performed using an instrumented walkway (GAITRite system). Average walking speed, coefficient of variation (CV) of stride length, swing time, and step width data were obtained and bilateral coordination and gait asymmetry were analyzed. FM patients presented significantly lower speeds than the healthy group. FM patients obtained significantly higher values of CV_StrideLength (p=0.04; pGait asymmetry only showed significant differences in the fast condition. FM patients walked more slowly and presented a greater variability of gait and worse bilateral coordination than healthy subjects. Gait asymmetry only showed differences in the fast condition. The variability and the bilateral coordination were particularly affected by FM in women. Therefore, variability and bilateral coordination of gait could be analyzed to complement the gait evaluation of FM patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke.

    Science.gov (United States)

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-05-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke.

  19. Age-related decline of gait variability in children with attention-deficit/hyperactivity disorder: Support for the maturational delay hypothesis in gait.

    Science.gov (United States)

    Manicolo, Olivia; Grob, Alexander; Lemola, Sakari; Hagmann-von Arx, Priska

    2016-02-01

    Previous findings showed a tendency toward higher gait variability in children with attention-deficit/hyperactivity disorder (ADHD) compared to controls. This study examined whether gait variability in children with ADHD eventually approaches normality with increasing age (delay hypothesis) or whether these gait alterations represent a persistent deviation from typical development (deviation hypothesis). This cross-sectional study compared 30 children with ADHD (25 boys; Mage=10 years 11 months, range 8-13 years; n=21 off medication, n=9 without medication) to 28 controls (25 boys; Mage=10 years 10 months, range 8-13 years). Gait parameters (i.e. velocity and variability in stride length and stride time) were assessed using an electronic walkway system (GAITRite) while children walked at their own pace. Children with ADHD walked with significantly higher variability in stride time compared to controls. Age was negatively associated with gait variability in children with ADHD such that children with higher age walked with lower variability, whereas in controls there was no such association. Children with ADHD displayed a less regular gait pattern than controls, indicated by their higher variability in stride time. The age-dependent decrease of gait variability in children with ADHD showed that gait performance became more regular with age and converged toward that of typically developing children. These results may reflect a maturational delay rather than a persistent deviation of gait regularity among children with ADHD compared to typically developing children. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait.

    Science.gov (United States)

    Eckhardt, Martine M; Mulder, Mascha C Borgerhoff; Horemans, Herwin L; van der Woude, Luc H; Ribbers, Gerard M

    2011-10-01

    To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. Clinical experimental study. University Medical Centre. Nineteen stroke patients (12 males; mean age 55 years (standard deviation (SD) 10 years); mean time post onset 3.6 months (SD 1.4 months)) with a spastic paresis of the lower extremity. Functional mobility was assessed with the timed up and go test, walking speed and gait characteristics were measured with clinical gait analysis and performed with and without a verbal dual task. Patient satisfaction was determined with a questionnaire. Walking with the high orthopaedic shoe resulted in improved functional mobility (22%; pshoes. The dual task interfered with functional mobility during walking. The interference was equally big for normal shoes as for the orthopaedic shoe. Patients evaluated walking with the high orthopaedic shoe as an improvement (psafety, walking distance and walking speed. In the early recovery phase after stroke, when regaining walking ability, a temporary high orthopaedic shoe can improve hemiplegic gait, even with dual task interference. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Relation of pulse pressure to long-distance gait speed in community-dwelling older adults: Findings from the LIFE-P study

    Science.gov (United States)

    Reduced long-distance gait speed, a measure of physical function, is associated with falls, late-life disability, hospitalization/institutionalization and cardiovascular morbidity and mortality. Aging is also accompanied by a widening of pulse pressure (PP) that contributes to ventricular-vascular ...

  2. Motor physical therapy affects muscle collagen type I and decreases gait speed in dystrophin-deficient dogs.

    Directory of Open Access Journals (Sweden)

    Thaís P Gaiad

    Full Text Available Golden Retriever Muscular Dystrophy (GRMD is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD maintained their routine of activities of daily living. At t0 (pre and t1 (post-physical therapy, collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy, mediolateral (Fz and craniocaudal (Fx ground reaction forces (GRF were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000. The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function.

  3. Motor Physical Therapy Affects Muscle Collagen Type I and Decreases Gait Speed in Dystrophin-Deficient Dogs

    Science.gov (United States)

    Gaiad, Thaís P.; Araujo, Karla P. C.; Serrão, Júlio C.; Miglino, Maria A.; Ambrósio, Carlos Eduardo

    2014-01-01

    Golden Retriever Muscular Dystrophy (GRMD) is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD) in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT) is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD) underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD) maintained their routine of activities of daily living. At t0 (pre) and t1 (post-physical therapy), collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy), mediolateral (Fz) and craniocaudal (Fx) ground reaction forces (GRF) were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000). The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function. PMID:24713872

  4. [Correlation between gait speed and muscular strength with balance for reducing falls among elderly].

    Science.gov (United States)

    García-Flores, Fabián Ituriel; Rivera-Cisneros, Antonio Eugenio; Sánchez-González, Jorge Manuel; Guardado-Mendoza, Rodolfo; Torres-Gutiérrez, Jorge Luis

    2016-01-01

    Evidence of the benefit on propioceptive neuromuscular facilitation for reducing falls in older people does not exist. The aim of this study is to evaluate the effects of propioceptive facilitation over falls and biomechanical variables, in comparison to standard treatment and control groups. Series cases comparative for the 24 participants were recruited and randomnly assigned to 3 groups. Group 1, propioceptive neuromuscular facilitation, group 2, standard treatment, and 3 control. Falls and biomechanic variables were measured before and after. Chi(2) was used for falls and multiple regression for biomechanical variables, Participants had similar falls in previous year. Women had higher falls in a relation 7:1 women-men. After intervention, there was no difference between 3 groups. A correlation exista between muscular strength and gait speed with one foot position time r(2) = 0.67, p = 0.02. Improving 1kilogram-force of muscular strength of pelvic limb and 0.1meter/second in gait speed, balance (unipodal position time) increases balance by 11.3%. After 3 months of intervention group 2 got 7.9kg-force and 0.26m/s of profit, while group 1 had 4.1kg-force and 0.15m/s and control group 2.4kg-force and 0.1m/s. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  5. Apolipoprotein E4 Allele and Gait Performance in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    Science.gov (United States)

    Sakurai, Ryota; Montero-Odasso, Manuel

    2017-11-09

    The apolipoprotein E polymorphism ε4 allele (ApoE4) and gait impairment are both known risk factors for developing cognitive decline and dementia. However, it is unclear the interrelationship between these factors, particularly among older adults with mild cognitive impairment (MCI) who are considered as prodromal for Alzheimer's disease. This study aimed to determine whether ApoE4 carrier individuals with MCI may experience greater impairment in gait performance. Fifty-six older adults with MCI from the "Gait and Brain Study" who were identified as either ApoE4 carriers (n = 20) or non-ApoE4 carriers (n = 36) with 1 year of follow-up were included. Gait variability, the main outcome variable, was assessed as stride time variability with an electronic walkway. Additional gait variables and cognitive performance (mini-mental state examination [MMSE] and Montreal Cognitive Assessment [MoCA]) were also recorded. Covariates included age, sex, education level, body mass index, and number of comorbidities. Baseline characteristics were similar for both groups. Repeated measures analysis of covariance showed that gait stride time and stride length variabilities significantly increased in ApoE4 carriers but was maintained in the non-ApoE4 carriers. Similarly, ApoE4 carriers showed greater decrease in MMSE score at follow-up. In this sample of older adults with MCI, the presence of at least one copy of ApoE4 was associated with the development of both increased gait variability and cognitive decline during 1 year of follow-up. ApoE4 genotype might be considered as a potential mediator of decline in mobility function in MCI; future studies with larger samples are needed to confirm our preliminary findings. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Inverse association between insulin resistance and gait speed in nondiabetic older men: results from the U.S. National Health and Nutrition Examination Survey (NHANES 1999-2002

    Directory of Open Access Journals (Sweden)

    Yu Yau-Hua

    2009-11-01

    Full Text Available Abstract Background Recent studies have revealed the associations between insulin resistance (IR and geriatric conditions such as frailty and cognitive impairment. However, little is known about the relation of IR to physical impairment and limitation in the aging process, eg. slow gait speed and poor muscle strength. The aim of this study is to determine the effect of IR in performance-based physical function, specifically gait speed and leg strength, among nondiabetic older adults. Methods Cross-sectional data were from the population-based National Health and Nutrition Examination Survey (1999-2002. A total of 1168 nondiabetic adults (≥ 50 years with nonmissing values in fasting measures of insulin and glucose, habitual gait speed (HGS, and leg strength were analyzed. IR was assessed by homeostasis model assessment (HOMA-IR, whereas HGS and peak leg strength by the 20-foot timed walk test and an isokinetic dynamometer, respectively. We used multiple linear regression to examine the association between IR and performance-based physical function. Results IR was inversely associated with gait speed among the men. After adjusting demographics, body mass index, alcohol consumption, smoking status, chronic co-morbidities, and markers of nutrition and cardiovascular risk, each increment of 1 standard deviation in the HOMA-IR level was associated with a 0.04 m/sec decrease (p = 0.003 in the HGS in men. We did not find such association among the women. The IR-HGS association was not changed after further adjustment of leg strength. Last, HOMA-IR was not demonstrated in association with peak leg strength. Conclusion IR is inversely associated with HGS among older men without diabetes. The results suggest that IR, an important indicator of gait function among men, could be further investigated as an intervenable target to prevent walking limitation.

  7. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri

    Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and

  8. Gait characteristics, balance performance and falls in ambulant adults with cerebral palsy: An observational study.

    Science.gov (United States)

    Morgan, P; Murphy, A; Opheim, A; McGinley, J

    2016-07-01

    The relationship between spatiotemporal gait parameters, balance performance and falls history was investigated in ambulant adults with cerebral palsy (CP). Participants completed a single assessment of gait using an instrumented walkway at preferred and fast speeds, balance testing (Balance Evaluation Systems Test; BESTest), and reported falls history. Seventeen ambulatory adults with CP, mean age 37 years, participated. Gait speed was typically slow at both preferred and fast speeds (mean 0.97 and 1.21m/s, respectively), with short stride length and high cadence relative to speed. There was a significant, large positive relationship between preferred gait speed and BESTest total score (ρ=0.573; pfalls taking shorter strides. Faster gait speed was associated with better performance on tests of anticipatory and postural response components of the BESTest, suggesting potential therapeutic training targets to address either gait speed or balance performance. Future exploration of the implications of slow walking speed and reduced stride length on falls and community engagement, and the potential prognostic value of stride length on identifying falls risk is recommended. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Altered vision destabilizes gait in older persons.

    Science.gov (United States)

    Helbostad, Jorunn L; Vereijken, Beatrix; Hesseberg, Karin; Sletvold, Olav

    2009-08-01

    This study assessed the effects of dim light and four experimentally induced changes in vision on gait speed and footfall and trunk parameters in older persons walking on level ground. Using a quasi-experimental design, gait characteristics were assessed in full light, dim light, and in dim light combined with manipulations resulting in reduced depth vision, double vision, blurred vision, and tunnel vision, respectively. A convenience sample of 24 home-dwelling older women and men (mean age 78.5 years, SD 3.4) with normal vision for their age and able to walk at least 10 m without assistance participated. Outcome measures were gait speed and spatial and temporal parameters of footfall and trunk acceleration, derived from an electronic gait mat and accelerometers. Dim light alone had no effect. Vision manipulations combined with dim light had effect on most footfall parameters but few trunk parameters. The largest effects were found regarding double and tunnel vision. Men increased and women decreased gait speed following manipulations (p=0.017), with gender differences also in stride velocity variability (p=0.017) and inter-stride medio-lateral trunk acceleration variability (p=0.014). Gender effects were related to differences in body height and physical functioning. Results indicate that visual problems lead to a more cautious and unstable gait pattern even under relatively simple conditions. This points to the importance of assessing vision in older persons and correcting visual impairments where possible.

  10. Viability of gait speed test in hospitalized elderly patients.

    Science.gov (United States)

    Martinez, Bruno Prata; Batista, Anne Karine Menezes Santos; Ramos, Isis Resende; Dantas, Júlio Cesar; Gomes, Isabela Barboza; Forgiarini, Luiz Alberto; Camelier, Fernanda Rosa Warken; Camelier, Aquiles Assunção

    2016-01-01

    The gait speed test (GST) is a physical test that can predict falls and aid in the diagnosis of sarcopenia in the elderly. However, to our knowledge, there have been no studies evaluating its reproducibility in hospitalized elderly patients. The objective of this study was to evaluate the safety and reproducibility of the six-meter GST (6GST) in hospitalized elderly patients. This repeated measures study involved hospitalized elderly patients (≥ 60 years of age) who underwent the 6GST by the fifth day of hospitalization, were able to walk without assistance, and presented no signs of dyspnea or pain that would prevent them from performing the test. The 6GST was performed three times in sequence, with a rest period between each test, in a level corridor. Gait speed was measured in meters/second. Reproducibility was assessed by comparing the means, intraclass correlation coefficients (ICCs) and Bland-Altman plots. We evaluated 110 elderly patients in a total of 330 tests. All participants completed all of the tests. The comparisons between the speeds obtained during the three tests showed high ICCs and a low mean bias (Bland-Altman plots). The correlation and accuracy were greatest when the mean maximum speed was compared with that obtained in the third test (1.26 ± 0.44 m/s vs. 1.22 ± 0.44 m/s; ICC = 0.99; p = 0.001; mean bias = 0.04; and limits of agreement = -0.27 to 0.15). The 6GST was proven to be safe and to have good reproducibility in this sample of hospitalized elderly patients. The third measurement seems to correspond to the maximum speed, since the first two measurements underestimated the actual performance. O teste de velocidade de marcha (TVM) é um teste físico que pode predizer quedas e auxiliar no diagnóstico de sarcopenia em idosos da comunidade. Entretanto, pelo que sabemos, não há estudos que avaliaram sua reprodutibilidade em idosos hospitalizados. O objetivo deste estudo foi avaliar a segurança e a reprodutibilidade do TVM de seis

  11. A pilot clinical trial on a Variable Automated Speed and Sensing Treadmill (VASST) for hemiparetic gait rehabilitation in stroke patients.

    Science.gov (United States)

    Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S

    2015-01-01

    Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.

  12. Gait parameter control timing with dynamic manual contact or visual cues

    Science.gov (United States)

    Shi, Peter; Werner, William

    2016-01-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  13. Gait parameter control timing with dynamic manual contact or visual cues.

    Science.gov (United States)

    Rabin, Ely; Shi, Peter; Werner, William

    2016-06-01

    We investigated the timing of gait parameter changes (stride length, peak toe velocity, and double-, single-support, and complete step duration) to control gait speed. Eleven healthy participants adjusted their gait speed on a treadmill to maintain a constant distance between them and a fore-aft oscillating cue (a place on a conveyor belt surface). The experimental design balanced conditions of cue modality (vision: eyes-open; manual contact: eyes-closed while touching the cue); treadmill speed (0.2, 0.4, 0.85, and 1.3 m/s); and cue motion (none, ±10 cm at 0.09, 0.11, and 0.18 Hz). Correlation analyses revealed a number of temporal relationships between gait parameters and cue speed. The results suggest that neural control ranged from feedforward to feedback. Specifically, step length preceded cue velocity during double-support duration suggesting anticipatory control. Peak toe velocity nearly coincided with its most-correlated cue velocity during single-support duration. The toe-off concluding step and double-support durations followed their most-correlated cue velocity, suggesting feedback control. Cue-tracking accuracy and cue velocity correlations with timing parameters were higher with the manual contact cue than visual cue. The cue/gait timing relationships generalized across cue modalities, albeit with greater delays of step-cycle events relative to manual contact cue velocity. We conclude that individual kinematic parameters of gait are controlled to achieve a desired velocity at different specific times during the gait cycle. The overall timing pattern of instantaneous cue velocities associated with different gait parameters is conserved across cues that afford different performance accuracies. This timing pattern may be temporally shifted to optimize control. Different cue/gait parameter latencies in our nonadaptation paradigm provide general-case evidence of the independent control of gait parameters previously demonstrated in gait adaptation paradigms

  14. Why is walker-assisted gait metabolically expensive?

    Science.gov (United States)

    Priebe, Jonathon R; Kram, Rodger

    2011-06-01

    Walker-assisted gait is reported to be ∼200% more metabolically expensive than normal bipedal walking. However, previous studies compared different walking speeds. Here, we compared the metabolic power consumption and basic stride temporal-spatial parameters for 10 young, healthy adults walking without assistance and using 2-wheeled (2W), 4-wheeled (4W) and 4-footed (4F) walker devices, all at the same speed, 0.30m/s. We also measured the metabolic power demand for walking without any assistive device using a step-to gait at 0.30m/s, walking normally at 1.25m/s, and for repeated lifting of the 4F walker mimicking the lifting pattern used during 4F walker-assisted gait. Similar to previous studies, we found that the cost per distance walked was 217% greater with a 4F walker at 0.30m/s compared to unassisted, bipedal walking at 1.25m/s. Compared at the same speed, 0.30m/s, using a 4F walker was still 82%, 74%, and 55% energetically more expensive than walking unassisted, with a 4W walker and a 2W walker respectively. The sum of the metabolic cost of step-to walking plus the cost of lifting itself was equivalent to the cost of walking with a 4F walker. Thus, we deduce that the high cost of 4F walker assisted gait is due to three factors: the slow walking speed, the step-to gait pattern and the repeated lifting of the walker. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Pathways linking regional hyperintensities in the brain and slower gait.

    Science.gov (United States)

    Bolandzadeh, Niousha; Liu-Ambrose, Teresa; Aizenstein, Howard; Harris, Tamara; Launer, Lenore; Yaffe, Kristine; Kritchevsky, Stephen B; Newman, Anne; Rosano, Caterina

    2014-10-01

    Cerebral white matter hyperintensities (WMHs) are involved in the evolution of impaired mobility and executive functions. Executive functions and mobility are also associated. Thus, WMHs may impair mobility directly, by disrupting mobility-related circuits, or indirectly, by disrupting circuits responsible for executive functions. Understanding the mechanisms underlying impaired mobility in late life will increase our capacity to develop effective interventions. To identify regional WMHs most related to slower gait and to examine whether these regional WMHs directly impact mobility, or indirectly by executive functions. Cross-sectional study. Twenty-one WMH variables (i.e., total WMH volume and WMHs in 20 tracts), gait speed, global cognition (Modified Mini-Mental State Examination; 3MS), and executive functions and processing speed (Digit-Symbol Substitution Test; DSST) were assessed. An L1-L2 regularized regression (i.e., Elastic Net model) identified the WMH variables most related to slower gait. Multivariable linear regression models quantified the association between these WMH variables and gait speed. Formal tests of mediation were also conducted. Community-based sample. Two hundred fifty-three adults (mean age: 83years, 58% women, 41% black). Gait speed. In older adults with an average gait speed of 0.91m/sec, total WMH volume, WMHs located in the right anterior thalamic radiation (ATRR) and frontal corpuscallosum (CCF) were most associated with slower gait. There was a >10% slower gait for each standard deviation of WMH in CCF, ATRR or total brain (standardized beta in m/sec [p value]: -0.11 [p=0.046], -0.15 [p=0.007] and -0.14 [p=0.010], respectively). These associations were substantially and significantly attenuated after adjustment for DSST. This effect was stronger for WMH in CCF than for ATRR or total WMH (standardized beta in m/sec [p value]: -0.07 [p=0.190], -0.12 [p=0.024] and -0.10 [p=0.049], respectively). Adjustment for 3MS did not change these

  16. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review.

    Science.gov (United States)

    Mehrholz, J; Harvey, L A; Thomas, S; Elsner, B

    2017-08-01

    Systematic review about randomised trials comparing different training strategies to improve gait in people with spinal cord injuries (SCI). The aim of this systematic review was to compare the effectiveness of body-weight-supported treadmill training (BWSTT) and robotic-assisted gait training with overground gait training and other forms of physiotherapy in people with traumatic SCI. Systematic review conducted by researchers from Germany and Australia. An extensive search was conducted for randomised controlled trials involving people with traumatic SCI that compared either BWSTT or robotic-assisted gait training with overground gait training and other forms of physiotherapy. The two outcomes of interest were walking speed (m s -1 ) and walking distance (m). BWSTT and robotic-assisted gait training were analysed separately, and data were pooled across trials to derive mean between-group differences using a random-effects model. Thirteen randomised controlled trials involving 586 people were identified. Ten trials involving 462 participants compared BWSTT to overground gait training and other forms of physiotherapy, but only nine trials provided useable data. The pooled mean (95% confidence interval (CI)) between-group differences for walking speed and walking distance were -0.03 m s -1 (-0.10 to 0.04) and -7 m (-45 to 31), respectively, favouring overground gait training. Five trials involving 344 participants compared robotic-assisted gait training to overground gait training and other forms of physiotherapy but only three provided useable data. The pooled mean (95% CI) between-group differences for walking speed and walking distance were -0.04 m s -1 (95% CI -0.21 to 0.13) and -6 m (95% CI -86 to 74), respectively, favouring overground gait training. BWSTT and robotic-assisted gait training do not increase walking speed more than overground gait training and other forms of physiotherapy do, but their effects on walking distance are not clear.

  17. Effect of arm swing strategy on local dynamic stability of human gait.

    Science.gov (United States)

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van Dieën, Jaap H

    2015-02-01

    Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. To examine how different modes of arm swing affect gait stability. Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior-posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Excessive arm swing significantly increases local dynamic stability of human gait. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz

    DEFF Research Database (Denmark)

    Cannas, M.; Schaefer, J.; Domenici, P.

    2006-01-01

    A flow-through respirometer and swim tunnel was used to estimate the gait transition speed (Up-c) of striped surfperch Embiotoca lateralis, a labriform swimmer, and to investigate metabolic costs associated with gait transition. The Up-c was defined as the lowest speed at which fish decrease...... the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s-1, LF s-1) was rare (..., either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport (CT) decreased with increasing speed, and then levelled off near Up-c. When speeds =Up...

  19. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.

    Science.gov (United States)

    Fukuoka, Yasuhiro; Fukino, Kota; Habu, Yasushi; Mori, Yoshikazu

    2015-08-04

    We have proposed a bio-inspired gait modulation method, by means of which a simulated quadruped model can successfully perform smooth, autonomous gait transitions from a walk to a trot to a gallop, as observed in animals. The model is equipped with a rhythm generator called a central pattern generator (CPG) for each leg. The lateral neighbouring CPGs are mutually and inhibitorily coupled, and the CPG network is hardwired to produce a trot. Adding only the simple feedback of body tilt to each CPG, which was based on input from the postural reflex, led to the emergence of un-programmed walking and galloping at low and high speeds, respectively. Although this autonomous gait transition was a consequence of postural adaptation, it coincidentally also resulted in the minimization of energy consumption, as observed in real animals. In simulations at a variety of constant speeds the energy cost was lower for walking at low speeds and for galloping at high speeds than it was for trotting. Moreover, each gait transition occurred at the optimal speed, such that the model minimised its energy consumption. Thus, gait transitions in simulations that included the bio-inspired gait modulation method were similar to those observed in animals, even from the perspective of energy consumption. This method should therefore be a preferred choice for motion generation and control in biomimetic quadrupedal locomotion.

  20. Guidelines for Assessment of Gait and Reference Values for Spatiotemporal Gait Parameters in Older Adults: The Biomathics and Canadian Gait Consortiums Initiative

    Directory of Open Access Journals (Sweden)

    Olivier Beauchet

    2017-08-01

    footfalls declined with increasing age (mean values and CoV and demonstrated sex differences (mean values.Conclusions: Based on an international multicenter collaboration, we propose consensus guidelines for gait assessment and spatiotemporal gait analysis based on the recorded footfalls, and reference values for healthy older adults.

  1. Gait characteristics under different walking conditions: Association with the presence of cognitive impairment in community-dwelling older people.

    Directory of Open Access Journals (Sweden)

    Anne-Marie De Cock

    Full Text Available Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear.Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients.The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length, swing time variability, normalised gait speed (corrected for leg length and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints.Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice

  2. Differential associations between dual-task walking abilities and usual gait patterns in healthy older adults-Results from the Baltimore Longitudinal Study of Aging.

    Science.gov (United States)

    Ko, Seung-Uk; Jerome, Gerald J; Simonsick, Eleanor M; Studenski, Stephanie; Hausdorff, Jeffrey M; Ferrucci, Luigi

    2018-04-27

    It is well established that facing a cognitive challenge while carrying out a motor task interferes with the motor task performance, and in general the ability of handling a dual-task declines progressively with aging. However, the reasons for this decline have not been fully elucidated. Understanding the association between usual-walking gait patterns and dual-task walking performance may provide new insights into the mechanisms that lead to gait deterioration in normal aging and its link to motor and cognitive function. Our aim was to assess usual gait parameters in kinematics and kinetics to understand how these parameters are related with a specific task in dual-task walking. We hypothesized that difficulty in dual-task walking would be associated with gait deteriorations as reflected in range of motion and mechanical work expenditure. We tested this hypothesis by quantifying the gait of 383 participants in the Baltimore Longitudinal Study of Aging (68% of whom successfully completed the dual-task walk, 21% failed the motor task, and 11% failed the cognitive task). Compared to successful performers, participants who failed the single motor task had slower gait speed, shorter stride length, higher cadence, and lower range of motion in the knee and ankle joints (p task while walking had longer double support time (p = 0.003), and greater knee absorptive mechanical work (p = 0. 001) and lower ankle generative mechanical work (p task walking may be useful for monitoring subtle and diverse gait deteriorations in aging and possibly for designing interventions for maintaining and regaining proper gait patterns in older adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Gait characteristics after gait-oriented rehabilitation in chronic stroke.

    Science.gov (United States)

    Peurala, Sinikka H; Titianova, Ekaterina B; Mateev, Plamen; Pitkänen, Kauko; Sivenius, Juhani; Tarkka, Ina M

    2005-01-01

    To assess the effects of rehabilitation in thirty-seven ambulatory patients with chronic stroke during three weeks in-patient rehabilitation period. In the intervention group, each patient received 75 min physiotherapy daily every workday including 20 minutes in the electromechanical gait trainer with body-weight support (BWS). In the control group, each patient participated in 45 min conventional physiotherapy daily. Motor ability was assessed with the first five items of the Modified Motor Assessment Scale (MMAS1-5) and ten meters walking speed. Spatio-temporal gait characteristics were recorded with an electrical walkway. The MMAS1-5 (pgait characteristics improved only in the intervention group, as seen in increased Functional Ambulation Profile score (p=0.023), velocity (p=0.023), the step lengths (affected side, p=0.011, non-affected side p=0.040), the stride lengths (p=0.018, p=0.006) and decreased step-time differential (p=0.043). Furthermore, all gait characteristics and other motor abilities remained in the discharge level at the six months in the intervention group. It appears that BWS training gives a long-lasting benefit in gait qualities even in chronic stroke patients.

  4. Gait Characteristics over the Course of a Race in Recreational Marathon Competitors

    Science.gov (United States)

    Bertram, John E. A.; Prebeau-Menezes, Leif; Szarko, Matthew J.

    2013-01-01

    We analyzed gait and function of the supporting limb in participants of a marathon race at three stages: prerace, midrace (18 km), and near the end of the race (36 km). We confirmed that the most successful runners were able to maintain running speed for the duration of the race with little change in speed or gait. Speed slowed progressively…

  5. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    Directory of Open Access Journals (Sweden)

    James Gardiner

    Full Text Available Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  6. Crowd-Sourced Amputee Gait Data: A Feasibility Study Using YouTube Videos of Unilateral Trans-Femoral Gait.

    Science.gov (United States)

    Gardiner, James; Gunarathne, Nuwan; Howard, David; Kenney, Laurence

    2016-01-01

    Collecting large datasets of amputee gait data is notoriously difficult. Additionally, collecting data on less prevalent amputations or on gait activities other than level walking and running on hard surfaces is rarely attempted. However, with the wealth of user-generated content on the Internet, the scope for collecting amputee gait data from alternative sources other than traditional gait labs is intriguing. Here we investigate the potential of YouTube videos to provide gait data on amputee walking. We use an example dataset of trans-femoral amputees level walking at self-selected speeds to collect temporal gait parameters and calculate gait asymmetry. We compare our YouTube data with typical literature values, and show that our methodology produces results that are highly comparable to data collected in a traditional manner. The similarity between the results of our novel methodology and literature values lends confidence to our technique. Nevertheless, clear challenges with the collection and interpretation of crowd-sourced gait data remain, including long term access to datasets, and a lack of validity and reliability studies in this area.

  7. Relationships of Stroke Patients’ Gait Parameters with Fear of Falling

    OpenAIRE

    Park, Jin; Yoo, Ingyu

    2014-01-01

    [Purpose] The purpose of this study was to assess the correlation of gait parameters with fear of falling in stroke survivors. [Subjects] In total, 12 patients with stroke participated. [Methods] The subjects performed on a Biodex Gait Trainer 2 for 5 min to evaluate characteristic gait parameters. The kinematic gait parameters measured were gait speed, step cycle, step length, and time on each foot (step symmetry). All the subjects also completed a fall anxiety survey. [Results] Correlations...

  8. Gait Is Associated with Cognitive Flexibility: A Dual-Tasking Study in Healthy Older People

    Directory of Open Access Journals (Sweden)

    Markus A. Hobert

    2017-05-01

    Full Text Available Objectives: To analyze which gait parameters are primarily influenced by cognitive flexibility, and whether such an effect depends on the walking condition used.Design: Cross-sectional analysis.Setting: Tübingen evaluation of Risk factors for Early detection of Neurodegenerative Disorders.Participants: A total of 661 non-demented individuals (49–80 years.Measurements: A gait assessment with four conditions was performed: a 20 m walk at convenient speed (C, at fast speed (F, at fast speed while checking boxes (FB, and while subtracting serial 7s (FS. Seven gait parameters from a wearable sensor-unit (McRoberts, Netherlands were compared with delta Trail-Making-Test (dTMT values, which is a measure of cognitive flexibility. Walking strategies of good and poor dTMT performers were compared by evaluating the patterns of gait parameters across conditions.Results: Five parameters correlated significantly with the dTMT in the FS condition, two parameters in the F and FB condition, and none in the C condition. Overall correlations were relatively weak. Gait speed was the gait parameter that most strongly correlated with the dTMT (r2 = 7.4%. In good, but not poor, dTMT performers differences between FB and FS were significantly different in variability-associated gait parameters.Conclusion: Older individuals need cognitive flexibility to perform difficult walking conditions. This association is best seen in gait speed. New and particularly relevant for recognition and training of deficits is that older individuals with poor cognitive flexibility have obviously fewer resources to adapt to challenging walking conditions. Our findings partially explain gait deficits in older adults with poor cognitive flexibility.

  9. Evidence of Big Five and Aggressive Personalities in Gait Biomechanics.

    Science.gov (United States)

    Satchell, Liam; Morris, Paul; Mills, Chris; O'Reilly, Liam; Marshman, Paul; Akehurst, Lucy

    2017-01-01

    Behavioral observation techniques which relate action to personality have long been neglected (Furr and Funder in Handbook of research methods in personality psychology, The Guilford Press, New York, 2007) and, when employed, often use human judges to code behavior. In the current study we used an alternative to human coding (biomechanical research techniques) to investigate how personality traits are manifest in gait. We used motion capture technology to record 29 participants walking on a treadmill at their natural speed. We analyzed their thorax and pelvis movements, as well as speed of gait. Participants completed personality questionnaires, including a Big Five measure and a trait aggression questionnaire. We found that gait related to several of our personality measures. The magnitude of upper body movement, lower body movement, and walking speed, were related to Big Five personality traits and aggression. Here, we present evidence that some gait measures can relate to Big Five and aggressive personalities. We know of no other examples of research where gait has been shown to correlate with self-reported measures of personality and suggest that more research should be conducted between largely automatic movement and personality.

  10. Gait and balance deterioration over a 12-month period in multiple sclerosis patients with EDSS scores ≤ 3.0.

    Science.gov (United States)

    Galea, Mary P; Cofré Lizama, L Eduardo; Butzkueven, Helmut; Kilpatrick, Trevor J

    2017-01-01

    It is not currently known whether gait and balance measures are responsive to deterioration of motor function in multiple sclerosis (MS) patients with low EDSS scores (≤3.0). The aim of this study was to quantify MS-related gait and balance deterioration over a 12-month period. Thirty-eight participants with MS (33 female, mean age: 41.1 ± 8.3 years), mean time since diagnosis 2.2 ± 4.1 years, EDSS score ≤3.0 and without clinical evidence of gait deterioration, were recruited. Participants performed walking trials and Functional and Lateral Reach Tests. Kinematics of the ankle and knee, and electromyography of the tibialis anterior and medial gastrocnemius muscles were also measured. Three participants reported relapses with worsening EDSS scores and 4 non-relapsing participants had worse EDSS scores at 12 months. There were significant decreases in mean gait speed, stride length and balance scores, and a significant increase in double support. Marked changes in ankle kinematics, with decreased medial gastrocnemius activity were observed. Gait and balance performance of non-disabled RRMS participants may progressively decline, even in the absence of both acute clinical relapse and change in clinical status measured by the EDSS.

  11. Use of high-speed cinematography and computer generated gait diagrams for the study of equine hindlimb kinematics.

    Science.gov (United States)

    Kobluk, C N; Schnurr, D; Horney, F D; Sumner-Smith, G; Willoughby, R A; Dekleer, V; Hearn, T C

    1989-01-01

    High-speed cinematography with computer aided analysis was used to study equine hindlimb kinematics. Eight horses were filmed at the trot or the pace. Filming was done from the side (lateral) and the back (caudal). Parameters measured from the lateral filming included the heights of the tuber coxae and tailhead, protraction and retraction of the hoof and angular changes of the tarsus and stifle. Abduction and adduction of the limb and tarsal height changes were measured from the caudal filming. The maximum and minimum values plus the standard deviations and coefficients of variations are presented in tabular form. Three gait diagrams were constructed to represent stifle angle versus tarsal angle, metatarsophalangeal height versus protraction-retraction (fetlock height diagram) and tuber coxae and tailhead height versus stride (pelvic height diagram). Application of the technique to the group of horses revealed good repeatability of the gait diagrams within a limb and the diagrams appeared to be sensitive indicators of left/right asymmetries.

  12. Unstable gait due to spasticity of the rectus femoris: gait analysis and motor nerve block.

    Science.gov (United States)

    Gross, R; Leboeuf, F; Rémy-Néris, O; Perrouin-Verbe, B

    2012-12-01

    We present the case of a 54 year-old man presenting with a right Brown-Séquard plus syndrome (BSPS) after a traumatic cervical spinal cord injury. After being operated on with selective tibial neurotomy and triceps surae lengthening because of a right spastic equinus foot, he developed a gait disorder at high speed. The patient complained about an instability of the right knee. Observational gait analysis exhibited an oscillating, flexion/extension motion of the right knee during stance, which was confirmed by gait analysis. Dynamic electromyographic recordings exhibited a clonus of the right rectus femoris (RF) during stance. The spastic activity of the RF and the abnormal knee motion totally reversed after a motor nerve block of the RF, as well as after botulinum toxin type A injection into the RF. We emphasize that complex, spastic gait disorders can benefit from a comprehensive assessment including gait analysis and nerve blocks. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Impaired Economy of Gait and Decreased Six-Minute Walk Distance in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Leslie I. Katzel

    2012-01-01

    Full Text Available Changes in the biomechanics of gait may alter the energy requirements of walking in Parkinson's Disease (PD. This study investigated economy of gait during submaximal treadmill walking in 79 subjects with mild to moderate PD and the relationship between gait economy and 6-minute walk distance (6 MW. Oxygen consumption (VO2 at the self-selected treadmill walking speed averaged 64% of peak oxygen consumption (VO2 peak. Submaximal VO2 levels exceeded 70% of VO2 peak in 30% of the subjects. Overall the mean submaximal VO2 was 51% higher than VO2 levels expected for the speed and grade consistent with severe impairment in economy of gait. There was an inverse relationship between economy of gait and 6MW (r=−0.31, P<0.01 and with the self-selected walking speed (r=−0.35, P<0.01. Thus, the impairment in economy of gait and decreased physiologic reserve result in routine walking being performed at a high percentage of VO2 peak.

  14. Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept.

    Science.gov (United States)

    Shaikh, Muhammad Faraz; Salcic, Zoran; Wang, Kevin I-Kai; Hu, Aiguo Patrick

    2018-03-10

    Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators. Graphical abstract Bipedal information-based gait recognition and stimulation triggering.

  15. [Subjective Gait Stability in the Elderly].

    Science.gov (United States)

    Hirsch, Theresa; Lampe, Jasmin; Michalk, Katrin; Röder, Lotte; Munsch, Karoline; Marquardt, Jonas

    2017-07-10

    It can be assumed that the feeling of gait stability or gait instability in the elderly may be independent of a possible fear of falling or a history of falling when walking. Up to now, there has been a lack of spatiotemporal gait parameters for older people who subjectively feel secure when walking. The aim of the study is to analyse the distribution of various gait parameters for older people who subjectively feel secure when walking. In a cross-sectional study, the gait parameters stride time, step time, stride length, step length, double support, single support, and walking speed were measured using a Vicon three-dimensional motion capture system (Plug-In Gait Lower-Body Marker Set) in 31 healthy people aged 65 years and older (mean age 72 ± 3.54 years) who subjectively feel secure when walking. There was a homogeneous distribution in the gait parameters examined, with no abnormalities. The mean values have a low variance with narrow confidence intervals. This study provides evidence that people who subjectively feel secure when walking demonstrate similarly objective gait parameters..

  16. Clinical gait evaluation of patients with knee osteoarthritis.

    Science.gov (United States)

    Sun, Jun; Liu, Yancheng; Yan, Songhua; Cao, Guanglei; Wang, Shasha; Lester, D Kevin; Zhang, Kuan

    2017-10-01

    Knee osteoarthritis (KOA) is the most common osteoarthritis in lower limbs, and gait measurement is important to evaluate walking function of KOA patients before and after treatment. The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3) is a portable gait analysis system to evaluate gaits. This study is to evaluate the accuracy and reliability of IDEEA3 for gait measurement of KOA patients. Meanwhile, gait differences between KOA patients and healthy subjects are examined. Twelve healthy volunteers were recruited for measurement comparison of gait cycle (GC), cadence, step length, velocity and step counts between a motion analysis system and a high-speed camera (GoPro Hero3). Twenty-three KOA patients were recruited for measurement comparison of former five parameters between GoPro Hero3 and IDEEA3. Paired t-test, Concordance Correlation Coefficient (CCC) and Intraclass Correlation Coefficient (ICC) were used for data analysis. All p-values of paired t-tests for GC, cadence, step length and velocity were greater than 0.05 while all CCC and ICC results were above 0.95. The measurements of GC, cadence, step length, velocity and step counts by motion analysis system are highly consistent with the measurements by GoPro Hero3. The measurements of former parameters by GoPro Hero3 are not statistically different from the measurements by IDEEA3. IDEEA3 can be effectively used for the measurement of GC, cadence, step length, velocity and step counts in KOA patients. The KOA patients walk with longer GC, lower cadence, shorter step length and slower speed compared with healthy subjects in natural speed with flat shoes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  18. Detecting Gait Asymmetry with Wearable Accelerometers

    Science.gov (United States)

    2015-03-18

    by overuse. Common overuse injuries include stress fractures , tendinitis, bursitis, fasciitis, and medial tibial stress syndrome (shin splints) [11...magnitude feature values for subject 1 are shown in (a), before and after repetitive stress injury. Magnitude and pattern features are plotted in...Dudziñski, A. Lees, M. Lake, and M. Wychowañski, “Adjustments in gait symmetry with walking speed in trans-femoral and trans- tibial amputees,” Gait

  19. Relationships of stroke patients' gait parameters with fear of falling.

    Science.gov (United States)

    Park, Jin; Yoo, Ingyu

    2014-12-01

    [Purpose] The purpose of this study was to assess the correlation of gait parameters with fear of falling in stroke survivors. [Subjects] In total, 12 patients with stroke participated. [Methods] The subjects performed on a Biodex Gait Trainer 2 for 5 min to evaluate characteristic gait parameters. The kinematic gait parameters measured were gait speed, step cycle, step length, and time on each foot (step symmetry). All the subjects also completed a fall anxiety survey. [Results] Correlations between gait parameters and fear of falling scores were calculated. There was a moderate degree of correlation between fear of falling scores and the step cycle item of gait parameters. [Conclusions] According to our results, the step cycle gait parameter may be related to increased fall anxiety.

  20. White matter microstructural organization and gait stability in older adults

    Directory of Open Access Journals (Sweden)

    Sjoerd M. Bruijn

    2014-06-01

    Full Text Available Understanding age-related decline in gait stability and the role of alterations in brain structure is crucial. Here, we studied the relationship between white matter microstructural organization using Diffusion Tensor Imaging (DTI and advanced gait stability measures in 15 healthy young adults (range 18-30 years and 25 healthy older adults (range 62-82 years.Among the different gait stability measures, only stride time and the maximum Lyapunov exponent (which quantifies how well participants are able to attenuate small perturbations were found to decline with age. White matter microstructural organization (FA was lower throughout the brain in older adults. We found a strong correlation between FA in the left anterior thalamic radiation and left corticospinal tract on the one hand, and step width and safety margin (indicative of how close participants are to falling over on the other. These findings suggest that white matter FA in tracts connecting subcortical and prefrontal areas is associated with the implementation of an effective stabilization strategy during gait.

  1. Gait strategy changes with acceleration to accommodate the biomechanical constraint on push-off propulsion.

    Science.gov (United States)

    Oh, Keonyoung; Baek, Juhyun; Park, Sukyung

    2012-11-15

    To maintain steady and level walking, push-off propulsion during the double support phase compensates for the energy loss through heel strike collisions in an energetically optimal manner. However, a large portion of daily gait activities also contains transient gait responses, such as acceleration or deceleration, during which the observed dominance of the push-off work or the energy optimality may not hold. In this study, we examined whether the push-off propulsion during the double support phase served as a major energy source for gait acceleration, and we also studied the energetic optimality of accelerated gait using a simple bipedal walking model. Seven healthy young subjects participated in the over-ground walking experiments. The subjects walked at four different constant gait speeds ranging from a self-selected speed to a maximum gait speed, and then they accelerated their gait from zero to the maximum gait speed using a self-selected acceleration ratio. We measured the ground reaction force (GRF) of three consecutive steps and the corresponding leg configuration using force platforms and an optical marker system, respectively, and we compared the mechanical work performed by the GRF during each single and double support phase. In contrast to the model prediction of an increase in the push-off propulsion that is proportional to the acceleration and minimizes the mechanical energy cost, the push-off propulsion was slightly increased, and a significant increase in the mechanical work during the single support phase was observed. The results suggest that gait acceleration occurs while accommodating a feasible push-off propulsion constraint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The Effect of Two Different Cognitive Tests on Gait Parameters during Dual Tasks in Healthy Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Magdalena Hagner-Derengowska

    2016-01-01

    Full Text Available Introduction. The paper aims to evaluate the influence of two different demanding cognitive tasks on gait parameters using BTS SMART system analysis. Patients and Methods. The study comprised 53 postmenopausal women aged 64.5 ± 6.7 years (range: 47–79. For every subject, gait analysis using a BTS SMART system was performed in a dual-task study design under three conditions: (I while walking only (single task, (II walking while performing a simultaneous simple cognitive task (SCT (dual task, and (III walking while performing a simultaneous complex cognitive task (CCT (dual task. Time-space parameters of gait pertaining to the length of a single support phase, double support phase, gait speed, step length, step width, and leg swing speed were analyzed. Results. Performance of cognitive tests during gait resulted in a statistically significant prolongation of the left (by 7% and right (by 7% foot gait cycle, shortening of the length of steps made with the right extremity (by 4%, reduction of speed of swings made with the left (by 11% and right (by 8% extremity, and reduction in gait speed (by 6%. Conclusions. Performance of cognitive tests during gait changes its individual pattern in relation to the level of the difficulty of the task.

  3. A randomised controlled trial evaluating the effect of an individual auditory cueing device on freezing and gait speed in people with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Lynch Deirdre

    2008-12-01

    Full Text Available Abstract Background Parkinson's disease is a progressive neurological disorder resulting from a degeneration of dopamine producing cells in the substantia nigra. Clinical symptoms typically affect gait pattern and motor performance. Evidence suggests that the use of individual auditory cueing devices may be used effectively for the management of gait and freezing in people with Parkinson's disease. The primary aim of the randomised controlled trial is to evaluate the effect of an individual auditory cueing device on freezing and gait speed in people with Parkinson's disease. Methods A prospective multi-centre randomised cross over design trial will be conducted. Forty-seven subjects will be randomised into either Group A or Group B, each with a control and intervention phase. Baseline measurements will be recorded using the Freezing of Gait Questionnaire as the primary outcome measure and 3 secondary outcome measures, the 10 m Walk Test, Timed "Up & Go" Test and the Modified Falls Efficacy Scale. Assessments are taken 3-times over a 3-week period. A follow-up assessment will be completed after three months. A secondary aim of the study is to evaluate the impact of such a device on the quality of life of people with Parkinson's disease using a qualitative methodology. Conclusion The Apple iPod-Shuffle™ and similar devices provide a cost effective and an innovative platform for integration of individual auditory cueing devices into clinical, social and home environments and are shown to have immediate effect on gait, with improvements in walking speed, stride length and freezing. It is evident that individual auditory cueing devices are of benefit to people with Parkinson's disease and the aim of this randomised controlled trial is to maximise the benefits by allowing the individual to use devices in both a clinical and social setting, with minimal disruption to their daily routine. Trial registration The protocol for this study is registered

  4. The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.

    Science.gov (United States)

    Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir

    2017-07-26

    It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.

  5. Effects of noxious stimulation to the back or calf muscles on gait stability.

    Science.gov (United States)

    van den Hoorn, Wolbert; Hug, François; Hodges, Paul W; Bruijn, Sjoerd M; van Dieën, Jaap H

    2015-11-26

    Gait stability is the ability to deal with small perturbations that naturally occur during walking. Changes in motor control caused by pain could affect this ability. This study investigated whether nociceptive stimulation (hypertonic saline injection) in a low back (LBP) or calf (CalfP) muscle affects gait stability. Sixteen participants walked on a treadmill at 0.94ms(-1) and 1.67ms(-1), while thorax kinematics were recorded using 3D-motion capture. From 110 strides, stability (local divergence exponent, LDE), stride-to-stride variability and root mean squares (RMS) of thorax linear velocities were calculated along the three movement axes. At 0.94ms(-1), independent of movement axes, gait stability was lower (higher LDE) and stride-to-stride variability was higher, during LBP and CalfP than no pain. This was more pronounced during CalfP, likely explained by the biomechanical function of calf muscles in gait, as supported by greater mediolateral RMS and stance time asymmetry than in LBP and no pain. At 1.67ms(-1), independent of movement axes, gait stability was greater and stride-to-stride variability was smaller with LBP than no pain and CalfP, whereas CalfP was not different from no pain. Opposite effects of LBP on gait stability between speeds suggests a more protective strategy at the faster speed. Although mediolateral RMS was greater and participants had more asymmetric stance times with CalfP than LBP and no pain, limited effect of CalfP at the faster speed could relate to greater kinematic constraints and smaller effects of calf muscle activity on propulsion at this speed. In conclusion, pain effects on gait stability depend on pain location and walking speed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Asymmetry in gait pattern following tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Læssøe, Uffe; Rasmussen, Sten

    2017-01-01

    INTRODUCTION: Despite the high number of studies evaluating the outcomes following tibial shaft fractures, the literature lacks studies including objective assessment of patients' recovery regarding gait pattern. The purpose of the present study was to evaluate whether gait patterns at 6 and 12...... months post-operatively following intramedullary nailing of a tibial shaft fracture are different compared with a healthy reference population. PATIENTS AND METHODS: The study design was a prospective cohort study. The primary outcome measurement was the gait patterns at 6 and 12 months post......-operatively measured with a 6-metre-long pressure-sensitive mat. The mat registers footprints and present gait speed, cadence as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. RESULTS: 49 patients were included with a mean age of 43.1 years (18...

  7. Change in gait after high tibial osteotomy: A systematic review and meta-analysis.

    Science.gov (United States)

    Lee, Seung Hoon; Lee, O-Sung; Teo, Seow Hui; Lee, Yong Seuk

    2017-09-01

    We conducted a meta-analysis to analyze how high tibial osteotomy (HTO) changes gait and focused on the following questions: (1) How does HTO change basic gait variables? (2) How does HTO change the gait variables in the knee joint? Twelve articles were included in the final analysis. A total of 383 knees was evaluated. There were 237 open wedge (OW) and 143 closed wedge (CW) HTOs. There were 4 level II studies and 8 level III studies. All studies included gait analysis and compared pre- and postoperative values. One study compared CWHTO and unicompartmental knee arthroplasty (UKA), and another study compared CWHTO and OWHTO. Five studies compared gait variables with those of healthy controls. One study compared operated limb gait variables with those in the non-operated limb. Gait speed, stride length, knee adduction moment, and lateral thrust were major variables assessed in 2 or more studies. Walking speed increased and stride length was increased or similar after HTO compared to the preoperative value in basic gait variables. Knee adduction moment and lateral thrust were decreased after HTO compared to the preoperative knee joint gait variables. Change in co-contraction of the medial side muscle after surgery differed depending on the degree of frontal plane alignment. The relationship between change in knee adduction moment and change in mechanical axis angle was controversial. Based on our systematic review and meta-analysis, walking speed and stride length increased after HTO. Knee adduction moment and lateral thrust decreased after HTO compared to the preoperative values of gait variables in the knee joint. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Non-MTC gait cycles: An adaptive toe trajectory control strategy in older adults.

    Science.gov (United States)

    Santhiranayagam, Braveena K; Sparrow, W A; Lai, Daniel T H; Begg, Rezaul K

    2017-03-01

    Minimum-toe-clearance (MTC) above the walking surface is a critical representation of toe-trajectory control due to its association with tripping risk. Not all gait cycles exhibit a clearly defined MTC within the swing phase but there have been few previous accounts of the biomechanical characteristics of non-MTC gait cycles. The present report investigated the within-subject non-MTC gait cycle characteristics of 15 older adults (mean 73.1 years) and 15 young controls (mean 26.1 years). Participants performed the following tasks on a motorized treadmill: preferred speed walking, dual task walking (carrying a glass of water) and a dual-task speed-matched control. Toe position-time coordinates were acquired using a 3 dimensional motion capture system. When MTC was present, toe height at MTC (MTC height ) was extracted. The proportion of non-MTC gait cycles was computed for the age groups and individuals. For non-MTC gait cycles an 'indicative' toe height at the individual's average swing phase time (MTC time ) for observed MTC cycles was averaged across multiple non-MTC gait cycles. In preferred-speed walking Young demonstrated 2.9% non-MTC gait cycles and Older 18.7%. In constrained walking conditions both groups increased non-MTC gait cycles and some older adults revealed over 90%, confirming non-MTC gait cycles as an ageing-related phenomenon in lower limb trajectory control. For all participants median indicative toe-height on non-MTC gait cycles was greater than median MTC height . This result suggests that eliminating the biomechanically hazardous MTC event by adopting more of the higher-clearance non-MTC gait cycles, is adaptive in reducing the likelihood of toe-ground contact. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Towards a Passive Low-Cost In-Home Gait Assessment System for Older Adults

    Science.gov (United States)

    Wang, Fang; Stone, Erik; Skubic, Marjorie; Keller, James M.; Abbott, Carmen; Rantz, Marilyn

    2013-01-01

    In this paper, we propose a webcam-based system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated webcam views. The gait parameters are validated with a GAITRite mat and a Vicon motion capture system in the lab with 13 participants and 44 tests, and again with GAITRite for 8 older adults in senior housing. An excellent agreement with intra-class correlation coefficients of 0.99 and repeatability coefficients between 0.7% and 6.6% was found for walking speed, step time and step length given the limitation of frame rate and voxel resolution. The system was further tested with 10 seniors in a scripted scenario representing everyday activities in an unstructured environment. The system results demonstrate the capability of being used as a daily gait assessment tool for fall risk assessment and other medical applications. Furthermore, we found that residents displayed different gait patterns during their clinical GAITRite tests compared to the realistic scenario, namely a mean increase of 21% in walking speed, a mean decrease of 12% in step time, and a mean increase of 6% in step length. These findings provide support for continuous gait assessment in the home for capturing habitual gait. PMID:24235111

  10. Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial.

    Science.gov (United States)

    Tong, Raymond K; Ng, Maple F; Li, Leonard S

    2006-10-01

    To compare the therapeutic effects of conventional gait training (CGT), gait training using an electromechanical gait trainer (EGT), and gait training using an electromechanical gait trainer with functional electric stimulation (EGT-FES) in people with subacute stroke. Nonblinded randomized controlled trial. Rehabilitation hospital for adults. Fifty patients were recruited within 6 weeks after stroke onset; 46 of these completed the 4-week training period. Participants were randomly assigned to 1 of 3 gait intervention groups: CGT, EGT, or EGT-FES. The experimental intervention was a 20-minute session per day, 5 days a week (weekdays) for 4 weeks. In addition, all participants received their 40-minute sessions of regular physical therapy every weekday as part of their treatment by the hospital. Five-meter walking speed test, Elderly Mobility Scale (EMS), Berg Balance Scale, Functional Ambulatory Category (FAC), Motricity Index leg subscale, FIM instrument score, and Barthel Index. The EGT and EGT-FES groups had statistically significantly more improvement than the CGT group in the 5-m walking speed test (CGT vs EGT, P=.011; CGT vs EGT-FES, P=.001), Motricity Index (CGT vs EGT-FES, P=.011), EMS (CGT vs EGT, P=.006; CGT vs EGT-FES, P=.009), and FAC (CGT vs EGT, P=.005; CGT vs EGT-FES, P=.002) after the 4 weeks of training. No statistically significant differences were found between the EGT and EGT-FES groups in all outcome measures. In this sample with subacute stroke, participants who trained on the electromechanical gait trainer with body-weight support, with or without FES, had a faster gait, better mobility, and improvement in functional ambulation than participants who underwent conventional gait training. Future studies with assessor blinding and larger sample sizes are warranted.

  11. Gait in normal pressure hydrocephalus: characteristics and effects of the CSF tap test

    Directory of Open Access Journals (Sweden)

    Ricardo Krause Martinez de Souza

    Full Text Available ABSTRACT Normal pressure hydrocephalus (NPH, described by Hakim and Adams in 1965, is characterized by gait apraxia, urinary incontinence, and dementia. It is associated with normal cerebrospinal fluid (CSF pressure and ventricular dilation that cannot be attributed to cerebral atrophy. Objectives: To evaluate gait characteristics in patients with idiopathic NPH and investigate the effect of the CSF tap test (CSF-TT on gait. Methods: Twenty-five patients diagnosed with probable idiopathic NPH were submitted to the CSF-TT. The procedure aimed to achieve changes in gait parameters. Results: Fifteen gait parameters were assessed before and after the CSF-TT. Five showed a statistically significant improvement (p < 0.05: walking speed (p < 0.001, cadence (p < 0.001, step length (p < 0.001, en bloc turning (p = 0.001, and step height (p = 0.004. Conclusion: This study demonstrated that gait speed was the most responsive parameter to the CSF-TT, followed by cadence, step length, en bloc turning, and step height.

  12. Gait disorders in patients with fibromyalgia.

    Science.gov (United States)

    Auvinet, Bernard; Bileckot, Richard; Alix, Anne-Sophie; Chaleil, Denis; Barrey, Eric

    2006-10-01

    The objective of this study was to compare gait in patients with fibromyalgia and in matched controls. Measurements must be obtained in patients with fibromyalgia, as the evaluation scales for this disorder are semi-quantitative. We used a patented gait analysis system (Locometrix Centaure Metrix, France) developed by the French National Institute for Agricultural Research. Relaxed walking was evaluated in 14 women (mean age 50+/-5 years; mean height 162+/-5 cm; and mean body weight 68+/-13 kg) meeting American College of Rheumatology criteria for fibromyalgia and in 14 controls matched on sex, age, height, and body weight. Gait during stable walking was severely altered in the patients. Walking speed was significantly diminished (Pfibromyalgia.

  13. Effects of Postprandial Blood Pressure on Gait Parameters in Older People

    Directory of Open Access Journals (Sweden)

    Shailaja Nair

    2016-04-01

    Full Text Available Postprandial hypotension (PPH, a fall in systolic blood pressure (SBP within 2 h of a meal, may detrimentally affect gait parameters and increase the falls risk in older people. We aimed to determine the effects of postprandial SBP on heart rate (HR, gait speed, and stride length, double-support time and swing time variability in older subjects with and without PPH. Twenty-nine subjects were studied on three days: glucose (“G”, water and walk (“WW”, glucose and walk (“GW”. Subjects consumed a glucose drink on “G” and “GW” and water on “WW”. The “G” day determined which subjects had PPH. On “WW” and “GW” gait was analyzed. Sixteen subjects demonstrated PPH. In this group, there were significant changes in gait speed (p = 0.040 on “WW” and double-support time variability (p = 0.027 on “GW”. The area under the curve for the change in gait parameters from baseline was not significant on any study day. Among subjects without PPH, SBP increased on “WW” (p < 0.005 and all gait parameters remained unchanged on all study days. These findings suggest that by changing gait parameters, PPH may contribute to an increased falls risk in the older person with PPH.

  14. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.

    Science.gov (United States)

    Regnaux, Jean-Philippe; Saremi, Kaveh; Marehbian, Jon; Bussel, Bernard; Dobkin, Bruce H

    2008-01-01

    Two commercial robotic devices, the Gait Trainer (GT) and the Lokomat (LOKO), assist task-oriented practice of walking. The gait patterns induced by these motor-driven devices have not been characterized and compared. A healthy participant chose the most comfortable gait pattern on each device and for treadmill (TM) walking at 1, 2 (maximum for the GT), and 3 km/h and over ground at similar speeds. A system of accelerometers on the thighs and feet allowed the calculation of spatiotemporal features and accelerations during the gait cycle. At the 1 and 2 km/h speed settings, single-limb stance times were prolonged on the devices compared with overground walking. Differences on the LOKO were decreased by adjusting the hip and knee angles and step length. At the 3 km/h setting, the LOKO approximated the participant's overground parameters. Irregular accelerations and decelerations from toe-off to heel contact were induced by the devices, especially at slower speeds. The LOKO and GT impose mechanical constraints that may alter leg accelerations-decelerations during stance and swing phases, as well as stance duration, especially at their slower speed settings, that are not found during TM and overground walking. The potential impact of these perturbations on training to improve gait needs further study.

  15. Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W

    2017-09-01

    Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Shedding light on walking in the dark: the effects of reduced lighting on the gait of older adults with a higher-level gait disorder and controls

    Directory of Open Access Journals (Sweden)

    Gruendlinger Leor

    2005-08-01

    Full Text Available Abstract Objective To study the effects of reduced lighting on the gait of older adults with a high level gait disorder (HLGD and to compare their response to that of healthy elderly controls. Methods 22 patients with a HLGD and 20 age-matched healthy controls were studied under usual lighting conditions (1000 lumens and in near darkness (5 lumens. Gait speed and gait dynamics were measured under both conditions. Cognitive function, co-morbidities, depressive symptoms, and vision were also evaluated. Results Under usual lighting conditions, patients walked more slowly, with reduced swing times, and increased stride-to-stride variability, compared to controls. When walking under near darkness conditions, both groups slowed their gait. All other measures of gait were not affected by lighting in the controls. In contrast, patients further reduced their swing times and increased their stride-to-stride variability, both stride time variability and swing time variability. The unique response of the patients was not explained by vision, mental status, co-morbidities, or the values of walking under usual lighting conditions. Conclusion Walking with reduced lighting does not affect the gait of healthy elderly subjects, except for a reduction in speed. On the other hand, the gait of older adults with a HLGD becomes more variable and unsteady when they walk in near darkness, despite adapting a slow and cautious gait. Further work is needed to identify the causes of the maladaptive response among patients with a HLGD and the potential connection between this behavior and the increased fall risk observed in these patients.

  17. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    Science.gov (United States)

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  18. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    Science.gov (United States)

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking

  19. Gait impairment in cervical spondylotic myelopathy: comparison with age- and gender-matched healthy controls.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-12-01

    Gait impairment is a primary symptom of cervical spondylotic myelopathy (CSM); however, little is known about specific kinetic and kinematic gait parameters. The objectives of the study were: (1) to compare gait patterns of people with untreated CSM to those of age- and gender-matched healthy controls; (2) to examine the effect of gait speed on kinematic and kinetic parameters.

  20. Motor switching and motor adaptation deficits contribute to freezing of gait in Parkinson's disease

    NARCIS (Netherlands)

    Mohammadi, F.; Bruijn, S.M.; Vervoort, G.; van Wegen, E.E.H.; Kwakkel, G.; Verschueren, S.; Nieuwboer, A.

    2015-01-01

    Background. Patients with freezing of gait (FOG) have more difficulty with switching tasks as well as controlling the spatiotemporal parameters of gait than patients without FOG. Objective. To compare the ability of patients with and without FOG to adjust their gait to sudden speed switching and to

  1. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force

    NARCIS (Netherlands)

    Abellan van Kan, G.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.M.; Gillette Guyonnet, S.; Inzitari, M.; Nourhashemi, F.; Onder, G.; Ritz, P; Salva, A.; Visser, M.; Vellas, B.

    2009-01-01

    Introduction: The use of a simple, safe, and easy to perform assessment tool, like gait speed, to evaluate vulnerability to adverse outcomes in community-dwelling older people is appealing, but its predictive capacity is still questioned. The present manuscript summarises the conclusions of an

  2. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait

    NARCIS (Netherlands)

    Eckhardt, Martine M; Mulder, Mascha C Borgerhoff; Horemans, Herwin L; van der Woude, Lucas; Ribbers, Gerard M

    2011-01-01

    OBJECTIVE: To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. DESIGN: Clinical experimental

  3. The effects of high custom made shoes on gait characteristics and patient satisfaction in hemiplegic gait

    NARCIS (Netherlands)

    Eckhardt, Martine M.; Mulder, Mascha C. Borgerhoff; Horemans, Herwin L.; van der Woude, Luc H.; Ribbers, Gerard M.

    2011-01-01

    Objective: To determine the effects of a temporary high custom made orthopaedic shoe on functional mobility, walking speed, and gait characteristics in hemiplegic stroke patients. In addition, interference of attentional demands and patient satisfaction were studied. Design: Clinical experimental

  4. Changes in gait performance over several years are associated with recurrent falls status in community-dwelling older women at high risk of fracture.

    Science.gov (United States)

    Scott, David; McLaughlin, Patrick; Nicholson, Geoff C; Ebeling, Peter R; Stuart, Amanda L; Kay, Deborah; Sanders, Kerrie M

    2015-03-01

    Gait analysis is a recommended geriatric assessment for falls risk and sarcopenia; however, previous research utilises measurements at a single time point only. It is presently unclear how changes in gait over several years influence risk of recurrent falls in older adults. We investigated 135 female volunteers (mean age±SD: 76.7±5.0 years; range: 70-92 years) at high risk of fracture. Gait parameters (speed, cadence, step length, step width, swing time and double support phase) were assessed using the GAITRite Electronic Walkway System at four annual clinics over ∼3.7±0.5 years. Participants reported incident falls monthly for 3.7±1.2 years. Increasing gait speed (odds ratio: 0.96; 95% confidence interval 0.93, 0.99) and step length (0.87; 0.77, 0.98) from baseline to final follow-up was associated with reduced likelihood of being a recurrent faller over the study period. No significant associations were observed for baseline gait parameters (all P≥0.05). At the second follow-up (2.8±0.6 years), an increase in swing time (0.65; 0.43, 0.98) was associated with reduced likelihood, while an increase in double support phase (1.31; 1.04, 1.66) was associated with increased likelihood, for being a recurrent faller in the subsequent 1.3 years following this time point. Changes in gait parameters over several years are significantly associated with the likelihood of being a recurrent faller among community-dwelling older women at high risk of fracture. Further research is required to develop gait monitoring guidelines and gait parameter decline cut points that may be utilised by clinicians to identify older adults at risk of incident falls and sarcopenia. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.

    Science.gov (United States)

    Genthe, Katlin; Schenck, Christopher; Eicholtz, Steven; Zajac-Cox, Laura; Wolf, Steven; Kesar, Trisha M

    2018-04-01

    Objectives Gait training interventions that target paretic propulsion induce improvements in walking speed and function in individuals post-stroke. Previously, we demonstrated that able-bodied individuals increase propulsion unilaterally when provided real-time biofeedback targeting anterior ground reaction forces (AGRF). The purpose of this study was to, for the first time, investigate short-term effects of real-time AGRF gait biofeedback training on post-stroke gait. Methods Nine individuals with post-stroke hemiparesis (6 females, age = 54 ± 12.4 years 39.2 ± 24.4 months post-stroke) completed three 6-minute training bouts on an instrumented treadmill. During training, visual and auditory biofeedback were provided to increase paretic AGRF during terminal stance. Gait biomechanics were evaluated before training, and during retention tests conducted 2, 15, and 30 minutes post-training. Primary dependent variables were paretic and non-paretic peak AGRF; secondary variables included paretic and non-paretic peak trailing limb angle, plantarflexor moment, and step length. In addition to evaluating the effects of biofeedback training on these dependent variables, we compared effects of a 6-minute biofeedback training bout to a non-biofeedback control condition. Results Compared to pre-training, significantly greater paretic peak AGRFs were generated during the 2, 15, and 30-minute retention tests conducted after the 18-minute biofeedback training session. Biofeedback training induced no significant effects on the non-paretic leg. Comparison of a 6-minute biofeedback training bout with a speed-matched control bout without biofeedback demonstrated a main effect for training type, with greater peak AGRF generation during biofeedback. Discussion Our results suggest that AGRF biofeedback may be a feasible and promising gait training strategy to target propulsive deficits in individuals post-stroke.

  6. Fear of falling and gait parameters in older adults with and without fall history.

    Science.gov (United States)

    Makino, Keitaro; Makizako, Hyuma; Doi, Takehiko; Tsutsumimoto, Kota; Hotta, Ryo; Nakakubo, Sho; Suzuki, Takao; Shimada, Hiroyuki

    2017-12-01

    Fear of falling (FOF) is associated with spatial and temporal gait parameters in older adults. FOF is prevalent among older adults, both those with and without fall history. It is still unclear whether the relationships between FOF and gait parameters are affected by fall history. The aim of the present study was to compare gait parameters by the presence of FOF and fall history. A total of 3575 older adults (mean age 71.7 years, 49.7% female) met the inclusion criteria for the present study. We assessed the presence of fall history and FOF by face-to-face interview, and gait parameters (gait speed, stride length, step rate, double support time and variation of stride length) at a comfortable speed using a computerized electronic walkway. Prevalences of fall history and FOF were as follows: non-fallers without FOF 52.6% (n = 1881); fallers without FOF 6.3% (n = 227); non-fallers with FOF 34.4% (n = 1229); and fallers with FOF 6.7% (n = 238). Analysis of covariance showed significant differences among the four groups in all gait variables even after adjusting for age, sex and number of medications used. It should be noted that non-fallers with FOF showed significantly slower gait speed, shorter stride length and longer double support time than did non-fallers without FOF (P fall history. The assessment of FOF might be helpful for better understanding of age-related changes in gait control. Geriatr Gerontol Int 2017; 17: 2455-2459. © 2017 Japan Geriatrics Society.

  7. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up.

    Science.gov (United States)

    Ng, Maple F W; Tong, Raymond K Y; Li, Leonard S W

    2008-01-01

    This study aimed to assess the effectiveness of gait training using an electromechanical gait trainer with or without functional electrical stimulation for people with subacute stroke. This was a nonblinded randomized controlled trial with a 6-month follow-up. Fifty-four subjects were recruited within 6 weeks after stroke onset and were randomly assigned to 1 of 3 gait intervention groups: conventional overground gait training treatment (CT, n=21), electromechanical gait trainer (GT, n=17) and, electromechanical gait trainer with functional electrical stimulation (GT-FES, n=16). All subjects were to undergo an assigned intervention program comprising a 20-minute session every weekday for 4 weeks. The outcome measures were Functional Independence Measure, Barthel Index, Motricity Index leg subscale, Elderly Mobility Scale (EMS), Berg Balance Scale, Functional Ambulatory Category (FAC), and 5-meter walking speed test. Assessments were made at baseline, at the end of the 4-week intervention program, and 6 months after the program ended. By intention-to-treat and multivariate analysis, statistically significant differences showed up in EMS (Wilks' lambda=0.743, P=0.005), FAC (Wilks' lambda=0.744, P=0.005) and gait speed (Wilks' lambda=0.658, Pgait training that used an electromechanical gait trainer compared with conventional overground gait training. The training effect was sustained through to the 6-month follow-up after the intervention.

  8. Association between gait abnormality and malnutrition in a community-dwelling elderly population.

    Science.gov (United States)

    Misu, Shogo; Asai, Tsuyoshi; Doi, Takehiko; Sawa, Ryuichi; Ueda, Yuya; Saito, Takashi; Nakamura, Ryo; Murata, Shunsuke; Sugimoto, Taiki; Yamada, Minoru; Ono, Rei

    2017-08-01

    Malnutrition is common in older adults, and contributes to the risk of falls and functional impairment. Gait performance also contributes to falls and functional impairment; however, the association between malnutrition and gait performance remains unclear. The purpose of the present study was to investigate the association between malnutrition risk and gait performance. The study participants included 204 community-dwelling older adults with a mean age of 73.4 ± 4.3 years. Nutritional status was evaluated using the short version of the Mini-Nutritional Assessment. A score of 11 points was used as the cut-off, and the participants were categorized into two groups: ≤11, malnutrition-risk group; and ≥12, well-nourished group. Gait performance was assessed by gait speed and walking smoothness. Walking smoothness was quantified by harmonic ratios (HR), which were derived from vertical (VT), mediolateral (ML) and anteroposterior trunk accelerations, recorded during over-ground walking. Skeletal muscle mass index, handgrip strength and physical functions were also measured. HR in the ML direction was significantly lower in the malnutrition-risk group than the well-nourished group (P = 0.002); however, no differences between the two groups were observed in gait speed or HR in the VT and anteroposterior directions. The relationship between malnutrition and HR in the ML direction was independent of skeletal muscle mass index, handgrip strength, physical function, gait speed, and other confounders (P malnutrition is related to decreased walking smoothness in the ML direction, suggesting that nutritional status affects lateral trunk control during walking. Geriatr Gerontol Int 2017; 17: 1155-1160. © 2016 Japan Geriatrics Society.

  9. Plantar Pressure During Gait in Pregnant Women.

    Science.gov (United States)

    Bertuit, Jeanne; Leyh, Clara; Rooze, Marcel; Feipel, Véronique

    2016-11-01

    During pregnancy, physical and hormonal modifications occur. Morphologic alterations of the feet are found. These observations can induce alterations in plantar pressure. This study sought to investigate plantar pressures during gait in the last 4 months of pregnancy and in the postpartum period. A comparison with nulliparous women was conducted to investigate plantar pressure modifications during pregnancy. Fifty-eight women in the last 4 months of pregnancy, nine postpartum women, and 23 healthy nonpregnant women (control group) performed gait trials on an electronic walkway at preferred speeds. The results for the three groups were compared using analysis of variance. During pregnancy, peak pressure and contact area decreased for the forefoot and rearfoot. These parameters increased significantly for the midfoot. The gait strategy seemed to be lateralization of gait with an increased contact area of the lateral midfoot and both reduced pressure and a later peak time on the medial forefoot. In the postpartum group, footprint parameters were modified compared with the pregnant group, indicating a trend toward partial return to control values, although differences persisted between the postpartum and control groups. Pregnant women had altered plantar pressures during gait. These findings could define a specific pattern of gait footprints in late pregnancy because plantar pressures had characteristics that could maintain a stable and safe gait.

  10. First signs of elderly gait for women.

    Science.gov (United States)

    Kaczmarczyk, Katarzyna; Wiszomirska, Ida; Błażkiewicz, Michalina; Wychowański, Michał; Wit, Andrzej

    2017-06-27

    The aims of this study have been twofold: to attempt to reduce the number of spatiotemporal parameters used for describing gait through the factor analysis and component analysis; and to explore the critical age of decline for other gait parameters for healthy women. A total of 106 women (aged ≥ 40 years old (N = 76) and ≤ 31 years old (N = 30)) were evaluated using a pressure-sensitive mat (Zebris Medical System, Tübingen, Germany) for collecting spatiotemporal gait parameters. The factor analysis identified 2 factors - labelled Time and Rhythm - that accounted for 72% of the variation in significant free-gait parameters; the principal component analysis identified 4 of these parameters that permit full clinical evaluation of gait quality. No difference was found between the groups in terms of the values of parameters reflecting the temporal nature of gait (Rhythm), namely step time, stride time and cadence, whereas significant differences were found for total double support phase (p gait, we selected 3 parameters: total double support, stride time and velocity. We concluded that the women taking part in the experiment manifested significant signs of senile gait after the age of 60 years old, with the first symptoms thereof already manifesting themselves after 50 years of age. We show that among 26 spatiotemporal parameters that may be used for characterizing gait, at least a half of them may be omitted in the assessment of gait correctness; a finding that may be useful in clinical practice. The finding that the onset of senile gait occurs in the case of women after the age of 60 years old, in turn, may be useful in evaluating the ability for performing types of physical work that mainly require ambulation. Med Pr 2017;68(4):441-448. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  11. Erratum to: Effects of Three Types of Exercise Interventions on Healthy Old Adults' Gait Speed : A Systematic Review and Meta-Analysis (vol 45, pg 1627, 2015)

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Lesinski, Melanie; Gäbler, Martijn; VanSwearingen, Jessie M.; Malatesta, Davide; Granacher, Urs

    Page 1630, column 2, section 2.3, paragraph 2, lines 15–20: The following sentence, which previously read: To determine the effectiveness of an exercise intervention in relation to gait speed, we computed between-subject effect size (ES) using the implemented formula in Review Manager version 5.3

  12. Treadmill sideways gait training with visual blocking for patients with brain lesions.

    Science.gov (United States)

    Kim, Tea-Woo; Kim, Yong-Wook

    2014-09-01

    [Purpose] The aim of this study was to verify the effect of sideways treadmill training with and without visual blocking on the balance and gait function of patients with brain lesions. [Subjects] Twenty-four stroke and traumatic brain injury subjects participated in this study. They were divided into two groups: an experimental group (12 subjects) and a control group (12 subjects). [Methods] Each group executed a treadmill training session for 20 minutes, three times a week, for 6 weeks. The sideways gait training on the treadmill was performed with visual blocking by the experimental group and with normal vision by the control group. A Biodex Gait Trainer 2 was used to assess the gait function. It was used to measure walking speed, walking distance, step length, and stance time on each foot. The Five-Times-Sit-To-Stand test (FTSST) and Timed Up and Go test (TUG) were used as balance measures. [Results] The sideways gait training with visual blocking group showed significantly improved walking speed, walking distance, step length, and stance time on each foot after training; FTSST and TUG times also significantly improved after training in the experimental group. Compared to the control group, the experimental group showed significant increases in stance time on each foot. [Conclusion] Sideways gait training on a treadmill with visual blocking performed by patients with brain lesions significantly improved their balance and gait function.

  13. Walking speed-related changes in stride time variability: effects of decreased speed

    Directory of Open Access Journals (Sweden)

    Dubost Veronique

    2009-08-01

    Full Text Available Abstract Background Conflicting results have been reported regarding the relationship between stride time variability (STV and walking speed. While some studies failed to establish any relationship, others reported either a linear or a non-linear relationship. We therefore sought to determine the extent to which decrease in self-selected walking speed influenced STV among healthy young adults. Methods The mean value, the standard deviation and the coefficient of variation of stride time, as well as the mean value of stride velocity were recorded while steady-state walking using the GAITRite® system in 29 healthy young adults who walked consecutively at 88%, 79%, 71%, 64%, 58%, 53%, 46% and 39% of their preferred walking speed. Results The decrease in stride velocity increased significantly mean values, SD and CoV of stride time (p Conclusion The results support the assumption that gait variability increases while walking speed decreases and, thus, gait might be more unstable when healthy subjects walk slower compared with their preferred walking speed. Furthermore, these results highlight that a decrease in walking speed can be a potential confounder while evaluating STV.

  14. Can Tai Chi training impact fractal stride time dynamics, an index of gait health, in older adults? Cross-sectional and randomized trial studies.

    Directory of Open Access Journals (Sweden)

    Brian J Gow

    Full Text Available To determine if Tai Chi (TC has an impact on long-range correlations and fractal-like scaling in gait stride time dynamics, previously shown to be associated with aging, neurodegenerative disease, and fall risk.Using Detrended Fluctuation Analysis (DFA, this study evaluated the impact of TC mind-body exercise training on stride time dynamics assessed during 10 minute bouts of overground walking. A hybrid study design investigated long-term effects of TC via a cross-sectional comparison of 27 TC experts (24.5 ± 11.8 yrs experience and 60 age- and gender matched TC-naïve older adults (50-70 yrs. Shorter-term effects of TC were assessed by randomly allocating TC-naïve participants to either 6 months of TC training or to a waitlist control. The alpha (α long-range scaling coefficient derived from DFA and gait speed were evaluated as outcomes.Cross-sectional comparisons using confounder adjusted linear models suggest that TC experts exhibited significantly greater long-range scaling of gait stride time dynamics compared with TC-naïve adults. Longitudinal random-slopes with shared baseline models accounting for multiple confounders suggest that the effects of shorter-term TC training on gait dynamics were not statistically significant, but trended in the same direction as longer-term effects although effect sizes were very small. In contrast, gait speed was unaffected in both cross-sectional and longitudinal comparisons.These preliminary findings suggest that fractal-like measures of gait health may be sufficiently precise to capture the positive effects of exercise in the form of Tai Chi, thus warranting further investigation. These results motivate larger and longer-duration trials, in both healthy and health-challenged populations, to further evaluate the potential of Tai Chi to restore age-related declines in gait dynamics.The randomized trial component of this study was registered at ClinicalTrials.gov (NCT01340365.

  15. Adaptive changes in spatiotemporal gait characteristics in women during pregnancy.

    Science.gov (United States)

    Błaszczyk, Janusz W; Opala-Berdzik, Agnieszka; Plewa, Michał

    2016-01-01

    Spatiotemporal gait cycle characteristics were assessed at early (P1), and late (P2) pregnancy, as well as at 2 months (PP1) and 6 months (PP2) postpartum. A substantial decrease in walking speed was observed throughout the pregnancy, with the slowest speed (1±0.2m/s) being during the third trimester. Walking at slower velocity resulted in complex adaptive adjustments to their spatiotemporal gait pattern, including a shorter step length and an increased duration of both their stance and double-support phases. Duration of the swing phase remained the least susceptible to changes. Habitual walking velocity (1.13±0.2m/s) and the optimal gait pattern were fully recovered 6 months after childbirth. Documented here adaptive changes in the preferred gait pattern seem to result mainly from the altered body anthropometry leading to temporary balance impairments. All the observed changes within stride cycle aimed to improve gait safety by focusing on its dynamic stability. The pregnant women preferred to walk at a slower velocity which allowed them to spend more time in double-support compared with their habitual pattern. Such changes provided pregnant women with a safer and more tentative ambulation that reduced the single-support period and, hence, the possibility of instability. As pregnancy progressed a significant increase in stance width and a decrease in step length was observed. Both factors allow also for gait stability improvement. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Assessment of the correlations between gait speed in post-stroke patients and the time from stroke onset, the level of motor control in the paretic lower limb, proprioception, visual field impairment and functional independence

    Directory of Open Access Journals (Sweden)

    Drużbicki Mariusz

    2016-09-01

    Full Text Available Introduction: Gait recovery is one of the main objectives in the rehabilitation of post-stroke patients. The study aim was to assess the correlations between gait speed in post-stroke hemiparetic patients and the level of motor control in the paretic lower limb, the time from stroke onset, the subjects’ age as well as the impairment of proprioception and visual field.

  17. Lower limb progressive resistance training improves leg strength but not gait speed or balance in Parkinson's disease: a systematic review and meta-analysis.

    Science.gov (United States)

    Tillman, Alex; Muthalib, Makii; Hendy, Ashlee M; Johnson, Liam G; Rantalainen, Timo; Kidgell, Dawson J; Enticott, Peter G; Teo, Wei-Peng

    2015-01-01

    The use of progressive resistance training (PRT) to improve gait and balance in people with Parkinson's disease (PD) is an emerging area of interest. However, the main effects of PRT on lower limb functions such as gait, balance, and leg strength in people with PD remain unclear. Therefore, the aim of the meta-analysis is to evaluate the evidence surrounding the use of PRT to improve gait and balance in people with PD. Five electronic databases, from inception to December 2014, were searched to identify the relevant studies. Data extraction was performed by two independent reviewers and methodological quality was assessed using the PEDro scale. Standardized mean differences (SMD) and 95% confidence intervals (CIs) of fixed and random effects models were used to calculate the effect sizes between experimental and control groups and I (2) statistics were used to determine levels of heterogeneity. In total, seven studies were identified consisting of 172 participants (experimental n = 84; control n = 88). The pooled results showed a moderate but significant effect of PRT on leg strength (SMD 1.42, 95% CI 0.464-2.376); however, no significant effects were observed for gait speed (SMD 0.418, 95% CI -0.219 to 1.055). No significant effects were observed for balance measures included in this review. In conclusion, our results showed no discernable effect of PRT on gait and balance measures, although this is likely due to the lack of studies available. It may be suggested that PRT be performed in conjunction with balance or task-specific functional training to elicit greater lower limb functional benefits in people with PD.

  18. Balance and Gait Represent Independent Domains of Mobility in Parkinson Disease

    Science.gov (United States)

    Horak, Fay B.; Carlson-Kuhta, Patricia; Nutt, John G.; Salarian, Arash

    2016-01-01

    Background The Instrumented Stand and Walk (ISAW) test, which includes 30 seconds of stance, step initiation, gait, and turning, results in many objective balance and gait metrics from body-worn inertial sensors. However, it is not clear which metrics provide independent information about mobility. Objective It was hypothesized that balance and gait represent several independent domains of mobility and that not all domains would be abnormal in individuals with Parkinson disease (PD) or would change with levodopa therapy. Design This was a cross-sectional study. Methods A factor analysis approach was used to identify independent measures of mobility extracted from the ISAW in 100 participants with PD and 21 control participants. First, a covariance analysis showed that postural sway measures were independent of gait measures. Then, the factor analysis revealed 6 independent factors (mobility domains: sway area, sway frequency, arm swing asymmetry, trunk motion during gait, gait speed, and cadence) that accounted for 87% of the variance of performance across participants. Results Sway area, gait speed, and trunk motion differed between the PD group in the off-levodopa state and the control group, but sway frequency (but not sway area) differed between the PD group in the off-levodopa state and the control group. Four of the 6 factors changed significantly with levodopa (off to on): sway area, sway frequency, trunk motion during gait, and cadence. When participants were on levodopa, the sway area increased compared with off levodopa, becoming more abnormal, whereas the other 3 significant metrics moved toward, but did not reach, the healthy control values. Limitations Exploratory factor analysis was limited to the PD population. Conclusions The different sensitivity various balance and gait domains to PD and to levodopa also support neural control of at least 6 independent mobility domains, each of which warrants clinical assessment for impairments in mobility. PMID

  19. Dynamic optimization of a biped model: Energetic walking gaits with different mechanical and gait parameters

    Directory of Open Access Journals (Sweden)

    Kang An

    2015-05-01

    Full Text Available Energy consumption is one of the problems for bipedal robots walking. For the purpose of studying the parameter effects on the design of energetic walking bipeds with strong adaptability, we use a dynamic optimization method on our new walking model to first investigate the effects of the mechanical parameters, including mass and length distribution, on the walking efficiency. Then, we study the energetic walking gait features with the combinations of walking speed and step length. Our walking model is designed upon Srinivasan’s model. Dynamic optimization is used for a free search with minimal constraints. The results show that the cost of transport of a certain gait increases with the increase in the mass and length distribution parameters, except for that the cost of transport decreases with big length distribution parameter and long step length. We can also find a corresponding range of walking speed and step length, in which the variation in one of the two parameters has no obvious effect on the cost of transport. With fixed mechanical parameters, the cost of transport increases with the increase in the walking speed. There is a speed–step length relationship for walking with minimal cost of transport. The hip torque output strategy is adjusted in two situations to meet the walking requirements.

  20. Normal human gait patterns in Peruvian individuals: an exploratory assessment using VICON motion capture system

    Science.gov (United States)

    Dongo, R.; Moscoso, M.; Callupe, R.; Pajaya, J.; Elías, D.

    2017-11-01

    Gait analysis is of clinical relevance for clinicians. However, normal gait patterns used in foreign literature could be different from local individuals. The aim of this study was to determine the normal gait patterns and parameters of Peruvian individuals in order to have a local referent for clinical assessments and making diagnosis and treatment Peruvian people with lower motor neuron injuries. A descriptive study with 34 subjects was conducted to assess their gait cycle. VICON® cameras were used to capture body movements. For the analyses, we calculated spatiotemporal gait parameters and average angles of displacement of the hip, knee, and ankle joints with their respective 95% confidence intervals. The results showed gait speed was 0.58m/s, cadence was 102.1steps/min, and the angular displacement of the hip, knee and ankle joints were all lower than those described in the literature. In the graphs, gait cycles were close to those reported in previous studies, but the parameters of speed, cadence and angles of displacements are lower than the ones shown in the literature. These results could be used as a better reference pattern in the clinical setting.

  1. Quantitative analysis of gait in the visually impaired.

    Science.gov (United States)

    Nakamura, T

    1997-05-01

    In this comparative study concerning characteristics of independent walking by visually impaired persons, we used a motion analyser system to perform gait analysis of 15 late blind (age 36-54, mean 44.3 years), 15 congenitally blind (age 39-48, mean 43.8 years) and 15 sighted persons (age 40-50, mean 44.4 years) while walking a 10-m walkway. All subjects were male. Compared to the sighted, late blind and congenitally blind persons had a significantly slower walking speed, shorter stride length and longer time in the stance phase of gait. However, the relationships between gait parameters in the late and congenitally blind groups were maintained, as in the sighted group. In addition, the gait of the late blind showed a tendency to approximate the gait patterns of the congenitally blind as the duration of visual loss progressed. Based on these results we concluded that the gait of visually impaired persons, through its active use of non-visual sensory input, represents an attempt to adapt to various environmental conditions in order to maintain a more stable posture and to effect safe walking.

  2. Flexed-knee gait in children with cerebral palsy.

    Science.gov (United States)

    Church, C; Ge, J; Hager, S; Haumont, T; Lennon, N; Niiler, T; Hulbert, R; Miller, F

    2018-04-01

    Aims The purpose of this study was to evaluate the long-term outcome of adolescents with cerebral palsy who have undergone single-event multilevel surgery for a flexed-knee gait, followed into young adulthood using 3D motion analysis. Patients and Methods A total of 59 young adults with spastic cerebral palsy, with a mean age of 26 years (sd 3), were enrolled into the study in which their gait was compared with an evaluation that had taken place a mean of 12 years (sd 2) previously. At their visits during adolescence, the children walked with excessive flexion of the knee at initial contact and surgical or therapeutic interventions were not controlled between visits. Results Based on the change in flexed-knee gait over approximately ten years, improvements were seen in increased Gait Deviation Index (p gait (p = 0.007) suggested a mild decline in function. Quality-of-life measures showed that these patients fell within normal limits compared with typical young adults in areas other than physical function. Conclusion While some small significant changes were noted, little clinically significant change was seen in function and gait, with gross motor function maintained between adolescence and young adulthood. Cite this article: Bone Joint J 2018;100-B:549-56.

  3. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners.

    Science.gov (United States)

    McGregor, Stephen J; Busa, Michael A; Skufca, Joseph; Yaggie, James A; Bollt, Erik M

    2009-06-01

    Regularity statistics have been previously applied to walking gait measures in the hope of gaining insight into the complexity of gait under different conditions and in different populations. Traditional regularity statistics are subject to the requirement of stationarity, a limitation for examining changes in complexity under dynamic conditions such as exhaustive exercise. Using a novel measure, control entropy (CE), applied to triaxial continuous accelerometry, we report changes in complexity of walking and running during increasing speeds up to exhaustion in highly trained runners. We further apply Karhunen-Loeve analysis in a new and novel way to the patterns of CE responses in each of the three axes to identify dominant modes of CE responses in the vertical, mediolateral, and anterior/posterior planes. The differential CE responses observed between the different axes in this select population provide insight into the constraints of walking and running in those who may have optimized locomotion. Future comparisons between athletes, healthy untrained, and clinical populations using this approach may help elucidate differences between optimized and diseased locomotor control.

  4. Pregnancy-related changes in center of pressure during gait.

    Science.gov (United States)

    Bertuit, Jeanne; Leyh, Clara; Rooze, Marcel; Feipe, Véronique

    2017-01-01

    Physical and hormonal modifications occuring during the pregnancy, can lead to an increase in postural instability and to a higher risk of falls during gait. The first objective was to describe the center of pressure (COP) during late pregnancy at different gait velocity. Comparison of nulliparous women with postpartum women were conducted in order to investigate the effects of pregnancy. The second objective was to analyse COP variability between pregnant and non-pregnant women in order to investigate the effects of pregnancy on gait variability. Fifty-eight pregnant women in the last four months of pregnancy, nine postpartum women and twenty-three healthy non-pregnant women performed gait trials at three different speeds: preferred, slow and fast. In the last four months of pregnancy gait velocity decreased. During the pregnancy, gait velocity decreased by 22%, stopover time increased by 6-12%, COP excursion XY decreased by 5% and COP velocity decreased by 16% and 20% along the anteroposterior and transverse axes, respectively. After delivery, gait velocity increased by 3% but remained a lower compared to non-pregnant women (-12%). Intra-individual variability was greater for non-pregnant than pregnant women. COP parameters were influenced by pregnancy. This suggests that pregnant women establish very specific and individual strategies with the aim of maintaining stability during gait.

  5. Model Predictive Control-based gait pattern generation for wearable exoskeletons.

    Science.gov (United States)

    Wang, Letian; van Asseldonk, Edwin H F; van der Kooij, Herman

    2011-01-01

    This paper introduces a new method for controlling wearable exoskeletons that do not need predefined joint trajectories. Instead, it only needs basic gait descriptors such as step length, swing duration, and walking speed. End point Model Predictive Control (MPC) is used to generate the online joint trajectories based on these gait parameters. Real-time ability and control performance of the method during the swing phase of gait cycle is studied in this paper. Experiments are performed by helping a human subject swing his leg with different patterns in the LOPES gait trainer. Results show that the method is able to assist subjects to make steps with different step length and step duration without predefined joint trajectories and is fast enough for real-time implementation. Future study of the method will focus on controlling the exoskeletons in the entire gait cycle. © 2011 IEEE

  6. Functional improvement after carotid endarterectomy: demonstrated by gait analysis and acetazolamide stress brain perfusion SPECT

    International Nuclear Information System (INIS)

    Kim, J. S.; Kim, G. E.; Yoo, J. Y.; Kim, D. G.; Moon, D. H.

    2005-01-01

    Scientific documentation of neurologic improvement following carotid endarterectomy (CEA) has not been established. The purpose of this prospective study is to investigate whether CEA performed for the internal carotid artery flow lesion improves gait and cerebrovascular hemodynamic status in patients with gait disturbance. We prospectively performed pre- and postCEA gait analysis and acetazolamide stress brain perfusion SPECT (Acz-SPECT) with Tc-99m ECD in 91 patients (M/F: 81/10, mean age: 64.1 y) who had gait disturbance before receiving CEA. Gait performance was assessed using a Vicon 370 motion analyzer. The gait improvement after CEA was correlated to cerebrovascular hemodynamic change as well as symptom duration. 12 hemiparetic stroke patients (M/F=9/3, mean age: 51 y) who did not receive CEA as a control underwent gait analysis twice in a week interval to evaluate whether repeat testing of gait performance shows learning effect. Of 91 patients, 73 (80%) patients showed gait improvement (change of gait speed > 10%) and 42 (46%) showed marked improvement (change of gait speed > 20%), but no improvement was observed in control group at repeat test. Post-operative cerebrovascular hemodynamic improvement was noted in 49 (54%) of 91 patients. There was marked gait improvement in patients group with cerebrovascular hemodynamic improvement compared to no change group (p<0.05). Marked gait improvement and cerebrovascular hemodynamic improvement were noted in 53% and 61% of the patient who had less than 3 month history of symptom compared to 31% and 24% of the patients who had longer than 3 months, respectively (p<0.05). Marked gait improvement was obtained in patients who had improvement of cerebrovascular hemodynamic status on Acz-SPECT after CEA. These results suggest functional improvement such as gait can result from the improved perfusion of misery perfusion area, which is viable for a longer period compared to literatures previously reported

  7. Impact of Dual Task on Parkinson's Disease, Stroke and Ataxia Patients' Gait: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Michelly Arjona Maciel

    2014-01-01

    Full Text Available Introduction: Performing dual task for neurological patients is complex and it can be influenced by the localization of the neurological lesion. Objective: Comparing the impact of dual task on gait in patients with Parkinson's disease, stroke and ataxia. Method: Subjects with Parkinson's disease (PD in initial phase, stroke and ataxia, with independent gait, were evaluated while doing simple gait, with cognitive, motor and cognitive-motor gait demand, assessing average speed and number of steps. Results: Ataxia and stroke patients, compared with PD, showed an increase in the number of steps and decrease the average speed on the march with cognitive demand. Subjects with PD performed better on tasks when compared to others. Conclusion: In this study the impact of dual task was lower in Parkinson's disease patients.

  8. The relationship between anterior pelvic tilt and gait, balance in patient with chronic stroke.

    Science.gov (United States)

    Kim, Myoung-Kwon; Kim, Seong-Gil; Shin, Young-Jun; Choi, Eun-Hong; Choe, Yu-Won

    2018-01-01

    [Purpose] The aim of this study is to find out the association between anterior pelvic tilt and gait and balance in chronic stroke. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. A palpation meter was employed to measure the anterior inclination of the pelvis. A GAITRite system automates measuring temporal and spatial gait parameters. A 10-Meter Walk test was used to measure gait speed. The Timed Up and Go test was used to measure the dynamic balance ability and gait ability of the participants. A BioRescue was used to assess balance by measuring the moving distance and area of the center of pressure. [Results] There were significant negative correlations between pelvic anterior tilt and velocity, step length, and stride. There were significant positive correlations between velocity and cadence, step length, and stride length. There were significant negative correlations between velocity and cycle time, H-H base, TUG, and 10MWT. There was significant negative correlation between cadence and cycle time and H-H base. [Conclusion] This study showed a negative correlation between pelvic anterior tilt and gait function including gait speed and step length.

  9. Gait characteristics and their discriminative power in geriatric patients with and without cognitive impairment

    NARCIS (Netherlands)

    Kikkert, Lisette H. J. C.; Vuillerme, Nicolas; van Campen, Jos P.; Appels, Bregje A.; Hortobagyi, Tibor; Lamoth, Claudine J.

    2017-01-01

    Background: A detailed gait analysis (e.g., measures related to speed, self-affinity, stability, and variability) can help to unravel the underlying causes of gait dysfunction, and identify cognitive impairment. However, because geriatric patients present with multiple conditions that also affect

  10. Gait characteristics and their discriminative power in geriatric patients with and without cognitive impairment.

    Science.gov (United States)

    Kikkert, Lisette H J; Vuillerme, Nicolas; van Campen, Jos P; Appels, Bregje A; Hortobágyi, Tibor; Lamoth, Claudine J C

    2017-08-15

    A detailed gait analysis (e.g., measures related to speed, self-affinity, stability, and variability) can help to unravel the underlying causes of gait dysfunction, and identify cognitive impairment. However, because geriatric patients present with multiple conditions that also affect gait, results from healthy old adults cannot easily be extrapolated to geriatric patients. Hence, we (1) quantified gait outcomes based on dynamical systems theory, and (2) determined their discriminative power in three groups: healthy old adults, geriatric patients with- and geriatric patients without cognitive impairment. For the present cross-sectional study, 25 healthy old adults recruited from community (65 ± 5.5 years), and 70 geriatric patients with (n = 39) and without (n = 31) cognitive impairment from the geriatric dayclinic of the MC Slotervaart hospital in Amsterdam (80 ± 6.6 years) were included. Participants walked for 3 min during single- and dual-tasking at self-selected speed while 3D trunk accelerations were registered with an IPod touch G4. We quantified 23 gait outcomes that reflect multiple gait aspects. A multivariate model was built using Partial Least Square- Discriminant Analysis (PLS-DA) that best modelled participant group from gait outcomes. For single-task walking, the PLS-DA model consisted of 4 Latent Variables that explained 63 and 41% of the variance in gait outcomes and group, respectively. Outcomes related to speed, regularity, predictability, and stability of trunk accelerations revealed with the highest discriminative power (VIP > 1). A high proportion of healthy old adults (96 and 93% for single- and dual-task, respectively) was correctly classified based on the gait outcomes. The discrimination of geriatric patients with and without cognitive impairment was poor, with 57% (single-task) and 64% (dual-task) of the patients misclassified. While geriatric patients vs. healthy old adults walked slower, and less regular, predictable, and

  11. The Use of Cuff Weights for Aquatic Gait Training in People Post-Stroke with Hemiparesis.

    Science.gov (United States)

    Nishiyori, Ryota; Lai, Byron; Lee, Do Kyeong; Vrongistinos, Konstantinos; Jung, Taeyou

    2016-03-01

    This study aimed to examine how spatiotemporal and kinematic gait variables are influenced by the application of a cuff weight during aquatic walking in people post-stroke. The secondary purpose was to compare the differences in gait responses between the placements of cuff weights on the proximal (knee weight) and distal end (ankle weight) of the shank. Twenty-one participants post-stroke with hemiparesis aged 66.3 ± 11.3 years participated in a cross-sectional comparative study. Participants completed two aquatic walking trials at their self-selected maximum walking speed across an 8-m walkway under each of the three conditions: 1) walking with a knee weight; 2) walking with an ankle weight; and 3) walking with no weight. Cuff weights were worn on the paretic leg of each participant. Gait speed, cadence, step width and joint kinematics of the hip, knee and ankle joints were recorded by a customized three-dimensional underwater motion analysis system. Mean aquatic walking speeds significantly increased with the use of cuff weights when compared to walking with no weight. Changes in gait variables were found in the non-paretic leg with the addition of weight, while no significant changes were found in the paretic leg. The results suggest that the use of additional weight can be helpful if the goal of gait training is to improve walking speed of people post-stroke during pool floor walking. However, it is interesting to note that changes in gait variables were not found in the paretic limb where favourable responses were expected to occur. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Lower Limb Progressive Resistance Training Improves Leg Strength but Not Gait Speed or Balance in Parkinson’s Disease: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Tillman, Alex; Muthalib, Makii; Hendy, Ashlee M.; Johnson, Liam G.; Rantalainen, Timo; Kidgell, Dawson J.; Enticott, Peter G.; Teo, Wei-Peng

    2015-01-01

    The use of progressive resistance training (PRT) to improve gait and balance in people with Parkinson’s disease (PD) is an emerging area of interest. However, the main effects of PRT on lower limb functions such as gait, balance, and leg strength in people with PD remain unclear. Therefore, the aim of the meta-analysis is to evaluate the evidence surrounding the use of PRT to improve gait and balance in people with PD. Five electronic databases, from inception to December 2014, were searched to identify the relevant studies. Data extraction was performed by two independent reviewers and methodological quality was assessed using the PEDro scale. Standardized mean differences (SMD) and 95% confidence intervals (CIs) of fixed and random effects models were used to calculate the effect sizes between experimental and control groups and I2 statistics were used to determine levels of heterogeneity. In total, seven studies were identified consisting of 172 participants (experimental n = 84; control n = 88). The pooled results showed a moderate but significant effect of PRT on leg strength (SMD 1.42, 95% CI 0.464–2.376); however, no significant effects were observed for gait speed (SMD 0.418, 95% CI −0.219 to 1.055). No significant effects were observed for balance measures included in this review. In conclusion, our results showed no discernable effect of PRT on gait and balance measures, although this is likely due to the lack of studies available. It may be suggested that PRT be performed in conjunction with balance or task-specific functional training to elicit greater lower limb functional benefits in people with PD. PMID:25852550

  13. The Effect of Auditory Cueing on the Spatial and Temporal Gait Coordination in Healthy Adults.

    Science.gov (United States)

    Almarwani, Maha; Van Swearingen, Jessie M; Perera, Subashan; Sparto, Patrick J; Brach, Jennifer S

    2017-12-27

    Walk ratio, defined as step length divided by cadence, indicates the coordination of gait. During free walking, deviation from the preferential walk ratio may reveal abnormalities of walking patterns. The purpose of this study was to examine the impact of rhythmic auditory cueing (metronome) on the neuromotor control of gait at different walking speeds. Forty adults (mean age 26.6 ± 6.0 years) participated in the study. Gait characteristics were collected using a computerized walkway. In the preferred walking speed, there was no significant difference in walk ratio between uncued (walk ratio = .0064 ± .0007 m/steps/min) and metronome-cued walking (walk ratio = .0064 ± .0007 m/steps/min; p = .791). A higher value of walk ratio at the slower speed was observed with metronome-cued (walk ratio = .0071 ± .0008 m/steps/min) compared to uncued walking (walk ratio = .0068 ± .0007 m/steps/min; p metronome-cued (walk ratio = .0060 ± .0009 m/steps/min) compared to uncued walking (walk ratio = .0062 ± .0009 m/steps/min; p = .005). In healthy adults, the metronome cues may become an attentional demanding task, and thereby disrupt the spatial and temporal integration of gait at nonpreferred speeds.

  14. Evaluating alternative gait strategies using evolutionary robotics.

    Science.gov (United States)

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  15. Stepping strategies for regulating gait adaptability and stability.

    Science.gov (United States)

    Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H

    2013-03-15

    Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (padaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Assessment of test-retest reliability and internal consistency of the Wisconsin Gait Scale in hemiparetic post-stroke patients

    Directory of Open Access Journals (Sweden)

    Guzik Agnieszka

    2016-09-01

    Full Text Available Introduction: A proper assessment of gait pattern is a significant aspect in planning the process of teaching gait in hemiparetic post-stroke patients. The Wisconsin Gait Scale (WGS is an observational tool for assessing post-stroke patients’ gait. The aim of the study was to assess test-retest reliability and internal consistency of the WGS and examine correlations between gait assessment made with the WGS and gait speed, Brunnström scale, Ashworth’s scale and the Barthel Index.

  17. How doing a dynamical analysis of gait movement may provide information about Autism

    Science.gov (United States)

    Wu, D.; Torres, E.; Nguyen, J.; Mistry, S.; Whyatt, C.; Kalampratsidou, V.; Kolevzon, A.; Jose, J.

    Individuals with Autism Spectrum Disorder (ASD) are known to have deficits in language and social skills. They also have deficits on how they move. Why individuals get ASD? It is not generally known. There is, however, one particular group of children with a SHANK3 gene deficiency (Phelan-McDermid Syndrome (PMDS)) that present symptoms similar to ASD. We have been searching for universal mechanism in ASD going beyond the usual heterogeneous ASD symptoms. We studied motions in gaits for both PMDS patients and idiopathic ASD. We have examined their motions continuously at milliseconds time scale, away from naked eye detection. Gait is a complex process, requiring a complex integration and coordination of different joints' motions. Significant information about the development and/or deficits in the sensory system is hidden in our gaits. We discovered that the speed smoothness in feet motion during gaits is a critical feature that provides a significant distinction between subjects with ASD and typical controls. The differences in appearance of the speed fluctuations suggested a different coordination mechanism in subjects with disorders. Our work provides a very important feature in gait motion that has significant physiological information.

  18. A cable-driven locomotor training system for restoration of gait in human SCI.

    Science.gov (United States)

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Correlation between balance, speed, and walking ability in individuals with chronic hemiparesis

    Directory of Open Access Journals (Sweden)

    Heloisa Maria Jácome de Sousa Britto

    Full Text Available Abstract Alterations in balance and gait are frequently present in patients with hemiparesis. This study aimed at determining whether there is a correlation between static and functional balance, gait speed and walking capacity. To that end, 17 individuals with chronic hemiparesis of both sexes (58.8% men and 42.25 women, mean age of 56.3 ± 9.73 years, took part in the study. Static balance was assessed by computerized baropodometry, under two different sensory conditions: eyes open (EO and eyes closed (EC. Functional balance was evaluated by Berg Balance Scale and walking ability by the Functional Ambulation Classification. Gait speed was assessed by kinemetry. The Kolmogorov-Smirnov test was used to verify data distribution normality. Parametric variables were correlated by Pearson's test and their non-parametric parameters by Spearman's test. Functional balance showed a positive correlation with gait speed (p=0.005; r=0.64 and walking ability (p = 0.019; r = 0.56. Anteroposterior (AP and mediolateral (ML alterations with EO and EC exhibited negative correlations with gait speed (EO: AP amplitude (p = 0.0049 and r = -0.48; mean ML deviation (p = 0.019 and r =-0.56/ EC: mean AP deviation (p = 0.018 and r = -0.56 and mean ML deviation (p = 0.032 and r = -0.52; AP amplitude (p = 0.014 and r = -0.57 and ML amplitude (p = 0.032 and r = -0.52; postural instability (p = 0.019 and r = -0.55 and walking ability (EO: mean AP deviation (p = 0.05 and r = -0.47 and AP amplitude (p = 0.024 and r = -0.54. The results suggest correlations between static and functional balance and gait speed and walking ability, and that balance training can be an important component of gait recovery protocols.

  20. Restoration of ankle movements with the ActiGait implantable drop foot stimulator: a safe and reliable treatment option for permanent central leg palsy.

    Science.gov (United States)

    Martin, Klaus Daniel; Polanski, Witold Henryk; Schulz, Anne-Kathrin; Jöbges, Michael; Hoff, Hansjoerg; Schackert, Gabriele; Pinzer, Thomas; Sobottka, Stephan B

    2016-01-01

    OBJECT The ActiGait drop foot stimulator is a promising technique for restoration of lost ankle function by an implantable hybrid stimulation system. It allows ankle dorsiflexion by active peroneal nerve stimulation during the swing phase of gait. In this paper the authors report the outcome of the first prospective study on a large number of patients with stroke-related drop foot. METHODS Twenty-seven patients who experienced a stroke and with persisting spastic leg paresis received an implantable ActiGait drop foot stimulator for restoration of ankle movement after successful surface test stimulation. After 3 to 5 weeks, the stimulator was activated, and gait speed, gait endurance, and activation time of the system were evaluated and compared with preoperative gait tests. In addition, patient satisfaction was assessed using a questionnaire. RESULTS Postoperative gait speed significantly improved from 33.9 seconds per 20 meters to 17.9 seconds per 20 meters (p < 0.0001), gait endurance from 196 meters in 6 minutes to 401 meters in 6 minutes (p < 0.0001), and activation time from 20.5 seconds to 10.6 seconds on average (p < 0.0001). In 2 patients with nerve injury, surgical repositioning of the electrode cuff became necessary. One patient showed a delayed wound healing, and in another patient the system had to be removed because of a wound infection. Marked improvement in mobility, social participation, and quality of life was confirmed by 89% to 96% of patients. CONCLUSIONS The ActiGait implantable drop foot stimulator improves gait speed, endurance, and quality of life in patients with stroke-related drop foot. Regarding gait speed, the ActiGait system appears to be advantageous compared with foot orthosis or surface stimulation devices. Randomized trials with more patients and longer observation periods are needed to prove the long-term benefit of this device.

  1. Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement.

    Science.gov (United States)

    Schauer, Michael; Mauritz, Karl-Heinz

    2003-11-01

    To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.

  2. Effect of Metformin on Handgrip Strength, Gait Speed, Myostatin Serum Level, and Health-related Quality of Life: A Double Blind Randomized Controlled Trial among Non-diabetic Pre-frail Elderly Patients.

    Science.gov (United States)

    Laksmi, Purwita Wijaya; Setiati, Siti; Tamin, Tirza Z; Soewondo, Pradana; Rochmah, Wasilah; Nafrialdi, Nafrialdi; Prihartono, Joedo

    2017-04-01

    sarcopenia contributes to the development of frailty syndrome. Frailty syndrome is potentially improved by modifying insulin resistance, inflammation, and myostatin level. This study is aimed to investigate the effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life (HR-QoL) among non-diabetic pre-frail elderly patients. a double blind randomized controlled trial study was conducted on non-diabetic elderly outpatients aged ≥ 60 years with pre-frail status based on phenotype and/ or index criteria (Cardiovascular Health Study and/ or Frailty Index 40 items) consecutively recruited from March 2015 to June 2016 at Cipto Mangunkusumo Hospital. One-hundred-twenty subjects who met the research criteria were randomized and equally assigned into 3 x 500 mg metformin or placebo group. The study outcomes were measured at baseline and after 16 weeks of intervention. out of 120 subjects, 43 subjects in metformin group and 48 subjects in placebo group who completed the intervention. There was a significant improvement on the mean gait speed of metformin group by 0.39 (0.77) second or 0.13 (0.24) meter/second that remained significant after adjusting for important prognostic factors (p = 0.024). There was no significant difference on handgrip strength, myostatin serum level, and HR-QoL between both groups. 3 x 500 mg metformin for 16 weeks was statistically significant and clinically important in improving usual gait speed as one of the HR-QoL dimensions, but did not significantly improve the EQ-5D index score, handgrip strength, nor myostatin serum level.

  3. Dual-tasking and gait in people with Mild Cognitive Impairment. The effect of working memory

    Directory of Open Access Journals (Sweden)

    Phillips Natalie A

    2009-09-01

    Full Text Available Abstract Background Cognition and mobility in older adults are closely associated and they decline together with aging. Studies evaluating associations between cognitive factors and gait performance in people with Mild Cognitive Impairment (MCI are scarce. In this study, our aim was to determine whether specific cognitive factors have a more identifiable effect on gait velocity during dual-tasking in people with MCI. Methods Fifty-five participants, mean age 77.7 (SD = 5.9, 45% women, with MCI were evaluated for global cognition, working memory, executive function, and attention. Gait Velocity (GV was measured under a single-task condition (single GV and under two dual-task conditions: 1 while counting backwards (counting GV, 2 while naming animals (verbal GV. Multivariable linear regression analysis was used to examine associations with an alpha-level of 0.05. Results Participants experienced a reduction in GV while engaging in dual-task challenges (p Conclusion In older adults with MCI, low working memory performance was associated with slow GV. Dual-task conditions showed the strongest associations with gait slowing. Our findings suggest that cortical control of gait is associated with decline in working memory in people with MCI.

  4. Dual task interference on postural sway, postural transitions and gait in people with Parkinson's disease and freezing of gait.

    Science.gov (United States)

    de Souza Fortaleza, Ana Claudia; Mancini, Martina; Carlson-Kuhta, Patty; King, Laurie A; Nutt, John G; Chagas, Eliane Ferrari; Freitas, Ismael Forte; Horak, Fay B

    2017-07-01

    Freezing of gait (FoG) is associated with less automatic gait and more impaired cognition, balance and postural transitions compared to people with PD who do not have FoG. However, it is unknown whether dual-task cost during postural sway, postural transitions (such as gait initiation and turning), and gait are more in subjects with Parkinson's disease (PD) who have freezing of gait (FoG+) compared to those who do not have FoG (FoG-). Here, we hypothesized that the effects of a cognitive dual task on postural sway, postural transitions and gait would be larger in FoG+ than FoG-. Thirty FoG- and 24 FoG+ performed an Instrumented Stand and Walk test in OFF medication state, with and without a secondary cognitive task (serial subtraction by 3s). Measures of postural sway, gait initiation, turning, and walking were extracted using body-worn inertial sensors. FoG+ showed significantly larger dual task cost than FoG- for several gait metrics, but not during postural sway or postural transitions. During walking, FoG+ exhibited a larger dual task cost than FoG- resulting in shorter stride length and slower stride velocity. During standing, FoG+ showed a larger postural sway compared to FoG- and during gait initiation, FoG+, but not FoG-, showed a longer first step duration during the dual-task condition compared to single-task condition (interaction effect, p=0.04). During turning, both groups showed a slower turn peak speed in the dual-task condition compared to single task condition. These findings partly support our hypothesis that dual task cost on walking is greater in FoG+ than FoG-. Copyright © 2017. Published by Elsevier B.V.

  5. [Gait characteristics of women with fibromyalgia: a premature aging pattern].

    Science.gov (United States)

    Góes, Suelen M; Leite, Neiva; de Souza, Ricardo M; Homann, Diogo; Osiecki, Ana C V; Stefanello, Joice M F; Rodacki, André L F

    2014-01-01

    Fibromyalgia is a condition which involves chronic pain. Middle-aged individuals with fibromyalgia seem to exhibit changes in gait pattern, which may prematurely expose them to a gait pattern which resembles that found in the elderly population. To determine the 3D spatial (linear and angular) gait parameters of middle-aged women with fibromyalgia and compare to elderly women without this condition. 25 women (10 in the fibromyalgia group and 15 in the elderly group) volunteered to participate in the study. Kinematics was performed using an optoelectronic system, and linear and angular kinematic variables were determined. There was no difference in walking speed, stride length, cadence, hip, knee and ankle joints range of motion between groups, except the pelvic rotation, in which the fibromyalgia group showed greater rotation (P<0.05) compared to the elderly group. Also, there was a negative correlation with pelvic rotation and gluteus pain (r = -0.69; P<0.05), and between pelvic obliquity and greater trochanter pain (r = -0.69; P<0.05) in the fibromyalgia group. Middle-aged women with fibromyalgia showed gait pattern resemblances to elderly, women, which is characterized by reduced lower limb ROM, stride length and walking speed. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  6. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    Science.gov (United States)

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  7. Use of hippotherapy in gait training for hemiparetic post-stroke.

    Science.gov (United States)

    Beinotti, Fernanda; Correia, Nilzete; Christofoletti, Gustavo; Borges, Guilherme

    2010-12-01

    To evaluate the hippotherapy influence on gait training in post-stroke hemiparetic individuals. The study was constituted of 20 individuals divided into two groups. Group A performed the conventional treatment while group B the conventional treatment along with hippotherapy during 16 weeks. The patients were evaluated by using the Functional Ambulation Category Scale, Fugl-Meyer Scale, only the lower limbs and balance sub items, Berg Balance Scale, and functional assessment of gait (cadence) in the beginning and end of the treatment. Significant improvements were observed in the experimental group including motor impairment in lower limbs (p=0.004), balance, over time (p=0.007) but a significant trend between groups (p=0.056). The gait independence, cadence and speed were not significantly in both groups (p=0.93, 0.69 and 0.44). Hippotherapy associated with conventional physical therapy demonstrates a positive influence in gait training, besides bringing the patients' gait standard closer to normality than the control group.

  8. Use of hippotherapy in gait training for hemiparetic post-stroke

    Directory of Open Access Journals (Sweden)

    Fernanda Beinotti

    2010-12-01

    Full Text Available OBJECTIVE: To evaluate the hippotherapy influence on gait training in post-stroke hemiparetic individuals. METHOD: The study was constituted of 20 individuals divided into two groups. Group A performed the conventional treatment while group B the conventional treatment along with hippotherapy during 16 weeks. The patients were evaluated by using the Functional Ambulation Category Scale, Fugl-Meyer Scale, only the lower limbs and balance sub items, Berg Balance Scale, and functional assessment of gait (cadence in the beginning and end of the treatment. RESULTS: Significant improvements were observed in the experimental group including motor impairment in lower limbs (p=0.004, balance, over time (p=0.007 but a significant trend between groups (p=0.056. The gait independence, cadence and speed were not significantly in both groups (p=0.93, 0.69 and 0.44. CONCLUSION: Hippotherapy associated with conventional physical therapy demonstrates a positive influence in gait training, besides bringing the patients' gait standard closer to normality than the control group.

  9. The effect of virtual reality on gait variability.

    Science.gov (United States)

    Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas

    2010-07-01

    Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.

  10. Positive outcomes following gait therapy intervention for hip osteoarthritis: A longitudinal study.

    Science.gov (United States)

    Solomonow-Avnon, Deborah; Herman, Amir; Levin, Daniel; Rozen, Nimrod; Peled, Eli; Wolf, Alon

    2017-10-01

    Footwear-generated biomechanical manipulation of lower-limb joints was shown to beneficially impact gait and quality of life in knee osteoarthritis patients, but has not been tested in hip osteoarthritis patients. We examined a customized gait treatment program using a biomechanical device shown in previous investigations to be capable of manipulating hip biomechanics via foot center of pressure (COP) modulation. The objective of this study was to assess the treatment program for hip osteoarthritis patients, enrolled in a 1-year prospective investigation, by means of objective gait and spatiotemporal parameters, and subjective quality of life measures. Gait analysis and completion of questionnaires were performed at the start of the treatment (baseline), and after 3, 6, and 12 months. Outcome parameters were evaluated over time using linear mixed effects models, and association between improvement in quality of life measures and change in objective outcomes was tested using mixed effect linear regression models. Quality of life measures improved compared to baseline, accompanied by increased gait speed and cadence. Sagittal-plane hip joint kinetics, kinematics, and spatiotemporal parameters changed throughout the study compared to baseline, in a manner suggesting improvement of gait. The most substantial improvement occurred within 3 months after treatment initiation, after which improvement approximately plateaued, but was sustained at 12 months. Speed and cadence, as well as several sagittal-plane gait parameters, were significant predictors of improvement in quality of life. Evidence suggests that a biomechanical gait therapy program improves subjective and objective outcomes measures and is a valid treatment option for hip osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2222-2232, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Transcranial Direct Current Stimulation to Enhance Dual-Task Gait Training in Parkinson's Disease: A Pilot RCT.

    Science.gov (United States)

    Schabrun, Siobhan M; Lamont, Robyn M; Brauer, Sandra G

    2016-01-01

    To investigate the feasibility and safety of a combined anodal transcranial direct current stimulation (tDCS) and dual task gait training intervention in people with Parkinson's Disease (PD) and to provide data to support a sample size calculation for a fully powered trial should trends of effectiveness be present. A pilot, randomized, double-blind, sham-controlled parallel group trial with 12 week follow-up. A university physiotherapy department. Sixteen participants diagnosed with PD received nine dual task gait training sessions over 3 weeks. Participants were randomized to receive either active or sham tDCS applied for the first 20 minutes of each session. The primary outcome was gait speed while undertaking concurrent cognitive tasks (word lists, counting, conversation). Secondary measures included step length, cadence, Timed Up and Go, bradykinesia and motor speed. Gait speed, step length and cadence improved in both groups, under all dual task conditions. This effect was maintained at follow-up. There was no difference between the active and sham tDCS groups. Time taken to perform the TUGwords also improved, with no difference between groups. The active tDCS group did however increase their correct cognitive response rate during the TUGwords and TUGcount. Bradykinesia improved after training in both groups. Three weeks of dual task gait training resulted in improved gait under dual task conditions, and bradykinesia, immediately following training and at 12 weeks follow-up. The only parameter enhanced by tDCS was the number of correct responses while performing the dual task TUG. tDCS applied to M1 may not be an effective adjunct to dual task gait training in PD. Australia-New Zealand Clinical Trials Registry ACTRN12613001093774.

  12. Gait performance is not influenced by working memory when walking at a self-selected pace.

    Science.gov (United States)

    Grubaugh, Jordan; Rhea, Christopher K

    2014-02-01

    Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.

  13. Automated health alerts from Kinect-based in-home gait measurements.

    Science.gov (United States)

    Stone, Erik E; Skubic, Marjorie; Back, Jessica

    2014-01-01

    A method for automatically generating alerts to clinicians in response to changes in in-home gait parameters is investigated. Kinect-based gait measurement systems were installed in apartments in a senior living facility. The systems continuously monitored the walking speed, stride time, and stride length of apartment residents. A framework for modeling uncertainty in the residents' gait parameter estimates, which is critical for robust change detection, is developed; along with an algorithm for detecting changes that may be clinically relevant. Three retrospective case studies, of individuals who had their gait monitored for periods ranging from 12 to 29 months, are presented to illustrate use of the alert method. Evidence suggests that clinicians could be alerted to health changes at an early stage, while they are still small and interventions may be most successful. Additional potential uses are also discussed.

  14. Assessing gait adaptability in people with a unilateral amputation on an instrumented treadmill with a projected visual context.

    Science.gov (United States)

    Houdijk, Han; van Ooijen, Mariëlle W; Kraal, Jos J; Wiggerts, Henri O; Polomski, Wojtek; Janssen, Thomas W J; Roerdink, Melvyn

    2012-11-01

    Gait adaptability, including the ability to avoid obstacles and to take visually guided steps, is essential for safe movement through a cluttered world. This aspect of walking ability is important for regaining independent mobility but is difficult to assess in clinical practice. The objective of this study was to investigate the validity of an instrumented treadmill with obstacles and stepping targets projected on the belt's surface for assessing prosthetic gait adaptability. This was an observational study. A control group of people who were able bodied (n=12) and groups of people with transtibial (n=12) and transfemoral (n=12) amputations participated. Participants walked at a self-selected speed on an instrumented treadmill with projected visual obstacles and stepping targets. Gait adaptability was evaluated in terms of anticipatory and reactive obstacle avoidance performance (for obstacles presented 4 steps and 1 step ahead, respectively) and accuracy of stepping on regular and irregular patterns of stepping targets. In addition, several clinical tests were administered, including timed walking tests and reports of incidence of falls and fear of falling. Obstacle avoidance performance and stepping accuracy were significantly lower in the groups with amputations than in the control group. Anticipatory obstacle avoidance performance was moderately correlated with timed walking test scores. Reactive obstacle avoidance performance and stepping accuracy performance were not related to timed walking tests. Gait adaptability scores did not differ in groups stratified by incidence of falls or fear of falling. Because gait adaptability was affected by walking speed, differences in self-selected walking speed may have diminished differences in gait adaptability between groups. Gait adaptability can be validly assessed by use of an instrumented treadmill with a projected visual context. When walking speed is taken into account, this assessment provides unique

  15. Bedside Ultrasound of Quadriceps to Predict Rehospitalization and Functional Decline in Hospitalized Elders

    Directory of Open Access Journals (Sweden)

    Ana Clara Guerreiro

    2017-07-01

    Full Text Available ObjectiveTo evaluate the capacity of total anterior thigh thickness, quadriceps muscle thickness, and quadriceps contractile index, all measured by bedside ultrasound, to predict rehospitalization, functional decline, and death in elderly patients 3 months after hospital discharge. To evaluate intra and interobserver reproducibility of the dominant thigh evaluation method by point of care ultrasound.MethodsCohort study of patients aged 65 years or more admitted to a medium complexity unit in a teaching hospital in southern Brazil. Comprehensive geriatric assessment and ultrasound evaluation of the dominant thigh of each participant were performed. After 3 months of hospital discharge, telephone contact was made to evaluate the outcomes of rehospitalization or death and functional decline—assessed by the 100 points Barthel scale and defined as a decrease of five or more points.Results100 participants were included. There was no statistically significant difference between intraobserver measurements in the GEE method analysis (p > 0.05, and the mean bias obtained in Bland–Altman plots was close to zero in all four analyses performed, suggesting good intra and interobserver agreement. There was a significant correlation between the echographic measurements (quadriceps thickness and contractile index and gait speed, timed up and go, and handgrip tests. There was a significant association between contractile index (quadriceps thickness over total anterior thigh thickness multiplied by 100 lower than 60% and functional decline (relative risk 1.35; CI 95% 1.10–1.65; p = 0.003 as well as between the thickness of the quadriceps and rehospitalization or death, in both individuals with preserved walking capacity and in bedridden elders (relative risk 1.34; CI 95% 1.02–1.75; p = 0.04.ConclusionThe ultrasonographic method to evaluate thigh thickness was easily applicable and reproducible. The thickness of the quadriceps could

  16. Towards a Passive Low-Cost In-Home Gait Assessment System for Older Adults

    OpenAIRE

    Wang, Fang; Stone, Erik; Skubic, Marjorie; Keller, James M.; Abbott, Carmen; Rantz, Marilyn

    2013-01-01

    In this paper, we propose a webcam-based system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated webcam views. The gait parameters are validated with a GAITRite mat and a Vicon motion capture system in the lab with 13 participants and 44 tests, and again with GAITRite for 8 older adults in senior housing. A...

  17. Technology-Based Feedback and Its Efficacy in Improving Gait Parameters in Patients with Abnormal Gait: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Gema Chamorro-Moriana

    2018-01-01

    Full Text Available This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%, orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Conclusion: Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.

  18. Trunk lean gait decreases multi-segmental coordination in the vertical direction.

    Science.gov (United States)

    Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2017-11-01

    [Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.

  19. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    Science.gov (United States)

    Zimbelman, Janice; Daly, Janis J; Roenigk, Kristen L; Butler, Kristi; Burdsall, Richard; Holcomb, John P

    2012-01-01

    To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Large medical center. Cohort of stroke survivors (N=44) greater than 6 months after stroke. All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight-supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Age differences in the required coefficient of friction during level walking do not exist when experimentally-controlling speed and step length.

    Science.gov (United States)

    Anderson, Dennis E; Franck, Christopher T; Madigan, Michael L

    2014-08-01

    The effects of gait speed and step length on the required coefficient of friction (COF) confound the investigation of age-related differences in required COF. The goals of this study were to investigate whether age differences in required COF during self-selected gait persist when experimentally-controlling speed and step length, and to determine the independent effects of speed and step length on required COF. Ten young and 10 older healthy adults performed gait trials under five gait conditions: self-selected, slow and fast speeds without controlling step length, and slow and fast speeds while controlling step length. During self-selected gait, older adults walked with shorter step lengths and exhibited a lower required COF. Older adults also exhibited a lower required COF when walking at a controlled speed without controlling step length. When both age groups walked with the same speed and step length, no age difference in required COF was found. Thus, speed and step length can have a large influence on studies investigating age-related differences in required COF. It was also found that speed and step length have independent and opposite effects on required COF, with step length having a strong positive effect on required COF, and speed having a weaker negative effect.

  1. Test-retest reliability of spatial and temporal gait parameters in children with cerebral palsy as measured by an electronic walkway.

    Science.gov (United States)

    Sorsdahl, Anne Brit; Moe-Nilssen, Rolf; Strand, Liv Inger

    2008-01-01

    The purpose of this study was to examine test-retest reliability of seven selected temporal and spatial gait parameters and asymmetry measures in children with cerebral palsy. Seventeen children with CP between 3 and 13 years of age walked at three different speeds across an electronic walkway of 5.2m. The tests were repeated after approximately 25 min. The scores were normalized to a walking speed of 1.1m/s to avoid the confounding effect of gait speed on speed dependent gait parameters. Intraclass correlation coefficients (ICC(1,1) and ICC(3,1)) with 95% confidence intervals, within-subject standard deviation (S(w)) and smallest detectable difference (SDD) were calculated. The relative reliability of cadence, step length, stride length and single stance time was high to excellent (ICC(1,1) between 0.73 and 0.95), while it was poor for step width (ICC(1,1)=0.27 and 0.35). The relative reliability for two calculated asymmetry measures were high for the step length index (ICC(1,1)=0.82) and moderate for the single stance time index (ICC(1,1)=0.49). The absolute reliability values for all gait parameters are reported. Five of seven gait parameters measured by an electronic walkway and normalized to a common walking speed, appear to be highly repeatable in a short-term time span in children with CP who were able to walk without assistive walking devices, provided sufficient cognitive function.

  2. Gait pattern alteration by functional sensory substitution in healthy subjects and in diabetic subjects with peripheral neuropathy.

    Science.gov (United States)

    Walker, S C; Helm, P A; Lavery, L A

    1997-08-01

    To evaluate the ability of diabetic and nondiabetic individuals to learn to use a lower extremity sensory substitution device to cue gait pattern changes. Case-control study. Gait laboratory. Thirty diabetic persons and 20 age- and education-matched nondiabetic controls responded to advertisements for study participation. Participants walked on a treadmill at three speeds (1, 2, and 2.5mph) with auditory sensory feedback to cue ground contact greater than 80% duration of baseline. The variables measured included gait cycle (steps per minute) and number of times per minute that any step during a trial exceeded 80% duration of ground contacted compared with a measured baseline step length for each speed. Persons in both groups were able to rapidly and significantly alter their gait patterns in response to signals from the sensory substitution device, by changing their gait cycles (nondiabetic group, F(17,124) = 5.27, p gait cycle modification and error reduction among both groups. The nondiabetic group learned to use the device significantly more quickly than the diabetic group during the slow (1mph, t = 3.57, p gait trainer malfunction occurred during the study. Diabetic persons with neuropathy effectively used lower extremity sensory substitution, and the technology is now available to manufacture a durable, effective lower extremity sensory substitution system.

  3. Obesity-specific neural cost of maintaining gait performance under complex conditions in community-dwelling older adults.

    Science.gov (United States)

    Osofundiya, Olufunmilola; Benden, Mark E; Dowdy, Diane; Mehta, Ranjana K

    2016-06-01

    Recent evidence of obesity-related changes in the prefrontal cortex during cognitive and seated motor activities has surfaced; however, the impact of obesity on neural activity during ambulation remains unclear. The purpose of this study was to determine obesity-specific neural cost of simple and complex ambulation in older adults. Twenty non-obese and obese individuals, 65years and older, performed three tasks varying in the types of complexity of ambulation (simple walking, walking+cognitive dual-task, and precision walking). Maximum oxygenated hemoglobin, a measure of neural activity, was measured bilaterally using a portable functional near infrared spectroscopy system, and gait speed and performance on the complex tasks were also obtained. Complex ambulatory tasks were associated with ~2-3.5 times greater cerebral oxygenation levels and ~30-40% slower gait speeds when compared to the simple walking task. Additionally, obesity was associated with three times greater oxygenation levels, particularly during the precision gait task, despite obese adults demonstrating similar gait speeds and performances on the complex gait tasks as non-obese adults. Compared to existing studies that focus solely on biomechanical outcomes, the present study is one of the first to examine obesity-related differences in neural activity during ambulation in older adults. In order to maintain gait performance, obesity was associated with higher neural costs, and this was augmented during ambulatory tasks requiring greater precision control. These preliminary findings have clinical implications in identifying individuals who are at greater risk of mobility limitations, particularly when performing complex ambulatory tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Knee Kinematic Improvement After Total Knee Replacement Using a Simplified Quantitative Gait Analysis Method

    Directory of Open Access Journals (Sweden)

    Hassan Sarailoo

    2013-10-01

    Full Text Available Objectives: The aim of this study was to extract suitable spatiotemporal and kinematic parameters to determine how Total Knee Replacement (TKR alters patients’ knee kinematics during gait, using a rapid and simplified quantitative two-dimensional gait analysis procedure. Methods: Two-dimensional kinematic gait pattern of 10 participants were collected before and after the TKR surgery, using a 60 Hz camcorder in sagittal plane. Then, the kinematic parameters were extracted using the gait data. A student t-test was used to compare the group-average of spatiotemporal and peak kinematic characteristics in the sagittal plane. The knee condition was also evaluated using the Oxford Knee Score (OKS Questionnaire to ensure thateach subject was placed in the right group. Results: The results showed a significant improvement in knee flexion during stance and swing phases after TKR surgery. The walking speed was increased as a result of stride length and cadence improvement, but this increment was not statistically significant. Both post-TKR and control groups showed an increment in spatiotemporal and peak kinematic characteristics between comfortable and fast walking speeds. Discussion: The objective kinematic parameters extracted from 2D gait data were able to show significant improvements of the knee joint after TKR surgery. The patients with TKR surgery were also able to improve their knee kinematics during fast walking speed equal to the control group. These results provide a good insight into the capabilities of the presented method to evaluate knee functionality before and after TKR surgery and to define a more effective rehabilitation program.

  5. Temporo-spatial gait parameters during street crossing conditions: a comparison between younger and older adults.

    Science.gov (United States)

    Vieira, Edgar R; Lim, Hyun-Hwa; Brunt, Denis; Hallal, Camilla Z; Kinsey, Laura; Errington, Lisa; Gonçalves, Mauro

    2015-02-01

    Most traffic accidents involving pedestrians happen during street crossing. Safe street crossing by older adults requires complex planning and imposes high cognitive demands. Understanding how street crossing situations affect younger and older adults' gait is important to create evidence-based policies, education and training. The objective of this study was to develop and test a method to evaluate temporo-spatial gait parameters of younger and older adults during simulated street crossing situations. Twenty-two younger (25±2 years old) and 22 older adults (73±6 years old) who lived independently in the community completed 3 walking trials at preferred gait speed and during simulated street crossing with regular and with reduced time. There were significant differences between groups (pstreet crossing walking speed was higher than their preferred speed (pstreet crossing resulted in significant and progressive gait changes. The methods developed and tested can be used to (1) evaluate if people are at risk of falls and accidents during street crossing situations, (2) to compare among different groups, and (3) to help establish appropriate times for older pedestrians to cross streets safely. The current time to cross streets is too short even for healthy older adults. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis.

    Science.gov (United States)

    Booth, Adam T C; Buizer, Annemieke I; Meyns, Pieter; Oude Lansink, Irene L B; Steenbrink, Frans; van der Krogt, Marjolein M

    2018-03-07

    The aim of this systematic review was to investigate the effects of functional gait training on walking ability in children and young adults with cerebral palsy (CP). The review was conducted using standardized methodology, searching four electronic databases (PubMed, Embase, CINAHL, Web of Science) for relevant literature published between January 1980 and January 2017. Included studies involved training with a focus on actively practising the task of walking as an intervention while reporting outcome measures relating to walking ability. Forty-one studies were identified, with 11 randomized controlled trials included. There is strong evidence that functional gait training results in clinically important benefits for children and young adults with CP, with a therapeutic goal of improved walking speed. Functional gait training was found to have a moderate positive effect on walking speed over standard physical therapy (effect size 0.79, p=0.04). Further, there is weaker yet relatively consistent evidence that functional gait training can also benefit walking endurance and gait-related gross motor function. There is promising evidence that functional gait training is a safe, feasible, and effective intervention to target improved walking ability in children and young adults with CP. The addition of virtual reality and biofeedback can increase patient engagement and magnify effects. Functional gait training is a safe, feasible, and effective intervention to improve walking ability. Functional gait training shows larger positive effects on walking speed than standard physical therapy. Walking endurance and gait-related gross motor function can also benefit from functional gait training. Addition of virtual reality and biofeedback shows promise to increase engagement and improve outcomes. © 2018 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  7. Effect of rhythmic auditory cueing on gait in people with Alzheimer disease.

    Science.gov (United States)

    Wittwer, Joanne E; Webster, Kate E; Hill, Keith

    2013-04-01

    To determine whether rhythmic music and metronome cues alter spatiotemporal gait measures and gait variability in people with Alzheimer disease (AD). A repeated-measures study requiring participants to walk under different cueing conditions. University movement laboratory. Of the people (N=46) who met study criteria (a diagnosis of probable AD and ability to walk 100m) at routine medical review, 30 (16 men; mean age ± SD, 80±6y; revised Addenbrooke's Cognitive Examination range, 26-79) volunteered to participate. Participants walked 4 times over an electronic walkway synchronizing to (1) rhythmic music and (2) a metronome set at individual mean baseline comfortable speed cadence. Gait spatiotemporal measures and gait variability (coefficient of variation [CV]). Data from individual walks under each condition were combined. A 1-way repeated-measures analysis of variance was used to compare uncued baseline, cued, and retest measures. Gait velocity decreased with both music and metronome cues compared with baseline (baseline, 110.5cm/s; music, 103.4cm/s; metronome, 105.4cm/s), primarily because of significant decreases in stride length (baseline, 120.9cm; music, 112.5cm; metronome, 114.8cm) with both cue types. This was coupled with increased stride length variability compared with baseline (baseline CV, 3.4%; music CV, 4.3%; metronome CV, 4.5%) with both cue types. These changes did not persist at (uncued) retest. Temporal variability was unchanged. Rhythmic auditory cueing at comfortable speed tempo produced deleterious effects on gait in a single session in this group with AD. The deterioration in spatial gait parameters may result from impaired executive function associated with AD. Further research should investigate whether these instantaneous cue effects are altered with more practice or with learning methods tailored to people with cognitive impairment. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights

  8. Post-stroke hemiparesis: Does chronicity, etiology, and lesion side are associated with gait pattern?

    Science.gov (United States)

    Gama, Gabriela Lopes; Larissa, Coutinho de Lucena; Brasileiro, Ana Carolina de Azevedo Lima; Silva, Emília Márcia Gomes de Souza; Galvão, Élida Rayanne Viana Pinheiro; Maciel, Álvaro Cavalcanti; Lindquist, Ana Raquel Rodrigues

    2017-07-01

    Studies that evaluate gait rehabilitation programs for individuals with stroke often consider time since stroke of more than six months. In addition, most of these studies do not use lesion etiology or affected cerebral hemisphere as study factors. However, it is unknown whether these factors are associated with post-stroke motor performance after the spontaneous recovery period. To investigate whether time since stroke onset, etiology, and lesion side is associated with spatiotemporal and angular gait parameters of individuals with chronic stroke. Fifty individuals with chronic hemiparesis (20 women) were evaluated. The sample was stratified according to time since stroke (between 6 and 12 months, between 13 and 36 months, and over 36 months), affected cerebral hemisphere (left or right) and lesion etiology (ischemic and hemorrhagic). The participants were evaluated during overground walking at self-selected gait speed, and spatiotemporal and angular gait parameters were calculated. Results Differences between gait speed, stride length, hip flexion, and knee flexion were observed in subgroups stratified based on lesion etiology. Survivors of a hemorrhagic stroke exhibited more severe gait impairment. Subgroups stratified based on time since stroke only showed intergroup differences for stride length, and subgroups stratified based on affected cerebral hemisphere displayed between-group differences for swing time symmetry ratio. In order to recruit a more homogeneous sample, more accurate results were obtained and an appropriate rehabilitation program was offered, researchers and clinicians should consider that gait pattern might be associated with time since stroke, affected cerebral hemisphere and lesion etiology.

  9. Relationships between trunk performance, gait and postural control in persons with multiple sclerosis.

    Science.gov (United States)

    Freund, Jane E; Stetts, Deborah M; Vallabhajosula, Srikant

    2016-06-30

    Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system. Compared to healthy individuals, persons with multiple sclerosis (PwMS) have increased postural sway in quiet stance, decreased gait speed and increased fall incidence. Trunk performance has been implicated in postural control, gait dysfunction, and fall prevention in older adults. However, the relationship of trunk performance to postural control and gait has not been adequately studied in PwMS. To compare trunk muscle structure and performance in PwMS to healthy age and gendered-matched controls (HC); to determine the effects of isometric trunk endurance testing on postural control in both populations; and to determine the relationship of trunk performance with postural control, gait and step activity in PwMS. Fifteen PwMS and HC completed ultrasound imaging of trunk muscles, 10 m walk test, isometric trunk endurance tests, and postural sway test. Participants wore a step activity monitor for 7 days. PwMS had worse isometric trunk endurance compared to HC. PwMS trunk flexion endurance negatively correlated to several postural control measures and positively correlated to gait speed and step activity. Clinicians should consider evaluation and interventions directed at impaired trunk endurance in PwMS.

  10. Association between functional alterations of senescence and senility and disorders of gait and balance.

    Science.gov (United States)

    Teixeira-Leite, Homero; Manhães, Alex C

    2012-07-01

    Declines in cognition and mobility are frequently observed in the elderly, and it has been suggested that the appearance of gait disorders in older individuals may constitute a marker of cognitive decline that precedes significant findings in functional performance screening tests. This study sought to evaluate the relationship between functional capacities and gait and balance in an elderly community monitored by the Preventive and Integrated Care Unit of the Hospital Adventista Silvestre in Rio de Janeiro, RJ, Brazil. Elderly individuals (193 females and 90 males) were submitted to a broad geriatric evaluation, which included the following tests: 1) a performance-oriented mobility assessment (POMA) to evaluate gait; 2) a mini-mental state examination (MMSE); 3) the use of Katz and Lawton scales to assess functional capacity; 4) the application of the geriatric depression scale (GDS); and 5) a mini-nutritional assessment (MNA) scale. Reductions in MMSE, Katz and Lawton scores were associated with reductions in POMA scores, and we also observed that significant reductions in POMA scores were present in persons for whom the MMSE and Katz scores did not clearly indicate cognitive dysfunction. We also demonstrated that a decline in the scores obtained with the GDS and MNA scales was associated with a decline in the POMA scores. Considering that significant alterations in the POMA scores were observed prior to the identification of significant alterations in cognitive capacity using either the MMSE or the Katz systems, a prospective study seems warranted to assess the predictive capacity of POMA scores regarding the associated decline in functional capacity.

  11. Does acupuncture ameliorate motor impairment after stroke? An assessment using the CatWalk gait system.

    Science.gov (United States)

    Cao, Yan; Sun, Ning; Yang, Jing-Wen; Zheng, Yang; Zhu, Wen; Zhang, Zhen-Hua; Wang, Xue-Rui; Shi, Guang-Xia; Liu, Cun-Zhi

    2017-07-01

    The effect of acupuncture on gait deficits after stroke is uncertain. This animal study was designed to determine whether acupuncture improves gait impairment following experimentally induced ischemic stroke. Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO) in rats. After 7 days' of acupuncture treatment, assessment of gait changes using the CatWalk automated gait analysis system was performed. Comparison of the CatWalk gait parameters among the groups showed that gait function was impaired after ischemic stroke and acupuncture treatment was effective in improving a variety of gait parameters including intensity, stance and swing time, swing speed and stride length at postoperative day 8. This study demonstrates a beneficial effect of acupuncture on gait impairment in rats following ischemic stroke. Further studies aimed to investigate the effects of acupuncture at different stages during stroke using the CatWalk system are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. History of falls, gait, balance, and fall risks in older cancer survivors living in the community.

    Science.gov (United States)

    Huang, Min H; Shilling, Tracy; Miller, Kara A; Smith, Kristin; LaVictoire, Kayle

    2015-01-01

    Older cancer survivors may be predisposed to falls because cancer-related sequelae affect virtually all body systems. The use of a history of falls, gait speed, and balance tests to assess fall risks remains to be investigated in this population. This study examined the relationship of previous falls, gait, and balance with falls in community-dwelling older cancer survivors. At the baseline, demographics, health information, and the history of falls in the past year were obtained through interviewing. Participants performed tests including gait speed, Balance Evaluation Systems Test, and short-version of Activities-specific Balance Confidence scale. Falls were tracked by mailing of monthly reports for 6 months. A "faller" was a person with ≥1 fall during follow-up. Univariate analyses, including independent sample t-tests and Fisher's exact tests, compared baseline demographics, gait speed, and balance between fallers and non-fallers. For univariate analyses, Bonferroni correction was applied for multiple comparisons. Baseline variables with Pfalls with age as covariate. Sensitivity and specificity of each predictor of falls in the model were calculated. Significance level for the regression analysis was Pfalls. Baseline demographics, health information, history of falls, gaits speed, and balance tests did not differ significantly between fallers and non-fallers. Forward logistic regression revealed that a history of falls was a significant predictor of falls in the final model (odds ratio =6.81; 95% confidence interval =1.594-29.074) (Pfalls were 74% and 69%, respectively. Current findings suggested that for community-dwelling older cancer survivors with mixed diagnoses, asking about the history of falls may help detect individuals at risk of falling.

  13. The effects of Salsa dance on balance, gait, and fall risk in a sedentary patient with Alzheimer's dementia, multiple comorbidities, and recurrent falls.

    Science.gov (United States)

    Abreu, Mauro; Hartley, Greg

    2013-01-01

    Recent studies have looked at the effects of dance on functional outcomes for persons with balance, gait, and cognitive impairments. The purpose of this report is to quantify the effects of Salsa dance therapy on function, balance, and fall risk in a sedentary older patient with multiple comorbidities. CASE DESCRIPTION/INTERVENTION: The patient was an 84-year-old woman with functional decline due to Alzheimer's dementia, late effects of a cerebral hemorrhagic aneurysm with right hemiparesis in the lower extremity, arthritis, and recurrent falls. Intervention consisted largely of Salsa dancing activities for 24 sessions over 12 weeks. The patient showed improvements in range of motion, strength, balance, functional mobility, gait distance, and speed. During the course of therapy, 1 fall was reported with no significant injuries and 6 months postintervention the patient/caregiver reported no falls. This case describes the clinically meaningful effects of Salsa dance therapy as a primary intervention and its impact on functional recovery in a geriatric patient with multiple impairments.

  14. Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study.

    Science.gov (United States)

    Mulroy, Sara J; Klassen, Tara; Gronley, JoAnne K; Eberly, Valerie J; Brown, David A; Sullivan, Katherine J

    2010-02-01

    Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight-supported treadmill training (BWSTT). A prospective, between-subjects design was used. Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Only sagittal-plane parameters were assessed, and the sample size was small. Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in

  15. Modulation of walking speed by changing optic flow in persons with stroke

    Directory of Open Access Journals (Sweden)

    Lamontagne Anouk

    2007-06-01

    Full Text Available Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF speed. The present study aims to: 1 compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2 investigate whether virtual environments (VE manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s, from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek. Instantaneous changes in gait speed (experiment 1 and the ratio of speed changes in the test trial over the control trial (experiment 2 were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1, an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p 0.05, T-test. Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when

  16. Overground body-weight-supported gait training for children and youth with neuromuscular impairments.

    Science.gov (United States)

    Kurz, Max J; Stuberg, Wayne; Dejong, Stacey; Arpin, David J

    2013-08-01

    The aim of this investigation was to determine if body-weight-supported (BWS) overground gait training has the potential to improve the walking abilities of children and youth with childhood onset motor impairments and intellectual disabilities. Eight participants (mean age of 16.3 years) completed 12 weeks of BWS overground gait training that was performed two times a week. BWS was provided during the training sessions by an overhead harness system that rolls overground. There was a significant improvement in the preferred walking speed after the training (p training may be an effective treatment strategy for improving the preferred walking speed of children and youth with motor impairments.

  17. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Fiaschi, Antonio; Santilli, Valter; Smania, Nicola

    2012-05-01

    . Gait impairment is a common cause of disability in Parkinson disease (PD). Electromechanical devices to assist stepping have been suggested as a potential intervention. . To evaluate whether a rehabilitation program of robot-assisted gait training (RAGT) is more effective than conventional physiotherapy to improve walking. . A total of 41 patients with PD were randomly assigned to 45-minute treatment sessions (12 in all), 3 days a week, for 4 consecutive weeks of either robotic stepper training (RST; n = 21) using the Gait Trainer or physiotherapy (PT; n = 20) with active joint mobilization and a modest amount of conventional gait training. Participants were evaluated before, immediately after, and 1 month after treatment. Primary outcomes were 10-m walking speed and distance walked in 6 minutes. . Baseline measures revealed no statistical differences between groups, but the PT group walked 0.12 m/s slower; 5 patients withdrew. A statistically significant improvement was found in favor of the RST group (walking speed 1.22 ± 0.19 m/s [P = .035]; distance 366.06 ± 78.54 m [P < .001]) compared with the PT group (0.98 ± 0.32 m/s; 280.11 ± 106.61 m). The RAGT mean speed increased by 0.13 m/s, which is probably not clinically important. Improvements were maintained 1 month later. . RAGT may improve aspects of walking ability in patients with PD. Future trials should compare robotic assistive training with treadmill or equal amounts of overground walking practice.

  18. Examination of factors affecting gait properties in healthy older adults: focusing on knee extension strength, visual acuity, and knee joint pain.

    Science.gov (United States)

    Demura, Tomohiro; Demura, Shin-ichi; Uchiyama, Masanobu; Sugiura, Hiroki

    2014-01-01

    Gait properties change with age because of a decrease in lower limb strength and visual acuity or knee joint disorders. Gait changes commonly result from these combined factors. This study aimed to examine the effects of knee extension strength, visual acuity, and knee joint pain on gait properties of for 181 healthy female older adults (age: 76.1 (5.7) years). Walking speed, cadence, stance time, swing time, double support time, step length, step width, walking angle, and toe angle were selected as gait parameters. Knee extension strength was measured by isometric dynamometry; and decreased visual acuity and knee joint pain were evaluated by subjective judgment whether or not such factors created a hindrance during walking. Among older adults without vision problems and knee joint pain that affected walking, those with superior knee extension strength had significantly greater walking speed and step length than those with inferior knee extension strength (P pain in both knees showed slower walking speed and longer stance time and double support time. A decrease of knee extension strength and visual acuity and knee joint pain are factors affecting gait in the female older adults. Decreased knee extension strength and knee joint pain mainly affect respective distance and time parameters of the gait.

  19. The dual task effect on gait in adults with intellectual disabilities: is it predictive for falls?

    Science.gov (United States)

    Oppewal, Alyt; Hilgenkamp, Thessa I M

    2017-09-03

    Falling is an important health issue in adults with intellectual disabilities. Their cognitive and motor limitations may result in difficulties with dual tasking (walking and talking), which increases fall risk. Therefore, we assessed the dual task effect on gait in adults with intellectual disabilities, if this dual task effect is predictive for falls, and if this is more predictive than regular walking. Gait characteristics of 31 adults with intellectual disabilities without Down syndrome were assessed with the GAITRite at comfortable speed and during dual tasking (conversation). Falls were collected over a three-month follow-up period. During dual tasking, participants walked slower, with a lower cadence, increased stride time, and shorter stride lengths. They spend less time in swing and single support phase than at comfortable speed. Also swing and single support time became more variable. The dual task effect and walking at comfortable speed were not predictive for falls, although medium effect sizes were found. Dual tasking affects gait in adults with intellectual disabilities. This is an important finding for safe community participation, and must be considered while interacting with adults with intellectual disabilities during daily activities. Possible negative consequences of distractors should be kept in mind. More research is needed to better understand the predictive value of gait for falls. Implications for Rehabilitation Having a conversation while walking affects the gait pattern of adults with intellectual disabilities, possible negative consequences of distractors should be kept in mind. The dual task effect on the width of the gait pattern and stride time variability had the largest effect sizes with future falls, this potential relationship should be kept in mind in clinical practice. The dual task effect on gait is important to consider with regard to safe community participation. Future studies are needed to better understand the predictive

  20. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy.

    Science.gov (United States)

    Morrison, Steven; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I

    2014-01-01

    For older adults with type 2 diabetes (T2DM), declines in balance and walking ability are risk factors for falls, and peripheral neuropathy magnifies this risk. Exercise training may improve balance, gait and reduce the risk of falling. This study investigated the effects of 12weeks of aerobic exercise training on walking, balance, reaction time and falls risk metrics in older T2DM individuals with/without peripheral neuropathy. Adults with T2DM, 21 without (DM; age 58.7±1.7years) and 16 with neuropathy (DM-PN; age 58.9±1.9years), engaged in either moderate or intense supervised exercise training thrice-weekly for 12weeks. Pre/post-training assessments included falls risk (using the physiological profile assessment), standing balance, walking ability and hand/foot simple reaction time. Pre-training, the DM-PN group had higher falls risk, slower (hand) reaction times (232 vs. 219ms), walked at a slower speed (108 vs. 113cm/s) with shorter strides compared to the DM group. Following training, improvements in hand/foot reaction times and faster walking speed were seen for both groups. While falls risk was not significantly reduced, the observed changes in gait, reaction time and balance metrics suggest that aerobic exercise of varying intensities is beneficial for improving dynamic postural control in older T2DM adults with/without neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    Science.gov (United States)

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p virtual reality to improve gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  2. Effects of auditory cues on gait initiation and turning in patients with Parkinson's disease.

    Science.gov (United States)

    Gómez-González, J; Martín-Casas, P; Cano-de-la-Cuerda, R

    2016-12-08

    To review the available scientific evidence about the effectiveness of auditory cues during gait initiation and turning in patients with Parkinson's disease. We conducted a literature search in the following databases: Brain, PubMed, Medline, CINAHL, Scopus, Science Direct, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Library Plus, CENTRAL, Trip Database, PEDro, DARE, OTseeker, and Google Scholar. We included all studies published between 2007 and 2016 and evaluating the influence of auditory cues on independent gait initiation and turning in patients with Parkinson's disease. The methodological quality of the studies was assessed with the Jadad scale. We included 13 studies, all of which had a low methodological quality (Jadad scale score≤2). In these studies, high-intensity, high-frequency auditory cues had a positive impact on gait initiation and turning. More specifically, they 1) improved spatiotemporal and kinematic parameters; 2) decreased freezing, turning duration, and falls; and 3) increased gait initiation speed, muscle activation, and gait speed and cadence in patients with Parkinson's disease. We need studies of better methodological quality to establish the Parkinson's disease stage in which auditory cues are most beneficial, as well as to determine the most effective type and frequency of the auditory cue during gait initiation and turning in patients with Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Improved gait after repetitive locomotor training in children with cerebral palsy.

    Science.gov (United States)

    Smania, Nicola; Bonetti, Paola; Gandolfi, Marialuisa; Cosentino, Alessandro; Waldner, Andreas; Hesse, Stefan; Werner, Cordula; Bisoffi, Giulia; Geroin, Christian; Munari, Daniele

    2011-02-01

    The aim of this study was to evaluate the effectiveness of repetitive locomotor training with an electromechanical gait trainer in children with cerebral palsy. In this randomized controlled trial, 18 ambulatory children with diplegic or tetraplegic cerebral palsy were randomly assigned to an experimental group or a control group. The experimental group received 30 mins of repetitive locomotor training with an applied technology (Gait Trainer GT I) plus 10 mins of passive joint mobilization and stretching exercises. The control group received 40 mins of conventional physiotherapy. Each subject underwent a total of 10 treatment sessions over a 2-wk period. Performance on the 10-m walk test, 6-min walk test, WeeFIM scale, and gait analysis was evaluated by a blinded rater before and after treatment and at 1-mo follow-up. The experimental group showed significant posttreatment improvement on the 10-m walk test, 6-min walk test, hip kinematics, gait speed, and step length, all of which were maintained at the 1-mo follow-up assessment. No significant changes in performance parameters were observed in the control group. Repetitive locomotor training with an electromechanical gait trainer may improve gait velocity, endurance, spatiotemporal, and kinematic gait parameters in patients with cerebral palsy.

  4. A mechanized gait trainer for restoration of gait.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D

    2000-01-01

    The newly developed gait trainer allows wheel-chair-bound subjects the repetitive practice of a gait-like movement without overstressing therapists. The device simulates the phases of gait, supports the subjects according to their abilities, and controls the center of mass (CoM) in the vertical and horizontal directions. The patterns of sagittal lower limb joint kinematics and of muscle activation for a normal subject were similar when using the mechanized trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists were required to support treadmill walking. Gait movements on the trainer were highly symmetrical, impact free, and less spastic. The vertical displacement of the CoM was bi-phasic instead of mono-phasic during each gait cycle on the new device. Two cases of non-ambulatory patients, who regained their walking ability after 4 weeks of daily training on the gait trainer, are reported.

  5. A training program to improve gait while dual tasking in patients with Parkinson's disease: a pilot study.

    Science.gov (United States)

    Yogev-Seligmann, Galit; Giladi, Nir; Brozgol, Marina; Hausdorff, Jeffrey M

    2012-01-01

    Impairments in the ability to perform another task while walking (ie, dual tasking [DT]) are associated with an increased risk of falling. Here we describe a program we developed specifically to improve DT performance while walking based on motor learning principles and task-specific training. We examined feasibility, potential efficacy, retention, and transfer to the performance of untrained tasks in a pilot study among 7 patients with Parkinson's disease (PD). Seven patients (Hoehn and Yahr stage, 2.1±0.2) were evaluated before, after, and 1 month after 4 weeks of DT training. Gait speed and gait variability were measured during usual walking and during 4 DT conditions. The 4-week program of one-on-one training included walking while performing several distinct cognitive tasks. Gait speed and gait variability during DT significantly improved. Improvements were also seen in the DT conditions that were not specifically trained and were retained 1 month after training. These initial findings support the feasibility of applying a task-specific DT gait training program for patients with PD and suggest that it positively affects DT gait, even in untrained tasks. The present results are also consistent with the possibility that DT gait training enhances divided attention abilities during walking. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait: Validation on Normal Weight and Overweight/Obese Young Healthy Adults

    Directory of Open Access Journals (Sweden)

    Valentina Agostini

    2017-10-01

    Full Text Available Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait based on magneto-inertial sensors, both in normal weight (NW and overweight/obese (OW subjects. The validation is performed against a reference multichannel recording system (STEP32, providing direct measurements of gait timings (through foot-switches and joint angles in the sagittal plane (through electrogoniometers. Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW. After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW and for the knee (by 4.1° for NW, and 1.8° for OW. More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW. NW and OW showed significant differences considering STEP32 (p = 0.0004, but not H-Gait (p = 0.06. In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min and a

  7. Gait Implications of Visual Field Damage from Glaucoma.

    Science.gov (United States)

    Mihailovic, Aleksandra; Swenor, Bonnielin K; Friedman, David S; West, Sheila K; Gitlin, Laura N; Ramulu, Pradeep Y

    2017-06-01

    To evaluate fall-relevant gait features in older glaucoma patients. The GAITRite Electronic Walkway was used to define fall-related gait parameters in 239 patients with suspected or manifest glaucoma under normal usual-pace walking conditions and while carrying a cup or tray. Multiple linear regression models assessed the association between gait parameters and integrated visual field (IVF) sensitivity after controlling for age, race, sex, medications, and comorbid illness. Under normal walking conditions, worse IVF sensitivity was associated with a wider base of support (β = 0.60 cm/5 dB IVF sensitivity decrement, 95% confidence interval [CI] = 0.12-1.09, P = 0.016). Worse IVF sensitivity was not associated with slower gait speed, shorter step or stride length, or greater left-right drift under normal walking conditions ( P > 0.05 for all), but was during cup and/or tray carrying conditions ( P < 0.05 for all). Worse IVF sensitivity was positively associated with greater stride-to-stride variability in step length, stride length, and stride velocity ( P < 0.005 for all). Inferior and superior IVF sensitivity demonstrated associations with each of the above gait parameters as well, though these associations were consistently similar to, or weaker than, the associations noted for overall IVF sensitivity. Glaucoma severity was associated with several gait parameters predictive of higher fall risk in prior studies, particularly measures of stride-to-stride variability. Gait may be useful in identifying glaucoma patients at higher risk of falls, and in designing and testing interventions to prevent falls in this high-risk group. These findings could serve to inform the development of the interventions for falls prevention in glaucoma patients.

  8. [Do you measure gait speed in your daily clinical practice? A review].

    Science.gov (United States)

    Inzitari, Marco; Calle, Alicia; Esteve, Anna; Casas, Álvaro; Torrents, Núria; Martínez, Nicolás

    Gait speed (GS), measured at usual pace, is an easy, quick, reliable, non-expensive and informative measurement. With a standard chronometer, like those that currently found in mobile phones, and with two marks on the floor, trained health professionals obtain a more objective and quick measurement compared with many geriatric scales used in daily practice. GS is one of the pillars of the frailty phenotype, and is closely related to sarcopenia. It is a powerful marker of falls incidence, disability and death, mostly useful in the screening of older adults that live in the community. In recent years, the evidence is reinforcing the usefulness of GS in acute care and post-surgical patients. Its use in patients with cognitive impairment is suggested, due to the strong link between cognitive and physical function. Although GS meets the criteria for a good geriatric screening tool, it is not much used in clinical practice. Why? This review has different aims: (i)disentangling the relationship between GS and frailty; (ii)reviewing the protocols to measure GS and the reference values; (iii)reviewing the evidence in different clinical groups (older adults with frailty, with cognitive impairment, with cancer or other pathologies), and in different settings (community, acute care, rehabilitation), and (iv)speculating about the reasons for its poor use in clinical practice and about the gaps to be filled. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling.

    Science.gov (United States)

    Senden, R; Savelberg, H H C M; Grimm, B; Heyligers, I C; Meijer, K

    2012-06-01

    This study investigated whether the Tinetti scale, as a subjective measure for fall risk, is associated with objectively measured gait characteristics. It is studied whether gait parameters are different for groups that are stratified for fall risk using the Tinetti scale. Moreover, the discriminative power of gait parameters to classify elderly according to the Tinetti scale is investigated. Gait of 50 elderly with a Tinneti>24 and 50 elderly with a Tinetti≤24 was analyzed using acceleration-based gait analysis. Validated algorithms were used to derive spatio-temporal gait parameters, harmonic ratio, inter-stride amplitude variability and root mean square (RMS) from the accelerometer data. Clear differences in gait were found between the groups. All gait parameters correlated with the Tinetti scale (r-range: 0.20-0.73). Only walking speed, step length and RMS showed moderate to strong correlations and high discriminative power to classify elderly according to the Tinetti scale. It is concluded that subtle gait changes that have previously been related to fall risk are not captured by the subjective assessment. It is therefore worthwhile to include objective gait assessment in fall risk screening. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Gait symmetry and hip strength in women with developmental dysplasia following hip arthroplasty compared to healthy subjects: A cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Ruud A Leijendekkers

    Full Text Available Untreated unilateral developmental dysplasia of the hip (DDH results in asymmetry of gait and hip strength and may lead to early osteoarthritis, which is commonly treated with a total hip arthroplasty (THA. There is limited knowledge about the obtained symmetry of gait and hip strength after the THA. The objectives of this cross-sectional study were to: a identify asymmetries between the operated and non-operated side in kinematics, kinetics and hip strength, b analyze if increased walking speed changed the level of asymmetry in patients c compare these results with those of healthy subjects.Women (18-70 year with unilateral DDH who had undergone unilateral THA were eligible for inclusion. Vicon gait analysis system was used to collect frontal and sagittal plane kinematic and kinetic parameters of the hip joint, pelvis and trunk during walking at comfortable walking speed and increased walking speed. Furthermore, hip abductor and extensor muscle strength was measured.Six patients and eight healthy subjects were included. In the patients, modest asymmetries in lower limb kinematics and kinetics were present during gait, but trunk lateral flexion asymmetry was evident. Patients' trunk lateral flexion also differed compared to healthy subjects. Walking speed did not significantly influence the level of asymmetry. The hip abduction strength asymmetry of 23% was not statistically significant, but the muscle strength of both sides were significantly weaker than those of healthy subjects.In patients with a DDH treated with an IBG THA modest asymmetries in gait kinematics and kinetics were present, with the exception of a substantial asymmetry of the trunk lateral flexion. Increased walking speed did not result in increased asymmetries in gait kinematics and kinetics. Hip muscle strength was symmetrical in patients, but significantly weaker than in healthy subjects. Trunk kinematics should be included as an outcome measure to assess the biomechanical

  11. Association between functional alterations of senescence and senility and disorders of gait and balance

    Directory of Open Access Journals (Sweden)

    Homero Teixeira-Leite

    2012-07-01

    Full Text Available OBJECTIVES: Declines in cognition and mobility are frequently observed in the elderly, and it has been suggested that the appearance of gait disorders in older individuals may constitute a marker of cognitive decline that precedes significant findings in functional performance screening tests. This study sought to evaluate the relationship between functional capacities and gait and balance in an elderly community monitored by the Preventive and Integrated Care Unit of the Hospital Adventista Silvestre in Rio de Janeiro, RJ, Brazil. METHODS: Elderly individuals (193 females and 90 males were submitted to a broad geriatric evaluation, which included the following tests: 1 a performance-oriented mobility assessment (POMA to evaluate gait; 2 a mini-mental state examination (MMSE; 3 the use of Katz and Lawton scales to assess functional capacity; 4 the application of the geriatric depression scale (GDS; and 5 a mini-nutritional assessment (MNA scale. RESULTS: Reductions in MMSE, Katz and Lawton scores were associated with reductions in POMA scores, and we also observed that significant reductions in POMA scores were present in persons for whom the MMSE and Katz scores did not clearly indicate cognitive dysfunction. We also demonstrated that a decline in the scores obtained with the GDS and MNA scales was associated with a decline in the POMA scores. CONCLUSIONS: Considering that significant alterations in the POMA scores were observed prior to the identification of significant alterations in cognitive capacity using either the MMSE or the Katz systems, a prospective study seems warranted to assess the predictive capacity of POMA scores regarding the associated decline in functional capacity.

  12. A Pilot Clinical Trial to Objectively Assess the Efficacy of Electroacupuncture on Gait in Patients with Parkinson's Disease Using Body Worn Sensors.

    Directory of Open Access Journals (Sweden)

    Hong Lei

    Full Text Available Gait disorder, a key contributor to fall and poor quality of life, represents a major therapeutic challenge in Parkinson's disease (PD. The efficacy of acupuncture for PD remains unclear, largely due to methodological flaws and lack of studies using objective outcome measures.To objectively assess the efficacy of electroacupuncture (EA for gait disorders using body-worn sensor technology in patients with PD.In this randomized pilot study, both the patients and assessors were masked. Fifteen PD patients were randomly assigned to an experimental group (n = 10 or to a control group (n = 5. Outcomes were assessed at baseline and after completion of three weekly EA treatments. Measurements included gait analysis during single-task habitual walking (STHW, dual-task habitual walking (DTHW, single-task fast walking (STFW, dual-task fast walking (DTFW. In addition, Unified Parkinson's Disease Rating Scale (UPDRS, SF-12 health survey, short Falls Efficacy Scale-International (FES-I, and visual analog scale (VAS for pain were utilized.All gait parameters were improved in the experimental group in response to EA treatment. After adjustment by age and BMI, the improvement achieved statistical significant level for gait speed under STHW, STFW, and DTFW (9%-19%, p0.110. The highest correlation between gait parameters and UPRDS scores at baseline was observed between gait speed during STFW and UPDRS II (r = -0.888, p = 0.004. The change in this gait parameter in response to active intervention was positively correlated with baseline UPDRS (r = 0.595, p = 0.057. Finally, comparison of responses to treatment between groups showed significant improvement, prominently in gait speed (effect size 0.32-1.16, p = 0.001.This study provides the objective proof of concept for potential benefits of non-pharmaceutical based EA therapy on enhancing gait in patients with PD.ClinicalTrials.gov NCT02556164.

  13. Analyzing Gait Using a Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    An algorithm is created, which performs human gait analysis using spatial data and amplitude images from a Time-of-flight camera. For each frame in a sequence the camera supplies cartesian coordinates in space for every pixel. By using an articulated model the subject pose is estimated in the depth...... map in each frame. The pose estimation is based on likelihood, contrast in the amplitude image, smoothness and a shape prior used to solve a Markov random field. Based on the pose estimates, and the prior that movement is locally smooth, a sequential model is created, and a gait analysis is done...... on this model. The output data are: Speed, Cadence (steps per minute), Step length, Stride length (stride being two consecutive steps also known as a gait cycle), and Range of motion (angles of joints). The created system produces good output data of the described output parameters and requires no user...

  14. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy.

    Science.gov (United States)

    Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki

    2018-02-01

    [Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients.

  15. Effectiveness of Circuit-Based Exercises on Gait Speed, Balance, and Functional Mobility in People Affected by Stroke: A Meta-Analysis.

    Science.gov (United States)

    Bonini-Rocha, Ana Clara; de Andrade, Anderson Lúcio Souza; Moraes, André Marques; Gomide Matheus, Liana Barbaresco; Diniz, Leonardo Rios; Martins, Wagner Rodrigues

    2018-04-01

    Several interventions have been proposed to rehabilitate patients with neurologic dysfunctions due to stroke. However, the effectiveness of circuit-based exercises according to its actual definition, ie, an overall program to improve strength, stamina, balance or functioning, was not provided. To examine the effectiveness of circuit-based exercise in the treatment of people affected by stroke. A search through PubMed, Embase, Cochrane Library, and Physiotherapy Evidence Database databases was performed to identify controlled clinical trials without language or date restriction. The overall mean difference with 95% confidence interval was calculated for all outcomes. Two independent reviewers assessed the risk of bias. Eleven studies met the inclusion criteria, and 8 presented suitable data to perform a meta-analysis. Quantitative analysis showed that circuit-based exercise was more effective than conventional intervention on gait speed (mean difference of 0.11 m/s) and circuit-based exercise was not significantly more effective than conventional intervention on balance and functional mobility. Our results demonstrated that circuit-based exercise presents better effects on gait when compared with conventional intervention and that its effects on balance and functional mobility were not better than conventional interventions. I. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Gait energy expenditure in children with Duchenne muscular dystrophy: case study

    OpenAIRE

    Souza, Mariana Angélica de; Ferreira, Marília Ester; Baptista, Cyntia Rogean de Jesus Alves de; Sverzut, Ana Claudia Mattiello

    2014-01-01

    This case study aimed to verify the model of Rose et al.1 as a feasible to assess energy expenditure in gait of children with Duchenne muscular dystrophy (DMD). Three DMD patients aged 6, 7 and 8 years old participated of this study. It was obtained weight, height, leg length measurement (LLM), resting and gait heart rate (HR) held on as 55-meter oval circuit performed during a two-minute test at each speed. Energy expenditure was calculated using the HR. It was performed a descriptive analys...

  17. Brain plasticity in Parkinson's disease with freezing of gait induced by action observation training.

    Science.gov (United States)

    Agosta, Federica; Gatti, Roberto; Sarasso, Elisabetta; Volonté, Maria Antonietta; Canu, Elisa; Meani, Alessandro; Sarro, Lidia; Copetti, Massimiliano; Cattrysse, Erik; Kerckhofs, Eric; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-01-01

    Gait disorders represent a therapeutic challenge in Parkinson's disease (PD). This study investigated the efficacy of 4-week action observation training (AOT) on disease severity, freezing of gait and motor abilities in PD, and evaluated treatment-related brain functional changes. 25 PD patients with freezing of gait were randomized into two groups: AOT (action observation combined with practicing the observed actions) and "Landscape" (same physical training combined with landscape-videos observation). At baseline and 4-week, patients underwent clinical evaluation and fMRI. Clinical assessment was repeated at 8-week. At 4-week, both groups showed reduced freezing of gait severity, improved walking speed and quality of life. Moreover, AOT was associated with reduced motor disability and improved balance. AOT group showed a sustained positive effect on motor disability, walking speed, balance and quality of life at 8-week, with a trend toward a persisting reduced freezing of gait severity. At 4-week vs. baseline, AOT group showed increased recruitment of fronto-parietal areas during fMRI tasks, while the Landscape group showed a reduced fMRI activity of the left postcentral and inferior parietal gyri and right rolandic operculum and supramarginal gyrus. In AOT group, functional brain changes were associated with clinical improvements at 4-week and predicted clinical evolution at 8-week. AOT has a more lasting effect in improving motor function, gait and quality of life in PD patients relative to physical therapy alone. AOT-related performance gains are associated with an increased recruitment of motor regions and fronto-parietal mirror neuron and attentional control areas.

  18. A method to standardize gait and balance variables for gait velocity.

    NARCIS (Netherlands)

    Iersel, M.B. van; Olde Rikkert, M.G.M.; Borm, G.F.

    2007-01-01

    Many gait and balance variables depend on gait velocity, which seriously hinders the interpretation of gait and balance data derived from walks at different velocities. However, as far as we know there is no widely accepted method to correct for effects of gait velocity on other gait and balance

  19. Reliability of segmental accelerations measured using a new wireless gait analysis system.

    Science.gov (United States)

    Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod

    2006-01-01

    The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.

  20. Gait post-stroke: Pathophysiology and rehabilitation strategies.

    Science.gov (United States)

    Beyaert, C; Vasa, R; Frykberg, G E

    2015-11-01

    We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Fast visual prediction and slow optimization of preferred walking speed.

    Science.gov (United States)

    O'Connor, Shawn M; Donelan, J Maxwell

    2012-05-01

    People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting 300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.

  2. Acute and Chronic Effect of Acoustic and Visual Cues on Gait Training in Parkinson’s Disease: A Randomized, Controlled Study

    Directory of Open Access Journals (Sweden)

    Roberto De Icco

    2015-01-01

    Full Text Available In this randomized controlled study we analyse and compare the acute and chronic effects of visual and acoustic cues on gait performance in Parkinson’s Disease (PD. We enrolled 46 patients with idiopathic PD who were assigned to 3 different modalities of gait training: (1 use of acoustic cues, (2 use of visual cues, or (3 overground training without cues. All patients were tested with kinematic analysis of gait at baseline (T0, at the end of the 4-week rehabilitation programme (T1, and 3 months later (T2. Regarding the acute effect, acoustic cues increased stride length and stride duration, while visual cues reduced the number of strides and normalized the stride/stance distribution but also reduced gait speed. As regards the chronic effect of cues, we recorded an improvement in some gait parameters in all 3 groups of patients: all 3 types of training improved gait speed; visual cues also normalized the stance/swing ratio, acoustic cues reduced the number of strides and increased stride length, and overground training improved stride length. The changes were not retained at T2 in any of the experimental groups. Our findings support and characterize the usefulness of cueing strategies in the rehabilitation of gait in PD.

  3. Biofeedback for robotic gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Colombo Gery

    2007-01-01

    Full Text Available Abstract Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback

  4. An online gait generator for quadruped walking using motor primitives

    Directory of Open Access Journals (Sweden)

    Chunlin Zhou

    2016-11-01

    Full Text Available This article presents implementation of an online gait generator on a quadruped robot. Firstly, the design of a quadruped robot is presented. The robot contains four leg modules each of which is constructed by a 2 degrees of freedom (2-DOF five-bar parallel linkage mechanism. Together with other two rotational DOF, the leg module is able to perform 4-DOF movement. The parallel mechanism of the robot allows all the servos attached on the body frame, so that the leg mass is decreased and motor load can be balanced. Secondly, an online gait generator based on dynamic movement primitives for the walking control is presented. Dynamic movement primitives provide an approach to generate periodic trajectories and they can be modulated in real time, which makes the online adjustment of walking gaits possible. This gait controller is tested by the quadruped robot in regulating walking speed, switching between forward\\backward movements and steering. The controller is easy to apply, expand and is quite effective on phase coordination and online trajectory modulation. Results of simulated experiments are presented.

  5. Clinical Gait Evaluation of Patients with Lumbar Spine Stenosis.

    Science.gov (United States)

    Sun, Jun; Liu, Yan-Cheng; Yan, Song-Hua; Wang, Sha-Sha; Lester, D Kevin; Zeng, Ji-Zhou; Miao, Jun; Zhang, Kuan

    2018-02-01

    The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3, MiniSun, CA) has been developed for clinical gait evaluation, and this study was designed to evaluate the accuracy and reliability of IDEEA3 for the gait measurement of lumbar spinal stenosis (LSS) patients. Twelve healthy volunteers were recruited to compare gait cycle, cadence, step length, velocity, and number of steps between a motion analysis system and a high-speed video camera. Twenty hospitalized LSS patients were recruited for the comparison of the five parameters between the IDEEA3 and GoPro camera. Paired t-test, intraclass correlation coefficient, concordance correlation coefficient, and Bland-Altman plots were used for the data analysis. The ratios of GoPro camera results to motion analysis system results, and the ratios of IDEEA3 results to GoPro camera results were all around 1.00. All P-values of paired t-tests for gait cycle, cadence, step length, and velocity were greater than 0.05, while all the ICC and CCC results were above 0.950 with P GoPro camera are highly consistent with the measurements with the motion analysis system. The measurements for IDEEA3 are consistent with those for the GoPro camera. IDEEA3 can be effectively used in the gait measurement of LSS patients. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  6. Validity and repeatability of inertial measurement units for measuring gait parameters.

    Science.gov (United States)

    Washabaugh, Edward P; Kalyanaraman, Tarun; Adamczyk, Peter G; Claflin, Edward S; Krishnan, Chandramouli

    2017-06-01

    Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation

    NARCIS (Netherlands)

    Vrieling, Aline H.; van Keeken, Helco G.; Schoppen, Tanneke; Hof, At L.; Otten, Bert; Halbertsma, Jan P. K.; Postema, Klaas

    Objective: To describe the adjustments in gait characteristics of obstacle crossing, gait initiation and gait termination that occur in subjects with a recent lower limb amputation during the rehabilitation process. Design: Prospective and descriptive study. Subjects: Fourteen subjects with a recent

  8. A Portable Gait Asymmetry Rehabilitation System for Individuals with Stroke Using a Vibrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Muhammad Raheel Afzal

    2015-01-01

    Full Text Available Gait asymmetry caused by hemiparesis results in reduced gait efficiency and reduced activity levels. In this paper, a portable rehabilitation device is proposed that can serve as a tool in diagnosing gait abnormalities in individuals with stroke and has the capability of providing vibration feedback to help compensate for the asymmetric gait. Force-sensitive resistor (FSR based insoles are used to detect ground contact and estimate stance time. A controller (Arduino provides different vibration feedback based on the gait phase measurement. It also allows wireless interaction with a personal computer (PC workstation using the XBee transceiver module, featuring data logging capabilities for subsequent analysis. Walking trials conducted with healthy young subjects allowed us to observe that the system can influence abnormality in the gait. The results of trials showed that a vibration cue based on temporal information was more effective than intensity information. With clinical experiments conducted for individuals with stroke, significant improvement in gait symmetry was observed with minimal disturbance caused to the balance and gait speed as an effect of the biofeedback. Future studies of the long-term rehabilitation effects of the proposed system and further improvements to the system will result in an inexpensive, easy-to-use, and effective rehabilitation device.

  9. Multilevel orthopedic surgery for crouch gait in cerebral palsy: An evaluation using functional mobility and energy cost

    Directory of Open Access Journals (Sweden)

    Dhiren Ganjwala

    2011-01-01

    Full Text Available Background: The evidence for the effectiveness of orthopaedic surgery to correct crouch gait in cerebral diplegic is insufficient. The crouch gait is defined as walking with knee flexion and ankle dorsiflexion through out the stance phase. Severe crouch gait in patients with spastic diplegia causes excessive loading of the patellofemoral joint and may result in anterior knee pain, gait deterioration, and progressive loss of function. We retrospectively evaluated the effect of surgery on the mobility and energy consumption at one year or more with the help of validated scales and scores. Materials and Methods: 18 consecutive patients with mean age of 14.6 years with cerebral diplegia with crouched gait were operated for multilevel orthopaedic surgery. Decisions for surgery were made with the observations on gait analysis and physical examination. The surgical intervention consisted of lengthening of short muscle-tendon units, shortening of long muscles and correction of osseous deformities. The paired samples t test was used to compare values of physical examination findings, walking speed and physiological cost index. Two paired sample Wilcoxon signed rank test was used to compare functional walking scales. Results: After surgery, improvements in functional mobility, walking speed and physiological cost index were found. No patient was able to walk 500 meters before surgery while all were able to walk after surgery. The improvements that were noted at one year were maintained at two years. Conclusions: Multilevel orthopedic surgery for older children and adolescents with crouch gait is effective for improving function and independence.

  10. Effects of the addition of functional electrical stimulation to ground level gait training with body weight support after chronic stroke.

    Science.gov (United States)

    Prado-Medeiros, Christiane L; Sousa, Catarina O; Souza, Andréa S; Soares, Márcio R; Barela, Ana M F; Salvini, Tania F

    2011-01-01

    The addition of functional electrical stimulation (FES) to treadmill gait training with partial body weight support (BWS) has been proposed as a strategy to facilitate gait training in people with hemiparesis. However, there is a lack of studies that evaluate the effectiveness of FES addition on ground level gait training with BWS, which is the most common locomotion surface. To investigate the additional effects of commum peroneal nerve FES combined with gait training and BWS on ground level, on spatial-temporal gait parameters, segmental angles, and motor function. Twelve people with chronic hemiparesis participated in the study. An A1-B-A2 design was applied. A1 and A2 corresponded to ground level gait training using BWS, and B corresponded to the same training with the addition of FES. The assessments were performed using the Modified Ashworth Scale (MAS), Functional Ambulation Category (FAC), Rivermead Motor Assessment (RMA), and filming. The kinematics analyzed variables were mean walking speed of locomotion; step length; stride length, speed and duration; initial and final double support duration; single-limb support duration; swing period; range of motion (ROM), maximum and minimum angles of foot, leg, thigh, and trunk segments. There were not changes between phases for the functional assessment of RMA, for the spatial-temporal gait variables and segmental angles, no changes were observed after the addition of FES. The use of FES on ground level gait training with BWS did not provide additional benefits for all assessed parameters.

  11. The effects of aquatic trunk exercise on gait and muscle activity in stroke patients: a randomized controlled pilot study.

    Science.gov (United States)

    Park, Byoung-Sun; Noh, Ji-Woong; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-11-01

    [Purpose] The purpose of this study was to investigate the relationship between muscle activity and gait function following aquatic trunk exercise in hemiplegic stroke patients. [Subjects and Methods] This study's participants included thirteen hemiplegic patients (ten males and three females). The aquatic therapy consisted of administering concentrative aquatic therapy for four weeks in a therapeutic pool. Gait parameters were measured using a gait analysis system adjusted to each subject's comfortable walking speed. Electromyographic signals were measured for the rectus abdominis, external abdominal oblique, transversus abdominis/internal-abdominal oblique, and erector spine of each patients. [Results] The pre- and post-training performances of the transversus abdominis/internal-abdominal oblique were compared statistically. There was no statistical difference between the patients' pre- and post-training values of maximal voluntary isometric contraction of the rectus abdominis, but the external abdominal oblique values tended to improve. Furthermore, gait factors improved significantly in terms of walking speeds, walking cycles, affected-side stance phases, affected-stride lengths, and stance-phase symmetry indices, respectively. [Conclusion] These results suggest that the trunk exercise during aquatic therapy may in part contribute to clinically relevant improvements in muscle activities and gait parameters.

  12. Wind speed change regionalization in China (1961–2012

    Directory of Open Access Journals (Sweden)

    Pei-Jun Shi

    2015-06-01

    Full Text Available This research quantitatively recognized the wind speed change using wind speed trend and trend of wind speed variability from 1961 to 2012 and regionalized the wind speed change on a county-level basis. The mean wind speed observation data and linear fitting method were used. The findings suggested that level-I regionalization includes six zones according to wind speed trend value in different regions, viz. Northeast China–North China substantial declining zone, East–Central China declining zone, Southeast China slightly declining zone, Southwest China very slightly declining zone, Northwest China declining zone, and Qinghai–Tibetan Plateau slightly declining zone. Level-II regionalization divides China into twelve regions based on trend of wind speed variability and the level-I regionalization results.

  13. Markedly impaired bilateral coordination of gait in post-stroke patients: Is this deficit distinct from asymmetry? A cohort study

    Directory of Open Access Journals (Sweden)

    van Lummel Rob C

    2011-05-01

    Full Text Available Abstract Background Multiple aspects of gait are typically impaired post-stroke. Asymmetric gait is common as a consequence of unilateral brain lesions. The relationship between the resulting asymmetric gait and impairments in the ability to properly coordinate the reciprocal stepping activation of the legs is not clear. The objective of this exploratory study is to quantify the effects of hemiparesis on two putatively independent aspects of the bilateral coordination of gait to gain insight into mechanisms and their relationship and to assess their potential as clinical markers. Methods Twelve ambulatory stroke patients and age-matched healthy adults wore a tri-axial piezo-resistive accelerometer and walked back and forth along a straight path in a hall at a comfortable walking speed during 2 minutes. Gait speed, gait asymmetry (GA, and aspects of the bilateral coordination of gait (BCG were determined. Bilateral coordination measures included the left-right stepping phase for each stride φi, consistency in the phase generation φ_CV, accuracy in the phase generation φ_ABS, and Phase Coordination Index (PCI, a combination of accuracy and consistency of the phase generation. Results Group differences (p Conclusions In ambulatory post-stroke patients, two gait coordination properties, GA and PCI, are markedly impaired. Although these features are not related to each other in healthy controls, they are strongly related in stroke patients, which is a novel finding. A measurement approach based on body-fixed sensors apparently may provide sensitive markers that can be used for clinical assessment and for enhancing rehabilitation targeting in post-stroke patients.

  14. Markedly impaired bilateral coordination of gait in post-stroke patients: Is this deficit distinct from asymmetry? A cohort study

    Science.gov (United States)

    2011-01-01

    Background Multiple aspects of gait are typically impaired post-stroke. Asymmetric gait is common as a consequence of unilateral brain lesions. The relationship between the resulting asymmetric gait and impairments in the ability to properly coordinate the reciprocal stepping activation of the legs is not clear. The objective of this exploratory study is to quantify the effects of hemiparesis on two putatively independent aspects of the bilateral coordination of gait to gain insight into mechanisms and their relationship and to assess their potential as clinical markers. Methods Twelve ambulatory stroke patients and age-matched healthy adults wore a tri-axial piezo-resistive accelerometer and walked back and forth along a straight path in a hall at a comfortable walking speed during 2 minutes. Gait speed, gait asymmetry (GA), and aspects of the bilateral coordination of gait (BCG) were determined. Bilateral coordination measures included the left-right stepping phase for each stride φi, consistency in the phase generation φ_CV, accuracy in the phase generation φ_ABS, and Phase Coordination Index (PCI), a combination of accuracy and consistency of the phase generation. Results Group differences (p stroke patients (r = 0.94; p stroke patients, two gait coordination properties, GA and PCI, are markedly impaired. Although these features are not related to each other in healthy controls, they are strongly related in stroke patients, which is a novel finding. A measurement approach based on body-fixed sensors apparently may provide sensitive markers that can be used for clinical assessment and for enhancing rehabilitation targeting in post-stroke patients. PMID:21545703

  15. GaitKeeper: A System for Measuring Canine Gait

    Directory of Open Access Journals (Sweden)

    Cassim Ladha

    2017-02-01

    Full Text Available It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs’ gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs’ welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time. Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance

  16. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people

    Directory of Open Access Journals (Sweden)

    de Vries Oscar J

    2011-01-01

    Full Text Available Abstract Background Falls in frail elderly are a common problem with a rising incidence. Gait and postural instability are major risk factors for falling, particularly in geriatric patients. As walking requires attention, cognitive impairments are likely to contribute to an increased fall risk. An objective quantification of gait and balance ability is required to identify persons with a high tendency to fall. Recent studies have shown that stride variability is increased in elderly and under dual task condition and might be more sensitive to detect fall risk than walking speed. In the present study we complemented stride related measures with measures that quantify trunk movement patterns as indicators of dynamic balance ability during walking. The aim of the study was to quantify the effect of impaired cognition and dual tasking on gait variability and stability in geriatric patients. Methods Thirteen elderly with dementia (mean age: 82.6 ± 4.3 years and thirteen without dementia (79.4 ± 5.55 recruited from a geriatric day clinic, walked at self-selected speed with and without performing a verbal dual task. The Mini Mental State Examination and the Seven Minute Screen were administered. Trunk accelerations were measured with an accelerometer. In addition to walking speed, mean, and variability of stride times, gait stability was quantified using stochastic dynamical measures, namely regularity (sample entropy, long range correlations and local stability exponents of trunk accelerations. Results Dual tasking significantly (p Conclusions The observed trunk adaptations were a consistent instability factor. These results support the concept that changes in cognitive functions contribute to changes in the variability and stability of the gait pattern. Walking under dual task conditions and quantifying gait using dynamical parameters can improve detecting walking disorders and might help to identify those elderly who are able to adapt walking

  17. Comparison of the Classifier Oriented Gait Score and the Gait Profile Score based on imitated gait impairments.

    Science.gov (United States)

    Christian, Josef; Kröll, Josef; Schwameder, Hermann

    2017-06-01

    Common summary measures of gait quality such as the Gait Profile Score (GPS) are based on the principle of measuring a distance from the mean pattern of a healthy reference group in a gait pattern vector space. The recently introduced Classifier Oriented Gait Score (COGS) is a pathology specific score that measures this distance in a unique direction, which is indicated by a linear classifier. This approach has potentially improved the discriminatory power to detect subtle changes in gait patterns but does not incorporate a profile of interpretable sub-scores like the GPS. The main aims of this study were to extend the COGS by decomposing it into interpretable sub-scores as realized in the GPS and to compare the discriminative power of the GPS and COGS. Two types of gait impairments were imitated to enable a high level of control of the gait patterns. Imitated impairments were realized by restricting knee extension and inducing leg length discrepancy. The results showed increased discriminatory power of the COGS for differentiating diverse levels of impairment. Comparison of the GPS and COGS sub-scores and their ability to indicate changes in specific variables supports the validity of both scores. The COGS is an overall measure of gait quality with increased power to detect subtle changes in gait patterns and might be well suited for tracing the effect of a therapeutic treatment over time. The newly introduced sub-scores improved the interpretability of the COGS, which is helpful for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Are gait parameters related to knee pain, urinary incontinence and a history of falls in community-dwelling elderly women?].

    Science.gov (United States)

    Kim, Hunkyung; Suzuki, Takao; Yoshida, Hideyo; Shimada, Hiroyuki; Yamashiro, Yukari; Sudo, Motoki; Niki, Yoshifumi

    2013-01-01

    To examine the association between gait parameters and knee pain, urinary incontinence, and a history of falls. Comprehensive health examinations were conducted in 2009 among 971 elderly women over 70 years of age, in which the questionnaire and gait parameter results of 870 participants were analyzed. Knee pain, urinary incontinence and a history of falls were assessed through face-to-face interview surveys. Gait parameters were measured using a walk-way to assess walking speed, cadence, stride, stride length, step width, walking angle, toe angle and the differences in each parameter between the right and left foot. Multiple logistic regression analyses were performed to examine the associations between the gait parameters and knee pain, urinary incontinence and a history of falls. The elderly women with knee pain, urinary incontinence and a history of falls had slower walking speeds, smaller strides and strides length, and wider step width and walking angles. The multiple logistic regression analysis showed the walking speed to be significantly associated with mild knee pain and urinary incontinence and single a history of fall; moderate/severe knee pain was significantly associated with step width (OR=0.58, 95%CI=0.40-0.84) and walking angle (OR=1.62, 95%CI=1.30-2.01); moderate/severe urinary incontinence was significantly associated with walking speed (OR=0.97, 95%CI=0.96-0.99), walking angle (OR=1.14, 95%CI=1.02-1.26), and difference in walking angle between the right and left foot (OR=1.43, 95%CI=1.09-1.86); multiple a history of falls was significantly associated with stride length (OR=0.85, 95%CI=0.79-0.93) and the difference in walking angle between the right and left foot (OR=1.36, 95%CI=1.01-1.85). The data suggest that combining assessments of walking speed and other gait parameters may be an effective screening method for the early detection of geriatric syndromes.

  19. Vacuum level effects on gait characteristics for unilateral transtibial amputees with elevated vacuum suspension.

    Science.gov (United States)

    Xu, Hang; Greenland, Kasey; Bloswick, Donald; Zhao, Jie; Merryweather, Andrew

    2017-03-01

    The elevated vacuum suspension system has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on gait characteristics is still unclear. The purpose of this study was to investigate the effects of elevated vacuum levels on temporal parameters, kinematics and kinetics for unilateral transtibial amputees. Three-dimensional gait analysis was conducted in 9 unilateral transtibial amputees walking at a controlled speed with five vacuum levels ranging from 0 to 20inHg, and also in 9 able-bodied subjects walking at self-preferred speed. Repeated ANOVA and Dunnett's t-test were performed to determine the effect of vacuum level and limb for within subject and between groups. The effect of vacuum level significantly affected peak hip external rotation and external knee adduction moment. Maximum braking and propulsive ground reaction forces generally increased for the residual limb and decreased for the intact limb with increasing vacuum. Additionally, the intact limb experienced an increased loading due to gait asymmetry for several variables. There was no systematic vacuum level effect on gait. Higher vacuum levels, such as 15 and 20inHg, were more comfortable and provided some relief to the intact limb, but may also increase the risk of osteoarthritis of the residual limb due to the increased peak external hip and knee adduction moments. Very low vacuum should be avoided because of the negative effects on gait symmetry. A moderate vacuum level at 15inHg is suggested for unilateral transtibial amputees with elevated vacuum suspension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gait and Cognition: A Complementary Approach to Understanding Brain Function and the Risk of Falling

    Science.gov (United States)

    Montero-Odasso, Manuel; Verghese, Joe; Beauchet, Olivier; Hausdorff, Jeffrey M.

    2012-01-01

    Until recently, clinicians and researchers have performed gait assessments and cognitive assessments separately when evaluating older adults. Increasing evidence from clinical practice, epidemiological studies, and clinical trials shows that gait and cognition are inter-related in older adults. Quantifiable alterations in gait among older adults are associated with falls, dementia, and disability. At the same time, emerging evidence indicates that early disturbances in cognitive processes such as attention, executive function, and working memory are associated with slower gait and gait instability during single and dual-task testing, and that these cognitive disturbances assist in the prediction of future mobility loss, falls, and progression to dementia. This paper reviews the importance of the gait-cognition inter-relationship in aging and presents evidence that gait assessments can provide a window into the understanding of cognitive function and dysfunctions, and fall risk in older people in clinical practice. To this end, the benefits of dual-task gait assessments (e.g., walking while performing an attention-demanding task) as a marker of fall risk are summarized. Further, we also present a potential complementary approach for reducing the risk of falls by improving certain aspects of cognition through both non-pharmacological and pharmacological treatments. Untangling the relationship between early gait disturbances and early cognitive changes may be helpful for identifying older adults at higher risk of experiencing mobility decline, falls and the progression to dementia. PMID:23110433

  1. Driving electromechanically assisted Gait Trainer for people with stroke.

    Science.gov (United States)

    Iosa, Marco; Morone, Giovanni; Bragoni, Maura; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Pratesi, Luca; Paolucci, Stefano

    2011-01-01

    Electromechanically assisted gait training is a promising task-oriented approach for gait restoration, especially for people with subacute stroke. However, few guidelines are available for selecting the parameter values of the electromechanical Gait Trainer (GT) (Reha-Stim; Berlin, Germany) and none is tailored to a patient's motor capacity. We assessed 342 GT sessions performed by 20 people with stroke who were stratified by Functional Ambulatory Category. In the first GT session of all patients, the body-weight support (BWS) required was higher than that reported in the literature. In further sessions, we noted a slow reduction of BWS and a fast increment of walking speed for the most-affected patients. Inverse trends were observed for the less-affected patients. In all the patients, the heart rate increment was about 20 beats per minute, even for sessions in which the number of strides performed was up to 500. In addition, the effective BWS measured during GT sessions was different from that initially selected by the physiotherapist. This difference depended mainly on the position of the GT platforms during selection. Finally, harness acceleration in the anteroposterior direction proved to be higher in patients with stroke than in nondisabled subjects. Our findings are an initial step toward scientifically selecting parameters in electromechanically assisted gait training.

  2. Stimulation of the mesencephalic locomotor region for gait recovery after stroke.

    Science.gov (United States)

    Fluri, Felix; Malzahn, Uwe; Homola, György A; Schuhmann, Michael K; Kleinschnitz, Christoph; Volkmann, Jens

    2017-11-01

    One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Because electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model. Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam-walking test and video-kinematic analysis (CatWalk) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS. Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam-walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the CatWalk system. Rats regained the ability to cross the beam unassisted, showing a reduced number of paw slips and misses. MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits. Ann Neurol 2017;82:828-840. © 2017 American Neurological Association.

  3. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Shmuel Springer

    2012-01-01

    Full Text Available The study objective was to assess the effect of functional electrical stimulation (FES applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years with hemiparesis (5.37 ± 5.43 years since diagnosis demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (. In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone.

  4. Effect of step-synchronized vibration stimulation of soles on gait in Parkinson's disease: a pilot study

    Directory of Open Access Journals (Sweden)

    Novak Vera

    2006-05-01

    Full Text Available Abstract Background Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD. Methods This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44–79 years, on medication and 8 age-matched healthy subjects (5 women and 3 men. PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs were embedded in elastic insoles (one below the heel and two below the forefoot areas inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV, a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable. Results The walking speed (p Conclusion Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS.

  5. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Science.gov (United States)

    Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved

    2012-01-01

    The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P hemiparesis more than peroneal FES alone. PMID:23097635

  6. Limbic and Basal Ganglia Neuroanatomical Correlates of Gait and Executive Function: Older Adults With Mild Cognitive Impairment and Intact Cognition.

    Science.gov (United States)

    McGough, Ellen L; Kelly, Valerie E; Weaver, Kurt E; Logsdon, Rebecca G; McCurry, Susan M; Pike, Kenneth C; Grabowski, Thomas J; Teri, Linda

    2018-04-01

    This study aimed to examine differences in spatiotemporal gait parameters between older adults with amnestic mild cognitive impairment and normal cognition and to examine limbic and basal ganglia neural correlates of gait and executive function in older adults without dementia. This was a cross-sectional study of 46 community-dwelling older adults, ages 70-95 yrs, with amnestic mild cognitive impairment (n = 23) and normal cognition (n = 23). Structural magnetic resonance imaging was used to attain volumetric measures of limbic and basal ganglia structures. Quantitative motion analysis was used to measure spatiotemporal parameters of gait. The Trail Making Test was used to assess executive function. During fast-paced walking, older adults with amnestic mild cognitive impairment demonstrated significantly slower gait speed and shorter stride length compared with older adults with normal cognition. Stride length was positively correlated with hippocampal, anterior cingulate, and nucleus accumbens volumes (P function was positively correlated with hippocampal, anterior cingulate, and posterior cingulate volumes (P older adults with normal cognition, those with amnestic mild cognitive impairment demonstrated slower gait speed and shorter stride length, during fast-paced walking, and lower executive function. Hippocampal and anterior cingulate volumes demonstrated moderate positive correlation with both gait and executive function, after adjusting for age. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss gait performance and cognitive function in older adults with amnestic mild cognitive impairment versus normal cognition, (2) discuss neurocorrelates of gait and executive function in older adults without dementia, and (3) recognize the importance of assessing gait speed and cognitive function in the clinical management of older

  7. The effects of the Nintendo™ Wii Fit on gait, balance, and quality of life in individuals with incomplete spinal cord injury

    Science.gov (United States)

    Feinn, Richard; Chui, Kevin; Cheng, M. Samuel

    2015-01-01

    Purpose To assess the effects of virtual reality using the NintendoTM Wii Fit on balance, gait, and quality of life in ambulatory individuals with incomplete spinal cord injury (iSCI). Relevance There is a need for continued research to support effective treatment techniques in individuals with iSCI to maximize each individual's potential functional performance. Subjects Five males with a mean age of 58.6 years who had an iSCI and were greater than one-year post injury. Methods An interrupted time series design with three pre-tests over three weeks, a post-test within one week of the intervention, and a four-week follow up. Outcome measures: gait speed, timed up and go (TUG), forward functional reach test (FFRT) and lateral functional reach test (LFRT), RAND SF-36. Intervention consisted of one-hour sessions with varied games using the Nintendo Wii Fit twice per week for seven weeks. Survey data was also collected at post-test. Results There were statistically significant changes found in gait speed and functional reach. The changes were also maintained at the four-week follow up post-test. Survey reports suggested improvements in balance, endurance, and mobility with daily tasks at home. Conclusion All subjects who participated in training with the NintendoTM Wii Fit demonstrated statistically significant improvements in gait speed and functional reach after seven weeks of training. Given the potential positive impact that the NintendoTM Wii Fit has on functional reach and gait speed in patients with iSCI, physical therapists may want to incorporate these activities as part of a rehabilitation program. PMID:25613853

  8. [Effects of cognitive state on balance disturbances and gait disorders in institutionalised elderly].

    Science.gov (United States)

    Díaz-Pelegrina, Ana; Cabrera-Martos, Irene; López-Torres, Isabel; Rodríguez-Torres, Janet; Valenza, Marie Carmen

    2016-01-01

    Ageing has been linked to a high prevalence of cognitive impairment, which, in turn, has been related to balance disturbances and gait disorders. The aim of this study was to identify whether there are differences between subjects with and without cognitive impairment regarding the quality of gait and balance. An observational study was conducted on institutionalised people older than 65 years (n=82). Gait and balance was evaluated after the assessment of cognitive impairment using the Mini-Mental State Examination (MMSE). Single and dual tests were used including, the 6-minute walking, stride length, and gait speed. Timed Up and Go tests were also used to evaluate balance. The participants were divided into three groups: 28 subjects in the group without cognitive impairment (MMSE≥27), 29 subjects with mild (27Gait assessment showed significant between-groups differences in all the variables (P<.05). The variables assessing balance also showed significantly worse values in those groups with cognitive impairment. The severity of cognitive impairment is related to impaired balance and gait, thus the clinical monitoring of these variables in population at risk is needed. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  9. An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results.

    Science.gov (United States)

    Hesse, S; Werner, C; Uhlenbrock, D; von Frankenberg, S; Bardeleben, A; Brandl-Hesse, B

    2001-01-01

    Modern concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. This preliminary study investigated whether an additional 4-week daily therapy on the gait trainer could improve gait ability in 14 chronic wheelchair-bound hemiparetic subjects. The 4 weeks of physiotherapy and gait-trainer therapy resulted in a relevant improvement of gait ability in all subjects. Velocity, cadence, and stride length improved significantly (p gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke; further studies are needed.

  10. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis.

    Science.gov (United States)

    Khandelwal, Siddhartha; Wickstrom, Nicholas

    2016-12-01

    Detecting gait events is the key to many gait analysis applications that would benefit from continuous monitoring or long-term analysis. Most gait event detection algorithms using wearable sensors that offer a potential for use in daily living have been developed from data collected in controlled indoor experiments. However, for real-word applications, it is essential that the analysis is carried out in humans' natural environment; that involves different gait speeds, changing walking terrains, varying surface inclinations and regular turns among other factors. Existing domain knowledge in the form of principles or underlying fundamental gait relationships can be utilized to drive and support the data analysis in order to develop robust algorithms that can tackle real-world challenges in gait analysis. This paper presents a novel approach that exhibits how domain knowledge about human gait can be incorporated into time-frequency analysis to detect gait events from long-term accelerometer signals. The accuracy and robustness of the proposed algorithm are validated by experiments done in indoor and outdoor environments with approximately 93 600 gait events in total. The proposed algorithm exhibits consistently high performance scores across all datasets in both, indoor and outdoor environments.

  11. The application of high-speed cinematography for the quantitative analysis of equine locomotion.

    Science.gov (United States)

    Fredricson, I; Drevemo, S; Dalin, G; Hjertën, G; Björne, K

    1980-04-01

    Locomotive disorders constitute a serious problem in horse racing which will only be rectified by a better understanding of the causative factors associated with disturbances of gait. This study describes a system for the quantitative analysis of the locomotion of horses at speed. The method is based on high-speed cinematography with a semi-automatic system of analysis of the films. The recordings are made with a 16 mm high-speed camera run at 500 frames per second (fps) and the films are analysed by special film-reading equipment and a mini-computer. The time and linear gait variables are presented in tabular form and the angles and trajectories of the joints and body segments are presented graphically.

  12. Correlation between cortical beta power and gait speed is suppressed in a parkinsonian model, but restored by therapeutic deep brain stimulation.

    Science.gov (United States)

    Polar, Christian A; Gupta, Rahul; Lehmkuhle, Mark J; Dorval, Alan D

    2018-05-30

    The motor cortex and subthalamic nucleus (STN) of patients with Parkinson's disease (PD) exhibit abnormally high levels of electrophysiological oscillations in the ~12-35 Hz beta-frequency range. Recent studies have shown that beta is partly carried forward to regulate future motor states in the healthy condition, suggesting that steady state beta power is lower when a sequence of movements occurs in a short period of time, such as during fast gait. However, whether this relationship between beta power and motor states persists upon parkinsonian onset or in response to effective therapy is unclear. Using a 6-hydroxy dopamine (6-OHDA) rat model of PD and a custom-built behavioral and neurophysiological recording system, we aimed to elucidate a better understanding of the mechanisms underlying cortical beta power and PD symptoms. In addition to elevated levels of beta oscillations, we show that parkinsonian onset was accompanied by a decoupling of movement intensity - quantified as gait speed - from cortical beta power. Although subthalamic deep brain stimulation (DBS) reduced general levels of beta oscillations in the cortex of all PD animals, the brain's capacity to regulate steady state levels of beta power as a function of movement intensity was only restored in animals with therapeutic DBS. We propose that, in addition to lowering general levels of cortical beta power, restoring the brain's ability to maintain this inverse relationship is critical for effective symptom suppression. Copyright © 2017. Published by Elsevier Inc.

  13. Effects of Gait Training With Body Weight Support on a Treadmill Versus Overground in Individuals With Stroke.

    Science.gov (United States)

    Gama, Gabriela L; Celestino, Melissa L; Barela, José A; Forrester, Larry; Whitall, Jill; Barela, Ana M

    2017-04-01

    To investigate the effects of gait training with body weight support (BWS) on a treadmill versus overground in individuals with chronic stroke. Randomized controlled trial. University research laboratory. Individuals (N=28) with chronic stroke (>6mo from the stroke event). Participants were randomly assigned to receive gait training with BWS on a treadmill (n=14) or overground (n=14) 3 times a week for 6 weeks. Gait speed measured using the 10-meter walk test, endurance measured using the 6-minute walk test, functional independence measured using the motor domain of the FIM, lower limb recovery measured using the lower extremity domain of the Fugl-Meyer assessment, step length, step length symmetry ratio, and single-limb support duration. Measurements were obtained at baseline, immediately after the training session, and 6 weeks after the training session. At 1 week after the last training session, both groups improved in all outcome measures except paretic step length and step length symmetry ratio, which were improved only in the overground group (P=.01 and P=.01, respectively). At 6 weeks after the last training session, all improvements remained and the treadmill group also improved paretic step length (P.05). Individuals with chronic stroke equally improve gait speed and other gait parameters after 18 sessions of BWS gait training on either a treadmill or overground. Only the overground group improved step length symmetry ratio, suggesting a role of integrating overground walking into BWS interventions poststroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2018-01-01

    Full Text Available The natural quadrupeds, such as geckos and lizards, often twist their trunks when moving. Conventional quadruped robots cannot perform the same motion due to equipping with a trunk which is a rigid body or at most consists of two blocks connected by passive joints. This paper proposes a metamorphic quadruped robot with a reconfigurable trunk which can implement active trunk motions, called MetaRobot I. The robot can imitate the natural quadrupeds to execute motion of trunk twisting. Benefiting from the twisting trunk, the stride length of this quadruped is increased comparing to that of conventional quadruped robots.In this paper a continuous static gait benefited from the twisting trunk performing the increased stride length is introduced. After that, the increased stride length relative to the trunk twisting will be analysed mathematically. Other points impacting the implementation of the increased stride length in the gait are investigated such as the upper limit of the stride length and the kinematic margin. The increased stride length in the gait will lead the increase of locomotion speed comparing with conventional quadruped robots, giving the extent that natural quadrupeds twisting their trunks when moving. The simulation and an experiment on the prototype are then carried out to illustrate the benefits on the stride length and locomotion speed brought by the twisting trunk to the quadruped robot.

  15. Transitions between three swimming gaits in Paramecium escape.

    Science.gov (United States)

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N

    2011-05-03

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.

  16. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tudorache, Christian; Jordan, Anders D.

    2010-01-01

    rate was measured at 1.4, 1.9 and 2.3 L s–1. The presence and magnitude of excess post-exercise oxygen consumption (EPOC) were evaluated after each swimming speed. The data demonstrated that 1.4 L s–1 was below the Up–c, whereas 1.9 and 2.3 L s–1 were above the Up–c. These last two swimming speeds...... included caudal fin propulsion in a mostly steady and unsteady (burst-assisted) mode, respectively. There was no evidence of EPOC after swimming at 1.4 and 1.9 L s–1, indicating that the pectoral–caudal gait transition was not a threshold for anaerobic metabolism. At 2.3 L s–1, E. lateralis switched...... to an unsteady burst and flap gait. This swimming speed resulted in EPOC, suggesting that anaerobic metabolism constituted 25% of the total costs. Burst activity correlated positively with the magnitude of the EPOC. Collectively, these data indicate that steady axial propulsion does not lead to EPOC whereas...

  17. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital Settings for Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Can Tunca

    2017-04-01

    Full Text Available The gold standards for gait analysis are instrumented walkways and marker-based motion capture systems, which require costly infrastructure and are only available in hospitals and specialized gait clinics. Even though the completeness and the accuracy of these systems are unquestionable, a mobile and pervasive gait analysis alternative suitable for non-hospital settings is a clinical necessity. Using inertial sensors for gait analysis has been well explored in the literature with promising results. However, the majority of the existing work does not consider realistic conditions where data collection and sensor placement imperfections are imminent. Moreover, some of the underlying assumptions of the existing work are not compatible with pathological gait, decreasing the accuracy. To overcome these challenges, we propose a foot-mounted inertial sensor-based gait analysis system that extends the well-established zero-velocity update and Kalman filtering methodology. Our system copes with various cases of data collection difficulties and relaxes some of the assumptions invalid for pathological gait (e.g., the assumption of observing a heel strike during a gait cycle. The system is able to extract a rich set of standard gait metrics, including stride length, cadence, cycle time, stance time, swing time, stance ratio, speed, maximum/minimum clearance and turning rate. We validated the spatio-temporal accuracy of the proposed system by comparing the stride length and swing time output with an IR depth-camera-based reference system on a dataset comprised of 22 subjects. Furthermore, to highlight the clinical applicability of the system, we present a clinical discussion of the extracted metrics on a disjoint dataset of 17 subjects with various neurological conditions.

  18. How innate is locomotion in precocial animals? A study on the early development of spatio-temporal gait variables and gait symmetry in piglets.

    Science.gov (United States)

    Vanden Hole, Charlotte; Goyens, Jana; Prims, Sara; Fransen, Erik; Ayuso Hernando, Miriam; Van Cruchten, Steven; Aerts, Peter; Van Ginneken, Chris

    2017-08-01

    Locomotion is one of the most important ecological functions in animals. Precocial animals, such as pigs, are capable of independent locomotion shortly after birth. This raises the question whether coordinated movement patterns and the underlying muscular control in these animals is fully innate or whether there still exists a rapid maturation. We addressed this question by studying gait development in neonatal pigs through the analysis of spatio-temporal gait characteristics during locomotion at self-selected speed. To this end, we made video recordings of piglets walking along a corridor at several time points (from 0 h to 96 h). After digitization of the footfalls, we analysed self-selected speed and spatio-temporal characteristics (e.g. stride and step lengths, stride frequency and duty factor) to study dynamic similarity, intralimb coordination and interlimb coordination. To assess the variability of the gait pattern, left-right asymmetry was studied. To distinguish neuromotor maturation from effects caused by growth, both absolute and normalized data (according to the dynamic similarity concept) were included in the analysis. All normalized spatio-temporal variables reached stable values within 4 h of birth, with most of them showing little change after the age of 2 h. Most asymmetry indices showed stable values, hovering around 10%, within 8 h of birth. These results indicate that coordinated movement patterns are not entirely innate, but that a rapid neuromotor maturation, potentially also the result of the rearrangement or recombination of existing motor modules, takes place in these precocial animals. © 2017. Published by The Company of Biologists Ltd.

  19. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson's patients.

    Directory of Open Access Journals (Sweden)

    Michael J Hove

    Full Text Available Parkinson's disease (PD and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times--rather than the 1/f structure observed in healthy gait--and this randomness of stride times (low fractal scaling predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a no auditory stimulation, b fixed-tempo RAS, and c interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (reemergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients.

  20. Effects of Indoor Footwear on Balance and Gait Patterns in Community-Dwelling Older Women.

    Science.gov (United States)

    Menz, Hylton B; Auhl, Maria; Munteanu, Shannon E

    2017-01-01

    Footwear worn indoors is generally less supportive than outdoor footwear and may increase the risk of falls. To evaluate balance ability and gait patterns in older women while wearing different styles of indoor footwear: a backless slipper and an enclosed slipper designed to optimise balance. Older women (n = 30) aged 65-83 years (mean 74.4, SD 5.6) performed a series of laboratory tests of balance ability (postural sway, limits of stability, and tandem walking, measured with the NeuroCom® Balance Master) and gait patterns (walking speed, cadence, and step length, measured with the GAITRite® walkway) while wearing (1) socks, (2) backless slippers with a soft sole, and (3) enclosed slippers with a firm sole and Velcro® fastening. Perceptions of the footwear were also documented using a structured questionnaire. Significant overall effects of footwear were observed for postural sway, the limits of stability test (directional control), the tandem walk test (step width and end sway), and temporospatial gait patterns (walking speed, cadence, and step length). No footwear effects were observed for maximum excursion when performing the limits of stability test or for speed when performing the tandem walk test. Post hoc tests indicated that performances were best while wearing the enclosed slippers, intermediate with socks, and worst with backless slippers. The enclosed slippers were perceived to be more attractive, comfortable, and well fitted, but heavier than the backless slippers. Most participants (n = 23; 77%) reported that they would consider wearing the enclosed slippers to reduce their risk of falling. Indoor footwear with an enclosed heel, Velcro® fastening, and a firm sole optimises balance and gait compared to backless slippers, and is therefore recommended to reduce the risk of falling. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. The influence of the Re-Link Trainer on gait symmetry in healthy adults.

    Science.gov (United States)

    Ward, Sarah; Wiedemann, Lukas; Stinear, Cathy; Stinear, James; McDaid, Andrew

    2017-07-01

    Walking function post-stroke is characterized by asymmetries in gait cycle parameters and joint kinematics. The Re-Link Trainer is designed to provide kinematic constraint to the paretic lower limb, to guide a physiologically normal and symmetrical gait pattern. The purpose of this pilot study was to assess the immediate influence of the Re-Link Trainer on measures of gait symmetry in healthy adults. Participants demonstrated a significantly lower cadence and a 62% reduction in walking speed in the Re-Link Trainer compared to normal walking. The step length ratio had a significant increase from 1.0 during normal walking to 2.5 when walking in the Re-Link Trainer. The results from this pilot study suggest in its current iteration the Re-Link Trainer imposes an asymmetrical constraint on lower limb kinematics.

  2. Gait analysis in hip viscosupplementation for osteoarthritis: a case report

    Directory of Open Access Journals (Sweden)

    L. Di Lorenzo

    2013-10-01

    Full Text Available Hip is a site very commonly affected by osteoarthritis and the intra-articular administration of hyaluronic acid in the management of osteoarthritic pain is increasingly used. However, the debate about its usefulness is still ongoing, as not all results of clinical trials confirm its effectiveness. In order to achieve the best outcome, clinical assessment and treatment choices should be based on subjective outcome, pathological and mechanical findings that should be integrated with qualitative analysis of human movement. After viscosupplementation, clinical trials often evaluate as endpoint subjective outcomes (i.e. pain visual analogic scale and static imaging such as radiographs and magnetic resonance imaging. In our clinical practice we use gait analysis as part of rehabilitation protocol to measure performance, enhancement and changes of several biomechanical factors. Taking advantage of available resources (BTS Bioengineering gait analysis Elite System we studied a patient’s gait after ultrasound guided hip injections for viscosupplementation. He showed an early clinical and biomechanical improvement during walking after a single intra articular injection of hyaluronic acid. Gait analysis parameters obtained suggest that the pre-treatment slower speed may be caused by antalgic walking patterns, the need for pain control and muscle weakness. After hip viscosupplementation, the joint displayed different temporal, kinetic and kinematic parameters associated with improved pain patterns.

  3. Speed-dependent body weight supported sit-to-stand training in chronic stroke: a case series.

    Science.gov (United States)

    Boyne, Pierce; Israel, Susan; Dunning, Kari

    2011-12-01

    Body weight support (BWS) and speed-dependent training protocols have each been used for poststroke gait training, but neither approach has been tested in the context of sit-to-stand (STS) training. This study evaluated the feasibility and outcomes of speed-dependent BWS STS training for 2 persons with chronic stroke. Two individuals 68 and 75 years old, and 2.3 and 8.7 years post-ischemic stroke, respectively, participated. Both exhibited right hemiparesis, required moderate (25%-50%) assistance for STS, and ambulated household distances with assistive devices. Participants performed speed-dependent BWS STS training 3 days/week for 45 to 60 minutes until able to perform STS independently. Gait parameters, the Stroke Impact Scale Mobility Domain (SIS-mobility), and the 3-Repetition STS test (3RSTS) were assessed before and after intervention. Each participant completed more than 750 STS repetitions over the course of the intervention, achieving independence in 8 to 11 sessions. Aside from muscle soreness, no adverse effects occurred. Participants also exhibited increased gait velocity (0.17-0.24 m/s and 0.25-0.42 m/s), SIS-mobility score (78-88 and 63-66), and decreased 3RSTS time (18-8 seconds and 40-21 seconds). Speed-dependent BWS STS training appears to be a feasible and promising method to increase STS independence and speed for persons with chronic stroke. In this small case series, a potential transfer effect to gait parameters was also observed. Future randomized controlled study is warranted to evaluate efficacy and long-term effects.

  4. Influence of Kinesitherapy on Gait in Patients with Ischemic Stroke in the Chronic Period

    Directory of Open Access Journals (Sweden)

    Danche Vasileva

    2015-10-01

    CONCLUSION: The applied specialized kinesitherapeutic methodology continued later as exercise program at home, which significantly improved gait cadence and speed of movement in patients with ischemic stroke in the chronic period and is with a supportive prolonged exposure.

  5. Self-Tuning Threshold Method for Real-Time Gait Phase Detection Based on Ground Contact Forces Using FSRs

    Directory of Open Access Journals (Sweden)

    Jing Tang

    2018-02-01

    Full Text Available This paper presents a novel methodology for detecting the gait phase of human walking on level ground. The previous threshold method (TM sets a threshold to divide the ground contact forces (GCFs into on-ground and off-ground states. However, the previous methods for gait phase detection demonstrate no adaptability to different people and different walking speeds. Therefore, this paper presents a self-tuning triple threshold algorithm (STTTA that calculates adjustable thresholds to adapt to human walking. Two force sensitive resistors (FSRs were placed on the ball and heel to measure GCFs. Three thresholds (i.e., high-threshold, middle-threshold andlow-threshold were used to search out the maximum and minimum GCFs for the self-adjustments of thresholds. The high-threshold was the main threshold used to divide the GCFs into on-ground and off-ground statuses. Then, the gait phases were obtained through the gait phase detection algorithm (GPDA, which provides the rules that determine calculations for STTTA. Finally, the STTTA reliability is determined by comparing the results between STTTA and Mariani method referenced as the timing analysis module (TAM and Lopez–Meyer methods. Experimental results show that the proposed method can be used to detect gait phases in real time and obtain high reliability when compared with the previous methods in the literature. In addition, the proposed method exhibits strong adaptability to different wearers walking at different walking speeds.

  6. A homogeneous group of persons with multiple sclerosis seem to use different net joint power strategies to increase gait speed - a pilot study

    DEFF Research Database (Denmark)

    Brincks, John

    Background: Major symptoms associated with multiple sclerosis are muscle weakness, fatique and loss of limb coordination, all of which contribute to an unsafe gait. To improve gait function in persons with multiple sclerosis (PwMS) it is essential to determine which problems underlie gait dysfunc...

  7. Multiple gait parameters derived from iPod accelerometry predict age-related gait changes

    NARCIS (Netherlands)

    Kosse, Nienke; Vuillerme, Nicolas; Hortobagyi, Tibor; Lamoth, Claude

    Introduction Normative data of how natural aging affects gait can serve as a frame of reference for changes in gait dynamics due to pathologies. Therefore, the present study aims (1) to identify gait variables sensitive to age-related changes in gait over the adult life span using the iPod and (2)

  8. Association of Family History of Exceptional Longevity With Decline in Physical Function in Aging.

    Science.gov (United States)

    Ayers, Emmeline; Barzilai, Nir; Crandall, Jill P; Milman, Sofiya; Verghese, Joe

    2017-11-09

    Although many genetic and nongenetic factors interact to determine an individual's physical phenotype, there has been limited examination of the contribution of family history of exceptional parental longevity on decline in physical function in aging. The LonGenity study recruited a relatively genetically homogenous cohort of Ashkenazi Jewish adults age 65 and older, who were defined as either offspring of parents with exceptional longevity ([OPEL]: having at least one parent who lived to age 95 or older) or offspring of parents with usual survival ([OPUS]: neither parent survived to age 95). Decline in performance on objective measures of strength (grip strength), balance (unipedal stance), and mobility (gait speed) as well as a composite physical function measure, the Short physical performance battery (SPPB), were compared between the two groups over a median follow-up of 3.2 years, accounting for age, sex, education, and comorbidities. Of the 984 LonGenity participants (mean age 76, 55% women), 448 were OPEL and 536 were OPUS. Compared to OPUS, OPEL had slower decline on measures of unipedal stance (-0.03 log-units/year, p = .026), repeated chair rise (0.13 s/year, p = .020) and SPPB (-0.11 points/year, p = .002). OPEL women had slower decline on chair rise and SPPB scores compared to OPUS women, although OPEL men had slower decline on unipedal stance compared to OPUS men. Our findings provide evidence that variation in late-life decline in physical function is associated with familial longevity, and may vary for men and women. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Skeleton-Based Abnormal Gait Detection

    Directory of Open Access Journals (Sweden)

    Trong-Nguyen Nguyen

    2016-10-01

    Full Text Available Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  10. Gait and muscle activation changes in men with knee osteoarthritis.

    Science.gov (United States)

    Liikavainio, Tuomas; Bragge, Timo; Hakkarainen, Marko; Karjalainen, Pasi A; Arokoski, Jari P

    2010-01-01

    The aim was to examine the biomechanics of level- and stair-walking in men with knee osteoarthritis (OA) at different pre-determined gait speeds and to compare the results with those obtained from healthy control subjects. Special emphasis was placed on the estimation of joint loading. Fifty-four men with knee OA (50-69 years) and 53 healthy age- and sex-matched controls were enrolled in the study. The participants walked barefoot in the laboratory (1.2 m/s+/-5%), corridor (1.2; 1.5 and 1.7 m/s+/-5%), and climbing and coming down stairs (0.5 and 0.8 m/s+/-5%) separately. Joint loading was assessed with skin mounted accelerometers (SMAs) attached just above and below the more affected knee joint. The 3-D ground reaction forces (GRFs) and muscle activation with surface-electromyography (EMG) from vastus medialis (VM) and biceps femoris (BF) were also measured simultaneously. There were no differences in SMA variables between groups during level-walking, but maximal loading rate (LR(max)) was higher bilaterally in the controls (Pstair descent at faster speed. The distinctions in muscle activation both at level- and stair ambulation in VM and BF muscles revealed that the patients used different strategies to execute the same walking tasks. It is concluded that the differences in measured SMA and GRF parameters between the knee OA patients and the controls were only minor at constant gait speeds. It is speculated that the faster speeds in the stair descent subjected the compensatory mechanisms to the maximum highlighting the differences between groups.

  11. Measuring Gait Quality in Parkinson’s Disease through Real-Time Gait Phase Recognition

    Directory of Open Access Journals (Sweden)

    Ilaria Mileti

    2018-03-01

    Full Text Available Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson’s Disease (PD. In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25 for three tested methods and good performance (0.25 < G < 0.70 for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors.

  12. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits

    Science.gov (United States)

    Aoi, Shinya; Nachstedt, Timo; Manoonpong, Poramate; Wörgötter, Florentin; Matsuno, Fumitoshi

    2018-01-01

    Insects have various gaits with specific characteristics and can change their gaits smoothly in accordance with their speed. These gaits emerge from the embodied sensorimotor interactions that occur between the insect’s neural control and body dynamic systems through sensory feedback. Sensory feedback plays a critical role in coordinated movements such as locomotion, particularly in stick insects. While many previously developed insect models can generate different insect gaits, the functional role of embodied sensorimotor interactions in the interlimb coordination of insects remains unclear because of their complexity. In this study, we propose a simple physical model that is amenable to mathematical analysis to explain the functional role of these interactions clearly. We focus on a foot contact sensory feedback called phase resetting, which regulates leg retraction timing based on touchdown information. First, we used a hexapod robot to determine whether the distributed decoupled oscillators used for legs with the sensory feedback generate insect-like gaits through embodied sensorimotor interactions. The robot generated two different gaits and one had similar characteristics to insect gaits. Next, we proposed the simple model as a minimal model that allowed us to analyze and explain the gait mechanism through the embodied sensorimotor interactions. The simple model consists of a rigid body with massless springs acting as legs, where the legs are controlled using oscillator phases with phase resetting, and the governed equations are reduced such that they can be explained using only the oscillator phases with some approximations. This simplicity leads to analytical solutions for the hexapod gaits via perturbation analysis, despite the complexity of the embodied sensorimotor interactions. This is the first study to provide an analytical model for insect gaits under these interaction conditions. Our results clarified how this specific foot contact sensory

  13. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  14. Gait Analysis Using Wearable Sensors

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  15. The gait and balance of patients with diabetes can be improved: a randomised controlled trial.

    Science.gov (United States)

    Allet, L; Armand, S; de Bie, R A; Golay, A; Monnin, D; Aminian, K; Staal, J B; de Bruin, E D

    2010-03-01

    Gait characteristics and balance are altered in diabetic patients. Little is known about possible treatment strategies. This study evaluates the effect of a specific training programme on gait and balance of diabetic patients. This was a randomised controlled trial (n=71) with an intervention (n=35) and control group (n=36). The intervention consisted of physiotherapeutic group training including gait and balance exercises with function-orientated strengthening (twice weekly over 12 weeks). Controls received no treatment. Individuals were allocated to the groups in a central office. Gait, balance, fear of falls, muscle strength and joint mobility were measured at baseline, after intervention and at 6-month follow-up. The trial is closed to recruitment and follow-up. After training, the intervention group increased habitual walking speed by 0.149 m/s (pbalance (time to walk over a beam, balance index recorded on Biodex balance system), their performance-oriented mobility, their degree of concern about falling, their hip and ankle plantar flexor strength, and their hip flexion mobility compared with the control group. After 6 months, all these variables remained significant except for the Biodex sway index and ankle plantar flexor strength. Two patients developed pain in their Achilles tendon: the progression for two related exercises was slowed down. Specific training can improve gait speed, balance, muscle strength and joint mobility in diabetic patients. Further studies are needed to explore the influence of these improvements on the number of reported falls, patients' physical activity levels and quality of life. ClinicalTrials.gov NCT00637546 This work was supported by the Swiss National Foundation (SNF): PBSKP-123446/1/

  16. The effect of 'device-in-charge' support during robotic gait training on walking ability and balance in chronic stroke survivors: A systematic review

    NARCIS (Netherlands)

    Haarman, Juliet Albertina Maria; Reenalda, Jasper; Buurke, Jaap; van der Kooij, Herman; Rietman, Johan Swanik

    2016-01-01

    This review describes the effects of two control strategies – used in robotic gait-training devices for chronic stroke survivors – on gait speed, endurance and balance. Control strategies are classified as ‘patient-in-charge support’, where the device ‘empowers’ the patient, and ‘device-in-charge

  17. Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics.

    Science.gov (United States)

    Severini, Giacomo; Manca, Mario; Ferraresi, Giovanni; Caniatti, Luisa Maria; Cosma, Michela; Baldasso, Francesco; Straudi, Sofia; Morelli, Monica; Basaglia, Nino

    2017-06-01

    Clinical Gait Analysis is commonly used to evaluate specific gait characteristics of patients affected by Multiple Sclerosis. The aim of this report is to present a retrospective cross-sectional analysis of the changes in Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis. In this study a sample of 51 patients with different levels of disability (Expanded Disability Status Scale 2-6.5) was analyzed. We extracted a set of 52 parameters from the Clinical Gait Analysis of each patient and used statistical analysis and linear regression to assess differences among several groups of subjects stratified according to the Expanded Disability Status Scale and 6-Minutes Walking Test. The impact of assistive devices (e.g. canes and crutches) on the kinematics was also assessed in a subsample of patients. Subjects showed decreased range of motion at hip, knee and ankle that translated in increased pelvic tilt and hiking. Comparison between the two stratifications showed that gait speed during 6-Minutes Walking Test is better at discriminating patients' kinematics with respect to Expanded Disability Status Scale. Assistive devices were shown not to significantly impact gait kinematics and the Clinical Gait Analysis parameters analyzed. We were able to characterize disability-related trends in gait kinematics. The results presented in this report provide a small atlas of the changes in gait characteristics associated with different disability levels in the Multiple Sclerosis population. This information could be used to effectively track the progression of MS and the effect of different therapies. Copyright © 2017. Published by Elsevier Ltd.

  18. Metabolic changes in four beat gaited horses after field marcha simulation.

    Science.gov (United States)

    Wanderley, E K; Manso Filho, H C; Manso, H E C C C; Santiago, T A; McKeever, K H

    2010-11-01

    Mangalarga-Marchador is a popular 4-gaited Brazilian horse breed; however, there is little information about their metabolic and physiological response to exercise. To measure physiological and metabolic responses of the Mangalarga-Marchador to a simulated marcha field test and to compare these responses between 2 types of marcha gaits (picada and batida). Thirteen horses were used in the study and randomly assigned to either the picada or batida gait for the simulated marcha field test (speed ∼ 3.2 m/s; 30 min; load ∼ 80 kg). Included body composition, heart rate (HR), respiratory rate (RR), glucose (GLUC), lactate (LACT), packed cell volume (PCV), total plasma protein (TPP), albumin, urea, creatinine, total and HDL cholesterol, triglycerides, creatine kinase, alanine, glutamate and glutamine (GLN). Measurements were obtained pretest (control/fasting), immediately after simulation (T(0)), and 15 (T(15)), 30 (T(30)) and 240 (T(240)) min after the simulation. Lactate (LACT) was measured at T(0), T(15) and T(30). Data were analysed using ANOVA, Tukey's test and t tests with significance set at P marcha types and time of sampling for HR, RF, PCV, and [LACT] (P marcha horses, with some degree of dehydration during recovery period. Also, it was demonstrated that picada horses spend more energy when compared with batida horses at the the same speed. Batida horses spend less energy when compared with picada horses, which will need special attention in their training and nutritional management. © 2010 EVJ Ltd.

  19. Effect of low appendicular lean mass, grip strength, and gait speed on the functional outcome after surgery for distal radius fractures.

    Science.gov (United States)

    Roh, Young Hak; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-12-01

    Patients with low appendicular lean mass plus slow gait speed or weak grip strength are at risk for poor functional recovery after surgery for distal radius fracture, even when they have similar radiologic outcomes. Loss of skeletal muscle mass and consequent loss in muscle function associate with aging, and this condition negatively impacts the activities of daily living and increases elderly individuals' frailty to falls. Thus, patients with low appendicular lean mass would show different functional recovery compared to those without this condition after surgery for distal radius fracture (DRF). This study compares the functional outcomes after surgery for DRF in patients with or without low appendicular lean mass plus slowness or weakness. A total of 157 patients older than 50 years of age with a DRF treated via volar plate fixation were enrolled in this prospective study. A definition of low appendicular lean mass with slowness or weakness was based on the consensus of the Asian Working Group for Sarcopenia. The researchers compared functional assessments (wrist range of motion and Michigan Hand Questionnaire [MHQ]) and radiographic assessments (radial inclination, volar tilt, ulnar variance, and articular congruity) 12 months after surgery between patients with and without low appendicular lean mass plus slowness or weakness. Multivariable regression analyses were performed to determine whether appendicular lean mass, grip strength, gait speed, patient demographic, or injury characteristics accounted for the functional outcomes. Patients with low appendicular lean mass plus slowness or weakness showed a significantly lower recovery of MHQ score than those in the control group throughout 12 months. There was no significant difference in the range of motion between the groups. The radiologic outcomes showed no significant difference between groups in terms of volar tilt, radial inclination, or ulnar variance. According to multivariable regression analysis

  20. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.

    Science.gov (United States)

    Luu, Trieu Phat; Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.

  1. On the Disambiguation of Passively Measured In-home Gait Velocities from Multi-person Smart Homes.

    Science.gov (United States)

    Austin, Daniel; Hayes, Tamara L; Kaye, Jeffrey; Mattek, Nora; Pavel, Misha

    2011-01-01

    In-home monitoring of gait velocity with passive PIR sensors in a smart home has been shown to be an effective method of continuously and unobtrusively measuring this important predictor of cognitive function and mobility. However, passive measurements of velocity are nonspecific with regard to who generated each measurement or walking event. As a result, this method is not suitable for multi-person homes without additional information to aid in the disambiguation of gait velocities. In this paper we propose a method based on Gaussian mixture models (GMMs) combined with infrequent clinical assessments of gait velocity to model in-home walking speeds of two or more residents. Modeling the gait parameters directly allows us to avoid the more difficult problem of assigning each measured velocity individually to the correct resident. We show that if the clinically measured gait velocities of residents are separated by at least 15 cm/s a GMM can be accurately fit to the in-home gait velocity data. We demonstrate the accuracy of this method by showing that the correlation between the means of the GMMs and the clinically measured gait velocities is 0.877 (p value < 0.0001) with bootstrapped 95% confidence intervals of (0.79, 0.94) for 54 measurements of 20 subjects living in multi-person homes. Example applications of using this method to track in-home mean velocities over time are also given.

  2. Short- and Long-Term Efficacy of Intensive Rehabilitation Treatment on Balance and Gait in Parkinsonian Patients: A Preliminary Study with a 1-Year Followup

    Directory of Open Access Journals (Sweden)

    Giuseppe Frazzitta

    2013-01-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disease in which gait and balance disturbances are relevant symptoms that respond poorly to pharmacological treatment. The aim of this study was to investigate whether a 4-week inpatient multidisciplinary intensive rehabilitation treatment (MIRT is effective in improving balance and gait and whether improvements persist at a one-year followup. We studied 20 PD inpatients (stage 3 Hoehn-Yahr who underwent a MIRT. Outcome measures were UPDRS items for balance (30, falls (13, and walk (29, Berg Balance Scale, six-minute walking test, Timed Up and Go Test, and Comfortable-Fast gait speeds. Patients were evaluated at admission, at the end of the 4-week treatment, and at a 1-year followup. Pharmacological therapy was unchanged during MIRT and follow-up. All outcome measures improved significantly at the end of treatment. At 1-year follow-up control, UPDRS walk and Comfortable-Fast gait speeds still maintained better values with respect to admission (P=0.009, P=0.03, and P=0.02, resp., while the remaining scales did not differ significantly. Our results demonstrate that the MIRT was effective in improving balance and gait and that the improvement in gait performances was partially maintained also after 1 year.

  3. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.

    Science.gov (United States)

    Louie, Dennis R; Eng, Janice J

    2016-06-08

    Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development. The aim of this scoping review was to map the current literature surrounding the use of robotic exoskeletons for gait rehabilitation in adults post-stroke. Five databases (Pubmed, OVID MEDLINE, CINAHL, Embase, Cochrane Central Register of Clinical Trials) were searched for articles from inception to October 2015. Reference lists of included articles were reviewed to identify additional studies. Articles were included if they utilized a robotic exoskeleton as a gait training intervention for adult stroke survivors and reported walking outcome measures. Of 441 records identified, 11 studies, all published within the last five years, involving 216 participants met the inclusion criteria. The study designs ranged from pre-post clinical studies (n = 7) to controlled trials (n = 4); five of the studies utilized a robotic exoskeleton device unilaterally, while six used a bilateral design. Participants ranged from sub-acute (6 months) stroke. Training periods ranged from single-session to 8-week interventions. Main walking outcome measures were gait speed, Timed Up and Go, 6-min Walk Test, and the Functional Ambulation Category. Meaningful improvement with exoskeleton-based gait training was more apparent in sub-acute stroke compared to chronic stroke. Two of the four controlled trials showed no greater improvement in any walking outcomes compared to a control group in chronic stroke. In conclusion, clinical trials demonstrate that powered robotic exoskeletons can be used safely as a gait training intervention for stroke. Preliminary findings suggest that exoskeletal gait training is equivalent to traditional therapy for chronic stroke

  4. The effect of three different types of walking aids on spatio-temporal gait parameters in community-dwelling older adults.

    Science.gov (United States)

    Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W

    2014-04-01

    Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.

  5. Newly Identified Gait Patterns in Patients With Multiple Sclerosis May Be Related to Push-off Quality.

    Science.gov (United States)

    Kempen, Jiska C E; Doorenbosch, Caroline A M; Knol, Dirk L; de Groot, Vincent; Beckerman, Heleen

    2016-11-01

    Limited walking ability is an important problem for patients with multiple sclerosis. A better understanding of how gait impairments lead to limited walking ability may help to develop more targeted interventions. Although gait classifications are available in cerebral palsy and stroke, relevant knowledge in MS is scarce. The aims of this study were: (1) to identify distinctive gait patterns in patients with MS based on a combined evaluation of kinematics, gait features, and muscle activity during walking and (2) to determine the clinical relevance of these gait patterns. This was a cross-sectional study of 81 patients with MS of mild-to-moderate severity (Expanded Disability Status Scale [EDSS] median score=3.0, range=1.0-7.0) and an age range of 28 to 69 years. The patients participated in 2-dimensional video gait analysis, with concurrent measurement of surface electromyography and ground reaction forces. A score chart of 73 gait items was used to rate each gait analysis. A single rater performed the scoring. Latent class analysis was used to identify gait classes. Analysis of the 73 gait variables revealed that 9 variables could distinguish 3 clinically meaningful gait classes. The 9 variables were: (1) heel-rise in terminal stance, (2) push-off, (3) clearance in initial swing, (4) plantar-flexion position in mid-swing, (5) pelvic rotation, (6) arm-trunk movement, (7) activity of the gastrocnemius muscle in pre-swing, (8) M-wave, and (9) propulsive force. The EDSS score and gait speed worsened in ascending classes. Most participants had mild-to-moderate limitations in walking ability based on their EDSS scores, and the number of walkers who were severely limited was small. Based on a small set of 9 variables measured with 2-dimensional clinical gait analysis, patients with MS could be divided into 3 different gait classes. The gait variables are suggestive of insufficient ankle push-off. © 2016 American Physical Therapy Association.

  6. DeepGait: A Learning Deep Convolutional Representation for View-Invariant Gait Recognition Using Joint Bayesian

    Directory of Open Access Journals (Sweden)

    Chao Li

    2017-02-01

    Full Text Available Human gait, as a soft biometric, helps to recognize people through their walking. To further improve the recognition performance, we propose a novel video sensor-based gait representation, DeepGait, using deep convolutional features and introduce Joint Bayesian to model view variance. DeepGait is generated by using a pre-trained “very deep” network “D-Net” (VGG-D without any fine-tuning. For non-view setting, DeepGait outperforms hand-crafted representations (e.g., Gait Energy Image, Frequency-Domain Feature and Gait Flow Image, etc.. Furthermore, for cross-view setting, 256-dimensional DeepGait after PCA significantly outperforms the state-of-the-art methods on the OU-ISR large population (OULP dataset. The OULP dataset, which includes 4007 subjects, makes our result reliable in a statistically reliable way.

  7. The effect of walking speed on hamstrings length and lengthening velocity in children with spastic cerebral palsy

    NARCIS (Netherlands)

    Krogt, van der M.M.; Doorenbosch, C.A.M.; Harlaar, J.

    2009-01-01

    0.001). These data are important as a reference for valid interpretation of hamstrings length and velocity data in gait analyses at different walking speeds. The results indicate that the presence of spasticity is associated with reduced hamstrings length and lengthening velocity during gait, even

  8. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Directory of Open Access Journals (Sweden)

    Silvia Fantozzi

    Full Text Available Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23° and the ankle more dorsiflexed (≈ 9° at heel strike, and the hip was more flexed at toe-off (≈ 13° in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7° and showed a more inversed mean value (≈ 7°. The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered

  9. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Science.gov (United States)

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the

  10. Variability in energy cost and walking gait during race walking in competitive race walkers.

    Science.gov (United States)

    Brisswalter, J; Fougeron, B; Legros, P

    1998-09-01

    The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.

  11. Overload From Anxiety: A Non-Motor Cause for Gait Impairments in Parkinson's Disease.

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A; Silveira, Carolina R A; Intzandt, Brittany N; Almeida, Quincy J

    2018-01-01

    Threatening situations lead to observable gait deficits in individuals with Parkinson's disease (PD) who suffer from high trait anxiety levels. The specific characteristics of gait that are affected appear to be similar to behaviors observed while walking during a dual-task (DT) condition. Yet, it remains unclear whether anxiety is similar to a cognitive load. If it were, then those with PD who have high trait anxiety might be expected to be more susceptible to DT interference during walking. Thus, the overall aim of this study was to evaluate whether trait anxiety influences gait during single-task (ST) and DT walking. Seventy participants (high-anxiety PD [HA-PD], N=26; low-anxiety PD [LA-PD], N=26; healthy control [HC], N=18) completed three ST and three DT walking trials on a data-collecting carpet. The secondary task consisted of digit monitoring while walking. Results showed that during both ST and DT gait, the HA-PD group demonstrated significant reductions in walking speed and step length, as well as increased step length variability and step time variability compared with healthy controls and the LA-PD group. Notably, ST walking in the HA-PD group resembled (i.e., it was not significantly different from) the gait behaviors seen during a DT in the LA-PD and HC groups. These results suggest that trait anxiety may consume processing resources and limit the ability to compensate for gait impairments in PD.

  12. Gait Planning Research for an Electrically Driven Large-Load-Ratio Six-Legged Robot

    Directory of Open Access Journals (Sweden)

    Hong-Chao Zhuang

    2017-03-01

    Full Text Available Gait planning is an important basis for the walking of a legged robot. To improve the walking stability of multi-legged robots and to reduce the impact force between the foot and the ground, gait planning strategies are presented for an electrically driven large-load-ratio six-legged robot. First, the configuration and walking gait of the electrically driven large-load-ratio six-legged robot are designed. The higher-stable swing sequences of legs and typical walking modes are respectively obtained. Based on the Denavit–Hartenberg (D–H method, the analyses of the forward and inverse kinematics are implemented. The mathematical models of the articulated rotation angles are respectively established. In view of the buffer device installed at the end of shin to decrease the impact force between the foot and the ground, an initial lift height of the leg is brought into gait planning when the support phase changes into the transfer phase. The mathematical models of foot trajectories are established. Finally, a prototype of the electrically driven large-load-ratio six-legged robot is developed. The experiments of the prototype are carried out regarding the aspects of the walking speed and surmounting obstacle. Then, the reasonableness of gait planning is verified based on the experimental results. The proposed strategies of gait planning lay the foundation for effectively reducing the foot–ground impact force and can provide a reference for other large-load-ratio multi-legged robots.

  13. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Robert J Ellis

    Full Text Available A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson's disease (PD; however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application ("SmartMOVE" to address both needs.The accuracy of smartphone-based gait analysis (utilizing the smartphone's built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths was validated against two heel contact-based measurement devices: heel-mounted footswitch sensors (to capture step times and an instrumented pressure sensor mat (to capture step lengths. 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously.Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls yielded medium-to-large effect sizes (eta-squared values, and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues yielded small-to-medium effect sizes-while at the same time, device-related measurement error yielded small-to-negligible effect sizes.These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways, particularly when those methods are cost-prohibitive, cumbersome, or inconvenient.

  14. Evidence of end-effector based gait machines in gait rehabilitation after CNS lesion.

    Science.gov (United States)

    Hesse, S; Schattat, N; Mehrholz, J; Werner, C

    2013-01-01

    A task-specific repetitive approach in gait rehabilitation after CNS lesion is well accepted nowadays. To ease the therapists' and patients' physical effort, the past two decades have seen the introduction of gait machines to intensify the amount of gait practice. Two principles have emerged, an exoskeleton- and an endeffector-based approach. Both systems share the harness and the body weight support. With the end-effector-based devices, the patients' feet are positioned on two foot plates, whose movements simulate stance and swing phase. This article provides an overview on the end-effector based machine's effectiveness regarding the restoration of gait. For the electromechanical gait trainer GT I, a meta analysis identified nine controlled trials (RCT) in stroke subjects (n = 568) and were analyzed to detect differences between end-effector-based locomotion + physiotherapy and physiotherapy alone. Patients practising with the machine effected in a superior gait ability (210 out of 319 patients, 65.8% vs. 96 out of 249 patients, 38.6%, respectively, Z = 2.29, p = 0.020), due to a larger training intensity. Only single RCTs have been reported for other devices and etiologies. The introduction of end-effector based gait machines has opened a new succesful chapter in gait rehabilitation after CNS lesion.

  15. Gait and its assessment in psychiatry

    OpenAIRE

    Sanders, Richard D.; Gillig, Paulette Marie

    2010-01-01

    Gait reflects all levels of nervous system function. In psychiatry, gait disturbances reflecting cortical and subcortical dysfunction are often seen. Observing spontaneous gait, sometimes augmented by a few brief tests, can be highly informative. The authors briefly review the neuroanatomy of gait, review gait abnormalities seen in psychiatric and neurologic disorders, and describe the assessment of gait.

  16. Confronting hip resurfacing and big femoral head replacement gait analysis

    Directory of Open Access Journals (Sweden)

    Panagiotis K. Karampinas

    2014-03-01

    Full Text Available Improved hip kinematics and bone preservation have been reported after resurfacing total hip replacement (THRS. On the other hand, hip kinematics with standard total hip replacement (THR is optimized with large diameter femoral heads (BFH-THR. The purpose of this study is to evaluate the functional outcomes of THRS and BFH-THR and correlate these results to bone preservation or the large femoral heads. Thirty-one patients were included in the study. Gait speed, postural balance, proprioception and overall performance. Our results demonstrated a non-statistically significant improvement in gait, postural balance and proprioception in the THRS confronting to BFH-THR group. THRS provide identical outcomes to traditional BFH-THR. The THRS choice as bone preserving procedure in younger patients is still to be evaluated.

  17. Locomotion energetics and gait characteristics of a rat-kangaroo, Bettongia penicillata, have some kangaroo-like features.

    Science.gov (United States)

    Webster, K N; Dawson, T J

    2003-09-01

    The locomotory characteristics of kangaroos and wallabies are unusual, with both energetic costs and gait parameters differing from those of quadrupedal running mammals. The kangaroos and wallabies have an evolutionary history of only around 5 million years; their closest relatives, the rat-kangaroos, have a fossil record of more than 26 million years. We examined the locomotory characteristics of a rat-kangaroo, Bettongia penicillata. Locomotory energetics and gait parameters were obtained from animals exercising on a motorised treadmill at speeds from 0.6 m s(-1) to 6.2 m s(-1). Aerobic metabolic costs increased as hopping speed increased, but were significantly different from the costs for a running quadruped; at the fastest speed, the cost of hopping was 50% of the cost of running. Therefore B. penicillata can travel much faster than quadrupedal runners at similar levels of aerobic output. The maximum aerobic output of B. penicillata was 17 times its basal metabolism. Increases in speed during hopping were achieved through increases in stride length, with stride frequency remaining constant. We suggest that these unusual locomotory characteristics are a conservative feature among the hopping marsupials, with an evolutionary history of 20-30 million years.

  18. Age- and Parkinson's disease-related evaluation of gait by General Tau Theory.

    Science.gov (United States)

    Zhang, Shutao; Qian, Jinwu; Zhang, Zhen; Shen, Linyong; Wu, Xi; Hu, Xiaowu

    2016-10-01

    The degeneration of postural control in the elderly and patients with Parkinson's disease (PD) can be debilitating and may lead to increased fall risk. This study evaluated the changes in postural control during gait affected by PD and aging using a new method based on the General Tau Theory. Fifteen patients with PD, 11 healthy old adults (HOs), and 15 healthy young adults (HYs) were recruited. Foot trajectories of each participant were monitored during walking by a three-camera Optotrak Certus(®) motion capture system. The anteroposterior direction of foot movement during stepping was analyzed by tau-G and tau-J guidance strategies. Two linear regression analyses suggested that the tau of the step-gap was strongly coupled onto the tau-J guidance during walking. The regression slope K could estimate the coupling ratio in the tau-coupling equation which reflects the performance of postural control during gait. The mean K value for the PD group, which was highest among the three groups, was approximately 0.5. Therefore, participants in the PD group walked with the poorest postural control and exhibited a relatively hard contact with the endpoint during stepping when compared with those in the HO and HY groups. The HY and HO groups obtained mean K values significantly lower than 0.5, which indicated that the gait was well controlled and ended at low speed with low deceleration. However, the HO group showed a decreased tendency for postural control, in which the mean K value was significantly higher than that of the HY group. The K value was moderately positively correlated with the double support time and negatively correlated with the stride length and walking speed. The tau-J coupling ratio can provide additional insight into gait disturbances and may serve as a reliable, objective, and quantitative tool to evaluate dynamic postural control during walking.

  19. Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics

    Directory of Open Access Journals (Sweden)

    Ming-I Brandon Lin

    2016-05-01

    Full Text Available BackgroundIncreasing evidence suggests that walking while performing a concurrent task negatively influences gait performance. However, it remains unclear how higher-level cognitive processes and coordination of limb movements are altered in challenging walking environments. This study investigated the influence of cognitive task complexity and walking road condition on the neutral correlates of executive function and postural control in dual-task walking. MethodsTwenty-four healthy young adults completed a series of overground walks with three walking road conditions (wide, narrow, with obstacles with and without the concurrent n-back working memory tasks of two complexity levels (1-back and 3-back. Prefrontal brain activation was assessed by functional near-infrared spectroscopy. A three-dimensional motion analysis system was used simultaneously to measure gait performance and lower-extremity kinematics. Repeated measures analysis of variance were performed to examine the differences between the conditions. ResultsIn comparison with standing still, participants showed lower n-back task accuracy while walking, with the worst performance from the road with obstacles. Spatiotemporal gait parameters, lower-extremity joint movements, and the relative changes in oxygenated hemoglobin (HbO concentration levels were all significantly different across the task complexity and walking path conditions. While dual-tasking participants were found to flex their hips and knees less, leading to a slower gait speed, longer stride time, shorter step length, and greater gait variability than during normal walking. For narrow-road walking, smaller ankle dorsiflexion and larger hip flexion were observed, along with a reduced gait speed. Obstacle negotiation was mainly characterized by increased gait variability than other conditions. HbO levels appeared to be lower during dual-task walking than normal walking. Compared to wide and obstacle conditions, walking on

  20. Gait Complexity and Regularity Are Differently Modulated by Treadmill Walking in Parkinson's Disease and Healthy Population

    Directory of Open Access Journals (Sweden)

    Thibault Warlop

    2018-02-01

    Full Text Available Variability raises considerable interest as a promising and sensitive marker of dysfunction in physiology, in particular in neurosciences. Both internally (e.g., pathology and/or externally (e.g., environment generated perturbations and the neuro-mechanical responses to them contribute to the fluctuating dynamics of locomotion. Defective internal gait control in Parkinson's disease (PD, resulting in typical timing gait disorders, is characterized by the breakdown of the temporal organization of stride duration variability. Influence of external cue on gait pattern could be detrimental or advantageous depending on situations (healthy or pathological gait pattern, respectively. As well as being an interesting rehabilitative approach in PD, treadmills are usually implemented in laboratory settings to perform instrumented gait analysis including gait variability assessment. However, possibly acting as an external pacemaker, treadmill could modulate the temporal organization of gait variability of PD patients which could invalidate any gait variability assessment. This study aimed to investigate the immediate influence of treadmill walking (TW on the temporal organization of stride duration variability in PD and healthy population. Here, we analyzed the gait pattern of 20 PD patients and 15 healthy age-matched subjects walking on overground and on a motorized-treadmill (randomized order at a self-selected speed. The temporal organization and regularity of time series of walking were assessed on 512 consecutive strides and assessed by the application of non-linear mathematical methods (i.e., the detrended fluctuation analysis and power spectral density; and sample entropy, for the temporal organization and regularity of gait variability, respectively. A more temporally organized and regular gait pattern seems to emerge from TW in PD while no influence was observed on healthy gait pattern. Treadmill could afford the necessary framework to regulate gait

  1. The modified gait abnormality rating scale in patients with a conversion disorder: a reliability and responsiveness study.

    Science.gov (United States)

    Vandenberg, Justin M; George, Deanna R; O'Leary, Andrea J; Olson, Lindsay C; Strassburg, Kaitlyn R; Hollman, John H

    2015-01-01

    Individuals with conversion disorder have neurologic symptoms that are not identified by an underlying organic cause. Often the symptoms manifest as gait disturbances. The modified gait abnormality rating scale (GARS-M) may be useful for quantifying gait abnormalities in these individuals. The purpose of this study was to examine the reliability, responsiveness and concurrent validity of GARS-M scores in individuals with conversion disorder. Data from 27 individuals who completed a rehabilitation program were included in this study. Pre- and post-intervention videos were obtained and walking speed was measured. Five examiners independently evaluated gait performance according to the GARS-M criteria. Inter- and intrarater reliability of GARS-M scores were estimated with intraclass correlation coefficients (ICCs). Responsiveness was estimated with the minimum detectable change (MDC). Pre- to post-treatment changes in GARS-M scores were analyzed with a dependent t-test. The correlation between GARS-M scores and walking speed was analyzed to assess concurrent validity. GARS-M scores were quantified with good-to-excellent inter- (ICC = 0.878) and intrarater reliability (ICC = 0.989). The MDC was 2 points. Mean GARS-M scores decreased from 7 ± 5 at baseline to 1 ± 2 at discharge (t26 = 7.411, p conversion disorder. GARS-M scores provide objective measures upon which treatment effects can be assessed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The effect of hydrotherapy treatment on gait characteristics of hereditary spastic paraparesis patients.

    Science.gov (United States)

    Zhang, Yanxin; Roxburgh, Richard; Huang, Liang; Parsons, John; Davies, T Claire

    2014-04-01

    Hereditary spastic paraparesis (HSP) is a group of neurological disorders characterised by slowly progressive increasing muscle tone, predominantly in the lower limbs, with relatively preserved power. This leads to progressive difficulties in motor control and walking. The purpose of this study was to evaluate the effectiveness of hydrotherapy treatment when used as a means to increase locomotor function in individuals with late onset HSP. This paper discusses the analysis of the effect on gait characteristics. Nine people with HSP were asked to participate in pre- and post-hydrotherapy gait analyses. Ground reaction force and motion trajectories were recorded and used to calculate spatiotemporal gait parameters, joint angles and moments. The normalised joint kinematics and kinetics profile revealed that the biomechanics of people with HSP were similar to that of controls for most of the joints, but with lower range of motion. Walking speed increased significantly (11%) after the course of hydrotherapy. Though part of this was achieved through increased ROM there was also a further increase in hip internal rotation and in peak hip extension moment. Although participants had increased walking speed and step length, it appears that hydrotherapy increases the ability to perform compensatory strategies rather than resulting in a more typical kinematic and kinetic approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy

    DEFF Research Database (Denmark)

    Rasmussen, Helle Mätzke; Nielsen, Dennis Brandborg; Pedersen, Niels Wisbech

    2015-01-01

    Abstract The Gait Deviation Index (GDI) and Gait Profile Score (GPS) are the most used summary measures of gait in children with cerebral palsy (CP). However, the reliability and agreement of these indices have not been investigated, limiting their clinimetric quality for research and clinical...... to good reliability with ICCs of 0.4–0.7. The agreement for the GDI and the logarithmically transformed GPS, in terms of the standard error of measurement as a percentage of the grand mean (SEM%) varied from 4.1 to 6.7%, whilst the smallest detectable change in percent (SDC%) ranged from 11.3 to 18...

  4. Gait and physical impairments in patients with acute ankle sprains who did not receive physical therapy.

    Science.gov (United States)

    Punt, Ilona M; Ziltener, Jean-Luc; Laidet, Magali; Armand, Stéphane; Allet, Lara

    2015-01-01

    To assess ankle function 4 weeks after conservative management and to examine the correlation of function with gait. A prospective comparison study. Thirty patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Participants underwent a clinical assessment and had to walk at a normal self-selected walking speed. Their results were compared with the data of 15 healthy subjects. Participants' joint swelling, muscle strength, passive mobility, and pain were assessed. In addition, patients' temporal-spatial, kinematic, and kinetic gait data were measured while walking. Muscle strength and passive mobility were significantly reduced on the injured side compared with the noninjured side (P ankle sprains showed slower walking speed, shorter step length, shorter single support time, reduced and delayed maximum plantar flexion, decreased maximum power, and decreased maximum moment (P ankle sprain, patients who did not receive physical therapy showed physical impairments of the ankle that were correlated with gait parameters. These findings might help fine-tune rehabilitation protocols. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic.

    Science.gov (United States)

    Kikkert, Lisette H J; de Groot, Maartje H; van Campen, Jos P; Beijnen, Jos H; Hortobágyi, Tibor; Vuillerme, Nicolas; Lamoth, Claudine C J

    2017-01-01

    Fall prediction in geriatric patients remains challenging because the increased fall risk involves multiple, interrelated factors caused by natural aging and/or pathology. Therefore, we used a multi-factorial statistical approach to model categories of modifiable fall risk factors among geriatric patients to identify fallers with highest sensitivity and specificity with a focus on gait performance. Patients (n = 61, age = 79; 41% fallers) underwent extensive screening in three categories: (1) patient characteristics (e.g., handgrip strength, medication use, osteoporosis-related factors) (2) cognitive function (global cognition, memory, executive function), and (3) gait performance (speed-related and dynamic outcomes assessed by tri-axial trunk accelerometry). Falls were registered prospectively (mean follow-up 8.6 months) and one year retrospectively. Principal Component Analysis (PCA) on 11 gait variables was performed to determine underlying gait properties. Three fall-classification models were then built using Partial Least Squares-Discriminant Analysis (PLS-DA), with separate and combined analyses of the fall risk factors. PCA identified 'pace', 'variability', and 'coordination' as key properties of gait. The best PLS-DA model produced a fall classification accuracy of AUC = 0.93. The specificity of the model using patient characteristics was 60% but reached 80% when cognitive and gait outcomes were added. The inclusion of cognition and gait dynamics in fall classification models reduced misclassification. We therefore recommend assessing geriatric patients' fall risk using a multi-factorial approach that incorporates patient characteristics, cognition, and gait dynamics.

  6. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic.

    Directory of Open Access Journals (Sweden)

    Lisette H J Kikkert

    Full Text Available Fall prediction in geriatric patients remains challenging because the increased fall risk involves multiple, interrelated factors caused by natural aging and/or pathology. Therefore, we used a multi-factorial statistical approach to model categories of modifiable fall risk factors among geriatric patients to identify fallers with highest sensitivity and specificity with a focus on gait performance. Patients (n = 61, age = 79; 41% fallers underwent extensive screening in three categories: (1 patient characteristics (e.g., handgrip strength, medication use, osteoporosis-related factors (2 cognitive function (global cognition, memory, executive function, and (3 gait performance (speed-related and dynamic outcomes assessed by tri-axial trunk accelerometry. Falls were registered prospectively (mean follow-up 8.6 months and one year retrospectively. Principal Component Analysis (PCA on 11 gait variables was performed to determine underlying gait properties. Three fall-classification models were then built using Partial Least Squares-Discriminant Analysis (PLS-DA, with separate and combined analyses of the fall risk factors. PCA identified 'pace', 'variability', and 'coordination' as key properties of gait. The best PLS-DA model produced a fall classification accuracy of AUC = 0.93. The specificity of the model using patient characteristics was 60% but reached 80% when cognitive and gait outcomes were added. The inclusion of cognition and gait dynamics in fall classification models reduced misclassification. We therefore recommend assessing geriatric patients' fall risk using a multi-factorial approach that incorporates patient characteristics, cognition, and gait dynamics.

  7. Gender may have an influence on the relationship between Functional Movement Screen scores and gait parameters in elite junior athletes - A pilot study.

    Science.gov (United States)

    Magyari, N; Szakács, V; Bartha, C; Szilágyi, B; Galamb, K; Magyar, M O; Hortobágyi, T; Kiss, R M; Tihanyi, J; Négyesi, J

    2017-09-01

    Aims The aim of this study was to examine the effects of gender on the relationship between Functional Movement Screen (FMS) and treadmill-based gait parameters. Methods Twenty elite junior athletes (10 women and 10 men) performed the FMS tests and gait analysis at a fixed speed. Between-gender differences were calculated for the relationship between FMS test scores and gait parameters, such as foot rotation, step length, and length of gait line. Results Gender did not affect the relationship between FMS and treadmill-based gait parameters. The nature of correlations between FMS test scores and gait parameters was different in women and men. Furthermore, different FMS test scores predicted different gait parameters in female and male athletes. FMS asymmetry and movement asymmetries measured by treadmill-based gait parameters did not correlate in either gender. Conclusion There were no interactions between FMS, gait parameters, and gender; however, correlation analyses support the idea that strength and conditioning coaches need to pay attention not only to how to score but also how to correctly use FMS.

  8. Comparing the efficacy of metronome beeps and stepping stones to adjust gait: steps to follow!

    Science.gov (United States)

    Bank, Paulina J M; Roerdink, Melvyn; Peper, C E

    2011-03-01

    Acoustic metronomes and visual targets have been used in rehabilitation practice to improve pathological gait. In addition, they may be instrumental in evaluating and training instantaneous gait adjustments. The aim of this study was to compare the efficacy of two cue types in inducing gait adjustments, viz. acoustic temporal cues in the form of metronome beeps and visual spatial cues in the form of projected stepping stones. Twenty healthy elderly (aged 63.2 ± 3.6 years) were recruited to walk on an instrumented treadmill at preferred speed and cadence, paced by either metronome beeps or projected stepping stones. Gait adaptations were induced using two manipulations: by perturbing the sequence of cues and by imposing switches from one cueing type to the other. Responses to these manipulations were quantified in terms of step-length and step-time adjustments, the percentage correction achieved over subsequent steps, and the number of steps required to restore the relation between gait and the beeps or stepping stones. The results showed that perturbations in a sequence of stepping stones were overcome faster than those in a sequence of metronome beeps. In switching trials, switching from metronome beeps to stepping stones was achieved faster than vice versa, indicating that gait was influenced more strongly by the stepping stones than the metronome beeps. Together these results revealed that, in healthy elderly, the stepping stones induced gait adjustments more effectively than did the metronome beeps. Potential implications for the use of metronome beeps and stepping stones in gait rehabilitation practice are discussed.

  9. Increased Anterior Pelvic Angle Characterizes the Gait of Children with Attention Deficit/Hyperactivity Disorder (ADHD).

    Science.gov (United States)

    Naruse, Hiroaki; Fujisawa, Takashi X; Yatsuga, Chiho; Kubota, Masafumi; Matsuo, Hideaki; Takiguchi, Shinichiro; Shimada, Seiichiro; Imai, Yuto; Hiratani, Michio; Kosaka, Hirotaka; Tomoda, Akemi

    2017-01-01

    Children with attention deficit/hyperactivity disorder (ADHD) frequently have motor problems. Previous studies have reported that the characteristic gait in children with ADHD is immature and that subjects demonstrate higher levels of variability in gait characteristics for the lower extremities than healthy controls. However, little is known about body movement during gait in children with ADHD. The purpose of this study was to identify the characteristic body movements associated with ADHD symptoms in children with ADHD. Using a three-dimensional motion analysis system, we compared gait variables in boys with ADHD (n = 19; mean age, 9.58 years) and boys with typical development (TD) (n = 21; mean age, 10.71 years) to determine the specific gait characteristics related to ADHD symptoms. We assessed spatiotemporal gait variables (i.e. speed, stride length, and cadence), and kinematic gait variables (i.e. angle of pelvis, hip, knee, and ankle) to measure body movement when walking at a self-selected pace. In comparison with the TD group, the ADHD group demonstrated significantly higher values in cadence (t = 3.33, p = 0.002) and anterior pelvic angle (t = 3.08, p = 0.004). In multiple regression analysis, anterior pelvic angle was associated with the ADHD rating scale hyperactive/impulsive scores (β = 0.62, t = 2.58, p = 0.025), but not other psychiatric symptoms in the ADHD group. Our results suggest that anterior pelvic angle represents a specific gait variable related to ADHD symptoms. Our kinematic findings could have potential implications for evaluating the body movement in boys with ADHD.

  10. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait

    NARCIS (Netherlands)

    Snijders, A.H.; Leunissen, H.P.; Bakker, M.; Overeem, S.; Helmich, R.C.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson’s disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between

  11. Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait

    NARCIS (Netherlands)

    Snijders, A.H.; Leunissen, I.; Bakker, M.; Overeem, S.; Helmich, R.C.G.; Bloem, B.R.; Toni, I.

    2011-01-01

    Freezing of gait is a common, debilitating feature of Parkinson's disease. We have studied gait planning in patients with freezing of gait, using motor imagery of walking in combination with functional magnetic resonance imaging. This approach exploits the large neural overlap that exists between

  12. A mechanized gait trainer for restoring gait in nonambulatory subjects.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D; Werner, C; Bardeleben, A

    2000-09-01

    To construct an advanced mechanized gait trainer to enable patients the repetitive practice of a gaitlike movement without overstraining therapists. DEVICE: Prototype gait trainer that simulates the phases of gait (by generating a ratio of 40% to 60% between swing and stance phases), supports the subjects according to their ability (lifts the foot during swing phase), and controls the center of mass in the vertical and horizontal directions. Two nonambulatory, hemiparetic patients who regained their walking ability after 4 weeks of daily training on the gait trainer, a 55-year-old woman and a 62-year-old man, both of whom had a first-time ischemic stroke. Four weeks of training, five times a week, each session 20 minutes long. Functional ambulation category (FAC, levels 0-5) to assess gait ability and ground level walking velocity. Rivermead motor assessment score (RMAS, 0-13) to assess gross motor function. Patient 1: At the end of treatment, she was able to walk independently on level ground with use of a walking stick. Her walking velocity had improved from .29m/sec to .59m/sec. Her RMAS score increased from 4 to 10, meaning she could walk at least 40 meters outside, pick up objects from floor, and climb stairs independently. Patient 2: At end of 4-week training, he could walk independently on even surfaces (FAC level 4), using an ankle-foot orthosis and a walking stick. His walking velocity improved from .14m/sec to .63m/sec. His RMAS increased from 3 to 10. The gait trainer enabled severely affected patients the repetitive practice of a gaitlike movement. Future studies may elucidate its value in gait rehabilitation of nonambulatory subjects.

  13. Computer-Based Cognitive Programs for Improvement of Memory, Processing Speed and Executive Function during Age-Related Cognitive Decline: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Yan-kun Shao

    Full Text Available Several studies have assessed the effects of computer-based cognitive programs (CCP in the management of age-related cognitive decline, but the role of CCP remains controversial. Therefore, this systematic review evaluated the evidence on the efficacy of CCP for age-related cognitive decline in healthy older adults.Six electronic databases (through October 2014 were searched. The risk of bias was assessed using the Cochrane Collaboration tool. The standardized mean difference (SMD and 95% confidence intervals (CI of a random-effects model were calculated. The heterogeneity was assessed using the Cochran Q statistic and quantified with the I2 index.Twelve studies were included in the current review and were considered as moderate to high methodological quality. The aggregated results indicate that CCP improves memory performance (SMD, 0.31; 95% CI 0.16 to 0.45; p < 0.0001 and processing speed (SMD, 0.50; 95% CI 0.14 to 0.87; p = 0.007 but not executive function (SMD, -0.12; 95% CI -0.33 to 0.09; p = 0.27. Furthermore, there were long-term gains in memory performance (SMD, 0.59; 95% CI 0.13 to 1.05; p = 0.01.CCP may be a valid complementary and alternative therapy for age-related cognitive decline, especially for memory performance and processing speed. However, more studies with longer follow-ups are warranted to confirm the current findings.

  14. Mobile Phone-Based Measures of Activity, Step Count, and Gait Speed: Results From a Study of Older Ambulatory Adults in a Naturalistic Setting.

    Science.gov (United States)

    Rye Hanton, Cassia; Kwon, Yong-Jun; Aung, Thawda; Whittington, Jackie; High, Robin R; Goulding, Evan H; Schenk, A Katrin; Bonasera, Stephen J

    2017-10-03

    Cellular mobile telephone technology shows much promise for delivering and evaluating healthcare interventions in cost-effective manners with minimal barriers to access. There is little data demonstrating that these devices can accurately measure clinically important aspects of individual functional status in naturalistic environments outside of the laboratory. The objective of this study was to demonstrate that data derived from ubiquitous mobile phone technology, using algorithms developed and previously validated by our lab in a controlled setting, can be employed to continuously and noninvasively measure aspects of participant (subject) health status including step counts, gait speed, and activity level, in a naturalistic community setting. A second objective was to compare our mobile phone-based data against current standard survey-based gait instruments and clinical physical performance measures in order to determine whether they measured similar or independent constructs. A total of 43 ambulatory, independently dwelling older adults were recruited from Nebraska Medicine, including 25 (58%, 25/43) healthy control individuals from our Engage Wellness Center and 18 (42%, 18/43) functionally impaired, cognitively intact individuals (who met at least 3 of 5 criteria for frailty) from our ambulatory Geriatrics Clinic. The following previously-validated surveys were obtained on study day 1: (1) Late Life Function and Disability Instrument (LLFDI); (2) Survey of Activities and Fear of Falling in the Elderly (SAFFE); (3) Patient Reported Outcomes Measurement Information System (PROMIS), short form version 1.0 Physical Function 10a (PROMIS-PF); and (4) PROMIS Global Health, short form version 1.1 (PROMIS-GH). In addition, clinical physical performance measurements of frailty (10 foot Get up and Go, 4 Meter walk, and Figure-of-8 Walk [F8W]) were also obtained. These metrics were compared to our mobile phone-based metrics collected from the participants in the community

  15. Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Falbo, S; Condello, G; Capranica, L; Forte, R; Pesce, C

    2016-01-01

    Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training ( n = 16) and physical-cognitive dual task (DT) training ( n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living.

  16. Impact of serial gait analyses on long-term outcome of hippotherapy in children and adolescents with cerebral palsy.

    Science.gov (United States)

    Mutoh, Tomoko; Mutoh, Tatsushi; Tsubone, Hirokazu; Takada, Makoto; Doumura, Misato; Ihara, Masayo; Shimomura, Hideo; Taki, Yasuyuki; Ihara, Masahiro

    2018-02-01

    The aim of this study was to obtain data of gait parameters on predicting long-term outcome of hippotherapy. In 20 participants (4-19 years; GMFCS levels I to III) with cerebral palsy (CP), gait and balance abilities were examined after 10-m walking test using a portable motion recorder. Hippotherapy was associated with increased Gross Motor Function Measure (GMFM)-66 at 1 year from the baseline (P Hippotherapy increased stride length, walking speed, and mean acceleration and decreased horizontal/vertical displacement ratio over time (P hippotherapy on motor and balance functions can be assessed from the early phase by serial monitoring of the gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gait variability measurements in lumbar spinal stenosis patients: part B. Preoperative versus postoperative gait variability

    International Nuclear Information System (INIS)

    Papadakis, N C; Christakis, D G; Tzagarakis, G N; Chlouverakis, G I; Kampanis, N A; Stergiopoulos, K N; Katonis, P G

    2009-01-01

    The objective of this study was to assess the gait variability of lumbar spinal stenosis (LSS) patients and to evaluate its postoperative progression. The hypothesis was that LSS patients' preoperative gait variability in the frequency domain was higher than the corresponding postoperative. A tri-axial accelerometer sensor was used for the gait measurement and a spectral differential entropy algorithm was used to measure the gait variability. Twelve subjects with LSS were measured before and after surgery. Preoperative measurements were performed 2 days before surgery. Postoperative measurements were performed 6 and 12 months after surgery. Preoperative gait variability was higher than the corresponding postoperative. Also, in most cases, gait variability appeared to decrease throughout the year

  18. Artificial gait in complete spinal cord injured subjects: how to assess clinical performance

    Directory of Open Access Journals (Sweden)

    Karla Rocha Pithon

    2015-02-01

    Full Text Available Objective Adapt the 6 minutes walking test (6MWT to artificial gait in complete spinal cord injured (SCI patients aided by neuromuscular electrical stimulation. Method Nine male individuals with paraplegia (AIS A participated in this study. Lesion levels varied between T4 and T12 and time post injured from 4 to 13 years. Patients performed 6MWT 1 and 6MWT 2. They used neuromuscular electrical stimulation, and were aided by a walker. The differences between two 6MWT were assessed by using a paired t test. Multiple r-squared was also calculated. Results The 6MWT 1 and 6MWT 2 were not statistically different for heart rate, distance, mean speed and blood pressure. Multiple r-squared (r2 = 0.96 explained 96% of the variation in the distance walked. Conclusion The use of 6MWT in artificial gait towards assessing exercise walking capacity is reproducible and easy to apply. It can be used to assess SCI artificial gait clinical performance.

  19. Vitamin D and walking speed in older adults: Systematic review and meta-analysis.

    Science.gov (United States)

    Annweiler, Cedric; Henni, Samir; Walrand, Stéphane; Montero-Odasso, Manuel; Duque, Gustavo; Duval, Guillaume T

    2017-12-01

    Vitamin D is involved in musculoskeletal health. There is no consensus on a possible association between circulating 25-hydroxyvitamin D (25OHD) concentrations and walking speed, a 'vital sign' in older adults. Our objective was to systematically review and quantitatively assess the association of 25OHD concentration with walking speed. A Medline search was conducted on June 2017, with no limit of date, using the MeSH terms "Vitamin D" OR "Vitamin D Deficiency" combined with "Gait" OR "Gait disorders, Neurologic" OR "Walking speed" OR "Gait velocity". Fixed-effect meta-analyses were performed to compute: i) mean differences in usual and fast walking speeds and Timed Up and Go test (TUG) between participants with severe vitamin D deficiency (≤25nmol/L) (SVDD), vitamin D deficiency (≤50nmol/L) (VDD), vitamin D insufficiency (≤75nmol/L) (VDI) and normal vitamin D (>75nmol/L) (NVD); ii) risk of slow walking speed according to vitamin D status. Of the 243 retrieved studies, 22 observational studies (17 cross-sectional, 5 longitudinal) met the selection criteria. The number of participants ranged between 54 and 4100 (0-100% female). Usual walking speed was slower among participants with hypovitaminosis D, with a clinically relevant difference compared with NVD of -0.18m/s for SVDD, -0.08m/s for VDD and -0.12m/s for VDI. We found similar results regarding the fast walking speed (mean differences -0.04m/s for VDD and VDI compared with NVD) and TUG (mean difference 0.48s for SVDD compared with NVD). A slow usual walking speed was positively associated with SVDD (summary OR=2.17[95%CI:1.52-3.10]), VDD (OR=1.38[95%CI:1.01-1.89]) and VDI (OR=1.38[95%CI:1.04-1.83]), using NVD as the reference. In conclusion, this meta-analysis provides robust evidence that 25OHD concentrations are positively associated with walking speed among adults. Copyright © 2017. Published by Elsevier B.V.

  20. Association of Gait Characteristics and Depression in Patients with Parkinson's Disease Assessed in Goal-Directed Locomotion Task

    Science.gov (United States)

    Kincses, Péter; Karádi, Kázmér; Feldmann, Ádám; Dorn, Krisztina; Aschermann, Zsuzsanna; Szolcsányi, Tibor; Csathó, Árpád

    2017-01-01

    Introduction. In the genesis of Parkinson's disease (PD) clinical phenomenology the exact nature of the association between bradykinesia and affective variables is unclear. In the present study, we analyzed the gait characteristics and level of depression in PD and healthy volunteers. Methods. Patients with PD (n = 48) and healthy controls (n = 52) were recruited for the present study. Walking speed, stride length, and cadence were compared between groups while participants completed a goal-directed locomotion task under visually controlled (VC) and visually noncontrolled conditions (VnC). Results. Significantly higher depression scores were found in PD comparing to healthy control groups. In PD, depression was associated with gait components in the VC wherein the place of the target was visible. In contrast, in healthy subjects the depression was associated with gait components in VnC wherein the location and image of the target were memorized and recalled. In patients with PD and depression, the visually deprived multitask augments the rate of cadence and diminishes stride length, while velocity remains relatively unchanged. The depression associated with gait characteristics as a comorbid affective factor in PD, and that impairs the coherence of gait pattern. Conclusion. The relationship between depression and gait parameters appears to indicate that PD not only is a neurological disease but also incorporates affective disturbances that associate with the regulation of gait characteristics. PMID:28293444

  1. Brain mapping for long-term recovery of gait after supratentorial stroke: A retrospective cross-sectional study.

    Science.gov (United States)

    Kim, Dae Hyun; Kyeong, Sunghyon; Do, Kyung Hee; Lim, Seong Kyu; Cho, Hyong Keun; Jung, Suk; Kim, Hye Won

    2018-04-01

    The recovery of independent gait after stroke is a main goal of patients and understanding the relationship between brain lesions and the recovery of gait can help physicians set viable rehabilitation plans. Our study investigated the association between variables of gait parameters and brain lesions.Fifty poststroke patients with a mean age of 67.5 ± 1.3 years and an average duration after onset of 62.2 ± 7.9 months were included. Three-dimensional gait analysis and magnetic resonance imaging were conducted for all patients. Twelve quantified gait parameters of temporal-spatial, kinematic, and kinetic data were used. To correlate gait parameters with specific brain lesions, we used a voxel-based lesion symptom mapping analysis. Statistical significance was set to an uncorrected P value 10 voxels.Based on the location of a brain lesion, the following results were obtained: The posterior limb of the internal capsule was significantly associated with gait speed and increased knee extension in the stance phase. The hippocampus and frontal lobe were significantly associated with cadence. The proximal corona radiata was significantly associated with stride length and affected the hip maximal extension angle in the stance phase. The paracentral lobule was significantly associated with the affected knee maximal flexion angle in the swing phase and with the affected ankle maximal dorsiflexion angle in the stance phase. The frontal lobe, thalamus, and the lentiform nucleus were associated with kinetic gait parameters.Cortical, proximal white matter, and learning-related and motor-related areas are mainly associated with one's walking ability after stroke.

  2. Effects of unilateral real-time biofeedback on propulsive forces during gait.

    Science.gov (United States)

    Schenck, Christopher; Kesar, Trisha M

    2017-06-06

    In individuals with post-stroke hemiparesis, reduced push-off force generation in the paretic leg negatively impacts walking function. Gait training interventions that increase paretic push-off can improve walking function in individuals with neurologic impairment. During normal locomotion, push-off forces are modulated with variations in gait speed and slope. However, it is unknown whether able-bodied individuals can selectively modulate push-off forces from one leg in response to biofeedback. Here, in a group of young, neurologically-unimpaired individuals, we determined the effects of a real-time visual and auditory biofeedback gait training paradigm aimed at unilaterally increasing anteriorly-directed ground reaction force (AGRF) in the targeted leg. Ground reaction force data during were collected from 7 able-bodied individuals as they walked at a self-selected pace on a dual-belt treadmill instrumented with force platforms. During 11-min of gait training, study participants were provided real-time AGRF biofeedback encouraging a 20-30% increase in peak AGRF generated by their right (targeted) leg compared to their baseline (pre-training) AGRF. AGRF data were collected before, during, and after the biofeedback training period, as well as during two retention tests performed without biofeedback and after standing breaks. Compared to AGRFs generated during the pre-training gait trials, participants demonstrated a significantly greater AGRF in the targeted leg during and immediately after training, indicating that biofeedback training was successful at inducing increased AGRF production in the targeted leg. Additionally, participants continued to demonstrate greater AGRF production in the targeted leg after two standing breaks, showing short-term recall of the gait pattern learned during the biofeedback training. No significant effects of training were observed on the AGRF in the non-targeted limb, showing the specificity of the effects of biofeedback toward the

  3. Continuous positive airway pressure improves gait control in severe obstructive sleep apnoea: A prospective study.

    Directory of Open Access Journals (Sweden)

    Sébastien Baillieul

    Full Text Available Severe obstructive sleep apnoea (OSA can lead to neurocognitive alterations, including gait impairments. The beneficial effects of continuous positive airway pressure (CPAP on improving excessive daytime sleepiness and daily functioning have been documented. However, a demonstration of CPAP treatment efficacy on gait control is still lacking. This study aims to test the hypothesis that CPAP improves gait control in severe OSA patients.In this prospective controlled study, twelve severe OSA patients (age = 57.2±8.9 years, body mass index = 27.4±3.1 kg·m-2, apnoea-hypopnoea index = 46.3±11.7 events·h-1 and 10 healthy matched subjects were included. Overground gait parameters were recorded at spontaneous speed and stride time variability, a clinical marker of gait control, was calculated. To assess the role of executive functions in gait and postural control, a dual-task paradigm was applied using a Stroop test as secondary cognitive task. All assessments were performed before and after 8 weeks of CPAP treatment.Before CPAP treatment, OSA patients had significantly larger stride time variability (3.1±1.1% vs 2.1±0.5% and lower cognitive performances under dual task compared to controls. After CPAP treatment, stride time variability was significantly improved and no longer different compared to controls. Cognitive performance under dual task also improved after CPAP treatment.Eight weeks of CPAP treatment improves gait control of severe OSA patients, suggesting morphological and functional cerebral improvements. Our data provide a rationale for further mechanistic studies and the use of gait as a biomarker of OSA brain consequences.

  4. Dynamometric analysis of the maximum force applied in aquatic human gait at 1.3m of immersion.

    Science.gov (United States)

    Roesler, Helio; Haupenthal, Alessandro; Schütz, Gustavo R; de Souza, Patrícia V

    2006-12-01

    This work had the objective to analyze the values of the vertical and anteroposterior components of the ground reaction force (GRF) during the aquatic gait and the influence of the speed and the upper limb position on the GRF components values. Sixty subjects, with average height between 1.6 and 1.85m and average age of 23 years, were divided in three groups according to the immersion level. The citizens walked over a walking platform, which had two force plates attached. The platform was located at a depth of 1.3m. The subjects walked over the platform in four different situations, with speed and upper limb position variations. For data analysis, descriptive and inferential statistics were used. For the vertical component, the force values varied between 20% and 40% of the subjects' body weight according to the different data collection situations. For the anteroposterior component, the force values reached between 8% and 20% of the subjects' body weight corporal, also according with the data collection situation. INTERPRETATION (DISCUSSION): It was noted that for a given immersion level, the forces can vary according to the request that is imposed to the aquatic gait. It was concluded that either the speed as well as the position of the upper limb influence the values of the GRF components. An increase in the gait speed causes increase of the anteroposterior component (Fx), while an increase in the corporal mass out of the water causes increase mainly of the vertical component (Fy). Knowing the value of these alterations is important for the professional who prescribes activities in aquatic environment.

  5. Use of harmonic ratios to examine the effect of cueing strategies on gait stability in persons with Parkinson's disease.

    Science.gov (United States)

    Lowry, Kristin A; Carrel, Andrew J; McIlrath, Jessica M; Smiley-Oyen, Ann L

    2010-04-01

    To determine if gait stability, as measured by harmonic ratios (HRs) derived from trunk accelerations, is improved during 3 amplitude-based cueing strategies (visual cues, lines on the floor 20% longer than preferred step length; verbal cues, experimenter saying "big step" every third; cognitive cues, participants think "big step") in people with Parkinson's disease. Gait analysis with a triaxial accelerometer. University research laboratory. A volunteer sample of persons with Parkinson's disease (N=7) (Hoehn and Yahr stages 2-3). Not applicable Gait stability was quantified by anterior-posterior (AP), vertical, and mediolateral (ML) HRs; higher ratios indicated improved gait stability. Spatiotemporal parameters assessed were walking speed, stride length, cadence, and the coefficient of variation for stride time. Of the amplitude-based cues, verbal and cognitive resulted in the largest improvements in the AP HR (P=.018) with a trend in the vertical HR as well as the largest improvements in both stride length and velocity. None of the cues positively affected stability in the ML direction. Descriptively, all participants increased speed and stride length, but only those in Hoehn and Yahr stage 2 (not Hoehn and Yahr stage 3) showed improvements in HRs. Cueing for "big steps" is effective for improving gait stability in the AP direction with modest improvements in the vertical direction, but it is not effective in the ML direction. These data support the use of trunk acceleration measures in assessing the efficacy of common therapeutic interventions. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Specific smartphone usage and cognitive performance affect gait characteristics during free-living and treadmill walking.

    Science.gov (United States)

    Niederer, Daniel; Bumann, Anke; Mühlhauser, Yvonne; Schmitt, Mareike; Wess, Katja; Engeroff, Tobias; Wilke, Jan; Vogt, Lutz; Banzer, Winfried

    2018-04-06

    Mobile phone tasks like texting, typing, and dialling during walking are known to impact gait characteristics. Beyond that, the effects of performing smartphone-typical actions like researching and taking self-portraits (selfie) on gait have not been investigated yet. We aimed to investigate the effects of smartphone usage on relevant gait characteristics and to reveal potential association of basic cognitive and walking plus smartphone dual-task abilities. Our cross-sectional, cross-over study on physically active, healthy participants was performed on two days, interrupted by a 24-h washout in between. Assessments were: 1) Cognitive testing battery consisting of the trail making test (TMT A and B) and the Stroop test 2) Treadmill walking under five smartphone usage conditions: no use (control condition), reading, dialling, internet searching and taking a selfie in randomized order. Kinematic and kinetic gait characteristics were assessed to estimate conditions influence. In our sample of 36 adults (24.6 ± 1 years, 23 female, 13 male), ANCOVAs followed by post-hoc t-tests revealed that smartphone usage impaired all tested gait characteristics: gait speed (decrease, all conditions): F = 54.7, p smartphone usage was systematically associated with the TMT B time regarding cadence and double stride length for reading (r = -0.37), dialling (r = -0.35) and taking a selfie (r = -0.34). Smartphone usage substantially impacts walking characteristics in most situations. Changes of gait patterns indicate higher cognitive loads and lower awareness. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. IMPACT OF BODY WEIGHT SUPPORTED BACKWARD TREADMILL TRAINING ON WALKING SPEED IN CHILDREN WITH SPASTIC DIPLEGIA

    Directory of Open Access Journals (Sweden)

    Hamada El Sayed Abd Allah Ayoub

    2016-10-01

    Full Text Available Background: A lot of the ambulating children with spastic diplegia were able to walk with flexed hips, knees and ankles this gait pattern is known as crouch gait. The most needed functional achievement of diplegic children habilitation is to be able to walk appropriately. The development of an independent and efficient walking is one of the main objectives for children with cerebral palsy especially those with spastic diplegia. Method: Twenty children with spastic diplegia enrolled in this study, they were classified into two groups of equal number, eligibility to our study were ages ranged from seven to ten years, were able to ambulate, They had gait problems and abnormal gait kinematics. The control group (A received selected physical therapy program based on neurodevelopmental approach for such cases, while the study group (B received partial body weight supported backward treadmill training in addition to regular exercise program. Gait pattern was assessed using the Biodex Gait Trainer II for each group pre and post three months of the treatment program. Results: There was statistically significant improvement in walking speed in the study group (P<0.05 with significant difference when comparing post treatment results between groups (p<0.05. Conclusion: These findings suggested that partial body weight supported backward treadmill training can be included as a supplementary therapeutic modality to improve walking speed and functional abilities of children with diplegic cerebral palsy.

  8. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform fish

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tudorache, Christian; Jordan, Anders Drud

    ) is below the Up-c, whereas both 1.9 and 2.3 bl s-1 are above the Up-c. Exercise oxygen consumption (MO2) while the fish were swimming at these speeds was determined. The presence and magnitude of excessive post exercise oxygen consumption (EPOC) was evaluated after the three swimming speeds....... There was no evidence of EPOC after swimming 1.4 and 1.9 bl s-1 indicating that the gait transition from pectoral oscillation to axial undulation is not a threshold for anaerobic metabolism. In contrast, swimming at 2.3 bl s-1 resulted in EPOC being 51.7 mg O2 kg-1 suggesting that anaerobic metabolism added about 34......% to the exercise MO2. E. lateralis switched to an unsteady burst and flap gait at 2.3 bl s-1. Burst activity correlated linearly and positively with the magnitude of the resulting EPOC. Collectively, these data suggest that steady axial propulsion does not lead to EPOC whereas transition to burst assisted swimming...

  9. Balzac and human gait analysis.

    Science.gov (United States)

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  10. The link between weight shift asymmetry and gait disturbances in chronic hemiparetic stroke patients

    Directory of Open Access Journals (Sweden)

    Szopa A

    2017-12-01

    Full Text Available Andrzej Szopa,1 Małgorzata Domagalska-Szopa,2 Anetta Lasek-Bal,3 Amadeusz Żak3 1Department of Physiotherapy, 2Department of Medical Rehabilitation, School of Health Sciences in Katowice, 3Department of Neurology, Professor Leszek Giec Upper Silesian Medical Centre, Medical University of Silesia, Katowice, Poland Introduction: While the asymmetry of body posture and the asymmetrical nature of hemiparetic gait in poststroke (PS patients are well documented, the role of weight shift asymmetry in gait disorders after stroke remains unclear. Objective: We examined the association of weight-bearing asymmetry (WBA between paretic and nonparetic lower limbs during quiet standing with the degree of deviation of hemiplegic gait from normal gait evaluated by the Gillette Gait Index (GGI incorporating 16 distinct clinically important kinematic and temporal parameters in chronic PS patients.Participants and methods: Twenty-two ambulatory patients with chronic stroke aged between 50 and 75 years were included in this study. Fourteen patients had hemiparesis on the nondominant side and 8 on the dominant side. The mean time PS was 2 years and 6 months. The reference group consisted of 22 students from the University of the Third Age presenting no neurological disorders. The examination consisted of posturographic weight-bearing (WB distribution and 3-dimensional gait analyses.Results: A significant positive relationship between WBA and GGI was revealed. Moreover, we observed a significant negative association between WBA and paretic step length and walking speed. With regard to kinematic data, the range of motion of knee flexion and peak dorsiflexion in the swing phase of the paretic leg were significantly negatively associated with WBA.Conclusion: Although further research is needed to determine a causal link between postural control asymmetry and gait disturbance in hemiplegics, our findings support the inclusion of WB measurements between paretic and

  11. Changes in gait and posture as factors of dynamic stability during walking in pregnancy.

    Science.gov (United States)

    Krkeljas, Zarko

    2018-04-01

    Changes in gait and postural control during pregnancy may lead to increased fall rates during walking relative to non-pregnant women. Due to lack of empirical evidence on balance and postural control in dynamic conditions, the primary aim of this study was investigate the changes in gait and postural control as factors of stability during walking. Gait and posture of thirty-five (35) pregnant women (27 ± 6.1 years) were analysed at self-selected walking speed, and at different stage of pregnancy. The results indicate that although the gait kinematics did not differ between the trimesters, significant associations were noted between the step width, the lateral trunk lean, and the medio-lateral deviations in centre of gravity and centre of pressure. In contrast to the static conditions, anterior-posterior postural sway is not present during walking, whereas the lateral trunk lean is the primary factor women use in pregnancy to keep the centre of gravity closer to the base of support. Postural changes and those in gait kinematics were largely affected by the relative mass gain, rather than the absolute mass. Considering the importance of relative mass gain, more attention during healthy pregnancy should be given to monitoring the timing of onset of musculoskeletal changes, and design of antenatal exercise programs targeting core strength and pelvic stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sensorimotor and Cognitive Predictors of Impaired Gait Adaptability in Older People.

    Science.gov (United States)

    Caetano, Maria Joana D; Menant, Jasmine C; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Lord, Stephen R

    2017-09-01

    The ability to adapt gait when negotiating unexpected hazards is crucial to maintain stability and avoid falling. This study investigated whether impaired gait adaptability in a task including obstacle and stepping targets is associated with cognitive and sensorimotor capacities in older adults. Fifty healthy older adults (74±7 years) were instructed to either (a) avoid an obstacle at usual step distance or (b) step onto a target at either a short or long step distance projected on a walkway two heel strikes ahead and then continue walking. Participants also completed cognitive and sensorimotor function assessments. Stroop test and reaction time performance significantly discriminated between participants who did and did not make stepping errors, and poorer Trail-Making test performance predicted shorter penultimate step length in the obstacle avoidance condition. Slower reaction time predicted poorer stepping accuracy; increased postural sway, weaker quadriceps strength, and poorer Stroop and Trail-Making test performances predicted increased number of steps taken to approach the target/obstacle and shorter step length; and increased postural sway and higher concern about falling predicted slower step velocity. Superior executive function, fast processing speed, and good muscle strength and balance were all associated with successful gait adaptability. Processing speed appears particularly important for precise foot placements; cognitive capacity for step length adjustments; and early and/or additional cognitive processing involving the inhibition of a stepping pattern for obstacle avoidance. This information may facilitate fall risk assessments and fall prevention strategies. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. The effect of a hippotherapy session on spatiotemporal parameters of gait in children with cerebral palsy - pilot study.

    Science.gov (United States)

    Manikowska, Faustyna; Jóźwiak, Marek; Idzior, Maciej; Chen, Po-Jung Brian; Tarnowski, Dariusz

    2013-06-28

    Hippotherapy has been shown to produce beneficial effects by improving the most difficult motor functions, such as sitting, running, jumping, coordination, as well as balance and muscle strength in children with motor developmental delays. The aim of this study was to analyze the effect of hippotherapy on spatiotemporal parameters of gait in cerebrally palsied children. 16 ambulatory cerebrally palsied children (GMFCS Level I-III; Female: 10, Male: 6; Age: 5.7-17.5 years old) qualified for hippotherapy were investigated. Basic spatiotemporal parameters of gait, including walking speed, cadence, step length, stride length and the left-right symmetry, were collected using a three-dimensional accelerometer device (DynaPort MiniMod) before and immediately after a hippotherapy session. The Wilcoxon test was used to verify the differences between pre- and post-session results. Changes of walking speed were statistically significant. With the exception of step length, all spatiotemporal parameters improved, i.e. were closer to the respective reference ranges after the session. However, these changes were not statistically significant. One session of hippotherapy may have a significant effect on the spatiotemporal parameters of gait in cerebrally palsied children.

  14. Gait and footwear in children and adolescents with Charcot-Marie-Tooth disease: A cross-sectional, case-controlled study.

    Science.gov (United States)

    Kennedy, Rachel A; McGinley, Jennifer L; Paterson, Kade L; Ryan, Monique M; Carroll, Kate

    2018-05-01

    Children with Charcot-Marie-Tooth disease (CMT) report problems with gait and footwear. We evaluated differences in spatio-temporal gait variables and gait variability between children with CMT and typically developing (TD) children, and investigated the effect of footwear upon gait. A cross-sectional study of 30 children with CMT and 30 age- and gender-matched TD children aged 4-18 years. Gait was assessed at self-selected speed on an electronic walkway while barefoot and in two types of the child's own footwear; optimal (e.g., athletic-type runners) and suboptimal (e.g., flip-flops). Children with CMT walked more slowly (mean (SD) -13.81 (3.61) cm/s), with shorter steps (-6.28 (1.37) cm), wider base of support (+2.47 (0.66) cm; all p footwear than suboptimal (-7.55 (1.31) cm/s) and barefoot (-7.42 (1.07) cm/sec; both p footwear was more variable compared to barefoot and optimal footwear. Greater base of support variability and reduced balance was moderately correlated for both groups (CMT and TD). Gait is slower with shorter, wider steps and greater base of support variability in children with CMT. Poor balance is associated with greater base of support gait variability. Suboptimal footwear negatively affects gait in all children (CMT and TD), which has clinical implications for children and adolescents with CMT who have weaker feet and ankles, and poor balance. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Gait parameter risk factors for falls under simple and dual task conditions in cognitively impaired older people.

    Science.gov (United States)

    Taylor, Morag E; Delbaere, Kim; Mikolaizak, A Stefanie; Lord, Stephen R; Close, Jacqueline C T

    2013-01-01

    Impaired gait may contribute to the increased rate of falls in cognitively impaired older people. We investigated whether gait under simple and dual task conditions could predict falls in this group. The study sample consisted of 64 community dwelling older people with mild to moderate cognitive impairment. Participants walked at their preferred speed under three conditions: (a) simple walking, (b) walking while carrying a glass of water and (c) walking while counting backwards from 30. Spatiotemporal gait parameters were measured using the GAITRite(®) mat. Falls were recorded prospectively for 12months with the assistance of carers. Twenty-two (35%) people fell two or more times in the 12month follow-up period. There was a significant main effect of gait condition and a significant main effect of faller status for mean value measures (velocity, stride length, double support time and stride width) and for variability measures (swing time variability and stride length variability). Examination of individual gait parameters indicated that the multiple fallers walked more slowly, had shorter stride length, spent longer time in double support, had a wider support width and showed more variability in stride length and swing time (p<0.05). There was no significant interaction between gait condition and faller status for any of the gait variables. In conclusion, dual task activities adversely affect gait in cognitively impaired older people. Multiple fallers performed worse in each gait condition but the addition of a functional or cognitive secondary task provided no added benefit in discriminating fallers from non-fallers with cognitive impairment. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Gait analysis in a pre- and post-ischemic stroke biomedical pig model.

    Science.gov (United States)

    Duberstein, Kylee Jo; Platt, Simon R; Holmes, Shannon P; Dove, C Robert; Howerth, Elizabeth W; Kent, Marc; Stice, Steven L; Hill, William D; Hess, David C; West, Franklin D

    2014-02-10

    Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Association of Gait Characteristics and Depression in Patients with Parkinson’s Disease Assessed in Goal-Directed Locomotion Task

    Directory of Open Access Journals (Sweden)

    Péter Kincses

    2017-01-01

    Full Text Available Introduction. In the genesis of Parkinson’s disease (PD clinical phenomenology the exact nature of the association between bradykinesia and affective variables is unclear. In the present study, we analyzed the gait characteristics and level of depression in PD and healthy volunteers. Methods. Patients with PD (n=48 and healthy controls (n=52 were recruited for the present study. Walking speed, stride length, and cadence were compared between groups while participants completed a goal-directed locomotion task under visually controlled (VC and visually noncontrolled conditions (VnC. Results. Significantly higher depression scores were found in PD comparing to healthy control groups. In PD, depression was associated with gait components in the VC wherein the place of the target was visible. In contrast, in healthy subjects the depression was associated with gait components in VnC wherein the location and image of the target were memorized and recalled. In patients with PD and depression, the visually deprived multitask augments the rate of cadence and diminishes stride length, while velocity remains relatively unchanged. The depression associated with gait characteristics as a comorbid affective factor in PD, and that impairs the coherence of gait pattern. Conclusion. The relationship between depression and gait parameters appears to indicate that PD not only is a neurological disease but also incorporates affective disturbances that associate with the regulation of gait characteristics.

  18. Effect of 6-month community-based exercise interventions on gait and functional fitness of an older population: a quasi-experimental study.

    Science.gov (United States)

    Ramalho, Fátima; Santos-Rocha, Rita; Branco, Marco; Moniz-Pereira, Vera; André, Helô-Isa; Veloso, António P; Carnide, Filomena

    2018-01-01

    Gait ability in older adults has been associated with independent living, increased survival rates, fall prevention, and quality of life. There are inconsistent findings regarding the effects of exercise interventions in the maintenance of gait parameters. The aim of the study was to analyze the effects of a community-based periodized exercise intervention on the improvement of gait parameters and functional fitness in an older adult group compared with a non-periodized program. A quasi-experimental study with follow-up was performed in a periodized exercise group (N=15) and in a non-periodized exercise group (N=13). The primary outcomes were plantar pressure gait parameters, and the secondary outcomes were physical activity, aerobic endurance, lower limb strength, agility, and balance. These variables were recorded at baseline and after 6 months of intervention. Both programs were tailored to older adults' functional fitness level and proved to be effective in reducing the age-related decline regarding functional fitness and gait parameters. Gait parameters were sensitive to both the exercise interventions. These exercise protocols can be used by exercise professionals in prescribing community exercise programs, as well as by health professionals in promoting active aging.

  19. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease.

    Science.gov (United States)

    Zhao, Yan; Nonnekes, Jorik; Storcken, Erik J M; Janssen, Sabine; van Wegen, Erwin E H; Bloem, Bastiaan R; Dorresteijn, Lucille D A; van Vugt, Jeroen P P; Heida, Tjitske; van Wezel, Richard J A

    2016-06-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson's disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory cueing in a laboratory setting with a custom-made application for the Google Glass. Twelve participants (mean age = 66.8; mean disease duration = 13.6 years) were tested at end of dose. We compared several key gait parameters (walking speed, cadence, stride length, and stride length variability) and freezing of gait for three types of external cues (metronome, flashing light, and optic flow) and a control condition (no-cue). For all cueing conditions, the subjects completed several walking tasks of varying complexity. Seven inertial sensors attached to the feet, legs and pelvis captured motion data for gait analysis. Two experienced raters scored the presence and severity of freezing of gait using video recordings. User experience was evaluated through a semi-open interview. During cueing, a more stable gait pattern emerged, particularly on complicated walking courses; however, freezing of gait did not significantly decrease. The metronome was more effective than rhythmic visual cues and most preferred by the participants. Participants were overall positive about the usability of the Google Glass and willing to use it at home. Thus, smartglasses like the Google Glass could be used to provide personalized mobile cueing to support gait; however, in its current form, auditory cues seemed more effective than rhythmic visual cues.

  20. Gait and Cognition in Parkinson’s Disease: Cognitive Impairment Is Inadequately Reflected by Gait Performance during Dual Task

    Directory of Open Access Journals (Sweden)

    Heiko Gaßner

    2017-10-01

    Full Text Available IntroductionCognitive and gait deficits are common symptoms in Parkinson’s disease (PD. Motor-cognitive dual tasks (DTs are used to explore the interplay between gait and cognition. However, it is unclear if DT gait performance is indicative for cognitive impairment. Therefore, the aim of this study was to investigate if cognitive deficits are reflected by DT costs of spatiotemporal gait parameters.MethodsCognitive function, single task (ST and DT gait performance were investigated in 67 PD patients. Cognition was assessed by the Montreal Cognitive Assessment (MoCA followed by a standardized, sensor-based gait test and the identical gait test while subtracting serial 3’s. Cognitive impairment was defined by a MoCA score <26. DT costs in gait parameters [(DT − ST/ST × 100] were calculated as a measure of DT effect on gait. Correlation analysis was used to evaluate the association between MoCA performance and gait parameters. In a linear regression model, DT gait costs and clinical confounders (age, gender, disease duration, motor impairment, medication, and depression were correlated to cognitive performance. In a subgroup analysis, we compared matched groups of cognitively impaired and unimpaired PD patients regarding differences in ST, DT, and DT gait costs.ResultsCorrelation analysis revealed weak correlations between MoCA score and DT costs of gait parameters (r/rSp ≤ 0.3. DT costs of stride length, swing time variability, and maximum toe clearance (|r/rSp| > 0.2 were included in a regression analysis. The parameters only explain 8% of the cognitive variance. In combination with clinical confounders, regression analysis showed that these gait parameters explained 30% of MoCA performance. Group comparison revealed strong DT effects within both groups (large effect sizes, but significant between-group effects in DT gait costs were not observed.ConclusionThese findings suggest that DT gait performance is not indicative

  1. Gait as evidence

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Larsen, Peter Kastmand

    2014-01-01

    This study examines what in Denmark may constitute evidence based on forensic anthropological gait analyses, in the sense of pointing to a match (or not) between a perpetrator and a suspect, based on video and photographic imagery. Gait and anthropometric measures can be used when direct facial...

  2. [Experimental research of gaits based on young plantar pressure test].

    Science.gov (United States)

    Meng, Qingyun; Tan, Shili; Yu, Hongliu; Shen, Lixing; Zhuang, Jianhai; Wang, Jinwu

    2014-10-01

    The present paper is to study the center line of the plantar pressure of normal young people, and to find the relation between center line of the plantar pressure and gait stability and balance. The paper gives the testing principle and calculating methods for geometric center of plantar pressure distribution and the center of pressure due to the techniques of footprint frame. The calculating formulas in both x direction and y direction are also deduced in the paper. In the experiments carried out in our laboratory, the gait parameters of 131 young subjects walking as usual speed were acquired, and 14 young subjects of the total were specially analyzed. We then provided reference data for the walking gait database of young people, including time parameters, space parameters and plantar pressure parameters. We also obtained the line of geometry center and pressure center under the foot. We found that the differences existed in normal people's geometric center line and the pressure center line. The center of pressure trajectory revealed foot movement stability. The length and lateral changes of the center line of the plantar pressure could be applied to analysis of the plantar pressure of all kinds of people. The results in this paper are useful in clinical foot disease diagnosis and evaluation of surgical effect.

  3. A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients

    Science.gov (United States)

    2011-01-01

    Background The restoration of walking ability is the main goal of post-stroke lower limb rehabilitation and different studies suggest that pedaling may have a positive effect on locomotion. The aim of this study was to explore the feasibility of a biofeedback pedaling treatment and its effects on cycling and walking ability in chronic stroke patients. A case series study was designed and participants were recruited based on a gait pattern classification of a population of 153 chronic stroke patients. Methods In order to optimize participants selection, a k-means cluster analysis was performed to subgroup homogenous gait patterns in terms of gait speed and symmetry. The training consisted of a 2-week treatment of 6 sessions. A visual biofeedback helped the subjects in maintaining a symmetrical contribution of the two legs during pedaling. Participants were assessed before, after training and at follow-up visits (one week after treatment). Outcome measures were the unbalance during a pedaling test, and the temporal, spatial, and symmetry parameters during gait analysis. Results and discussion Three clusters, mainly differing in terms of gait speed, were identified and participants, representative of each cluster, were selected. An intra-subject statistical analysis (ANOVA) showed that all patients significantly decreased the pedaling unbalance after treatment and maintained significant improvements with respect to baseline at follow-up. The 2-week treatment induced some modifications in the gait pattern of two patients: one, the most impaired, significantly improved mean velocity and increased gait symmetry; the other one reduced significantly the over-compensation of the healthy limb. No benefits were produced in the gait of the last subject who maintained her slow but almost symmetrical pattern. Thus, this study might suggest that the treatment can be beneficial for patients having a very asymmetrical and inefficient gait and for those that overuse the healthy leg

  4. A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients

    Directory of Open Access Journals (Sweden)

    Molteni Franco

    2011-08-01

    Full Text Available Abstract Background The restoration of walking ability is the main goal of post-stroke lower limb rehabilitation and different studies suggest that pedaling may have a positive effect on locomotion. The aim of this study was to explore the feasibility of a biofeedback pedaling treatment and its effects on cycling and walking ability in chronic stroke patients. A case series study was designed and participants were recruited based on a gait pattern classification of a population of 153 chronic stroke patients. Methods In order to optimize participants selection, a k-means cluster analysis was performed to subgroup homogenous gait patterns in terms of gait speed and symmetry. The training consisted of a 2-week treatment of 6 sessions. A visual biofeedback helped the subjects in maintaining a symmetrical contribution of the two legs during pedaling. Participants were assessed before, after training and at follow-up visits (one week after treatment. Outcome measures were the unbalance during a pedaling test, and the temporal, spatial, and symmetry parameters during gait analysis. Results and discussion Three clusters, mainly differing in terms of gait speed, were identified and participants, representative of each cluster, were selected. An intra-subject statistical analysis (ANOVA showed that all patients significantly decreased the pedaling unbalance after treatment and maintained significant improvements with respect to baseline at follow-up. The 2-week treatment induced some modifications in the gait pattern of two patients: one, the most impaired, significantly improved mean velocity and increased gait symmetry; the other one reduced significantly the over-compensation of the healthy limb. No benefits were produced in the gait of the last subject who maintained her slow but almost symmetrical pattern. Thus, this study might suggest that the treatment can be beneficial for patients having a very asymmetrical and inefficient gait and for those

  5. Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis.

    Science.gov (United States)

    Ludwig, Oliver; Dillinger, Steffen; Marschall, Franz

    2016-07-01

    In this study, inter- and intra-individual gait pattern differences are examined in various gait situations by means of phase diagrams of the extremity angles (cyclograms). 8 test subjects walked along a walking distance of 6m under different conditions three times each: barefoot, wearing sneakers, wearing combat boots, after muscular fatigue, and wearing a full-face motorcycle helmet restricting vision. The joint angles of foot, knee, and hip were recorded in the sagittal plane. The coupling of movements was represented by time-adjusted cyclograms, and the inter- and intra-individual differences were captured by calculating the similarity between different gait patterns. Gait pattern variability was often greater between the defined test situations than between the individual test subjects. The results have been interpreted considering neurophysiological regulation mechanisms. Footwear, masking, and fatigue were interpreted as disturbance parameters, each being a cause for gait pattern variability and complicating the inference of identity of persons in video recordings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Differences in center of pressure trajectory between normal and steppage gait

    Science.gov (United States)

    Jamshidi, Nima; Rostami, Mostafa; Najarian, Siamak; Menhaj, Mohammad Bagher; Saadatnia, Mohammad; Salami, Firooz

    2010-01-01

    BACKGROUND: This pilot study aimed to assess the differences in center of pressure trajectory in neuropathic patients with steppage gait. Steppage gait has previously been evaluated by several biomechanical methods, but plantar pressure distribution has been much less studied. The purpose of this study was to analyze the changes in center of pressure trajectory using a force plate. METHODS: The steppage gait group was selected from the patients using drop foot brace (25 male) and the control group was selected from Isfahan university students (20 male). They walked at self- selected speed at a mean of ten trials (+2) to collect the center of pressure using a force plate. Center of pressure patterns were categorized into four patterns based on the center of pressure displacement magnitude (spatial features) through time (temporal features) when the longitudinal axis of the insole was plotted as the Y- axis and the transverse axis of the insole as X- axis during stance phase. RESULTS: The horizontal angle measured from center of pressure linear regression was positive in the control group (4.6 ± 2.4) (p < 0.005), but negative in the patient group (- 2.3 ± 1.6) (p < 0.005). CONCLUSIONS: The finding of this research measured center of pressure trajectory in steppage gait over time, which is useful for designing better shoe sole and also orthopaedic device and better understanding of stability in patients with drop foot. PMID:21526056

  7. Differences in center of pressure trajectory between normal and steppage gait

    Directory of Open Access Journals (Sweden)

    Nima Jamshidi

    2010-01-01

    Full Text Available Background: This pilot study aimed to assess the differences in center of pressure trajectory in neuropathic patients with steppage gait. Steppage gait has previously been evaluated by several biomechanical methods, but plantar pressure distribution has been much less studied. The purpose of this study was to analyze the changes in center of pressure tra-jectory using a force plate. Methods: The steppage gait group was selected from the patients using drop foot brace (25 male and the control group was selected from Isfahan university students (20 male. They walked at self- selected speed at a mean of ten tri-als (+2 to collect the center of pressure using a force plate. Center of pressure patterns were categorized into four pat-terns based on the center of pressure displacement magnitude (spatial features through time (temporal features when the longitudinal axis of the insole was plotted as the Y- axis and the transverse axis of the insole as X- axis during stance phase. Results: The horizontal angle measured from center of pressure linear regression was positive in the control group (4.6 ± 2.4 (p < 0.005, but negative in the patient group (- 2.3 ± 1.6 (p < 0.005. Conclusions: The finding of this research measured center of pressure trajectory in steppage gait over time, which is useful for designing better shoe sole and also orthopaedic device and better understanding of stability in patients with drop foot.

  8. Longitudinal relationships among posturography and gait measures in multiple sclerosis.

    Science.gov (United States)

    Fritz, Nora E; Newsome, Scott D; Eloyan, Ani; Marasigan, Rhul Evans R; Calabresi, Peter A; Zackowski, Kathleen M

    2015-05-19

    Gait and balance dysfunction frequently occurs early in the multiple sclerosis (MS) disease course. Hence, we sought to determine the longitudinal relationships among quantitative measures of gait and balance in individuals with MS. Fifty-seven ambulatory individuals with MS (28 relapsing-remitting, 29 progressive) were evaluated using posturography, quantitative sensorimotor and gait measures, and overall MS disability with the Expanded Disability Status Scale at each session. Our cohort's age was 45.8 ± 10.4 years (mean ± SD), follow-up time 32.8 ± 15.4 months, median Expanded Disability Status Scale score 3.5, and 56% were women. Poorer performance on balance measures was related to slower walking velocity. Two posturography measures, the anterior-posterior sway and sway during static eyes open, feet apart conditions, were significant contributors to walk velocity over time (approximate R(2) = 0.95), such that poorer performance on the posturography measures was related to slower walking velocity. Similarly, the anterior-posterior sway and sway during static eyes closed, feet together conditions were also significant contributors to the Timed 25-Foot Walk performance over time (approximate R(2) = 0.83). This longitudinal cohort study establishes a strong relationship between clinical gait measures and posturography. The data show that increases in static posturography and reductions in dynamic posturography are associated with a decline in walk velocity and Timed 25-Foot Walk performance over time. Furthermore, longitudinal balance measures predict future walking performance. Quantitative walking and balance measures are important additions to clinical testing to explore longitudinal change and understand fall risk in this progressive disease population. © 2015 American Academy of Neurology.

  9. High-speed Dynamic Gait Generation Based on Asymmetrization of Impact Posture Using Telescopic Legs

    OpenAIRE

    浅野, 文彦

    2011-01-01

    This paper proposes a novel method for generating a dynamic gait based on anterior-posterior asymmetric impact posture tilting the robo's center of mass forward. The primary purpose of this method is to asymmetrize the impact posture by actuating the robot's telescopic-legs to make overcoming the potential barrier at mid-stance easy, and the mechanical energy is accordingly restored. First, we introduce a planar rimless wheel model with telescopic legs, and investigate the validity of the sta...

  10. EFFECTS OF PHYSICAL REHABILITATION INTEGRATED WITH RHYTHMIC AUDITORY STIMULATION ON SPATIO-TEMPORAL AND KINEMATIC PARAMETERS OF GAIT IN PARKINSON’S DISEASE

    Directory of Open Access Journals (Sweden)

    Massimiliano Pau

    2016-08-01

    Full Text Available Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson’s disease (PD. In this context, the use of Rhythmic Auditory Stimulation (RAS has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns scarce information is available from a kinematic viewpoint. In this study we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of intensive rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4±11.1, Hoehn & Yahr 1-3. Gait kinematics was assessed before and at the end of the rehabilitation period and after a three-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively, which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion-extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments.

  11. Prediction of human gait trajectories during the SSP using a neuromusculoskeletal modeling: A challenge for parametric optimization.

    Science.gov (United States)

    Seyed, Mohammadali Rahmati; Mostafa, Rostami; Borhan, Beigzadeh

    2018-04-27

    The parametric optimization techniques have been widely employed to predict human gait trajectories; however, their applications to reveal the other aspects of gait are questionable. The aim of this study is to investigate whether or not the gait prediction model is able to justify the movement trajectories for the higher average velocities. A planar, seven-segment model with sixteen muscle groups was used to represent human neuro-musculoskeletal dynamics. At first, the joint angles, ground reaction forces (GRFs) and muscle activations were predicted and validated for normal average velocity (1.55 m/s) in the single support phase (SSP) by minimizing energy expenditure, which is subject to the non-linear constraints of the gait. The unconstrained system dynamics of extended inverse dynamics (USDEID) approach was used to estimate muscle activations. Then by scaling time and applying the same procedure, the movement trajectories were predicted for higher average velocities (from 2.07 m/s to 4.07 m/s) and compared to the pattern of movement with fast walking speed. The comparison indicated a high level of compatibility between the experimental and predicted results, except for the vertical position of the center of gravity (COG). It was concluded that the gait prediction model can be effectively used to predict gait trajectories for higher average velocities.

  12. Efficacy of gait trainer as an adjunct to traditional physical therapy on walking performance in hemiparetic cerebral palsied children: a randomized controlled trial.

    Science.gov (United States)

    Gharib, Nevein Mm; El-Maksoud, Gehan M Abd; Rezk-Allah, Soheir S

    2011-10-01

    To assess the effects of additional gait trainer assisted walking exercises on walking performance in children with hemiparetic cerebral palsy. A randomized controlled study. Paediatric physical therapy outpatient clinic. Thirty spastic hemiparetic cerebral palsied children of both sexes (10-13 years - 19 girls and 11 boys). Children were randomly assigned into two equal groups; experimental and control groups. Participants in both groups received a traditional physical therapy exercise programme. Those in the experimental group received additional gait trainer based walking exercises which aimed to improve walking performance. Treatment was provided three times per week for three successive months. Children received baseline and post-treatment assessments using Biodex Gait Trainer 2 assessment device to evaluate gait parameters including: average step length, walking speed, time on each foot (% of gait cycle) and ambulation index. Children in the experimental group showed a significant improvement as compared with those in the control group. The ambulation index was 75.53±7.36 (11.93 ± 2.89 change score) for the experimental group and 66.06 ± 5.48 (2.13 ± 4.43 change score) for the control group (t = 3.99 and P = 0.0001). Time of support for the affected side was 42.4 ± 3.37 (7 ± 2.20 change score) for the experimental group and 38.06 ± 4.63 (3.33 ± 6.25 change score) for the control group (t = 2.92 and P = 0.007). Also, there was a significant improvement in step length and walking speed in both groups. Gait trainer combined with traditional physiotherapy increase the chance of improving gait performance in children with spastic hemiparetic cerebral palsy.

  13. Gait Characteristics Associated with Trip-Induced Falls on Level and Sloped Irregular Surfaces

    Directory of Open Access Journals (Sweden)

    Andrew Merryweather

    2011-11-01

    Full Text Available Same level falls continue to contribute to an alarming number of slip/trip/fall injuries in the mining workforce. The objective of this study was to investigate how walking on different surface types and transverse slopes influences gait parameters that may be associated with a trip event. Gait analysis was performed for ten subjects on two orientations (level and sloped on smooth, hard surface (control and irregular (gravel, larger rocks surfaces. Walking on irregular surfaces significantly increased toe clearance compared to walking on the smooth surface. There was a significant (p < 0.05 decrease in cadence (steps/min, stride length (m, and speed (m/s from control to gravel to larger rocks. Significant changes in external rotation and increased knee flexion while walking on irregular surfaces were observed. Toe and heel clearance requirements increased on irregular surfaces, which may provide an explanation for trip-induced falls; however, the gait alterations observed in the experienced workers used as subjects would likely improve stability and recovery from a trip.

  14. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury.

    Science.gov (United States)

    Hesse, S; Werner, C; Bardeleben, A

    2004-06-01

    Single case studies. To describe the technique of intensive locomotor training on an electromechanical gait trainer (GT) combined with functional electrical stimulation (FES). Neurological Rehabilitation Clinic, Berlin, Germany. Four spinal cord-injured (SCI) patients, one tetraparetic, two paraparetic, and one patient with an incomplete cauda syndrome, more than 3 months postinjury, who were unable to walk at all, or with two therapists. They received 25 min of locomotor training on the GT plus FES daily for 5 weeks in addition to the regular therapy. The patients tolerated the programme well, and therapists rated the programme less strenuous compared to manually assisted treadmill training. Gait ability improved in all four patients; three patients could walk independently on the floor with the help of technical aids, and one required the help of one therapist after therapy; gait speed and endurance more than doubled, and the gastrocnemius activity increased in the patients with a central paresis. This combined technique allows intensive locomotor therapy in SCI subjects with reduced effort from the therapists. The patients' improved walking ability confirmed the potential of locomotor therapy in SCI subjects.

  15. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  16. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults

    NARCIS (Netherlands)

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-01-01

    BACKGROUND: Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. RESEARCH QUESTION: We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults.

  17. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    Science.gov (United States)

    Montero-Odasso, Manuel M; Sarquis-Adamson, Yanina; Speechley, Mark; Borrie, Michael J; Hachinski, Vladimir C; Wells, Jennie; Riccio, Patricia M; Schapira, Marcelo; Sejdic, Ervin; Camicioli, Richard M; Bartha, Robert; McIlroy, William E; Muir-Hunter, Susan

    2017-07-01

    Gait performance is affected by neurodegeneration in aging and has the potential to be used as a clinical marker for progression from mild cognitive impairment (MCI) to dementia. A dual-task gait test evaluating the cognitive-motor interface may predict dementia progression in older adults with MCI. To determine whether a dual-task gait test is associated with incident dementia in MCI. The Gait and Brain Study is an ongoing prospective cohort study of community-dwelling older adults that enrolled 112 older adults with MCI. Participants were followed up for 6 years, with biannual visits including neurologic, cognitive, and gait assessments. Data were collected from July 2007 to March 2016. Incident all-cause dementia was the main outcome measure, and single- and dual-task gait velocity and dual-task gait costs were the independent variables. A neuropsychological test battery was used to assess cognition. Gait velocity was recorded under single-task and 3 separate dual-task conditions using an electronic walkway. Dual-task gait cost was defined as the percentage change between single- and dual-task gait velocities: ([single-task gait velocity - dual-task gait velocity]/ single-task gait velocity) × 100. Cox proportional hazard models were used to estimate the association between risk of progression to dementia and the independent variables, adjusted for age, sex, education, comorbidities, and cognition. Among 112 study participants with MCI, mean (SD) age was 76.6 (6.9) years, 55 were women (49.1%), and 27 progressed to dementia (24.1%), with an incidence rate of 121 per 1000 person-years. Slow single-task gait velocity (gait cost while counting backward (HR, 3.79; 95% CI, 1.57-9.15; P = .003) and naming animals (HR, 2.41; 95% CI, 1.04-5.59; P = .04) were associated with dementia progression (incidence rate, 155 per 1000 person-years). The models remained robust after adjusting by baseline cognition except for dual-task gait cost when dichotomized. Dual

  18. ANTHROPOMETRIC, GAIT AND STRENGTH CHARACTERISTICS OF KENYAN DISTANCE RUNNERS

    Directory of Open Access Journals (Sweden)

    Pui W. Kong

    2008-12-01

    Full Text Available This study intended to take a biomechanical approach to understand the success of Kenyan distance runners. Anthropometric, gait and lower extremity strength characteristics of six elite Kenyan distance runners were analyzed. Stride frequency, relative stride length and ground contact time were measured at five running speeds (3.5 - 5.4 m/s using a motion capture system. Isometric knee extension and flexion torques were measured at six angles and hamstrings and quadriceps (H:Q ratios at three angular velocities were determined using an isokinetic dynamometer. These runners were characterized by a low body mass index (20.1 ± 1.8 kg·m- 2, low percentage body fat (5.1 ± 1.6% and small calf circumference (34.5 ± 2.3 cm. At all running speeds, the ground contact time was shorter (p < 0.05 during right (170 - 212 ms compared to left (177 - 220 ms foot contacts. No bilateral difference was observed in other gait or strength variables. Their maximal isometric strength was lower than other runners (knee extension: 1.4 - 2.6 Nm·kg-1, knee flexion: 1.0 - 1.4 Nm·kg-1 but their H:Q ratios were higher than athletes in other sports (1.03 ± 0.51 at 60o/s, 1.44 ± 0.46 at 120o/s, 1.59 ± 0.66 at 180o/s. The slim limbs of Kenyan distance runners may positively contribute to performance by having a low moment of inertia and thus requiring less muscular effort in leg swing. The short ground contact time observed may be related to good running economy since there is less time for the braking force to decelerate forward motion of the body. These runners displayed minor gait asymmetry, though the difference may be too small to be practically significant. Further investigations are needed to confirm whether the bilateral symmetry in strength and high H:Q ratios are related to genetics, training or the lack of injuries in these runners

  19. Is Freezing of Gait in Parkinson's Disease a Result of Multiple Gait Impairments? Implications for Treatment

    Science.gov (United States)

    Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.

    2012-01-01

    Several gait impairments have been associated with freezing of gait (FOG) in patients with Parkinson's disease (PD). These include deteriorations in rhythm control, gait symmetry, bilateral coordination of gait, dynamic postural control and step scaling. We suggest that these seemingly independent gait features may have mutual interactions which, during certain circumstances, jointly drive the predisposed locomotion system into a FOG episode. This new theoretical framework is illustrated by the evaluation of the potential relationships between the so-called “sequence effect”, that is, impairments in step scaling, and gait asymmetry just prior to FOG. We further discuss what factors influence gait control to maintain functional gait. “Triggers”, for example, such as attention shifts or trajectory transitions, may precede FOG. We propose distinct categories of interventions and describe examples of existing work that support this idea: (a) interventions which aim to maintain a good level of locomotion control especially with respect to aspects related to FOG; (b) those that aim at avoiding FOG “triggers”; and (c) those that merely aim to escape from FOG once it occurs. The proposed theoretical framework sets the stage for testable hypotheses regarding the mechanisms that lead to FOG and may also lead to new treatment ideas. PMID:22288021

  20. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-02-28

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.

  1. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network

    Science.gov (United States)

    Zhao, Yongjia; Zhou, Suiping

    2017-01-01

    The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503

  2. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Gordt, Katharina; Gerhardy, Thomas; Najafi, Bijan; Schwenk, Michael

    2018-01-01

    Wearable sensors (WS) can accurately measure body motion and provide interactive feedback for supporting motor learning. This review aims to summarize current evidence for the effectiveness of WS training for improving balance, gait and functional performance. A systematic literature search was performed in PubMed, Cochrane, Web of Science, and CINAHL. Randomized controlled trials (RCTs) using a WS exercise program were included. Study quality was examined by the PEDro scale. Meta-analyses were conducted to estimate the effects of WS balance training on the most frequently reported outcome parameters. Eight RCTs were included (Parkinson n = 2, stroke n = 1, Parkinson/stroke n = 1, peripheral neuropathy n = 2, frail older adults n = 1, healthy older adults n = 1). The sample size ranged from n = 20 to 40. Three types of training paradigms were used: (1) static steady-state balance training, (2) dynamic steady-state balance training, which includes gait training, and (3) proactive balance training. RCTs either used one type of training paradigm (type 2: n = 1, type 3: n = 3) or combined different types of training paradigms within their intervention (type 1 and 2: n = 2; all types: n = 2). The meta-analyses revealed significant overall effects of WS training on static steady-state balance outcomes including mediolateral (eyes open: Hedges' g = 0.82, CI: 0.43-1.21; eyes closed: g = 0.57, CI: 0.14-0.99) and anterior-posterior sway (eyes open: g = 0.55, CI: 0.01-1.10; eyes closed: g = 0.44, CI: 0.02-0.86). No effects on habitual gait speed were found in the meta-analysis (g = -0.19, CI: -0.68 to 0.29). Two RCTs reported significant improvements for selected gait variables including single support time, and fast gait speed. One study identified effects on proactive balance (Alternate Step Test), but no effects were found for the Timed Up and Go test and the Berg Balance Scale. Two studies reported positive results on feasibility and usability. Only one study was

  3. Balance and gait in children with dyslexia.

    Science.gov (United States)

    Moe-Nilssen, Rolf; Helbostad, Jorunn L; Talcott, Joel B; Toennessen, Finn Egil

    2003-05-01

    Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia ( n=22) and controls ( n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences ( Pwalking speed during very fast walking on both flat and uneven surface was > or =0.2 m/s ( Pwalking speed ( Pwalking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.

  4. Comparative gait analysis of ankle arthrodesis and arthroplasty: initial findings of a prospective study.

    Science.gov (United States)

    Hahn, Michael E; Wright, Elise S; Segal, Ava D; Orendurff, Michael S; Ledoux, William R; Sangeorzan, Bruce J

    2012-04-01

    Little is known about functional outcomes of ankle arthroplasty compared with arthrodesis. This study compared pre-surgical and post-surgical gait measures in both patient groups. Eighteen patients with end-stage ankle arthritis participated in an ongoing longitudinal study (pre-surgery, 12 months post-surgery) involving gait analysis, assessment of pain and physical function. Outcome measures included temporal-distance, kinematic and kinetic data, the Short Form 36 (SF-36) body pain score, and average daily step count. A mixed effects linear model was used to detect effects of surgical group (arthrodesis and arthroplasty, n = 9 each) with walking speed as a covariate (α = 0.05). Both groups were similar in demographics and anthropometrics. Followup time was the same for each group. There were no complications in either group. Pain decreased (p < 0.001) and gait function improved (gait velocity, p = 0.02; stride length, p = 0.035) in both groups. Neither group increased average daily step count. Joint range of motion (ROM) differences were observed between groups after surgery (increased hip ROM in arthrodesis, p = 0.001; increased ankle ROM in arthroplasty, p = 0.036). Peak plantar flexor moment increased in arthrodesis patients and decreased in arthroplasty patients (p = 0.042). Initial findings of this ongoing clinical study indicate pain reduction and improved gait function 12 months after surgery for both treatments. Arthroplasty appears to regain more natural ankle joint function, with increased ROM. Long-term follow up should may reveal more clinically meaningful differences.

  5. Automated Gait Analysis Through Hues and Areas (AGATHA): a method to characterize the spatiotemporal pattern of rat gait

    Science.gov (United States)

    Kloefkorn, Heidi E.; Pettengill, Travis R.; Turner, Sara M. F.; Streeter, Kristi A.; Gonzalez-Rothi, Elisa J.; Fuller, David D.; Allen, Kyle D.

    2016-01-01

    While rodent gait analysis can quantify the behavioral consequences of disease, significant methodological differences exist between analysis platforms and little validation has been performed to understand or mitigate these sources of variance. By providing the algorithms used to quantify gait, open-source gait analysis software can be validated and used to explore methodological differences. Our group is introducing, for the first time, a fully-automated, open-source method for the characterization of rodent spatiotemporal gait patterns, termed Automated Gait Analysis Through Hues and Areas (AGATHA). This study describes how AGATHA identifies gait events, validates AGATHA relative to manual digitization methods, and utilizes AGATHA to detect gait compensations in orthopaedic and spinal cord injury models. To validate AGATHA against manual digitization, results from videos of rodent gait, recorded at 1000 frames per second (fps), were compared. To assess one common source of variance (the effects of video frame rate), these 1000 fps videos were re-sampled to mimic several lower fps and compared again. While spatial variables were indistinguishable between AGATHA and manual digitization, low video frame rates resulted in temporal errors for both methods. At frame rates over 125 fps, AGATHA achieved a comparable accuracy and precision to manual digitization for all gait variables. Moreover, AGATHA detected unique gait changes in each injury model. These data demonstrate AGATHA is an accurate and precise platform for the analysis of rodent spatiotemporal gait patterns. PMID:27554674

  6. Midbrain circuits that set locomotor speed and gait selection

    DEFF Research Database (Denmark)

    Caggiano, V.; Leiras, R.; Goñi-Erro, H.

    2018-01-01

    Locomotion is a fundamental motor function common to the animal kingdom. It is implemented episodically and adapted to behavioural needs, including exploration, which requires slow locomotion, and escape behaviour, which necessitates faster speeds. The control of these functions originates...

  7. A mechanical energy analysis of gait initiation

    Science.gov (United States)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  8. Exercise Alters Gait Pattern but Not Knee Load in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Ssu-Yu Chang

    2016-01-01

    Full Text Available Six female patients with bilateral medial knee OA and 6 healthy controls were recruited. Patients with knee OA received a 6-week physiotherapist-supervised and home-based exercise program. Outcome measures, including the Western Ontario and McMaster Universities Arthritis Index and Short Form-36 Health Survey as well as objective biomechanical indices were obtained at baseline and follow-up. After treatment, no significant difference was observed in the knee abductor moment (KAM, lever arm, and ground reaction force. We, however, observed significantly improved pain and physical function as well as altered gait patterns, including a higher hip flexor moment and hip extension angle with a faster walking speed. Although KAM was unchanged, patients with bilateral knee OA showed an improved walking speed and altered the gait pattern after 6 weeks of supervised exercise. This finding suggests that the exercise intervention improves proximal joint mechanics during walking and can be considered for patients with bilateral knee OA. Non-weight-bearing strengthening without external resistance combined with stretching exercise may be an option to improve pain and function in individuals with OA who cannot perform high resistance exercises owing to pain or other reasons.

  9. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity : A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    NARCIS (Netherlands)

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; Otter, den Rob

    2014-01-01

    Background: For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study

  10. Classification of Gait Types Based on the Duty-factor

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2007-01-01

    on the speed of the human, the cameras setup etc. and hence a robust descriptor for gait classification. The dutyfactor is basically a matter of measuring the ground support of the feet with respect to the stride. We estimate this by comparing the incoming silhouettes to a database of silhouettes with known...... ground support. Silhouettes are extracted using the Codebook method and represented using Shape Contexts. The matching with database silhouettes is done using the Hungarian method. While manually estimated duty-factors show a clear classification the presented system contains misclassifications due...

  11. A Pilot Study on Gait Kinematics of Old Women with Bound Feet

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-01-01

    Full Text Available Foot binding has a long and influential history in China. Little is known about biomechanical changes in gait caused by bound foot. The purpose of this study was to investigate the differences in lower limb kinematics between old women with bound feet and normal feet during walking. Six old women subjects (three with bound feet and three controls with normal feet volunteered to participate in this study. Video data were recorded with a high speed video camera and analysed in the SIMI motion analysis software. Compared to normal controls, bound feet subjects had faster gait cadence with shorter stride length as well as smaller ankle and knee range of motion (ROM. During preswing phase, ankle remained to be dorsiflexion for bound foot subjects. The data from bound foot group also demonstrated that toe vertical displacement increased continuously during whole swing phase without a minimum toe clearance (MTC. The findings indicate that older women with bound feet exhibit significant differences in gait pattern compared to those with normal feet, which is characterised by disappeared propulsion/push-off and reduced mobility of lower limb segments.

  12. Kinematic and Gait Similarities between Crawling Human Infants and Other Quadruped Mammals

    Science.gov (United States)

    Righetti, Ludovic; Nylén, Anna; Rosander, Kerstin; Ijspeert, Auke Jan

    2015-01-01

    Crawling on hands and knees is an early pattern of human infant locomotion, which offers an interesting way of studying quadrupedalism in one of its simplest form. We investigate how crawling human infants compare to other quadruped mammals, especially primates. We present quantitative data on both the gait and kinematics of seven 10-month-old crawling infants. Body movements were measured with an optoelectronic system giving precise data on 3-dimensional limb movements. Crawling on hands and knees is very similar to the locomotion of non-human primates in terms of the quite protracted arm at touch-down, the coordination between the spine movements in the lateral plane and the limbs, the relatively extended limbs during locomotion and the strong correlation between stance duration and speed of locomotion. However, there are important differences compared to primates, such as the choice of a lateral-sequence walking gait, which is similar to most non-primate mammals and the relatively stiff elbows during stance as opposed to the quite compliant gaits of primates. These finding raise the question of the role of both the mechanical structure of the body and neural control on the determination of these characteristics. PMID:25709597

  13. DMRT3 is associated with gait type in Mangalarga Marchador horses, but does not control gait ability.

    Science.gov (United States)

    Patterson, L; Staiger, E A; Brooks, S A

    2015-04-01

    The Mangalarga Marchador (MM) is a Brazilian horse breed known for a uniquely smooth gait. A recent publication described a mutation in the DMRT3 gene that the authors claim controls the ability to perform lateral patterned gaits (Andersson et al. 2012). We tested 81 MM samples for the DMRT3 mutation using extracted DNA from hair bulbs using a novel RFLP. Horses were phenotypically categorized by their gait type (batida or picada), as recorded by the Brazilian Mangalarga Marchador Breeders Association (ABCCMM). Statistical analysis using the plink toolset (Purcell, 2007) revealed significant association between gait type and the DMRT3 mutation (P = 2.3e-22). Deviation from Hardy-Weinberg equilibrium suggests that selective pressure for gait type is altering allele frequencies in this breed (P = 1.00e-5). These results indicate that this polymorphism may be useful for genotype-assisted selection for gait type within this breed. As both batida and picada MM horses can perform lateral gaits, the DMRT3 mutation is not the only locus responsible for the lateral gait pattern. © 2015 Stichting International Foundation for Animal Genetics.

  14. Comparison in three dimensional gait kinematics between young and older adults on land and in shallow water.

    Science.gov (United States)

    Abdul Jabbar, Khalid; Kudo, Shigetada; Goh, Kee Wee; Goh, Ming Rong

    2017-09-01

    This study investigated in three-dimensional space, firstly whether the aquatic medium and secondly ageing, had any effect on the lower limb's joint angles during aquatic-based gait. Three-dimensional joint kinematics of the lower limb of 51 healthy male participants [25 young group (24.6±4.9 years, 172.1±5.5cm, 69.8±10.3kg) and 26 older group (58.5±5.1 years, 167.9±5.1cm, 70.8±12.1kg)] were quantified during land and shallow water walking. Participants walked at their self-selected comfortable speed in both mediums. The results suggested that the properties of water - hydrodynamic drag, and buoyancy - affected the gait kinematics for both groups. Both age groups used more of their hip flexion in the aquatic environment to help them propel forward instead of using the ankle plantarflexion. The effect of age during the aquatic-based gait was identified in ankle adduction angle and knee abduction/adduction angle at initial contact. Only the older group elicited a significantly smaller ankle adduction angle during the aquatic-based gait when compared to the land-based gait. Only the young group elicited a significantly larger knee abduction/adduction angle at initial contact during the aquatic-based gait when compared to the land-based gait. These findings can facilitate professionals in the area of aquatic rehabilitation to better customise aquatic-based walking exercise programmes to suit their client's specific needs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Efficient Human Action and Gait Analysis Using Multiresolution Motion Energy Histogram

    Directory of Open Access Journals (Sweden)

    Kuo-Chin Fan

    2010-01-01

    Full Text Available Average Motion Energy (AME image is a good way to describe human motions. However, it has to face the computation efficiency problem with the increasing number of database templates. In this paper, we propose a histogram-based approach to improve the computation efficiency. We convert the human action/gait recognition problem to a histogram matching problem. In order to speed up the recognition process, we adopt a multiresolution structure on the Motion Energy Histogram (MEH. To utilize the multiresolution structure more efficiently, we propose an automated uneven partitioning method which is achieved by utilizing the quadtree decomposition results of MEH. In that case, the computation time is only relevant to the number of partitioned histogram bins, which is much less than the AME method. Two applications, action recognition and gait classification, are conducted in the experiments to demonstrate the feasibility and validity of the proposed approach.

  16. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.

    Science.gov (United States)

    Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N

    2013-01-01

    Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.

  17. Efficacy of an Electromechanical Gait Trainer Poststroke in Singapore: A Randomized Controlled Trial.

    Science.gov (United States)

    Chua, Joyce; Culpan, Jane; Menon, Edward

    2016-05-01

    To evaluate the longer-term effects of electromechanical gait trainers (GTs) combined with conventional physiotherapy on health status, function, and ambulation in people with subacute stroke in comparison with conventional physiotherapy given alone. Randomized controlled trial with intention-to-treat analysis. Community hospital in Singapore. Nonambulant individuals (N=106) recruited approximately 1 month poststroke. Both groups received 45 minutes of physiotherapy 6 times per week for 8 weeks as follows: the GT group received 20 minutes of GT training and 5 minutes of stance/gait training in contrast with 25 minutes of stance/gait training for the control group. Both groups completed 10 minutes of standing and 10 minutes of cycling. The primary outcome was the Functional Ambulation Category (FAC). Secondary outcomes were the Barthel Index (BI), gait speed and endurance, and Stroke Impact Scale (SIS). Measures were taken at baseline and 4, 8, 12, 24, and 48 weeks. Generalized linear model analysis showed significant improvement over time (independent of group) for the FAC, BI, and SIS physical and participation subscales. However, no significant group × time or group differences were observed for any of the outcome variables after generalized linear model analysis. The use of GTs combined with conventional physiotherapy can be as effective as conventional physiotherapy applied alone for people with subacute stroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Effects of conventional overground gait training and a gait trainer with partial body weight support on spatiotemporal gait parameters of patients after stroke

    OpenAIRE

    Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved signifi...

  19. A versatile neuromuscular exoskeleton controller for gait assistance : A preliminary study on spinal cord injury patients

    NARCIS (Netherlands)

    Wu, Amy R.; Dzeladini, Florin; Brug, Tycho J.H.; Tamburella, Federica; Tagliamonte, Nevio L.; van Asseldonk, Edwin; van der Kooij, Herman; IJspeert, Auke Jan; González-Vargas, José; Ibáñez, Jaime; Contreras-Vidal, Jose L.; van der Kooij, Herman; Pons, José Luis

    2017-01-01

    We investigated the capabilities of a reflex-based neuromuscular controller with a knee and hip gait trainer worn by a subject with a complete spinal cord injury. With controller assistance, this subject was able to reach a walking speed of 1.0m/s. Measured joint torques agreed reasonably well with

  20. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults.

    Science.gov (United States)

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-05-01

    Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults. In this prospective cohort study, we used one-week daily-life trunk acceleration data of 272 adults over 65 years of age. Sample entropy (SE) of the 3D acceleration signals was calculated to quantify daily life gait quality. To quantify perceived gait stability, the level of concern about falling was assessed using the Falls Efficacy Scale international (FES-I) questionnaire and step length, estimated from the accelerometer data. A fall calendar was used to record fall incidence during a six-month follow up period. Logistic regression analyses were performed to study the association between falling and SE, step length or FES-I score, and their interactions. High (i.e., poor) SE in vertical direction was significantly associated with falling. FES-I scores significantly modulated this association, whereas step length did not. Subgroup analyses based on FES-I scores showed that high SE in the vertical direction was a risk factor for falls only in older adults who had a high (i.e. poor) FES-I score. In conclusion, perceived gait stability modulates the association between gait quality and falls in older adults such that an association between gait quality and falling is only present when perceived gait stability is poor. The results of the present study indicate that the effectiveness of interventions for fall prevention, aimed at improving gait quality, may be affected by a modulating effect of perceived gait stability. Results indicate that interventions to reduce falls in older adults might sort most effectiveness in populations with both a poor physiological and psychological status. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Management of a patient's gait abnormality using smartphone technology in-clinic for improved qualitative analysis: A case report.

    Science.gov (United States)

    VanWye, William R; Hoover, Donald L

    2018-05-01

    Qualitative analysis has its limitations as the speed of human movement often occurs more quickly than can be comprehended. Digital video allows for frame-by-frame analysis, and therefore likely more effective interventions for gait dysfunction. Although the use of digital video outside laboratory settings, just a decade ago, was challenging due to cost and time constraints, rapid use of smartphones and software applications has made this technology much more practical for clinical usage. A 35-year-old man presented for evaluation with the chief complaint of knee pain 24 months status-post triple arthrodesis following a work-related crush injury. In-clinic qualitative gait analysis revealed gait dysfunction, which was augmented by using a standard IPhone® 3GS camera. After video capture, an IPhone® application (Speed Up TV®, https://itunes.apple.com/us/app/speeduptv/id386986953?mt=8 ) allowed for frame-by-frame analysis. Corrective techniques were employed using in-clinic equipment to develop and apply a temporary heel-to-toe rocker sole (HTRS) to the patient's shoe. Post-intervention video revealed significantly improved gait efficiency with a decrease in pain. The patient was promptly fitted with a permanent HTRS orthosis. This intervention enabled the patient to successfully complete a work conditioning program and progress to job retraining. Video allows for multiple views, which can be further enhanced by using applications for frame-by-frame analysis and zoom capabilities. This is especially useful for less experienced observers of human motion, as well as for establishing comparative signs prior to implementation of training and/or permanent devices.

  2. Gait, mobility, and falls in older people

    OpenAIRE

    Gschwind, Yves Josef

    2012-01-01

    My doctoral thesis contributes to the understanding of gait, mobility, and falls in older people. All presented projects investigated the most prominent and sensitive markers for fall-related gait changes, that is gait velocity and gait variability. Based on the measurement of these spatio-temporal gait parameters, particularly when using a change-sensitive dual task paradigm, it is possible to make conclusions regarding walking, balance, activities of daily living, and falls in o...

  3. Two-year decline in vision but not hearing is associated with memory decline in very old adults in a population-based sample.

    Science.gov (United States)

    Anstey, K J; Luszcz, M A; Sanchez, L

    2001-01-01

    Recent cross-sectional research in cognitive aging has demonstrated a robust association between visual acuity, auditory thresholds and cognitive performance in old age. However, the nature of the association is still unclear, particularly with respect to whether sensory and cognitive function are causally related. This study aimed to determine whether marked declines in performance on screening measures of either visual acuity or auditory thresholds have an effect on cognitive decline over 2 years. The sample from the Australian Longitudinal Study of Ageing (n = 2,087) were assessed in 1992 and 1994 on measures of sensory and cognitive function as part of a larger clinical assessment. A quasi-experimental design involving comparison of extreme groups using repeated measures MANCOVA with age as a covariate was used. Group performance on measures of hearing, memory, verbal ability and processing speed declined significantly. Decline in visual acuity had a significant effect on memory decline, but not on decline in verbal ability or processing speed. Decline in hearing was not associated with decline in any cognitive domain. The common association between visual acuity, auditory thresholds and cognitive function observed in cross-sectional studies appears to be disassociated in longitudinal studies. Copyright 2001 S. Karger AG, Basel

  4. Neuromuscular adjustments of gait associated with unstable conditions

    Science.gov (United States)

    Ivanenko, Y. P.; d'Avella, A.; Serrao, M.; Ranavolo, A.; Draicchio, F.; Cappellini, G.; Casali, C.; Lacquaniti, F.

    2015-01-01

    A compact description of coordinated muscle activity is provided by the factorization of electromyographic (EMG) signals. With the use of this approach, it has consistently been shown that multimuscle activity during human locomotion can be accounted for by four to five modules, each one comprised of a basic pattern timed at a different phase of gait cycle and the weighting coefficients of synergistic muscle activations. These modules are flexible, in so far as the timing of patterns and the amplitude of weightings can change as a function of gait speed and mode. Here we consider the adjustments of the locomotor modules related to unstable walking conditions. We compared three different conditions, i.e., locomotion of healthy subjects on slippery ground (SL) and on narrow beam (NB) and of cerebellar ataxic (CA) patients on normal ground. Motor modules were computed from the EMG signals of 12 muscles of the right lower limb using non-negative matrix factorization. The unstable gait of SL, NB, and CA showed significant changes compared with controls in the stride length, stride width, range of angular motion, and trunk oscillations. In most subjects of all three unstable conditions, >70% of the overall variation of EMG waveforms was accounted for by four modules that were characterized by a widening of muscle activity patterns. This suggests that the nervous system adopts the strategy of prolonging the duration of basic muscle activity patterns to cope with unstable conditions resulting from either slippery ground, reduced support surface, or pathology. PMID:26378199

  5. Healthy younger and older adults control foot placement to avoid small obstacles during gait primarily by modulating step width

    Directory of Open Access Journals (Sweden)

    Schulz Brian W

    2012-10-01

    Full Text Available Abstract Background Falls are a significant problem in the older population. Most falls occur during gait, which is primarily regulated by foot placement. Variability of foot placement has been associated with falls, but these associations are inconsistent and generally for smooth, level flooring. This study investigates the control of foot placement and the associated gait variability in younger and older men and women (N=7/group, total N=28 while walking at three different speeds (slow, preferred, and fast across a control surface with no obstacles and surfaces with multiple (64 small (10cm long ×13mm high visible and hidden obstacles. Results Minimum obstacle distance between the shoe and nearest obstacle during each footfall was greater on the visible obstacles surface for older subjects because some of them chose to actively avoid obstacles. This obstacle avoidance strategy was implemented primarily by modulating step width and to a lesser extent step length as indicated by linear regressions of step width and length variability on minimum obstacle distance. Mean gait speed, step length, step width, and step time did not significantly differ by subject group, flooring surface, or obstacle avoidance strategy. Conclusions Some healthy older subjects choose to actively avoid small obstacles that do not substantially perturb their gait by modulating step width and, to a lesser extent, step length. It is not clear if this obstacle avoidance strategy is appropriate and beneficial or overcautious and maladaptive, as it results in fewer obstacles encountered at a consequence of a less efficient gait pattern that has been shown to indicate increased fall risk. Further research is needed on the appropriateness of strategy selection when the environmental demands and/or task requirements have multiple possible completion strategies with conflicting objectives (i.e. perceived safety vs. efficiency.

  6. Advanced Prosthetic Gait Training Tool

    Science.gov (United States)

    2015-12-01

    modules to train individuals to distinguish gait deviations (trunk motion and lower-limb motion). Each of these modules help trainers improve their...AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool PRINCIPAL INVESTIGATOR: Dr. Karim Abdel-Malek CONTRACTING...study is to produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities

  7. Spatio-temporal gait disorder and gait fatigue index in a six-minute walk test in women with fibromyalgia.

    Science.gov (United States)

    Heredia-Jimenez, Jose; Latorre-Roman, Pedro; Santos-Campos, Maria; Orantes-Gonzalez, Eva; Soto-Hermoso, Victor M

    2016-03-01

    Gait disorders in fibromyalgia patients affect several gait parameters and different muscle recruitment patterns. The aim of this study was to assess the gait differences observed during a six-minute walk test between fibromyalgia patients and healthy controls. Forty-eight women with fibromyalgia and 15 healthy women were evaluated. Fibromyalgia patients met the American College of Rheumatology criteria for fibromyalgia selected of an ambulatory care. Both patients and controls had a negative history of musculoskeletal disease, neurological disorders, and gait abnormalities. The 15 controls were healthy women matched to the patients in age, height and body weight. Spatio-temporal gait variables and the rate of perceived exertion during the six-minute walk test (all subjects) and Fibromyalgia Impact Questionnaire (fibromyalgia subjects) were evaluated. All walking sets on the GaitRITE were collected and the gait variables were selected at three stages during the six-minute walk test: two sets at the beginning, two sets at 3 min and two sets at the end of the test. In addition, the Fibromyalgia Impact Questionnaire was used for the fibromyalgia patients. Fibromyalgia patients showed a significant decrease in all spatio-temporal gait variables at each of the three stages and had a lower walk distance covered in the six-minute walk test and higher rate of perceived exertion. No correlations were found between the Fibromyalgia Impact Questionnaire and gait variables. The fibromyalgia and control subjects showed lower gait fatigue indices between the middle and last stages. Gait analysis during a six-minute walk test is a good tool to assess the fatigue and physical symptoms of patients with fibromyalgia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Dynamic stability requirements during gait and standing exergames on the wii fit® system in the elderly

    Directory of Open Access Journals (Sweden)

    Duclos Cyril

    2012-05-01

    Full Text Available Abstract Background In rehabilitation, training intensity is usually adapted to optimize the trained system to attain better performance (overload principle. However, in balance rehabilitation, the level of intensity required during training exercises to optimize improvement in balance has rarely been studied, probably due to the difficulty in quantifying the stability level during these exercises. The goal of the present study was to test whether the stabilizing/destabilizing forces model could be used to analyze how stability is challenged during several exergames, that are more and more used in balance rehabilitation, and a dynamic functional task, such as gait. Methods Seven healthy older adults were evaluated with three-dimensional motion analysis during gait at natural and fast speed, and during three balance exergames (50/50 Challenge, Ski Slalom and Soccer. Mean and extreme values for stabilizing force, destabilizing force and the ratio of the two forces (stability index were computed from kinematic and kinetic data to determine the mean and least level of dynamic, postural and overall balance stability, respectively. Results Mean postural stability was lower (lower mean destabilizing force during the 50/50 Challenge game than during all the other tasks, but peak postural instability moments were less challenging during this game than during any of the other tasks, as shown by the minimum destabilizing force values. Dynamic stability was progressively more challenged (higher mean and maximum stabilizing force from the 50/50 Challenge to the Soccer and Slalom games, to the natural gait speed task and to the fast gait speed task, increasing the overall stability difficulty (mean and minimum stability index in the same manner. Conclusions The stabilizing/destabilizing forces model can be used to rate the level of balance requirements during different tasks such as gait or exergames. The results of our study showed that postural stability

  9. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease.

    Science.gov (United States)

    Lopez, William Omar Contreras; Higuera, Carlos Andres Escalante; Fonoff, Erich Talamoni; Souza, Carolina de Oliveira; Albicker, Ulrich; Martinez, Jairo Alberto Espinoza

    2014-10-01

    Evidence supports the use of rhythmic external auditory signals to improve gait in PD patients (Arias & Cudeiro, 2008; Kenyon & Thaut, 2000; McIntosh, Rice & Thaut, 1994; McIntosh et al., 1997; Morris, Iansek, & Matyas, 1994; Thaut, McIntosh, & Rice, 1997; Suteerawattananon, Morris, Etnyre, Jankovic, & Protas , 2004; Willems, Nieuwboer, Chavert, & Desloovere, 2006). However, few prototypes are available for daily use, and to our knowledge, none utilize a smartphone application allowing individualized sounds and cadence. Therefore, we analyzed the effects on gait of Listenmee®, an intelligent glasses system with a portable auditory device, and present its smartphone application, the Listenmee app®, offering over 100 different sounds and an adjustable metronome to individualize the cueing rate as well as its smartwatch with accelerometer to detect magnitude and direction of the proper acceleration, track calorie count, sleep patterns, steps count and daily distances. The present study included patients with idiopathic PD presented gait disturbances including freezing. Auditory rhythmic cues were delivered through Listenmee®. Performance was analyzed in a motion and gait analysis laboratory. The results revealed significant improvements in gait performance over three major dependent variables: walking speed in 38.1%, cadence in 28.1% and stride length in 44.5%. Our findings suggest that auditory cueing through Listenmee® may significantly enhance gait performance. Further studies are needed to elucidate the potential role and maximize the benefits of these portable devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Robotic Gait Training for Individuals With Cerebral Palsy: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Carvalho, Igor; Pinto, Sérgio Medeiros; Chagas, Daniel das Virgens; Praxedes Dos Santos, Jomilto Luiz; de Sousa Oliveira, Tainá; Batista, Luiz Alberto

    2017-11-01

    To identify the effects of robotic gait training practices in individuals with cerebral palsy. The search was performed in the following electronic databases: PubMed, Embase, Medline (OvidSP), Cochrane Database of Systematic Reviews, Web of Science, Scopus, Compendex, IEEE Xplore, ScienceDirect, Academic Search Premier, and Physiotherapy Evidence Database. Studies were included if they fulfilled the following criteria: (1) they investigated the effects of robotic gait training, (2) they involved patients with cerebral palsy, and (3) they enrolled patients classified between levels I and IV using the Gross Motor Function Classification System. The information was extracted from the selected articles using the descriptive-analytical method. The Critical Review Form for Quantitative Studies was used to quantitate the presence of critical components in the articles. To perform the meta-analysis, the effects of the intervention were quantified by effect size (Cohen d). Of the 133 identified studies, 10 met the inclusion criteria. The meta-analysis showed positive effects on gait speed (.21 [-.09, .51]), endurance (.21 [-.06, .49]), and gross motor function in dimension D (.18 [-.10, .45]) and dimension E (0.12 [-.15, .40]). The results obtained suggest that this training benefits people with cerebral palsy, specifically by increasing walking speed and endurance and improving gross motor function. For future studies, we suggest investigating device configuration parameters and conducting a large number of randomized controlled trials with larger sample sizes and individuals with homogeneous impairment. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  12. Gait Partitioning Methods: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2016-01-01

    Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  13. Gait Partitioning Methods: A Systematic Review

    Science.gov (United States)

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  14. Influence of different degrees of bilateral emulated contractures at the triceps surae on gait kinematics: The difference between gastrocnemius and soleus.

    Science.gov (United States)

    Attias, M; Bonnefoy-Mazure, A; De Coulon, G; Cheze, L; Armand, S

    2017-10-01

    Ankle plantarflexion contracture results from a permanent shortening of the muscle-tendon complex. It often leads to gait alterations. The objective of this study was to compare the kinematic adaptations of different degrees of contractures and between isolated bilateral gastrocnemius and soleus emulated contractures using an exoskeleton. Eight combinations of contractures were emulated bilaterally on 10 asymptomatic participants using an exoskeleton that was able to emulate different degrees of contracture of gastrocnemius (biarticular muscle) and soleus (monoarticular muscle), corresponding at 0°, 10°, 20°, and 30° ankle plantarflexion contracture (knee-flexed and knee-extended). Range of motion was limited by ropes attached for soleus on heel and below the knee and for gastrocnemius on heel and above the knee. A gait analysis session was performed to evaluate the effect of these different emulated contractures on the Gait Profile Score, walking speed and gait kinematics. Gastrocnemius and soleus contractures influence gait kinematics, with an increase of the Gait Profile Score. Significant differences were found in the kinematics of the ankles, knees and hips. Contractures of soleus cause a more important decrease in the range of motion at the ankle than the same degree of gastrocnemius contractures. Gastrocnemius contractures cause greater knee flexion (during the stance phase) and hip flexion (during all the gait cycle) than the same level of soleus contractures. These results can support the interpretation of the Clinical Gait Analysis data by providing a better understanding of the effect of isolate contracture of soleus and gastrocnemius on gait kinematics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Gait deficiencies associated with peripheral artery disease are different than chronic obstructive pulmonary disease.

    Science.gov (United States)

    McCamley, John D; Pisciotta, Eric J; Yentes, Jennifer M; Wurdeman, Shane R; Rennard, Stephen I; Pipinos, Iraklis I; Johanning, Jason M; Myers, Sara A

    2017-09-01

    Previous studies have indicated that patients with peripheral artery disease (PAD), display significant differences in their kinetic and kinematic gait characteristics when compared to healthy, aged-matched controls. The ability of patients with chronic obstructive pulmonary disease (COPD) to ambulate is also limited. These limitations are likely due to pathology-driven muscle morphology and physiology alterations establish in PAD and COP, respectively. Gait changes in PAD were compared to gait changes due to COPD to further understand how altered limb muscle due to disease can alter walking patterns. Both groups were independently compared to healthy controls. It was hypothesized that both patients with PAD and COPD would demonstrate similar differences in gait when compared to healthy controls. Patients with PAD (n=25), patients with COPD (n=16), and healthy older control subjects (n=25) performed five walking trials at self-selected speeds. Sagittal plane joint kinematic and kinetic group means were compared. Peak values for hip flexion angle, braking impulse, and propulsive impulse were significantly reduced in patients with symptomatic PAD compared to patients with COPD. After adjusting for walking velocity, significant reductions (pgait patterns are impaired for patients with PAD, this is not apparent for patients with COPD (without PAD). PAD (without COPD) causes changes to the muscle function of the lower limbs that affects gait even when subjects walk from a fully rested state. Altered muscle function in patients with COPD does not have a similar effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Age-related changes in gait adaptability in response to unpredictable obstacles and stepping targets.

    Science.gov (United States)

    Caetano, Maria Joana D; Lord, Stephen R; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C

    2016-05-01

    A large proportion of falls in older people occur when walking. Limitations in gait adaptability might contribute to tripping; a frequently reported cause of falls in this group. To evaluate age-related changes in gait adaptability in response to obstacles or stepping targets presented at short notice, i.e.: approximately two steps ahead. Fifty older adults (aged 74±7 years; 34 females) and 21 young adults (aged 26±4 years; 12 females) completed 3 usual gait speed (baseline) trials. They then completed the following randomly presented gait adaptability trials: obstacle avoidance, short stepping target, long stepping target and no target/obstacle (3 trials of each). Compared with the young, the older adults slowed significantly in no target/obstacle trials compared with the baseline trials. They took more steps and spent more time in double support while approaching the obstacle and stepping targets, demonstrated poorer stepping accuracy and made more stepping errors (failed to hit the stepping targets/avoid the obstacle). The older adults also reduced velocity of the two preceding steps and shortened the previous step in the long stepping target condition and in the obstacle avoidance condition. Compared with their younger counterparts, the older adults exhibited a more conservative adaptation strategy characterised by slow, short and multiple steps with longer time in double support. Even so, they demonstrated poorer stepping accuracy and made more stepping errors. This reduced gait adaptability may place older adults at increased risk of falling when negotiating unexpected hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation

    Directory of Open Access Journals (Sweden)

    Hiraoka Koichi

    2014-10-01

    Full Text Available The purpose of this study was to investigate the asymmetry of anticipatory postural adjustment (APA during gait initiation and to determine whether the process of choosing the initial swing leg affects APA during gait initiation. The participants initiated gait with the leg indicated by a start tone or initiated gait with the leg spontaneously chosen. The dependent variables of APA were not significantly different among the condition of initiating gait with the preferred leg indicated by the start tone, the condition of initiating gait with the non-preferred leg indicated by the start tone, and the condition of initiating gait with the leg spontaneously chosen. These findings fail to support the view that the process of choosing the initial swing leg affects APA during gait initiation. The lateral displacement of the center of pressure in the period in which shifting the center of pressure to the initial swing phase before initiating gait with the left leg indicated by the external cue was significantly larger than that when initiating gait with the right leg indicated by the external cue, and significantly larger than that when initiating gait with the leg spontaneously chosen. Weight shift to the initial swing side during APA during gait initiation was found to be asymmetrical when choosing the leg in response to an external cue

  18. The influence of gait speed on the stability of walking among the elderly.

    Science.gov (United States)

    Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo

    2016-06-01

    Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Gait analysis and functional outcome in patients after Lisfranc injury treatment.

    Science.gov (United States)

    van Hoeve, S; Stollenwerck, G; Willems, P; Witlox, M A; Meijer, K; Poeze, M

    2017-07-18

    Lisfranc injuries involve any bony or ligamentous disruption of the tarsometatarsal joint. Outcome results after treatment are mainly evaluated using patient-reported outcome measures (PROM), physical examination and radiographic findings. Less is known about the kinematics during gait. Nineteen patients (19 feet) treated for Lisfranc injury were recruited. Patients with conservative treatment and surgical treatment consisting of open reduction and internal fixation (ORIF) or primary arthrodesis were included. PROM, radiographic findings and gait analysis using the Oxford Foot Model (OFM) were analysed. Results were compared with twenty-one healthy subjects (31 feet). Multivariable logistic regression was used to determine factors influencing outcome. Patients treated for Lisfranc injury had a significantly lower walking speed than healthy subjects (Ppush-off phase (ppush-off phase (β=0.707, p=0.001), stability (β=0.423, p=0.028) and BMI (β=-0.727 p=push-off phase and fracture stability. Copyright © 2017. Published by Elsevier Ltd.

  20. Tic-induced gait dysfunction.

    NARCIS (Netherlands)

    Fasano, A.; Ruzicka, E.; Bloem, B.R.

    2012-01-01

    BACKGROUND: Many neurological disorders impair gait, but only a few of them are episodic or paroxysmal, the most important ones being freezing of gait and paroxysmal dyskinesias. METHODS: We describe 4 patients with tic disorders (3 with Tourette syndrome, and 1 with a tic disorder secondary to

  1. Neuromorphic walking gait control.

    Science.gov (United States)

    Still, Susanne; Hepp, Klaus; Douglas, Rodney J

    2006-03-01

    We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.

  2. LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients

    NARCIS (Netherlands)

    Ekkelenkamp, R.; Veneman, J.F.; van der Kooij, Herman

    2005-01-01

    LOPES aims for an active role of the patient by selective and partial support of gait functions during robotic treadmill training sessions. Virtual model control (VMC) was applied to the robot as an intuitive method for translating current treadmill gait rehabilitation therapy programs into robotic

  3. Different types of additional somatosensory information do not promote immediate benefits on gait in patients with Parkinson's disease and older adults

    Directory of Open Access Journals (Sweden)

    Ellen Lirani-Silva

    2015-09-01

    Full Text Available AbstractPlantar cutaneous stimulation has been shown to improve gait in Parkinson's disease (PD, but the effects of different types of insoles have not been tested. We evaluated the immediate effect of different types of insoles on gait in PD patients and healthy older adults. Nineteen PD patients and nineteen healthy older adults performed and performed a walking task at their self-selected speed in three conditions: conventional insole, insole with a raised ridge around the foot perimeter, and insole with half-spheres. Plantar sensation was evaluated before and after the walking protocol. There were no differences between groups for plantar sensation before and after the walking task. PD patients demonstrated reduced stride length and stride velocity. There were no immediate benefits offered by the insoles on gait of either group. The increased plantar cutaneous stimulation does not promote immediate benefits on gait in PD patients and healthy older adults.

  4. Gait recognition based on integral outline

    Science.gov (United States)

    Ming, Guan; Fang, Lv

    2017-02-01

    Biometric identification technology replaces traditional security technology, which has become a trend, and gait recognition also has become a hot spot of research because its feature is difficult to imitate and theft. This paper presents a gait recognition system based on integral outline of human body. The system has three important aspects: the preprocessing of gait image, feature extraction and classification. Finally, using a method of polling to evaluate the performance of the system, and summarizing the problems existing in the gait recognition and the direction of development in the future.

  5. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    Science.gov (United States)

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  6. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson's disease: Implications for fall risk.

    Science.gov (United States)

    Caetano, Maria Joana D; Lord, Stephen R; Allen, Natalie E; Brodie, Matthew A; Song, Jooeun; Paul, Serene S; Canning, Colleen G; Menant, Jasmine C

    2018-02-01

    Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A novel and simple test of gait adaptability predicts gold standard measures of functional mobility in stroke survivors.

    Science.gov (United States)

    Hollands, K L; Pelton, T A; van der Veen, S; Alharbi, S; Hollands, M A

    2016-01-01

    Although there is evidence that stroke survivors have reduced gait adaptability, the underlying mechanisms and the relationship to functional recovery are largely unknown. We explored the relationships between walking adaptability and clinical measures of balance, motor recovery and functional ability in stroke survivors. Stroke survivors (n=42) stepped to targets, on a 6m walkway, placed to elicit step lengthening, shortening and narrowing on paretic and non-paretic sides. The number of targets missed during six walks and target stepping speed was recorded. Fugl-Meyer (FM), Berg Balance Scale (BBS), self-selected walking speed (SWWS) and single support (SS) and step length (SL) symmetry (using GaitRite when not walking to targets) were also assessed. Stepwise multiple-linear regression was used to model the relationships between: total targets missed, number missed with paretic and non-paretic legs, target stepping speed, and each clinical measure. Regression revealed a significant model for each outcome variable that included only one independent variable. Targets missed by the paretic limb, was a significant predictor of FM (F(1,40)=6.54, p=0.014,). Speed of target stepping was a significant predictor of each of BBS (F(1,40)=26.36, padaptability is a clinically meaningful target for measurement and treatment of functionally adaptive walking ability in stroke survivors. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Robot-Crawler: Statically Balanced Gaits

    Directory of Open Access Journals (Sweden)

    S. Parasuraman

    2012-12-01

    Full Text Available This paper presents a new statically balanced walking technique for a robot-crawler. The gait design and the control of the robot crawler aim to achieve stability while walking. This statically balanced gait has to be designed in a different fashion to a wheeled robot, as there are discrete changes in the support of the robot when its legs are lifted or placed on the ground. The stability of the robot depends on how the legs are positioned relative to the body and also on the sequence and timing with which the legs are lifted and placed. In order to reduce the risk of stability loss while walking, a measure for the robot stability (so-called stability margin is typically used in the gait and motion planning. In this paper different biological behaviours of four-legged animals are studied and mapped on a quad-legrobot-crawler. Experiments were carried out on the forward walking gaits of lizards and horses. Based on these results, the stability margins of different gaits are discussed and compared.

  9. Gait variability: methods, modeling and meaning

    Directory of Open Access Journals (Sweden)

    Hausdorff Jeffrey M

    2005-07-01

    Full Text Available Abstract The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way of quantifying locomotion and its changes with aging and disease as well as a means of monitoring the effects of therapeutic interventions and rehabilitation. Previous work has suggested that measures of gait variability may be more closely related to falls, a serious consequence of many gait disorders, than are measures based on the mean values of other walking parameters. The Current JNER series presents nine reports on the results of recent investigations into gait variability. One novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis methods is presented along with a heuristic approach to summarizing variability measures. In addition, the first studies of gait variability in animal models of neurodegenerative disease are described, as is a mathematical model of human walking that characterizes certain complex (multifractal features of the motor control's pattern generator. Another investigation demonstrates that, whereas both healthy older controls and patients with a higher-level gait disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride width and stride time may be influenced by attention loading and may require cognitive input. Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind, suggests how step width variability may relate to fall risk. Together, these studies provide new insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way for expanded research into the control of gait and the practical application of measures of gait variability in the clinical setting.

  10. Older adults adopted more cautious gait patterns when walking in socks than barefoot.

    Science.gov (United States)

    Tsai, Yi-Ju; Lin, Sang-I

    2013-01-01

    Walking barefoot or in socks is common for ambulating indoors and has been reported to be associated with increased risk of falls and related injuries in the elderly. This study sought to determine if gait patterns differed between these two conditions for young and older adults. A motion analysis system was used to record and calculate the stride characteristics and motion of the body's center of mass (COM) of 21 young and 20 older adults. For the walking tasks, the participants walked on a smooth floor surface at their preferred speed either barefoot or in socks in a random order. The socks were commercially available and commonly used. The results demonstrated that while walking in socks, compared with walking barefoot, older adults adopted a more cautious gait pattern including decreased walking speed and shortened stride length as well as reduced COM minimal velocity during the single limb support phase. Young adults, however, did not demonstrate significant changes. These findings suggest that walking with socks might present a greater balance threat for older adults. Clinically, safety precautions about walking in socks should be considered to be given to older adults, especially those with balance deficits. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Effects of blueberries on inflammation, motor performance and cognitive function

    Science.gov (United States)

    Motor and cognitive function decrease with age, to include deficits in balance, coordination, gait, processing speed, executive function, memory, and spatial learning. These functional declines may be caused by long term increases in and susceptibility to oxidative stress and inflammation. Research ...

  12. Accuracy and reliability of observational gait analysis data: judgments of push-off in gait after stroke.

    Science.gov (United States)

    McGinley, Jennifer L; Goldie, Patricia A; Greenwood, Kenneth M; Olney, Sandra J

    2003-02-01

    Physical therapists routinely observe gait in clinical practice. The purpose of this study was to determine the accuracy and reliability of observational assessments of push-off in gait after stroke. Eighteen physical therapists and 11 subjects with hemiplegia following a stroke participated in the study. Measurements of ankle power generation were obtained from subjects following stroke using a gait analysis system. Concurrent videotaped gait performances were observed by the physical therapists on 2 occasions. Ankle power generation at push-off was scored as either normal or abnormal using two 11-point rating scales. These observational ratings were correlated with the measurements of peak ankle power generation. A high correlation was obtained between the observational ratings and the measurements of ankle power generation (mean Pearson r=.84). Interobserver reliability was moderately high (mean intraclass correlation coefficient [ICC (2,1)]=.76). Intraobserver reliability also was high, with a mean ICC (2,1) of.89 obtained. Physical therapists were able to make accurate and reliable judgments of push-off in videotaped gait of subjects following stroke using observational assessment. Further research is indicated to explore the accuracy and reliability of data obtained with observational gait analysis as it occurs in clinical practice.

  13. Physical Frailty Is Associated with Longitudinal Decline in Global Cognitive Function in Non-Demented Older Adults: A Prospective Study.

    Science.gov (United States)

    Chen, S; Honda, T; Narazaki, K; Chen, T; Kishimoto, H; Haeuchi, Y; Kumagai, S

    2018-01-01

    To assess the relationship between physical frailty and subsequent decline in global cognitive function in the non-demented elderly. A prospective population-based study in a west Japanese suburban town, with two-year follow-up. Community-dwellers aged 65 and older without placement in long-term care, and not having a history of dementia, Parkinson's disease and depression at baseline, who participated in the cohort of the Sasaguri Genkimon Study and underwent follow-up assessments two years later (N = 1,045). Global cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Physical frailty was identified according to the following five components: weight loss, low grip strength, exhaustion, slow gait speed and low physical activities. Linear regression models were used to examine associations between baseline frailty status and the MoCA scores at follow-up. Logistic regression models were used to estimate the risk of cognitive decline (defined as at least two points decrease of MoCA score) according to baseline frailty status. Seven hundred and eight non-demented older adults were included in the final analyses (mean age: 72.6 ± 5.5 years, male 40.3%); 5.8% were frail, and 40.8% were prefrail at baseline. One hundred and fifty nine (22.5%) participants experienced cognitive decline over two years. After adjustment for baseline MoCA scores and all confounders, being frail at baseline was significantly associated with a decline of 1.48 points (95% confidence interval [CI], -2.37 to -0.59) in MoCA scores, as compared with non-frailty. Frail persons were over two times more likely to experience cognitive decline (adjusted odds ratio 2.28; 95% CI, 1.02 to 5.08), compared to non-frail persons. Physical frailty is associated with longitudinal decline in global cognitive function in the non-demented older adults over a period of two years. Physically frail older community-dwellers should be closely monitored for cognitive decline that can be

  14. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Science.gov (United States)

    Kerkum, Yvette L; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (ppush-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Dutch Trial Register NTR3418.

  15. Gait parameters are differently affected by concurrent smartphone-based activities with scaled levels of cognitive effort.

    Directory of Open Access Journals (Sweden)

    Carlotta Caramia

    Full Text Available The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking-in some specific conditions-might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users were instructed to text chat (with two different levels of cognitive load, call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use.

  16. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study.

    Science.gov (United States)

    Chang, Shuo-Hsiu; Afzal, Taimoor; Berliner, Jeffrey; Francisco, Gerard E

    2018-01-01

    Robotic wearable exoskeletons have been utilized as a gait training device in persons with spinal cord injury. This pilot study investigated the feasibility of offering exoskeleton-assisted gait training (EGT) on gait in individuals with incomplete spinal cord injury (iSCI) in preparation for a phase III RCT. The objective was to assess treatment reliability and potential efficacy of EGT and conventional physical therapy (CPT). Forty-four individuals were screened, and 13 were eligible to participate in the study. Nine participants consented and were randomly assigned to receive either EGT or CPT with focus on gait. Subjects received EGT or CPT, five sessions a week (1 h/session daily) for 3 weeks. American Spinal Injury Association (ASIA) Lower Extremity Motor Score (LEMS), 10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), Timed Up and Go (TUG) test, and gait characteristics including stride and step length, cadence and stance, and swing phase durations were assessed at the pre- and immediate post- training. Mean difference estimates with 95% confidence intervals were used to analyze the differences. After training, improvement was observed in the 6MWT for the EGT group. The CPT group showed significant improvement in the TUG test. Both the EGT and the CPT groups showed significant increase in the right step length. EGT group also showed improvement in the stride length. EGT could be applied to individuals with iSCI to facilitate gait recovery. The subjects were able to tolerate the treatment; however, exoskeleton size range may be a limiting factor in recruiting larger cohort of patients. Future studies with larger sample size are needed to investigate the effectiveness and efficacy of exoskeleton-assisted gait training as single gait training and combined with other gait training strategies. Clinicaltrials.org, NCT03011099, retrospectively registered on January 3, 2017.

  17. Greater Fall Risk in Elderly Women Than in Men Is Associated With Increased Gait Variability During Multitasking.

    Science.gov (United States)

    Johansson, Jonas; Nordström, Anna; Nordström, Peter

    2016-06-01

    As 90% of fractures are caused by falls, and as fractures are more common in elderly women than in elderly men, a better understanding of potential sex differences in fall rates and underlying mechanisms is needed. The purpose of this study was to determine whether women are more prone than men to falling, and to evaluate whether the risk of falling is associated with variations in gait patterns. The cohort for this prospective observational study consisted of 1390 community-dwelling men and women aged 70 years, examined in a health survey between July 2012 and November 2014. Gait patterns were measured using a computerized walkway system during normal-speed, fast-speed, and dual-task trials. Triaxial accelerometers were used to collect objective data on physical activity, and self-reported fall data were collected by telephone 6 and 12 months after examination. Incident low-energy falls were defined as unexpected events in which participants came to rest on the ground. During the follow-up period, 148 study participants (88 women, 60 men; P = .01) reported falls. After adjusting for multiple confounders, including objective measures of physical activity, socioeconomic factors, cardiovascular disease, and cognitive function, the odds ratio for falling in women was 1.49 (95% confidence interval [CI] 1.02-2.19). Variations in gait pattern were significantly (20%-40%) increased in fallers compared with nonfallers during the dual-task trial for step width, step length, stride length, step time, stance time, stride velocity, and single support time (all P women showed 15% to 35% increased variability in all of these gait parameters during the dual-task trial compared with men (all P women were at greater risk of falls compared with their male counterparts. This increased risk was associated with increased variation in gait pattern during dual-task activities, and may contribute to women's greater fracture risk compared with men. Copyright © 2016 AMDA – The

  18. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review.

    Science.gov (United States)

    Herssens, Nolan; Verbecque, Evi; Hallemans, Ann; Vereeck, Luc; Van Rompaey, Vincent; Saeys, Wim

    2018-06-12

    Aging is often associated with changes in the musculoskeletal system, peripheral and central nervous system. These age-related changes often result in mobility problems influencing gait performance. Compensatory strategies are used as a way to adapt to these physiological changes. The aim of this review is to investigate the differences in spatiotemporal and gait variability measures throughout the healthy adult life. This systematic review was conducted according to the PRISMA guidelines and registered in the PROSPERO database (no. CRD42017057720). Databases MEDLINE (Pubmed), Web of Science (Web of Knowledge), Cochrane Library and ScienceDirect were systematically searched until March 2018. Eighteen of the 3195 original studies met the eligibility criteria and were included in this review. The majority of studies reported spatiotemporal and gait variability measures in adults above the age of 65, followed by the young adult population, information of middle-aged adults is lacking. Spatiotemporal parameters and gait variability measures were extracted from 2112 healthy adults between 18 and 98 years old and, in general, tend to deteriorate with increasing age. Variability measures were only reported in an elderly population and show great variety between studies. The findings of this review suggest that most spatiotemporal parameters significantly differ across different age groups. Elderly populations show a reduction of preferred walking speed, cadence, step and stride length, all related to a more cautious gait, while gait variability measures remain stable over time. A preliminary framework of normative reference data is provided, enabling insights into the influence of aging on spatiotemporal parameters, however spatiotemporal parameters of middle-aged adults should be investigated more thoroughly. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  20. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease.

    Science.gov (United States)

    Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo

    2015-08-15

    Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Exercises to Improve Gait Abnormalities

    Science.gov (United States)

    ... Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner of how a ...

  2. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.

    Science.gov (United States)

    Biewener, Andrew A

    2006-11-01

    Kinematic and center of mass (CoM) mechanical variables used to define terrestrial gaits are compared for various tetrapod species. Kinematic variables (limb phase, duty factor) provide important timing information regarding the neural control and limb coordination of various gaits. Whereas, mechanical variables (potential and kinetic energy relative phase, %Recovery, %Congruity) provide insight into the underlying mechanisms that minimize muscle work and the metabolic cost of locomotion, and also influence neural control strategies. Two basic mechanisms identified by Cavagna et al. (1977. Am J Physiol 233:R243-R261) are used broadly by various bipedal and quadrupedal species. During walking, animals exchange CoM potential energy (PE) with kinetic energy (KE) via an inverted pendulum mechanism to reduce muscle work. During the stance period of running (including trotting, hopping and galloping) gaits, animals convert PE and KE into elastic strain energy in spring elements of the limbs and trunk and regain this energy later during limb support. The bouncing motion of the body on the support limb(s) is well represented by a simple mass-spring system. Limb spring compliance allows the storage and return of elastic energy to reduce muscle work. These two distinct patterns of CoM mechanical energy exchange are fairly well correlated with kinematic distinctions of limb movement patterns associated with gait change. However, in some cases such correlations can be misleading. When running (or trotting) at low speeds many animals lack an aerial period and have limb duty factors that exceed 0.5. Rather than interpreting this as a change of gait, the underlying mechanics of the body's CoM motion indicate no fundamental change in limb movement pattern or CoM dynamics has occurred. Nevertheless, the idealized, distinctive patterns of CoM energy fluctuation predicted by an inverted pendulum for walking and a bouncing mass spring for running are often not clear cut, especially

  3. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation

    OpenAIRE

    Hiraoka, Koichi; Hatanaka, Ryota; Nikaido, Yasutaka; Jono, Yasutomo; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta

    2014-01-01

    The purpose of this study was to investigate the asymmetry of anticipatory postural adjustment (APA) during gait initiation and to determine whether the process of choosing the initial swing leg affects APA during gait initiation. The participants initiated gait with the leg indicated by a start tone or initiated gait with the leg spontaneously chosen. The dependent variables of APA were not significantly different among the condition of initiating gait with the preferred leg indicated by the...

  4. Single Sensor Gait Analysis to Detect Diabetic Peripheral Neuropathy: A Proof of Principle Study

    Directory of Open Access Journals (Sweden)

    Patrick Esser

    2018-01-01

    Full Text Available This study explored the potential utility of gait analysis using a single sensor unit (inertial measurement unit [IMU] as a simple tool to detect peripheral neuropathy in people with diabetes. Seventeen people (14 men aged 63±9 years (mean±SD with diabetic peripheral neuropathy performed a 10-m walk test instrumented with an IMU on the lower back. Compared to a reference healthy control data set (matched by gender, age, and body mass index both spatiotemporal and gait control variables were different between groups, with walking speed, step time, and SDa (gait control parameter demonstrating good discriminatory power (receiver operating characteristic area under the curve >0.8. These results provide a proof of principle of this relatively simple approach which, when applied in clinical practice, can detect a signal from those with known diabetes peripheral neuropathy. The technology has the potential to be used both routinely in the clinic and for tele-health applications. Further research should focus on investigating its efficacy as an early indicator of or effectiveness of the management of peripheral neuropathy. This could support the development of interventions to prevent complications such as foot ulceration or Charcot's foot.

  5. Neural correlates of gait variability in people with multiple sclerosis with fall history.

    Science.gov (United States)

    Kalron, Alon; Allali, Gilles; Achiron, Anat

    2018-05-28

    Investigate the association between step time variability and related brain structures in accordance with fall status in people with multiple sclerosis (PwMS). The study included 225 PwMS. A whole-brain MRI was performed by a high-resolution 3.0-Telsa MR scanner in addition to volumetric analysis based on 3D T1-weighted images using the FreeSurfer image analysis suite. Step time variability was measured by an electronic walkway. Participants were defined as "fallers" (at least two falls during the previous year) and "non-fallers". One hundred and five PwMS were defined as fallers and had a greater step time variability compared to non-fallers (5.6% (S.D.=3.4) vs. 3.4% (S.D.=1.5); p=0.001). MS fallers exhibited a reduced volume in the left caudate and both cerebellum hemispheres compared to non-fallers. By using a linear regression analysis no association was found between gait variability and related brain structures in the total cohort and non-fallers group. However, the analysis found an association between the left hippocampus and left putamen volumes with step time variability in the faller group; p=0.031, 0.048, respectively, controlling for total cranial volume, walking speed, disability, age and gender. Nevertheless, according to the hierarchical regression model, the contribution of these brain measures to predict gait variability was relatively small compared to walking speed. An association between low left hippocampal, putamen volumes and step time variability was found in PwMS with a history of falls, suggesting brain structural characteristics may be related to falls and increased gait variability in PwMS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Initiation of movement from quiet stance: comparison of gait and stepping in elderly subjects of different levels of functional ability.

    Science.gov (United States)

    Brunt, Denis; Santos, Valeria; Kim, Hyeong Dong; Light, Kathye; Levy, Charles

    2005-04-01

    This study describes how elderly subjects initiate gait, and step from a position of quiet stance. Based on scores from selected standardized tests subjects were placed in either a high (HFL) or low functional level (LFL) group and were asked to initiate gait, step onto a 10 cm high, 1.22 m wide curb and step over a 10 cm high, 9 cm wide obstacle at a self paced speed. Stepping conditions affected the velocity of movement. It was clear that all subjects decreased initiation velocity for both curb and obstacle compared to gait initiation. Swing and stance limb acceleration ground reaction forces and EMG amplitude were modulated according to initiation velocity. Toe clearance was greater for obstacle than curb and gait initiation. Swing toe-off was significantly earlier and there was a trend for obstacle clearance to be greater for the HFL group. Those in the LFL group appear to be at a greater risk for falling due to the possible effect of slower rate of toe-off that could influence toe clearance over the obstacle.

  7. Impaired heel to toe progression during gait is related to reduced ankle range of motion in people with Multiple Sclerosis.

    Science.gov (United States)

    Psarakis, Michael; Greene, David; Moresi, Mark; Baker, Michael; Stubbs, Peter; Brodie, Matthew; Lord, Stephen; Hoang, Phu

    2017-11-01

    Gait impairment in people with Multiple Sclerosis results from neurological impairment, muscle weakness and reduced range of motion. Restrictions in passive ankle range of motion can result in abnormal heel-to-toe progression (weight transfer) and inefficient gait patterns in people with Multiple Sclerosis. The purpose of this study was to determine the associations between gait impairment, heel-to-toe progression and ankle range of motion in people with Multiple Sclerosis. Twelve participants with Multiple Sclerosis and twelve healthy age-matched participants were assessed. Spatiotemporal parameters of gait and individual footprint data were used to investigate group differences. A pressure sensitive walkway was used to divide each footprint into three phases (contact, mid-stance, propulsive) and calculate the heel-to-toe progression during the stance phase of gait. Compared to healthy controls, people with Multiple Sclerosis spent relatively less time in contact phase (7.8% vs 25.1%) and more time in the mid stance phase of gait (57.3% vs 33.7%). Inter-limb differences were observed in people with Multiple Sclerosis between the affected and non-affected sides for contact (7.8% vs 15.3%) and mid stance (57.3% and 47.1%) phases. Differences in heel-to-toe progression remained significant after adjusting for walking speed and were correlated with walking distance and ankle range of motion. Impaired heel-to-toe progression was related to poor ankle range of motion in people with Multiple Sclerosis. Heel-to-toe progression provided a sensitive measure for assessing gait impairments that were not detectable using standard spatiotemporal gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Motor Phenotype in Neurodegenerative Disorders: Gait and Balance Platform Study Design Protocol for the Ontario Neurodegenerative Research Initiative (ONDRI).

    Science.gov (United States)

    Montero-Odasso, Manuel; Pieruccini-Faria, Frederico; Bartha, Robert; Black, Sandra E; Finger, Elizabeth; Freedman, Morris; Greenberg, Barry; Grimes, David A; Hegele, Robert A; Hudson, Christopher; Kleinstiver, Peter W; Lang, Anthony E; Masellis, Mario; McLaughlin, Paula M; Munoz, Douglas P; Strother, Stephen; Swartz, Richard H; Symons, Sean; Tartaglia, Maria Carmela; Zinman, Lorne; Strong, Michael J; McIlroy, William

    2017-01-01

    The association of cognitive and motor impairments in Alzheimer's disease and other neurodegenerative diseases is thought to be related to damage in the common brain networks shared by cognitive and cortical motor control processes. These common brain networks play a pivotal role in selecting movements and postural synergies that meet an individual's needs. Pathology in this "highest level" of motor control produces abnormalities of gait and posture referred to as highest-level gait disorders. Impairments in cognition and mobility, including falls, are present in almost all neurodegenerative diseases, suggesting common mechanisms that still need to be unraveled. To identify motor-cognitive profiles across neurodegenerative diseases in a large cohort of patients. Cohort study that includes up to 500 participants, followed every year for three years, across five neurodegenerative disease groups: Alzheimer's disease/mild cognitive impairment, frontotemporal degeneration, vascular cognitive impairment, amyotrophic lateral sclerosis, and Parkinson's disease. Gait and balance will be assessed using accelerometers and electronic walkways, evaluated at different levels of cognitive and sensory complexity, using the dual-task paradigm. Comparison of cognitive and motor performances across neurodegenerative groups will allow the identification of motor-cognitive phenotypes through the standardized evaluation of gait and balance characteristics. As part of the Ontario Neurodegenerative Research Initiative (ONDRI), the gait and balance platform aims to identify motor-cognitive profiles across neurodegenerative diseases. Gait assessment, particularly while dual-tasking, will help dissect the cognitive and motor contribution in mobility and cognitive decline, progression to dementia syndromes, and future adverse outcomes including falls and mortality.

  9. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial

    Science.gov (United States)

    Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Negrini, Stefano

    2016-01-01

    Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment. PMID:26512928

  10. Task-Specific and Functional Effects of Speed-Focused Elliptical or Motor-Assisted Cycle Training in Children With Bilateral Cerebral Palsy: Randomized Clinical Trial.

    Science.gov (United States)

    Damiano, Diane L; Stanley, Christopher J; Ohlrich, Laurie; Alter, Katharine E

    2017-08-01

    Locomotor training using treadmills or robotic devices is commonly utilized to improve gait in cerebral palsy (CP); however, effects are inconsistent and fail to exceed those of equally intense alternatives. Possible limitations of existing devices include fixed nonvariable rhythm and too much limb or body weight assistance. To quantify and compare effectiveness of a motor-assisted cycle and a novel alternative, an elliptical, in CP to improve interlimb reciprocal coordination through intensive speed-focused leg training. A total of 27 children with bilateral CP, 5 to 17 years old, were randomized to 12 weeks of 20 minutes, 5 days per week home-based training (elliptical = 14; cycle = 13) at a minimum of 40 revolutions per minute, with resistance added when speed target was achieved. Primary outcomes were self-selected and fastest voluntary cadence on the devices and gait speed. Secondary outcomes included knee muscle strength, and selective control and functional mobility measures. Cadence on trained but not nontrained devices increased, demonstrating task specificity of training and increased exercise capability. Mean gait speed did not increase in either group, nor did parent-reported functional mobility. Knee extensor strength increased in both. An interaction between group and time was seen in selective control with scores slightly increasing for the elliptical and decreasing for the cycle, possibly related to tighter limb coupling with cycling. Task-specific effects were similarly positive across groups, but no transfer was seen to gait or function. Training dose was low (≤20 hours) compared with intensive upper-limb training recommendations and may be insufficient to produce appreciable clinical change.

  11. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.

    Science.gov (United States)

    Fleerkotte, Bertine M; Koopman, Bram; Buurke, Jaap H; van Asseldonk, Edwin H F; van der Kooij, Herman; Rietman, Johan S

    2014-03-04

    There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10 MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6 MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Robotic gait training using an impedance-controlled robot is feasible in gait

  12. Effect of Cue Timing and Modality on Gait Initiation in Parkinson Disease With Freezing of Gait.

    Science.gov (United States)

    Lu, Chiahao; Amundsen Huffmaster, Sommer L; Tuite, Paul J; Vachon, Jacqueline M; MacKinnon, Colum D

    2017-07-01

    To examine the effects of cue timing, across 3 sensory modalities, on anticipatory postural adjustments (APAs) during gait initiation in people with Parkinson disease (PD). Observational study. Biomechanics research laboratory. Individuals with idiopathic PD (N=25; 11 with freezing of gait [FOG]) were studied in the off-medication state (12-h overnight withdrawal). Gait initiation was tested without cueing (self-initiated) and with 3 cue timing protocols: fixed delay (3s), random delay (4-12s), and countdown (3-2-1-go, 1-s intervals) across 3 sensory modalities (acoustic, visual, and vibrotactile). The incidence and spatiotemporal characteristics of APAs during gait initiation were analyzed, including vertical ground reaction forces and center of pressure. All cue timings and modalities increased the incidence and amplitude of APAs compared with self-initiated stepping. Acoustic and visual cues, but not vibrotactile stimulation, improved the timing of APAs. Fixed delay or countdown timing protocols were more effective at decreasing APA durations than random delay cues. Cue-evoked improvements in APA timing, but not amplitude, correlated with the level of impairment during self-initiated gait. Cues did not improve the late push-off phase in the FOG group. External cueing improves gait initiation in PD regardless of cue timing, modality, or clinical phenotype (with and without FOG). Acoustic or visual cueing with predictive timing provided the greatest improvements in gait initiation; therefore, these protocols may provide the best outcomes when applied by caregivers or devices. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support.

    Science.gov (United States)

    Hesse, S; Uhlenbrock, D; Sarkodie-Gyan, T

    1999-10-01

    To investigate to what extent and with how much therapeutic effort nonambulatory stroke patients could train a gait-like movement on a newly developed, machine-supported gait trainer. Open study comparing the movement on the gait trainer with assisted walking on the treadmill. Motion analysis laboratory of a rehabilitation centre. Fourteen chronic, nonambulatory hemiparetic patients. Complex gait analysis while training on the gait trainer and while walking on the treadmill. Gait kinematics, kinesiological EMG of several lower limb muscles and the required assistance. Patients could train a gait-like movement on the gait trainer, characterized kinematically by a perfect symmetry, larger hip extension during stance, less knee flexion and less ankle plantar flexion during swing as compared to treadmill walking (p gait trainer (p gait trainer offered severely disabled hemiparetic subjects the possibility of training a gait-like, highly symmetrical movement with a favourable facilitation of relevant anti-gravity muscles. At the same time, the effort required of the therapists was reduced.

  14. The Perceived Naturalness of Virtual Walking Speeds during WIP Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2016-01-01

    It is well established that individuals tend to underestimate visually presented walking speeds when relying on treadmills for virtual walking. However, prior to the present studies this perceptual distortion had not been observed in relation to Walking-in-Place (WIP) locomotion, and a number...... to how gait cycle characteristics, visual display properties, and methodological differences affect speed underestimation during treadmill and WIP locomotion. The studies suggested the following: A significant main effect was found for step frequency; both display and geometric field of view were...... inversely proportional to the degree of underestimation; varying degrees of peripheral occlusion and increased HMD weight did not yield significant main effects; and the choice of method (i.e., how the speeds were presented) had a significant effect on the upper and lower bounds of what speeds were...

  15. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects.

    Science.gov (United States)

    Hesse, S; Sarkodie-Gyan, T; Uhlenbrock, D

    1999-01-01

    The study aimed at further development of a mechanised gait trainer which would allow non-ambulant people to practice a gait-like motion repeatedly. To simulate normal gait, discrete stance and swing phases, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. A complex gear system provided the gait-like movement of two foot plates with a ratio of 60% to 40% between the stance and swing phases. A controlled propulsion system adjusted its output according to patient's efforts. Two eccenters on the central gear controlled phase-adjusted the vertical and horizontal position of the centre of mass. The patterns of sagittal lower limb joint kinematics and of muscle activation of a normal subject were similar when using the mechanised trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists supported treadmill walking. Gait movements on the trainer were highly symmetrical, impact-free, and less spastic. The weight-bearing muscles were activated in a similar fashion during both conditions. The vertical displacement of the centre of mass was bi-instead of mono-phasic during each gait cycle on the new device. In conclusion, the gait trainer allowed wheelchair-bound subjects the repetitive practice of a gait-like movement without overstraining therapists.

  16. Gait Disorders in Parkinson's Disease: Assessment and Management

    Directory of Open Access Journals (Sweden)

    Pei-Hao Chen

    2013-12-01

    Full Text Available Gait disorder, a major cause of morbidity in the elderly population, is one of the cardinal features of Parkinson's disease. Owing to the characteristics of these gaits varying widely from festination to freezing of gait, analysis can be hardly identified in the clinical setting. Instrumented gait analysis has been widely used in a traditional gait laboratory. Recently, wireless monitoring systems have become highly informative by allowing long-term data collection in a variety of environments outside the labs. The quantitative analysis of gait patterns is probably the first step to a successful management of an individual patient. The presence of abnormal gait usually indicates advanced stages of disease and is often associated with cognitive impairment, falls, and injuries. Besides pharmacological and surgical treatments, parkinsonian gait can benefit from a variety of interventions. Assistive devices prevent patients from falls, and cueing strategies help them decrease episodes of freezing. Therefore, a multidisciplinary team approach to the optimal management is essential for an elderly patient with Parkinson's disease.

  17. Gait Recognition Using Image Self-Similarity

    Directory of Open Access Journals (Sweden)

    Chiraz BenAbdelkader

    2004-04-01

    Full Text Available Gait is one of the few biometrics that can be measured at a distance, and is hence useful for passive surveillance as well as biometric applications. Gait recognition research is still at its infancy, however, and we have yet to solve the fundamental issue of finding gait features which at once have sufficient discrimination power and can be extracted robustly and accurately from low-resolution video. This paper describes a novel gait recognition technique based on the image self-similarity of a walking person. We contend that the similarity plot encodes a projection of gait dynamics. It is also correspondence-free, robust to segmentation noise, and works well with low-resolution video. The method is tested on multiple data sets of varying sizes and degrees of difficulty. Performance is best for fronto-parallel viewpoints, whereby a recognition rate of 98% is achieved for a data set of 6 people, and 70% for a data set of 54 people.

  18. Flexible Piezoelectric Sensor-Based Gait Recognition

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2018-02-01

    Full Text Available Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.

  19. Detecting gait abnormalities after concussion or mild traumatic brain injury: A systematic review of single-task, dual-task, and complex gait.

    Science.gov (United States)

    Fino, Peter C; Parrington, Lucy; Pitt, Will; Martini, Douglas N; Chesnutt, James C; Chou, Li-Shan; King, Laurie A

    2018-05-01

    While a growing number of studies have investigated the effects of concussion or mild traumatic brain injury (mTBI) on gait, many studies use different experimental paradigms and outcome measures. The path for translating experimental studies for objective clinical assessments of gait is unclear. This review asked 2 questions: 1) is gait abnormal after concussion/mTBI, and 2) what gait paradigms (single-task, dual-task, complex gait) detect abnormalities after concussion. Data sources included MEDLINE/PubMed, Scopus, Web of Science, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) accessed on March 14, 2017. Original research articles reporting gait outcomes in people with concussion or mTBI were included. Studies of moderate, severe, or unspecified TBI, and studies without a comparator were excluded. After screening 233 articles, 38 studies were included and assigned to one or more sections based on the protocol and reported outcomes. Twenty-six articles reported single-task simple gait outcomes, 24 reported dual-task simple gait outcomes, 21 reported single-task complex gait outcomes, and 10 reported dual-task complex gait outcomes. Overall, this review provides evidence for two conclusions: 1) gait is abnormal acutely after concussion/mTBI but generally resolves over time; and 2) the inconsistency of findings, small sample sizes, and small number of studies examining homogenous measures at the same time-period post-concussion highlight the need for replication across independent populations and investigators. Future research should concentrate on dual-task and complex gait tasks, as they showed promise for detecting abnormal locomotor function outside of the acute timeframe. Additionally, studies should provide detailed demographic and clinical characteristics to enable more refined comparisons across studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Gait analysis in forensic medicine

    DEFF Research Database (Denmark)

    Larsen, Peter K; Simonsen, Erik B; Lynnerup, Niels

    2008-01-01

    Recordings from video surveillance systems are used as evidence from crime scenes. It would be useful to perform comparisons between disguised perpetrators and suspects based on their gait. We applied functional anatomical and biomechanical knowledge to analyze the gait of perpetrators, as record...

  1. Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)

    Science.gov (United States)

    Townsend, Julie; Biesiadecki, Jeffrey

    2012-01-01

    The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.

  2. IQ as moderator of terminal decline in perceptual and motor speed, spatial, and verbal ability: Testing the cognitive reserve hypothesis in a population-based sample followed from age 70 until death.

    Science.gov (United States)

    Thorvaldsson, Valgeir; Skoog, Ingmar; Johansson, Boo

    2017-03-01

    Terminal decline (TD) refers to acceleration in within-person cognitive decline prior to death. The cognitive reserve hypothesis postulates that individuals with higher IQ are able to better tolerate age-related increase in brain pathologies. On average, they will exhibit a later onset of TD, but once they start to decline, their trajectory is steeper relative to those with lower IQ. We tested these predictions using data from initially nondemented individuals (n = 179) in the H70-study repeatedly measured at ages 70, 75, 79, 81, 85, 88, 90, 92, 95, 97, 99, and 100, or until death, on cognitive tests of perceptual-and-motor-speed and spatial and verbal ability. We quantified IQ using the Raven's Coloured Progressive Matrices (RCPM) test administrated at age 70. We fitted random change point TD models to the data, within a Bayesian framework, conditioned on IQ, age of death, education, and sex. In line with predictions, we found that 1 additional standard deviation on the IQ scale was associated with a delay in onset of TD by 1.87 (95% highest density interval [HDI; 0.20, 4.08]) years on speed, 1.96 (95% HDI [0.15, 3.54]) years on verbal ability, but only 0.88 (95% HDI [-0.93, 3.49]) year on spatial ability. Higher IQ was associated with steeper rate of decline within the TD phase on measures of speed and verbal ability, whereas results on spatial ability were nonconclusive. Our findings provide partial support for the cognitive reserve hypothesis and demonstrate that IQ can be a significant moderator of cognitive change trajectories in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Harmony as a convergence attractor that minimizes the energy expenditure and variability in physiological gait and the loss of harmony in cerebellar ataxia.

    Science.gov (United States)

    Serrao, Mariano; Chini, Giorgia; Iosa, Marco; Casali, Carlo; Morone, Giovanni; Conte, Carmela; Bini, Fabiano; Marinozzi, Franco; Coppola, Gianluca; Pierelli, Francesco; Draicchio, Francesco; Ranavolo, Alberto

    2017-10-01

    The harmony of the human gait was recently found to be related to the golden ratio value (ϕ). The ratio between the duration of the stance and that of the swing phases of a gait cycle was in fact found to be close to ϕ, which implies that, because of the fractal property of autosimilarity of that number, the gait ratios stride/stance, stance/swing, swing/double support, were not significantly different from one another. We studied a group of patients with cerebellar ataxia to investigate how the differences between their gait ratios and the golden ratio are related to efficiency and stability of their gait, assessed by energy expenditure and stride-to-stride variability, respectively. The gait of 28 patients who were affected by degenerative cerebellar ataxia and of 28 healthy controls was studied using a stereophotogrammetric system. The above mentioned gait ratios, the energy expenditure estimated using the pelvis reconstructed method and the gait variability in terms of the stride length were computed, and their relationships were analyzed. Matching procedures have also been used to avoid multicollinearity biases. The gait ratio values of the patients were farther from the controls (and hence from ϕ), even in speed matched conditions (P=0.011, Cohen's D=0.76), but not when the variability and energy expenditure were matched between the two groups (Cohen's D=0.49). In patients with cerebellar ataxia, the farther the stance-swing ratio was from ϕ, the larger the total mechanical work (R 2 adj =0.64). Further, a significant positive correlation was observed between the difference of the gait ratio from the golden ratio and the severity of the disease (R=0.421, P=0.026). Harmony of gait appears to be a benchmark of physiological gait leading to physiological energy recovery and gait reliability. Neurorehabilitation of patients with ataxia might benefit from the restoration of harmony of their locomotor patterns. Copyright © 2017. Published by Elsevier Ltd.

  4. Using gastrocnemius sEMG and plasma α-synuclein for the prediction of freezing of gait in Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Wang

    Full Text Available Freezing of gait (FOG is a complicated gait disturbance in Parkinson's disease (PD and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS and Freezing of gait questionnaire (FOG-Q. Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG and without FOG (PD-FOG, based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups.

  5. Gait, posture and cognition in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    Full Text Available ABSTRACT Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD. Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD.

  6. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.

    Science.gov (United States)

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-09-01

    The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.

  7. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model

    Science.gov (United States)

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-01-01

    Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109

  8. Executive functioning, concern about falling and quadriceps strength mediate the relationship between impaired gait adaptability and fall risk in older people.

    Science.gov (United States)

    Caetano, Maria Joana D; Lord, Stephen R; Brodie, Matthew A; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C

    2018-01-01

    Reduced ability to adapt gait, particularly under challenging conditions, may be an important reason why older adults have an increased risk of falling. This study aimed to identify cognitive, psychological and physical mediators of the relationship between impaired gait adaptability and fall risk in older adults. Fifty healthy older adults (mean±SD: 74±7years) were categorised as high or low fall risk, based on past falls and their performance in the Physiological Profile Assessment. High and low-risk groups were then compared in the gait adaptability test, i.e. an assessment of the ability to adapt gait in response to obstacles and stepping targets under single and dual task conditions. Quadriceps strength, concern about falling and executive function were also measured. The older adults who made errors on the gait adaptability test were 4.76 (95%CI=1.08-20.91) times more likely to be at high risk of falling. Furthermore, each standard deviation reduction in gait speed while approaching the targets/obstacle increased the odds of being at high risk of falling approximately three fold: single task - OR=3.10,95%CI=1.43-6.73; dual task - 3.42,95%CI=1.56-7.52. Executive functioning, concern about falling and quadriceps strength substantially mediated the relationship between the gait adaptability measures and fall risk status. Impaired gait adaptability is associated with high risk of falls in older adults. Reduced executive function, increased concern about falling and weaker quadriceps strength contribute significantly to this relationship. Training gait adaptability directly, as well as addressing the above mediators through cognitive, behavioural and physical training may maximise fall prevention efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Gait Disorders In Patients After Polytrauma

    Directory of Open Access Journals (Sweden)

    Jakušonoka Ruta

    2015-04-01

    Full Text Available Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years, 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05. The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.

  10. Influence of moderate training on gait and work capacity of fibromyalgia patients: a preliminary field study.

    Science.gov (United States)

    Tiidus, Peter M; Pierrynowski, Michael; Dawson, Kimberley A

    2002-12-01

    This field study examined the influence of moderate intensity training on gait patterns and work capacity of individuals with fibromyalgia syndrome (FS). FS is a chronic condition of unknown etiology, characterized by muscle tenderness, pain and stiffness and often accompanied by depression and fatigue which seems to occur primarily in middle aged females. There is no known cure for FS but treatment often includes a prescription of mild exercise. Few studies have evaluated the effectiveness of mild exercise on work capacity and gait patterns in FS patients. Participants were 14 females (age 47.0 ± 7.6 y) who participated in a 10 wk community based aerobic, strength and stretching program designed for FS individuals. Subjects were evaluated pre- and post-program and at a 2 month follow up. Work capacity was estimated by a sub-maximal PWC 170 cycle ergometer test and a Borg perceived exertion scale. Gait was assessed using OptoTrack three dimensional kinematics with 16 channel analogue data acquisition system. Trunk flexibility was also assessed. No significant change in estimated work capacity or flexibility was seen between pre- post- and follow up times. Nevertheless, a significant increase in self selected walking speed (p gait pattern that was sustained in the follow up testing was noted. We had previously also reported a significant improvement in muscle pain and other fibromyalgia symptoms in this population consequent to the training program. It was concluded that mild exercise training that does not influence work capacity or trunk flexibility can nevertheless positively influence gait mechanics and fibromyalgia symptoms in female FS patients.

  11. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.

    Science.gov (United States)

    Daley, Monica A; Birn-Jeffery, Aleksandra

    2018-05-22

    Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors. © 2018. Published by The Company of Biologists Ltd.

  12. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  13. Controlling patient participation during robot-assisted gait training

    Science.gov (United States)

    2011-01-01

    Background The overall goal of this paper was to investigate approaches to controlling active participation in stroke patients during robot-assisted gait therapy. Although active physical participation during gait rehabilitation after stroke was shown to improve therapy outcome, some patients can behave passively during rehabilitation, not maximally benefiting from the gait training. Up to now, there has not been an effective method for forcing patient activity to the desired level that would most benefit stroke patients with a broad variety of cognitive and biomechanical impairments. Methods Patient activity was quantified in two ways: by heart rate (HR), a physiological parameter that reflected physical effort during body weight supported treadmill training, and by a weighted sum of the interaction torques (WIT) between robot and patient, recorded from hip and knee joints of both legs. We recorded data in three experiments, each with five stroke patients, and controlled HR and WIT to a desired temporal profile. Depending on the patient's cognitive capabilities, two different approaches were taken: either by allowing voluntary patient effort via visual instructions or by forcing the patient to vary physical effort by adapting the treadmill speed. Results We successfully controlled patient activity quantified by WIT and by HR to a desired level. The setup was thereby individually adaptable to the specific cognitive and biomechanical needs of each patient. Conclusion Based on the three successful approaches to controlling patient participation, we propose a metric which enables clinicians to select the best strategy for each patient, according to the patient's physical and cognitive capabilities. Our framework will enable therapists to challenge the patient to more activity by automatically controlling the patient effort to a desired level. We expect that the increase in activity will lead to improved rehabilitation outcome. PMID:21429200

  14. Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease

    OpenAIRE

    Benoit, C.; Dalla Bella, S.; Farrugia, N.; Obrig, H.; Mainka, S.; Kotz, S.

    2014-01-01

    It is well established that auditory cueing improves gait in patients with idiopathic Parkinson’s disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory ...

  15. Gait Stability in Children with Cerebral Palsy

    Science.gov (United States)

    Bruijn, Sjoerd M.; Millard, Matthew; van Gestel, Leen; Meyns, Pieter; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as…

  16. Effects of 12-week proprioception training program on postural stability, gait, and balance in older adults: a controlled clinical trial.

    Science.gov (United States)

    Martínez-Amat, Antonio; Hita-Contreras, Fidel; Lomas-Vega, Rafael; Caballero-Martínez, Isabel; Alvarez, Pablo J; Martínez-López, Emilio

    2013-08-01

    The purpose of this study was to evaluate the effect of a 12-week-specific proprioceptive training program on postural stability, gait, balance, and fall prevention in adults older than 65 years. The present study was a controlled clinical trial. Forty-four community dwelling elderly subjects (61-90 years; mean age, 78.07 ± 5.7 years) divided into experimental (n = 20) and control (n = 24) groups. The participants performed the Berg balance test before and after the training program, and we assessed participants' gait, balance, and the risk of falling, using the Tinetti scale. Medial-lateral plane and anterior-posterior plane displacements of the center of pressure, Sway area, length and speed, and the Romberg quotient about surface, speed, and distance were calculated in static posturography analysis (EPS pressure platform) under 2 conditions: eyes open and eyes closed. After a first clinical evaluation, patients were submitted to 12 weeks proprioception training program, 2 sessions of 50 minutes every week. This program includes 6 exercises with the BOSU and Swiss ball as unstable training tools that were designed to program proprioceptive training. The training program improved postural balance of older adults in mediolateral plane with eyes open (p 0.05). After proprioception training, gait (Tinetti), and balance (Berg) test scores improved 14.66% and 11.47% respectively. These results show that 12 weeks proprioception training program in older adults is effective in postural stability, static, and dynamic balance and could lead to an improvement in gait and balance capacity, and to a decrease in the risk of falling in adults aged 65 years and older.

  17. Office management of gait disorders in the elderly.

    Science.gov (United States)

    Lam, Robert

    2011-07-01

    To provide family physicians with an approach to office management of gait disorders in the elderly. Ovid MEDLINE was searched from 1950 to July 2010 using subject headings for gait or neurologic gait disorders combined with physical examination. Articles specific to family practice or family physicians were selected. Relevant review articles and original research were used when appropriate and applicable to the elderly. Gait and balance disorders in the elderly are difficult to recognize and diagnose in the family practice setting because they initially present with subtle undifferentiated manifestations, and because causes are usually multifactorial, with multiple diseases developing simultaneously. To further complicate the issue, these manifestations can be camouflaged in elderly patients by the physiologic changes associated with normal aging. A classification of gait disorders based on sensorimotor levels can be useful in the approach to management of this problem. Gait disorders in patients presenting to family physicians in the primary care setting are often related to joint and skeletal problems (lowest-level disturbances), as opposed to patients referred to neurology specialty clinics with sensory ataxia, myelopathy, multiple strokes, and parkinsonism (lowest-, middle-, and highest-level disturbances). The difficulty in diagnosing gait disorders stems from the challenge of addressing early undifferentiated disease caused by multiple disease processes involving all sensorimotor levels. Patients might present with a nonspecific "cautious" gait that is simply an adaptation of the body to disease limitations. This cautious gait has a mildly flexed posture with reduced arm swing and a broadening of the base of support. This article reviews the focused history (including medication review), practical physical examination, investigations, and treatments that are key to office management of gait disorders. Family physicians will find it helpful to classify gait

  18. Human Gait Recognition Based on Multiview Gait Sequences

    Directory of Open Access Journals (Sweden)

    Xiaxi Huang

    2008-05-01

    Full Text Available Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investigates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views, several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel approach for the combination of the results from several views is also proposed based on the relative importance of each view. The proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views that are combined using other combination methods.

  19. Effects of flooring on required coefficient of friction: Elderly adult vs. middle-aged adult barefoot gait.

    Science.gov (United States)

    Rozin Kleiner, Ana Francisca; Galli, Manuela; Araujo do Carmo, Aline; Barros, Ricardo M L

    2015-09-01

    The aim of this study was to investigate the effect of flooring on barefoot gait according to age and gender. Two groups of healthy subjects were analyzed: the elderly adult group (EA; 10 healthy subjects) and the middle-aged group (MA; 10 healthy subjects). Each participant was asked to walk at his or her preferred speed over two force plates on the following surfaces: 1) homogeneous vinyl (HOV), 2) carpet, 3) heterogeneous vinyl (HTV) and 4) mixed (in which the first half of the pathway was covered by HOV and the second by HTV). Two force plates (Kistler 9286BA) embedded in the data collection room floor measured the ground reaction forces and friction. The required coefficient of friction (RCOF) was analyzed. For the statistical analysis, a linear mixed-effects model for repeated measures was performed. During barefoot gait, there were differences in the RCOF among the flooring types during the heel contact and toe-off phases. Due to better plantar proprioception during barefoot gait, the EA and MA subjects were able to distinguish differences among the flooring types. Moreover, when the EA were compared with the MA subjects, differences could be observed in the RCOF during the toe-off phase, and gender differences in the RCOF could also be observed during the heel contact phase in barefoot gait. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Instrumental or Physical-Exercise Rehabilitation of Balance Improves Both Balance and Gait in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Marica Giardini

    2018-01-01

    Full Text Available We hypothesised that rehabilitation specifically addressing balance in Parkinson’s disease patients might improve not only balance but locomotion as well. Two balance-training protocols (standing on a moving platform and traditional balance exercises were assessed by assigning patients to two groups (Platform, n=15, and Exercises, n=17. The platform moved periodically in the anteroposterior, laterolateral, and oblique direction, with and without vision in different trials. Balance exercises were based on the Otago Exercise Program. Both platform and exercise sessions were administered from easy to difficult. Outcome measures were (a balancing behaviour, assessed by both Index of Stability (IS on platform and Mini-BESTest, and (b gait, assessed by both baropodometry and Timed Up and Go (TUG test. Falls Efficacy Scale-International (FES-I and Parkinson’s Disease Questionnaire (PDQ-8 were administered. Both groups exhibited better balance control, as assessed both by IS and by Mini-BESTest. Gait speed at baropodometry also improved in both groups, while TUG was less sensitive to improvement. Scores of FES-I and PDQ-8 showed a marginal improvement. A four-week treatment featuring no gait training but focused on challenging balance tasks produces considerable gait enhancement in mildly to moderately affected patients. Walking problems in PD depend on postural instability and are successfully relieved by appropriate balance rehabilitation. This trial is registered with ClinicalTrials.gov NCT03314597.