WorldWideScience

Sample records for ga-substituted cobalt ferrite

  1. Magnetic and magnetoelastic properties of M-substituted cobalt ferrites (M=Mn, Cr, Ga, Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Hoon [Iowa State Univ., Ames, IA (United States)

    2007-12-15

    Magnetic and magnetoelastic properties of a series of M-substituted cobalt ferrites, CoMxFe2-xO4 (M=Mn, Cr, Ga; x=0.0 to 0.8) and Ge-substituted cobalt ferrites Co1+xGexFe2-2xO4 (x=0.0 to 0.6) have been investigated.

  2. Manganese substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications

    OpenAIRE

    Paulsen, J. A.; Ring, A. P.; Lo, C. C. H.; Snyder, John Evan; Jiles, David

    2005-01-01

    Metal bonded cobalt ferrite composites have been shown to be promising candidate materials for use in magnetoelastic stress sensors, due to their large magnetostriction and high sensitivity of magnetization to stress. However previous results have shown that below 60 °C the cobalt ferrite material exhibits substantial magnetomechanical hysteresis. In the current study, measurements indicate that substituting Mn for some of the Fe in the cobalt ferrite can lower the Curie temperature of the ma...

  3. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt, E-mail: hvatsal@gmail.com [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Srivastava, R.C. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Pal Singh, Jitendra [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Negi, P. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Agrawal, H.M. [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Das, D. [UGC-DAE CSR Kolkata Centre, Kolkata 700098 (India); Hwa Chae, Keun [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of)

    2016-03-01

    The present work investigates the magnetic behavior of Dy{sup 3+} substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy{sup 3+}concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy{sup 3+} substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution. - Highlights: • Slight decrease in crystallite size after Dy{sup 3+} doping. • Saturation magnetization and coercivity decrease after Dy{sup 3+} doping. • Mössbauer measurements show the cation redistribution in the samples.

  4. and aluminum-substituted cobalt ferrite prepared by co-precipitation

    Indian Academy of Sciences (India)

    Structural and magnetic properties of zinc- and aluminum-substituted cobalt ferrite prepared by co-precipitation method. S T ALONE1,∗ and K M JADHAV2. 1Shiv Chhatrapati College, Aurangabad 431 004, India. 2Department of Physics, Dr. B. A. Marathwada University, Aurangabad 431 004, India. ∗Corresponding author.

  5. Effect of rare earth substitution in cobalt ferrite bulk materials

    International Nuclear Information System (INIS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F.

    2015-01-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm −3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe 2 O 4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples

  6. Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Mažeika, Kęstutis; Jagminas, Arūnas

    2018-03-01

    The present study is focused on the determination the influence of cobalt content in the magnetic cobalt ferrite nanoparticles (Nps) on their antibacterial efficiency against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria and several Candida species, in particular C. parapsilosis and C. albicans. For the synthesis of Fe(II) substituted cobalt ferrite Nps by co-precipitation way, the L-lysine was used as the capping biocompatible agent and the particle size was successfully controlled to be in the range of 5-6.4 nm. The antimicrobial efficiencies of the CoxFe1-xFe2O4@Lys Nps, where x varies from 0.2 to 1.0, were evaluated through the quantitative analysis by comparing with that of Fe3O4@Lys Nps and L-lysine. In this way, it was evidenced that increase in the Co2+ content in the similar sized cobalt ferrite Nps resulted in an increase in their antimicrobial potency into 93.1-86.3 % for eukaryotic and into 96.4-42.7 % for prokaryotic strains. For characterization the composition, structure, and morphology of the tested herein Nps inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer, and FTIR spectroscopy techniques were conferred.

  7. Investigation of Structural, Morphological, Magnetic Properties and Biomedical applications of Cu2+ Substituted Uncoated Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Margabandhu

    Full Text Available ABSTRACT In the present work, Cu2+ substituted cobalt ferrite (Co1-xCuxFe2O4, x = 0, 0.3, 0.5, 0.7 and 1 magnetic nanopowders were synthesized via chemical co-precipitation method. The prepared powders were investigated by various characterization methods such as X-ray diffraction analysis (XRD, scanning electron microscope analysis (SEM, vibrating sample magnetometer analysis (VSM and fourier transform infrared spectroscopy analysis (FTIR. The XRD analysis reveals that the synthesized nanopowders possess single phase centred cubic spinel structure. The average crystallite size of the particles ranging from 27-49 nm was calculated by using Debye-scherrer formula. Magnetic properties of the synthesized magnetic nanoparticles are studied by using VSM. The VSM results shows the magnetic properties such as coercivity, magnetic retentivity decreases with increase in copper substitution whereas the saturation magnetization shows increment and decrement in accordance with Cu2+ substitution in cobalt ferrite nanoparticles. SEM analysis reveals the morphology of synthesized magnetic nanoparticles. FTIR spectra of Cu2+ substituted cobalt ferrite magnetic nanoparticles were recorded in the frequency range 4000-400cm-1. The spectrum shows the presence of water adsorption and metal oxygen bonds. The adhesion nature of Cu2+ substituted cobalt ferrite magnetic nanoparticles with bacteria in reviewed results indicates that the synthesized nanoparticles could be used in biotechnology and biomedical applications.

  8. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Ramana, C.V.

    2015-01-01

    Graphical abstract: Room temperature Raman spectra of CoFe 2−x Gd x O 4 (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm −1 ). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe 2−x Gd x O 4 ; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO 3 ) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO 3 phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd 3+ (4f 7 ) residing in octahedral sites is higher when compared to that of Fe 3+ (3d 5 ) and as well due to the migration of Co 2+ (3d 7 ) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE 3+ ) ions in the spinel lattice. Increase in coercivity with increase in Gd 3+ is content is attributed to magnetic anisotropy in the ceramics

  9. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas, E-mail: vspuli@utep.edu [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States); Adireddy, Shiva [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Ramana, C.V. [Department of Mechanical Engineering, University of Texas, El Paso, TX 79968 (United States)

    2015-09-25

    Graphical abstract: Room temperature Raman spectra of CoFe{sub 2−x}Gd{sub x}O{sub 4} (CFGO, x = 0.0–0.3) compounds as a function of wavenumber (cm{sup −1}). - Highlights: • Gd substituted ferrites were synthesized under controlled concentration. • Gd ion induced lattice dynamical changes are significant. • Enhanced magnetization is observed upon Gd-incorporation in cobalt ferrite. • A correlation between lattice dynamics and magnetic properties is established. - Abstract: Polycrystalline gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}; x = 0–0.3, referred to CFGO) ceramics have been synthesized by solid state reaction method. Chemical bonding, crystal structure and magnetic properties of CFGO compounds have been evaluated as a function of Gd-content. X-ray diffraction (XRD) and Raman spectroscopic analyses confirmed the formation of inverse spinel cubic structure. However, a secondary ortho-ferrite phase (GdFeO{sub 3}) nucleates for higher values of Gd-content. A considerable increase in the saturation magnetization has been observed upon the initial substitution of Gd (x = 0.1). The saturation magnetization drastically decreases at higher Gd content (x ⩾ 0.3). No contribution from ortho-ferrite GdFeO{sub 3} phase is noted to the magnetic properties. The increase in the magnetic saturation magnetization is attributed to the higher magnetic moment of Gd{sup 3+} (4f{sup 7}) residing in octahedral sites is higher when compared to that of Fe{sup 3+} (3d{sup 5}) and as well due to the migration of Co{sup 2+} (3d{sup 7}) ions from the octahedral to the tetrahedral sites with a magnetic moment aligned anti-parallel to those of rare earth (RE{sup 3+}) ions in the spinel lattice. Increase in coercivity with increase in Gd{sup 3+} is content is attributed to magnetic anisotropy in the ceramics.

  10. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2014-11-15

    Mo-substituted cobalt ferrite nanoparticles; CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by a one-step solution combustion synthesis technique. The reactants were metal nitrates and glycine as a fuel. The samples were characterized using an X-ray diffraction (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). XRD analysis revealed a pure single phase of cubic spinel ferrites for all samples with x up to 0.3. The lattice parameter decreases with Mo{sup 6+} substitution linearly up to x=0.15, then nonlinearly for x≥0.2. Rietveld analysis and saturation magnetization (M{sub s}) revealed that Mo{sup 6+} replaced Fe{sup 3+} in the tetrahedral A-sites up to x=0.15, then it replaced Fe{sup 3+} in both A-sites and B-sites for x≥0.2. The saturation magnetization (M{sub s}) increases with increasing Mo{sup 6+} substitution up to x=0.15 then decreases. The crystallite size decreased while the microstrain increased with increasing Mo{sup 6+} substitution. Inserting Mo{sup 6+} produces large residents of defects and cation vacancies. - Highlights: • Nano-sized Mo-substituted cobalt ferrite CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by solution combustion. • The change in M{sub s} with increasing Mo-substitution was investigated. • The cations distributions of ferrites were obtained from Rietveld analysis. • Inserting Mo{sup 6+} produces large residents of defects and cation vacancies.

  11. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  12. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rabia [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan); Hussain Gul, Iftikhar, E-mail: iftikhar.gul@scme.nust.edu.pk [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Zarrar, Muhammad [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Anwar, Humaira [Islamabad Model College for Girls G-10/2, Islamabad (Pakistan); Khan Niazi, Muhammad Bilal [Department of Chemicals Engineering, SCME, NUST, H-12 Campus, Islamabad (Pakistan); Khan, Azim [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan)

    2016-05-01

    Cadmium substituted cobalt ferrites with formula Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd{sup 2+}concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd{sup 2+} substituted Co-ferrites increases.

  13. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    International Nuclear Information System (INIS)

    Ahmad, Rabia; Hussain Gul, Iftikhar; Zarrar, Muhammad; Anwar, Humaira; Khan Niazi, Muhammad Bilal; Khan, Azim

    2016-01-01

    Cadmium substituted cobalt ferrites with formula Cd x Co 1−x Fe 2 O 4 (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd 2+ concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd x Co 1−x Fe 2 O 4 the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd 2+ substituted Co-ferrites increases.

  14. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Nikumbh, A.K., E-mail: aknik@chem.unipune.ac.in; Pawar, R.A.; Nighot, D.V.; Gugale, G.S.; Sangale, M.D.; Khanvilkar, M.B.; Nagawade, A.V.

    2014-04-15

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRE{sub x}Fe{sub 2−x}O{sub 4} (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C} and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe{sub 2}O{sub 4} exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio M{sub R}/M{sub S} and magnetic moments may be due to dilution of the magnetic interaction.

  15. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  16. Neutron diffraction studies on cobalt substituted BiFeO3

    Science.gov (United States)

    Ray, J.; Biswal, A. K.; Acharya, S.; Babu, P. D.; Siruguri, V.; Vishwakarma, P. N.

    2013-02-01

    A dilute concentration of single phase Cobalt substituted Bismuth ferrite, BiFe1-XCoXO3; (x=0, 0.02) is prepared by sol-gel auto combustion method. Room temperature neutron diffraction patterns show no change in the crystal and magnetic structure upon cobalt doping. The calculation of magnetic moments shows 3.848 μB for Fe+ and 2.85 μB for Co3+. The cobalt is found to be in intermediate spin state.

  17. Synthesis, structural investigation and magnetic properties of Zn{sup 2+} substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Raut, A.V., E-mail: nano9993@gmail.com [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Barkule, R.S.; Shengule, D.R. [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Jadhav, K.M., E-mail: drjadhavkm@gmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharastra (India)

    2014-05-01

    Structural morphology and magnetic properties of the Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn{sup 2+} content in cobalt ferrite nanoparticles is followed by decrease in n{sub B}, M{sub s} and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique.

  18. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  19. A study of magnetoplumbite-type (M-type) cobalt-titanium-substituted barium ferrite, BaCoxTixFe12-2xO19 (x = 1-6)

    International Nuclear Information System (INIS)

    Teh, G.B.; Saravanan, N.; Jefferson, D.A.

    2007-01-01

    Cobalt(II)-titanium(IV)-substituted barium ferrite forming the chemical formula of BaCo x Ti x Fe 12-2x O 19 (x = 1-6) have been investigated using X-ray diffraction spectroscopy (XRD), Superconducting Quantum Interference Device (SQUID) and high-resolution transmission electron microscopy (HRTEM). The specimen of magnetoplumbite (M-type) Co-Ti-substituted BaFe 12 O 19 were synthesised via sol-gel method using ethylene glycol as precursor. Significant increase in line broadening of the XRD patterns were observed indicating the decrease of particle sizes due to the Co(II)-Ti(IV) substitution. BaCo 3 Ti 3 Fe 6 O 19 showed the highest coercivity but moderate saturation and remnant magnetisations. HRTEM imaging showed that Co(II)-Ti(IV) substitution in the system of BaCo x Ti x Fe 12-2x O 19 (x = 1-6) produced no drastic change in the structure of the M-type ferrites. Most of the M-types crystals examined by HRTEM displayed a long axis perpendicular to the c-axis of the M-type structure. Disordered crystals showing the intergrowth between Co-Ti-substituted barium ferrite and the spinel-structured iron oxide were detected

  20. High-temperature Thermoelectric and Microstructural Characteristics of Ga Substituted on the Co-site in Cobalt-based Oxides

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Yanagiya, S.; Sonne, Monica

    2011-01-01

    The effects of Ga substitution on the Co-site on the high-temperature thermoelectric properties and microstructure are investigated for the misfitlayered Ca3Co4O9 and the complex perovskite-related Sr3RECo4O10.5 (RE = rare earth) cobalt-based oxides. For both systems, substitution of Ga for Co...... results in a simultaneous increase in the Seebeck coefficient (S) and the electrical conductivity (σ), and the influence is more significant in the high temperature region. The power factor (S 2 σ) is thereby remarkably improved by Ga substitution, particularly at high temperatures. Texture factor......0.05O9 shows the best ZT value of 0.45 at 1200 K, which is about 87.5% higher than the nondoped one, a considerable improvement....

  1. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Peer, Petra; Filip, Petr

    2014-01-01

    Roč. 18, č. 43 (2014), s. 6919-6924 ISSN 1477-9226 R&D Projects: GA ČR GA202/09/1626 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : spinel nanocrystalline cobalt ferrite * nanoparticles * magnetorheological effect Subject RIV: BK - Fluid Dynamics Impact factor: 4.197, year: 2014

  2. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites

    International Nuclear Information System (INIS)

    Fu, Min; Jiao, Qingze; Zhao, Yun

    2013-01-01

    Cobalt ferrite nanorods/graphene composites were prepared by a one-step hydrothermal process using NaHSO 3 as the reducing agent and 1-propyl-3-hexadecylimidazolium bromide as the structure growth-directing template. The reduction of graphene oxide and the in situ formation of cobalt ferrite nanorods were accomplished in a one-step reaction. The structure and morphology of as-obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, atomic force microscope, X-ray diffractometer, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and Raman spectroscopy. Uniform rod-like cobalt ferrites with diameters of about 100 nm and length of about 800 nm were homogeneously distributed on the graphene sheets. The hybrid materials showed a saturation magnetization of 42.5 emu/g and coercivity of 495.1 Oe at room temperature. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of − 25.8 dB was observed at 16.1 GHz for the cobalt ferrite nanorods/graphene composites with a thickness of 2 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 13.5 to 18.0 GHz. The composites exhibited better absorbing properties than the cobalt ferrite nanorods and the mixture of cobalt ferrite nanorods and graphene. - Highlights: • Reduction of GO and formation of ferrites were accomplished in a one-step reaction. • Ionic liquid was used to control 1D growth of ferrite nanorods for the first time. • Cobalt ferrite nanorods/graphene composites showed dielectric and magnetic loss. • Cobalt ferrite nanorods/graphene composites exhibited better absorbing properties

  3. hermo-Physical and Mechanical Properties of Unsaturated Polyester /Cobalt Ferrite Composites

    Directory of Open Access Journals (Sweden)

    Lamees Salam Faiq

    2017-04-01

    Full Text Available Unsaturated polyester was used as a matrix which was filled with different percentages of cobalt ferrite using hand lay-up method. Cobalt ferrite was synthesized using solid state ceramic method with reagent of CoO and Fe2O3. Mechanical properties such tensile strength, Young's modulus and shore D hardness of the composite have been studied. All these properties have increased by 10% with increasing cobalt ferrite contents. Also the thermal properties such thermal conductivity and specific heat capacity are highly increased as the ferrite content increased, while the thermal diffusivity increased by 22 %. On the other hand dielectric strength of composite has been measured which increased by 50% by increasing the cobalt ferrite content.

  4. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  5. Enhancement of electrical conductivity in gamma irradiated cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Nawpute, Asha A.; Raut, A.V.; Babrekar, M.K.; Kale, C.M.; Jadhav, K.M.; Shinde, A.B.

    2014-01-01

    The cobalt ferrite nanoparticles were synthesized by sol-gel auto- combustion method, in which L-ascorbic acid was used as a fuel. The effect of gamma irradiation on the electrical resistivity of cobalt ferrite nanoparticles has been studied. The ferrite powder annealed at 550℃ was irradiated by gamma source 137 Cs. The synthesized nanoparticles were characterized by X-ray diffraction and DC resistivity. (author)

  6. The role of cobalt ferrite magnetic nanoparticles in medical science

    International Nuclear Information System (INIS)

    Amiri, S.; Shokrollahi, H.

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. Highlights: ► Cobalt ferrite nanoparticles are one of the most important materials for nanomedicine. ► They have high coercivity and moderate saturation magnetization. ► Cobalt ferrite nanoparticles are synthesized easily. ► They are a good candidate for hyperthermia and magnetic resonance imaging.

  7. The role of cobalt ferrite magnetic nanoparticles in medical science

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, S.; Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. Highlights: Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles are one of the most important materials for nanomedicine. Black-Right-Pointing-Pointer They have high coercivity and moderate saturation magnetization. Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles are synthesized easily. Black-Right-Pointing-Pointer They are a good candidate for hyperthermia and magnetic resonance imaging.

  8. Synthesis, characterization and thermal analysis of polyimide-cobalt ferrite nanocomposites

    International Nuclear Information System (INIS)

    Mazuera, David; Perales, Oscar; Suarez, Marcelo; Singh, Surinder

    2010-01-01

    Research highlights: · Polyimide-cobalt ferrite nanocomposites were successfully produced. · Produced nanocomposites are suitable for use at temperatures below 80 deg. C. · Magnetic properties of nanocomposites were no sensitive to particle agglomeration. · Good distribution of clustered nanoparticles was achieved in produced composites. - Abstract: Cobalt ferrite nanocrystals were synthesized under size-controlled conditions in aqueous phase and incorporated into a polyimide matrix at various volumetric loads. Synthesized 20 nm cobalt ferrite single crystals, which exhibited a room-temperature coercivity of 2.9 kOe, were dispersed in polyimide precursor using two techniques: homogenizer and ball milling. These suspensions were then cured to develop the polyimide structure in the resulting nanocomposites. Produced films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometry, which confirmed the formation of the desired phases. As expected, the saturation magnetization in the nanocomposites varied according to the polyimide/ferrite weight ratio, while coercivity remained at the value corresponding to pure cobalt ferrite nanocrystals. Thermal degradation, thermal stability and dynamic mechanical analyses tests were also carried out to assess the effect of the concentration of the ferrite disperse phase on the thermo-mechanical behavior of the corresponding nanocomposites as well as the used dispersion techniques.

  9. A study of magnetoplumbite-type (M-type) cobalt-titanium-substituted barium ferrite, BaCo{sub x}Ti{sub x}Fe{sub 12-2x}O{sub 19} (x = 1-6)

    Energy Technology Data Exchange (ETDEWEB)

    Teh, G.B. [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia)], E-mail: tehgb@mail.utar.edu.my; Saravanan, N. [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Jefferson, D.A. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-10-15

    Cobalt(II)-titanium(IV)-substituted barium ferrite forming the chemical formula of BaCo{sub x}Ti{sub x}Fe{sub 12-2x}O{sub 19} (x = 1-6) have been investigated using X-ray diffraction spectroscopy (XRD), Superconducting Quantum Interference Device (SQUID) and high-resolution transmission electron microscopy (HRTEM). The specimen of magnetoplumbite (M-type) Co-Ti-substituted BaFe{sub 12}O{sub 19} were synthesised via sol-gel method using ethylene glycol as precursor. Significant increase in line broadening of the XRD patterns were observed indicating the decrease of particle sizes due to the Co(II)-Ti(IV) substitution. BaCo{sub 3}Ti{sub 3}Fe{sub 6}O{sub 19} showed the highest coercivity but moderate saturation and remnant magnetisations. HRTEM imaging showed that Co(II)-Ti(IV) substitution in the system of BaCo{sub x}Ti{sub x}Fe{sub 12-2x}O{sub 19} (x = 1-6) produced no drastic change in the structure of the M-type ferrites. Most of the M-types crystals examined by HRTEM displayed a long axis perpendicular to the c-axis of the M-type structure. Disordered crystals showing the intergrowth between Co-Ti-substituted barium ferrite and the spinel-structured iron oxide were detected.

  10. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  11. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  12. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  13. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  14. Effect of Cr{sup 3+} substitution on electric and magnetic properties of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Panda, R.K., E-mail: physics.panda@gmail.com [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Muduli, R. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Jayarao, G. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, 769 008 (India); Sanyal, D. [Variable Energy Cyclotron Centre, Kolkata, 700064 (India); Behera, D. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India)

    2016-06-05

    This work describes the effect of incorporation of Cr{sup 3+} into CoFe{sub 2}O{sub 4} nanoparticles on its magnetic and electric properties, prepared by auto combustion method. The samples of CoFe{sub 2-x}Cr{sub x}O4 (x = 0, 0.15, 0.3) series were characterized by x-ray diffraction and field emission scanning electron microscopy to find out the average particle size. The substitution of Cr{sup 3+} caused a significant reduction in particle size of the modified systems. Room temperature Moessbauer spectroscopy and magnetic characterization were performed. Analysis of extracted parameters concluded that Cr{sup 3+} replaced the Fe{sup 3+} at B-site (octahedral). The decrease in magnetization at B-site was found responsible for the observed reduced saturation magnetization and coercivity. Impedance spectroscopic analysis has revealed the suppression of electrode-sample surface conduction effect and enhancement of material resistivity. The latter was confirmed by dc resistivity measurement. All these results were explained on the basis of occupancy of Cr{sup 3+} at B-site, surface anisotropy potential and reduced particle size. - Highlights: • Cr substitution reduced the particle size in nano-cobalt ferrite. • Mossbauer study revealed that the Cr{sup 3+} replaced the Fe{sup 3+} at B-site. • Decrease in saturation magnetization and coercivity with the addition of Cr{sup 3+}. • Reduction of surface conduction and rise in resistance observed in modified systems.

  15. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  16. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    The particle size, D, decreases with increase in Al-content. The lattice parameter, a ... a significant saving in time and energy consumption over the traditional methods. ... electrical, and magnetic properties of spinel ferrites. Cobalt ferrite based ...

  17. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  18. FTIR and structural properties of co-precipitated cobalt ferrite nano particles

    International Nuclear Information System (INIS)

    Hutamaningtyas, E.; Utari; Suharyana; Purnama, B.; Wijayanta, A. T.

    2016-01-01

    The FTIR and structural properties in co-precipitated cobalt ferrite (CoFe 2 O 4 ) nanoparticles are discussed in this paper. The synthesis was conducted at temperatures of 75°C and 95°C following post annealing at 1200°C for 5 hours. Other modification samples were synthesis at temperature of 95°C and then annealing at temperature of 1000°C and 1200°C for 5 hours. For both modification of synthesis and annealing temperature, FTIR result showed a metal oxide at a wave number of 590 cm -1 which indicated cobalt ferrite nanoparticles. The crystalline structure was confirmed using x-ray diffraction that the high purity of cobalt ferrite was realized. Calculation of the cation distribution by using comparison I 220 /I 222 and I 422 /I 222 show that the synthesis and annealing temperature succesfully modify cation occupy the site octahedral and tetrahedral. (paper)

  19. Variation in band gap energy and electrical analysis of double doped cobalt ferrite

    Science.gov (United States)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.9Ca0.1) (Fe0.8 Cr0.2)2O4 were synthesized by microwave gel combustion method. Microstructural studies were carried out by XRD and SEM. Structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. The SEM image shows the spherical morphology of surface of the sample. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 400-600 nm. The electrical conductivity of pure and doped cobalt ferrite were studied as a function of frequency and were explained on the basis of electron hopping.

  20. Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

    Directory of Open Access Journals (Sweden)

    I. Sharifi

    2012-10-01

    Full Text Available Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.

  1. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    Science.gov (United States)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  2. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    Science.gov (United States)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  3. Synthesis and Characterization of Cobalt Ferrite Nanoparticles ...

    African Journals Online (AJOL)

    prepared material. It was observed that surface modification such as with silica coating on the cobalt ferrite will have significant effect on the structural and magnetic properties. It is also observed that, silica coated nanoparticles could be used in biomedical applications (Hong et al., 2013). In this work we have chosen sol-gel ...

  4. Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles

    Science.gov (United States)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.

  5. Microstructural and optical properties of Ca and Cr doped cobalt ferrite nanoparticles synthesized by auto combustion

    Science.gov (United States)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.8Ca0.2) (Fe0.8 Cr0.2)2O4 were synthesized by auto combustion method. Microstructural studies were carried out by X-ray diffraction (XRD). The crystalline size of synthesized nanoparticles as determined by the XRD was found to be 17.6 nm. These structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 200-800 nm. The energy band gap was calculated with the help of Tauc relationship. Ca and Cr doped cobalt ferrite annealed at 600°C exhibit significant dispersion in complex permeability. The dielectric constant and dielectric loss of cobalt ferrite were studied as a function of frequency and were explained on the basis of Koop's theory based on Maxwell Wagner two layer models and electron hopping.

  6. Microstructural development of cobalt ferrite ceramics and its influence on magnetic properties

    Science.gov (United States)

    Kim, Gi-Yeop; Jeon, Jae-Ho; Kim, Myong-Ho; Suvorov, Danilo; Choi, Si-Young

    2013-11-01

    The microstructural evolution and its influence on magnetic properties in cobalt ferrite were investigated. The cobalt ferrite powders were prepared via a solid-state reaction route and then sintered at 1200 °C for 1, 2, and 16 h in air. The microstructures from sintered samples represented a bimodal distribution of grain size, which is associated with abnormal grain growth behavior. And thus, with increasing sintering time, the number and size of abnormal grains accordingly increased but the matrix grains were frozen with stagnant grain growth. In the sample sintered for 16 h, all of the matrix grains were consumed and the abnormal grains consequently impinged on each other. With the appearance of abnormal grains, the magnetic coercivity significantly decreased from 586.3 Oe (1 h sintered sample) to 168.3 Oe (16 h sintered sample). This is due to the magnetization in abnormal grains being easily flipped. In order to achieve high magnetic coercivity of cobalt ferrite, it is thus imperative to fabricate the fine and homogeneous microstructure.

  7. Dynamic magnetoelectric effects in bulk and layered composites of cobalt zinc ferrite and lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.; Hayes, R.; DeVreugd, C.P. [Oakland University, Physics Department, Rochester, MI (United States); Laletsin, V.M.; Paddubnaya, N. [National Academy of Sciences, Institute of Technical Acoustics, Vitebsk (Belarus)

    2005-02-01

    Low-frequency magnetoelectric (ME) coupling is investigated in bulk samples and multilayers of cobalt zinc ferrite, Co{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0-0.6), and lead zirconate titanate. In bulk samples, the transverse and longitudinal couplings are weak and of equal magnitude. A substantial strengthening of ME interactions is evident in layered structures, with the ME voltage coefficient a factor of 10-30 higher than in bulk samples. Important findings of our studies of layered composites are as follows. (i) The transverse coupling is stronger than the longitudinal coupling. (ii) The strength of ME interactions is dependent on Zn substitution, with a maximum for x=0.4. (iii) A weak coupling exists at the ferromagnetic-piezoelectric interface, as revealed by an analysis of the volume and static magnetic field dependence of ME voltage coefficients. (iv) The interface coupling k increases with Zn substitution and the k versus x profile shows a maximum centered at x=0.4. (v) The Zn-assisted enhancement can be attributed to efficient magneto-mechanical coupling in the ferrite. (orig.)

  8. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery

    International Nuclear Information System (INIS)

    Yao, Lu; Xi, Yuebin; Xi, Guoxi; Feng, Yong

    2016-01-01

    The combination of a sol–gel method and a hydrothermal method was successfully used for synthesizing the nano-crystalline cobalt ferrite powders with a spinel structure using spent Li-ion batteries as the raw materials. The phase composition, microstructure, magnetic properties and magnetostriction coefficient of cobalt ferrite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), magnetometer and magnetostrictive measurement instrument. The microstructure of the products exhibited hedgehog-like microspheres with particle size of approximately 5 μm. The different crystalline sizes and the microstructure of cobalt ferrites precursor were controlled by varying the hydrothermal time, which significantly affected the super-exchange and the deflection direction of the magnetic domain, and led to the change of the magnetic properties of sintered cylindrical samples. The saturation magnetization and maximum magnetostriction coefficient were 81.7 emu/g and −158.5 ppm, respectively, which was larger than that of products prepared by the sol-gel sintered method alone. - Graphical abstract: The magnetostriction of cobalt ferrites with a spinel structure was successfully prepared using the sol–gel–hydrothermal route using spent Li-ion batteries. On the basis of the aforementioned SEM observation, the formation of a hedgehog-like microsphere structure might involve two important steps: Ostwald ripening and self-assembly. - Highlights: • The cobalt ferrites were prepared by the sol–gel–hydrothermal route. • The cobalt ferrites show hedgehog-like microsphere particles in shape. • The microspheres size increased with increasing hydrothermal time. • The magnetostriction properties of the cobalt ferrite were enhanced.

  9. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  10. Investigations of cations distributions and morphology of cobalt ferrite magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandekar, Kamlesh V., E-mail: chandekar.kamlex@gmail.com; Kant, K. Mohan [Dept. of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, - 440010 (India)

    2016-05-06

    Cobalt ferrite nanoparticles were synthesized by co-precipitation method and structural properties was investigated by X-ray diffraction (XRD) at room temperature. X-ray diffraction data was used to determine lattice parameter, X-ray density, distributions of cations among tetrahedral and octahedral sites, site radii, ionic radii and bond length of inverse spinel cobalt ferrite. XRD analysis revealed crystallinity and high intense peak correspond to cubic inverse spinel structure with average crystalline size measured by X-ray line profile fitting was found to be 13nm for most intense peak (311). The surface morphology and microstructural feature was investigated by TEM analysis which revealed that particle size varying from 12-22 nm with selected electron diffraction pattern (SAED).

  11. Impact of Nd{sup 3+} in CoFe{sub 2}O{sub 4} spinel ferrite nanoparticles on cation distribution, structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Wasserbauer, Jaromir; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Kuřitka, Ivo; Kožáková, Zuzana [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01 Zlín (Czech Republic)

    2016-02-01

    Nd{sup 3+} doped cobalt ferrite nanoparticles have been synthesized by starch-assisted sol–gel auto-combustion method. The significant role played by Nd{sup 3+} added to cobalt ferrite in changing cation distribution and further in influencing structural and magnetic properties, was explored and reported. The crystal structure formation and crystallite size were studied from X-ray diffraction studies. The microstructural features were investigated by field emission scanning electron microscopy and transmission electron microscopy that demonstrates the nanocrystalline grain formation with spherical morphology. An infrared spectroscopy study shows the presence of two absorption bands related to tetrahedral and octahedral group complexes within the spinel ferrite lattice system. The change in Raman modes in synthesized ferrite system were observed with Nd{sup 3+} substitution, particle size and cation redistribution. The impact of Nd{sup 3+} on cation distribution of Co{sup 2+} and Fe{sup 3+} at octahedral and tetrahedral sites in spinel ferrite cobalt ferrite nanoparticles was investigated by X-ray photoelectron spectroscopy. Room temperature magnetization measurements showed that the saturation magnetization and coercivity increase with addition of Nd{sup 3+} substitution in cobalt ferrite. - Highlights: • Nd{sup 3+} doped CoFe{sub 2}O{sub 4} nanoparticles by starch-assisted sol–gel auto-combustion method. • The change in Raman modes with Nd{sup 3+} substitution. • Presence of absorption infrared bands related to octahedral and tetrahedral site. • The impact of Nd{sup 3+} on cation distribution at octahedral and tetrahedral sites. • Influence of Nd{sup 3+} substitution in cobalt ferrite on magnetic properties.

  12. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique

    DEFF Research Database (Denmark)

    Cannas, C.; Musinu, A.; Piccaluga, G.

    2006-01-01

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavio...

  13. Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites

    Science.gov (United States)

    Datar, Ashwini A.; Mathe, Vikas L.

    2017-12-01

    Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.

  14. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  15. Effects of nickel and cobalt addition on creep strength and microstructure of the precipitation-strengthened 15Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Masachika; Toda, Yoshiaki; Sawada, Kota; Kushima, Hideaki; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength of 15Cr ferritic steel with ferrite matrix was increased by precipitation strengthening of intermetallic compounds. It was higher than those of 9-12Cr ferritic steels with a tempered martensitic microstructure strengthened by carbide and carbonitride. Addition of nickel was confirmed to improve Charpy impact toughness of the 15Cr steels, however, creep strength was slightly reduced by the addition of nickel. Microstructure of the 15Cr steel changes from ferrite single phase to dual phases of ferrite and martensite with the addition of nickel which is an austenite stabilizing element. The 15Cr steels investigated in the previous study, contain 3mass% of cobalt which is also an austenite stabilizing element, therefore, the influence of nickel and cobalt combination on mechanical properties and microstructure of the 15Cr-1Mo-6W-V-Nb steel is investigated in this study. Creep strength, Charpy impact toughness and microstructure of the steel were strongly influenced by the composition of nickel and cobalt. Design guideline of the 15Cr steel is discussed with respect to a role of microstructure and combination of nickel and cobalt addition. (orig.)

  16. Self-biased cobalt ferrite nanocomposites for microwave applications

    International Nuclear Information System (INIS)

    Hannour, Abdelkrim; Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches; Neveu, Sophie; Dupuis, Vincent

    2014-01-01

    Oriented CoFe 2 O 4 nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe 2 O 4 nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results

  17. Remanence properties of Co-precipitated cobalt ferrite

    International Nuclear Information System (INIS)

    Bueno-Baques, D.; Medina-Boudri, Angela; Matutes-Aquino, J.

    2001-01-01

    Isothermal remanent magnetization (IRM) and DC demagnetization (DCD) curves of a co-precipitated cobalt ferrite sample were obtained. From the IRM and DCD data, the Henkel plot was obtained and analyzed in the Preisach model framework. The Henkel plot data are below the Wohlfarth line that indicates a dominant local disorder (demagnetizing-like effect). Forward and reverse switching field distribution curves were obtained from differentiation of the IRM and DCD curves. The peak values of these switching field distributions differ by a factor of about 2.7

  18. Effects of the substitution of iron for cobalt on the crystal and magnetic properties of PrCo4-xFexM (M=Al and Ga)

    International Nuclear Information System (INIS)

    Zlotea, C.; Isnard, O.

    2003-01-01

    We report on the structural and magnetic properties of PrCo 4-x Fe x M where x=0-4 and M=Al and Ga. The iron solubility limit in these phases is determined by means of X-ray diffraction and scanning electron microscopy. Our study confirms that single phase samples crystallizing in the CaCu 5 -type structure are stabilized for x 5 structure but with a slight preference for the 3g site. The saturation magnetization and the Curie temperature increase upon the iron substitution. The PrCo 4-x Fe x M compounds present spin reorientation transitions, whatever the substituting M and the Fe content. The substitution of iron for cobalt induces a significant increase of the spin reorientation temperature. Neutron and X-ray powder diffraction experiments as well as magnetic measurements are combined in order to clarify the effects of the presence of iron on the magnetocrystalline anisotropy and the spin reorientation transition. Finally, the magnetic phase diagrams of PrCo 4-x Fe x M (M=Al and Ga) have been determined in the whole ordered temperature range

  19. Water-assisted and surfactant-free synthesis of cobalt ferrite nanospheres via solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yiqing [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Ren, Yanan [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); Bi, Feng [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); He, Tao, E-mail: het@nanoctr.cn [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-10-15

    With ethylene glycol as the solvent, monodispersed cobalt ferrite nanospheres were prepared via a solvothermal method assisted by water. The samples were mainly characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The size of as-prepared products ranges from 10 nm to 200 nm. Size distribution and chemical composition were controlled by the amount of water and pH value in the reaction system. More important, suitable amount of water can avoid the use of surfactant. - Highlights: • Cobalt ferrite nanospheres were synthesized via solvothermal method assisted by water. • An introduction of suitable amount of water can avoid the use of surfactant. • The pH value of the precursor can be used to adjust the product composition.

  20. Self-biased cobalt ferrite nanocomposites for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Hannour, Abdelkrim, E-mail: abdelkrim.hannour@hotmail.com [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Neveu, Sophie; Dupuis, Vincent [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France)

    2014-03-15

    Oriented CoFe{sub 2}O{sub 4} nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe{sub 2}O{sub 4} nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results.

  1. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  2. Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis.

    Science.gov (United States)

    Ortega, Klaus Friedel; Anke, Sven; Salamon, Soma; Özcan, Fatih; Heese, Justus; Andronescu, Corina; Landers, Joachim; Wende, Heiko; Schuhmann, Wolfgang; Muhler, Martin; Lunkenbein, Thomas; Behrens, Malte

    2017-09-12

    Monocrystalline, yet porous mosaic platelets of cobalt ferrite, CoFe 2 O 4 , can be synthesized from a layered double hydroxide (LDH) precursor by thermal decomposition. Using an equimolar mixture of Fe 2+ , Co 2+ , and Fe 3+ during co-precipitation, a mixture of LDH, (Fe II Co II ) 2/3 Fe III 1/3 (OH) 2 (CO 3 ) 1/6 ⋅m H 2 O, and the target spinel CoFe 2 O 4 can be obtained in the precursor. During calcination, the remaining Fe II fraction of the LDH is oxidized to Fe III leading to an overall Co 2+ :Fe 3+ ratio of 1:2 as required for spinel crystallization. This pre-adjustment of the spinel composition in the LDH precursor suggests a topotactic crystallization of cobalt ferrite and yields phase pure spinel in unusual anisotropic platelet morphology. The preferred topotactic relationship in most particles is [111] Spinel ∥[001] LDH . Due to the anion decomposition, holes are formed throughout the quasi monocrystalline platelets. This synthesis approach can be used for different ferrites and the unique microstructure leads to unusual chemical properties as shown by the application of the ex-LDH cobalt ferrite as catalyst in the selective oxidation of 2-propanol. Compared to commercial cobalt ferrite, which mainly catalyzes the oxidative dehydrogenation to acetone, the main reaction over the novel ex-LDH cobalt is dehydration to propene. Moreover, the oxygen evolution reaction (OER) activity of the ex-LDH catalyst was markedly higher compared to the commercial material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structural and magnetic properties of cadmium substituted manganese ferrites prepared by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Zaki, Z.I. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Advanced Materials Division, Central Metallurgical R and D Institute (CMRDI), P.O. Box: 87 Helwan, Cairo (Egypt); Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2013-03-15

    Cd-substituted manganese ferrite Mn{sub 1-x}Cd{sub x}Fe{sub 2}O{sub 4} powders with x having values 0.0, 0.1, 0.3 and 0.5 have been synthesized by hydrothermal route at 180 Degree-Sign C in presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x upto 0.3. However, sample with x{>=}0.5 showed hexagonal phase of cadmium hydroxide (Cd(OH){sub 2}) besides the ferrite phase. The increase in Cd-substitution upto x=0.3 leads to an increase in the lattice parameter as well as the average crystallite size of the prepared ferrites. The average crystallite size increased by increasing the Cd-content and was in the range of 39-57 nm. According to VSM results, the saturation magnetization increased with Cd ion substitution. - Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of mono dispersed Cd-substituted MnFe{sub 2}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer The change in Ms with increasing Cd-substitution was investigated Black-Right-Pointing-Pointer Pure single phases of cubic ferrites were obtained with x up to 0.3 Black-Right-Pointing-Pointer Sample with x{>=}0.5 showed hexagonal phase of Cd(OH){sub 2} beside the ferrite.

  4. Investigation of structural, magnetic and dielectric properties of Cr3+ substituted Cu0.75Co0.25Fe2-xO4 ferrite nanoparticles

    Science.gov (United States)

    Reddi, M. Sushma; Ramesh, M.; Sreenivasu, T.; Rao, G. S. N.; Samatha, K.

    2018-05-01

    Chromium doped Copper-Cobalt ferrite Nanoparticles were obtained by sol-gel auto-combustion method using citric acid as a fuel. The metal nitrates to citric acid ratio was taken as 1:1. The prepared powder of Cr3+ doped copper-cobalt ferrite nanoparticles is annealed at 600°C for 5 hrs and the same powder was used for characterization and investigations of structural properties. The phase composition, micro-structural, micro morphological and elemental analysis studies were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM) technique and energy dispersive spectroscopy (EDS). The FTIR spectra of these samples are recorded to ensure the presence of the metallic compounds. The average crystallite size obtained by Scherrer's formula is of the order of 19.28 nm to 32.92 nm. The dielectric properties are investigated as a function of frequency at room temperature using LCR-Q meter. The saturation magnetization (Ms) of the Cr3+ substituted Cu-Co ferrite sintered at 1100°C lies in the range of 5.4136-28.9943 emu/g, the coercivity (Hc) dropped desperately from about 2091.3-778.53Oe as Cr3+ composition increases from 0.0 to 0.25.

  5. Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites

    Science.gov (United States)

    Vijaya Babu, K.; Satyanarayana, G.; Sailaja, B.; Santosh Kumar, G. V.; Jalaiah, K.; Ravi, M.

    2018-06-01

    Nano-crystalline nickel ferrites are interesting materials due to their large physical and magnetic properties. In the present work, two kinds of spinel ferrites Ni0.8M0.2Fe2O4 (M = Cu, Co) are synthesized by using sol-gel auto-combustion method and the results are compared with NiFe2O4. The structural properties of synthesized ferrites are determined by using X-ray powder diffraction; scanning electron microscope and Fourier transform infrared spectroscopy. The cation distribution obtained from X-ray diffraction show that cobalt/copper occupies only tetrahedral site in spinel lattice. The lattice constant increases with the substitution of cobalt/copper. The structural parameters like bond lengths, tetrahedral and octahedral edges have been varied with the substitution. The microstructural study is carried out by using SEM technique and the average grain size is increased with nickel ferrite. The initial permeability (μi) is improving with the substitution. The observed g-value from ESR is approximately equal to standard value.

  6. The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shaima'a Jaber Kareem

    2018-02-01

    Full Text Available A sol-gel process prepared the nanoparticles of hard cobalt ferrite (CoFe2O4. Cobalt nitrate hexahydrate (Co (NO32⋅6H2O, iron nitrate nonahydrate (Fe (NO33⋅9H2O with using two catalysis acid (citric acid and alkaline (hydroxide ammonium were used as precursor materials. Crystallization behavior of the CoFe2O4 nanoparticles were studied by X-ray diffraction (XRD. Nanoparticles phases can change from amorphous to spinel ferrite crystalline depending on the calcinated temperature at 600°C, with using citric acid as a catalysis without finding forgone phase, while using hydroxide ammonium was shown second phase (α-Fe2O3 with CoFe2O4. Crystallite size was measured by Scherrer’s formula about (25.327 nm and (27.119 nm respectively. Structural properties were investigated by FTIR, which was appeared main bond of (Fe-O, (Co-O, (C-O, and (H-O. Scanning electron microscopy (FE- SEM was shown the microstructure observation of cobalt ferrite and the particle size at the range about (28.77-42.97 nm. Magnetization measurements were carried out on a vibrating sample magenometer (VSM that exhibited hard spinel ferrite.

  7. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ali, M., E-mail: m.benali06@gmail.com [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco); El Maalam, K. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco); El Moussaoui, H.; Mounkachi, O. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Hamedoun, M., E-mail: m.hamedoun@mascir.com [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco)

    2016-01-15

    Synthesization of zinc-substituted cobalt ferrites nano-particles Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0–0.3) has been achieved by the sol/gel method. The characterization of the synthesized nano-particles has been done by X-ray diffractometry (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FITR). The relation between the composition and magnetic properties has been investigated by Magnetic Properties Measurement System (MPMS). The results revealed that the nanoparticles size is in the range of 11–28 nm. It was found that the zinc substitution in cobalt ferrite increases saturation magnetization from 60.92 emu/g (x=0) to 74.67 emu/g (x=0.3). Nevertheless, zinc concentrations cause a significant decrease in coercivity.▪ - Highlights: • The nanocrystals size of synthesized of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} is of 11–28 nm. • The zinc substitution in cobalt ferrite increase saturation magnetization. • The increase of zinc concentration causes a significant decrease in coercivity.

  8. Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application

    International Nuclear Information System (INIS)

    Kumbhar, V.S.; Jagadale, A.D.; Shinde, N.M.; Lokhande, C.D.

    2012-01-01

    Highlights: ► The first time preparation of cobalt ferrite material in thin film form, using chemical method at low temperature. ► A nano-flake like morphology of the cobalt ferrite thin film. ► An application of the film as an electrode in supercapacitor cell. - Abstract: The present paper reveals the formation of cobalt ferrite (CoFe 2 O 4 ) thin film on stainless steel substrate by simple chemical route from an alkaline bath containing Co 2+ and Fe 2+ ions. The films are characterised for structural, surface morphological and FT-IR properties. The XRD and FT-IR studies revealed formation of single phase of CoFe 2 O 4 . The formation of nano-flakes-like morphology is observed from scanning electron microscope. The electrochemical behaviour of CoFe 2 O 4 film has been studied using cyclic voltammetry in 1 M NaOH electrolyte. The maximum specific capacitance of 366 F g −1 is obtained at the scan rate of 5 mV s −1 . Using AC impedance technique equivalent series resistance (ESR) value is found to be 1.1 Ω.

  9. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Mansour, S.A.; Ibrahim, M.H. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Ali, Shehab E., E-mail: shehab_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt)

    2011-11-15

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: > The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. > The transmission electronic microscope analysis confirmed the X-ray results. > The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  10. Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Hessien, M.M. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Advanced materials Division-Central metallurgical R and D Institute (CMRDI), P.O. Box 87 Helwan, Cairo (Egypt); Shaltout, Abdallah A. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Spectroscopy Department, Physics Division, National Research Center, El Behooth Str., 12622 Dokki, Cairo (Egypt)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of well-crystallized Ti-substituted MnFe{sub 2}O{sub 4} nanoparticles at 180 Degree-Sign C without any calcination step. The chemical composition was represented by Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} with x having values 0.0, 0.1, 0.2, 0.3 and 0.4. Black-Right-Pointing-Pointer The change in lattice parameter and saturation magnetization with increasing Ti-substitution was investigated and explained. Black-Right-Pointing-Pointer The change in microstructure due to Ti{sup 4+} ions substitutions was investigated using TEM analysis. - Abstarct: A series of well-crystallized Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} nanoparticles with x values of 0.0, 0.1, 0.2, 0.3 and 0.4 have been synthesized by hydrothermal route at 180 Degree-Sign C in the presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x up to 0.2. However, samples with x > 0.2 showed traces of unreacted anatase. The increase in Ti-substitution up to x = 0.2 leads to an increase in the lattice parameter of the prepared ferrites. On the other hand, the increase in Ti-substitution over x = 0.2 leads to a decrease in the lattice parameter. The average crystallite size was in the range of 39-57 nm, where it is increased by increasing the Ti-substitution up to x = 0.3, then decreased for x = 0.4. According to VSM results, the saturation magnetization increased with Ti ion substitution of x = 0.1 and decreased for x > 0.1.

  11. and aluminum-substituted cobalt ferrite prepared by co-precipitation ...

    Indian Academy of Sciences (India)

    Spinal ferrites having the general formula Co1-ZnFe2-AlO4 ( = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were prepared using the wet chemical co-operation technique. The samples were annealed at 800°C for 12 h and were studied by means of X-ray diffraction, magnetization and low field AC susceptibility measurements.

  12. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    Directory of Open Access Journals (Sweden)

    Y K Dasan

    Full Text Available Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00 synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM. The results revealed that saturation magnetization (Ms and coercivity (Hc of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  13. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  14. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    International Nuclear Information System (INIS)

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab E.

    2011-01-01

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: → The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. → The transmission electronic microscope analysis confirmed the X-ray results. → The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  15. Development of cobalt ferrite powder preparation employing the sol-gel technique and its structural characterization

    International Nuclear Information System (INIS)

    Sajjia, M.; Oubaha, M.; Prescott, T.; Olabi, A.G.

    2010-01-01

    Research highlights: This work focuses on the sol-gel process and the effects that the initial parameters have on the final product, which is the cobalt ferrite powder, in addition to the heat treatment. Particular interest is devoted to understand how the crosslinker and the chelating agent work and affect the final product. - Abstract: This work focuses on the development of a method to make cobalt ferrite powder using the sol-gel process. A particular emphasis is devoted to the understanding of the role of the chemical parameters involved in the sol-gel technique, and of the heat treatment on the structures and morphologies of the materials obtained. Several samples of cobalt ferrite powder were obtained by varying the initial parameters of the process in addition to the heat treatment temperature. X-ray diffraction and scanning electron microscopy were used to identify the structure and morphology of samples demonstrating the influence of the initial parameters. DTA/TGA was carried out on two standard samples to identify important reaction temperatures during the heat treatment. The average size of the nano crystallites was estimated for a sample by the full width at half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak. It has been found that the chelating agent and the crosslinker have a critical influence on the resultant structure, the particle size and the particle size distribution.

  16. Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract

    Energy Technology Data Exchange (ETDEWEB)

    Gingasu, Dana [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Mindru, Ioana, E-mail: imandru@yahoo.com [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Mocioiu, Oana Catalina; Preda, Silviu; Stanica, Nicolae; Patron, Luminita [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Ianculescu, Adelina; Oprea, Ovidiu [Politehnica University of Bucharest, Faculty of Chemistry, 1-7 Polizu Street, 011061, Bucharest (Romania); Nita, Sultana; Paraschiv, Ileana [National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299, Bucharest (Romania); Popa, Marcela; Saviuc, Crina [University of Bucharest, Faculty of Biology, Microbiology Department, Research Institute of the University of Bucharest-ICUB, Life, Environmental and Earth Sciences Division, 91-95 Splaiul Independentei, Bucharest (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, Cellular and Molecular Pathology Department, 285 Mihai Bravu Avenue, Bucharest (Romania); Chifiriuc, Mariana Carmen [University of Bucharest, Faculty of Biology, Microbiology Department, Research Institute of the University of Bucharest-ICUB, Life, Environmental and Earth Sciences Division, 91-95 Splaiul Independentei, Bucharest (Romania)

    2016-10-01

    The nanocrystalline cobalt ferrites (CoFe{sub 2}O{sub 4}) were obtained through self-combustion and wet ferritization methods using aqueous extracts of sesame (Sesamum indicum L) seeds. The multimetallic complex compounds were characterized by Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy and thermal analysis. Phase identification, morphological evolution and magnetic properties of the obtained cobalt ferrites were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), FTIR and magnetic measurements. FE-SEM investigations revealed the particle size of CoFe{sub 2}O{sub 4} obtained by wet ferritization method ranged between 3 and 20.45 nm. Their antimicrobial, anti-biofilm and cytotoxic properties were evaluated. - Highlights: • CoFe{sub 2}O{sub 4} were obtained by two chemical synthesis methods. • Sesame seed extract was used as gelling or chelating agent. • The morphological features of CoFe{sub 2}O{sub 4} nanoparticles were evaluated. • CoFe{sub 2}O{sub 4} exhibited good microbicidal and anti-biofilm features.

  17. Distribution of cations in nanosize and bulk Co-Zn ferrites

    Czech Academy of Sciences Publication Activity Database

    Veverka, Miroslav; Jirák, Zdeněk; Kaman, Ondřej; Knížek, Karel; Maryško, Miroslav; Pollert, Emil; Závěta, K.; Lančok, Adriana; Dlouhá, M.; Vratislav, S.

    2011-01-01

    Roč. 22, č. 34 (2011), 345701/1-345701/7 ISSN 0957-4484 R&D Projects: GA ČR GAP204/10/0035; GA ČR(CZ) GAP108/11/0807 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40320502 Keywords : cobalt zinc ferrites * nanoparticles distribution of cations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.979, year: 2011

  18. Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Srivastava, Manish; Ojha, Animesh K.; Chaubey, S.; Sharma, Prashant K.; Pandey, Avinash C.

    2010-01-01

    Cobalt doped lithium ferrite nanoparticles were synthesized at different pH by sol-gel method. The effect of pH on the physical properties of cobalt doped lithium ferrite nanoparticles has been investigated. The nanoparticles synthesized at different pH were characterized through X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectroscopy (RS), Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX) and vibrating sample magnetometer (VSM). The XRD patterns were analyzed to determine the crystal phase of cobalt doped lithium ferrites nanoparticles synthesized at different pH. The XRD results show the formation of impurity free cobalt doped lithium ferrites having ordered phase spinel structure. A similar kind of conclusion was also drawn through the analysis of Raman spectra of the nanoparticles synthesized at different pH. SEM micrographs show that the structural morphology of the nanoparticles is highly sensitive to the pH during the synthesis process. The magnetic properties such as; saturation magnetization (Ms), remnant magnetization (Mr) and coercivety (Hc) have been also investigated and found to be different for the nanoparticles synthesized at different pH, which may be attributed to the different size and surface morphology of the nanoparticles.

  19. Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites

    International Nuclear Information System (INIS)

    Sileo, Elsa E.; Garcia Rodenas, Luis; Paiva-Santos, Carlos O.; Stephens, Peter W.; Morando, Pedro J.; Blesa, Miguel A.

    2006-01-01

    A series of powdered cobalt ferrites, Co x Fe 3- x O 4 with 0.66≤x II , were synthesized by a mild procedure, and their Fe and Co site occupancies and structural characteristics were explored using X-ray anomalous scattering and the Rietveld refinement method. The dissolution kinetics, measured in 0.1 M oxalic acid aqueous solution at 70 deg. C, indicate in all cases the operation of a contracting volume rate law. The specific rates increased with the Fe II content following approximately a second-order polynomial expression. This result suggests that the transfer of Fe III controls the dissolution rate, and that the leaching of a first layer of ions Co II and Fe II leaves exposed a surface enriched in slower dissolving octahedral Fe III ions. Within this model, inner vicinal lattice Fe II accelerates the rate of Fe III transfer via internal electron hopping. A chain mechanism, involving successive electron transfers, fits the data very well. - Graphical abstract: The electron exchange between octahedral Fe II and Fe III ions has important consequences on the specific dissolution rates. Display Omitted

  20. Magnetite and cobalt ferrite nanoparticles used as seeds for acid mine drainage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Mamba, Bhekie B.; Msagati, Titus A.M.

    2017-07-05

    Highlights: • Presence of α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} in AMD resulted in formation of crystalline ferrite. • Increasing settling time improved removal of Mg, Ca, Mn and Na from AMD. • Mixtures of ferrite nanoparticles were produced from AMD. • Formations of crystalline ferrite were more favored in the presence of heat. - Abstract: In this study, magnetite and cobalt ferrite nanoparticles were used as seeds for acid mine drainage (AMD) treatment at pH of 7.05 ± 0.35. Duplicate samples of AMD, one without heating and another with heating at 60 °C was treated under continuous stirring for 1 h. The filtrate analysis results from ICP-OES have shown complete removal of Al, Mg, and Mn, while for Fe, Ni and Zn over 90% removals were recorded. Particularly, settling time has significant effect on the removal of Mg, Ca and Na. The results from SQUID have shown superparamagnetic properties of the synthesised magnetic nanoparticles and ferrite sludge. The recovered nanoparticles from AMD are economically important and reduce the cost of waste disposal.

  1. Microwave absorbing properties of rare-earth elements substituted W-type barium ferrite

    International Nuclear Information System (INIS)

    Wang Jing; Zhang Hong; Bai Shuxin; Chen Ke; Zhang Changrui

    2007-01-01

    W-type barium ferrites Ba(MnZn) 0.3 Co 1.4 R 0.01 Fe 15.99 O 27 with R=Dy, Nd and Pr were prepared by chemical coprecipitation method. Effects of rare-earth elements (RE) substitution on microstructural and electromagnetic properties were analyzed. The results show that a small amount of RE 3+ ions can replace Fe 3+ ions and adjust hyperfine parameters. An obvious increase in natural resonance frequency and high frequency relaxation, and a sharp decrease for complex permittivity have been observed. Furthermore, the matching thickness and the reflection loss (RL) of one-layer ferrite absorber were calculated. It reveals that thin and broad-band can be obtained by RE-substitution. But only when the magnetic moment of RE 3+ is higher than that of Fe 3+ , can substitution be effective for higher RL. Dy-substituted ferrite composite has excellent microwave absorption properties. The frequency (with respect to -10 dB RL) begins from 9.9 GHz, and the bandwidth reaches far more than 8.16 GHz. The peak value is -51.92 dB at a matching thickness of 2.1 mm

  2. Structural and magnetic properties of Co-substituted NiCu ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le-Zhong, E-mail: lezhongli@cuit.edu.cn; Zhong, Xiao-Xi; Wang, Rui; Tu, Xiao-Qiang; Peng, Long

    2017-07-01

    Highlights: • There are Fe{sub 2}O{sub 3} and CuO impurity phases when x ≤ 0.10. • The saturation magnetization and coercivity monotonically increase with the increase of Co substitution. • The anisotropy constant increases with the increase of Co substitution. • The calculated and observed values of magneton number are in close agreement with each other. - Abstract: Co-substituted NiCu ferrite nanopowders with the chemical formula Ni{sub 0.5−x}Cu{sub 0.5−x}Co{sub 2x}Fe{sub 2}O{sub 4} (0 ≤ x ≤ 0.50) were synthesized by sol-gel auto-combustion method. The effects of Co substitution on the cation distribution, structural and magnetic properties of the NiCu ferrite nanopowders have been investigated. Differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) measurements were used to characterize the chemical, structural and magnetic properties of the ferrite nanopowders, respectively. The DTA-TG results indicate that there are three steps of the combustion process. XRD results indicate that there are Fe{sub 2}O{sub 3} and CuO impurity phases when x ≤ 0.10. Furthermore, the lattice parameter increases, and the X-ray density and the average crystallite size decrease with increasing Co substitution. And the obtained particle size from TEM image is in very good agreement with the average crystallite size estimated by XRD measurements. The saturation magnetization and coercivity monotonically increase with the increase of Co substitution. The increase of the saturation magnetization is due to the substitution of Ni{sup 2+} and Cu{sup 2+} ions with lower magnetic moment by Co{sup 2+} ions with higher magnetic moment on the octahedral sites. And the increase of the coercivity is mainly due to the increase of magnetocrystalline anisotropy energy.

  3. Structural and magnetic properties of Co substituted Li{sub 0.5}Fe{sub 2.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Patil, R.P., E-mail: raj_rbm_raj@yahoo.co.in [Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi 416206, MH (India); Patil, S.B. [Department of Physics, Krantisinh Nana Patil College Walwa, Sangli 416313, MH (India); Jadhav, B.V. [Department of Chemistry, Changu Kana Thakur Arts, Commerce and Science College, New Panvel 400035, MH (India); Delekar, S.D.; Hankare, P.P. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India)

    2016-03-01

    Nanocrystalline Li{sub 0.5}Fe{sub 2.5−x}Co{sub x}O{sub 4} (2.5≥x≥0) system was prepared by sol–gel route. Formation of single phase cubic spinel structure for all the compositions was confirmed from their X-ray diffraction studies. These ferrite samples existed as homogenous and uniform grains as observed from Scanning Electron Microscopy technique. The magnetic studies indicated that, the ferrimagnetic behavior decreases with Cobalt substitution. In general, the substitution of cobalt plays an important role in changing the structural and magnetic properties of these ferrites. - Highlights: • Novel Co doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} system. • Sol–gel method synthesized Co–Lithium ferrites. • Single Phase Cubic spinel structure. • Homogenous and uniform grain size of samples. • Ferrimagnetic behavior for all the samples.

  4. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Geok Bee [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia)]. E-mail: tehgb@mail.utar.edu.my; Nagalingam, Saravanan [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Jefferson, David A. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-01-15

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed.

  5. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    International Nuclear Information System (INIS)

    Teh, Geok Bee; Nagalingam, Saravanan; Jefferson, David A.

    2007-01-01

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed

  6. Synthesis of surfactant-coated cobalt ferrite nanoparticles for adsorptive removal of acid blue 45 dye

    Science.gov (United States)

    Waheed Mushtaq, Muhammad; Kanwal, Farah; Imran, Muhammad; Ameen, Naila; Batool, Madeeha; Batool, Aisha; Bashir, Shahid; Mustansar Abbas, Syed; Rehman, Ata ur; Riaz, Saira; Naseem, Shahzad; Ullah, Zaka

    2018-03-01

    Cobalt ferrite (CoFe2O4) nanoparticles (NPs) are synthesized by wet chemical coprecipitation method using metal chlorides as precursors and potassium hydroxide (KOH) as a precipitant. The tergitol-1x (T-1x) and didecyldimethyl ammonium bromide (DDAB) are used as capping agents and their effect is investigated on particle size, size distribution and morphology of cobalt ferrite nanoparticles (CFNPs). The Fourier transform infrared spectroscopy confirms the synthesis of CFNPs and formation of metal-oxygen (M-O) bond. The spinel phase structure, morphology, polydispersity and magnetic properties of ferrite nanoparticles are investigated by x-ray diffraction, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometry analyses, respectively. The addition of capping agents effects the secondary growth of CFNPs and reduces their particle size, as is investigated by dynamic light scattering and atomic force microscopy. The results evidence that the DDAB is more promising surfactant to control the particle size (∼13 nm), polydispersity and aggregation of CFNPs. The synthesized CFNPs, CFNPs/T-1x and CFNPs/DDAB are used to study their adsorption potential for removal of acid blue 45 dye, and a maximum adsorptive removal of 92.25% is recorded by 0.1 g of CFNPs/DDAB at pH 2.5 and temperature 20 ± 1 °C. The results show that the dye is physically adsorbed by magnetic NPs and follows the Langmuir isotherm model.

  7. Evidence for reentrant spin glass behavior in transition metal substituted Co-Ga alloys near critical concentration

    Science.gov (United States)

    Yasin, Sk. Mohammad; Srinivas, V.; Kasiviswanathan, S.; Vagadia, Megha; Nigam, A. K.

    2018-04-01

    In the present study magnetic and electrical transport properties of transition metal substituted Co-Ga alloys (near critical cobalt concentration) have been investigated. Analysis of temperature and field dependence of dc magnetization and ac susceptibility (ACS) data suggests an evidence of reentrant spin glass (RSG) phase in Co55.5TM3Ga41.5 (TM = Co, Cr, Fe, Cu). The magnetic transition temperatures (TC and Tf) are found to depend on the nature of TM element substitution with the exchange coupling strength Co-Fe > Co-Co > Co-Cu > Co-Cr. From magnetization dynamics precise transition temperatures for the glassy phases are estimated. It is found that characteristic relaxation times are higher than that of spin glasses with minimal spin-cluster formation. The RSG behavior has been further supported by the temperature dependence of magnetotransport studies. From the magnetic field and substitution effects it has been established that the magnetic and electrical transport properties are correlated in this system.

  8. Impacts of yttrium substitution on FMR line-width and magnetic properties of nickel spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ishaque, M., E-mail: ishaqdgk1@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ali, Irshad; Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Iqbal, M. Asif [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); College of E & ME, National University of Science and Technology, Islamabad (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2015-05-15

    The influence of yttrium (Y) substitution on ferromagnetic resonance (FMR), initial permeability, and magnetic properties of NiFe{sub 2}O{sub 4} ferrites were investigated. It was observed that the FMR line-width decreases with yttrium contents for the substitution level 0≤×≤0.06. Beyond this, the FMR line-width increases with yttrium contents. The nominal composition NiY{sub 0.12}Fe{sub 1.88}O{sub 4} exhibited the smallest FMR line-width ~282 Oe. A significant change in FMR position of nickel–yttrium (Ni–Y) ferrites was observed and it found to exist between 4150 and 4600 Oe. The saturation magnetization was observed to decrease with the increase of yttrium contents and this was referred to the redistribution of cations on octahedral. The coercivity increased from 15 Oe to 59 Oe by increasing the yttrium concentration. The initial permeability decreased from 110 to 35 at 1 MHz by the incorporation of yttrium and this was attributed to the smaller grains which may obstruct the domain wall movement and impede the domain wall motion. The magnetic loss factors of substituted samples exhibit decreasing behavior in the frequency range 1 kHz to 10 MHz. The smaller FMR line-width and reduced magnetic loss factor of the investigated samples suggest the possible use of these materials in high frequency applications. - Highlights: • Influence of Y{sup 3+} substitution on the properties of nickel ferrites is investigated. • Very small FMR line-width (282 Oe) is exhibited by these substituted ferrites. • Fourfold increase in coercivity was observed for NiY{sub 0.24}Fe{sub 1.76}O{sub 4} ferrites.

  9. Structural and magnetic properties of nanocrystalline stannic substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Mansour, S.A. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Physics Department, Faculty of Science, King AbdulAziz University, Rabegh (Saudi Arabia); Ibrahim, M.H. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Physics Department, Faculty of Science, King AbdulAziz University (Saudi Arabia); Ali, Shehab. E., E-mail: shehab_ali@science.suez.edu.eg [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2012-09-15

    The structural and magnetic properties of the spinel ferrite system Co{sub 1+x}Fe{sub 2-2x}Sn{sub x}O{sub 4} (x=0.0-1.0) have been studied. Samples in the series were prepared by the ceramic technique. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. Far infrared absorption spectra show two significant absorption bands, around 600 cm{sup -1} and 425 cm{sup -1}, which are respectively attributed to tetrahedral (A) and octahedral [B] vibrations of the spinel. Scanning Electron Microscopy (SEM) was used to study surface morphology. SEM images reveal particles in the nanosize range. The transmission electronic microscope (TEM) reveals that the grains are spherical in shape. TEM analysis confirmed the X-ray results. The magnetic properties of the prepared samples were characterized by using a vibrating sample magnetometer. - Highlights: Black-Right-Pointing-Pointer The spinel ferrite system has been formed at 1000 Degree-Sign C by using ceramic techniques. Black-Right-Pointing-Pointer Structural and microstructural evolutions have been studied using XRD and the Rietveld method. Black-Right-Pointing-Pointer The refinement result showed cationic distribution in the lattice is partially an inverse spinel. Black-Right-Pointing-Pointer The transmission electronic microscope analysis confirmed the X-ray results. Black-Right-Pointing-Pointer Magnetic properties of the samples were characterized by using a vibrating sample magnetometer.

  10. Structural and magnetic properties of nanocrystalline stannic substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab. E.

    2012-01-01

    The structural and magnetic properties of the spinel ferrite system Co 1+x Fe 2−2x Sn x O 4 (x=0.0–1.0) have been studied. Samples in the series were prepared by the ceramic technique. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. Far infrared absorption spectra show two significant absorption bands, around 600 cm −1 and 425 cm −1 , which are respectively attributed to tetrahedral (A) and octahedral [B] vibrations of the spinel. Scanning Electron Microscopy (SEM) was used to study surface morphology. SEM images reveal particles in the nanosize range. The transmission electronic microscope (TEM) reveals that the grains are spherical in shape. TEM analysis confirmed the X-ray results. The magnetic properties of the prepared samples were characterized by using a vibrating sample magnetometer. - Highlights: ► The spinel ferrite system has been formed at 1000 °C by using ceramic techniques. ► Structural and microstructural evolutions have been studied using XRD and the Rietveld method. ► The refinement result showed cationic distribution in the lattice is partially an inverse spinel. ► The transmission electronic microscope analysis confirmed the X-ray results. ► Magnetic properties of the samples were characterized by using a vibrating sample magnetometer.

  11. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Hafiz Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ahmad, Ishtiaq; Ali, Irshad [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ramay, Shahid M. [College of Science, Physics and Astronomy Department, King Saud University, P.O. Box 2455, 11451 Riyadh (Saudi Arabia); Mahmood, Asif [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh (Saudi Arabia); Murtaza, G. [Centre for Advanced Studies in Physics, GC University, Lahore 5400 (Pakistan)

    2017-07-15

    Highlights: • Magnesium based spinel ferrites were successfully synthesized by sol-gel method. • Dielectric constant shows the normal spinel ferrites behavior. • The dc conductivity are found to decrease with increasing temperature. • The samples with low conductivity have high values of activation energy. • The Impedance decreases with increasing frequency of applied field. - Abstract: Spinel ferrites with nominal composition MgPr{sub y}Fe{sub 2−y}O{sub 4} (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz–3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole–Cole plots were used to separate the grain and grain boundary’s effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary’s resistance as compared to the grain’s resistance. As both AC conductivity and Cole–Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe{sub 2}O{sub 4} exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  12. Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Zahir, R. [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Chowdhury, F.-U.Z, E-mail: faruque@cuet.ac.bd [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Uddin, M.M. [Department of Physics, Chittagong University of Engineering and Technology, Chittagong 4349 (Bangladesh); Hakim, M.A. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh)

    2016-07-15

    Cd-substituted Mg ferrites with compositional formula Mg{sub 1−x}Cd{sub x}Fe{sub 2}O{sub 4} with 0.1≤x≤0.6 in the steps of 0.1 have been synthesized by double sintering ceramic technique. The X-ray diffraction analysis has revealed that the samples crystallize in a single phase cubic spinel structure. The lattice parameter has increased with increasing Cd content in conformity with Vegard's law. The study of scanning electron microscopy has revealed that Cd substitution has increased the particle size of the ferrites increases from ~2.2 to 9.2 µm. Some probable interpretations based on literature have been discussed. The increase in particle size with increasing of Cd content has consequently resulted in the initial permeability. The Curie temperature has decreased linearly with increasing Cd content which pointed out the weakening of A-B exchange interaction. The spectra of quality factor have showed a steady bandwidth of 0.1–8 MHz, this finding makes the ferrite system suitable for broadband pulse transformer. The variation of electrical resistivity (DC and AC) has been explained on the basis of electron hopping between Fe{sup 2+}and Fe{sup 3+}. - Highlights: • Synthesis of Cd-substituted Mg ferrites by double sintering ceramic technique. • Studies of Cd substitution on the structural and magnetic properties of Mg Ferrites. • The Curie temperature decreases linearly with increasing Cd concentration. • Due to the conduction of hopping of charge carriers DC resistivity decreases.

  13. Investigation of superparamagnetism in pure and chromium substituted cobalt nanoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Raghasudha, M., E-mail: raghasudha_m@yahoo.co.in [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Ravinder, D. [Department of Physics, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Veerasomaiah, P. [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India)

    2016-12-15

    Nanostructured magnetic materials with the chemical composition CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} were synthesized through Citrate-gel chemical synthesis with a crystallite size of 6.5 nm and 10.7 nm respectively. Structural characterization of the samples was performed by X-ray diffraction analysis and magnetic properties were studied using Vibrating Sample Magnetometer (VSM). Magnetization measurements as a function of applied magnetic field ±10 T at various temperatures 5 K, 25 K, 310 K and 355 K were carried out. Field cooled (FC) and Zero field cooled (ZFC) magnetization measurements under a magnetic field of 100 Oe for temperature ranging from 5–400 K were studied. The blocking temperature (T{sub b}) for both the ferrites was observed to be around 355 K. Below blocking temperature they showed ferromagnetic behavior and above which they are superparamagnetic in nature that favors their application in the biomedical field. The substitution of paramagnetic Cr{sup 3+} ions for magnetic Fe{sup 3+} ion in cobalt ferrite has resulted in a decrease in magnetization and the coercivity of the samples. CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} nanoferrites with observed low coercivity of 338 Oe make them desirable in high frequency transformers due to their very soft magnetic behavior. - Highlights: • Particle size of CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} is 6.5 nm and 10.7 nm respectively. • At 5 K and 25 K the materials were ferromagnetic in nature with high coercivity. • Materials show superparamagnetic behavior above room temperature. • Blocking temperature is at around 355 K where coercivity and remanence are zero. • Materials are suitable for hyperthermia cancer therapy.

  14. Cation distribution controlled dielectric, electrical and magnetic behavior of In{sup 3+} substituted cobalt ferrites synthesized via solid-state reaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rabia, E-mail: rabiabest@gmail.com [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Sharma, K.K., E-mail: kk.gautam@yahoo.co.in [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Kaur, Pawanpreet [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Kumar, Ravi [Centre for Material Science and Engineering, National Institute of Technology, Hamirpur, H.P 177 005 (India)

    2014-12-15

    We report the structural, cation distribution, dielectric, electrical and magnetic properties of CoFe{sub 2−x}In{sub x}O{sub 4} (0.0 ≤ x ≤ 0.6) ferrites. Rietveld fitted X-ray diffraction (XRD) patterns confirm the formation of single phase cubic spinel structure with Fd3m space group for all the samples. The comprehensive analysis of XRD based cation distribution has been performed to see the effect of In{sup 3+} ions substitution on various structural parameters such as site ionic radii, edge and bond lengths, interionic distances etc. The dielectric constant and tangent loss have been studied as a function of temperature and frequency. The dielectric data presented in electric modulus form reveals the presence of non-Debye relaxation behavior in considered ferrites. Both the AC and DC conductivities as a function of temperature are found to decrease with increasing In{sup 3+} content. The power law behavior of AC-conductivity indicates a strong correlation among electrons in these systems. The isothermal magnetization versus applied field curves with high field slope and significant coercivity suggest that studied materials are highly anisotropic with canted spin structures and exhibit ferrimagnetic behavior at 300 K. Magnetization gets enhanced up to 40% of In{sup 3+} substitution. The observed low dielectric losses and high resistivity can find their application in power transformers at high frequencies. - Highlights: • Rietveld refinement of CoIn{sub x}Fe{sub 2−x}O{sub 4} samples shows single phase cubic spinel structure. • Cation distribution matches well with experimental integrated intensity ratios. • Strength of magnetic interactions is found to increase with increasing In{sup 3+} substitution. • The present systems are highly correlated. • These material are promising candidate for power transformers at high frequencies.

  15. Mössbauer studies of Sn /Nb substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    communications, devices like computers, microprocessor and VCR systems, the use of above said types of power supplies highly increased. Though studies on Mn–Zn ... Hence, the aim of the present paper is to bring out the. Mössbauer studies of Sn/Nb substituted Mn–Zn ferrites. 2. Sample preparation and experimental.

  16. Temperature and composition dependence of magnetic properties of cobalt-chromium co-substituted magnesium ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Meydan, Turgut; Melikhov, Yevgen [Wolfson Center for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2012-11-15

    The temperature and composition dependence of magnetic properties of Co-Cr co-substituted magnesium ferrite, Mg{sub 1-x}Co{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x=0.0-0.5), prepared by novel polyethylene glycol assisted microemulsion method, are studied. The synthesized materials are characterized by the Moessbauer spectrometer and standard magnetic measurements. Major hysteresis loops are measured up to the magnetic field of 50 kOe at 300, 200 and 100 K. The high field regimes of these loops are modeled using the Law of Approach to saturation to determine the first-order cubic anisotropy coefficient and saturation magnetization. Both the saturation magnetization and the anisotropy coefficient are observed to increase with the decrease in temperature for all Co-Cr co-substitution levels. Also, both the saturation magnetization and the anisotropy coefficient achieved maximum value at x=0.3 and x=0.2, respectively. Explanation of the observed behavior is proposed in terms of the site occupancy of the co-substituent, Co{sup 2+} and Cr{sup 3+} in the cubic spinel lattice. - Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Co{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} are synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer Co-Cr occupied octahedral site confirmed by the Moessbauer analysis. Black-Right-Pointing-Pointer High field regime of M-H loops are modeled using the Law of Approach to saturation. Black-Right-Pointing-Pointer The values of M{sub S}, M{sub r}, H{sub C} and K{sub 1} are found to increase with decreasing temperature.

  17. Structural and electrical properties of nickel substituted cadmium ferrite

    Science.gov (United States)

    Chethan, B.; Raj Prakash, H. G.; Vijayakumari, S. C.; Ravikiran, Y. T.

    2018-05-01

    Spinal nano-sized Cadmium ferrite (CD) and Nickel substituted cadmium ferrite (NSCF) were fabricated by sol-gel auto combustion method. The formation of spinal structure of ferrite materials was confirmed by X-ray diffraction (XRD) analysis. The crystallites size of CF and NSCF as determined by Scherrer's formula were found to be 24.73 nm and 17.70 nm respectively. comparative study of Fourier transform infrared spectroscopy (FTIR) of CF and NSCF revealed tetrahedral absorption bands shifted slightly towards higher frequency where as octahedral bands shifted towards lower frequency side confirming interfacial interaction between Ni and CF. The AC conductivity (σ), loss tangent (tan δ) and complex plane impedance plots for both CF and NSCF are determined at various frequencies ranging from 50 kHz to 5 MHz and comparatively analyzed. The increase in AC conductivity of the NSCF nano particles as compared to CF was explained in the light of hopping model. The impedance measurement of NSCF show presence of a semi-circle corresponding to the grain boundary resistance and hence shows that the conductivity takes place largely through grain boundaries.

  18. Influences of Ti4+ and Mg2+ substitutions on the properties of lithium ferrites

    International Nuclear Information System (INIS)

    Su Hua; Zhang Huaiwu; Tang Xiaoli; Liu Baoyuan

    2009-01-01

    The Ti 4+ and Mg 2+ co-substituted lithium ferrites with different compositions of Zn 0.1 Li 0.45 Mn 0.1 Fe 2.35-2x (TiMg) x O 4 (x=0.0-0.5) were prepared by the ceramic standard processing. The magnetic properties and microstructure of the samples were investigated. A single phase spinel structure was confirmed by XRD in substituting range. Sintering densities continuously decreased with the increase at x value, which was attributed to the fact that the heavier Fe 3+ ions were replaced by the relatively lighter Ti 4+ and Mg 2+ ions. However, relative density of the samples had no obvious relationship with the substituting value. Saturation magnetization continuously decreased with x value, which was attributed to the decrease of resultant magnetic moment between A and B sub-lattice. Remanence decreased monotonously with x value due to the decrease of saturation magnetization and magnetocrystalline anisotropy constant. But the effect of Ti 4+ and Mg 2+ substitutions on the Br/Bs ratio values was not obvious. Coercive force was mainly determined by the microstructure and magnetocrystalline anisotropy constant of the ferrites. In this research, with the increase of Ti 4+ and Mg 2+ substitutions, the advantageous influence by the decrease of magnetocrystalline anisotropy constant was more significant than the disadvantageous influence caused by the increase of closed pores. As a result, coercive force of the ferrites also decreased monotonously with the increase at x value.

  19. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  20. Cu 2 + and Al 3 + co-substituted cobalt ferrite

    Indian Academy of Sciences (India)

    X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emissionscanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) are used for studying the effect of variation in the Cu–Al substitution and its impact on particle size, magnetic properties such as Ms and Hc.

  1. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-10-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.

  2. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-01-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe_2O_4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract

  3. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.A. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Uddin, M.M., E-mail: mohi@cuet.ac.bd [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Khan, M.N.I. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh); Chowdhury, F.U.-Z. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Haque, S.M. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh)

    2017-02-15

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant. - Highlights: • Sn-substituted Ni-Zn ferrites with cubic spinel structure have been synthesized. • a{sub th} is calculated and well compared with a{sub expt}. • Dielectric unusual behavior has been successfully explained by the Rezlescu model. • Long τ (ns) is determined, can be utilized for memory and spintronics devices.

  4. Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors

    Science.gov (United States)

    Xiong, Pan; Huang, Huajie; Wang, Xin

    2014-01-01

    A ternary cobalt ferrite/graphene/polyaniline nanocomposite (CGP) is designed and fabricated via a facile two-step approach: cobalt ferrite nanoparticles dispersed on graphene sheets are achieved by a hydrothermal method, followed by coating with polyaniline (PANI) through in situ polymerization process. Electrochemical measurements demonstrate that the specific capacitance of the resulting ternary hybrid (CGP) is up to 1133.3 F g-1 at a scan rate of 1 mV s-1 and 767.7 F g-1 at a current density of 0.1 A g-1 using a three-electrode system, while 716.4 F g-1 at a scan rate of 1 mV s-1 and 392.3 F g-1 at a current density of 0.1 A g-1 using a two-electrode system, which are significantly higher than those of pure CoFe2O4, graphene and PANI, or binary CoFe2O4/graphene, CoFe2O4/PANI and graphene/PANI hybrids. In addition, over 96% of the initial capacitance can be retained after repeating test for 5000 cycles, demonstrating a high cycling stability. The extraordinary electrochemical performance of the ternary CGP nanocomposite can be attributed to its well-designed nanostructure and the synergistic effects of the individual components.

  5. Effect of Mg substitution on the magnetic properties of Ni–Zn ferrites

    Indian Academy of Sciences (India)

    Y Ramesh Babu

    2017-05-31

    May 31, 2017 ... C for 6h in air to investigate their structural and magnetic properties. X-ray diffraction ... The tetrava- lent substitutions have been found to improve the .... ducted on ferrites prepared by ceramic method [11] and wet chemical ...

  6. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  7. Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, P. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Silva, F. G. da [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Gomide, G.; Paula, F. L. O. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Campos, A. F. C. [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Perzynski, R. [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire PHENIX (France); Kern, C. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Depeyrot, J. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Aquino, R., E-mail: reaquino@unb.br [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil)

    2016-05-15

    We synthesize Zn-substituted cobalt ferrite (Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}, with 0 ≤ x ≤ 1) magnetic nanoparticles by a hydrothermal co-precipitation method in alkaline medium. The chemical composition is evaluated by atomic absorption spectroscopy and energy-dispersive X-ray spectroscopy techniques. The structure and morphology of the nanopaticles are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. XRD Rietveld refinements reveal the cation distribution among the tetrahedral (A) and octahedral (B) sites. It shows that up to x ~0.5 zinc ions occupy preferably A-sites, above which Zn ions begin also a gradual occupancy of B-sites. TEM images show nanoparticles with different shapes varying from spheres, cubes, to octahedrons. Hysteresis loop properties are studied at 300 and 5 K. These properties are strongly influenced by the Zn and Co proportion in the nanoparticle composition. At 300 K, only samples with high Co content present hysteresis. At 5 K, the reduced remanent magnetization ratio (M{sub R}/M{sub S}) and the coercivity (H{sub C}) suggest that nanoparticles with x < 0.5 have cubic anisotropy. A kink on the hysteresis loop, close to the remanence, is observed at low temperature. This feature is presumably associated to interplay between hard and soft anisotropy regimes in the powder samples.Graphical Abstract.

  8. The effect of cobalt substitution on magnetic hardening of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M., E-mail: mozafari@sci.ui.ac.ir [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Hadadian, Y. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of); Aftabi, A. [Department of Physics, University of Kurdistan, Sanandaj 66177-15175 (Iran, Islamic Republic of); Oveisy Moakhar, M. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of)

    2014-03-15

    In this work cobalt-substituted magnetite (Co{sub x}Fe{sub 1−x}Fe{sub 2}O{sub 4}, x=0, 0.25, 0.50 and 0.75) nanoparticles were synthesized by coprecipitation method and their structural and magnetic properties were investigated. X-ray diffraction was carried out and the results show that all of the samples have single phase spinel structure. Microstructure of the samples was studied using a field emission scanning electron microscope and the results show that particle sizes of the prepared nanoparticles were uniform and in the 50–55 nm range. Room temperature magnetic properties of the nanoparticles were measured by an alternating gradient force magnetometer and the results revealed that substituting cobalt for iron in magnetite structure, changes the magnetite from a soft magnetic material to a hard one. So that coercivity changes from 0 (a superparamagnetic state) to 337 Oe (a hard magnetic material), which is a remarkable change. Curie temperatures of the samples were determined by recording their susceptibility-temperature (χ–T) curves and the results show that by increasing cobalt content, Curie temperature of the samples also increases. Also χ–T curves of the samples were recorded from above Curie temperature to room temperature (first cooling), while the curves in the second heating and second cooling have the same behaviour as the first cooling curve. The results depict that all samples have different behaviour in the first cooling and in the first heating processes. This shows remarkable changes of the cation distribution in the course of first heating. - Highlights: • It is possible to get Co substituted magnetite nanoparticles by coprecipitation method. • Prepared nanoparticles have different cation distribution in comparison with that of bulk counterparts. • Co substitution increases coercivity of the magnetite.

  9. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Žalnėravičius, Rokas [State Research Institute Center for Physical Sciences and Technology (Lithuania); Paškevičius, Algimantas [Nature Research Centre, Laboratory of Biodeterioration Research (Lithuania); Kurtinaitiene, Marija; Jagminas, Arūnas, E-mail: arunas.jagminas@ftmc.lt [State Research Institute Center for Physical Sciences and Technology (Lithuania)

    2016-10-15

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe{sub 2}O{sub 4} Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract.

  10. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba

    2016-01-01

    Amine functionalized cobalt ferrite (AF-CoFe 2 O 4 ) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe 2 O 4 were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe 2 O 4 remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe 2 O 4 . The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe 2 O 4 surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe 2 O 4 MNPs can be considered as promising candidate for enzyme immobilization.

  11. Structural and magnetic Properties of TbZn-substituted calcium barium M-type nano-structured hexa-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Department of Electronics, University of York, York YO10 5DD (United Kingdom); Islam, M.U., E-mail: dr.misbahulislam@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Xu, Yongbing [Department of Electronics, University of York, York YO10 5DD (United Kingdom); Nanjing–York International Centre of Spintronics and Nano-Engineering, Nanjing University, Nanjing 210093 (China); Asif Iqbal, M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); National University of Science and Technology, College of E and ME, Islamabad (Pakistan); Ali, Irshad [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2014-03-15

    Highlights: • Tb–Zn substituted Ca{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19} samples exhibit single magnetoplumbite phase. • Lattice parameters a and c have increasing values. • Coercivity can be tuned at lower substitution level • Crystallites size was found in the range 18–25 nm by TEM and by Scherrer formula. • These hexa-ferrites are suitable for microwave devices and magnetic recording media. -- Abstract: Effect of TbZn substitution on the structural and magnetic properties of Ca{sub 0.5}Ba{sub 0.5−x}Tb{sub x}Zn{sub y}Fe{sub 12−y}O{sub 19}, (x = 0.00–0.10; y = 0.00–1.00) ferrites prepared by sol–gel auto combustion is reported. The synthesized samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Vibrating Sample magnetometery. The X-ray diffraction analysis confirmed single phase M-type hexa-ferrite structure. The lattice parameters were found to increase as TbZn contents increases, which is attributed to the ionic sizes of the implicated cations. The TbZn seems to be completely soluble in the lattice. The results of scanning electron microscopy and transmission electron microscopy shows that the grain size decreases with increase of TbZn substitution. The coercivity values (1277–2025 Oe) of all samples lies in the range of M-type hexa-ferrite and indicate that an increase of anisotropy was achieved by substitution of TbZn, while the size of nanoparticles was drastically reduced between 18 and 25 nm. The increased anisotropy and fine particle size are useful for many applications, such as improving signal noise ratio of recording devices.

  12. Synthesis and characterization of diethylenetriaminepentaacetic acid-chitosan-coated cobalt ferrite core/shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Runhua, Qin [Department of Physics, North University of China, Taiyuan 030051 (China); National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Li Fengsheng, E-mail: qinrunh@126.com [National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Wei, Jiang; Mingyue, Chen [National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China)

    2010-08-01

    Special diethylenetriaminepentaacetic acid (DTPA)-chitosan-coated cobalt ferrite core/shell nanoparticles have been synthesized via a novel zero-length emulsion crosslinking process and characterized via crosslinking degree, simultaneous thermogravimetric analysis and differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectrometer, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometry. The experimental results showed that the CoFe{sub 2}O{sub 4} nanoparticles were really encapsulated with a DTPA-chitosan hybrid layer and the nanocomposites were proved to be nearly superparamagnetic with saturation magnetization of 26.6 emu g{sup -1}.

  13. Nanoferrites of nickel doped with cobalt: Influence of Co{sup 2+} on the structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A.P.G. [Federal University of Rio Grande do Norte, Chemical Institute, Natal-RN 59078-970 (Brazil); Gomes, D.K.S., E-mail: dkarinne@yahoo.com.br [Federal University of Rio Grande do Norte, Graduate Program in Materials Science and Engineering, Laboratory of Catalysis and Materials, Natal-RN 59078-970 (Brazil); Coordination of Improvement of Higher Education Personnel, CAPES/PNPD (Brazil); Araújo, J.H., E-mail: humberto@dfte.ufrn.br [Federal University of Rio Grande do Norte, Department of Theoretical and Experimental Physics, Laboratory of Magnetism and Magnetic Materials, Natal-RN 59078-970 (Brazil); Melo, D.M.A., E-mail: daraujomelo@gmail.com [Federal University of Rio Grande do Norte, Chemical Institute, Natal-RN 59078-970 (Brazil); Oliveira, N.A.S. [Federal University of Rio Grande do Norte, Chemical Institute, Natal-RN 59078-970 (Brazil); Braga, R.M., E-mail: renata@cear.ufpb.br [Federal University of Paraíba, DEER-CEAR, João Pessoa–PB 58051-970 (Brazil)

    2015-01-15

    Nanoferrites of nickel substituted with cobalt of composition Ni{sub 1−x}Co{sub x}Fe{sub 2}O{sub 4} (0≤x≤0.75), were synthesized by combustion reaction assisted in microwaves. The influence of the substitution of Ni{sup 2+} by Co{sup 2+} content and the concentration of Co{sup 2+} in the structural and magnetic properties was investigated. The powders were prepared by combustion according to the concept of chemical propellants and heated in a microwave oven with a power of 7000 kW. The synthesized powders were characterized by absorption spectroscopy in the infrared region (FTIR), X-ray diffraction (XRD) together with Rietveld refinement, surface area (BET) method, scanning electron microscopy (MEV) and magnetic measurements (MAV). The results indicated that it was possible to obtain nickel ferrite doped with cobalt in all compositions and that an increase of cobalt concentration caused an increase in particle size (9.78–21.63 nm), a reduction in surface area, and reduction in magnetic concentrations greater than 50%. - Highlights: • Nanoferrites Ni{sub 1–x}Co{sub x}Fe{sub 2}O{sub 4}(0≤x≤0.75) synthesized by combustion reaction assisted. • The structural and magnetic properties of substitution of Ni{sup 2+} by Co{sup 2+} were investigate. • Combustion reaction takes spinel phase with suitable magnetic properties. • The ferrites presented characteristics of soft and intermediate magnetic materials.

  14. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  15. Solubility of cobalt in primary circuit solutions

    International Nuclear Information System (INIS)

    Lambert, I.; Joyer, F.

    1992-01-01

    The solubility of cobalt ferrite (CoFe 2 O 4 ) was measured in PWR primary circuit conditions, in the temperature range 250-350 deg C, and the results were compared with the ones obtained on magnetite and nickel ferrite. As in the former cases, it was found that, in the prevailing primary circuit conditions, the solubility of the cobalt ferrite was minimum at temperatures around 300 deg C, for cobalt as well as for iron. The equilibrium iron concentration is significantly lower than in the case of magnetite. The results are discussed in relation with the POTHY code, based only on thermodynamic laws and data, used for the prediction of the primary circuit chemistry

  16. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites

    Directory of Open Access Journals (Sweden)

    Aiman Zubair

    Full Text Available Europium (Eu doped spinel cobalt ferrites having composition CoEuxFe2−xO4 where x = 0.00, 0.03, 0.06, 0.09, 0.12 were fabricated by co-precipitation route. In order to observe the phase development of the ferrite samples, thermo-gravimetric analysis was carried out. The synthesized samples were subjected to X-ray diffraction analysis for structural investigation. All the samples were found to constitute face centered cubic (FCC spinel structure belonging to Fd3m space group. Scanning electron microscopy revealed the formation of nanocrystalline grains with spherical shape. Energy dispersive X-ray spectra confirmed the presence of Co, Eu, Fe and O elements with no existence of any impurity. The magnetic hysteresis curves measured at room temperature exhibited ferrimagnetic behavior with maximum saturation magnetization (Ms of 65 emu/g and coercivity (Hc of 966 Oe. The origin of ferrimagnetism in Eu doped cobalt ferrites was discussed in detail with reverence to the allocation of Co2+ and Fe3+ ions within the spinel lattice. The overall coercivity was increased (944–966 Oe and magnetization was decreased (65–46 emu/g with the substitution of Eu3+. The enhancement of former is ascribed to the transition from multi domain to single domain state and reduction in lateral is attributed to the incorporation of nonmagnetic Eu ions for Fe, resulting in weak superexchange interactions. Keywords: Europium doped cobalt ferrites, Co-precipitation, X-ray diffraction, Scanning electron microscopy, Magnetic properties

  17. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe{sub 2}O{sub 4} (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Siva Prasada Reddy, P.; Sarala Devi, G. [Inorganic and Physical Chemistry Division, Indian Institute Chemical Technology, Hyderabad 500607 (India); Sathiyaraj, S. [Department of Chemistry, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India)

    2016-01-15

    Spinel ferrite (MnZnFe{sub 2}O{sub 4}, MnCuFe{sub 2}O{sub 4}, MnNiFe{sub 2}O{sub 4} and MnCoFe{sub 2}O{sub 4}) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe{sub 2}O{sub 3} after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe{sub 2}O{sub 4} ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG). - Highlights: • The egg white support to achieve sample with shorter reaction time. • Manganese plays a significant role in sensor response. • Nature of the ferrites was affected with increasing annealing temperature.

  18. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba [Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur (India)

    2016-01-15

    Amine functionalized cobalt ferrite (AF-CoFe{sub 2}O{sub 4}) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe{sub 2}O{sub 4} were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe{sub 2}O{sub 4} remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe{sub 2}O{sub 4}. The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe{sub 2}O{sub 4} surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe{sub 2}O{sub 4} MNPs can be considered as promising candidate for enzyme immobilization.

  19. Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Anand

    2017-12-01

    Full Text Available In this work, the influence of zirconium substitution in cubic spinel nanocrystalline CoFe2O4 on the structural, morphological and dielectric properties are reported. Zirconium substituted cobalt ferrite Co1-xZrxFe2O4 (x = 0.7 nanoparticles were synthesized by sol-gel route. The structural and morphological investigations using powder X-ray diffraction and high resolution scanning electron microscope (HRSEM analysis are reported. Scherrer plot, Williamson–Hall analysis and Size-strain plot method were used to calculate the crystallite size and lattice strain of the samples. High purity chemical composition of the sample was confirmed by energy dispersive X-ray analysis. The atoms vibration modes of as synthesized nanoparticles were recorded using Fourier transform infrared (FTIR spectrometer in the range of 4000–400 cm-1. The temperature-dependent dielectric properties of zirconium substituted cobalt ferrite nanoparticles were also carried out. Relative dielectric permittivity, loss tangent and AC conductivity were measured in the frequency range 50 Hz to 5 MHz at temperatures between 323 K and 473 K. The dielectric constant and dielectric loss values of the sample decreased with increasing in the frequency of the applied signal.

  20. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  1. Al-substituted {alpha}-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Gupta, Shubhra; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2008-03-01

    Al-substituted {alpha}-cobalt hydroxide was prepared by a potentiostatic deposition process at -1.0 V (vs. Ag/AgCl) onto stainless steel electrodes by using a mixed aqueous solution of cobalt nitrate and aluminum nitrate. Their structure and surface morphology were studied by using X-ray diffraction analysis, energy dispersive X-ray spectroscopy and scanning electron microscopy. The SEM images showed changes in the nanostructure of {alpha}-cobalt hydroxide by the addition of Al. Galvanostatic charge-discharge curves showed a drastic improvement in the capacitive characteristics of {alpha}-cobalt hydroxide, with a specific energy increase from 11.3 to 18.7 Wh kg{sup -1} by the substitution of just 8 at.% Al, and a specific capacitance of 843 F g{sup -1} between 0 and 0.4 V. The cycle stability data suggest no significant changes in the discharge characteristics of {alpha}-cobalt hydroxide by the addition of Al. (author)

  2. Evidence of exchange-coupled behavior in chromium-cobalt ferrite nanoparticles

    Science.gov (United States)

    Tanbir, Kamar; Sharma, Lalit Kumar; Aakash; Singh, Rakesh Kumar; Choubey, Ravi Kant; Mukherjee, Samrat

    2018-06-01

    Cr doped cobalt ferrite nanoparticles were synthesized with the generic formula Co1-xCrxFe2O4 (x = 0, 0.05, 0.15, 0.25) through standard chemical co-precipitation method. XRD studies confirmed the pure spinel cubic structure belonging to Fd 3 bar m space group. From the Williamson-Hall plots, crystallite sizes were found to lie within the range (42 ± 1) nm for the different doped samples. The lattice parameter was found to decrease linearly with increase in the concentration of Cr3+ ion. The magnetic behavior of the samples was determined by M-H studies at 300 K, field cooled (5 T) at 5 K and temperature dependent studies. The M-H at 300 K show soft magnetic behavior whereas the M-H plots at 5 K predict the existence of in-homogeneity of the exchange interactions due to strong exchange coupling between the spins at the core and the surface of the nanoparticles.

  3. Spin Hall magnetoresistance at the interface between platinum and cobalt ferrite thin films with large magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Takeshi Tainosho

    2017-05-01

    Full Text Available The recently discovered spin Hall magnetoresistance (SMR effect is a useful means to obtain information on the magnetization process at the interface between a nonmagnetic metal and ferromagnetic insulators. We report the SMR measurements at the interface between platinum and cobalt ferrite thin films for samples with two different preferential directions of magnetization (out-of-plane and in-plane. The directional difference of the magnetic easy axis does not seem to influence the value of SMR.

  4. A comparative study of NiZn ferrites modified by the addition of cobalt

    Directory of Open Access Journals (Sweden)

    Pereira S.L.

    1999-01-01

    Full Text Available Off-stoichiometric NiZn ferrite was obtained by hydrothermal process and compacted in torus form under different pressures. Two samples A1 and A2 - cobalt doped (0.5 % were sintered at 1573 K in air atmosphere during 3 h. The magnetic properties were studied by vibrating sample magnetometry, Mössbauer spectroscopy and complex impedanciometry. X-ray diffraction and Hg porosimetry were used in order to determine the average grain size and the type of packing in the samples. Both samples exhibited superparamagnetic behavior in the hysteresis loop. This effect does not agree with Mössbauer results, which were fitted using Normos, a commercial computer program. All samples parameters were compared.

  5. Moessbauer study of spin alignment in substituted lithium ferrites

    International Nuclear Information System (INIS)

    Abeledo, C.R.; Frankel, R.B.

    1977-01-01

    To explain the decrease of magnetic moment in zinc substituted lithium ferrites Dionne has proposed a model which includes canting of the B sublattice moments as zinc is substituted in the A sublattice. Moessbauer spectroscopy in external magnetic fields is applied to investigate the existence of canting in (Lisub(0.5)Fesub(0.5))sub(1-x)Znsub(x)Fesub(2)Osub(4) with x=0 and x=0.3. The samples used were either polycrystalline powders or circular disks cut from pressed blocks and lapped down to a thickness of 0.1mm. In the x=0 samples the Δm=0 Moessbauer lines vanish for external fields below 10kOe. For x=0.3 the Δm=0 lines vanish at external magnetic fields close to 15kOe. results seem to indicate a small canting angle in the x=0.3 samples

  6. Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Greene

    2014-04-01

    Full Text Available In this work, CoFe2O4@SiO2@TiO2 core-shell magnetic nanostructures have been prepared by coating of cobalt ferrite nanoparticles with the double SiO2/TiO2 layer using metallorganic precursors. The Transmission Electron Microscopy (TEM, Energy Dispersive X-Ray Analysis (EDX, Vibrational Sample Magnetometer (VSM measurements and Raman spectroscopy results confirm the presence both of the silica and very thin TiO2 layers. The core-shell nanoparticles have been sintered at 600 °C and used as a catalyst in photo-oxidation reactions of methylene blue under UV light. Despite the additional non-magnetic coatings result in a lower value of the magnetic moment, the particles can still easily be retrieved from reaction mixtures by magnetic separation. This retention of magnetism was of particular importance allowing magnetic recovery and re-use of the catalyst.

  7. Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

    Science.gov (United States)

    Dabagh, Shadab; Chaudhary, Kashif; Haider, Zuhaib; Ali, Jalil

    2018-03-01

    Substitution of cobalt (Co2+) ions in cobalt ferrite (CoFe2O4) with copper (Cu2+) and aluminum (Al3+) ions allows variations in their electric and magnetic properties which can be optimized for specific applications. In this article, synthesis of inverse-spinel Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nanoparticles by substituting Cu2+ and Al3+ ions in CoFe2O4 via co-precipitation method is reported. By controlling copper and aluminum (Cu-Al) substituent ratio, the magnetic moment and coercivity of synthesized cobalt ferrite nanoparticles is optimized. The role of substituents on the structure, particle size, morphology, and magnetic properties of nano-crystalline ferrite is investigated. The Co1-xCuxFe2-xAlxO4 (0.0 ≤ x≤ 0.8) nanoparticles with crystallite size in the range of 23.1-26.5 nm are observed, 26.5 nm for x = 0.0-23.1 nm for x = 0.8. The inverse-spinel structure of synthesized Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nano-particles is confirmed by characteristic vibrational bands at tetrahedral and octahedral sites using Fourier transform infrared spectroscopy. A decreases in coercive field and magnetic moment is observed as Cu-Al contents are increased (x = 0.0-0.8). The positive anisotropy of synthesized particles Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) is obtained in the range 1.96 × 105 J/m3 for x = 0.0 to 0.29 × 105 J/m3 for x = 0.8.

  8. Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites

    Science.gov (United States)

    Nikzad, Alireza; Parvizi, Roghaieh; Rezaei, Ghasem; Vaseghi, Behrooz; Khordad, Reza

    2018-02-01

    A series of Co- and Gd-substituted NiFe2O4 ferrite nanoparticles with the formula Ni1- x Co x Fe2- y Gd y O4 (where x = 0.0-1.0 and y = 0.0-0.1) have been successfully synthesized using a hydrothermal method. X-ray diffraction and field emission scanning electron microscopy results indicated that a highly crystallized spherical ferrite nanoparticle structure was obtained along with an increase in the lattice parameters. Compositional analysis of the prepared nanoferrite powders has been carried out using energy-dispersive x-ray (EDX) spectra. The EDX analysis reveals the presence of Ni, Co, Gd and Fe elements in the specimens. Magnetization and the coercive field improved dramatically with an increase in the amount of cobalt and gadolinium added, attributed to the redistribution of cations in the spinel nanoferrite structure. Saturation magnetization and coercivity values up to 99 emu/g and 918 Oe, respectively, were measured using a vibration sample magnetometer at room temperature. Comparative microwave absorption experiments demonstrated that the reflection loss (RL) properties enhanced with increasing substitution of cations in the Ni-ferrite spinel structure for an absorber thickness of 1.8 mm. A maximum RL of - 26.7 dB was obtained for substituted Ni-Co-Gd nanoferrite with x = 1.0 and y = 0.1 at a frequency of 9.4 GHz with a bandwidth of 3.6 GHz (RL ≤ - 10 dB). Experimental results revealed that the synthesized nanoparticles possessed great potential in microwave absorption applications.

  9. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

    Science.gov (United States)

    Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.

    2017-10-01

    In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

  10. Significant reduction of saturation magnetization and microwave-reflection loss in barium-natural ferrite via Nd3+ substitution

    Science.gov (United States)

    Widanarto, W.; Ardenti, E.; Ghoshal, S. K.; Kurniawan, C.; Effendi, M.; Cahyanto, W. T.

    2018-06-01

    To minimize the signal degradation, many electronic devices require efficient microwave absorbers with very low reflection-losses within the X-band. We prepared a series of trivalent neodymium-ion (Nd3+) substituted barium-natural ferrite using a modified solid-state reaction method. The effect of the Nd3+-ion content on the structure, surface morphology, magnetic properties, and microwave reflection loss was studied. The composites were characterized using X-ray diffraction, a vibrating sample magnetometer, scanning electron microscopy, and a vector network analyzer. The XRD patterns of the sample without Nd3+ reveal the presence of BaFe12O19 (hexagonal) and BaFe2O4 (rhombohedral) phases. Furthermore, a new hexagonal crystal phase of Ba6Nd2Fe4O15 appeared after substituting Nd3+. The average size of the prepared barium-natural ferrite particles was estimated to be between 0.4 and 0.8 μm. Both saturation magnetization and microwave reflection losses of these barium-ferrites were significantly reduced by increasing the Nd3+ content.

  11. Preparation of cobalt-zinc ferrite (Co0.8Zn0.2Fe2O4) nanopowder via combustion method and investigation of its magnetic properties

    International Nuclear Information System (INIS)

    Yousefi, M.H.; Manouchehri, S.; Arab, A.; Mozaffari, M.; Amiri, Gh. R.; Amighian, J.

    2010-01-01

    Research highlights: → Cobalt-zinc ferrite was prepared by combustion method. → Properties of the sample were characterized by several techniques. → Curie temperature was determined to be 350 o C. -- Abstract: Cobalt-zinc ferrite (Co 0.8 Zn 0.2 Fe 2 O 4 ) was prepared by combustion method, using cobalt, zinc and iron nitrates. The crystallinity of the as-burnt powder was developed by annealing at 700 o C. Crystalline phase was investigated by XRD. Using Williamson-Hall method, the average crystallite sizes for nanoparticles were determined to be about 27 nm before and 37 nm after annealing, and residual stresses for annealed particles were omitted. The morphology of the annealed sample was investigated by TEM and the mean particle size was determined to be about 30 nm. The final stoichiometry of the sample after annealing showed good agreement with the initial stoichiometry using atomic absorption spectrometry. Magnetic properties of the annealed sample such as saturation magnetization, remanence magnetization, and coercivity measured at room temperature were 70 emu/g, 14 emu/g, and 270 Oe, respectively. The Curie temperature of the sample was determined to be 350 o C using AC-susceptibility technique.

  12. Effects of In{sub 3+} substitution on structural properties, cation distribution and Mössbauer spectra of CoFe{sub 2}O{sub 4} ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ravi, E-mail: ranade65@gmail.com [Centre for Material Science and Engineering, National Institute of Technology Hamirpur (H.P.)-177005 (India); Pandit, Rabia; Sharma, K. K.; Kaur, Pawanpreet [Department of Physics, National Institute of Technology Hamirpur (H.P.)-177005 (India)

    2014-04-24

    The use of non-destructive, high resolution technique namely Mössbauer spectroscopy is discussed in detail for the investigation of structural and magnetic properties of Fe based indium substituted cobalt ferrites. The polycrystalline samples of CoFe{sub 2−x}In{sub x}O{sub 4} (x = 0.2, 0.6) were prepared by double sintering solid state reaction method. To ensure a single phase formation of the as prepared samples the X-ray diffraction (XRD) data of the powdered samples was Rietveld refined using Fd3m space group. An excellent agreement is obtained between the integrated intensity ratios of 57 Fe spectra at A- and B-sites and those calculated on the basis of cation distribution the cation distribution obtained data analysis. The results of Mössbauer spectra and cation distribution are also correlated well with magnetization versus applied field (M-H) study.

  13. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    Science.gov (United States)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  14. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chaitali, E-mail: chaitalidey29@gmail.com [Centre for Research in Nanoscience & Nanotechnology, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Baishya, Kaushik [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Arup [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Goswami, Madhuri Mandal, E-mail: madhuri@bose.res.in [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Ajay [Dept. of Applied Optics and Photonics, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Mandal, Kalyan [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India)

    2017-04-01

    In this study, we report a novel synthesis method, characterization and application of a new class of ferromagnetic cubic cobalt ferrite magnetic nanoparticles (MNPs) for hyperthermia therapy and temperature triggered drug release. The MNPs are characterized by XRD, TEM, FESEM, AC magnetic hysteresis and VSM. These MNPs were coated with folic acid and loaded with an anticancer drug. The drug release studies were done at two different temperatures (37 °C and 44 °C) with progress of time. It was found that higher release of drug took place at elevated temperature (44 °C). We have developed a temperature sensitive drug delivery system which releases the heat sensitive drug selectively as the particles are heated up under AC magnetic field and controlled release is possible by changing the external AC magnetic field.

  15. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling.

    Science.gov (United States)

    Mehrabi, Fatemeh; Vafaei, Azam; Ghaedi, Mehrorang; Ghaedi, Abdol Mohammad; Alipanahpour Dil, Ebrahim; Asfaram, Arash

    2017-09-01

    In this research, a selective, simple and rapid ultrasound assisted dispersive solid-phase micro-microextraction (UA-DSPME) was developed using cobalt ferrite nanoparticles loaded on activated carbon (CoFe 2 O 4 -NPs-AC) as an efficient sorbent for the preconcentration and determination of Maxilon Red GRL (MR-GRL) dye. The properties of sorbent are characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating sample magnetometers (VSM), Fourier transform infrared spectroscopy (FTIR), Particle size distribution (PSD) and Scanning Electron Microscope (SEM) techniques. The factors affecting on the determination of MR-GRL dye were investigated and optimized by central composite design (CCD) and artificial neural networks based on genetic algorithm (ANN-GA). CCD and ANN-GA were used for optimization. Using ANN-GA, optimum conditions were set at 6.70, 1.2mg, 5.5min and 174μL for pH, sorbent amount, sonication time and volume of eluent, respectively. Under the optimized conditions obtained from ANN-GA, the method exhibited a linear dynamic range of 30-3000ngmL -1 with a detection limit of 5.70ngmL -1 . The preconcentration factor and enrichment factor were 57.47 and 93.54, respectively with relative standard deviations (RSDs) less than 4.0% (N=6). The interference effect of some ions and dyes was also investigated and the results show a good selectivity for this method. Finally, the method was successfully applied to the preconcentration and determination of Maxilon Red GRL in water and wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of Gamma Radiation and Substitution on some Physical Properties for M-type Hexagonal Ferrites

    International Nuclear Information System (INIS)

    El-Shershaby, H.A.A.

    2014-01-01

    Aluminum-substituted barium hexagonal ferrite particles BaAlxFe_1_2_-_xO_1_9 with 0 ≤ x ≤ 3.5 have been prepared by solid state reaction method. The qualitative phase analysis of studied powder samples and the morphology of powders after milling were determined using the x-ray diffraction method and scanning electron microscopy, respectively. The barium hexagonal ferrite phase appeared to be the main component of the samples. The crystal size of BaFe_1_2O_1_9 phase is above 25 nm. The scanning electron microscopy images showed irregular shape and size of powder particles. According to the analytical method findings, the type of crystal lattice was confirmed to be hexagonal and the parameters of unit cell volume and x-ray density were determined. It is shown that such parameters decrease with increasing Al substitution from 699.019 to 696.702 A"3 and 5.258 to 4.828 gm/cm"3, respectively. The values of lattice parameters, grain size, micro strain, and dislocation density of all samples were calculated. The c/a value obtained from the x-ray indicates that notable changes of the atomic lattice anisotropy were induced by the Al-substitution and preheat treatments. Characteristics such as the inter chain distance and interplanar distance parameter, which were obtained in the analytical method calculations, decrease with increasing Al substitution, in addition to the fact that they are related to the binding energy. Various parameters in the structural features of the aluminum substituted barium hexagonal ferrite particles BaAlxFe_1_2_-_xO_1_9 with 0 ≤ x ≤ 3.5 have been studied. The infrared transmission spectrum was measured in the wave- number region 5000 – 200 cm−1 at room temperature. The results were interpreted in terms of the vibrations of the isolated molecular units in such a way to preserve the tetrahedral and octahedral clusters of metal oxides in the barium aluminum hexagonal ferrites. The infrared features are assigned to Fe-O and Ba-O bonds in M

  17. Synthesized and characterization of AI and Gd substitute ferrite for microwave

    International Nuclear Information System (INIS)

    Sudjono, Hans K.; Muljadi; Soepriyanto, Syony

    2000-01-01

    Ferrite for microwave components has been synthesized from garnet ceramics (YIG)substituted by AI and Gd. Magnetic permeability and magnetic polarization changes according to the AI 3+ ion addition. XRD is performed to determined the sintering products at various temperatures. For some samples the magnetic property and performance in microwave region was tested. The testing is conducted in the form of completely assembled circulator which gives data on isolation, insertion loss when microwave circuit analyzer was employed. Due to high level of porosity insertion lost is still to large, improved process is necessary

  18. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4 magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Directory of Open Access Journals (Sweden)

    Abul Kalam

    2018-03-01

    Full Text Available Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4 photocatalysts were synthesized by modified Solvothermal (MST process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, thermo gravimetric analysis (TGA, Fourier transform infrared (FT-IR, UV–visible (UV–vis spectroscopy and N2 adsorption–desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590–619 cm−1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0–76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst. Keywords: Cobalt ferrite, Photocatalysis, Kinetics, Optical properties, Surface area studies

  19. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    Science.gov (United States)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  20. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Science.gov (United States)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  1. Influence of the preparation route on the magnetic and structural properties of cobalt ferrites

    International Nuclear Information System (INIS)

    Revoredo Junior, Frederico Alves; Silva Junior, Jose Holanda da; Hernandez, Eduardo Padron

    2014-01-01

    Cobalt ferrite nanoparticles were produced using two methods of preparation, co-precipitation and reaction in the solid state. In synthesis made by solid state reaction was performed by heat treatment at 1200 ° C for four hours alternating with triturations to increase the efficiency of the process. The synthesis by coprecipitation was made with different flows of addition of alkali (NaOH). All samples were structurally characterized by X-ray diffraction and the average size of the crystals was obtained by Scherrer's formula and the Williamson-Hall method. The magnetic measurements were made as a function of applied magnetic field and temperature. Qualitative analyzes of energy dispersive spectroscopy defined the elements of sampling and analysis. Finally, Mössbauer spectroscopy analysis defined the magnetic character of the samples. (author)

  2. Substitution of cobalt alloying in PWR primary circuit gate valves

    International Nuclear Information System (INIS)

    Cachon, L.; Sudreau, F.; Brunel, L.

    1995-01-01

    The object of this study is qualify cobalt-free alternative alloys for valve applications. This paper focus on tribological characterization of numerous coatings is done by using the first one, of a classical type. Then tests are performed with the second one which simulates solicitations supported by gate valves in primary circuit of PWR. 35% Ni-Cr - 65% Cr 3 C 2 coating, deposited by detonation gun technology, gives us hope to find a substitute of Stelite 6. (author). 5 refs., 16 figs., 2 tabs

  3. Cu{sup 2+}-modified physical properties of Cobalt-Nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhar Babu, K.; Rao, K. Rama [Department of Physics, Andhra University, Visakhapatnam, Andhra Pradesh 530003 (India); Rajesh Babu, B., E-mail: rajeshbabu.bitra@gmail.com [Department of Physics, GVP College of Engineering for Women, Visakhapatnam, Andhra Pradesh 530048 (India)

    2017-07-15

    Highlights: • In this work, Influence of Cu and cation redistribution is discussed in detail. • Theoretical and experimental results related to distribution, lattice constant are found to be consistent. • Substitution of Cu significantly modifies the magnetization, permeability, grain size and resistivity. - Abstract: The present study focused on structural, magnetic and electrical properties of Cu substituted Co-Ni ferrite nanoparticles synthesized by sol-gel combustion method. X-ray diffraction, Fourier Transform infra-red spectroscopy (FTIR), magnetization, magnetic permeability and resistivity measurements were carried out to study the structural, magnetic and electrical properties. X-ray diffraction pattern confirms single phase spinel formation. Crystallite size determined from Scherer’s method increases with Cu concentration. Distribution of cations was estimated from X-ray line intensity calculations, suggest that the majority of Cu{sup 2+} ions occupy octahedral (B) site. Saturation magnetization exhibit increasing trend from 40 emu/g (x = 0.0) to 60 emu/g (x = 0.4) with Cu concentration, though higher magnetic moment Ni ions are replaced by lower magnetic moment Cu ions. Magnetic permeability increases with increasing Cu concentration and shows a flat profile in the frequency range 1–50 MHz. Significant modification in DC electrical resistivity and activation energy are explained on the basis of hopping mechanism.

  4. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  5. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  6. Mössbauer spectral studies of Ti{sup 4+} substituted nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kale, C.M., E-mail: cmk1973@rediffmail.com [Department of Physics, Indraraj Art, Commerce, and Science College, Sillod, Aurangabad (India); Bardapurkar, P.P. [S.N. Arts, D.J. Malpani Commerce and B.N. Sarda Science College, Sangamner (India); Shukla, S.J. [Department of Physics, P.G. Research Centre, Deogiri College, Aurangabad (India); Jadhav, K.M. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, M.S. (India)

    2013-04-15

    Polycrystalline ferrites with general formula Ni{sub 1+x}Ti{sub x}Fe{sub 2−2x}O{sub 4}, where 0.0≤x≤0.7 were prepared through double sintering ceramic technique using A.R. grade oxides of respective ions. The phase purity of all the samples was checked by X-ray diffraction (XRD) technique. The X-ray diffraction pattern shows all reflections belonging to cubic spinel structure. No extra peak other than cubic spinel was observed in the X-ray diffraction pattern. Using XRD data, the lattice constant was calculated for all the compositions. The lattice constant decreases linearly with Ti{sup 4+} substitutions and obeys Vegard's law. The magnetic properties (saturation magnetization, magneton number, coercivity) were investigated using pulse field hysteresis loop technique at room temperature. The values of coercivity decreases with Ti{sup 4+} content increases. The saturation magnetization and magneton number both significantly decreases with increase in Ti{sup 4+} substitution. Mössbauer spectra of all the samples exhibit sextet. The Mössbauer parameters obtained from Mössbauer spectrum revealed the influence of titanium substitution. -- Highlights: ► XRD synthesis of Ti{sup 4+} substituted spinel structure. ► Non-magnetic Ti{sup 4+} substitution is much effective on magnetic properties. ► Mössbauer spectrum at room temperature influence on hyperfine field for both (A) and [B] sites. ► Zeeman pattern with small isomer shift exhibits small hyperfine field.

  7. Ordering principles for tetrahedral chains in Ga- and Co-substituted YBCO intergrowths

    International Nuclear Information System (INIS)

    Milat, O.; Krekels, T.; Tendeloo, G. van; Amelinckx, S.

    1993-01-01

    A model for superstructure ordering in the ''chain'' layers of Ga (Co) substituted YBCO intergrowths with general formula (REO 2 ) N Sr 2 MCu 2 O 5 (M Co, Ga; n = 1, 2, ..) is proposed. By Ga or Co substitution for Cu, the structure of the ''chain'' layer changes: instead of the CuO 4 planar squares, the chains consist of MO 4 tetrahedra (M = Ga, Co) running along the [110] perovskite direction. The existing model for the Ga substituted ''123'' implies that all the chains are the same. Our new model is based on the results of Electron diffraction and High-resolution electron microscopy investigations. The model reveals the occurene of two types of chains as a consequence of ''opposite'' ordering between neighbouring tetrahedra. The corner linked tetrahedra in each chain appear as alternatingly rotated in opposite sense, and a chain itself, as being displaced with respect to the underlying structure in one of two senses; either forth (right) or back (left) along the chain direction. The regular alternation of chains of opposite type doubles the periodicity within a layer and induces the possibility for intrinsic disorder in the chain layer stacking sequence. The planar superstructure and a staggered stacking of the tetrahedral chain layers is found irrespective of the rest of the intergrowth structure. Superstructure ordering in the case of Co substitution is more perfect than for the Ga substitution. (orig.)

  8. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Abstract. Synthesis of non-collinear (spin canted) ferrites having the formula, CoCdFe2−O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ ...

  9. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Sawant, V.J.; Bamane, S.R.; Shejwal, R.V.; Patil, S.B.

    2016-01-01

    The functionalization and surface engineering of CoFe 2 O 4 and ZnFe 2 O 4 nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV–vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids. - Highlights: • CoFe 2 O 4 and ZnFe 2 O 4 nanoparticles were surface functionalized with PEG and Chitosan respectively. • Hydrophobic multi therapeutic anticancer drug curcumin was loaded into these nanohybrids and their structure, morphologies were confirmed. • The effects of PEG and Chitosan coating over ferrites for curcumin release have been elaborated, and the Chitosan coated curcumin loaded Zinc ferrite nanohybrid exhibited higher drug delivery and anticancer effects.

  10. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, V.J., E-mail: v11131@rediffmail.com [Department of Chemistry, Smt.K.W.College, Sangli, MS 416416 (India); Bamane, S.R. [Department of Chemistry, Raja Shripatrao Bhagwantrao College, Aundh, Satara, MS (India); Shejwal, R.V. [L.B.S. College, Satara, MS (India); Patil, S.B. [A.Birnale College of Pharmacy, Sangli, MS (India)

    2016-11-01

    The functionalization and surface engineering of CoFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV–vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids. - Highlights: • CoFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} nanoparticles were surface functionalized with PEG and Chitosan respectively. • Hydrophobic multi therapeutic anticancer drug curcumin was loaded into these nanohybrids and their structure, morphologies were confirmed. • The effects of PEG and Chitosan coating over ferrites for curcumin release have been elaborated, and the Chitosan coated curcumin loaded Zinc ferrite nanohybrid exhibited higher drug delivery and anticancer effects.

  11. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  12. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E.; Souza Junior, F.G.

    2013-01-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  13. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Jain, Palak; Singh, Mandeep

    2015-07-15

    In this paper we report the variation in structural and magnetic properties of ternary ferrite nanoparticles (NPs) having stoichiometery Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) and pure spinel ferrites MFe{sub 2}O{sub 4} (M = Mg, Co). NPs with average particle diameter of 25–45 nm were synthesized employing self-propagating oxalyl dihydrazide - metal nitrate combustion method. The products were characterized using X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM) and FT-IR spectroscopy. FT-IR spectral analysis revealed two bands centered at 560 and 440 cm{sup −1} for tetrahedral and octahedral metal–oxygen bond stretching. Zinc doping caused red shift in the frequency band of tetrahedral M−O stretching. XRD powder diffraction patterns confirmed the formation of spinel ferrite nanoparticles, expansion of the lattice on zinc doping and enhancement of spinel phase purity in the doped ferrites. Cobalt ferrite displayed lowering of the magnetic parameters on zinc doping which further decreased in ternary ferrites Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4}Fe{sub 2}O{sub 4} on replacing cobalt ions with non-magnetic magnesium ions up to x = 0.4. At x = 0.6 reverse trend was observed and Ms was enhanced. Magnesium zinc ferrite Mg{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4} with high value of Ms was obtained. Combustion process employed in the present studies serves as a low temperature facile route for the synthesis and structural analysis of ternary doped ferrite nanoparticles. - Highlights: • Ternary doped cobalt magnesium zinc ferrite nanoparticles are synthesized. • FT-IR displayed red shift in tetrahedral stretching band on Zinc doping. • Expansion of lattice and enhancement of spinel phase purity on zinc doping. • The variation in saturation magnetization (Ms) on doping is explained.

  14. High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Chandramohan, P.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2016-12-01

    High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe{sub (2−x)}Cr{sub x}O{sub 4} (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N{sub 2}H{sub 4}. Dissolution of oxide was found to be stoichiometric. - Highlights: • Dissolution of NiFe{sub (2−x)}Cr{sub x}O{sub 4} was remarkably increased at 160 °C in NTA medium. • The dissolution was significantly decreasing with the increase in Cr content in the oxide. • Dissolution rate is dependent on the lability of metal-oxo bonds. • The rate of dissolution was not significantly reduced in the presence of N{sub 2}H{sub 4.} • NTA at high temperature is effective for decontamination of stainless steel surfaces.

  15. Impact of Gd3+/graphene substitution on the physical properties of magnesium ferrite nanocomposites

    Science.gov (United States)

    Ateia, Ebtesam E.; Mohamed, Amira T.; Elsayed, Kareem

    2018-04-01

    Magnesium nano ferrite with composition MgFe2O4, MgGd0.05Fe1.95O4 and MgFe2O4 - 5 wt% GO was synthesized using a citrate auto-combustion method. The crystal structure, morphology, and magnetic properties of the investigated samples were studied. High Resolution Transmission Electron Microscopy (HRTEM) images show that the substitution of small amounts of Gd3+/GO causes a considerable reduction of the grain size. Studies on the magnetic properties demonstrate that the coercivity of GO-substituted magnesium nano ferrites is enhanced from 72 Oe to 203 Oe and the magnetocrystalline anisotropy constant increases from 1171 to 3425 emu Oe/gm at 300 K. The direct effects of graphene on morphology, crystal structure as well as the magnetic properties reveal that the studied sample are suitable for turbidity color and removal. The magnetic entropy change is estimated from magnetization data using Maxwell relation. The calculated Curie temperature from the Curie-Weiss law and the maximum entropy change are in good agreement with each other. Based on UV diffuse reflectance spectroscopy studies, the optical band gaps are in the range of 1.4-2.15 eV. In addition, the combination of small particle size and good magnetic properties makes the investigated samples act as a potential candidates for superior catalysts, adsorbents, and electromagnetic wave absorbers.

  16. Arsenic in ZnO and GaN: substitutional cation or anion sites?

    CERN Document Server

    Wahl, Ulrich; Rita, Elisabete; Marques, Ana Claudia; Alves, Eduardo; Carvalho Soares, José

    2007-01-01

    We have determined the lattice location of ion implanted As in ZnO and GaN by means of conversion electron emission channeling from radioactive $^{73}$As. In contrast to what one might expect from its nature as a group V element, we find that As does not occupy substitutional O sites in ZnO but in its large majority substitutional Zn sites. Arsenic in ZnO is thus an interesting example for an impurity in a semiconductor where the major impurity lattice site is determined by atomic size and electronegativity rather than its position in the periodic system. In contrast, in GaN the preference of As for substitutional cation sites is less pronounced and about half of the implanted As atoms occupy Ga and the other half N sites. Apparently, the smaller size-mismatch between As and N and the chemical similarity of both elements make it feasible that As partly substitutes for N atoms.

  17. Microstructure and magnetic properties of M-type strontium hexagonal ferrites with Y-Co substitution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chaocheng [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Liu, Xiansong, E-mail: xiansongliu@ahu.edu.cn [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Engineering Technology Research Center of Magnetic Materials, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Feng, Shuangjiu; Rehman, Khalid Mehmood Ur; Li, Mingling; Zhang, Cong; Li, Haohao; Meng, Xiangyu [School of Physics and Materials Science, Anhui University, Hefei 230601 (China)

    2017-08-15

    Highlights: • Y-Co substitution in strontium hexaferrites have been prepared and investigated systematically for the first time. • Lattice constants a and c for all the samples are very different with that of unsubstituted ferrites. • The M{sub s} and H{sub c} are very high, from which may provide an important significance of research and development of high performance products. - Abstract: According to the formula Sr{sub 0.95}Y{sub 0.05}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.00, 0.08, 0.16, 0.24, 0.32, 0.40), the replacement of Y-Co in M-type strontium hexagonal ferrites have been successfully prepared by ceramic process for the first time. The phase compositions of magnetic powders were examined by X-ray diffraction. The results of XRD showed that the single phase was obtained in magnetic powders with the increase of Co content (x), and α-Fe{sub 2}O{sub 3} occurred when x > 0.24. The morphology of the magnets was investigated by scanning electron microscopy (SEM). The micro-morphology of the particles exhibited the uniform plane hexagonal structures of M-type ferrites with different Co content. Magnetic properties of the ferrite magnets were measured by a physical property measurement system-vibrating sample magnetometer (PPMS-VSM). The M{sub s} increases constantly with the increase of Co content. The H{sub c} first increases and then decreases with the increase of Co content, and the value of coercivity (H{sub c}) is up to 3774 Oe when x = 0.24.

  18. Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajnish [Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801103 (India); Singh, Rakesh Kr. [Aryabhatta Center for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna 800001 (India); Zope, Mukesh Kumar [Indira Gandhi Institute of Medical Sciences, Sheikhpura, Patna 800014 (India); Kar, Manoranjan, E-mail: mano@iitp.ac.in [Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801103 (India)

    2017-06-15

    Highlights: • Increase of lattice parameter due to Pb substitution in CFO. • Magnetism due to lattice strain in nonmagnetic (Pb) substituted CFO. • Saturation magnetization increases up to 2% Pb concentration. • Magnetocrystalline anisotropy constant increases up to 2% Pb concentration. • Existence of non-collinear spin structure which can be explained by three sublattice model of Yafet and Kittel. - Abstract: Co{sub 1−x}Pb{sub x}Fe{sub 2}O{sub 4} (x = 00–0.15) have been synthesized using citric acid modified sol-gel method. Samples for x ≤ 0.02 have been ball milled to reduce the particle size. Hence, all the materials under the study are in almost equal crystallite size (∼15 nm). The phase purity and structural study have been carried out using X-ray powder diffraction (XRD) technique. The Rietveld refinement of XRD patterns reveals the increasing lattice parameter with the lead (Pb) concentration. Detailed analysis of the Raman spectroscopy data supports the XRD pattern analysis results. Magnetic hysteresis loop measurements have been performed using Vibrating Sample Magnetometer (VSM) at room temperature over field range of ±20 kOe. Magnetocrystalline anisotropy constant was calculated using Law of Approach (LA) to saturation, which shows increasing behavior till 2% Pb concentration. The large difference in experimental and theoretical saturation magnetic moment per formula unit shows existence of three sublattice model suggested by Yafet-Kittel.

  19. Following the Formation of Active Co(III) Sites in Cobalt Substituted Aluminophosphates Catalysts by In-Situ Combined UV-VIS/XAFS/XRD Technique

    International Nuclear Information System (INIS)

    Sankar, Gopinathan; Fiddy, Steven; Harvey, Ian; Hayama, Shusaku; Bushnell-Wye, Graham; Beale, Andrew M.

    2007-01-01

    Cobalt substituted aluminophosphates, CoAlPO-34 (Chabazite structure) and DAF-8 (Phillipsite structure) were investigated by in situ combined XRD/EXAFS/UV-VIS technique. In-situ combined XRD, Co K-edge EXAFS and UV-Vis measurements carried out during the calcination process reveal that CoAlPO-34 containing 10 wt percent cobalt is stable and the cobalt ions are converted from Co(II) in the as synthesised form to Co(III); DAF-8 containing about 25 percent cobalt is not stable and does not show change in oxidation state

  20. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Directory of Open Access Journals (Sweden)

    S. Yonatan Mulushoa

    2018-03-01

    Full Text Available Cu-Cr substituted magnesium ferrite materials (Mg1 − xCuxCrxFe21 − xO4 with x = 0.0–0.7 have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0 to 0.105 × 108 Ω cm (x = 0.7. Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7. Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size. Keywords: Solid state reaction, X-ray diffraction, Crystallite size, Magnetic and electrical properties, Saturation magnetization

  1. The role of praseodymium substituted ions on electrical and magnetic properties of Mg spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com; Ahmad, Ishtiaq; Kanwal, Muddassara; Murtaza, Ghulam; Ali, Irshad; Khan, Sajjad Ahmad

    2017-04-15

    Spinel ferrites with composition MgPr{sub y}Fe{sub 2−y}O{sub 4} (y=0.0, 0.025, 0.05, 0.075, 0.10) were successfully synthesized using sol-gel auto-combustion technique. The structural prisoperties of a prepared sintered powder were characterized with the help of X-ray Diffraction (XRD) and then also by using Scanning electron microscopy (SEM). Electrical measurements demonstrate that resistivity and activation energy increases with the Praseodymium substitution while dc resistivity decreases with the rise of temperature showing the semiconductor nature of the synthesized ferrites. Remanence and the saturation magnetization (M{sub s}) decrease while coercivity (H{sub c}) also increases with the increase in praseodymium contents. Anisotropic constant is observed to exhibit similar behavior as H{sub C}. The above mentioned parameters suggest that the synthesized samples are favorable for microwave absorbing purposes. - Highlights: • Magnesium based spinel ferrites were successfully synthesized by sol-gel method. • The spinel phase has been observed in all samples. • The dc resistivity are found to increase with increasing Pr content • The samples with high resistivity have high values of activation energy. • The Ms Decreases with increasing Pr contents while Hc increases.

  2. Synthesis and characterization of structural and magnetic properties of polyaniline-cobalt ferrite (PA-CoFe) nanocomposites

    Science.gov (United States)

    Thakur, Sonika; Kaur, Parminder; Singh, Lakhwant

    2018-05-01

    The growing interest in the investigation of the properties of modified conducting polymers stems from their potential applications in various fields such as in sensing and catalytic devices. The present work reports the modification of conducting polymer polyaniline with cobalt ferrite (CoFe) nanoparticles, where CoFe nanoparticles are added in different successive weight percents. The composite samples were synthesized by in-situ chemical oxidative polymerization technique. The density of the samples has been found to increase with an increase in the CoFe content. Structural analysis of the synthesized sample has been done using X-ray diffraction studies. Perusal of the hysteresis curves of the prepared samples depicts that the introduction of CoFe into the polymer matrix leads to enhancement in the ferromagnetic behavior of the synthesized samples, suggesting that these nanocomposites have excellent microwave absorbing capacity.

  3. Harnessing microbial subsurface metal reduction activities to synthesize nanoscale cobalt ferrite with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-01-01

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe 2 O 4 ) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼ 10 6 erg cm -3 can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure

  4. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  5. Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites

    International Nuclear Information System (INIS)

    Ahmad, Mukhtar; Ali, Qasim; Ali, Ihsan; Ahmad, Ishtiaq; Azhar Khan, M.; Akhtar, Majid Niaz; Murtaza, G.; Rana, M.U.

    2013-01-01

    Highlights: •Sr-substituted Y-type hexaferrites synthesized by sol–gel method have been investigated. •Platelet grains with well defined hexagonal shape are suitable for microwave absorbers. •Saturation magnetization values were calculated by the law of approach to saturation. •Coercivity of a few hundred oersteds found for all samples is suitable for EM materials. -- Abstract: Sr-substituted samples of Y-type hexagonal ferrites with chemical formula Ba 2−x Sr x Ni 2 Fe 12 O 22 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized using the sol–gel autocombustion method and were sintered at 1150 °C for 3 h. The samples were investigated by differential thermal and thermogravimetry analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. X-ray diffraction analysis reveals that single phase samples can be achieved by substituting Sr 2+ ions at Ba 2+ sites in Y-type hexagonal ferrites. X-ray density and bulk density were observed to decrease whereas porosity increased with increasing Sr-concentration. All the samples show well defined hexagonal shape which is favorable for microwave absorbing purposes. The saturation magnetization values were calculated from M–H loops by the law of approach to saturation. The loops show low values of coercivity of a few hundred oersteds which is one of the necessary conditions for electromagnetic (EM) materials and is suitable for security, switching, sensing and high frequency applications

  6. Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Gyergyek, Saso; Makovec, Darko; Kodre, Alojz; Arcon, Iztok; Jagodic, Marko; Drofenik, Miha

    2010-01-01

    The Co-ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 o C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 o C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (∼CoFe 2 O 4 ) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (∼Co 0.6 Fe 2.4 O 4 ). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe 2 O 4 , the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles' composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic

  7. Structural and chemical reactivity modifications of a cobalt perovskite induced by Sr-substitution. An in situ XAS study

    International Nuclear Information System (INIS)

    Hueso, Jose L.; Holgado, Juan P.; Pereñíguez, Rosa; Gonzalez-DelaCruz, V.M.; Caballero, Alfonso

    2015-01-01

    LaCoO 3 and La 0.5 Sr 0.5 CoO 3−δ perovskites have been studied by in situ Co K-edge XAS. Although the partial substitution of La(III) by Sr(II) species induces an important increase in the catalytic oxidation activity and modifies the electronic state of the perovskite, no changes could be detected in the oxidation state of cobalt atoms. So, maintaining the electroneutrality of the perovskite requires the generation of oxygen vacancies in the network. The presence of these vacancies explains that the substituted perovskite is now much more reducible than the original LaCoO 3 perovskite. As detected by in situ XAS, after a consecutive reduction and oxidation treatment, the original crystalline structure of the LaCoO 3 perovskite is maintained, although in a more disordered state, which is not the case for the Sr doped perovskite. So, the La 0.5 Sr 0.5 CoO 3−δ perovskite submitted to the same hydrogen reduction treatment produces metallic cobalt, while as determined by in situ XAS spectroscopy the subsequent oxidation treatment yields a Co(III) oxide phase with spinel structure. Surprisingly, no Co(II) species are detected in this new spinel phase. - Highlights: • A Sr-substituted lanthanum cobalt perovskite has been prepared by spray pyrolysis. • It has been established that Co(III) cations are present in both perovskites. • LaCoO 3 is a less reducible phase than the substituted La 0.5 Sr 0.5 CoO 3−δ . • After reoxidation of reduced La 0.5 Sr 0.5 CoO 3−δ , a 100% Co(III) spinel is obtained

  8. Structural, morphological and magnetic properties variation of nickel-manganese ferrites with lithium substitution

    International Nuclear Information System (INIS)

    Momin, A.A.; Parvin, Roksana; Akther Hossain, A.K.M.

    2017-01-01

    Mixed ferrites with nominal chemical compositions Li_xNi_0_._2Mn_0_._8_−_2_xFe_2_+_xO_4 ranging from x=0 to 0.4 in the steps of 0.1 have been prepared by the auto combustion technique. The X-ray diffraction patterns consist of major cubic spinel Li_xNi_0_._2Mn_0_._8_−_2_xFe_2_+_xO_4 phase with minor impurity phases (Fe_2O_3 and MnO) and with Li substitution phase purity has increased, such that for x=0.4 pure phase spinel structure has been obtained. The lattice parameter has decreased with the increase in Li content obeying Vegard’s law. Both the bulk density and theoretical density have decreased with Li content and with sintering temperature (T_s) up to 1300 °C ρ_B has increased and beyond that it has decreased. Morphological studies have performed by a high resolution optical microscope and observed that average grain size noticeably dependent on Li substitution. The initial permeability (μ_i′′) has found to decrease with Li substitution. The Curie temperature (T_C) has determined from the temperature dependent μ_i′′ and found to increases with Li content. From the room temperature magnetization measurement, it has observed that all samples are in ferrimagnetic state at room temperature. The number of Bohr magneton has been obtained from the observed saturation magnetization. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance are studied in the frequency range 20 Hz–10 MHz. Frequency dependence of dielectric constant in lower frequencies indicates a usual dielectric dispersion due to the Maxwell-Wagner type interfacial polarization. Dielectric loss tangent shows similar behavior like dielectric constant. The complex impedance analysis has been used to study the effect of grain and grain boundary on the electrical properties and with Li content both grain and grain boundary resistance show an increasing trend. The ac conductivity shows frequency independent behavior at the low frequency side and with

  9. Systematic study on surface and magnetostructural changes in Mn-substituted dysprosium ferrite by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Rekha, G. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates); Vishista, K., E-mail: raovishista@gmail.com [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates)

    2016-11-01

    Highlights: • Garnet type Dy{sub 3}Fe{sub 5-x}Mn{sub x}O{sub 12} (x = 0–0.06) nanoparticles of 88.4–86.8 nm were synthesized by hydrothermal method. • The Dy, Mn, Fe and O elements in the ferrites were confirmed from XPS. • The multiple oxidation states of Fe and Mn ions, bonding energy and cationic distributions of the samples were examined by XPS. • The magnetic property shows ferromagnetic behavior from VSM technique. • The results from these studies are correlated with respect to Mn dopant. - Abstract: Dysprosium iron garnets are of scientific importance because of the wide range of magnetic properties that can be obtained in substituting dysprosium by a rare earth metal. In the present work, the effect of Mn substitution on magnetostructural changes in dysprosium ferrite nanoparticles is studied. Highly crystalline pure and Mn doped dysprosium ferrite nanoparticles were synthesized by hydrothermal method. The samples were calcined at 1100 °C for 2 h in air atmosphere which is followed by characterization using XRD, FT-IR analysis, SEM, XPS and VSM. The average crystallite size of synthesized samples were calculated by X-ray diffraction falls in the range of 88.4–86.8 nm and was found to be in cubic garnet structure. For further investigation of the structure and corresponding changes in the tetrahedral and octahedral stretching vibrational bonds, FT-IR was used. The synthesized samples consist of multiple oxidation (Fe{sup 3+} and Fe{sup 2+}) states for Fe ions and (Mn{sup 3+} and Mn{sup 2+}) Mn ions analyzed in three ways of Fe 2p and Mn 2p spectra from the XPS analysis. With respect to Mn dopant in Dy{sub 3}Fe{sub 5}O{sub 12}, the cationic distributions of elements were discussed from high resolution XPS spectra by peak position and shift, area, width. To find out the porous/void surface morphology of the sample, scanning electron microscopy was used. From XPS analysis, the presence of elements (Dy, Mn, Fe and O) and their composition in the

  10. Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system

    Science.gov (United States)

    De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.

    1987-01-01

    Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.

  11. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    Directory of Open Access Journals (Sweden)

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  12. Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mukhtar, E-mail: mukhtarahmad25@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ali, Qasim; Ali, Ihsan; Ahmad, Ishtiaq [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Azhar Khan, M. [Department of Physics, The Islamia University of Bahawalpur 63100 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore (Pakistan); Rana, M.U., E-mail: mazharrana@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2013-12-15

    Highlights: •Sr-substituted Y-type hexaferrites synthesized by sol–gel method have been investigated. •Platelet grains with well defined hexagonal shape are suitable for microwave absorbers. •Saturation magnetization values were calculated by the law of approach to saturation. •Coercivity of a few hundred oersteds found for all samples is suitable for EM materials. -- Abstract: Sr-substituted samples of Y-type hexagonal ferrites with chemical formula Ba{sub 2−x}Sr{sub x}Ni{sub 2}Fe{sub 12}O{sub 22} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized using the sol–gel autocombustion method and were sintered at 1150 °C for 3 h. The samples were investigated by differential thermal and thermogravimetry analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. X-ray diffraction analysis reveals that single phase samples can be achieved by substituting Sr{sup 2+} ions at Ba{sup 2+} sites in Y-type hexagonal ferrites. X-ray density and bulk density were observed to decrease whereas porosity increased with increasing Sr-concentration. All the samples show well defined hexagonal shape which is favorable for microwave absorbing purposes. The saturation magnetization values were calculated from M–H loops by the law of approach to saturation. The loops show low values of coercivity of a few hundred oersteds which is one of the necessary conditions for electromagnetic (EM) materials and is suitable for security, switching, sensing and high frequency applications.

  13. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  14. Structure and scintillation yield of Ce-doped Al–Ga substituted yttrium garnet

    International Nuclear Information System (INIS)

    Sidletskiy, Oleg; Kononets, Valerii; Lebbou, Kheirreddine; Neicheva, Svetlana; Voloshina, Olesya; Bondar, Valerii; Baumer, Vyacheslav; Belikov, Konstantin; Gektin, Alexander; Grinyov, Boris; Joubert, Marie-France

    2012-01-01

    Highlights: ► Range of Y 3 (Al 1−x Ga x ) 5 O 12 :Ce solid solution crystals are grown from melt by the Czochralski method. ► Light yield of mixed crystals reaches 130% of the YAG:Ce value at x ∼ 0.4. ► ∼1% of antisite defects is formed in YGG:Ce, but no evidence of this is obtained for the rest of crystals. -- Abstract: Structure and scintillation yield of Y 3 (Al 1−x Ga x ) 5 O 12 :Ce solid solution crystals are studied. Crystals are grown from melt by the Czochralski method. Distribution of host cations in crystal lattice is determined. Quantity of antisite defects in crystals is evaluated using XRD and atomic emission spectroscopy data. Trend of light output at Al/Ga substitution in Y 3 (Al 1−x Ga x ) 5 O 12 :Ce is determined for the first time. Light output in mixed crystals reaches 130% comparative to Ce-doped yttrium–aluminum garnet. Luminescence properties at Al/Ga substitution are evaluated.

  15. Enhanced electronic and magnetic properties by functionalization of monolayer GaS via substitutional doping and adsorption

    Science.gov (United States)

    Rahman, Altaf Ur; Rahman, Gul; Kratzer, Peter

    2018-05-01

    The structural, electronic, and magnetic properties of two-dimensional (2D) GaS are investigated using density functional theory (DFT). After confirming that the pristine 2D GaS is a non-magnetic, indirect band gap semiconductor, we consider N and F as substitutional dopants or adsorbed atoms. Except for N substituting for Ga (NGa), all considered cases are found to possess a magnetic moment. Fluorine, both in its atomic and molecular form, undergoes a highly exothermic reaction with GaS. Its site preference (FS or FGa) as substitutional dopant depends on Ga-rich or S-rich conditions. Both for FGa and F adsorption at the Ga site, a strong F–Ga bond is formed, resulting in broken bonds within the GaS monolayer. As a result, FGa induces p-type conductivity in GaS, whereas FS induces a dispersive, partly occupied impurity band about 0.5 e below the conduction band edge of GaS. Substitutional doping with N at both the S and the Ga site is exothermic when using N atoms, whereas only the more favourable site under the prevailing conditions can be accessed by the less reactive N2 molecules. While NGa induces a deep level occupied by one electron at 0.5 eV above the valence band, non-magnetic NS impurities in sufficiently high concentrations modify the band structure such that a direct transition between N-induced states becomes possible. This effect can be exploited to render monolayer GaS a direct-band gap semiconductor for optoelectronic applications. Moreover, functionalization by N or F adsorption on GaS leads to in-gap states with characteristic transition energies that can be used to tune light absorption and emission. These results suggest that GaS is a good candidate for design and construction of 2D optoelectronic and spintronics devices.

  16. Growth mechanism and elemental distribution of beta-Ga2O3 crystalline nanowires synthesized by cobalt-assisted chemical vapor deposition.

    Science.gov (United States)

    Wang, Hui; Lan, Yucheng; Zhang, Jiaming; Crimp, Martin A; Ren, Zhifeng

    2012-04-01

    Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers. A solid diffusion growth mechanism is proposed based on the spatial elemental distribution along the beta-Ga2O3 nanowires at nanoscale.

  17. Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: A study on their structural, magnetic, optical and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Charanjit; Jauhar, Sheenu [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Kumar, Vinod [ICON Analytical Equipment (P) Ltd., Mumbai 400018 (India); Singh, Jagdish [Institute Instrumentation Centre, Indian Institute of Technology–Roorkee (India); Singhal, Sonal, E-mail: sonal1174@gmail.com [Department of Chemistry, Panjab University, Chandigarh 160014 (India)

    2015-04-15

    Nano-crystalline particles of visible light responsive Zn–Co ferrites having formula Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were successfully synthesized via reverse micelle technique. Sodium dodecyl sulfate was used as a surfactant/templating agent. The ferrite formation was confirmed using powder X-Ray Diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy. The spherical shape of the ferrite particles was established by High Resolution Transmission Electron Microscope (HR-TEM) analysis. From the magnetic studies, the ferromagnetic nature of CoFe{sub 2}O{sub 4} was known. However, the nano-particles exhibited a transition from ferromagnetic to super-paramagnetic upon increasing the zinc concentration. In addition, the photo-Fenton activity of ferrites was also studied by carrying out degradation of Rhodamine B (RhB) dye under visible light irradiation. The catalytic activity increased with increase in zinc ion concentration. - Highlights: • Controlled dimensions of Zn–Co ferrite nanoparticles by microemulsion technique. • Spherical shape with uniform size distribution of ∼5 nm was achieved. • Significant shift from ferromagnetic to superparamagnetic with Zn{sup 2+} ion doping. • Improved photocatalytic activity with Zn{sup 2+} ion doping.

  18. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  19. Influence of multiwalled carbon nanotube addition on the magnetic and reflection-loss characteristics of Mn–Sn–Ti substituted strontium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Jamalian, Majid; Ghasemi, Ali; Paimozd, Ebrahim

    2014-01-01

    Highlights: • Structural properties of nanocomposites were investigated. • The microwave absorbing characteristics were studied. • The synthesized materials are proper candidates for electromagnetic wave absorber. - Abstract: In this work, Mn–Sn–Ti substituted strontium ferrite (Sr-ferrite:SrM) nanoparticles were attached on the outer surface of varied multi-walled carbon nanotubes volume fraction with the amount of 10, 15, 20, 25 and 30, by employing of the sol–gel method. The phase identification and morphologies of the nanocomposites were characterized by X-ray diffraction and field emission scanning microscopy respectively. The obtained results showed that the single phase SrFe 9.5 (Mn 1.25 Sn 0.625 Ti 0.625 ) O 19 nanoparticles were decorated on MWCNTs can be obtained at 900 °C. Fourier transform infrared revealed that both the stretching and the bending modes are formed in the citrate complex in the ferrite and hydroxyl and carboxyl groups on the external surface of MWCNTs. The Magnetic properties were measured by a vibrating sample magnetometer. It was found that saturation magnetization, remanent magnetization and coercivity decrease by an increase in the MWCNTs content from 10 to 30 vol%. The reflection loss measurement of the prepared absorber which contain the ratio of 70–30 mass% for the nanocomposite to the polyvinyl chloride, done by the vector network analyzer, proved that the prepared nanocomposites have the maximum reflection loss of −28 dB at the frequency of 8.8 GHz for Mn–Ti–Sn substituted strontium ferrite −30 vol% MWCNT nanocomposite with a bandwidth of 4 GHz (RL > −10 dB)

  20. Influence of multiwalled carbon nanotube addition on the magnetic and reflection-loss characteristics of Mn–Sn–Ti substituted strontium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jamalian, Majid, E-mail: mjscience@yahoo.com; Ghasemi, Ali; Paimozd, Ebrahim

    2014-08-01

    Highlights: • Structural properties of nanocomposites were investigated. • The microwave absorbing characteristics were studied. • The synthesized materials are proper candidates for electromagnetic wave absorber. - Abstract: In this work, Mn–Sn–Ti substituted strontium ferrite (Sr-ferrite:SrM) nanoparticles were attached on the outer surface of varied multi-walled carbon nanotubes volume fraction with the amount of 10, 15, 20, 25 and 30, by employing of the sol–gel method. The phase identification and morphologies of the nanocomposites were characterized by X-ray diffraction and field emission scanning microscopy respectively. The obtained results showed that the single phase SrFe{sub 9.5} (Mn{sub 1.25}Sn{sub 0.625}Ti{sub 0.625}) O{sub 19} nanoparticles were decorated on MWCNTs can be obtained at 900 °C. Fourier transform infrared revealed that both the stretching and the bending modes are formed in the citrate complex in the ferrite and hydroxyl and carboxyl groups on the external surface of MWCNTs. The Magnetic properties were measured by a vibrating sample magnetometer. It was found that saturation magnetization, remanent magnetization and coercivity decrease by an increase in the MWCNTs content from 10 to 30 vol%. The reflection loss measurement of the prepared absorber which contain the ratio of 70–30 mass% for the nanocomposite to the polyvinyl chloride, done by the vector network analyzer, proved that the prepared nanocomposites have the maximum reflection loss of −28 dB at the frequency of 8.8 GHz for Mn–Ti–Sn substituted strontium ferrite −30 vol% MWCNT nanocomposite with a bandwidth of 4 GHz (RL > −10 dB)

  1. The Novel N-Substituted Benztropine Analog GA2-50 Possesses Pharmacokinetic and Pharmacodynamic Profiles Favorable for a Candidate Substitute Medication for Cocaine Abuse

    Science.gov (United States)

    OTHMAN, AHMED A.; NEWMAN, AMY H.; EDDINGTON, NATALIE D.

    2009-01-01

    GA2-50 is a novel N-substituted benztropine analog with improved potency and selectivity for the dopamine transporter. The pharmacokinetic and pharmacodynamic properties of GA2-50 were characterized as a part of its preclinical evaluation as a substitute medication for cocaine abuse. In vitro transport and metabolism studies as well as pharmacokinetic studies in rats were conducted. Effect of GA2-50 on the extracelluar nucleus accumbens (NAc) dopamine levels and on cocaine’s induced dopamine elevation was evaluated using intracerebral microdialysis. GA2-50 showed high transcellular permeability despite being a P-glycoprotein substrate. GA2-50 was a substrate of human CYP2D6, CYP2C19, CYP2E1, rat CYP2C11, CYP2D1, CYP3A1, and CYP1A2; with low intrinsic clearance values. In vivo, GA2-50 showed high brain uptake (Ri ~ 10), large volume of distribution (Vss =37 L/kg), and long elimination half-life (t½ =19 h). GA2-50 resulted in 1.6- and 2.7-fold dopamine elevation at the 5 and 10 mg/kg i.v. doses. Dopamine elevation induced by GA2-50 was significantly reduced, slower and longer lasting than previously observed for cocaine. GA2-50 had no significant effect on cocaine’s induced dopamine elevation upon simultaneous administration. Results from the present study indicate that GA2-50 possesses several attributes sought after for a substitute medication for cocaine abuse. PMID:18425847

  2. Structural, morphological and magnetic properties variation of nickel-manganese ferrites with lithium substitution

    Energy Technology Data Exchange (ETDEWEB)

    Momin, A.A., E-mail: abdulla.al.momin@gmail.com; Parvin, Roksana; Akther Hossain, A.K.M.

    2017-02-01

    Mixed ferrites with nominal chemical compositions Li{sub x}Ni{sub 0.2}Mn{sub 0.8−2x}Fe{sub 2+x}O{sub 4} ranging from x=0 to 0.4 in the steps of 0.1 have been prepared by the auto combustion technique. The X-ray diffraction patterns consist of major cubic spinel Li{sub x}Ni{sub 0.2}Mn{sub 0.8−2x}Fe{sub 2+x}O{sub 4} phase with minor impurity phases (Fe{sub 2}O{sub 3} and MnO) and with Li substitution phase purity has increased, such that for x=0.4 pure phase spinel structure has been obtained. The lattice parameter has decreased with the increase in Li content obeying Vegard’s law. Both the bulk density and theoretical density have decreased with Li content and with sintering temperature (T{sub s}) up to 1300 °C ρ{sub B} has increased and beyond that it has decreased. Morphological studies have performed by a high resolution optical microscope and observed that average grain size noticeably dependent on Li substitution. The initial permeability (μ{sub i}′′) has found to decrease with Li substitution. The Curie temperature (T{sub C}) has determined from the temperature dependent μ{sub i}′′ and found to increases with Li content. From the room temperature magnetization measurement, it has observed that all samples are in ferrimagnetic state at room temperature. The number of Bohr magneton has been obtained from the observed saturation magnetization. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance are studied in the frequency range 20 Hz–10 MHz. Frequency dependence of dielectric constant in lower frequencies indicates a usual dielectric dispersion due to the Maxwell-Wagner type interfacial polarization. Dielectric loss tangent shows similar behavior like dielectric constant. The complex impedance analysis has been used to study the effect of grain and grain boundary on the electrical properties and with Li content both grain and grain boundary resistance show an increasing trend. The ac conductivity shows

  3. Electrical and magnetic properties of MgGa_(_2_-_x_)Fe_xO_4 ferrite

    International Nuclear Information System (INIS)

    Ribeiro, Vander Alkmin dos Santos

    2005-01-01

    The ceramics of the type ferrites are materials that present important characteristics of electrical conduction and magnetic properties, as much as material magnetic hard, how much of soft magnetic materials. The cubic ferrites of the spinel structure are oxides with chemical formula MFe_2O_4, where M is a divalent metallic ion. Due to characteristic of the spinel, diverse magnetic configurations are a gotten, depending on the occupation tax of the magnetic ion (in general iron) in each sublattice. The diluted ferrites possess general formula given for: MD_2_-_xFe_xO4, where M and D are diamagnetic ions, being D the ion of substitution doping and x is the concentration of ions of iron (0,002 ≤ x ≤ 0,350). The sample was prepared using ceramics techniques in reaction of solid state and later they were submitted to a magnetic characterization, electric and X-ray diffraction. The results of the magnetic characterization were gotten by a magnetometer of vibrant sample (VSM) EG&G-Princeton Applied Research, model 4500; the characterization for X-ray was used one X-ray diffractometer, model URD 65; of the Seifert & with. Electrical measurements DC were carried through with the use of a unit high-voltage measuring source - Keithley, model 237, where the voltage applied in the samples varied of 0-40 V, the high temperatures. Two types of contacts were used: the arrangement type 'sandwich', being the inferior electrode the proper door-sample, and the superior electrode with ring geometry and a silver was pasted on both sides of the samples to ensure good electrical contact. The magnetic measurements confirm its ferrite characteristics and in the electrical measurements, the electrical conductivity indicated behavior of a semiconductor the high temperatures and the process of electrical conduction thermally presented to be activated. (author)

  4. Effects of Gd-Substitutions on the Microstructure, Electrical and Electromagnetic Behavior of M-Type Hexagonal Ferrites

    Science.gov (United States)

    Ahmad, Ishtiaq; Ahmad, Mahmood; Ali, Ihsan; Kanwal, M.; Awan, M. S.; Mustafa, Ghulam; Ahmad, Mukhtar

    2015-07-01

    A series of Gd-substituted Ba-Co-based (M-type) hexaferrites having the chemical compositions of Ba0.5Co0.5Gd x Fe12- x O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by co-precipitation method. The pellets formed by co-precipitated powder were calcined at a temperature of 1200°C for 20 h. Final sintering was done at 1320°C for 4 h. From the x-ray diffraction analysis, it was revealed that all the samples showed M-type hexagonal structure as a major phase. The scanning electron microscope was used to examine the morphology of the sintered ferrites. The average grain size estimated by the line intercept method was found to be in the range of 2.8-1.0 μm. The room temperature DC resistivity increases with increasing Gd-contents to make these ferrites useful for high frequency applications and microwave devices. Lower values of coercivity ( H c) and higher saturation magnetization ( M s) may be suitable to enhance the permeability of these ferrites, which is favorable for impedance matching in microwave absorption. In addition, reflection coefficients for a sample was also measured from a frequency of 1 MHz to 3 GHz and a reflection peak was observed at about 2.2 GHz.

  5. Amphoteric Be in GaN: Experimental Evidence for Switching between Substitutional and Interstitial Lattice Sites

    Science.gov (United States)

    Tuomisto, Filip; Prozheeva, Vera; Makkonen, Ilja; Myers, Thomas H.; Bockowski, Michal; Teisseyre, Henryk

    2017-11-01

    We show that Be exhibits amphoteric behavior in GaN, involving switching between substitutional and interstitial positions in the lattice. This behavior is observed through the dominance of BeGa in the positron annihilation signals in Be-doped GaN, while the emergence of VGa at high temperatures is a consequence of the Be impurities being driven to interstitial positions. The similarity of this behavior to that found for Na and Li in ZnO suggests that this could be a universal property of light dopants substituting for heavy cations in compound semiconductors.

  6. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    Science.gov (United States)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  7. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ concentration is increased ...

  8. Electrical and Magnetic Properties of Polyvinyl Alcohol-Cobalt ...

    Indian Academy of Sciences (India)

    7

    synthesis methods of shape, size, magnetic properties of cobalt ferrite ... substance was then ground into a fine powder and calcined at 600oC for 10 hours and .... From the particles distribution pattern of CFO nanoparticles in Figure 2(a), it is.

  9. Effect of La-CO substitution on the crystal structure and magnetic properties of low temperature sintered Sr1-xLaxFe12-xCoxO19 (x=0-0.5) ferrites

    Science.gov (United States)

    Peng, Long; Li, Lezhong; Wang, Rui; Hu, Yun; Tu, Xiaoqiang; Zhong, Xiaoxi

    2015-11-01

    The La-Co substituted Sr1-xLaxFe12-xCoxO19 (x=0-0.5) ferrites with appropriate Bi2O3 additive were prepared at a low sintering temperature of 890 °C compatible with LTCC (low temperature co-fired ceramics) systems, and the effect of La-Co substitution on their crystal structure and magnetic properties was investigated. The results show that the pure M-type phase is successfully obtained when the La-Co substitution amount x does not exceed 0.3. However, the single M-type phase structure transforms to multiphase structure with further increased x, where the α-Fe2O3 phase and La2O3 phase coexist with the M-type phase. Moreover, the saturation magnetization Ms, magnetic anisotropy field Ha, intrinsic coercivity Hci, and Curie temperature TC of the ferrites depend on the La-Co substitution amount strongly, which are suggested to be determined by the partially substitution of La3+-Co2+ ions for Sr2+-Fe3+ ions with x not higher than 0.3. It is found that the obtained Sr1-xLaxFe12-xCoxO19 (x=0.2 and 0.3) ferrites can provide improved magnetic properties (Ms>62 emu/g, Ha>1400 kA/m, and Hci>320 kA/m) as low temperature sintered M-type hexaferrites for microwave LTCC applications.

  10. EPR-study of reversible oxygenation process of coordination compounds of cobalt(II) with S-substituted N1,N4-di(salicylidene)-isothiosemicarbazides

    International Nuclear Information System (INIS)

    Gerbeleu, N.V.; Revenko, M.D.; Rusu, V.G.; Shames, A.T.

    1987-01-01

    The reaction between molecular oxygen and coordination compounds of cobalt(II) with S-substituted N 1 ,N 4 -di(salicylidene)isothiosemicarbazides in dimethyl sulfoxide solution was studied by the EPR method. It was found that paramagnetic monomeric adducts and diamagnetic μ-peroxo-dimers are formed. The spin-Hamiltonian parameters of the EPR spectra of the initial cobalt complexes, as well as of the paramagnetic adducts were determined. The nature of the Co-O 2 bond is discussed

  11. Fabrication of Lanthanum Strontium Cobalt Ferrite-Gadolinium-Doped Ceria Composite Cathodes Using a Low-Price Inkjet Printer.

    Science.gov (United States)

    Han, Gwon Deok; Choi, Hyung Jong; Bae, Kiho; Choi, Hyeon Rak; Jang, Dong Young; Shim, Joon Hyung

    2017-11-15

    In this work, we have successfully fabricated lanthanum strontium cobalt ferrite (LSCF)-gadolinium-doped ceria (GDC) composite cathodes by inkjet printing and demonstrated their functioning in solid oxide fuel cells (SOFCs). The cathodes are printed using a low-cost HP inkjet printer, and the LSCF and GDC source inks are synthesized with fluidic properties optimum for inkjet printing. The composition and microstructure of the LSCF and GDC layers are successfully controlled by controlling the color level in the printed images and the number of printing cycles, respectively. Anode-support type SOFCs with optimized LSCF-GDC composite cathodes synthesized by our inkjet printing method have achieved a power output of over 570 mW cm -2 at 650 °C, which is comparable to the performance of a commercial SOFC stack. Electrochemical impedance analysis is carried out to establish a relationship between the cell performance and the compositional and structural characteristics of the printed LSCF-GDC composite cathodes.

  12. Use of magnetoplumbite and spinel ferrite seed layers for the growth of oriented Y ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Uhrecký, Róbert; Buršík, Josef; Soroka, Miroslav; Kužel, R.; Prokleška, J.

    2017-01-01

    Roč. 622, JAN (2017), s. 104-110 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Hexagonal ferrites * Seed layer * Thin film s * Chemical solution deposition Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.879, year: 2016

  13. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Science.gov (United States)

    Kalam, Abul; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Du, Gaohui; Ahmad, Tokeer; Ahmad, Irfan; Pannipara, M.

    2018-03-01

    Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4) photocatalysts were synthesized by modified Solvothermal (MST) process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-visible (UV-vis) spectroscopy and N2 adsorption-desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590-619 cm-1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0-76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB) dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst.

  14. Investigation of structure and magnetic properties of cobalt-nickel and manganese ferrites nanoparticles synthesized in direct micelles of sodium dodecyl sulphate system

    International Nuclear Information System (INIS)

    Fedosyuk, V.M.; Mirgorod, Yu.A.

    2016-01-01

    Results of investigation of the crystal structure and magnetic properties of the nanoparticles of transition metals ferrites (cobalt, nickel, manganese) synthesized by unified methods using direct sodium dodecyl sulfate micelles are presented. Crystal structure of the samples was investigated by X-ray diffraction on DRON-3M (in the CuKa-radiation). Particle size was investigated by transmission electron microscopy on microscope JEOL JEM-1011 (accelerating voltage 100 kV). All powders contain nanoparticles of the same size in the range 2-6 nm. Magnetic properties of the samples were estimated from temperature and field dependences of the magnetization. All samples exhibit properties of superparamagnets with different blocking temperatures below 45 K. (authors).

  15. Spin canting observation and cation distribution in CoFe{sub 2−x}In{sub x}O{sub 4} (0.0 ⩽ x ⩽ 1.0) ferrites through low temperature–high field Mössbauer spectral study

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rabia, E-mail: rabiabest@gmail.com [Department of Physics, National Institute of Technology, Hamirpur (H.P) 177 005 (India); Sharma, K.K.; Kaur, Pawanpreet [Department of Physics, National Institute of Technology, Hamirpur (H.P) 177 005 (India); Reddy, V.R. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 4520 17 (India); Kumar, Ravi [Centre for Material Science and Engineering, National Institute of Technology, Hamirpur (H.P) 177 005 (India); Shah, Jyoti [National Physical Laboratory, New Delhi 110 012 (India)

    2014-05-01

    Highlights: • Rietveld refinement of CoIn{sub x}Fe{sub 2−x}O{sub 4} samples confirm single phase spinel structure. • The in-field Mössbauer study reveals canted spin structures in CoIn{sub x}Fe{sub 2−x}O{sub 4} ferrites. • In-field Mössbauer study is in line with magnetization measurements. • Cation distribution matches well with experimental integrated intensity ratios. • Shifting of resonance peaks to high frequencies is useful for industrial purposes. - Abstract: In the present work, In{sup 3+} substituted cobalt ferrites (CoFe{sub 2−x}In{sub x}O{sub 4}, x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) have been synthesized via solid-state reaction technique. The Rietveld fitted X-ray diffraction patterns confirm the formation of single phase cubic spinel structure with space group Fd3{sup ¯}m for all the samples, with additional slight traces of secondary phase for x = 0.6, 0.8 and 1.0 samples. The low temperature (5 K)–high field Mössbauer (5T) spectra are analyzed in detail for probing the magnetic properties of Fe based In{sup 3+} substituted cobalt ferrites. The canted spin structures associated with Fe{sup 3+} ions both at A- and B-sites in the presence of external magnetic field of 5T have been noticed in all the samples. A fair agreement is obtained between the experimental integrated intensity ratios of {sup 57}Fe Mössbauer spectra at A- and B-sites and those calculated on the basis of cation distribution. The effect of In{sup 3+} substitution on various Mössbauer parameters viz hyperfine field distribution, isomer shift, quadrupole splitting and the line width has also been noticed. The magnetization measurements performed at low temperature also reveal the canted spin structures in all the samples. The variations in initial permeability over a wide range of frequency (125 kHz–30 MHz) at 300 K have also been recorded. The initial permeability study reveals the occurrence of resonance phenomenon at very high frequencies which widens the area

  16. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Othman, H.A. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt); Eltabey, M.M. [Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shibin El-Kom, Menoufia (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia); Ibrahim, Samia E.; El-Deen, L.M. Sharaf; Elkholy, M.M. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt)

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2}) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO{sub 3} and BO{sub 4} are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100–100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization M{sub S} and coercive field H{sub C} were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of M{sub S} and H{sub C} increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  17. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

    International Nuclear Information System (INIS)

    Pahuja, Poonam; Kotnala, R.K.; Tandon, R.P.

    2014-01-01

    Highlights: • Rare earth ions Dy 3+ , Gd 3+ and Sm 3+ have been substituted in Ba 0.95 Sr 0.05 TiO 3 (BST). • Ni 0.8 Co 0.2 Fe 2 O 4 has been used as ferrimagnetic phase to obtain composites. • Substitution of these ions increases dielectric constant of BST and composites. • Magnetoelectric coefficient of composites increases on substitution of these ions. - Abstract: Effect of substitution of rare earth ions (Dy 3+ , Gd 3+ and Sm 3+ ) on various properties of Ba 0.95 Sr 0.05 TiO 3 (BST) i.e. the composition Ba 0.95−1.5x Sr 0.05 R x TiO 3 (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni 0.8 Co 0.2 Fe 2 O 4 (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba 2+ and Ti 4+ sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P–E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC

  18. Effect of bismuth ion substitution on structural properties of zinc ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Naraavula Suresh Kumar

    2016-06-01

    Full Text Available Bismuth doped nano zinc ferrite particles having the general formula ZnFe2-xBixO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 were synthesized by sol-gel combustion method. The effect of bismuth doping on structural properties were investigated. The X-ray diffraction (XRD spectra confirm the single phase cubic spinel structure. The average crystallite sizes of all the samples were determined by Debye-Scherrer equation and are in the range 16–20 nm. The lattice parameter increases with the increase of bismuth ion concentration. This is due to the larger ionic radius of Bi3+ ions substituting smaller Fe3+ ions at octahedral sites (B-sites. The surface morphology of all compounds was studied by scanning electron microscope (SEM. The microstructure analysis and the particle size were examined by transmission electron microscope (TEM. The compositional stoichiometry of these samples was verified by energy dispersive spectroscopy (EDS analysis.

  19. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    International Nuclear Information System (INIS)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad; Ahmad, Ishtiaq; Ali, Ihsan; Akhtar, Majid Niaz; Khan, Muhammad Azhar; Abbas, Ghazanfar; Rana, M.U.; Ali, Akbar; Ahmad, Mukhtar

    2015-01-01

    A series of single phase spinel ferrites having chemical formula Mg 0.5 Zn 0.5 Pr x Fe 2−x O 4 (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M s ) decreases whereas coercivity (H c ) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M s ) decreases whereas (H c ) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials

  20. X-ray and magnetic studies of Zn substituted Ni–Pb ferrites

    Indian Academy of Sciences (India)

    Unknown

    nic applications such as transformers, choke coils, noise filters, recording heads etc. Nickel ferrites and Zn2+ sub- stituted nickel-ferrites are widely used in electronics and electrical industries as they exhibit interesting variations in the electrical and magnetic properties. Electrical and magnetic properties are influenced by ...

  1. Properties of Ferrite Garnet (Bi, Lu, Y3(Fe, Ga5O12 Thin Film Materials Prepared by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2018-05-01

    Full Text Available This work is devoted to physical vapor deposition synthesis, and characterisation of bismuth and lutetium-substituted ferrite-garnet thin-film materials for magneto-optic (MO applications. The properties of garnet thin films sputtered using a target of nominal composition type Bi0.9Lu1.85Y0.25Fe4.0Ga1O12 are studied. By measuring the optical transmission spectra at room temperature, the optical constants and the accurate film thicknesses can be evaluated using Swanepoel’s envelope method. The refractive index data are found to be matching very closely to these derived from Cauchy’s dispersion formula for the entire spectral range between 300 and 2500 nm. The optical absorption coefficient and the extinction coefficient data are studied for both the as-deposited and annealed garnet thin-film samples. A new approach is applied to accurately derive the optical constants data simultaneously with the physical layer thickness, using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method. MO properties, such as specific Faraday rotation, MO figure of merit and MO swing factor are also investigated for several annealed garnet-phase films.

  2. Effect of annealing on particle size, microstructure and gas sensing properties of Mn substituted CoFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Ranjith, E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Kamzin, A.S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Janani, K. [Department of Physics, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu (India)

    2016-11-01

    Microstructure, morphological and gas sensor studies of Mn substituted cobalt ferrite nanoparticles synthesized by a simple evaporation method and auto- combustion method. The influence of heat treatment on phase and particle size of spinel ferrite nanoparticles were determined by X-ray diffraction and Mossbauer spectroscopy. The XRD study reveals that the lattice constant and crystallite size of the samples increases with the increase of annealing temperature. Last one was confirmed by Mossbauer data. The lowest size of particles of MnCoFe{sub 2}O{sub 4} (~3 nm) is obtained by auto combustion method. The spherical shaped nanoparticles are recorded by TEM. Furthermore, conductance response of Mn–Co ferrite nanomaterial was measured by exposing the material to reducing gas like liquefied petroleum gas (LPG) which showed a sensor response of ~0.19 at an optimum operating temperature of 250 °C. - Highlights: • ~3 nm sized particles were prepared by auto combustion method. • Mossbauer study was analyzed for different annealed samples. • The size of the particles increased with increasing annealing temperature.

  3. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mane, M.L. [Department of Physics, S.G.R.G. Shinde Mahavidyalaya, Paranda 413502, MS (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Prasad, N.K.; Alla, S.K. [Deptartment of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mohammed, K.A. [Department of Mathematics & Physics Sciences, College of Arts and Sciences, University of Nizwa, Nizwa (Oman); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe, 54187 Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-09-05

    Highlights: • Preparation of Mn{sup 3+} substituted MnFe{sub 2}O{sub 4} ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe{sub 2}O{sub 4} enhanced after Mn{sup 3+} substitution. • The dielectric constant and ac conductivity increased with Mn{sup 3+} substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn{sup 3+} substituted MnFe{sub 2−x}Mn{sub x}O{sub 4} ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn{sup 3+}. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn{sup 3+}. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn{sup 3+} in MnFe{sub 2}O{sub 4} ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn{sup 3+} substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn{sup 3+} substitution was also analyzed. All the magnetic characterization shows that Mn{sup 3+} substitution enhance the magnetic behavior of MnFe{sub 2}O{sub 4} ferrite nanoparticles.

  4. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  5. Spin Seebeck effect in Y-type hexagonal ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Hirschner, Jan; Maryško, Miroslav; Hejtmánek, Jiří; Uhrecký, Róbert; Soroka, Miroslav; Buršík, Josef; Anadón, P.; Aguirre, M.H.; Knížek, Karel

    2017-01-01

    Roč. 96, č. 6 (2017), s. 1-8, č. článku 064428. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : hexagonal ferrites * spin Seebeck effect * thin films * magnetization * ferrimagnetic ferrites Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Inorganic and nuclear chemistry (UACH-T) Impact factor: 3.836, year: 2016

  6. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer

    Science.gov (United States)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2015-01-01

    We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm-3 at room temperature in (AlN)5/(GaN)1 SL. Our results prove that nMgGa-ON (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  7. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN5/(GaN1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer

    Directory of Open Access Journals (Sweden)

    Hong-xia Zhong

    2015-01-01

    Full Text Available We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN5/(GaN1 superlattice (SL, a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3 complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm−3 at room temperature in (AlN5/(GaN1 SL. Our results prove that nMgGa-ON (n = 2,3 δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  8. M-type ferrites as template layers for the growth of oriented Y-type ferrites through chemical solution deposition method

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Uhrecký, Róbert; Kaščáková, Dorota; Slušná, Michaela; Dopita, M.; Kužel, R.

    2016-01-01

    Roč. 36, č. 13 (2016), s. 3173-3183 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:61388980 Keywords : Chemical solution deposition * Hexagonal ferrites * Lattice misfit * Seed layer * Thin films Subject RIV: CA - Inorganic Chemistry Impact factor: 3.411, year: 2016

  9. EPR-study of reversible oxygenation process of coordination compounds of cobalt(II) with S-substituted N/sup 1/,N/sup 4/-di(salicylidene)-isothiosemicarbazides

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeleu, N.V.; Revenko, M.D.; Rusu, V.G.; Shames, A.T.

    1987-09-01

    The reaction between molecular oxygen and coordination compounds of cobalt(II) with S-substituted N/sup 1/,N/sup 4/-di(salicylidene)isothiosemicarbazides in dimethyl sulfoxide solution was studied by the EPR method. It was found that paramagnetic monomeric adducts and diamagnetic ..mu..-peroxo-dimers are formed. The spin-Hamiltonian parameters of the EPR spectra of the initial cobalt complexes, as well as of the paramagnetic adducts were determined. The nature of the Co-O/sub 2/ bond is discussed.

  10. Structural and luminescence properties of GaN nanowires grown using cobalt phthalocyanine as catalyst

    Science.gov (United States)

    Yadav, Shivesh; Rodríguez-Fernández, Carlos; de Lima, Mauricio M.; Cantarero, Andres; Dhar, Subhabrata

    2015-12-01

    Catalyst free methods have usually been employed to avoid any catalyst induced contamination for the synthesis of GaN nanowires with better transport and optical properties. Here, we have used a catalytic route to grow GaN nanowires, which show good optical quality. Structural and luminescence properties of GaN nanowires grown by vapor-liquid-solid technique using cobalt phthalocyanine as catalyst are systematically investigated as a function of various growth parameters such as the growth temperature and III/V ratio. The study reveals that most of the nanowires, which are several tens of microns long, grow along [ 10 1 ¯ 0 ] direction. Interestingly, the average wire diameter has been found to decrease with the increase in III/V ratio. It has also been observed that in these samples, defect related broad luminescence features, which are often present in GaN, are completely suppressed. At all temperatures, photoluminescence spectrum is found to be dominated only by a band edge feature, which comprises of free and bound excitonic transitions. Our study furthermore reveals that the bound excitonic feature is associated with excitons trapped in certain deep level defects, which result from the deficiency of nitrogen during growth. This transition has a strong coupling with the localized vibrational modes of the defects.

  11. Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route

    International Nuclear Information System (INIS)

    Murugesan, C.; Perumal, M.; Chandrasekaran, G.

    2014-01-01

    Cobalt ferrite is synthesized by using low temperature auto combustion and high temperature ceramic methods. The prepared samples have values of lattice constant equal to 8.40 Å and 8.38 Å for auto combustion and ceramic methods respectively. The FTIR spectrum of samples of the auto combustion method shows a high frequency vibrational band at 580 cm −1 assigned to tetrahedral site and a low frequency vibrational band at 409 cm −1 assigned to octahedral site which are shifted to 590 cm −1 and 412 cm −1 for the ceramic method sample. SEM micrographs of samples show a substantial difference in surface morphology and size of the grains between the two methods. The frequency dependent dielectric constant and ac conductivity of the samples measured from 1 Hz to 2 MHz at room temperature are reported. The room temperature magnetic hysteresis parameters of the samples are measured using VSM. The measured values of saturation magnetization, coercivity and remanent magnetization are 42 emu/g, 1553 Oe, 18.5 emu/g for the auto combustion method, 66.7 emu/g, 379.6 Oe, and 17.3 emu/g for the ceramic method, respectively. The difference in preparation methods and size of the grains causes interesting changes in electrical and magnetic properties

  12. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad [Department of Physics, Federal Urdu University of Arts, Science and Technology, Islamabad 44000 (Pakistan); Ahmad, Ishtiaq; Ali, Ihsan [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Muhammad Azhar [Department of Physics, Islamia University, Bahawalpur (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Rana, M.U. [Center of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Ali, Akbar [Department of Basic Sciences, Riphah International University, Islamabad-44000 (Pakistan); Ahmad, Mukhtar, E-mail: ahmadmr25@yahoo.com [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-05-01

    A series of single phase spinel ferrites having chemical formula Mg{sub 0.5}Zn{sub 0.5}Pr{sub x}Fe{sub 2−x}O{sub 4} (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M{sub s}) decreases whereas coercivity (H{sub c}) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M{sub s}) decreases whereas (H{sub c}) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials.

  13. Magnetic properties of melt-spun Nd-rich NdFeB alloys with Dy and Ga substitutions

    International Nuclear Information System (INIS)

    Harland, C.L.; Davies, H.A.

    1998-01-01

    The results of a systematic investigation of the effects of Dy and Ga additions on the magnetic properties of a Nd-rich NdFeB alloy are presented and discussed. Particular attention is given to the effect of increasing Dy substitutions on the coercivity of the Nd 18 Fe 76 B 6 alloy. Substitution of 30% of the Nd by Dy resulted in a coercivity increase from 1590 to 3290 kA m -1 . However, contrary to previous suggestions, substitution of 1% of the Fe by Ga was found to have only a small influence on the magnetic properties of all the alloys in the compositional series (Nd 100-x Dy x ) 18 Fe 76 B 6 (x=0-30). (orig.)

  14. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  15. Structural and magnetic properties of the products of the transformation of ferrihydrite: Effect of cobalt dications

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, K.I. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P.25000, México (Mexico); Pariona, N. [Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz (Mexico); Martinez, A.I., E-mail: arturo.martinez@cinvestav.edu.mx [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P.25000, México (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Río de Janeiro 22290-180 (Brazil); Herrera-Trejo, M. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coahuila C.P.25000, México (Mexico); Perry, Dale L. [Mailstop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-05-01

    The effect of cobalt dications on the transformation of 2-line ferrihydrite (2LF) has been studied. The products of the transformation reaction were characterized by X-ray diffraction, Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), magnetometry, and first-order reversal curve (FORC) diagrams. It was found that the concentration of cobalt dications plays an important role on the structural and magnetic properties of the products; i.e., for low cobalt concentrations, cobalt-substituted hematite is formed, while higher concentrations promote the formation of cobalt-substituted magnetite. Structural results revealed that formation of other iron oxide polymorphs is avoided and residual 2LF is always present in the final products. In this way, hematite/2LF and magnetite/2LF nanocomposites were formed. For all the samples, magnetic measurements yielded non-saturated hysteresis loops at a maximum field of 12 kOe. For cobalt-substituted hematite/2LF samples, FORC diagrams revealed the presence of multiple single-domain (SD) components which generate interaction coupling between SD with low and high coercivity. Moreover, for cobalt-substituted magnetite/2LF samples, the FORC diagrams revealed the components of wasp-waist hysteresis loops which consist of mixtures of SD and superparamagnetic particles. One of the goals of the present study is the rigorous, experimental documentation of ferrihydrite/hematite mixtures as a function of reaction conditions for use as analytical standards research. - Highlights: • Co(II) may stabilize ferrihydrite against transformation to more crystalline oxides. • The transformation is strongly dependent on the Co(II)/Fe(III) atomic ratio. • Cobalt-substituted hematite and cobalt-substituted magnetite were the products. • FORC diagrams identified the interaction coupling between single-domains.

  16. Structural and magnetic properties of the products of the transformation of ferrihydrite: Effect of cobalt dications

    International Nuclear Information System (INIS)

    Camacho, K.I.; Pariona, N.; Martinez, A.I.; Baggio-Saitovitch, E.; Herrera-Trejo, M.; Perry, Dale L.

    2017-01-01

    The effect of cobalt dications on the transformation of 2-line ferrihydrite (2LF) has been studied. The products of the transformation reaction were characterized by X-ray diffraction, Mössbauer spectroscopy (MS), transmission electron microscopy (TEM), magnetometry, and first-order reversal curve (FORC) diagrams. It was found that the concentration of cobalt dications plays an important role on the structural and magnetic properties of the products; i.e., for low cobalt concentrations, cobalt-substituted hematite is formed, while higher concentrations promote the formation of cobalt-substituted magnetite. Structural results revealed that formation of other iron oxide polymorphs is avoided and residual 2LF is always present in the final products. In this way, hematite/2LF and magnetite/2LF nanocomposites were formed. For all the samples, magnetic measurements yielded non-saturated hysteresis loops at a maximum field of 12 kOe. For cobalt-substituted hematite/2LF samples, FORC diagrams revealed the presence of multiple single-domain (SD) components which generate interaction coupling between SD with low and high coercivity. Moreover, for cobalt-substituted magnetite/2LF samples, the FORC diagrams revealed the components of wasp-waist hysteresis loops which consist of mixtures of SD and superparamagnetic particles. One of the goals of the present study is the rigorous, experimental documentation of ferrihydrite/hematite mixtures as a function of reaction conditions for use as analytical standards research. - Highlights: • Co(II) may stabilize ferrihydrite against transformation to more crystalline oxides. • The transformation is strongly dependent on the Co(II)/Fe(III) atomic ratio. • Cobalt-substituted hematite and cobalt-substituted magnetite were the products. • FORC diagrams identified the interaction coupling between single-domains.

  17. Modulation in magnetic exchange interaction, core shell structure and Hopkinson's peak with chromium substitution into Ni0.75Co0.25Fe2O4 nano particles

    Science.gov (United States)

    Uday Bhasker, S.; Choudary, G. S. V. R. K.; Reddy, M. V. Ramana

    2018-05-01

    The ever growing applications and ever evolving challenges of magnetic nano particles has been motivating the researchers from various disciplines towards this area of magnetic nano particles. Cation substitutional effect on the magnetic structure of the nanoparticles forms a crucial aspect in their applications. Here the environmentally benign auto combustion method was employed to synthesize chromium substituted nickel cobalt ferrite (Ni0.75Co0.25Fe2-xCrxO4; x = 0, 0.10, 0.15) nano particles, from aqueous metal nitrate solutions. Chromium substitution has shown its effect on the structural, magnetic and electrical properties of Ni0.75Co0.25Fe2O4. Structural and phase analysis of the prepared samples show increased phase purity of ferrite sample with increasing Cr substitution. The TEM (Transmission Electron Microscope) image confirms the nano size of the particles, EDS (Energy dispersive X-ray Spectroscopy) has supported the stoichiometry of the prepared samples and FTIR (Fourier-transform infrared spectroscopic) analysis confirms the spinel structure and also suggests cation redistributions with chromium substitution. VSM (Vibrational Sample Magnetometer) is used to study the magnetic properties through magnetic hysteresis (M-H) loop and magnetic Hopkinson effect. All samples show hysteresis and show reduction in magnetic properties with increase in chromium content. The thermo magnetic study shows Hopkinson peak(s) in the magnetization vs. temperature (M-T) graph and also shows variation in the nature of Hopkinson peak with chromium substitution. Possible reasons for the changes in the nature of the peak are discussed.

  18. Isolation of microbial DNA by newly designed magnetic particles

    Czech Academy of Sciences Publication Activity Database

    Rittich, B.; Španová, A.; Horák, Daniel; Beneš, Milan J.; Klesnilová, L.; Petrová, K.; Rybnikář, A.

    2006-01-01

    Roč. 52, č. 2 (2006), s. 143-148 ISSN 0927-7765 R&D Projects: GA ČR GA203/05/2256; GA MZe 1G57037 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic particles * P(HEMA-co-GMA) * cobalt ferrite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.789, year: 2006

  19. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    Science.gov (United States)

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  20. Carbon diffusion in carbon-supersaturated ferrite and austenite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 586, FEB (2014), s. 129-135 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * Carbon supersaturation * Carbon supersaturation * Ferrite * Austenite Subject RIV: BJ - Thermodynamics Impact factor: 2.999, year: 2014

  1. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  2. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions

    International Nuclear Information System (INIS)

    Kahn, Myrtil L.; Zhang, Z. John

    2001-01-01

    Lanthanide ions have been doped into cobalt spinel ferrites using an oil-in-water micellar method to form CoLn 0.12 Fe 1.88 O 4 nanoparticles with Ln=Ce, Sm, Eu, Gd, Dy, or Er. Doping with lanthanide ions (Ln III ) modulates the magnetic properties of cobalt spinel ferrite nanoparticles. In particular cases of Gd 3+ or Dy 3+ ions, a dramatic increase in the blocking temperature and coercivity is observed. Indeed, the introduction of only 4% of Gd 3+ ions increases the blocking temperature ∼100 K and the coercivity 60%. Initial studies on the magnetic properties of these doped nanoparticles clearly demonstrate that the relationship between the modulation of magnetic properties and the nature of doped Ln III ions is interesting but very complex. [copyright] 2001 American Institute of Physics

  3. Preparation and characterization of SiO2 microspheres doped with CoFe2O4 nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, V.; Poltierová Vejpravová, J.; Plocek, Jiří; Nižňanský, D.

    2010-01-01

    Roč. 28, č. 1 (2010), s. 129-137 ISSN 0137-1339 R&D Projects: GA ČR GA106/07/0949 Institutional research plan: CEZ:AV0Z40320502 Keywords : sol-gel * microemulsion * cobalt ferrite * microspheres * nanocomposite Subject RIV: CA - Inorganic Chemistry Impact factor: 0.336, year: 2010

  4. Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method

    International Nuclear Information System (INIS)

    Huang, Xiaogu; Zhang, Jing; Wang, Wei; Sang, Tianyi; Song, Bo; Zhu, Hongli; Rao, Weifeng; Wong, Chingping

    2016-01-01

    In this paper, the cobalt zinc ferrite was prepared by coprecipitation method at different pH conditions. The influence of pH values on the coprecipitation reaction was theoretically analyzed at first. The calculated results showed that the pH values should be controlled in the range of 9–11 to form the stable precipitation. The XRD investigation was used to further confirm the formation of the composite on specific pH values. In addition, the morphological study revealed that the average particle size of the composite decreased from 40 nm to 30 nm when the pH value increased from 9–11. The variation of microstructure plays a critical role in controlling the electromagnetic properties. From the electromagnetic analysis, the dielectric loss factor was 0.02–0.07 and magnetic loss factor was 0.2–0.5 for the composite synthesized at pH of 9, which presents dramatically improved dielectric loss and magnetic loss properties than the samples prepared at pH of 10 and 11. The as-prepared cobalt zinc ferrite are highly promising to be used as microwave absorption materials. - Highlights: • Co–Zn ferrite was prepared by coprecipitation method with different pH values. • To obtain pure Co–Zn ferrite, the theoretical pH values were 9–11. • Microstructure and electromagnetic properties can be tuned by varying pH values. • Co–Zn ferrite prepared with pH=9 performed well electromagnetic loss properties.

  5. Mössbauer effect studies and X-ray diffraction analysis of cobalt ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Mössbauer effect studies and X-ray diffraction analysis of cobalt ferrite prepared in powder form by thermal decomposition method. M D Joseph Sebastian B Rudraswamy M C Radhakrishna Ramani. Magnetic Materials Volume 26 Issue 5 August 2003 pp ...

  6. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  7. Synthesis, structural, optical, electrical and Mössbauer spectroscopic studies of Co substituted Li{sub 0.5}Fe{sub 2.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Parul [School of Physics & Materials Science, Shoolini University, Solan, HP (India); Thakur, Preeti, E-mail: preetithakur@shooliniuniversity.com [School of Physics & Materials Science, Shoolini University, Solan, HP (India); Mattei, Jean Luc; Queffelec, Patrick [Laboratoire des Sciences et Techniques, de l’Information, de la Communication et de la Connaissance, UMR CNRS 6285, 6 av. Le Gorgeu, CS 93837, 29238 BREST CEDEX 3 (France); Thakur, Atul [School of Physics & Materials Science, Shoolini University, Solan, HP (India); Nanotechnology Wing, Innovative Science Research Society, Shimla 171001 (India)

    2016-06-01

    A series of cobalt substituted lithium ferrite Li{sub 0.5}Co{sub x}Fe{sub 2.5−x}O{sub 4} with x=0, 0.2, 0.4 was prepared by a chemical technique called citrate precursor method. In this technique citric acid was used as a reducing agent. Structural, morphological, topographical, optical, electrical, and magnetic properties were studied by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, DC resistivity, Mössbauer Spectroscopy. XRD patterns showed characteristic (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), (4 4 0) peaks which confirmed the inverse spinel phase. SEM and TEM support the formation of cubic nanoparticles. FTIR studies reported the ferrite peaks between 400 cm{sup −1} and 800 cm{sup −1} confirming the inverse spinel structure. Five optical Raman modes (A{sub 1g}+E{sub g}+3F{sub 2g}), characteristics of the cubic spinel structure with (P4{sub 3}32) space group are also observed. Electrical DC resistivity studied from room temperature to 300 °C showed the semiconducting behavior of lithium ferrite. Porosity, transition temperature and activation energy are found to decrease with cobalt ion concentration. The room temperature Mössbauer spectra of all the samples showed normal Zeeman Splitting sextets supporting the formation of ferromagnetic phase. With increase in cobalt content, the value of hyperfine field at A site is found to vary from 53.15 to 54.96 T whereas at B site it vary from 54.79 to 52.82 T. The obtained results have been explained based on possible mechanisms, models and theories. - Highlights: • XRD studies confirmed the spinel structure. • In FTIR studies, two frequency metal oxide bands are observed. • Raman spectra confirmed the symmetric and anti-symmetric band position. • Mössbauer spectroscopy reveals the two magnetic sextets.

  8. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  9. The superspin glass transition in zinc ferrite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kořínková, T.; Jirák, T.; Maryško, Miroslav; Veverka, Miroslav

    2015-01-01

    Roč. 117, č. 17 (2015), "17C706-1"-"17C706-4" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GAP108/11/0807; GA ČR GAP204/10/0035 Institutional support: RVO:68378271 Keywords : superspin glass * zinc ferrite * doped magnetite * magnetic nanoparticles * thermal decomposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  10. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  11. Characterization and magnetic properties of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Swatsitang, Ekaphan [Integrated Nanotechnology Research Center and Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 (Thailand); Phokha, Sumalin, E-mail: sumalinphokha@gmail.com [Department of Physics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000 Thailand (Thailand); Hunpratub, Sitchai; Usher, Brian [Department of Physics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000 Thailand (Thailand); Bootchanont, Atipong [Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Pathumthani 12110 (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand (Thailand); Chindaprasirt, Prinya [Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002 (Thailand)

    2016-04-15

    Inverse spinel cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were synthesized by a polymer pyrolysis method and calcined at various temperatures from 800 to 1000 °C. The structure, morphology, valence states and magnetic properties of the calcined samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) and vibrating sample magnetometer (VSM). All calcined samples had the cubic spinel type structure with average crystallite sizes increasing from 80 ± 2 to 100 ± 3 nm with increasing calcination temperature. The XANES spectra allowed the valence states of the Fe{sup 3+} and Co{sup 2+} ions in the samples to be established and simulation of the XANES spectra suggested that the site occupancy of Fe{sup 3+} and Co{sup 2+} ions was mixed, with the majority of Co{sup 2+} ions occupying octahedral sites and the majority of Fe{sup 3+} ions occupying tetrahedral sites within the spinel structure. All samples exhibited ferromagnetic behavior at room temperature with a maximum saturation magnetization (M{sub S}) of 3.42 μ{sub B} and a coercivity (H{sub C}) of 1100 Oe for crystallite sizes of 100 nm. The origin of the ferromagnetism is discussed in relation to the distribution of Fe{sup 3+} and Co{sup 2+} ions within the lattice and the crystallite sizes. - Graphical abstract: In Figure shows ferromagnetism (FM) at room temperature (RT), simulation of the XANES spectra of (a) Fe and (b) Co edges (inset in the right) and TEM image (inset in the left) of CoFe{sub 2}O{sub 4} nanoparticles prepared by polymer pyrolysis method. The bright field TEM image showed the aggregated particles. The simulation showed a cation combination with the majority of Co{sup 2+} ions occupying octahedral sites and the majority of Fe{sup 3+} ions occupying tetrahedral sites within the spinel structure. The distribution of Fe{sup 3+} and Co{sup 2+} ions within the lattice and the crystallite sizes is discussed on

  12. As-grown enhancement of spinodal decomposition in spinel cobalt ferrite thin films by Dynamic Aurora pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Nipa [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Physics, Jagannath University, Dhaka 1100 (Bangladesh); Kawaguchi, Takahiko; Kumasaka, Wataru [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Das, Harinarayan [Materials Science Division, Atomic Energy Centre, Dhaka 1000 (Bangladesh); Shinozaki, Kazuo [School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Sakamoto, Naonori [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Wakiya, Naoki, E-mail: wakiya.naoki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2017-06-15

    Highlights: • As-grown enhancement of spinodal decomposition (SD) in Co{sub x}Fe{sub 3−x}O{sub 4} film is observed. • Magnetic-field-induced ion-impingement enhances SD without any post-annealing. • The enhancement of SD is independent of the lattice-mismatch-induced strain. • This approach can promote SD in any thin film without post-deposition annealing. - Abstract: Cobalt ferrite Co{sub x}Fe{sub 3−x}O{sub 4} thin films with composition within the miscibility gap were grown using Dynamic Aurora pulsed laser deposition. X-ray diffraction patterns reveal as-grown phase separation to Fe-rich and Co-rich phases with no post-deposition annealing. The interconnected surface microstructure of thin film shows that this phase separation occurs through spinodal decomposition enhanced by magnetic-field-induced ion-impingement. The lattice parameter variation of the thin films with the magnetic field indicates that the composition fluctuations can be enhanced further by increasing the magnetic field. Results show that spinodal decomposition enhancement by magnetic-field-induced ion-impingement is independent of the lattice-mismatch-induced strain. This approach can promote spinodal decomposition in any thin film with no post-deposition annealing process.

  13. The role of particles annealing temperature on magnetorheological effect

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Pavlínek, V.; Sáha, P.; Švrčinová, Petra; Filip, Petr

    2012-01-01

    Roč. 26, č. 3 (2012), s. 1150013 ISSN 0217-9849 Grant - others:OP VaVpI(XE) CZ.1.05/2.1.00/03.0111; GA ČR(CZ) GA202/09/1626 Program:GA Institutional research plan: CEZ:AV0Z20600510 Keywords : magnetic field * magnetorheological suspensions * nanocrystalline cobalt ferrite Subject RIV: BK - Fluid Dynamics Impact factor: 0.479, year: 2012

  14. Heating-induced inner-sphere substitution and reduction-oxidation reactions of the solid phenanthroline containing cobalt (2) and cobalt (3) complexes

    International Nuclear Information System (INIS)

    Palade, D.M.

    1996-01-01

    The results of the differential thermal and thermogravimetric analyses of solid phenanthroline-containing complexes of cobalt (2) and cobalt (3) in the atmosphere of the air have been analyzed. Mechanism of redox reactions occurring when cobalt (3) complexes are heated has been discussed. It is shown that some of gaseous products of the redox processes appear as a result of secondary reactions and not the processes of the ligands oxidation by Co 3+ . The influence of certain inner-sphere and coordinated anions (of I, inclusively) on cobalt (3) complexes behaviour during heating has been considered

  15. Oriented Y-typehexagonal ferrite thin films prepared by chemical

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Kužel, R.; Knížek, Karel; Drbohlav, Ivo

    2013-01-01

    Roč. 203, JULY (2013), s. 100-105 ISSN 0022-4596 R&D Projects: GA ČR GA13-03708S Institutional support: RVO:61388980 ; RVO:68378271 Keywords : Y-type hexagonal ferrites * chemical solution deposition * thin films * epitaxial growth Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.200, year: 2013

  16. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Dielectric properties such as dielectric constant (ε′) and dielectric loss tangent (tan δ) of mixed. Mn–Zn–Er ferrites having the compositional formula Mn0⋅58Zn0⋅37Fe2⋅05–xErxO4 (where x = 0⋅2, 0⋅4, 0⋅6, 0⋅8 and. 1⋅0) were measured at room temperature in the frequency range 1–13 MHz using a HP ...

  17. Influence of Alkali Metal Substitution on the Phase Transition Behavior of CsGaQ2 (Q = S, Se

    Directory of Open Access Journals (Sweden)

    Daniel Friedrich

    2017-12-01

    Full Text Available The formation of solid solution series Cs1−xMxGaQ2-mC64 (M = K, Rb; Q = S, Se; x = 0–1 was studied by X-ray diffraction and spectroscopic methods, revealing a complete miscibility of CsGaQ2-mC64 with RbGaQ2 and KGaSe2, and a large miscibility gap with KGaS2. All solid solution members exhibit similar Raman spectra, indicating the covalent Ga-Q bonding character. The similar optical band gaps likewise further contribute to this conclusion. Up to a certain degree of substitution, these solid solutions undergo a phase transition similar to CsGaQ2-mC64. The influence of the substitution parameter x on phase transition process was investigated in situ using high-temperature X-ray powder diffraction experiments. Phase-pure solid solutions of the high-temperature polymorphs Cs1−xMxGaQ2-mC16 were obtained up to xmax(K = 0.1 and xmax(Rb = 0.3. The crystal structures of these new CsGaQ2-mC16 analogous high-temperature phases were refined from synchrotron diffraction data by Rietveld-refinement.

  18. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology

    International Nuclear Information System (INIS)

    Camilo, Ruth Luqueze

    2006-01-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H 2 O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  19. Effect of Ga substitution on the crystallization behaviour and glass forming ability of Zr-Al-Cu-Ni alloys

    International Nuclear Information System (INIS)

    Singh, Devinder; Yadav, T.P.; Mandal, R.K.; Tiwari, R.S.; Srivastava, O.N.

    2010-01-01

    The crystallization behaviour of melt spun Zr 69.5 Al 7.5-x Ga x Cu 12 Ni 11 (x = 0-7.5; in at.%) metallic glasses has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC traces showed changes in crystallization behaviour with substitution of Ga. Formation of single nano-quasicrystalline phase by controlled crystallization of glasses has been found only for 0 ≤ x ≤ 1.5. Further increase of Ga content gives rise to formation of the quasicrystals together with Zr 2 Cu type crystalline phase. In addition to this, the substitution of Ga influences the size and shape of nano-quasicrystals. The glass forming abilities (GFAs) of these metallic glasses were assessed by the recognition of glass forming ability indicators, i.e. reduced glass transition temperature (T rg ) and supercooled liquid region (ΔT x ). The glass transition temperature (T g ) has been observed for all the melt spun ribbons.

  20. On the Nature of Internal Interfaces in Tempered Martensite Ferritic Steels

    Czech Academy of Sciences Publication Activity Database

    Dronhofer, A.; Pešička, J.; Dlouhý, Antonín; Eggeler, G.

    2003-01-01

    Roč. 94, č. 5 (2003), s. 511-520 ISSN 0044-3093 R&D Projects: GA ČR GA106/99/1172 Institutional research plan: CEZ:AV0Z2041904 Keywords : Tempered martensite ferritic steels * martensite variants * orientation imaging Subject RIV: JG - Metallurgy Impact factor: 0.637, year: 2003

  1. Cobalt(I) and Cobalt(III) Cyclopentadienyl Complexes with New Silicon-branched Fluorous Tags

    Czech Academy of Sciences Publication Activity Database

    Strašák, Tomáš; Čermák, Jan; Červenková Šťastná, Lucie; Sýkora, Jan; Fajgar, Radek

    2014-01-01

    Roč. 159, MAR 2014 (2014), s. 15-20 ISSN 0022-1139 R&D Projects: GA ČR(CZ) GAP106/12/1372 Institutional support: RVO:67985858 Keywords : fluorous tag * cobalt complex * cyclopentadienyl complex Subject RIV: CC - Organic Chemistry Impact factor: 1.948, year: 2014

  2. Synthesis and magnetic properties of Co.sub.1-x./sub.Zn.sub.x./sub.Fe.sub.2./sub.O.sub.4+γ./sub. nanoparticles as materials for magnetic fluid hyperthermia

    Czech Academy of Sciences Publication Activity Database

    Veverka, Miroslav; Veverka, Pavel; Jirák, Zdeněk; Kaman, Ondřej; Knížek, Karel; Maryško, Miroslav; Pollert, Emil; Závěta, Karel

    2010-01-01

    Roč. 322, č. 16 (2010), s. 2386-2389 ISSN 0304-8853 R&D Projects: GA AV ČR KAN200200651; GA AV ČR KJB100100701; GA MŠk MEB090901 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic nanoparticle * cobalt zinc ferrite * precipitation * magnetic behavior * magnetic fluid hyperthermia Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  3. The Solid Solution Sr(1-x)Ba(x)Ga2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations.

    Science.gov (United States)

    Pecher, Oliver; Mausolf, Bernhard; Lamberts, Kevin; Oligschläger, Dirk; Niewieszol, Carina; Englert, Ulli; Haarmann, Frank

    2015-09-28

    Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr(1-x)Ba(x)Ga2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electronic structure and magnetic properties of substitutional transition-metal atoms in GaN nanotubes

    International Nuclear Information System (INIS)

    Zhang Min; Shi Jun-Jie

    2014-01-01

    The electronic structure and magnetic properties of the transition-metal (TM) atoms (Sc—Zn, Pt and Au) doped zigzag GaN single-walled nanotubes (NTs) are investigated using first-principles spin-polarized density functional calculations. Our results show that the bindings of all TM atoms are stable with the binding energy in the range of 6–16 eV. The Sc- and V-doped GaN NTs exhibit a nonmagnetic behavior. The GaN NTs doped with Ti, Mn, Ni, Cu and Pt are antiferromagnetic. On the contrary, the Cr-, Fe-, Co-, Zn- and Au-doped GaN NTs show the ferromagnetic characteristics. The Mn- and Co-doped GaN NTs induce the largest local moment of 4μ B among these TM atoms. The local magnetic moment is dominated by the contribution from the substitutional TM atom and the N atoms bonded with it. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Hydrogen/deuterium fractionation factors of the aqueous ligand of cobalt in Co(H2O)62+ and Co(II)-substituted carbonic anhydrase

    International Nuclear Information System (INIS)

    Kassebaum, J.W.

    1988-01-01

    The author has measured the hydrogen/deuterium fractionation factor for the rapidly exchanging aqueous ligands of cobalt in Co(H 2 O) 6 2+ and in three Co(II)-substituted isozymes of carbonic anhydrase. The fractionation factor was determined from NMR relaxation rates at 300 MHz of the protons of water in mixed solutions of H 2 O and D 2 O containing these complexes. In each case, the paramagnetic contribution to 1/T 2 was greater than to 1/T 1 , consistent with a chemical shift mechanism affecting 1/T 2 . The fractionation factors obtained from T 2 were 0.73 ± 0.02 for Co(H 2 O) 6 2+ , 0.72 ± 0.02 for Co(II)-substituted carbonic anhydrase I, 0.77 ± 0.01 for Co(II)-substituted carbonic anhydrase II, and 1.00 ± 0.07 for Co(Il)-substituted carbonic anhydrase III. He concluded that fractionation factors in these cases determined from T 1 and T 2 measured isotope preferences for different populations of ligand sites. Since T 2 has a large contribution from a chemical shift mechanism, the fractionation factor determined from T 2 has a large contribution of the fractionation of inner shell ligands. The fractionation factor of Co(H 2 O) 6 2+ was used to interpret the solvent hydrogen isotope effects on the formation of complexes of cobalt with the bidentate ligands glycine, N,N-dimethylglycine, and acetylacetone. The contribution of the fractionation factor of the inner water shell in Co(H 2 O) 6 2+ did not account completely for the measured isotope effect, and that the hydrogen/deuterium fractionation of outer shell water makes a large contribution to the isotope effect on the formation of these complexes

  6. Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Chien-Yie Tsay

    2016-05-01

    Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  7. Elevated temperature study of Nd-Fe-B--based magnets with cobalt and dysprosium additions

    International Nuclear Information System (INIS)

    Gauder, D.R.; Froning, M.H.; White, R.J.; Ray, A.E.

    1988-01-01

    This paper discusses the elevated temperature performance of Nd-Fe-B magnets containing 0--15 wt. % cobalt substitutions for iron and 0--10 wt. % dysprosium substitutions for neodymium. Test samples were prepared using conventional powder metallurgy techniques. Elevated temperature hysteresis loop and open-circuit measurements were performed on the samples to investigate irreversible losses and long term aging losses at 150 0 C. Magnets with high amounts of both cobalt and dysprosium exhibited lower losses of coercivity and magnetization. Dysprosium had more influence on the elevated temperature performance of the material than did cobalt

  8. Particle-size distribution modified effective medium theory and validation by magneto-dielectric Co-Ti substituted BaM ferrite composites

    Science.gov (United States)

    Li, Qifan; Chen, Yajie; Harris, Vincent G.

    2018-05-01

    This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.

  9. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Computational study of GaAs1-xNx and GaN1-yAsy alloys and arsenic impurities in GaN

    International Nuclear Information System (INIS)

    Laaksonen, K; Komsa, H-P; Arola, E; Rantala, T T; Nieminen, R M

    2006-01-01

    We have studied the structural and electronic properties of As-rich GaAs 1-x N x and N-rich GaN 1-y As y alloys in a large composition range using first-principles methods. We have systematically investigated the effect of the impurity atom configuration near both GaAs and GaN sides of the concentration range on the total energies, lattice constants and bandgaps. The N (As) atoms, replacing substitutionally As (N) atoms in GaAs (GaN), cause the surrounding Ga atoms to relax inwards (outwards), making the Ga-N (Ga-As) bond length about 15% shorter (longer) than the corresponding Ga-As (Ga-N) bond length in GaAs (GaN). The total energies of the relaxed alloy supercells and the bandgaps experience large fluctuations within different configurations and these fluctuations grow stronger if the impurity concentration is increased. Substituting As atoms with N in GaAs induces modifications near the conduction band minimum, while substituting N atoms with As in GaN modifies the states near the valence band maximum. Both lead to bandgap reduction, which is at first rapid but later slows down. The relative size of the fluctuations is much larger in the case of GaAs 1-x N x alloys. We have also looked into the question of which substitutional site (Ga or N) As occupies in GaN. We find that under Ga-rich conditions arsenic prefers the substitutional N site over the Ga site within a large range of Fermi level values

  11. Nitrogen induced ferromagnetism in Cobalt doped BaTiO3

    Directory of Open Access Journals (Sweden)

    Chandrima Mitra

    2012-09-01

    Full Text Available The electronic structure and magnetism of Cobalt doped BaTiO3 (BaTi1−xCoxO3 is investigated. Substitutional Nitrogen on an Oxygen site is found to play an important role in inducing net magnetic moments in the system. The presence of a Nitrogen atom as nearest neighbour to a Cobalt atom is crucial in producing spin splitting of both the Nitrogen and Cobalt states thereby introducing a net local magnetic moment. The introduction of Nitrogen is further found to enhance ferromagnetic interactions between Cobalt atoms.

  12. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures

    Science.gov (United States)

    Stein, C. R.; Bezerra, M. T. S.; Holanda, G. H. A.; André-Filho, J.; Morais, P. C.

    2018-05-01

    This study reports on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by chemical co-precipitation in alkaline medium at increasing temperatures in the range of 27 °C to 100 °C. High-quality samples in the size range of 5 to 10 nm were produced using very low stirring speed (250 rpm) and moderate alkaline aqueous solution concentration (4.8 mol/L). Three samples were synthesized and characterized by x-ray diffraction (XRD) and room-temperature (RT) magnetization measurements. All samples present superparamagnetic (SPM) behavior at RT and Rietveld refinements confirm the inverse cubic spinel structure (space group Fd-3m (227)) with minor detectable impurity phase. As the synthesis temperature increases, structural parameters such as lattice constant and grain size change monotonically from 8.385 to 8.383 Å and from 5.8 to 7.4 nm, respectively. Likewise, as the synthesis temperature increases the NPs' magnetic moment and saturation magnetization increases monotonically from 2.6 ×103 to 16×103 μB and from 37 to 66 emu/g, respectively. The RT magnetization (M) versus applied field (H) curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. The excellent curve-fitting of the M versus H data is credited to a reduced particle-particle interaction due to both the SPM behavior and the existence of a surface amorphous shell layer (dead layer), the latter reducing systematically as the synthesis temperature increases.

  13. On the role of diluted magnetic cobalt-doped ZnO electrodes in efficiency improvement of InGaN light emitters

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Ru; Wang, Shih-Yin [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ou, Sin-Liang [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Wuu, Dong-Sing, E-mail: dsw@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2016-07-11

    The 120-nm-thick cobalt-doped ZnO (Co-doped ZnO, CZO) dilute magnetic films deposited by pulsed laser deposition were employed as the n-electrodes for both lateral-type blue (450 nm) and green (520 nm) InGaN light emitters. In comparison to the conventional blue and green emitters, there were 15.9% and 17.7% enhancements in the output power (@350 mA) after fabricating the CZO n-electrode on the n-GaN layer. Observations on the role of CZO n-electrodes in efficiency improvement of InGaN light emitters were performed. Based on the results of Hall measurements, the carrier mobilities were 176 and 141 cm{sup 2}/V s when the electrons passed through the n-GaN and the patterned-CZO/n-GaN, respectively. By incorporating the CZO n-electrode into the InGaN light emitters, the electrons would be scattered because of the collisions between the magnetic atoms and the electrons as the device is driven, leading to the reduction of the electron mobility. Therefore, the excessively large mobility difference between electron and hole carriers occurred in the conventional InGaN light emitter can be efficiently decreased after preparing the CZO n-electrode on the n-GaN layer, resulting in the increment of carrier recombination rate and the improvement of light output power.

  14. On the role of diluted magnetic cobalt-doped ZnO electrodes in efficiency improvement of InGaN light emitters

    International Nuclear Information System (INIS)

    Liu, Hong-Ru; Wang, Shih-Yin; Ou, Sin-Liang; Wuu, Dong-Sing

    2016-01-01

    The 120-nm-thick cobalt-doped ZnO (Co-doped ZnO, CZO) dilute magnetic films deposited by pulsed laser deposition were employed as the n-electrodes for both lateral-type blue (450 nm) and green (520 nm) InGaN light emitters. In comparison to the conventional blue and green emitters, there were 15.9% and 17.7% enhancements in the output power (@350 mA) after fabricating the CZO n-electrode on the n-GaN layer. Observations on the role of CZO n-electrodes in efficiency improvement of InGaN light emitters were performed. Based on the results of Hall measurements, the carrier mobilities were 176 and 141 cm"2/V s when the electrons passed through the n-GaN and the patterned-CZO/n-GaN, respectively. By incorporating the CZO n-electrode into the InGaN light emitters, the electrons would be scattered because of the collisions between the magnetic atoms and the electrons as the device is driven, leading to the reduction of the electron mobility. Therefore, the excessively large mobility difference between electron and hole carriers occurred in the conventional InGaN light emitter can be efficiently decreased after preparing the CZO n-electrode on the n-GaN layer, resulting in the increment of carrier recombination rate and the improvement of light output power.

  15. Stress-dependent crystal structure of lanthanum strontium cobalt ferrite by in situ synchrotron X-ray diffraction

    Science.gov (United States)

    Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.

    2018-02-01

    Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.

  16. Electrical conductivity of cobalt doped La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shizhong; Wu, Lingli; Liang, Ying [Department of Chemistry, Xiamen University, Xiamen 361005, Fujian (China)

    2007-03-30

    La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM8282), La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.15}Co{sub 0.05}O{sub 3-{delta}} (LSGMC5) and La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.115}Co{sub 0.085}O{sub 3-{delta}} (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10{sup -5} atm) and low oxygen partial pressure regions (<10{sup -15} atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, P{sub O{sub 2}} dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and P{sub O{sub 2}} dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number. (author)

  17. Study of some Mg-based ferrites as humidity sensors

    International Nuclear Information System (INIS)

    Rezlescu, N; Rezlescu, E; Doroftei, C; Popa, P D

    2005-01-01

    The micostructure and humidity sensitivity of MgFe 2 O 4 + CaO, Mg 0.5 Cu 0.5 Fe 1.8 Ga 0.2 O 4 , Mg 0.5 Zn 0.5 Fe 2 O 4 + KCl and MgMn 0.2 Fe 1.8 O 4 ferrites were investigated. We have found that the humidity sensitivity largely depends on composition, crystallite size, surface area and porosity. The best results concerning humidity sensitivity were obtained for MgMn 0.2 Fe 1.8 O 4 ferrite

  18. Extremely slow carbon diffusion in carbon-supersaturated surface of ferrite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 52, č. 3 (2014), s. 125-133 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * carbon supersaturation * diffusion barrier * ferrite * P91 Subject RIV: BJ - Thermodynamics Impact factor: 0.406, year: 2014

  19. Some of Physical Properties of Nanostructured (Mg1-xCoxFe2O4 Ferrites Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Ammer Alsherefi

    2018-01-01

    Full Text Available Sol-gel auto combustion technique was used to prepare nanoparticles of magnesium-cobalt ferrites with the chemical formula Mg1-xCoxFe2O4 for  (x=0, 0.2, 0.4, 0.6, 0.8, 1, where x added as weight  percentages, and sintering  at temperature (1100 oC. The X-ray patterns of prepared powder has confirmed the structure of cubic spinel structure (fcc. The prepared samples were composed of nearly spherical nano particles .An average particle size of  magnesium-cobalt ferrite  were  calculated  using  Debye Scherer’s relation is equal 53.12 nm. The surface structure of the samples was investigated by Scanning Electron Microscope(SEM. The electromagnetic properties for prepared samples were investigated using Vector Network Analyzer (VNA in X-band microwave region.

  20. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  1. Magnetic heating by silica-coated Co–Zn ferrite particles

    Czech Academy of Sciences Publication Activity Database

    Veverka, Miroslav; Závěta, K.; Kaman, Ondřej; Veverka, Pavel; Knížek, Karel; Pollert, Emil; Burian, M.; Kašpar, P.

    2014-01-01

    Roč. 47, č. 6 (2014), "065503-1"-"065503-11" ISSN 0022-3727 R&D Projects: GA ČR GAP204/10/0035; GA ČR(CZ) GAP108/11/0807 Institutional support: RVO:68378271 Keywords : cobalt–zinc ferrite * magnetic nanoparticles * coprecipitation * silica coating * hysteresis loops * calorimetric measurements * hyperthermia Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.721, year: 2014 http://stacks.iop.org/0022-3727/47/065503

  2. Influence of reagents mixture density on the radiation-thermal synthesis of lithium-zinc ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Influence of Li2CO3-ZnO-Fe2O3 powder reagents mixture density on the synthesis efficiency of lithium-zinc ferrites in the conditions of thermal heating or pulsed electron beam heating was studied by X-Ray diffraction and magnetization analysis. The results showed that the including a compaction of powder reagents mixture in ferrite synthesis leads to an increase in concentration of the spinel phase and decrease in initial components content in lithium-substituted ferrites synthesized by thermal or radiation-thermal heating.

  3. Thermal Effect on Structure Organizations in Cobalt-Fullerene Nanocomposition

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Sakai, S.

    2010-01-01

    Roč. 10, č. 4 (2010), s. 2624-2629 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA AV ČR IAA200480702; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : cobalt * fullerene * simultaneous deposition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.351, year: 2010

  4. Two-gap superconductivity in Mo8Ga41 and its evolution upon vanadium substitution

    Science.gov (United States)

    Verchenko, V. Yu.; Khasanov, R.; Guguchia, Z.; Tsirlin, A. A.; Shevelkov, A. V.

    2017-10-01

    Zero-field and transverse-field muon spin rotation/relaxation (μ SR ) experiments were undertaken in order to elucidate the microscopic properties of a strongly coupled superconductor Mo8Ga41 with Tc=9.8 K. The upper critical field extracted from the transverse-field μ SR data exhibits significant reduction with respect to the data from thermodynamic measurements indicating the coexistence of two independent length scales in the superconducting state. Accordingly, the temperature-dependent magnetic penetration depth of Mo8Ga41 is described using a model in which two s wave superconducting gaps are assumed. A V for Mo substitution in the parent compound leads to the complete suppression of one superconducting gap, and Mo7VGa41 is well described within the single s wave gap scenario. The reduction in the superfluid density and the evolution of the low-temperature resistivity upon V substitution indicate the emergence of a competing state in Mo7VGa41 that may be responsible for the closure of one of the superconducting gaps.

  5. Photoionization of cobalt impuritiesin zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Ivanov, V.; Godlewski, M.; Dejneka, Alexandr

    2015-01-01

    Roč. 252, č. 9 (2015), s. 1988-1992 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : absorption band * cobalt * photoionization * electron spin resonance * pulsed mode * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  6. Crystal growth, electronic structure, and properties of Ni-substituted FeGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Likhanov, Maxim S. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Verchenko, Valeriy Yu. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); National Institute of Chemical Physics and Biophysics, 12618 Tallinn (Estonia); Bykov, Mikhail A. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Tsirlin, Alexander A. [National Institute of Chemical Physics and Biophysics, 12618 Tallinn (Estonia); Experimental Physics VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Gippius, Andrei A. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Shubnikov Institute of Crystallography, Russian Academy of Science, 119333, Moscow (Russian Federation); Berthebaud, David; Maignan, Antoine [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN, F-14050 CAEN Cedex 4 (France); Shevelkov, Andrei V., E-mail: shev@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-04-15

    Crystals of the Fe{sub 1−x}Ni{sub x}Ga{sub 3} limited solid solution (x<0.045) have been grown from gallium flux. We have explored the electronic structure as well as magnetic and thermoelectric properties of Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} in comparison with Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}, following the rigid band approach and assuming that one Ni atom donates twice the number of electrons as one Co atom. However, important differences between the Co- and Ni-doped compounds are found below 620 K, which is the temperature of the metal-to-insulator transition for both compounds. We have found that Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} displays lower degree of spatial inhomogeneity on the local level and exhibits diamagnetic behavior with a broad shallow minimum in the magnetic susceptibility near 35 K, in sharp contrast with the Curie–Weiss paramagnetism of Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}. Transport measurements have shown the maximum of the thermoelectric figure-of-merit ZT of 0.09 and 0.14 at 620 K for Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} and Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}, respectively. - Graphical abstract: Crystals of Ni-substituted FeGa{sub 3} up to 8 mm long were grown from gallium flux (see Figure for the temperature profile and crystal shape) that allowed studying magnetic and thermoelectric properties of the title solid solution.

  7. Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors

    International Nuclear Information System (INIS)

    Zhang Weiwei; Zhang Junying; Chen Ziyu; Wang Tianmin; Zheng Shukai

    2010-01-01

    Low-temperature photoluminescent spectra of ZnGa 2 O 4 :Cr 3+ nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr 3+ ions in different sites including ideal octahedral, Zn-interstitial, Ga ZN 4 -Zn Ga 6 sites and Ga 2 O 3 impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al 3+ is substituted in Ga 3+ sites to form Zn(Ga 1-y Al y ) 2 O 4 :Cr 0.01 3+ (0≤y≤0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al 3+ and Ga 3+ .

  8. The role of pH on the particle size and magnetic consequence of cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Safi, Rohollah, E-mail: r.safi@gmx.com; Ghasemi, Ali; Shoja-Razavi, Reza; Tavousi, Majid

    2015-12-15

    Cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with various size distributions were prepared by a chemical co-precipitation method at different pH condition from 8 to 13. The structural characterizations of the prepared samples were carried out using powder X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope. The XRD results revealed that a single cubic CoFe{sub 2}O{sub 4} phase with the average crystallite sizes of about 5–24 nm were formed. Cation distribution occupancy in tetrahedral and octahedral sites were estimated by employing Rietveld refinement technique. The results showed that the whole series of samples contain a partial inverse spinel structure. FTIR measurements between 370 and 4000 cm{sup −1} confirmed the intrinsic cation vibrations of spinel structure of the samples. The room temperature magnetic properties of the samples have been examined using vibrating sample magnetometer. It is found that with increasing the pH of reaction, the magnetization and coercive field could be increased. The sample synthesized at pH~8 and 9 showed superparamagnetic behavior and highest coercive field up to 650 Oe is attributed to the sample synthesized with pH~13. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were prepared by co-precipitation method at different pH. • Τhe single cubic phase with the average crystallite sizes of 5–24 nm were formed. • Cation distribution in tetrahedral and octahedral sites was estimated using XRD data. • The sample synthesized at pH~8 and 9 showed superparamagnetic behavior. • The crystallinity and crystallite size were increased by increasing the pH.

  9. The role of pH on the particle size and magnetic consequence of cobalt ferrite

    International Nuclear Information System (INIS)

    Safi, Rohollah; Ghasemi, Ali; Shoja-Razavi, Reza; Tavousi, Majid

    2015-01-01

    Cobalt ferrite (CoFe 2 O 4 ) nanoparticles with various size distributions were prepared by a chemical co-precipitation method at different pH condition from 8 to 13. The structural characterizations of the prepared samples were carried out using powder X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope. The XRD results revealed that a single cubic CoFe 2 O 4 phase with the average crystallite sizes of about 5–24 nm were formed. Cation distribution occupancy in tetrahedral and octahedral sites were estimated by employing Rietveld refinement technique. The results showed that the whole series of samples contain a partial inverse spinel structure. FTIR measurements between 370 and 4000 cm −1 confirmed the intrinsic cation vibrations of spinel structure of the samples. The room temperature magnetic properties of the samples have been examined using vibrating sample magnetometer. It is found that with increasing the pH of reaction, the magnetization and coercive field could be increased. The sample synthesized at pH~8 and 9 showed superparamagnetic behavior and highest coercive field up to 650 Oe is attributed to the sample synthesized with pH~13. - Highlights: • CoFe 2 O 4 nanoparticles were prepared by co-precipitation method at different pH. • Τhe single cubic phase with the average crystallite sizes of 5–24 nm were formed. • Cation distribution in tetrahedral and octahedral sites was estimated using XRD data. • The sample synthesized at pH~8 and 9 showed superparamagnetic behavior. • The crystallinity and crystallite size were increased by increasing the pH

  10. The effect of Co substitution on the structural and magnetic properties of lithium ferrite synthesized by an autocombustion method

    International Nuclear Information System (INIS)

    Sawant, V.S.; Rajpure, K.Y.

    2015-01-01

    Nanoparticles of Li 0.5−0.5x Co x Fe 2.5−0.5x O 4 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) were synthesized by the solution combustion method. The influence of Co substitution on the structural, morphological and magnetic properties of the prepared samples was studied. The XRD studies confirm the formation of single phase cubic spinel structure of the ferrite samples. Their lattice constants vary linearly from 8.31 Å (x=0) to 8.35 Å (x=0.6) with increasing Co 2+ content, due to the ionic volume differences of Co 2+ , Fe 3+ and Li 1+ ions. Also, the bond lengths and site radii of octahedral and tetrahedral sites are found to increase linearly with Co 2+ content. The crystallite sizes of all the prepared samples estimated from the full width half maximum (FWHM) of the strongest reflection of the planes (311) almost remain constant with the increase of Co 2+ content. The surface morphology of the prepared ferrite samples show that some of the particles have a cubic and the others have a spherical shape. The average particle sizes of the samples obtained from SEM micrographs show an initial increase up to the sample of x=0.3 and then it decreases slightly. The magnetic properties of the samples have been studied by measuring M–H plots. Moreover, the saturation magnetization, remnant magnetization, and coercivity of the prepared samples increase up to the sample of x=0.3 (140.1 emu/g, 49.4 emu/g and 714.05 Oe, respectively) and then they decrease again. The variation in the experimental magnetic moment μ B exp with Co 2+ content is explained on the basis of Neel's two sub-lattice model. Furthermore, the initial permeability of the prepared samples increases with increasing Co 2+ content up to the sample of x=0.3 and then a slight decrease is observed again. - Highlights: • Co substituted Li ferrite samples were prepared by the solution combustion method. • Co 2+ content, x was varied as x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. • Effect of Co 2

  11. Nanocomposite of CeO.sub.2./sub. and high-coercivity magnetic carrier with large specific surface area

    Czech Academy of Sciences Publication Activity Database

    Řezníčková Mantlíková, Alice; Plocek, Jiří; Pacáková, Barbara; Kubíčková, Simona; Vik, Ondřej; Nižňanský, D.; Šlouf, Miroslav; Vejpravová, Jana

    2016-01-01

    Roč. 2016, Nov (2016), s. 1-13, č. článku 7091241. ISSN 1687-4110 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LO1507 Institutional support: RVO:68378271 ; RVO:61388980 ; RVO:61389013 Keywords : cobalt ferrite * cerium oxide * nanoparticles * catalysis Subject RIV: BM - Solid Matter Physics ; Magnetism; CD - Macromolecular Chemistry (UMCH-V); CA - Inorganic Chemistry (UACH-T) Impact factor: 1.871, year: 2016

  12. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  13. Thermoelectric Properties and Microstructure of Modified Novel Complex Cobalt Oxides Sr3RECo4O10.5 (RE = Y, Gd)

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2012-01-01

    We report on the high-temperature thermoelectric properties and microstructure of modified novel complex cobalt oxides Sr3RECo4O10.5 (RE = Y, Gd), in which the Sr- and Co-sites are partly substituted by Ca and Ga, respectively. We have found that the sample with RE = Gd shows a significant higher......-sample resulting in a substantial decrease in porosity, its thermal diffusivity exhibits a lower value then the non-doped one, particularly in high temperature region. © 2012 American Institute of Physics...

  14. Synthesis and microstructural characterization of Sr- and Mg-substituted LaGaO3 solid electrolyte

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2007-01-01

    Sr and Mg substituted LaGaO 3 is a solid electrolyte for intermediate temperature solid oxide fuel cell. Phase purity of this material is a concern for the researchers for a long time. In this contribution the secondary phases that are evolved during the synthesis of Sr and Mg doped LaGaO 3 are reported. For that purpose, a series of La 1-x Sr x Ga 1-y Mg y O 3-δ (LSGM) was prepared by solid state synthesis route. Scanning electron microscopic photographs showed secondary phases namely La 4 Ga 2 O 9 , LaSrGa 3 O 7 , LaSrGaO 4 along with the parent perovskite LSGM depending upon the amount of dopant. Amount of secondary phases was estimated from the peak positions of room temperature X-ray diffraction. It was observed that for a fixed amount of Mg dopant increasing the amount of Sr content also increased the amount of secondary phases whereas the reverse was found to be true when Sr content was fixed and Mg content was increased. This behaviour was attributed to the increase in solid solubility of Sr in presence of Mg

  15. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples...

  16. Cu and Al co-substituted cobalt ferrite: structural analysis ...

    Indian Academy of Sciences (India)

    ... 400 cm−1 (v2). They are attributed to the tetrahedral and octahedral group complexes of the spinel .... Intensity (a.u.). 2 (degree) ... Heating iron-hydroxides in air is known to yield haematite ... M–O distance in tetrahedral and octahedral sites.

  17. Growth and characterization of thin oriented Co3O4 (111) films obtained by decomposition of layered cobaltates NaxCoO2

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Soroka, Miroslav; Kužel, R.; Mika, Filip

    2015-01-01

    Roč. 227, JUL (2015), s. 17-24 ISSN 0022-4596 R&D Projects: GA ČR GA13-03708S; GA ČR(CZ) GA14-18392S Institutional support: RVO:61388980 ; RVO:68081731 Keywords : Cobalt oxides * Spinels * Layered cobaltates * Chemical solution deposition * Thin films Subject RIV: CA - Inorganic Chemistry; JA - Electronics ; Optoelectronics, Electrical Engineering (UPT-D) Impact factor: 2.265, year: 2015

  18. Improvement of the magnetic moment of NiZn ferrites induced by substitution of Nd3+ ions for Fe3+ ions

    Science.gov (United States)

    Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing

    2018-05-01

    Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).

  19. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4) nanocrystalline ferrites for core, switching and MLCI’s applications

    International Nuclear Information System (INIS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M.S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights: • Cu substituted

  20. Structural, magnetic and electrical properties of Zr-substitued NiZnCo ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le-Zhong, E-mail: lezhongli@cuit.edu.cn; Zhong, Xiao-Xi; Wang, Rui; Tu, Xiao-Qiang

    2017-08-01

    Highlights: • The static magnetic properties of NiZnCoZr ferrite nanopowders have been investigated. • The dielectric constant increases with the increase of Zr substitution. • The relaxation peak of tan δ ∼ T curves is observed for x ≥ 0.10. • Electrical transport behavior is found to follow the impurity semiconductor. • The dc resistivity increases at transition temperature with Zr substitution. - Abstract: Zr-substituted NiZnCo ferrite nanopowders, Ni{sub 0.4−x}Zn{sub 0.5}Zr{sub x}Co{sub 0.1}Fe{sub 2.0}O{sub 4} (0 ≤ x ≤ 0.20), were synthesized by the sol-gel auto-combustion method. The effects of Zr substitution on the structural, magnetic and electrical properties have been investigated. The DTA and TG results indicate that there are three steps of combustion process. The X-ray diffraction patterns show that the lattice parameter and the average crystallite size increase with the increase of Zr substitution. The saturation magnetization increases with the increase of Zr substitution when x ≤ 0.05, and then decreases when x > 0.05. Meanwhile, the coercivity initially decreases with the increase of Zr substitution when x ≤ 0.05, and then increases when x > 0.05. The polarization behavior for all the samples in the test frequency range from100 Hz to10 MHz obeys the charge polarization mechanism, which happens since the frequency of the hopping of electron exchange between Fe{sup 2+} and Fe{sup 3+} ions are far from the frequency of alternating-current field. And the dielectric constant increases with the increase of Zr substitution. The relaxation peak of the frequency dependence of dielectric loss is observed for x ≥ 0.10, which is due to the frequency of charge hopping between the Fe{sup 2+} and Fe{sup 3+} exactly matches with the frequency of the external applied field. Electrical transport behavior of the ferrite nanopowders is found to follow the impurity semiconductor, and the effect of Zr substitution on the temperature dependence

  1. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Zafar, Qayyum; Azmer, Mohamad Izzat; Al-Sehemi, Abdullah G.; Al-Assiri, Mohammad S.; Kalam, Abul; Sulaiman, Khaulah

    2016-01-01

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe_2O_4 nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe_2O_4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe_2O_4/Al) has been investigated at three different frequencies of the AC applied voltage (V_r_m_s ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  2. Effect of Cu-Cr co-substitution on magnetic properties of nanocrystalline magnesium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Melikhov, Yevgen [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Nlebedim, Ikenna Cajetan [Ames Laboratory of US Department of Energy, Ames, IA 50011 (United States)

    2012-03-15

    This study deals with the temperature and composition dependence of magnetization and magnetic anisotropy of Cu{sup 2+}-Cr{sup 3+} co-substituted magnesium ferrite, Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x=0.0-0.5). The synthesized materials are characterized using thermo gravimetric analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray fluorescence, Moessbauer spectrometer, superconducting quantum interference device magnetometer and vibrating sample magnetometer. The M-H loops measured up to 50 kOe at 300, 200 and 100 K, revealed narrow hysteresis curves with a coercive field and saturation magnetization varying for different compositions. The high field regimes of these loops are modeled using the Law of Approach to saturation to extract anisotropy information and saturation magnetization. Both the saturation magnetization and the anisotropy constant are observed to increase with the decrease in temperature while decrease with the Cu-Cr co-substituents for all the samples. Explanation of the observed behavior is proposed in terms of the preference of the co-substituent ions of Cu{sup 2+} and Cr{sup 3+} and their predominant choice to substitute into the octahedral sites of the cubic spinel lattice. - Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} was synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer Present paper dealt with magnetic properties of Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4}. Black-Right-Pointing-Pointer XRD patterns revealed tetragonal distorted cubic structure of Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4}. Black-Right-Pointing-Pointer Mossbauer spectroscopy confirmed that Cu-Cr occupy octahedral sites. Black-Right-Pointing-Pointer High field regime of M-H loops was modeled using Law of Approach to saturation.

  3. Chemical synthesis of nickel ferrite spinel designed as an insulating bilayer coating on ferromagnetic particles

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Hadraba, Hynek; Bureš, R.; Fáberová, M.; Roupcová, Pavla; Kuběna, Ivo; Medvecký, L.; Girman, V.; Kollár, P.; Füzer, J.; Čižmár, E.

    2015-01-01

    Roč. 270, MAY (2015), s. 66-76 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GA14-25246S; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : soft magnetic composite * NiFe2O4 spinel ferrite * coating * precipitation method * focused ion beam Subject RIV: JG - Metallurgy Impact factor: 2.139, year: 2015

  4. Magnetic and electrical properties of Cr substituted Ni nano ferrites

    Directory of Open Access Journals (Sweden)

    Katrapally Vijaya Kumar

    2018-03-01

    Full Text Available Nano-ferrites with composition NiCrxFe2-xO4 (where x = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 were synthesized through citrate-gel auto combustion technique at moderately low temperature. X-ray analysis shows cubic spinel structure single phase without any impurity peak and average crystallite size in the range 8.5–10.5 nm. Magnetic properties were measured using a vibrating sample magnetometer at room temperature in the applied field of ±6 KOe. The obtained M-H loop area is very narrow, hence the synthesized nano ferrites are soft magnetic materials with small coercivity. Magnetic parameters such as saturation magnetization (Ms, coercivity (Hc, remanent magnetization (Mr and residual magnetization were measured and discussed with regard to Cr3+ ion concentration. Electrical properties were measured using two probe method from room temperature to well beyond transition temperature. The DC resistivity variation with temperature shows the semiconductor nature. Resistivity, drift mobility and activation energy values are measured and discussed with regard to composition. The Curie temperature was determined using DC resistivity data and Loria-Sinha method. The observed results can be explained in detail on the basis of composition.

  5. The role of matching thickness on the wideband electromagnetic wave suppresser using single layer doped barium ferrite

    International Nuclear Information System (INIS)

    Shams Alam, Reza; Kavosh Tehrani, Masoud; Moradi, Mahmood; Hosseinpour, Ehsaneh; Sharbati, Ali

    2011-01-01

    The effect of Mg 2+ , Co 2+ and Ti 4+ substitution on microwave absorption has been studied for BaMg 0.5 Co 0.5 Ti 1.0 Fe 10 O 19 ferrite-acrylic resin composite in frequency range from 13 to 20 GHz. X-ray diffraction (XRD), scanning electron microscopy (SEM), vector network analysis and vibrating sample magnetometry (VSM) were employed to analyze structure, electromagnetic and microwave absorption properties of prepared ferrite. The obtained results of reflectivity demonstrate that by varying matching thickness along with weight percentage of ferrite to acrylic resin, the bandwidth coupled with reflection loss values of prepared composites can be easily tuned. Based on microwave measurement on reflectivity, it is found that BaMg 0.5 Co 0.5 Ti 1.0 Fe 10 O 19 is a good candidate for wideband electromagnetic compatibility and other practical applications at high frequency. - Research highlights: → In our previous paper, the microwave attenuation properties of doped ferrites were evaluated. → Here we deal with the new substitution in barium ferrite which can easily tune the bandwidth of the reflection loss properties. → To the best of knowledge, this is a so simple composition which can offer practical applications in the field.

  6. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-04

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  7. Structural Consequences of Duplicitous Chemical Relation of Cobalt and Fullerene in Mixture

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.

    2012-01-01

    Roč. 20, 4-7 (2012), s. 328-335 ISSN 1536-383X R&D Projects: GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264; GA ČR GAP107/11/1856 Institutional support: RVO:61389005 Keywords : fullerene * cobalt * chemical bonding * nanostructure * self- organization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.764, year: 2012

  8. AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Petrenec, Martin; Obrtlík, Karel; Polák, Jaroslav

    2004-01-01

    Roč. 52, č. 19 (2004), s. 5551-5561 ISSN 1359-6454 R&D Projects: GA ČR GA106/00/D055; GA ČR GA106/01/0376; GA AV ČR IAA2041201 Institutional research plan: CEZ:AV0Z2041904 Keywords : ferritic steel * fatigue * persistent slip band Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.490, year: 2004

  9. Acid mine drainage simulated leaching behavior of goethite and cobalt substituted goethite

    Science.gov (United States)

    Penprase, S. B.; Kimball, B. E.

    2015-12-01

    Though most modern day mining aims to eliminate the seepage of acid mine drainage (AMD) to the local watershed, historical mines regularly receive little to no remediation, and often release acidic, metal-rich drainage and particles to the environment. Treatment of AMD often includes neutralizing pH to facilitate the precipitation of Fe-oxides and dissolved trace metals, thereby forming Trace Metal Substituted (TMS) forms of known minerals, such as goethite (α-FeOOH). The stability of TMS precipitates is not fully understood. As a result, we conducted a 20 day leach experiment using laboratory synthesized pure (Gt) and cobalt-substituted (CoGt) goethites with a dilute ultrapure HCl solution (pH = 3.61) at T = 23.3±2.5ºC. Leached solids were characterized using X-ray diffraction (XRD) and scanning electron microscopy paired with energy dispersive spectroscopy (SEM-EDS). Leach solutions were sampled for pH and conductivity, and dissolved chemistry was determined with Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Preliminary results indicate Gt and CoGt filtered leach solutions experienced constant pH (Gt = 3.9 ± 0.1, CoGt = 6.8 ± 0.2) and conductivity (Gt = 69 ± 6.6 μS/cm, CoGt = 81 ± 16 μS/cm) for t = 0-20 days. Micro-focused XRD results indicate that leached solids did not change in mineralogy throughout the experiment, and SEM images show minor disintegration along mineral grain edges, but little overall change in shape. Preliminary ICP-MS results show lower dissolved Fe concentrations for CoGt (1.1 ± 1.1 ppb) compared to Gt (17 ± 8.9 ppb) over time. Dissolved Co concentrations ranged from 560 - 830 ppb and increased over time. Compared to leaching of pure Gt, leaching of CoGt generated significantly higher pH, slightly higher conductivity, and significantly less dissolved Fe. During the CoGt leach, Co was preferentially leached over Fe. The differences in leaching behavior between pure and TMS goethite in the laboratory have implications for

  10. Effect of terbium substitution on the magnetocaloric properties of Gd3Ga5O12

    International Nuclear Information System (INIS)

    Reshmi, C.P.; Savitha Pillai, S.; Varma, Manoj Raama; Suresh, K.G.

    2011-01-01

    The magnetic refrigeration is an environment friendly cooling technology based on magnetocaloric effect. The most crucial ingredient behind a magnetic refrigerator is a magnetic material which possesses large magnetocaloric effect. Certain materials when placed in a magnetic field suddenly get heats up and suddenly cooled down by the application and the removal of magnetic field due to their change in entropy. This is measured either in terms of isothermal entropy change and adiabatic temperature change observed when the applied magnetic field is varied. The refrigerators which operate below 15K have applications in liquefying helium and for the development of space based cooling system for the space crafts. The material of choice in this temperature range is rare earth gallium garnets. Rare earth garnets are complex ceramic oxides having the chemical formula A 3 B 2 C 3 O 12 have attracted attention due to their interesting magnetic properties. The magnetism in R 3 Ga 5 O 12 is due to the exchange interaction between the rare earth spins. In the proposed work we have chosen Gd 3 Ga 5 O 12 as parent material, substituted Tb systematically in the place of Gd. The structural studies were done by using Rietveld analysis of X-Ray diffraction. There is a systematic variation of volume and lattice parameter upon substitution of Tb. The magnetic characterizations were done by a vibrating sample magnetometer. The experimental magnetic moments of the materials were calculated from the M-T curve by using Curie-Weiss fit and are good agreement with the theoretical values. There is a systematic increase of magnetic moments by Tb substitution. The magnetocaloric effect is calculated by using the integrated Maxwell's relation from the magnetization data. At low magnetic fields the Tb substituted compounds show good MCE values than GGG. Tb substitution enhances the magnetocaloric effect at low magnetic fields and the ΔS M values are higher for x = 1 and 3 at 1T. Hence these

  11. Evidence of interface exchange magnetism in self-assembled cobalt-fullerene nanocomposites exposed to air

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Stupakov, Alexandr; Lavrentieva, Inna; Motylenko, M.; Barchuk, M.; Rafaja, D.

    2017-01-01

    Roč. 28, č. 12 (2017), č. článku 125704. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : fullerene * cobalt clusters * cobalt oxide * nanocomposite * interface exchange magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism; JB - Sensors, Measurment, Regulation (FZU-D) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Electrical and electronic engineering (FZU-D) Impact factor: 3.440, year: 2016

  12. Preliminary evaluation of microstructure and mechanical properties on low activation ferritic steels

    International Nuclear Information System (INIS)

    Hsu, C.Y.; Lechtenberg, T.A.

    1985-01-01

    Radioactive waste disposal has become a primary concern for the selection of materials for the structural components for fusion reactors. One way to minimize this potential environmental problem is to use structural materials in which the induced radioactivity decays quickly to levels that allow for near-surface disposal under 10CFR61 rules. The primary objective of this work is to develop low activation ferritic steels that exhibit mechanical and physical properties approximately equivalent to the HT-9 and 9Cr-1Mo steels, but which only contain elements that would permit near-surface disposal under 10CFR61 after exposure to fusion neutrons. A preliminary evaluation of the microstructure and mechanical properties of a 9Cr-2.5W-0.3V-0.15C (GA3X) low activation ferritic steel has been performed. An optimum heat treatment condition has been defined for GA3X steel. The properties and microstructure of the quenched and tempered specimens were characterized via hardness measurement and optical metallographic observation. The hot-microhardness and ductility parameter measurements were used to estimate the tensile properties at elevated temperatures. The estimated tensile strengths of GA3X steel at elevated temperatures are comparable to both 9Cr-1Mo and the modified 9Cr-1Mo steels. These preliminary results are encouraging in that they suggest that suitable low activation alloys can be successfully produced in this ferritic alloy class

  13. Dispersible cobalt chromite nanoparticles: facile synthesis and size driven collapse of magnetism

    Czech Academy of Sciences Publication Activity Database

    Zákutná, D.; Matulková, I.; Kentzinger, E.; Medlín, R.; Su, Y.; Nemkovski, K.; Disch, S.; Vejpravová, Jana; Nižňanský, D.

    2016-01-01

    Roč. 6, č. 109 (2016), s. 107659-107668 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : cobalt chromite * nanoparticle * multiferoic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.108, year: 2016

  14. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    Science.gov (United States)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  15. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    Science.gov (United States)

    Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min

    2014-10-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  16. Increasing the high-frequency magnetic permeability of MnZn ferrite in polyaniline composites by incorporating silver

    Czech Academy of Sciences Publication Activity Database

    Babayan, V.; Kazantseva, N. E.; Sapurina, I.; Moučka, R.; Stejskal, Jaroslav; Sáha, P.

    2013-01-01

    Roč. 333, May (2013), s. 30-38 ISSN 0304-8853 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : ferrite * polyaniline * silver Subject RIV: BK - Fluid Dynamics Impact factor: 2.002, year: 2013

  17. Dodecatungstocobaltate and Sn (IV)-Substituted Polyoxometalate ...

    African Journals Online (AJOL)

    NICO

    work metals, or substituting different cations for the protons to make their acidic or neutral ... corrosive materials in comparison with traditional Lewis acids. The importance of .... salt by treatment with potassium chloride. Finally, the cobalt (II).

  18. Electrochemical performance of cobalt hydroxide nanosheets formed by the delamination of layered cobalt hydroxide in water

    Czech Academy of Sciences Publication Activity Database

    Schneiderová, Barbora; Demel, Jan; Pleštil, Josef; Tarábková, Hana; Bohuslav, Jan; Lang, Kamil

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10484-10491 ISSN 1477-9226 R&D Projects: GA ČR GP13-09462P Institutional support: RVO:61388980 ; RVO:61388955 ; RVO:61389013 Keywords : Ray-absorption spectroscopy * Alpha-cobalt * Solvothermal decomposition * Nickel * Nanocomposites Subject RIV: CA - Inorganic Chemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 4.197, year: 2014

  19. Magnetic materials based on manganese–zinc ferrite with surface organized polyaniline coating

    Czech Academy of Sciences Publication Activity Database

    Kazantseva, N. E.; Bespyatykh, Y.; Sapurina, I.; Stejskal, Jaroslav; Vilčáková, J.; Sáha, P.

    2006-01-01

    Roč. 301, č. 1 (2006), s. 155-165 ISSN 0304-8853 R&D Projects: GA AV ČR IAA4050313 Keywords : ferrite * coated particles * conducting polymer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006

  20. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    Science.gov (United States)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in

  1. Two-dimensional magnetism in the triangular antiferromagnet NiGa2S4

    International Nuclear Information System (INIS)

    Nambu, Yusuke

    2013-01-01

    At sufficiently low temperatures, electron spins in normal magnets generally order into some fashion, for instance, ferromagnetic and antiferromagnetic. Geometrical frustration and/or reduced dimensionality can suppress such conventional orders, and occasionally induce unknown states of matter. This is the case for the two-dimensional (2D) triangular antiferromagnet Ni(Ga 2 S 4 , in which S=1 nickel spins do not order, instead show an exotic magnetism. We found (1) a resonant critical slowing down toward T*=8.5 K followed by a viscous spin liquid behavior, and (2) a spin-size dependent ground state. To elucidate (1), spin dynamics ranging from 10 -13 to 10 0 seconds were quantitatively explored through the experimental techniques such as inelastic neutron scattering, backscattering, neutron spin echo, ac and nonlinear susceptibilities. The finding of (2) is evidenced by impurity effects. Integer spins substituted systems such as zinc and iron ions retain a quadratic temperature dependence of the magnetic specific heat as for the parent compound. However, substitutions of half-odd integer spins, cobalt and manganese ions, eventually induce a distinct behavior, indicating an importance of integer size of spins to stabilize the 2D magnetism realized in NiGa 2 S 4 . The article gives our experimental findings and as well as some relevant theoretical scenarios. (author)

  2. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Gharibshahian, M. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of); Mirzaee, O., E-mail: O_mirzaee@semnan.ac.ir [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Nourbakhsh, M.S. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of)

    2017-03-01

    Cobalt ferrite nano particles were synthesized by Pechini sol-gel method and calcined at 700 °C in electrical and microwave furnace. The microwave calcined sample was coated with mesoporous silica by hydrothermal method. Characterization was performed by XRD, FESEM, TEM, VSM, BET and FTIR analysis. The cytotoxicity was evaluated by MTT assay with 3T3 fibroblast cells. The XRD and FTIR results confirmed spinal formation in both cases and verified the formation of silica coating on the nanoparticles. For microwave calcination, The XRD and SEM results demonstrated smaller and flat adhesion forms of nanoparticles with the average size of 15 nm. The VSM results demonstrated nearly superparamagnetic nanoparticles with significant saturation magnetization equal to 64 emu/g. By coating, saturation magnetization was decreased to 36 emu/g. Moreover, the BET results confirmed the formation of mesoporous coating with the average pore diameters of 2.8 nm and average pore volume of 0.82 cm{sup 3} g{sup −1}. Microwave calcined nanoparticles had the best structural and magnetic properties. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were synthesized using the microwave modified Pechini method. • The Effect of calcination route and silica coating on NPs properties was studied. • The nearly superparamagnetic nanoparticles were achieved by microwave calcination. • MFC NPs had the best magnetic properties and MTT assay showed no toxicity for MFC-MSC NPs. • A useful scheme was designed to achieve biological superparamagnetic core/shell NPs.

  3. Investigate the ultrasound energy assisted adsorption mechanism of nickel(II) ions onto modified magnetic cobalt ferrite nanoparticles: Multivariate optimization.

    Science.gov (United States)

    Mehrabi, Fatemeh; Alipanahpour Dil, Ebrahim

    2017-07-01

    In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe 2 O 4 -NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni 2+ ) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni 2+ ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni 2+ ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni 2+ ions and 10mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite

    Science.gov (United States)

    Ismail, Mukhils M.; Rafeeq, Sewench N.; Sulaiman, Jameel M. A.; Mandal, Avinandan

    2018-05-01

    Improvement of microwave-absorbing materials (MAMs) is the most important research area in various applications, such as in communication, radiation medical exposure, electronic warfare, air defense, and different civilian applications. Conducting polymer, polyaniline doped with para toluene sulphonic acid (PANI-PTSA) as well as cobalt ferrite (CoFe2O4) is synthesized by sol-gel method and intensely blends in different ratios. The characterization of the composite materials, CoFe2O4/PANI-PTSA (CFP1, CFP2, CFP3 and CFP4), was performed by X-ray diffraction (XRD), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). The microwave-absorbing properties' reflection loss (dB) and important parameters, such as complex relative permittivity ( ɛ r '- jɛ r ″) and complex relative permeability ( µ r '- jµ r ″) were measured in different microwave frequencies in the X-band (8.2-12.4 GHz) region. The composite material CFP3 showed a wider absorption frequency range and maximum reflection loss of - 28.4 dB (99.8% power absorption) at 8.1 GHz and - 9.6 dB (> 90% power absorption) at 11.2 GHz, and so the composite can be used as a microwave absorber; however, it can be more suitable for application in daily life for making cell phones above 9 GHz. Also the results showed that the thicker composites like CFP3 (4 mm) exhibit obviously better EMI SE as compared with the thinner ones (0.19, 0.19, 0.3 mm); this may be related to the low transmission of the EM wave from the composites.

  5. Effect of In substitution on structural, dielectric and magnetic properties of CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, V., E-mail: manikandan570@gmail.com [Department of Physics, Government College of Technology, Coimbatore, Tamilnadu 13 (India); Vanitha, A. [Department of Physics, Government College of Technology, Coimbatore, Tamilnadu 13 (India); Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore, Tamilnadu 48 (India); Chandrasekaran, J. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts & Science, Coimbatore, Tamilnadu 20 (India)

    2017-06-15

    Highlights: • Peak shift is due to smaller ionic radius of Cu than In element. • Particle size is increased and also lattice constant increased and then decreased with respect to sintering temperature. • The average particle size is estimated in the range of 30–50 nm. - Abstract: Cu ferrite and In substituted Cu ferrite has been successfully synthesized (In{sub x}Cu{sub 1−x}Fe{sub 2}O{sub 4}; x = 0.0, 0.2) at pH 11 and sintered at 300 °C, 600 °C, 900 °C. From the XRD analysis, the ferrite phase is confirmed and particle size varied from 28 to 37 nm owing to sintering temperature. TEM microstructure confirms that samples having polycrystalline nature because of superimposition of bright spots. FT-IR spectra exhibit general behaviour of ferrite. The significant change of dielectric constant has been noticed from dielectric measurement while substitution of In element. The room temperature magnetic measurements demonstrate a solid impact of sintering temperature and In substitution on saturation magnetization and coercivity.

  6. Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M= Ni, Zn, and Mg) ferrite nanoparticles

    Science.gov (United States)

    Ramakrishna, A.; Murali, N.; Mammo, Tulu Wegayehu; Samatha, K.; Veeraiah, V.

    2018-04-01

    Inverse spinel structured nanoparticles of cobalt ferrite partially substituted by divalent cations of Ni, Zn, and Mg have been synthesized through sol-gel auto combustion route. Structural parameters are studied by powder X-ray diffraction at the diffraction angle range of 10-80°; and FT-IR spectroscopy in the wavenumber range of 1600-400 cm-1. Lattice parameters were calculated from the (hkl) values of the diffraction planes and interplanar spacing and found to be in the range of 8.3659-8.4197 Å. The surface morphology and crystalline nature are studied using scanning electron microscopy and also using HRTEM. The magnetic properties are analyzed through vibrating sample magnetometer. High saturation magnetization of 90.12 emu/g has been achieved from Co-Zn sample whereas high coercive force of 883.45 Oe is achieved in Co-Ni sample. A two-probe DC resistivity was measured in temperature ranges of 300-450 K.

  7. The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Jayaprakash, R.; Kumar, Sanjay

    2014-02-01

    Manganese substituted ferrites (ZnFe2O4, CuFe2O4, NiFe2O4 and CoFe2O4) have been prepared in the bio template medium by using a simple evaporation method. The annealing temperature plays an important position on changing particle size and morphology of the mixed ferrite nanoparticles were found out by X-ray diffraction, transmission electron microscopy and scanning electron microscopy methods. The role of manganese substitution in the mixed ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in magnetic properties which is studied by using vibrating sample magnetometer (VSM). These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. However, α-Fe2O3 phase was slowly vanished after ferrites annealing above 900 °C. The effect of this secondary phase on the structural change and magnetic properties of the mixed ferrite nanoparticles is discussed.

  8. Site selective substitution Pt for Ti in KTiOPO{sub 4}:Ga crystals revealed by electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, V.; Meyer, M.; Jorgensen, J.; Malovichko, G. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Hunt, A. W. [Idaho Accelerator Center, Idaho State University, Pocatello, Idaho 83209 (United States)

    2014-07-28

    Electron Paramagnetic Resonance at low temperatures has been used to characterize potassium titanyl phosphate (KTiOPO{sub 4}) single crystals grown by different techniques. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Platinum impurities act as electron traps in KTiOPO{sub 4} creating Pt{sup 3+} centers. Two different Pt{sup 3+} centers were observed, Pt(A) and Pt(D). The Pt(A) centers are dominant in undoped samples, whereas Pt(D)—in Ga-doped KTP crystals. Superhyperfine structure registered for Pt(D) centers was attributed to interactions of platinum electrons with {sup 39}K and two {sup 31}P nuclei in their surroundings. In both Pt(A) and Pt(D) centers, Pt{sup 3+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions. The site selective substitution can be controlled by the Ga-doping.

  9. Interaction between the magnetic moments of the 3d and the 4f electrons in manganite, probed by Ga substitution

    International Nuclear Information System (INIS)

    Ling Langsheng; Zhang Lei; Tong Wei; Qu Zhe; Pi Li; Zhang Yuheng

    2012-01-01

    The substitution of Ga for Mn in manganite Nd 0.6 Dy 0.1 Sr 0.3 MnO 3 with a ferromagnetic (FM) ground state has been performed to study the influence of the Mn-sublattice magnetic ordering on the magnetic rare-earth sublattice. It is found that the substitution of Mn 3+ with Ga 3+ ions results in a sharp decrease of T C , reflecting the reduction of the double-exchange interactions strength J Mn–Mn . At the same time, a depinning effect of the rare-earth magnetic moment has been observed. This behavior unambiguously proves that the exchange interaction between Mn and rare-earth ions J Mn–R strongly influences the rare-earth magnetic ordering at temperatures below T C and stabilizes the rare-earth magnetic ground state.

  10. Spectrum designation and effect of Al substitution on the luminescence of Cr{sup 3+} doped ZnGa{sub 2}O{sub 4} nano-sized phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weiwei [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhang Junying, E-mail: zjy@buaa.edu.c [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Chen Ziyu; Wang Tianmin [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zheng Shukai [College of Electronic and Information Engineering, Hebei University, Baoding 071200 (China)

    2010-10-15

    Low-temperature photoluminescent spectra of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr{sup 3+} ions in different sites including ideal octahedral, Zn-interstitial, Ga{sub ZN}{sup 4}-Zn{sub Ga}{sup 6} sites and Ga{sub 2}O{sub 3} impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al{sup 3+} is substituted in Ga{sup 3+} sites to form Zn(Ga{sub 1-y}Al{sub y}){sub 2}O{sub 4}:Cr{sub 0.01}{sup 3+} (0{<=}y{<=}0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al{sup 3+} and Ga{sup 3+}.

  11. AC and DC electrical conductivity, dielectric and magnetic properties of Co{sub 0.65}Zn{sub 0.35}Fe{sub 2-x}Mo{sub x}O{sub 4} (x = 0.0, 0.1 and 0.2) ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, A.K.; Saha, S. [Vidyasagar University, Department of Physics and Techno Physics, Midnapore, West Bengal (India); Nath, T.K. [Indian Institute of Technology Kharagpur, Department of Physics, Kharagpur, West Bengal (India)

    2017-11-15

    Cobalt-Zinc ferrites are an important material for designing multiferroic composite. The Mo (4d-transition metal) doped Cobalt-Zinc ferrites are synthesized using ceramic (solid-state reaction) method. Investigation of detailed ac and dc electrical conductivity, dielectric and magnetic properties of Co{sub 0.65}Zn{sub 0.35}Fe{sub 2-x}Mo{sub x}O{sub 4} (x = 0.0, 0.1 and 0.2) spinel ferrites have been reported here. The recorded XRD pattern confirms the formation of inverse spinel structure of the material. The dielectric dispersion has been studied in detail and the existence of non-Debye type relaxation behavior has been confirmed. The dielectric tangent loss is found to be very small at high frequency. The ac conductivity follows the correlated barrier hopping like model. Also the conduction process can be best explained on the basis of Verwey-de Boer mechanism. Magnetic phase transition of the material is estimated from magnetization vs. temperature plots. (orig.)

  12. Alkyl group dependence on structure and magnetic properties in layered cobalt coordination polymers containing substituted glutarate ligands and 4,4'-bipyridine

    International Nuclear Information System (INIS)

    Nettleman, Joseph H.; Supkowski, Ronald M.; LaDuca, Robert L.

    2010-01-01

    Five two-dimensional divalent cobalt coordination polymers containing 4,4'-bipyridine (bpy) and substituted or unsubstituted glutarate ligands have been prepared hydrothermally and structurally characterized by single-crystal X-ray diffraction. [Co(mg)(bpy)] n (1, mg=3-methylglutarate) forms a (4,4) rhomboid grid structure based on the connection of {Co 2 (CO 2 ) 2 } dimeric units. Using the more sterically encumbered ligands 3,3-dimethylglutarate (dmg) and 3-ethyl, 3-methylglutarate (emg) generated {[Co(dmg)(bpy)(H 2 O)].2H 2 O} n (2) and {[Co(emg)(bpy)(H 2 O)].H 2 O} n (3), respectively. These complexes manifest {Co(CO 2 )} n chains linked into 2-D by aliphatic dicarboxylate and bpy ligands. The 'tied-back' substituted glutarate ligand 1,1-cyclopentanediacetate (cda) afforded [Co(cda)(bpy)] n (4), and the unsubstituted glutarate (glu) generated [Co(glu)(bpy)] n (5), both of which exhibit a topology similar to that of 1. The magnetic properties of complexes 1-4 were analyzed successfully with a recently developed phenomenological chain model accounting for both magnetic coupling (J) and zero-field splitting effects (D), even though 1 and 4 contain isolated, discrete {Co 2 (CO 2 ) 2 } dimers. The D parameter in this series varied between 21.8(8) and 48.0(9) cm -1 . However weak antiferromagnetic coupling was observed in 1 (J=-2.43(4) cm -1 ) and 4 (J=-0.89(2) cm -1 ), while weak ferromagnetic coupling appears to be operative in both 2 (J=0.324(5) cm -1 ) and 3 (J=0.24(1) cm -1 ). - Five two-dimensional divalent cobalt coordination polymers containing 4,4'-bipyridine (bpy) and substituted or unsubstituted glutarate ligands have been prepared and structurally characterized by single-crystal X-ray diffraction. Three contain dimeric {Co 2 (CO 2 ) 2 } units, while two manifest {Co(CO 2 )} n chains, depending on the steric bulk of the substituent. The magnetic properties of the complexes were analyzed successfully with a recently developed phenomenological chain model

  13. Constraint Effects at Brittle Fracture Initiation in a Cast Ferritic Steel

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Kozák, Vladislav

    č. 71 (2004), s. 873-883 ISSN 0013-7944 R&D Projects: GA AV ČR IAA2041003 Institutional research plan: CEZ:AV0Z2041904 Keywords : Cast ferritic steel * transition behaviour * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.299, year: 2004 www.sciencedirect.com

  14. Cobalt-55 positron emission tomography in ischemic stroke

    NARCIS (Netherlands)

    Jansen, HML; Paans, AMJ; Vliet, AMV; VeenmavanderDuin, L; BolwijnMeijer, CJW; Pruim, J; Willemsen, ATM; Franssen, EJF; Minderhoud, JM; Korf, J

    After acute cerebral stroke, the (peri-) infarct tissue is characterized by calcium (Ca)-mediated neuronal damage and inflammatory processes. Monitoring Ca-mediated damage using the isotope cobalt-55 (Go) as a Ga-tracer may enable PET-imaging of this tissue. Since the fate of (peri-) infarct tissue

  15. The Effect of Magnesium Substitution and Sintering Temperature on the Structural and Magnetic Properties of Manganese- Magnesium Ferrite

    Directory of Open Access Journals (Sweden)

    S.T. Mohammadi Benehi

    2016-12-01

    Full Text Available Magnesium-manganese ferrite nanopowders (MgxMn1-xFe2O4, x=0.0 up to 1 with step 0.2 were prepared by coprecipitation method. The as-prepared samples were pressed with hydrolic press to form a pellet and were sintered in 900, 1050 and 1250˚C. Scanning Tunneling Microscope (STM images showed the particle size of powders about 17 nm. The X-ray patterns confirmed the formation of cubic single phase spinel structure in samples sintered at 1250˚C. Substituting Mg2+ with Mn2+ in these samples, the lattice parameter decreased from 8.49 to 8.35Å and magnetization saturation decreased from 74.7 to 21.2emu/g. Also, coercity (HC increased from 5 to 23Oe and Curie temperature (TC increased from 269 to 392˚C. Samples with x= 0.2, 0.4, 0.6 sintered at 1250 ˚C, because of their magnetic properties, can be recommended for hyperthermia applications and for phase shifters.

  16. Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Khan, U.; Adeela, N.; Javed, K.; Riaz, S.; Ali, H.; Iqbal, M.; Han, X. F.; Naseem, S.

    2015-11-01

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1- δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller's law, while modified Bloch's model was employed for saturation magnetization in temperature range of 5-300 K.

  17. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu{sub x}Zn{sub 0.5−x}Ni{sub 0.5}Fe{sub 2}O{sub 4}) nanocrystalline ferrites for core, switching and MLCI’s applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Majid Niaz, E-mail: majidniazakhtar@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Nazir, M.S. [Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Imran, M.; Ali, A.; Sattar, A. [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore (Pakistan)

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu{sub x}Zn{sub 0.5−x}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights

  18. Moessbauer and magnetic susceptibility measurements on M-type hexagonal Ba - ferrite

    International Nuclear Information System (INIS)

    Lipka, J.; Gruskova, A.; Sitek, J.; Miglierini, M.; Groene, R.; Hucl, M.; Toth, I.; Orlicky, O.

    1990-01-01

    Samples of stoichiometric BaFe 12 O 19 and Co, Ti substituted barium ferrite were prepared by chemical wet method. Moessbauer spectroscopy, magnetic susceptibility measurements, X-ray diffraction, infrared spectroscopy were conducted to examine the mechanism of formation. The observed magnetic characteristics and electron scanning microscopy show that single domain coprecipitated powders were formed. (orig.)

  19. THE COORDINATION COMPOUNDS OF COBALT (II, III WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. D. Varbanets

    2013-02-01

    Full Text Available Chloride, bromide and isothiocyanate complexes of cobalt(II with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1–(12, and also complexes of cobalt(II, Ш with derivatives of morpholine-4-carbodithioic acid (13–(18 have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was shown that cobalt (II, Ш compounds influence differently on the activity of enzymes tested, exerted both inhibitory and stimulatory action. It gives a possibility to expect that manifestation of activity by complex molecule depends on ligand and anion presence — Cl–, Br– or NCS–. The high activating action of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides (1–(12 on elastase and fibrinolytic activity of peptidases compared to tris(4-morpholinecarbodithioatocobalt(ІІІ (14 and products of its interaction with halogens (15–(17, causes inhibitory effect that is probably due to presence of a weekly S–N link, which is easy subjected to homolytic breaking. The studies of influences of cobalt(II complexes on activity of C. аlbidus and E. еrubescens ?-Lrhamnosidases showed, that majority of compounds inhibits of its activity, at that the most inhibitory effect exerts to C. аlbidus enzyme.To sum up, it is possible to state that character of influence of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides, and also cobalt(II, Ш complexes with derivatives of morpholine-4-carbodithioic acid varies depending on both strain producer and enzyme tested. The difference in complex effects on enzymes tested are due to peculiarities of building and functional groups of their active centers, which are also responsible for binding with modificators.

  20. Stability and diffusion of interstitital and substitutional Mn in GaAs of different doping types

    CERN Document Server

    Pereira, LMC; Decoster, S; Correia, JG; Amorim, LM; da Silva, MR; Araújo, JP; Vantomme, A

    2012-01-01

    We report on the lattice location of Mn impurities (< 0.05%) in undoped (semi-insulating) and heavily $n$-type doped GaAs, by means of $\\beta^{-}$-emission channeling from the decay of $^{56}$Mn produced at ISOLDE/CERN. In addition to the majority substituting for Ga, we locate up to 30% of the Mn impurites on tetrahedral interstitial sites with As nearest neighbors. In line with the recently reported high thermal stability of interstitial Mn in heavily $p$-type doped GaAs [L. M. C. Pereira et al., Appl. Phys. Lett. 98, 201905 (2011)], the interstitial fraction is found to be stable up to 400$^{\\circ}$C, with an activation energy for diffusion of 1.7–2.3 eV. By varying the concentration of potentially trapping defects, without a measurable effect on the migration energy of the interstitial impurities, we conclude that the observed high thermal stability is characteristic of isolated interstitial Mn. Being difficult to reconcile with the general belief that interstitial Mn is the donor defect that out-dif...

  1. Mn-Zn ferrite nanoparticles with silica and titania coatings: synthesis, transverse relaxivity and cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Herynek, V.; Havelek, R.; Královec, K.; Kubániová, D.; Kohout, J.; Dvořák, P.; Jirák, Zdeněk

    2017-01-01

    Roč. 53, č. 11 (2017), s. 1-8, č. článku 5300908. ISSN 0018-9464 R&D Projects: GA ČR GA16-04340S Institutional support: RVO:68378271 Keywords : amorphous titania * silica * magnetic nanoparticles * Mn-Zn ferrite * transverse relaxivity * cytotoxicity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.243, year: 2016

  2. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-01-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved

  3. GaN:Co epitaxial layers grown by MOVPE

    Czech Academy of Sciences Publication Activity Database

    Šimek, P.; Sedmidubský, D.; Klímová, K.; Mikulics, M.; Maryško, Miroslav; Veselý, M.; Jurek, Karel; Sofer, Z.

    2015-01-01

    Roč. 44, Mar (2015), 62-68 ISSN 0022-0248 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : doping * metalorganic vapor phase epitaxy * cobalt * gallium compounds * nitrides * magnetic materials spintronics Subject RIV: CA - Inorganic Chemistry Impact factor: 1.462, year: 2015

  4. Electron transfer reactions of macrocyclic compounds of cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1978-08-01

    The kinetics and mechanisms of reduction of H/sub 2/O/sub 2/, Br/sub 2/, and I/sub 2/ by various macrocyclic tetraaza complexes of cobalt(II), including Vitamin B/sub 12r/, were studied. The synthetic macrocycles studied were all 14-membered rings which varied in the degree of unsaturation,substitution of methyl groups on the periphery of the ring, and substitution within the ring itself. Scavenging experiments demonstrated that the reductions of H/sub 2/O/sub 2/ produce free hydroxyl radicals only in the case of Co((14)ane)/sup 2 +/ but with none of the others. In the latter instances apparently H/sub 2/O/sub 2/ simultaneously oxidizes the metal center and the ligand. The reductions of Br/sub 2/ and I/sub 2/ produce an aquohalocobalt(III) product for all reductants (except B/sub 12r/ + Br/sub 2/, which was complicated by bromination of the corrin ring). The mechanism of halogen reduction was found to involve rate-limiting inner-sphere electron transfer from cobalt to halogen to produce a dihalide anion coordinated to the cobalt center. This intermediate subsequently decomposes in rapid reactions to halocobalt(III) and halogen atom species or reacts with another cobalt(II) center to give two molecules of halocobalt(III). The reductions of halomethylcobaloximes and related compounds and diamminecobaloxime by Cr/sup 2 +/ were also studied. The reaction was found to be biphasic in all cases with the reaction products being halomethane (for the halomethylcobaloximes), Co/sup 2 +/ (in less than 100 percent yield), a Cr(III)-dimethylglyoxime species, a small amount of free dmgH/sub 2/, and a highly-charged species containing both cobalt and chromium. The first-stage reaction occurs with a stoichiometry of 1:1 producing an intermediate with an absorption maximum at 460 nm for all starting reagents. The results were interpreted in terms of inner-sphere coordination of the cobaloxime to the Cr(II) and electron transfer through the oxime N-O bond.

  5. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  6. Enhancement of TE polarized light extraction efficiency in nanoscale (AlN)m /(GaN)n (m>n) superlattice substitution for Al-rich AlGaN disorder alloy: ultra-thin GaN layer modulation

    International Nuclear Information System (INIS)

    Jiang, Xin-he; Shi, Jun-jie; Zhong, Hong-xia; Huang, Pu; Ding, Yi-min; Yu, Tong-jun; Shen, Bo; Lu, Jing; Zhang, Min; Wang, Xihua

    2014-01-01

    The problem of achieving high light extraction efficiency in Al-rich Al x Ga 1−x N is of paramount importance for the realization of AlGaN-based deep ultraviolet (DUV) optoelectronic devices. To solve this problem, we investigate the microscopic mechanism of valence band inversion and light polarization, a crucial factor for enhancing light extraction efficiency, in Al-rich Al x Ga 1−x N alloy using the Heyd–Scuseria–Ernzerhof hybrid functional, local-density approximation with 1/2 occupation, and the Perdew–Burke–Ernzerhof functional, in which the spin–orbit coupling effect is included. We find that the microscopic Ga-atom distribution can effectively modulate the valence band structure of Al-rich Al x Ga 1−x N. Moreover, we prove that the valence band arrangement in the decreasing order of heavy hole, light hole, and crystal-field split-off hole can be realized by using nanoscale (AlN) m /(GaN) n (m>n) superlattice (SL) substituting for Al-rich Al x Ga 1−x N disorder alloy as the active layer of optoelectronic devices due to the ultra-thin GaN layer modulation. The valence band maximum, i.e., the heavy hole band, has p x - and p y -like characteristics and is highly localized in the SL structure, which leads to the desired transverse electric (TE) polarized (E⊥c) light emission with improved light extraction efficiency in the DUV spectral region. Some important band-structure parameters and electron/hole effective masses are also given. The physical origin for the valence band inversion and TE polarization in (AlN) m /(GaN) n SL is analyzed in depth. (paper)

  7. Cobalt

    Science.gov (United States)

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of

  8. Effect of doping rare earths on magnetostriction characteristics of CoFe2O4 prepared from spent Li-ion batteries

    Science.gov (United States)

    Xi, Guoxi; Zhao, Tingting; Wang, Lu; Dun, Changwei; Zhang, Ye

    2018-04-01

    Recovering spent Li-ion batteries is beneficial to the economy and environment. Therefore, this study synthesized nanoparticles of cobalt ferrite doped with different rare earth ions (Nd, Ce, and Pr) by a sol-gel auto-combustion method using spent Li-ion batteries. The effect of the different doping elements on grain sizes, structure, magnetic and magnetostrictive properties, and strain derivative were confirmed by X-ray diffraction, scanning election microscopy, vibrating sample magnetometer, and a magnetostrictive coefficient measuring system. Substitution of a small amount of Fe3+ with RE3+ in CoRExFe2-xO4 (x = 0.025, 0.05, and 0.1) had a large effect on magnetostrictive properties and strain derivative, which was improved compared with pure cobalt ferrite at low magnetic field. The maximum strain derivative (dλ/dH = -1.49 × 10-9 A-1 m at 18 kA m-1) was obtained for Nd, x = 0.05. Changes in the magnetostriction coefficients and strain derivatives were correlated with changes in cation distribution, microstructure, and magnetic anisotropy, which depended strongly on RE3+ substitution and distribution in the spinel structure.

  9. Optical transitions and electronic interactions in self-assembled cobalt-fullerene mixture films

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Chvostová, Dagmar; Lavrentieva, Inna; Vacík, Jiří; Daskal, Y.; Barchuk, M.; Rafaja, D.; Dejneka, Alexandr

    2017-01-01

    Roč. 50, č. 48 (2017), č. článku 485305. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015088; GA MŠk LM2015056 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : fullerene * cobalt * electronic interaction * optical absorption * mixture film Subject RIV: BM - Solid Matter Physics ; Magnetism; BO - Biophysics (FZU-D) OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.); Biophysics (FZU-D) Impact factor: 2.588, year: 2016

  10. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-x Mg x Fe2O4 nanoparticle ferrites

    Science.gov (United States)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ˜ 32 nm to ˜ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ˜ 57.35 emu/g to ˜ 61.49 emu/g and ˜ 603.26 Oe to ˜ 684.11 Oe (1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  11. Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Dědourková, T.; Koktan, Jakub; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Havelek, R.; Královec, K.; Turnovcová, Karolína; Jendelová, Pavla; Schröfel, A.; Svoboda, L.

    2016-01-01

    Roč. 18, č. 4 (2016), 1-18, č. článku 100. ISSN 1388-0764 R&D Projects: GA ČR GA15-10088S Institutional support: RVO:68378271 ; RVO:68378041 Keywords : magnetic nanoparticles * manganite * ferrite * in vitro toxicity * stem cells Subject RIV: BM - Solid Matter Physics ; Magnetism; EB - Genetics ; Molecular Biology (UEM-P) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Acoustics (UEM-P) Impact factor: 2.020, year: 2016

  12. Hydrothermal synthesis, characterization, and magneticproperties of cobalt chromite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Zákutná, Dominika; Repko, A.; Matulková, I.; Nižňanský, Daniel; Ardu, A.; Cannas, C.; Mantlíková, Alice; Vejpravová, Jana

    2014-01-01

    Roč. 16, č. 2 (2014), 1-14 ISSN 1388-0764 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : cobalt chromite * hydrothermal method * nanoparticles * size effect * multiferroic materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.184, year: 2014

  13. Evolution of the mössbauer spectra of ludwigite Co3 - x Fe x O2BO3 with substitution of iron for cobalt

    Science.gov (United States)

    Knyazev, Yu. V.; Ivanova, N. B.; Bayukov, O. A.; Kazak, N. V.; Bezmaternykh, L. N.; Vasiliev, A. D.

    2013-06-01

    A concentration series of single crystals of iron-cobalt ludwigites Co3 - x Fe x O2BO3 ( x = 0.0125, 0.025, 0.050, 0.10, 1.0) has been synthesized. The structure has been studied using X-ray diffraction and Mössbauer effect. A preferred occupation of nonequivalent crystallographic positions by iron in the ludwigite structure has been revealed. It has been found that the valence of substituting iron ions is three. It has been revealed that the structure of the γ-resonance spectrum of Co2FeO2BO3 is complicated due to a composition disorder in the system.

  14. Nano copper and cobalt ferrites as heterogeneous catalysts for the ...

    Indian Academy of Sciences (India)

    logically active natural products were found to contain substituted ... pH of the solution was increased to ... weak which indicate that the residual carbon has mostly burnt away .... imidazole. 3.1a Comparison of effect of the present catalysts with.

  15. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    International Nuclear Information System (INIS)

    Lopez, J.; Gonzalez-Bahamon, L.F.; Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E.; Esteve, J.; Prieto, P.

    2012-01-01

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co (1-x) Zn x Fe 2 O 4 (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co (1-x) Zn x Fe 2 O 4 nanoparticles. X-ray diffraction patterns of Co (1-x) Zn x Fe 2 O 4 show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe 2 O 4 . Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5±0.3) nm to (5.4±0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co (1-x) Zn x Fe 2 O 4 magnetic nanoparticles, the crystal and nanoparticle sizes determined by X-ray Diffraction and TEM

  16. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  17. SrAl12O19 thin films by chemical solution deposition and their use as buffer layers for oriented growth of hexagonal ferrites

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Uhrecký, Róbert; Kaščáková, Dorota; Kužel, R.; Holý, V.; Dopita, M.

    2016-01-01

    Roč. 616, OCT (2016), s. 228-237 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:61388980 Keywords : Chemical solution deposition * Hexagonal aluminates * Hexagonal ferrites Subject RIV: CA - Inorganic Chemistry Impact factor: 1.879, year: 2016

  18. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    2016-08-15

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. The results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.

  19. Influence of cobalt doping on structural and magnetic properties of BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, U. [Chinese Academy of Sciences, Institute of Physics (China); Adeela, N., E-mail: adeela16@gmail.com [Centre for High Energy Physics, University of the Punjab (Pakistan); Javed, K. [Chinese Academy of Sciences, Institute of Physics (China); Riaz, S. [Centre for Solid State Physics, University of the Punjab (Pakistan); Ali, H. [Chinese Academy of Sciences, Institute of Physics (China); Iqbal, M. [Centre for High Energy Physics, University of the Punjab (Pakistan); Han, X. F. [Chinese Academy of Sciences, Institute of Physics (China); Naseem, S., E-mail: shahzad-naseem@yahoo.com [Centre for Solid State Physics, University of the Punjab (Pakistan)

    2015-11-15

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe{sub 1−δ}Co{sub δ}O{sub 3} (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO{sub 3}. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller’s law, while modified Bloch’s model was employed for saturation magnetization in temperature range of 5–300 K.Graphical Abstract.

  20. Cobalt Oxide Catalysts on Commercial Supports for N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Klegová, A.; Pacultová, K.; Fridrichová, D.; Volodarskaja, A.; Kovanda, J.; Jirátová, Květa

    2017-01-01

    Roč. 40, č. 5 (2017), s. 981-990 ISSN 0930-7516. [International Congress of Chemical and Process Engineering CHISA 2016 /22./ and the 19th Conference PRES 2016. Prague, 27.08.2016-31.08.2016] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : N2O decomposition * cobalt oxide * shaped catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.051, year: 2016

  1. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    Energy Technology Data Exchange (ETDEWEB)

    Ateia, Ebtesam E.; Mohamed, Amira T., E-mail: atawfik@sci.cu.edu.eg

    2017-03-15

    The spinel ferrite Mg{sub 0.7}Cr{sub 0.3}Fe{sub 2}O{sub 4}, and Mg{sub 0.7}Al{sub 0.3}Fe{sub 2}O{sub 4} were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al{sup 3+} and Mg{sup 2+} respectively. The substitution of Cr{sup 3+}/Al{sup 3+} in place of Mg{sup 2+} ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg{sup 2+}, which creates strain inside the crystal volume. According to VSM results, by adding Al{sup 3+} or Cr{sup 3+} ions at the expense of Mg{sup 2+}, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5–1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al{sup 3+}, and Cr{sup 3+} ions enhanced the optical, magnetic and structure properties of the samples. Mg{sub 0.7} Cr{sub 0.3}Fe{sub 2}O{sub 4} sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications. - Highlights: • Nanoparticles of (Mg{sub 0.7} Al{sub 0.3} Fe{sub 2}O{sub 4}) ferrite are the potential candidates for various

  2. Study the effect of Gd{sup 3+} incorporation into nanocrystalline (Ni–Ti) substituted Mn–Zn ferrites on its structure and functional properties

    Energy Technology Data Exchange (ETDEWEB)

    Rady, K.E., E-mail: k_rady_2001@yahoo.com [Engineering Basic Sciences Department, Faculty of Engineering, Menoufia University, Shebin El-El, Kom (Egypt); Shams, M.S. [Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Menouf (Egypt)

    2017-03-15

    Ferrite samples with general chemical formula Mn{sub 0.9}Zn{sub 0.1}Ni{sub 0.05}Ti{sub 0.05}Gd{sub t}Fe{sub 1.9−t}O{sub 4}; (0.0≤ t≤0.05; step 0.01) were prepared using solid state reaction technique and the effect of Gd{sup 3+} ions incorporation on its physical properties has been studied. From the obtained results, XRD analysis reveals that the samples have a cubic spinel single phase structure for 0.0≤ t≤0.02; while for t≥0.03 a small peak of secondary phase (Gd{sub 3}Fe{sub 5}O{sub 12}) appears and becomes more noticeable with increasing Gd content. The lattice parameter (a) of the prepared samples was found to be initially increases and then decreases with increasing Gd content which may be attributed to the difference in the ionic radii of the cations involved and the solubility limit of Gd{sup 3+} ions. The crystallite size of the samples was estimated using Scherrer's equation and ranged from 96 nm to 107 nm. A vibrating sample magnetometer (VSM) was used at room temperature in order to study the effect of Gd content on the magnetic hysteresis parameters of the prepared ferrites such as saturation magnetization and coercivity. DC molar magnetic susceptibility (χ{sub M}) for the prepared samples was measured using Faraday's method as a function of temperature and the Curie temperature was calculated from the magnetic susceptibility measurements. Also the DC resistivity of the samples was measured at room temperature. The obtained results show that, the substitution by Gd{sup 3+} ions improves the electrical properties of the samples by increasing it DC electrical resistivity by 118% and consequently decreases it eddy current loss while the saturation magnetization slightly decreased by 14% only. The sample of t=0.01 shows a high dc magnetic susceptibility, high saturation magnetization (43.1 emu/g), high electric resistivity 12×10{sup 3} Ω.m and high Curie temperature (496 K), which is useful in some technological applications such

  3. Microstructural characterization of ODS ferritic steels at different processing stages

    Energy Technology Data Exchange (ETDEWEB)

    Gil, E., E-mail: egil@ceit.es; Ordás, N.; García-Rosales, C.; Iturriza, I., E-mail: iiturriza@ceit.es

    2015-10-15

    Highlights: • ODS ferritic stainless steel produced by new route without mechanical alloying. • Fully dense ferritic stainless steels containing Y and Ti were obtained by HIPping. • Y and Ti-rich precipitates prevent grain growth during heat treatment up to 1320 °C. • HIPping at 1220 °C dissolves the metastable oxides on PPBs. - Abstract: Nanostructured Oxide Dispersion Strengthened Reduced Activation Ferritic Stainless Steels (ODS RAF) are promising structural materials for fusion reactors, due to their ultrafine microstructure and the presence of a dispersion of Y–Ti–O nanoclusters that provide excellent creep strength at high temperatures (up to 750 °C). The traditional powder metallurgical route to produce these steels is based on Gas Atomization (GA) + Mechanical Alloying (MA) + HIP + ThermoMechanical Treatments (TMTs). Recently, alternative methods have arisen to avoid the MA step. In line with this new approach, ferritic stainless steel powders were produced by gas atomization and HIPped, after adjusting their oxygen, Y and Ti contents to form Y–Ti–O nanoclusters during subsequent heat treatments. The microstructure of as-HIPped steels mainly consists of ferrite grains, Y–Ti precipitates, carbides and oxides on Prior Particle Boundaries (PPBs). Post-HIP heat treatments performed at high temperatures (1270 and 1300 °C) evaluated the feasibility of achieving a complete dissolution of the oxides on PPBs and a precipitation of ultrafine Ti- and Y-rich oxides in the Fe14Cr2W matrix. FEG-SEM with extensive EDS analysis was used to characterize the microstructure of the atomized powders and the ODS-RAF specimens after HIP consolidation and post-HIP heat treatments. A deeper characterization of atomized powder was carried out by TEM.

  4. Studies on the dissolution of antimony doped ferrites

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Sanjukta, A.; Pandey, S.; Venkateswaran, G.; Ramanathan, S.

    2008-01-01

    Antimony (Sb) present in the PHT (primary heat transport) pump seals and bearings of PHWRs (Pressurized Heavy Water Reactor) is released during operation of the reactor and gets deposited on the in-core zircaloy surfaces. Neutron flux in the reactor core activates this Sb to 122 Sb (t 1/2 2.6 days) and 124 Sb (t 1/2 60 days). Release of this Sb (radioactive antimony) and its deposition on out of core surfaces occurs due to oxygen ingress in the system during shutdown periods and off normal conditions. Sb deposition on the magnetite bearing carbon steel surface of the PHT system results in increase of radiation fields. The consequence of this is low apparent decontamination factors observed after system decontamination. Once Sb is deposited on bare carbon steel (CS) surface or magnetite bearing carbon steel surface it is not amenable for removal by normal reductive decontamination process. It has to decay by its own half-life or has to be removed by oxidative dissolution. To understand the role of antimony and its removal on the ion exchange column, antimony doped ferrites were prepared and their dissolution in CNA (citric acid, NTA, Ascorbic acid; 1.4+1.4+1.7 mM) formulation was studied. The time taken for the dissolution of antimony-doped ferrites was found to increase with increasing Sb content in the ferrite. The point of zero charge (pzc) value of Sb substituted magnetite was determined to understand its adsorption on carbon steel surfaces of the PHT system. The pzc values for Fe 3 O 4 and Sb 2 O 3 , with H + / OH - as only potential determining ions in the aqueous medium, were 6.5 and 1.7 respectively. While, pzc of magnetite in typical decontamination formulations was below 3. The pzc for aqueous suspension of antimony-substituted magnetite (sintered at 1173 K) was 4.4. On the other hand, in CEA (citric acid, EDTA, Ascorbic acid) formulation up to a pH of 1.5, surface charge on the antimony-substituted magnetite was negative. Hence, even at this low pH, pzc

  5. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  6. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J., E-mail: javierlo21@gmail.com [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Gonzalez-Bahamon, L.F. [Analytical Chemistry Laboratory, Universidad del Valle, A.A. 25360, Cali (Colombia); Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Esteve, J. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Prieto, P. [Center of Excellence for Novel Materials, Universidad del Valle, Cali (Colombia)

    2012-02-15

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles. X-ray diffraction patterns of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe{sub 2}O{sub 4}. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5{+-}0.3) nm to (5.4{+-}0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} magnetic

  7. Electrical Properties and Dipole Relaxation Behavior of Zinc-Substituted Cobalt Ferrite

    Science.gov (United States)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2017-12-01

    Co1- x Zn x Fe2O4 ceramics with x = 0.00, 0.05, 0.10, 0.15 and 0.20 were synthesized by a modified citric acid sol-gel method. The crystalline phase of the samples was characterized by the powder x-ray diffraction technique (XRD) and the Rietveld analysis of the XRD patterns. The morphology and particle size were studied using field emission scanning electron microscopy. Fourier transform infrared spectroscopy studies were consistent with the XRD results. The impedance measurements were carried out from 100 Hz to 10 MHz at different temperatures from 40°C to 300°C. The frequency dispersion of dielectric was analyzed with a modified Debye equation. The activation energy derived from the dielectric constant and the impedance follows the Arrhenius law and are comparable with each other. The dielectric relaxation and impedance relaxation are correlated in terms of activation energy, show a good temperature stability of the dielectrics and are useful for their applications in microelectronic devices such as filters, capacitors, resonators, etc.

  8. Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples

    Science.gov (United States)

    Assar, S. T.; Abosheiasha, H. F.

    2015-01-01

    Nanoparticles of Ni1-xCaxFe2O4 (x=0.0, 0.02, 0.04, 0.06 and 0.10) were prepared by citrate precursor method. A part of these samples was sintered at 600 °C for 2 h in order to keep the particles within the nano-size while the other part was sintered at 1000 °C to let the particles to grow to the bulk size. The effect of Ca2+ ion substitution in nickel ferrite on some structural, magnetic, electrical and thermal properties was investigated. All samples were characterized by using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). A two probe method was used to measure the dc electrical conductivity whereas the photoacoustic (PA) technique was used to determine the thermal diffusivity of the samples. To interpret different experimental results for nano and bulk samples some cation distributions were assumed based on the VSM and XRD data. These suggested cation distributions give logical explanations for other experimental results such as the observed values of the absorption bands in FTIR spectra and the dc conductivity results. Finally, in the thermal measurements it was found that increasing the Ca2+ ion content causes a decrease in the thermal diffusivity of both nano and bulk samples. The explanation of this behavior is ascribed to the phonon-phonon scattering.

  9. Structural and physical property study of sol-gel synthesized CoFe2-xHoxO4 nano ferrites

    Science.gov (United States)

    Patankar, K. K.; Ghone, D. M.; Mathe, V. L.; Kaushik, S. D.

    2018-05-01

    CoFe2-xHoxO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20) ferrites were prepared by the suitably modified Sol-Gel technique. X-ray diffraction (XRD) analysis revealed that the substituted samples show phase pure formation till 10% substitution, which is far higher phase pure than the earlier reports. Upon further substitution an inevitable secondary phase of HoFeO3 along with the spinel phase despite regulating synthesis parameters in the sol-gel reaction route. These results are further corroborated more convincingly by room temperature neutron diffraction. Morphological features of the ferrites were studied by Scanning Electron Microscopy (SEM). The magnetic parameters viz. the saturation magnetization (Ms), coercivity (Hc) and remanence (Mr) were determined from room temperature isothermal magnetization. These parameters were found to decrease with increase in Ho substitution. The decrease in magnetization is analyzed in the light of exchange interactions between rare earth and transition metal ions. Magnetostriction measurements revealed interesting results and the presence of a secondary phase was found to be responsible for decreased measu-red magnetostriction values. The solubility limit of Ho in CoFe2O4 lattice is also reflected from the X-ray and neutron diffraction analysis and magnetostriction studies.

  10. Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase.

    Directory of Open Access Journals (Sweden)

    Yi Liu

    Full Text Available Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase family of enzymes. All of these NHases possess a gene organization of , which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of , was also dependent on self-subunit swapping. We successfully isolated a recombinant NHase activator protein (P14K of Pseudomonas putida NRRL-18668 by adding a Strep-tag N-terminal to the P14K gene. P14K was found to form a complex [α(StrepP14K(2] with the α-subunit of the NHase. The incorporation of cobalt into the NHase of P. putida was confirmed to be dependent on the α-subunit substitution between the cobalt-containing α(StrepP14K(2 and the cobalt-free NHase. Cobalt was inserted into cobalt-free α(StrepP14K(2 but not into cobalt-free NHase, suggesting that P14K functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, NHase from P. putida was also expressed by a mutant gene that was designed with a order. Our findings expand the general features of self-subunit swapping maturation.

  11. XXIst Century Ferrites

    International Nuclear Information System (INIS)

    Mazaleyrat, F; Zehani, K; Pasko, A; Loyau, V; LoBue, M

    2012-01-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Oersted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the down sizing of ceramics microstructure to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba 2+ Fe 12 O 19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  12. A Novel Composite Material Designed from FeSi Powder and Mn0.8Zn0.2Fe2O4 Ferrite

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Bureš, R.; Fáberová, M.; Kurek, P.; Roupcová, Pavla; Hadraba, Hynek; Girman, V.; Strečka, J.

    2015-01-01

    Roč. 2015, č. 1 (2015), Art. n. 924859 ISSN 1687-8434 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GAP108/11/1350 Institutional support: RVO:68081723 Keywords : soft-magnetic composite s * Mn-Zn ferrites * nanoparticles * coprecipitation * combustion * batteries Subject RIV: JG - Metallurgy Impact factor: 1.010, year: 2015

  13. Catalytic Activity of Cobalt Grafted on Ordered Mesoporous Silica Materials in N2O Decomposition and CO Oxidation.

    Czech Academy of Sciences Publication Activity Database

    Kuboňová, L.; Peikertová, P.; Mamulová Kutláková, K.; Jirátová, Květa; Słowik, G.; Obalová, L.; Cool, P.

    2017-01-01

    Roč. 437, AUG 2017 (2017), s. 57-72 ISSN 2468-8231 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : mesoporous ordered silica * cobalt * N2O decomposition Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering

  14. Synthesis, characterization and magnetic properties of monodisperse Ni, Zn-ferrite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev, E-mail: sanjeevkumar.dubey2@gmail.com [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Kumar, Pankaj [University of Petroleum and Energy Studies, Dehradun, Uttarakhand (India); Singh, Vaishali [University School of Basic and Applied Science (India); Kumar Mandal, Uttam [University of Chemical Technology, GGS Indraprastha University, Sector 16, Dwarka, Delhi 110403 (India); Kumar Kotnala, Ravinder [National Physical laboratory, New Delhi 110012 (India)

    2015-04-01

    Synthesization of monodisperse Ni, Zn-ferrite (Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}, x=1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0) nanocrystals has been achieved by the inverse microemulsion method using CTAB as surfactant and kerosene as an oil phase. The detailed characterization of the synthesized nanocrystals and measurement of the magnetic properties has been done by techniques like X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), Fourier transform infrared spectroscopy (FITR) and Vibrating Sample Magnetometer (VSM) respectively. The relationship between the structure and composition of the nanocrystals with magnetic properties has been investigated. The nanocrystals size is found to be in the range 1–5 nm. The effect of Zn substitution on size and magnetic properties has been studied. It has been observed that magnetism changed from ferromagnetic at X= 0 to super paramagnetic to paramagnetic at X=1 as Zn concentration increased. The Curie temperature is found to decrease with an increase in Zn concentration. - Highlights: • Reverse microemulsion route is very facile route for synthesis of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} ferrite. • Presence of Zn changes the structural and magnetic properties of the Zn substituted NiFe{sub 2}O{sub 4.} • The lattice constant increases with the increase in Zn substitution. • The curie temperature decreases with Zn concentration appreciably. • Magnetic behavior varies from ferromagnetic at x=0 to superparamagnetic to paramagnetic at x=1.

  15. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Science.gov (United States)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  16. Ferrite-guided cyclotron-resonance maser

    International Nuclear Information System (INIS)

    Jerby, Eli; Kesar, A.; Aharony, A.; Breitmeier, G.

    2002-01-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  17. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    hydrothermal route. • Estimation of cation distribution of Mg substituted manganese ferrite synthesized by hydrothermal method.

  18. Dislocation structures in cyclically strained X10CrAl24 ferritic steel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Polák, Jaroslav; Obrtlík, Karel; Man, Jiří

    2006-01-01

    Roč. 54, č. 13 (2006), s. 3429-3443 ISSN 1359-6454. [Micromechanics and Microstructure Evolution : Modeling Simulation and Experiments. Madrid, 11.09.2005-16.09.2006] R&D Projects: GA ČR(CZ) GP106/05/P521 Institutional research plan: CEZ:AV0Z20410507 Keywords : Transmission electron microscopy * Ferritic steel * Fatigue Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.549, year: 2006

  19. Impact of larger rare earth Pr{sup 3+} ions on the physical properties of chemically derived Pr{sub x}CoFe{sub 2−x}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pachpinde, A.M.; Langade, M.M. [Department of Chemistry, Jawahar Art Science and Commerce College Andur, Osmanabad, MS (India); Lohar, K.S.; Patange, S.M. [Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413 613, MS (India); Shirsath, Sagar E., E-mail: shirsathsagar@hotmail.com [Spin Device Technology Center, Department of Information Engineering, Shinshu University, Nagano 380 8553 (Japan)

    2014-01-31

    Highlights: • Rare earth Pr{sup 3+} substituted CoFe{sub 2}O{sub 4}. • Sol–gel auto combustion synthesis. • XRD and IR spectra reveal the spinel structure. • Magnetization and coercivity increased with Pr{sup 3+} substitution. - Abstract: Rare earth Pr{sup 3+} ions with its larger ionic radii substituted CoFe{sub 2}O{sub 4} nanoparticles with x ranging from 0.0 to 0.1 were synthesized by sol–gel auto-combustion chemical method. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR) and vibrating sample magnetometer (VSM) were employed to characterize the physical properties of these ferrite nanoparticles. XRD pattern reveals the formation of cubic spinel ferrite with the signature of PrFeO{sub 3} phases for x ⩾ 0.05. SEM images show that the synthesized samples are in good homogeneity with uniformly distributed grain. The results of IR spectroscopy analysis indicated that the functional groups of cobalt spinel ferrite were formed during the sol–gel process. The cations distribution between the tetrahedral (A-site) and octahedral sites (B-site) has been estimated by XRD analysis. Room temperature magnetic measurement shows saturation magnetization and coercivity increased from 54.7 to 64.2 emu/g and 644 to 1013 Oe, respectively with the increasing Pr{sup 3+} substitution.

  20. Synergistic extraction of Eu(III) with N-phosphorylated bis-ureas and chlorinated cobalt bis(dicarbollide) ion

    Czech Academy of Sciences Publication Activity Database

    Selucký, P.; Bubeníková, M.; Rais, J.; Grüner, Bohumír; Brusko, V.V.

    2013-01-01

    Roč. 101, č. 1 (2013), s. 27-31 ISSN 0033-8230 R&D Projects: GA ČR GA104/09/0668 Institutional support: RVO:61388980 Keywords : liquid-liquid extraction * lanthanides * actinides * N-phosphorylated bis-ureas * chlorinated cobalt bis(dicarbollide) ion * high level liquid waste Subject RIV: CA - Inorganic Chemistry Impact factor: 1.411, year: 2013

  1. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  2. Contrasting magnetism in dilute and supersaturated cobalt-fullerene mixture films

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Stupakov, Alexandr; Pokorný, Jan; Lavrentieva, Inna; Vacík, Jiří; Dejneka, Alexandr; Barchuk, M.; Čapková, P.

    2015-01-01

    Roč. 48, č. 33 (2015), s. 335002 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : cobalt * fullerene * nanomagnetism * nanostructure * self-organization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.772, year: 2015

  3. Influence of Ni-Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Meydan, Turgut [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Nlebedim, Ikenna Cajetan [Ames Laboratory of US Department of Energy, Ames, IA 50011 (United States)

    2012-02-15

    . Moreover, the results of the present study provide sufficient evidence to show that the electric and magnetic properties of Mg-ferrite have been improved significantly by substituting low contents of Ni-Cr.

  4. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaoliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Liu, Peng [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); He, Hongping, E-mail: hehp@gig.ac.cn [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Wei, Gaoling [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Chen, Tianhu [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009 (China); Tan, Wei; Tan, Fuding [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Zhu, Jianxi; Zhu, Runliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China)

    2016-04-05

    Highlights: • Calcination causes the activity variation of Mn-doped ferrites for HCHO oxidation. • The variation of catalytic activity of ferrites by calcination is non-linear. • Mn enriches on the calcinated ferrite surface in the valence of +3 and +4. • The reduction temperature of surface Mn{sup 4+} species is well correlated to T50. - Abstract: In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H{sub 2} temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200–600 °C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300–600 °C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400 °C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn{sup 4+} species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  5. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation

    International Nuclear Information System (INIS)

    Liang, Xiaoliang; Liu, Peng; He, Hongping; Wei, Gaoling; Chen, Tianhu; Tan, Wei; Tan, Fuding; Zhu, Jianxi; Zhu, Runliang

    2016-01-01

    Highlights: • Calcination causes the activity variation of Mn-doped ferrites for HCHO oxidation. • The variation of catalytic activity of ferrites by calcination is non-linear. • Mn enriches on the calcinated ferrite surface in the valence of +3 and +4. • The reduction temperature of surface Mn"4"+ species is well correlated to T50. - Abstract: In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H_2 temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200–600 °C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300–600 °C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400 °C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn"4"+ species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  6. Phonon structures of GaN-based random semiconductor alloys

    Science.gov (United States)

    Zhou, Mei; Chen, Xiaobin; Li, Gang; Zheng, Fawei; Zhang, Ping

    2017-12-01

    Accurate modeling of thermal properties is strikingly important for developing next-generation electronics with high performance. Many thermal properties are closely related to phonon dispersions, such as sound velocity. However, random substituted semiconductor alloys AxB1-x usually lack translational symmetry, and simulation with periodic boundary conditions often requires large supercells, which makes phonon dispersion highly folded and hardly comparable with experimental results. Here, we adopt a large supercell with randomly distributed A and B atoms to investigate substitution effect on the phonon dispersions of semiconductor alloys systematically by using phonon unfolding method [F. Zheng, P. Zhang, Comput. Mater. Sci. 125, 218 (2016)]. The results reveal the extent to which phonon band characteristics in (In,Ga)N and Ga(N,P) are preserved or lost at different compositions and q points. Generally, most characteristics of phonon dispersions can be preserved with indium substitution of gallium in GaN, while substitution of nitrogen with phosphorus strongly perturbs the phonon dispersion of GaN, showing a rapid disintegration of the Bloch characteristics of optical modes and introducing localized impurity modes. In addition, the sound velocities of both (In,Ga)N and Ga(N,P) display a nearly linear behavior as a function of substitution compositions. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80481-0.

  7. Study of samarium modified lead zirconate titanate and nickel zinc ferrite composite system

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Rekha [Department of Physics, SD PG College, Panipat 132103 (India); School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Juneja, J.K., E-mail: jk_juneja@yahoo.com [Department of Physics, Hindu College, Sonepat 131001 (India); Singh, Sangeeta [Department of Physics, GVM Girls College, Sonepat 131001 (India); Raina, K.K. [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Prakash, Chandra [Solid State Physics Laboratory, Timarpur, Delhi 110054 (India)

    2015-03-15

    In the present work, composites of samarium substituted lead zirconate titanate and nickel zinc ferrite with compositional formula 0.95Pb{sub 1−3x/2} Sm{sub x}Zr{sub 0.65}Ti{sub 0.35}O{sub 3}–0.05Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x=0, 0.01, 0.02 and 0.03) were prepared by the conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Microstructural study was done by using scanning electron microscope. Dielectric constant and loss were studied as a function of temperature and frequency. To study ferroelectric and magnetic properties of the composite samples, corresponding P–E and M–H hysteresis loops were recorded. Change in magnetic properties of electrically poled composite sample (x=0.02) was studied to confirm the magnetoelectric (ME) coupling. ME coefficient (dE/dH) of the samples (x=0 and 0.02) was measured as a function of DC magnetic field. - Highlights: • We are reporting the effect of Sm substitution on PZT–NiZn ferrite composites. • Observation of both P–E and M–H loops confirms ferroelectric and magnetic ordering. • With Sm substitution, significant improvement in properties was observed. • Increase in magnetization for electrically poled sample is evidence of ME coupling. • Electric polarization is generated by applying magnetic field.

  8. Synthesis and characterization of charge-substituted garnets YCaLnGa5O12 (Ln = Ce,Pr,Tb)

    International Nuclear Information System (INIS)

    Gramsch, S.A.

    1993-01-01

    A low temperature method is described for the preparation of the new garnet compounds YCaLnGa 5 O l2 (Ln=Ce, Pr, Th). In this set of compounds (Ca 2+ + Ln 4+ ) replaces 2 Y 3+ in the parent gallium based garnet Y 3 Ga 5 O l2 in order to stabilize as effectively as possible the Ln 4+ species in the eight-coordinate ''A'' site of the garnet structure. Characterization of the oxides by x-ray powder diffraction and thermogravimetric analysis is discussed with regard to the structural relationship of the substituted compound to the parent material. The tetravalent ions Pr 4+ and Tb 4+ exhibit increased thermal stability in reducing conditions as compared to the Ln 4+ states in the fluorite (LnO 2 ) and perovskite (BaLnO 3 ) type structures. This result is discussed with reference to the complex crystal chemistry of these systems

  9. Synthesis and structural characterization of magnetic cadmium sulfide-cobalt ferrite nanocomposite, and study of its activity for dyes degradation under ultrasound

    Science.gov (United States)

    Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-11-01

    Cadmium sulfide-cobalt ferrite (CdS/CFO) nanocomposite was easily synthesized by one-step hydrothermal decomposition of cadmium diethyldithiocarbamate complex on the CoFe2O4 nanoparticles at 200 °C. Spectroscopic techniques of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and magnetic measurements were applied for characterizing the structure and morphology of the product. The results of FT-IR, XRD and EDX indicated that the CdS/CFO was highly pure. SEM and TEM results revealed that the CdS/CFO nanocomposite was formed from nearly uniform and sphere-like nanoparticles with the size of approximately 20 nm. The UV-vis absorption spectrum of the CdS/CFO nanocomposite showed the band gap of 2.21 eV, which made it suitable for sono-/photo catalytic purposes. By using the obtained CdS/CFO nanocomposite, an ultrasound-assisted advanced oxidation process (AOP) has been developed for catalytic degradation of methylene blue (MB), Rhodamine B (RhB), and methyl orange (MO)) in the presence of H2O2 as a green oxidant. CdS/CFO nanocomposite exhibited excellent sonocatalytic activity, so that, dyes were completely degraded in less than 10 min. The influences of crucial factors such as the H2O2 amount and catalyst dosage on the degradation efficiency were evaluated. The as-prepared CdS/CFO nanocomposite exhibited higher catalytic activity than pure CdS nanoparticles. Moreover, the magnetic property of CoFe2O4 made the nanocomposite recyclable.

  10. Assessment of polyphase sintered iron-cobalt-iron boride cermets

    International Nuclear Information System (INIS)

    Nowacki, J.; Pieczonka, T.

    2004-01-01

    Sintering of iron, cobalt and boron powders has been analysed. As a result iron-iron boride, Fe-Fe 2 B and iron/cobalt boride with a slight admixture of molybdenum, Fe - Co - (FeMoCo) 2 B cermets have been produced. Iron was introduced to the mixture as the Astalloy Mo Hoeganaes grade powder. Elemental amorphous boron powder was used, and formation of borides occurred both during heating and isothermal sintering periods causing dimensional changes of the sintered body. Dilatometry was chosen to control basic phenomena taking place during multiphase sintering of investigated systems. The microstructure and phase constituents of sintered compacts were controlled as well. The cermets produced were substituted to: metallographic tests, X-ray analysis, measurements of hardness and of microhardness, and of wear in the process of sliding dry friction. Cermets are made up of two phases; hard grains of iron - cobalt boride, (FeCo) 2 B (1800 HV) constituting the reinforcement and a relatively soft and plastic eutectic mixture Fe 2 B - Co (400-500 HV) constituting the matrix. (author)

  11. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    International Nuclear Information System (INIS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-01-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo 1.5 Ti 1.5 Fe 9 O 19 ) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO 2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ µ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo 1.5 Ti 1.5 Fe 9 O 19 ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  12. Phase evaluation of Li{sup +} substituted CoFe{sub 2}O{sub 4} nanoparticles, their characterizations and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, R.H. [Materials Science Research Lab, Shrikrishna Mahavidyalaya Gunjoti, Osmanabad, Maharashtra (India); Alone, Suresh T. [Department of Physics, RS Art' s, Science and Commerce College, Pathri, Aurangabad, Maharashtra (India); Mane, Maheshkumar L. [Department of Physics, Rajarshi Shahu Mahavidyalaya, Latur, Maharashtra (India); Biradar, A.R. [Materials Science Research Lab, Shrikrishna Mahavidyalaya Gunjoti, Osmanabad, Maharashtra (India); Shirsath, Sagar E., E-mail: shirsathsagar@hotmail.com [Spin Device Technology Center, Department of Information Engineering, Shinshu University, Nagano 380-8553 (Japan)

    2014-04-15

    Li{sup +} substituted CoFe{sub 2}O{sub 4} with the chemical formula Li{sub 3x}CoFe{sub 2−x}O{sub 4} were synthesized by sol–gel auto combustion method. The synthesized samples were annealed at 600 °C for 4 h. X-ray diffraction data were used to evaluate the structure of the prepared samples. Spinel ferrite phase of CoFe{sub 2}O{sub 4} changes to ordered like lithium ferrite phase with increase in L{sup i+} substitution. Lattice constant increases whereas particle size found to decrease with Li{sup +} substitution. Infrared spectroscopy also confirmed the phase transition of CoFe{sub 2}O{sub 4} after the incorporation of lithium ions. Substitution of Li{sup +} ions for Fe{sup 3+} caused a decrease in the saturation magnetization from 69.59 emu/g to 47.71 emu/g and the coercivity increased from 647 Oe to 802 Oe. Resistivity and dielectric properties shows inverse relation to each other. - Highlights: • Li{sup +} ion substituted CoFe{sub 2}O{sub 4}. • Single phase cubic spinel structure changes with Li{sup +} substitution. • Magnetization decreases whereas coercivity increases with increasing Li{sup +}. • Resistivity decreases with Li{sup +} substitution.

  13. Characterization of nanostructure ferrite material on gallium nitride on SiC substrate for millimeter wave integrated circuit

    Directory of Open Access Journals (Sweden)

    Brian O’Keefe

    2017-05-01

    Full Text Available In this paper, for the first time, the characterization of spin-casted thick Barium nano-hexaferrite film on GaN-on-SiC substrate over a broad frequency range of 30-110 GHz is presented. Real and imaginary parts of both permittivity and permeability of the ferrite/polymer film are computed from transmittance data obtained by using a free space quasi-optical millimeter wave spectrometer. The spin-casted composite film shows strong resonance in the Q band, and mixing the powder with polymer slightly shifts the resonance frequency lower compared to pure powder. The high temperature compatibility of GaN substrate enables us to run burn-out tests at temperatures up to 900°C. Significant shortening phenomenon of resonance linewidth after heat treatment was found. Linewidth is reduced from 2.8 kOe to 1.7 kOe. Experiment results show that the aforementioned film is a good candidate in applications of non-reciprocal ferrite devices like isolators, phase shifters, and circulators.

  14. Synthesis and first-principle calculations of the structural and electronic properties of Ge-substituted type-VIII Ba{sub 8}Ga{sub 16}Sn{sub 30} clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lanxian [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Li, Decong [College of Optoelectronic Engineering, Yunnan Open University, Kunming 650500 (China); Liu, Hongxia; Liu, Zuming [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Deng, Shukang, E-mail: skdeng@126.com [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China)

    2016-12-01

    In this study, the structural and electronic structural properties of Ba{sub 8}Ga{sub 16}Sn{sub 30−x}Ge{sub x} (0≤x≤30) are determined by the first-principle method on the basis of density functional theory. Consistent with experimental findings, calculated results reveal that Ge atoms preferentially occupy the 2a and 24g sites in these compounds. As the content of Ge in Ge-substituted clathrate is increased, the lattice parameter is decreased, and the structural stability is enhanced. The bandgaps of the compound at 1≤x≤10 are smaller than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. By contrast, the bandgaps of the compound at x>10 are larger than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. The substitution of Ge for Sn affects p-type conductivity but not n-type conductivity. As Ge content increases, the whole conduction band moves to the direction of high energy, and the density of states of valence-band top decreases. The calculated potential energy versus displacement of Ba indicates that the vibration energy of this atom increases as cage size decreases. Because Ge substitution also affects clathrate structural symmetry, the distance of Ba atom deviation from the center of the cage initially increases and subsequently decreases as the Ge content increases.

  15. THE COORDINATION COMPOUNDS OF COBALT (II, III) WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    OpenAIRE

    L. D. Varbanets; О. V. Matselyukh; N. А. Nidyalkova; Е. V. Аvdiyuk; А. V. Gudzenko; I. I. Seifullina; G. N. Маsаnоvets; N. V. Khitrich

    2013-01-01

    Chloride, bromide and isothiocyanate complexes of cobalt(II) with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1)–(12), and also complexes of cobalt(II, Ш) with derivatives of morpholine-4-carbodithioic acid (13)–(18) have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was...

  16. Optically active centers in Eu implanted, Eu in situ doped GaN, and Eu doped GaN quantum dots

    International Nuclear Information System (INIS)

    Bodiou, L.; Braud, A.; Doualan, J.-L.; Moncorge, R.; Park, J. H.; Munasinghe, C.; Steckl, A. J.; Lorenz, K.; Alves, E.; Daudin, B.

    2009-01-01

    A comparison is presented between Eu implanted and Eu in situ doped GaN thin films showing that two predominant Eu sites are optically active around 620 nm in both types of samples with below and above bandgap excitation. One of these sites, identified as a Ga substitutional site, is common to both types of Eu doped GaN samples despite the difference in the GaN film growth method and in the doping technique. High-resolution photoluminescence (PL) spectra under resonant excitation reveal that in all samples these two host-sensitized sites are in small amount compared to the majority of Eu ions which occupy isolated Ga substitutional sites and thus cannot be excited through the GaN host. The relative concentrations of the two predominant host-sensitized Eu sites are strongly affected by the annealing temperature for Eu implanted samples and by the group III element time opening in the molecular beam epitaxy growth. Red luminescence decay characteristics for the two Eu sites reveal different excitation paths. PL dynamics under above bandgap excitation indicate that Eu ions occupying a Ga substitutional site are either excited directly into the 5 D 0 level or into higher excited levels such as 5 D 1 , while Eu ions sitting in the other site are only directly excited into the 5 D 0 level. These differences are discussed in terms of the spectral overlap between the emission band of a nearby bound exciton and the absorption bands of Eu ions. The study of Eu doped GaN quantum dots reveals the existence of only one type of Eu site under above bandgap excitation, with Eu PL dynamics features similar to Eu ions in Ga substitutional sites

  17. Magnetic properties of Sn-substituted Ni-Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2

    Science.gov (United States)

    Ali, MA; Uddin, MM; Khan, MNI; Chowdhury, FUZ; Hoque, SM; Liba, SI

    2017-06-01

    A series of Ni0.6-x/2Zn0.4-x/2Sn x Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3) (NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction (XRD). The magnetic properties such as saturation magnetization ({M}{{s}}), remanent magnetization ({M}{{r}}), coercive field ({H}{{c}}), and Bohr magneton (μ) are calculated from the hysteresis loops. The value of {M}{{s}} is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability ({μ }^{\\prime }) over a wide range of frequency. The decreasing trend of {μ }^{\\prime } with increasing Sn content has been observed. Curie temperature {T}{{C}} has been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.

  18. Mössbauer and XRD studies of NiCuZn ferrites by Sol-Gel auto-combustion

    International Nuclear Information System (INIS)

    Lei Chenglong; Lin Qing; Zhang Hui; He Yun; Huang Haifu

    2013-01-01

    The Ni 0.6 Cu 0.2 Zn 0.2 Ce x Fe 2-x O 4 ferrites (0≤x≤0.85) have been prepared by Sol-Gel auto-combustion method and we have investigated the effect of impurity CeO 2 phase to the microstructure and hyperfine magnetic field in spinel ferrite. The results of XRD patterns confirm the average crystallite size of samples decreases with Ce 3+ substitution increasing and the lattice parameters vary as a function of x content. 57 Fe Mössbauer spectra at room temperature for all samples confirm the [Fe 3+ - O 2- -Fe 3+ ] super exchange interaction decrease due to cerium substitution. For low temperature auto-combustion samples it reveals one normal sextet line and one doublet line x≤0.25, which shows well-resolved ferromagnetic order. Lattice defects are determined and Mössbauer spectrums vary from magnetic sextet to relaxation doublet at x≥0.45 due to a mass of CeO 2 phase. In contrast, the Mössbauer spectra for the samples sintered at 800°C/3h detect the secondary phase α -Fe 2 O 3 where the cation distribution occurs and it collapses to paramagnetic doublet (x≥0.85). Ce 3+ substitution has its maximum limit values of super exchange interaction and high sintering temperature will affect this interaction. (author)

  19. The Use of Cobalt-Mediated Cycloisomerisation of Ynedinitriles in the Synthesis of Pyridazinohelicenes

    Czech Academy of Sciences Publication Activity Database

    Chercheja, Serghei; Klívar, Jiří; Jančařík, Andrej; Rybáček, Jiří; Salzl, Simon; Tarábek, Ján; Pospíšil, Lubomír; Vacek Chocholoušová, Jana; Vacek, Jaroslav; Pohl, Radek; Císařová, I.; Starý, Ivo; Stará, Irena G.

    2014-01-01

    Roč. 20, č. 27 (2014), s. 8477-8482 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GAP207/10/2207 Institutional support: RVO:61388963 Keywords : cobalt * cyclization * helical structures * heterocycles * radicals Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  20. Two-stage preparation of magnetic sorbent based on exfoliated graphite with ferrite phases for sorption of oil and liquid hydrocarbons from the water surface

    Science.gov (United States)

    Pavlova, Julia A.; Ivanov, Andrei V.; Maksimova, Natalia V.; Pokholok, Konstantin V.; Vasiliev, Alexander V.; Malakho, Artem P.; Avdeev, Victor V.

    2018-05-01

    Due to the macropore structure and the hydrophobic properties, exfoliated graphite (EG) is considered as a perspective sorbent for oil and liquid hydrocarbons from the water surface. However, there is the problem of EG collection from the water surface. One of the solutions is the modification of EG by a magnetic compound and the collection of EG with sorbed oil using the magnetic field. In this work, the method of the two-stage preparation of exfoliated graphite with ferrite phases is proposed. This method includes the impregnation of expandable graphite in the mixed solution of iron (III) chloride and cobalt (II) or nickel (II) nitrate in the first stage and the thermal exfoliation of impregnated expandable graphite with the formation of exfoliated graphite containing cobalt and nickel ferrites in the second stage. Such two-stage method makes it possible to obtain the sorbent based on EG modified by ferrimagnetic phases with high sorption capacity toward oil (up to 45-51 g/g) and high saturation magnetization (up to 42 emu/g). On the other hand, this method allows to produce the magnetic sorbent in a short period of time (up to 10 s) during which the thermal exfoliation is carried out in the air atmosphere.

  1. Green Synthesis Methods of CoFe_2O_4 and Ag-CoFe_2O_4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential

    International Nuclear Information System (INIS)

    Gingasu, D.; Mindru, I.; Patron, L.; Caleron-Moreno, J.M.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Nita, S.; Dobre, N.; Popa, M.; Gradisteanu, G.; Chifiriuc, M. C.

    2016-01-01

    The cobalt ferrite (CoFe_2O_4) and silver-cobalt ferrite (Ag-CoFe_2O_4) nanoparticles were obtained through self-combustion and wet ferritization methods using aqueous extracts of Hibiscus rosa-sinensis flower and leaf. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and magnetic measurements were used for the characterization of the obtained oxide powders. The antimicrobial activity of the cobalt ferrite and silver-cobalt ferrite nanoparticles against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated by qualitative and quantitative assays. The most active proved to be the Ag-CoFe_2O_4 nanoparticles, particularly those obtained through self-combustion using hibiscus leaf extract, which exhibited very low minimal inhibitory concentration values (0.031-0.062 mg/ml) against all tested microbial strains, suggesting their potential for the development of novel antimicrobial agents.

  2. Green Synthesis Methods of CoFe2O4 and Ag-CoFe2O4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential

    Directory of Open Access Journals (Sweden)

    Dana Gingasu

    2016-01-01

    Full Text Available The cobalt ferrite (CoFe2O4 and silver-cobalt ferrite (Ag-CoFe2O4 nanoparticles were obtained through self-combustion and wet ferritization methods using aqueous extracts of Hibiscus rosa-sinensis flower and leaf. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and magnetic measurements were used for the characterization of the obtained oxide powders. The antimicrobial activity of the cobalt ferrite and silver-cobalt ferrite nanoparticles against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated by qualitative and quantitative assays. The most active proved to be the Ag-CoFe2O4 nanoparticles, particularly those obtained through self-combustion using hibiscus leaf extract, which exhibited very low minimal inhibitory concentration values (0.031–0.062 mg/mL against all tested microbial strains, suggesting their potential for the development of novel antimicrobial agents.

  3. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianlong; Xie, Dan, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084 (China); Zeng, Min; Gao, Xingsen [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Zhao, Yonggang [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  4. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  5. Structural and magnetic characterization of co-precipitated Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, Ch., E-mail: srinivas.chintoju75@gmail.com [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Tirupanyam, B.V. [Department of Physics, Government College (Autonomous), Rajamahendravaram 533103 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Babu, Ch. Seshu [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Ramakrishna, K.S. [Department of Physics, Srinivasa Institute of Engineering and Technology, Amalapuram 533222 (India); Potukuchi, D.M. [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University, Kakinada 533003 (India); Sastry, D.L., E-mail: dl_sastry@rediffmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India)

    2016-06-01

    A series of Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni{sup 2+} ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core–shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe{sup 3+} ions and absence of Fe{sup 2+} ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core–shell interactions. - Highlights: • Thermodynamic solubility of Ni{sup 2+} in zinc ferrite influences the crystallite sizes. • At room temperature the ferrite systems exhibit superparamagnetism. • Core–shell model was exactly suited to explain magnetic behavior. • Core–shell interactions decrease with increase in Ni{sup 2+} ion concentration.

  6. Structural Analysis of InxGa1−xN/GaN MQWs by Different Experimental Methods

    International Nuclear Information System (INIS)

    Ding Bin-Beng; Pan Feng; Fa Tao; Cheng Feng-Feng; Yao Shu-De; Feng Zhe-Chuan

    2011-01-01

    Structural properties of In x Ga 1−x N/GaN multi-quantum wells (MQWs) grown on sapphire by metal organic chemical vapor deposition are investigated by synchrotron radiation x-ray diffraction (SRXRD), Rutherford backscattering/channelling (RBS/C) and high-resolution transmission electron microscopy. The sample consists of eight periods of In x Ga 1−x N/GaN wells of 2.1 nm thickness and 8.5 nm thickness of GaN barrier, and the results are very close, which verifies the accuracy of the three methods. The indium content in In x Ga 1−x N/GaN MQWs by SRXRD and RBS/C is estimated, and results are in general the same. By RBS/C random spectra, the indium atomic lattice substitution rate is 94.0%, indicating that almost all indium atoms in In x Ga 1−x N/GaN MQWs are at substitution, that the indium distribution of each layer in In x Ga 1−x N/GaN MQWs is very homogeneous and that the In x Ga 1−x N/GaN MQWs have a very good crystalline quality. It is not accurate to estimate indium content in In x Ga 1−x N/GaN MQWs by photoluminescence (PL) spectra, because the result from the PL experimental method is very different from the results by the SRXRD and RBS/C experimental methods. (cross-disciplinary physics and related areas of science and technology)

  7. Influence of iron substitution by selected rare-earth ions on the properties of NiZn ferrite fillers and PVC magneto-polymer composites

    Science.gov (United States)

    Ušák, Elemír; Ušáková, Mariana; Dosoudil, Rastislav; Šoka, Martin; Dobročka, Edmund

    2018-04-01

    Nickel-zinc ferrites are very important soft magnetic materials from the point of view of diverse technical applications (such as, e.g., various electronic devices and components) for their high magnetic permeability and permittivity, low core loss, high resistivity, high Curie temperature as well as mechanical strength and chemical stability. Due to their good absorbing properties, they can be used as microwave absorbing and shielding materials with the aim of decreasing the environmental pollution caused by non-ionizing microwave radiation. The ferrite material incorporated into the polymer matrix creates qualitatively new magneto-polymer composite material taking benefits from both components. The properties typical for polymers (elasticity, mouldability, etc.) are combined with good high-frequency magnetic parameters, thus allowing to utilize these materials, e.g., in high-frequency applications where especially flexibility of composite materials plays a key role. Small amounts of selected rare-earth (RE) ions, in particular Y3+, La3+, Eu3+ and Gd3+ have been embedded into the nickel-zinc ferrite that has been used as the magnetic filler in magnetic polymer composites with polyvinylchloride (PVC) acting as the polymeric matrix. The effect of various types of rare-earth ions on the structural as well as quasi-static and dynamic (electro)magnetic properties of the ferrite fillers as well as ferrite/PVC composites, in particular the frequency dispersion of the complex permeability, has been studied.

  8. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  9. Structural and magnetic properties of Gd{sup 3+} ion substituted magnesium ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Elkady, Ashraf S. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Reactor Physics, NRC, Atomic Energy Authority, Cairo (Egypt); Hussein, Shaban I. [Department of Reactor Physics, NRC, Atomic Energy Authority, Cairo (Egypt); Rashad, Mohamed M., E-mail: rashad133@yahoo.com [Central Metallurgical Research and Development Institute, Helwan, Cairo 11421 (Egypt)

    2015-07-01

    Nanocrystalline MgGd{sub x}Fe{sub 2−x}O{sub 4} powders (where x=0, 0.05, 0.1, 0.2, 0.25, 0.3) have been synthesized by the ethylene diamine tetraacetic acid (EDTA)-based sol–gel combustion method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) were applied in order to study the effect of variation of Gd{sup 3+} ion substitution and its impact on crystal structure, crystallite size, lattice parameters, nanostructure and magnetic properties of the formed powders. XRD indicated that, after doping and calcination at 400 °C for 2 h, all samples have two spinel ferrite structures namely cubic and tetragonal phases, which are dependent on Gd{sup 3+} ion concentration. The cubic phase is found to increase with increasing the Gd{sup 3+} ion molar ratio up to 0.1, compared to pure MgFe{sub 2}O{sub 4} and higher Gd{sup 3+} content samples. Indeed, with increasing Gd{sup 3+} ion, the crystallite size was almost unchanged whereas the lattice parameter was found to increase. FT-IR spectrum showed broadening of the ν{sub 2} band and the presence of another band in the range (465–470 cm{sup −1}) upon adding Gd{sup 3+} ion, which confirm the presence of Gd{sup 3+} ion in addition to Fe{sup 3+} ion at octahedral site. Besides, these bands were assigned to the formation of (Gd{sup 3+}–O{sup 2−}) complexes at B-sites. HRTEM images showed that the studied samples consist of nanocrystallites having average particle sizes around 9 nm for pure MgFe{sub 2}O{sub 4} up to 27 and 42 nm for the Gd{sup 3+} ion substituted MgFe{sub 2}O{sub 4} of molar ratio 0.05 and 0.30, respectively. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Gd concentration incorporation up to x=0.1, as a result of the change of cubic and tetragonal spinel ratio and lattice parameters. Meanwhile, the formed powders exhibited

  10. Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, V. [Department of Physics, Government College of Technology, Coimbatore, Tamil Nadu-13 (India); Vanitha, A., E-mail: avanitha570@gmail.com [Department of Physics, Government College of Technology, Coimbatore, Tamil Nadu-13 (India); Kumar, E. Ranjith, E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore, Tamil Nadu-48 (India); Kavita, S. [Centre for Automotive Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials, Chennai, Tamil nadu-113 (India)

    2017-03-15

    Lithium substituted copper ferrite (Li{sub x}Cu{sub (1−x)}Fe{sub 2}O{sub 4}) nanoparticles have been successfully synthesized by chemical co-precipitation method. XRD analysis confirms the formation of Li substituted Cu ferrite with crystallite size in the range of 17–41 nm. The SEM and TEM microstructure of nanoparticle is well characterized and fine nature improves while increasing of Li concentration and also FTIR analysis exhibit the usual behaviour of ferrite materials. The dielectric properties of the material are increased with increase of concentration. The hysteresis loop is increased which is evident from the increase of saturation magnetization which implies that soft magnetic material has altered into hard magnetic material - Highlights: • Nano rod formation has been initiated while increase of Li concentration. • Under the strong influence of sintering temperature, the soft magnetic behaviour has been changed into hard magnetic behaviour. • The average crystallite sizes of the samples are in the range of 17-41 nm.

  11. Some ENDOR studies of 3d transition metal ions in semiconductors

    International Nuclear Information System (INIS)

    Engelen, P.P.J.

    1980-01-01

    The author considers 3d transition metal ions substituted in covalent semiconducting crystals. The magnitude of the contact hyperfine field at the 59 Co nucleus in cobalt doped CdS is determined. The results of an ENDOR study of supertransferred hyperfine interactions with nearest neighbour Ga ions in Mn doped GaP are presented. (G.T.H.)

  12. The cobalt-mediated [2+2+2]cycloaddition of thiophenes and benzofurans to alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Malaska, M.J.

    1991-01-01

    The cobalt-mediated [2+2+2]cycloaddition of thiophenes and benzofurans to alkynes was investigated. The cocyclization of 2-propynyloxymethylthiophenes provided two types of cyclohexadiene complexes. It was found that one of these complexes could be converted to the other by a thermal rearrangement. This novel transformation was investigated by deuterium-labelling and kinetic studies, and a mechanism was proposed. The complexes could be oxidatively demetallated to provide the liberated organic framework. Further reorganization of these dienes were observed during the decomplexation process and in the presence of CpCo(C[sub 2]H[sub 4])[sub 2]. In this manner several new heterocyclic ring systems could be constructed from 2-substituted thiophenes. Following the success of the thiophene cyclizations, the cocyclization of the benzofuran nucleus was examined. Reagents and conditions were developed that provide an efficient synthesis of alkynols from carboxylic acids; other functional group interconversions of the alkynols were briefly studied. The synthesis and cyclization of 1-[7-methoxy-4-benzofuranyl]-3-butyn-2-ol produced a cobalt complex containing the A,B,C, and D rings of the morphine skeleton. A synthetic advantage of this methodology would be the ease of substitution at pharmaco-logically relevant C-6 and C-7 positions of the morphine framework. Synthetic routes using a cobalt cyclization strategy were proposed.

  13. 21 Effet magnéto-optique et optique des couches minces à base de ...

    African Journals Online (AJOL)

    albatha

    Magneto-optical effect and optical thin films cobalt ferrite ... Keywords : cobalt ferrite, sol-gel thin films, Faraday rotation, transmittance. .... [3] - R. MASSART, « Preparation of aqueous magnetic liquids in alkaline and acidic media» IEEE Trans.

  14. Influence of Y{sup 3+} substitution on the structural and magnetic properties of Sr{sub 0.7}La{sub 0.3}Fe{sub 11.75-x}Y{sub x}Co{sub 0.25}O{sub 19} hexagonal ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cong; Liu, Xiansong; Rehman, Khalid Mehmood Ur; Liu, Chaocheng; Li, Haohao; Meng, Xiangyu [Anhui University, School of Physics and Materials Science, Hefei (China); Anhui University, School of Physics and Materials Science, Engineering Technology Research Center of Magnetic Materials, Hefei (China)

    2017-08-15

    In this study, the Y{sup 3+} ion-substituted M-type Sr{sub 0.7}La{sub 0.3}Fe{sub 11.75-x}Y{sub x}Co{sub 0.25}O{sub 19} (0 ≤ x ≤ 0.2) hexagonal ferrites were synthesized by the traditional ceramic method. The structural, morphological, and magnetic properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer techniques. The results show that a single M-type strontium ferrite was obtained with the Yttrium content (x) from 0 to 0.08, and the impure phase appeared when x is above 0.08. SEM images indicate the hexagonal platelet-like particles, and the size of the materials is about 3-5 μm. The saturation magnetization (M{sub s}) and coercivity (H{sub c}) of the magnetic powders both increased with the increase of x from 0 to 0.12, then decreased with the increase of x from 0.16 to 0.2. (orig.)

  15. Carbonate fuel cell anodes

    Science.gov (United States)

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  16. Structural study of layered cobaltate La.sub.x/3./sub.CoO.sub.2./sub. (x ~ 1) at temperatures up to 800 K

    Czech Academy of Sciences Publication Activity Database

    Knížek, Karel; Jirák, Zdeněk; Hejtmánek, Jiří; Brázda, Petr; Buršík, Josef; Soroka, Miroslav; Beran, Přemysl

    2015-01-01

    Roč. 229, Sep (2015), 160-163 ISSN 0022-4596 R&D Projects: GA ČR GA13-03708S; GA MŠk LM2011019 Institutional support: RVO:68378271 ; RVO:61388980 ; RVO:61389005 Keywords : cobaltates * thermoelectrics * neutron diffraction * structure * La x/3 CoO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.265, year: 2015

  17. Magnetism and transport properties of layered rare-earth cobaltates Ln.sub.0.3./sub.CoO.sub.2./sub

    Czech Academy of Sciences Publication Activity Database

    Knížek, Karel; Novák, Pavel; Jirák, Zdeněk; Hejtmánek, Jiří; Maryško, Miroslav; Buršík, Josef

    2015-01-01

    Roč. 117, č. 17 (2015), "17B706-1"-"17B706-4" ISSN 0021-8979 R&D Projects: GA ČR GA13-03708S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : crystal field * rare earth cobaltates * magnetism and transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  18. The magnetic properties of strontium hexaferrites with La-Cu substitution prepared by SHS method

    International Nuclear Information System (INIS)

    Qiao Liang; You Lishun; Zheng Jingwu; Jiang Liqiang; Sheng Jiawei

    2007-01-01

    La-Cu substituted strontium hexaferrites with the chemical composition of Sr 1- x La x Fe 12- x Cu x O 19 were prepared by self-propagating high-temperature synthesis. The effects of La-Cu substitution on the microstructure and magnetic properties of Sr-ferrites were studied. The XRD results show that all the samples are single SrM-type phase for x 1- x La x Fe 12- x Cu x O 19 are remarkably improved for x 2+ by La 3+ in the Sr-layer makes the Cu 2+ preferably substitutes the Fe 3+ in 4f 2 sites is predicted to be associated with the improvement of the magnetic properties of La-Cu substituted samples

  19. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method

    Science.gov (United States)

    Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.

    2018-02-01

    In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.

  20. Influence of isoelectronic substitutions on the magnetism of UCoAl

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Mushnikov, N. V.; Diviš, M.; Honda, F.; Sechovský, V.; Goto, T.

    2005-01-01

    Roč. 71, č. 9 (2005), 094437/1-094437/7 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA202/02/0739; GA ČR(CZ) GA202/03/0550 Keywords : UCoAl * isoelectronic substitution * magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.185, year: 2005

  1. The calculation of rare-earth levels in layered cobaltates R.sub.x/3./sub.CoO.sub.2./sub. (x≤1)

    Czech Academy of Sciences Publication Activity Database

    Novák, Pavel; Knížek, Karel; Jirák, Zdeněk; Buršík, Josef

    2015-01-01

    Roč. 381, May (2015), s. 145-150 ISSN 0304-8853 R&D Projects: GA ČR GA13-03708S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : rare- earth electronic levels * crystal field splitting * layered cobaltates Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  2. Investigations on microstructure, electrical and magnetic properties of copper spinel ferrite with WO3 addition for applications in the humidity sensors

    Science.gov (United States)

    Tudorache, Florin

    2018-04-01

    In the present study we report the structural, electrical, magnetic and humidity characteristics of copper ferrite with different percent on tungsten trioxide addition. The aim of this study was to obtain more stable and sensitive active materials for humidity sensors. In order to highlight the influence of tungsten on the structural, electrical and magnetic properties, the ferrite samples were fabricated via sol-gel self-combustion method and sintered for 30 min at 1000 °C with percent between 0 and 20% tungsten trioxide additions. The X-ray diffraction investigations showed the copper ferrite phase composition. The scanning electron microscopy revealed the influence of the substitution on characteristics of the crystallites and the profilometry showed the surface topography of samples. The investigation was focused on the variation of permittivity and electrical conductivity, in relation with tungsten trioxide addition, frequency and humidity. We have also, investigated the relevant magnetic characteristics of the copper ferrite material by highlighting the influence of tungsten trioxide addition on to Curie temperature and the permeability frequency characteristics. The data suggests that the copper ferrite with tungsten trioxide addition can be used as active material for humidity sensors.

  3. Cobalt-Catalyzed C(sp(2))-H Borylation: Mechanistic Insights Inspire Catalyst Design.

    Science.gov (United States)

    Obligacion, Jennifer V; Semproni, Scott P; Pappas, Iraklis; Chirik, Paul J

    2016-08-24

    A comprehensive study into the mechanism of bis(phosphino)pyridine (PNP) cobalt-catalyzed C-H borylation of 2,6-lutidine using B2Pin2 (Pin = pinacolate) has been conducted. The experimentally observed rate law, deuterium kinetic isotope effects, and identification of the catalyst resting state support turnover limiting C-H activation from a fully characterized cobalt(I) boryl intermediate. Monitoring the catalytic reaction as a function of time revealed that borylation of the 4-position of the pincer in the cobalt catalyst was faster than arene borylation. Cyclic voltammetry established the electron withdrawing influence of 4-BPin, which slows the rate of C-H oxidative addition and hence overall catalytic turnover. This mechanistic insight inspired the next generation of 4-substituted PNP cobalt catalysts with electron donating and sterically blocking methyl and pyrrolidinyl substituents that exhibited increased activity for the C-H borylation of unactivated arenes. The rationally designed catalysts promote effective turnover with stoichiometric quantities of arene substrate and B2Pin2. Kinetic studies on the improved catalyst, 4-(H)2BPin, established a change in turnover limiting step from C-H oxidative addition to C-B reductive elimination. The iridium congener of the optimized cobalt catalyst, 6-(H)2BPin, was prepared and crystallographically characterized and proved inactive for C-H borylation, a result of the high kinetic barrier for reductive elimination from octahedral Ir(III) complexes.

  4. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  5. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    International Nuclear Information System (INIS)

    Ramesh, Thimmasandra Narayan

    2010-01-01

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co 3 O 4 . The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co 3 O 4 phase.

  6. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  7. Cobalt Oxides Supported Over Ceria–Zirconia Coated Cordierite Monoliths as Catalysts for Deep Oxidation of Ethanol and N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Balabánová, Jana; Kovanda, F.; Klegová, A.; Obalová, L.; Fajgar, Radek

    2017-01-01

    Roč. 147, č. 6 (2017), s. 1379-1391 ISSN 1011-372X R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : cobalt oxide * ceria-zirconia monoliths * ethanol oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.799, year: 2016

  8. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  9. Enhanced magnetic domain relaxation frequency and low power losses in Zn{sup 2+} substituted manganese ferrites potential for high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, K., E-mail: praveenaou@gmail.com [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Chen, Hsiao-Wen [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Liu, Hsiang-Lin, E-mail: hliu@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Sadhana, K., E-mail: sadhana@osmania.ac.in [Department of Physics, Osmania University, Saifabad, Hyderabad, 500004 (India); Murthy, S.R. [Department of Physics, Osmania University, Hyderabad, 500007 (India)

    2016-12-15

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese–Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn{sup 2+} substituted MnFe{sub 2}O{sub 4} were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn{sup 2+}, Zn{sup 2+} and Fe{sup 2+} cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (f{sub r}) was increased with the increase in grain size. The real and imaginary part of permeability (μ′ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (M{sub s}), remnant magnetization (M{sub r}) and magneton number (µ{sub B}) decreased gradually with increasing Zn{sup 2+} concentration. The decrease in the saturation magnetization was discussed with Yafet–Kittel (Y–K) model. The Zn{sup 2+} concentration increases the relative number of ferric ions on the A sites, reduces the A–B interactions. The frequency dependent total power losses decreased as the zinc concentration increased

  10. Blood doping by cobalt. Should we measure cobalt in athletes?

    Directory of Open Access Journals (Sweden)

    Guidi Gian

    2006-07-01

    Full Text Available Abstract Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice

  11. Effect on the structural, DC resistivity and magnetic properties of Zr and Cu co-SubstitutedNi0.5Zn0.5Fe2O4using sol-gel auto-combustion method

    Science.gov (United States)

    Jalaiah, K.; Vijaya Babu, K.; Chandra mouli, K.; Subba Rao, P. S. V.

    2018-04-01

    The Zr and Cu co-substituted Ni0.5Zn0.5Fe2O4 ferrite nanoparticles have been synthesized by the sol-gel auto combustion method. The XRD patterns confirmed single phase cubic spinel structure for present ferrite systems. The substitution of co-dopants in the spinel structure initially decreases the lattice parameter from x = 0.00 to 0.08 and thereafter increases and the same tendency reflecting in cell volume. The DC resistivity was initially increased later followed the decreasing trend; however the drift mobility of all ferrite samples appears to be in opposite phenomenon to DC resistivity. The saturation magnetization and net magnetic moments of all ferrite samples are decreasing with increasing dopant concentration. The coercive field and Y-K angles are increased with dopant concentration. The initial permeability of all samples is decreased with increasing dopant concentration. The Q-Factor for all samples shows the narrow frequency band with increasing frequency.

  12. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.

    Science.gov (United States)

    Anagnostopoulou, E; Grindi, B; Lacroix, L-M; Ott, F; Panagiotopoulos, I; Viau, G

    2016-02-21

    We demonstrate in this paper the feasibility to elaborate rare-earth free permanent magnets based on cobalt nanorods assemblies with energy product (BH)max exceeding 150 kJ m(-3). The cobalt rods were prepared by the polyol process and assembled from wet suspensions under a magnetic field. Magnetization loops of dense assemblies with remanence to a saturation of 0.99 and squareness of 0.96 were measured. The almost perfect M(H) loop squareness together with electron microscopy and small angle neutron scattering demonstrate the excellent alignment of the rods within the assemblies. The magnetic volume fraction was carefully measured by coupling magnetic and thermogravimetric analysis and found in the range from 45 to 55%, depending on the rod diameter and the alignment procedure. This allowed a quantitative assessment of the (BH)max values. The highest (BH)max of 165 kJ m(-3) was obtained for a sample combining a high magnetic volume fraction and a very large M(H) loop squareness. This study shows that this bottom-up approach is very promising to get new hard magnetic materials that can compete in the permanent magnet panorama and fill the gap between the ferrites and the NdFeB magnets.

  13. Magnetic spectra and Richter aftereffect relaxation in Ce{sub x}Y{sub 3−x}Fe{sub 5}O{sub 12} ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fu; Wang, Xian; Feng, Zekun, E-mail: fengzekun@mail.hust.edu.cn [School of Optical and Electric Information, Huazhong University of Science and Technology, Wuhan, 430074 (China); Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2016-05-15

    The static and dynamic magnetic properties of cerium (Ce) doped yttrium iron garnet Ce{sub x}Y{sub 3−x}Fe{sub 5}O{sub 12} (x=0, 0.05, 0.1, 0.15, 0.2) ferrites (YIG) have been reported in this work. The ferrites were fabricated by the traditional solid-state reaction method. All ferrite samples reveal pure garnet structure identified by x-ray diffraction (XRD). The substitution of cerium not only enhances the saturation magnetization of the samples, but also regulates the magnetocrystalline anisotropy constant K{sub 1}. Obvious differences in permeability spectra over a frequency of 1 MHz - 1 GHz can be observed. It is verified that the permeability dispersion and magnetic losses of Ce-doped YIG ferrite contain the contribution of Richter aftereffect relaxation due to the existence of Fe{sup 2+} ions. The fitting results of the permeability spectra applied three-mechanism model is in good agreement with experimental data, which successfully explains the mechanisms of magnetic losses observed at 1 MHz to 1 GHz for Ce-doped YIG ferrite. In addition, the frequency shift of Richter aftereffect has also been discussed.

  14. Impurity diffusion of cobalt in plutonium

    International Nuclear Information System (INIS)

    Charissoux, Christian; Calais, Daniel.

    1975-01-01

    The sectioning method for investigation of the impurity diffusion of 60 Co in the fcc and bcc phases of plutonium gives the following results: 344-426 deg C: D=1.2x10 -2 exp(-12700/RT)cm 2 /s in delta Pu(fcc); 484-621 deg C: D=1.4x10 -3 exp(-9900/RT)cm 2 /s in epsilon Pu(bcc). Cobalt is a fast diffuser in plutonium; the diffusion coefficient being unaffected by phase changes delta'→delta; delta'→epsilon, the diffusion mechanism is probably dissociative in both phases, the solute becoming interstitial by: solute (substitution) reversible solute (interstitial) + vacancy [fr

  15. Influence of rare earth Ce3+ on structural, electrical and magnetic properties of Sr2+ based W-type hexagonal ferrites

    International Nuclear Information System (INIS)

    Sadiq, Imran; Khan, Imran; Aen, Faiza; Islam, M.U.; Rana, M.U.

    2012-01-01

    A series of single phase W-type Sr 3-x Ce x Fe 16 O 27 (x=0, 0.02, 0.04, 0.06, 0.08, 0.10) hexagonal ferrites prepared by the Sol-Gel method was sintered at 1050 °C for 5 h. The X-ray diffraction analysis reveals that all the samples belong to the family of W-type hexagonal ferrites. The c/a ratio falls in the range of W-type hexagonal ferrites. The grain size was measured by SEM varies from 0.7684 to 0.4366 μm which shows that the Ce 3+ substituted samples have smaller grain size than pure ferrite Sr 3 Fe 16 O 27 which results from the difference in ionic radii of Ce 3+ (1.034 Å) and Sr 2+ (1.12 Å). The room temperature resistivity of the present samples varies from 6.5×10 8 to 272×10 8 Ω-cm. The coercivity increases from 1370 to 1993 Oe which is consistent with the decrease in grain size. The coercivity values indicate that the present samples fall in the range of hard ferrites. The large value of H c may be due to domain wall pinning at the grain boundaries.

  16. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels

    International Nuclear Information System (INIS)

    Li, D.Z.; Xiao, N.M.; Lan, Y.J.; Zheng, C.W.; Li, Y.Y.

    2007-01-01

    The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)-ferrite (α) transformation. In these models, the γ-α phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation

  17. Glass additive influence on the sintering behavior, microstructure and microwave magnetic properties of Cu-Bi-Zn co-doped Co2Z ferrites

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I; Mei, Li-Then; Hsi, Chi-Shiung; Wu, Wei-Cheng; Cheng, Li-Bao; Yen, Fu-Su

    2011-01-01

    The Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 (BB35SZ) glass effects on the sintering behavior and microwave magnetic properties of Cu-Bi-Zn co-doped Co 2 Z ferrites were investigated to develop low-temperature-fired ferrites. The glass wetting characteristics on the Co 2 Z ferrite surface, X-ray diffractometer, scanning electron microscopy and a dilatometer were used to examine the BB35SZ glass effect on Co 2 Z ferrite densification and the chemical reaction between the glass and Co 2 Z ferrites. The results indicate that BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Co 2 Z ferrites from 1300 to 900 o C. 3(Ba 0.9 Bi 0.1 O).2(Co 0.8 Cu 0.2 O).12(Fe 1.975 Zn 0.025 O 3 ) ferrite with 2 wt% BB35SZ glass can be densified below 900 o C, exhibiting an initial permeability of 3.4. This process provides a promising candidate for multilayer chip magnetic devices for microwave applications. - Research highlights: → Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 glass can effectively wet Co 2 Z ferrites and promote Co 2 Z ferrite densification. → The excess substitution of Bi and Zn (x=0.2) and glass addition enhanced Z phase decomposition into U, W and spinel phases, which resulted in magnetic property degradation. → 3(Ba 0.9 Bi 0.1 O).2(Co 0.8 Cu 0.2 O).12(Fe 1.975 Zn 0.025 O 3 ) ferrite with 2 wt% glass can be densified at below 900 o C and exhibits an initial permeability of 3.4, which provides a promising candidate for multilayer chip magnetic devices for microwave applications.

  18. Structural parameters and resistive switching phenomenon study on Cd0.25Co0.75Fe2O4 ferrite thin film

    International Nuclear Information System (INIS)

    Chhaya, U.V.; Gadhvi, M.R.; Mistry, B.V.; Bhavsar, K.H.; Joshi, U.S.; Lakhani, V.K.; Modi, K.B.

    2011-01-01

    Cadmium substituted cobalt ferrite thin film with nominal composition Cd 0.25 Co 0.75 Fe 2 O 4 , has been grown on quartz substrate by chemical solution deposition and their structural and electrical properties have been investigated. Grazing incidence X-ray diffraction (XRD) confirmed single phase spine) structure with nanometer grain size. Atomic force microscopic analysis revealed uniform nano structured growth of about 70 nm average crystallite size. The XRD data have been used to determine the distribution of cations among the tetrahedral and octahedral sites of the spinel lattice and various structural parameters. The cation distribution determined from X-ray diffraction line intensity calculations revealed, 60% octahedral sites occupancy of Cd 2+ -ions in the composition. Four terminal I-V measurements show hysteretic curves, suggesting high resistance state (HRS) and low resistance state (LRS) in the film with polarity dependence. Maximum resistance ratio, R high /R low of 57% was observed at room temperature in the Ag/Cd 0.25 Co 0.75 Fe 2 O 4 /Ag planar structure. Observed resistance switching is attributed to combined effects, viz., in the LRS, the major fraction of cadmium occupation and electron exchange between Fe 3+ and Fe 2+ at the B-sites, whereas the HRS shows Schottky-like conduction mechanism at the Ag/Cd 0.25 Co 0.75 Fe 2 O 4 interface. (author)

  19. Structural and dielectric properties of yttrium substituted nickel ferrites

    International Nuclear Information System (INIS)

    Ognjanovic, Stevan M.; Tokic, Ivan; Cvejic, Zeljka; Rakic, Srdjan; Srdic, Vladimir V.

    2014-01-01

    Graphical abstract: - Highlights: • Dense NiFe 2−x Y x O 4 ceramics (with 0 ≤ x ≤ 0.3) were prepared. • Pure spinels were obtained for x ≤ 0.07 while for x ≥ 0.15 samples had secondary phases. • With addition of yttrium, ac conductivity slightly increased. • We suggest several effects that can explain the observed changes in ac conduction. • With addition of yttrium, dielectric constant increased while the tg δ decreased. - Abstract: The influence of Y 3+ ions on structural and dielectric properties of nickel ferrites (NiFe 2−x Y x O 4 , where 0 ≤ x ≤ 0.3) has been studied. The as-synthesized samples, prepared by the co-precipitation method, were analyzed by XRD and FTIR which suggested that Y 3+ ions were incorporated into the crystal lattice for all the samples. However, the XRD analysis of the sintered samples showed that secondary phases appear in the samples with x > 0.07. The samples have densities greater than 90% TD and the SEM images showed that the grain size decreases with the addition of yttrium. Dielectric properties measured from 150 to 25 °C in the frequency range of 100 Hz–1 MHz showed that the addition of yttrium slightly increases the ac conductivity and decreases the tg δ therefore making the materials better suited for the use in microwave devices

  20. Effects of the Substitution of the Mo Element W of Super Duplex Stainless Steel Weld on the Secondary Phase Formation and Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ji; Lee, Hae-Woo [Dong-A University, Busan (Korea, Republic of)

    2014-03-15

    To investigate the effect of tungsten substitution of molybdenum on the formation of the second phase in Super Duplex Stainless Steel Weldments, welding wires with a composition of 3 wt% Mo, 2.2 wt% Mo-2.2 wt% W were designed for the flux cored arc welding process. As a result, the precipitation of the χ phase and σ phase increased in proportion to the decrease in the amount of δ ferrite content because the reaction, δ ferrite → σ + γ2, proceeded as the temperature rose. Under the same experimental conditions, the precipitation of the second phase, which degrades the properties of the material, was significantly reduced in the W substitution specimens compared to the Mo-only specimens. A polarization test conducted in a salt solution revealed that the pitting potential of the W substitution specimens was higher than that of the Mo-only specimens.

  1. Selective biotransformation of substituted alicyclic nitriles by Rhodococcus equi A4

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Klempier, N.; Preiml, M.; Ovesná, Mária; Kuzma, Marek; Mylerová, Veronika; Křen, Vladimír

    2002-01-01

    Roč. 80, - (2002), s. 724-727 ISSN 0008-4042 R&D Projects: GA ČR GA524/00/1275; GA AV ČR IAA4020802 Keywords : nitrile hydratase * substituted cyclohexanecarbonitriles * cyclopentanecarbonitriles Subject RIV: EE - Microbiology, Virology Impact factor: 1.260, year: 2002

  2. Cobalt release from inexpensive jewellery

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten Stendahl; Menné, Torkil

    2010-01-01

    . Conclusions: This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future......Objectives: The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. Methods: The cobalt spot test was used to assess cobalt release from all items...

  3. Inter-atomic bonding and dielectric polarization in Gd"3"+ incorporated Co-Zn ferrite nanoparticles

    International Nuclear Information System (INIS)

    Pawar, R.A.; Desai, S.S.; Patange, S.M.; Jadhav, S.S.; Jadhav, K.M.

    2017-01-01

    A series of ferrite with a chemical composition Co_0_._7Zn_0_._3Gd_xFe_2_−_xO_4 (where x=0.0 to x=0.1) were prepared by sol-gel auto-combustion method. X-ray diffraction pattern were used to determine the crystal structure and phase formation of the prepared samples. Scanning electron microscopy is used to study the surface morphology of the prepared samples. Elastic properties were determined from the infrared spectroscopy. Debye temperature, wave velocities, elastic constants found to increase with the increase in Gd"3"+ substitution. Dielectric properties such as dielectric constant and dielectric loss were studied as a function of Gd"3"+ substitution and frequency. Dielectric constant decreased with the increase in frequency and Gd"3"+ substitution. Behavior of dielectric properties was explained on the basis of Maxwell-Wagner interfacial polarization which in accordance with Koops phenomenological theory. Real and imaginary part of impedance was studied as a function of resistance and Gd"3"+ substitution. The behavior of impedance is systematically discussed on the basis of resistance-capacitance circuit.

  4. Characterization of SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} hexagonal ferrite synthesized by sol-gel combustion and solid state route

    Energy Technology Data Exchange (ETDEWEB)

    Vinaykumar, R., E-mail: vinaykumar.r1984@gmail.com; Mazumder, R., E-mail: ranabrata@nitrkl.ac.in; Bera, J., E-mail: jbera@nitrkl.ac.in

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19}) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO{sub 2} raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ{sub µ} and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  5. Comparative metallurgical study of thick hard coatings without cobalt

    International Nuclear Information System (INIS)

    Clemendot, F.; Van Duysen, J.C.; Champredonde, J.

    1992-07-01

    Wear and corrosion of stellite type hard coatings for valves of the PWR primary system raise important problems of contamination. Substitution of these alloys by cobalt-free hard coatings (Colmonoy 4 and 4.26, Cenium 36) should allow to reduce this contamination. A comparative study (chemical, mechanical, thermal, metallurgical), as well as a corrosion study of these coatings were carried out. The results of this characterization show that none of the studied products has globally characteristics as good as those of grade 6 Stellite currently in service

  6. Electronic structure, Born effective charges and spontaneous polarization in magnetoelectric gallium ferrite

    International Nuclear Information System (INIS)

    Roy, Amritendu; Garg, Ashish; Mukherjee, Somdutta; Gupta, Rajeev; Prasad, Rajendra; Auluck, Sushil

    2011-01-01

    We present a theoretical study of the structure-property correlation in gallium ferrite, based on first-principles calculations followed by a subsequent comparison with experiments. The local spin density approximation (LSDA + U) of the density functional theory has been used to calculate the ground state structure, electronic band structure, density of states and Born effective charges. The calculations reveal that the ground state structure is orthorhombic Pc 2 1 n having A-type antiferromagnetic spin configuration, with lattice parameters matching well with those obtained experimentally. Plots of the partial density of states of constituent ions exhibit noticeable hybridization of Fe 3d, Ga 4s, Ga 4p and O 2p states. However, the calculated charge density and electron localization function show a largely ionic character of the Ga/Fe-O bonds which is also supported by a lack of any significant anomaly in the calculated Born effective charges with respect to the corresponding nominal ionic charges. The calculations show a spontaneous polarization of ∼ 59 μC cm -2 along the b-axis which is largely due to asymmetrically placed Ga1, Fe1, O1, O2 and O6 ions.

  7. Solubility of simulated PWR primary circuit corrosion products

    International Nuclear Information System (INIS)

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  8. The electronic properties of phosphorus-doped GaN nanowires from first-principle calculations

    International Nuclear Information System (INIS)

    Fu, Nannan; Li, Enling; Cui, Zhen; Ma, Deming; Wang, Wei; Zhang, Yulong; Song, Sha; Lin, Jie

    2014-01-01

    Highlights: • The P impurities tend to enrich at the surface of GaN nanowires. • The lattice parameters of GaN nanowires are changed by the P impurity. • Donor impurity level appears when the P impurity substitutes for the Ga atom. • The band gap decreases slightly when the P impurity substitutes for the N atom. - Abstract: The electronic properties of phosphorus-doped unsaturated and saturated gallium nitride (GaN) nanowires have been investigated from first-principles using the ultrasoft pseudopotential method. The results of these calculations indicate that the P impurities are enriched at the surface of gallium nitride nanowires, and that the structural symmetry of GaN nanowires is broken due to changes in the lattice parameters. When the P impurity substitutes for the Ga atom, the width of band gap increases at the Γ point, a donor impurity level appears in the band gap, and the P impurity and adjacent N atoms exists covalent interaction. Moreover, when the P impurity substitutes for the N atom, the width of the band gap decreases slightly at the Γ point, there is no obvious impurity level in the band gap, and P–Ga covalent bonds are formed, including those composed of ionic bonds. These conclusions indicate that the incorporation of P impurities can improve the field emission performance of GaN nanowires, which is consistent with the experimental results

  9. The electronic properties of phosphorus-doped GaN nanowires from first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Nannan; Li, Enling, E-mail: Lienling@xaut.edu.cn; Cui, Zhen; Ma, Deming; Wang, Wei; Zhang, Yulong; Song, Sha; Lin, Jie

    2014-05-01

    Highlights: • The P impurities tend to enrich at the surface of GaN nanowires. • The lattice parameters of GaN nanowires are changed by the P impurity. • Donor impurity level appears when the P impurity substitutes for the Ga atom. • The band gap decreases slightly when the P impurity substitutes for the N atom. - Abstract: The electronic properties of phosphorus-doped unsaturated and saturated gallium nitride (GaN) nanowires have been investigated from first-principles using the ultrasoft pseudopotential method. The results of these calculations indicate that the P impurities are enriched at the surface of gallium nitride nanowires, and that the structural symmetry of GaN nanowires is broken due to changes in the lattice parameters. When the P impurity substitutes for the Ga atom, the width of band gap increases at the Γ point, a donor impurity level appears in the band gap, and the P impurity and adjacent N atoms exists covalent interaction. Moreover, when the P impurity substitutes for the N atom, the width of the band gap decreases slightly at the Γ point, there is no obvious impurity level in the band gap, and P–Ga covalent bonds are formed, including those composed of ionic bonds. These conclusions indicate that the incorporation of P impurities can improve the field emission performance of GaN nanowires, which is consistent with the experimental results.

  10. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  11. Contribution to the structural study of austeno-ferritic steels. Morphological and analytical definition of the ferritic phase

    International Nuclear Information System (INIS)

    Bathily, Alassane.

    1977-07-01

    Conditions of fast and selective austenite dissolution were defined by means of current-voltage curves using AISI 316-type materials (welding beads). The ferritic phase was isolated and identified with X-rays. The percentages of ferrite were compared gravimetrically with those obtained by traditional methods. The ferrite isolated was chemically analysed by atomic absorption, the only doubtful value being carbon. It is shown by this method that a morphological study of the solidification of the ferritic lattice is possible, even for percentages around 1% [fr

  12. Effect of Ni substitution on the structural and transport properties of Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.0 {<=} x {<=} 0.40 ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala1947@yahoo.com [Materials Science Lab (1), Physics Dept., Faculty of Science, Cairo Univ., Giza (Egypt); Bishay, Samiha T. [Phys. Dept., Faculty of Girls for Art, Science and Education, Ain Shams Univ., Cairo (Egypt); El-dek, S.I.; Omar, G. [Materials Science Lab (1), Physics Dept., Faculty of Science, Cairo Univ., Giza (Egypt)

    2011-01-21

    Research highlights: We aimed to merge the advantages of both Ni and Mn ferrites and to profit from the existence of Mg in small constant ratio to assure the large magnetization of the ferrite under investigation. To achieve such goals one have to investigate the effect of Ni substitution on the structural and electrical properties of Mn-Mg ferrite of the chemical formula Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0 {<=} x {<=} 0.40 prepared by conventional ceramic technique. - Abstract: Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.0{<=} x {<=}0.40 was prepared by standard ceramic technique, presintering was carried out at 900 deg. C and final sintering at 1200 deg. C with heating/cooling rate 4 deg. C/min. X-ray diffraction analyses assured the formation of the samples in a single phase spinel cubic structure. The calculated crystal size was obtained in the range of 75-130 nm. A slight increase in the theoretical density and decrease in the porosity was obtained with increasing the nickel content. This result was discussed based on the difference in the atomic masses between Ni (58.71) and Mn (54.938). IR spectral analyses show four bands of the spinel ferrite for all the samples. The conductivity and dielectric loss factor give nearly continuous decrease with increasing Ni-content. This was discussed as the result of the significant role of the multivalent cations, such as iron, nickel, manganese, in the conduction mechanism. Anomalous behavior was obtained for the sample with x = 0.20 as highest dielectric constant, highest dielectric loss and highest conductivity. This anomalous behavior was explained due to the existence of two divalent cations on B-sites with the same ratio, namely, Mg{sup 2+} and Ni{sup 2+}.

  13. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity

    Science.gov (United States)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang

    2018-03-01

    A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.

  14. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    Science.gov (United States)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus

    2010-08-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.

  15. Cobalt

    International Nuclear Information System (INIS)

    Stolyarova, I.A.; Bunakova, N.Yu.

    1983-01-01

    The neutron-activation method for determining cobalt in rocks, polymetallic and iron ores and rockforming minerals at 2x10 -6 -5x10 -3 % content is developed. Cobalt determination is based on the formation under the effect of thermal neutrons of nuclear reactor of the 60 Co radioactive isotope by the 59 Co (n, γ) 60 Co reaction with radiation energy of the most intensive line of 1333 keV. Cobalt can be determined by the scheme of the multicomponent analysis from the sample with other elements. Co is determined in the solution after separation of all determinable by the scheme elements. The 60 Co intensity is measured by the mUltichannel gamma-spectrometer with Ge(Li)-detector

  16. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430 degrees C to 67 dpa

    International Nuclear Information System (INIS)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-01-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430 degrees C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430 degrees C to ∼67 dpa and at 370 degrees C to ∼15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430 degrees C to ∼67 dpa than after irradiation at 370 degrees C to ∼15 dpa

  17. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  18. Real-space description of semiconducting band gaps in substitutional systems

    International Nuclear Information System (INIS)

    Magri, R.; Zunger, A.

    1991-01-01

    The goal of ''band-gap engineering'' in substitutional lattices is to identify atomic configurations that would give rise to a desired value of the band gap. Yet, current theoretical approaches to the problems, based largely on compilations of band structures for various latice configurations, have not yielded simple rules relating structural motifs to band gaps. We show that the band gap of substitutional AlAs/GaAs lattices can be usefully expanded in terms of a hierarchy of contributions from real-space ''atomic figures'' (pairs, triplets, quadruplets) detemined from first-principles band-structure calculations. Pair figures (up to fourth neighbors) and three-body figures are dominant. In analogy with similar cluster expansions of the total energy, this permits a systematic search among all lattice configurations for those having ''special'' band gaps. This approach enables the design of substitutional systems with certain band-gap properties by assembling atomic figures. As an illustration, we predict that the [0 bar 12]-oriented (AlAs) 1 /(GaAs) 4 /(AlAs) 1 /(GaAs) 2 superlattice has the largest band gap among all Al 0.25 Ga 0.75 As lattices with a maximum of ten cations per unit cell

  19. Sm/Ti co-substituted bismuth ferrite multiferroics: reciprocity between tetragonality and piezoelectricity.

    Science.gov (United States)

    Jha, Pardeep K; Jha, Priyanka A; Singh, Prabhakar; Ranjan, Rajeev; Dwivedi, R K

    2017-10-04

    BiFeO 3 (BFO) systems co-modified with Ti, Sm and Sm-Ti have been investigated for piezoelectricity together with dielectric and multiferroic properties. Structural studies revealed the coexistence of orthorhombic and rhombohedral (R3c) phases for x > 0.12. Impurity phases were shown to have hardly any effect on the remanent magnetization, which rather depends on the Fe-O-Fe bond angle. The dielectric loss was reduced considerably by substitution. A correlation between the piezoelectric coefficient and tetragonality was observed in these samples. BFO co-substituted with Sm-Ti exhibited a high piezoelectric coefficient with better ferroic properties, which revealed a unique combination of green piezoelectricity and multiferroicity.

  20. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola

    2012-01-01

    -containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult......-tested dermatitis patients in an attempt to better understand cobalt allergy.Materials and methods. 19 780 dermatitis patients aged 4-99 years were patch tested with nickel, chromium or cobalt between 1985 and 2010. The cobalt spot test was used to test for cobalt ion release from mobile phones as well as cobalt...

  1. Cellulose-precursor synthesis of nanocrystalline Co0.5Cu0.5Fe2O4 spinel ferrites

    International Nuclear Information System (INIS)

    Ounnunkad, Kontad; Phanichphant, Sukon

    2012-01-01

    Highlights: ► Synthesis of spinel copper cobalt nanoferrite particles from a cellulose precursor for the first time. Control of nanosize and properties of nanoferrites can take place by varying the calcining temperature. The simple, low cost, easy cellulose process is a choice of nanoparticle processing technology. -- Abstract: Nanocrystalline Cu 0.5 Co 0.5 Fe 2 O 4 powders were prepared via a metal-cellulose precursor synthetic route. Cellulose was used as a fuel and a dispersing agent. The resulting precursors were calcined in the temperature range of 450–600 °C. The phase development of the samples was determined by using Fourier transform infrared (FT-IR) spectroscopy and powder X-ray diffraction (XRD). The field-dependent magnetizations of the nanopowders were measured by vibrating sample magnetometer (VSM). All XRD patterns are of a spinel ferrite with cubic symmetry. Microstructure of the ferrites showed irregular shapes and uniform particles with agglomeration. From XRD data, the crystallite sizes are in range of 16–42 nm. Saturation magnetization and coercivity increased with increasing calcining temperature due to enhancement of crystallinity and reduction of oxygen vacancies.

  2. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  3. Plasma Spraying and Characterization of Tungsten Carbide-Cobalt Coatings by the Water-Stabilized System WSP

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kašparová, M.; Bellin, J.; Le Guen, E.; Zahálka, F.

    2009-01-01

    Roč. 2009, - (2009), s. 1-11 ISSN 1687-8434 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tungsten karbide – cobalt, cermet * wear resistance * abrasion * plasma spraying Subject RIV: JG - Metallurgy http://www.hindawi.com/journals/amse/2009/254848.html

  4. High-Q perpendicular-biased ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.

    1983-01-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Modest power tests of a small (10-cm-dia) quarter-wave singly re-entrant cavity tuned by nickel-zinc ferrites and aluminum-doped garnets indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity at power levels from 2 to 200 watts

  5. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  6. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  7. Magnetic study of interatomic interactions, synthesis, structural and mass spectroscopy investigations of lanthanum gallate doped with cobalt and magnesium

    International Nuclear Information System (INIS)

    Korolev, D.A.; Chezhina, N.V.; Lopatin, S.I.

    2015-01-01

    Highlights: • Single phase LaCo x Ga 1−1.2x Mg 0.2x O 3 and LaCo x Ga 1−1.5x Mg 0.5x O 3 solutions were obtained. • Two crystalline modifications of solid solutions were found by Rietveld method. • Ferromagnetic clusters including Co, Mg and accompanying oxygen vacancies are found. • Magnetic behavior of clusters is of superparamagnetic type. - Abstract: For the first time by X-ray method two phases of the solid solutions LaCo x Ga 1−1.2x Mg 0.2x O 3−δ and LaCo x Ga 1−1.5x Mg 0.5x O 3−δ (x = 0.01–0.10) with different structure were found – rhombohedral and orthorhombic phases. On the basis of the data on evaporation of the components a synthetic procedure was advanced allowing the losses of cobalt to be minimized. The study of magnetic characteristics of obtained solid solutions showed the formation of high nuclearity clusters containing cobalt atoms, and also magnesium and associated vacancies even in diluted solid solutions. Clusters are characterized by a competition between ferro- and antiferromagnetic exchange interactions, whereas the long order exchange is antiferromagnetic

  8. Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution

    KAUST Repository

    Kandiel, Tarek

    2015-03-23

    Stoichiometric and gallium-rich wurtzite Cu-Ga-S ternary nanocrystals were synthesized via a facile solution-based hot injection method using 1-dodecanethiol as a sulfur source. The use of 1-dodecanethiol was found to be essential not only as a sulfur source but also as a structure-directing reagent to form a metastable wurtzite structure. In addition, the substitution of zinc in the wurtzite gallium-rich Cu-Ga-S nanocrystals was also investigated. The obtained nanocrystals were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Electronic structures of pristine and the Zn-substituted Cu-Ga-S system were investigated using density functional theory (DFT) with HSE06 exchange-correlation functional. The calculated bandgaps accurately reflect the measured ones. The allowed electronic transitions occur upon the photon absorption from the (Cu + S) band towards the (Ga + S) one. The Zn substitution was found not to contribute to the band edge structure and hence altered the bandgaps only slightly, the direct transition nature remaining unchanged with the Zn substitution. The photocatalytic activities of H2 evolution from an aqueous Na2S/Na2SO3 solution under visible-light illumination on the synthesized nanocrystals were investigated. While the stoichiometric CuGaS2 exhibited negligible activity, the gallium-rich Cu-Ga-S ternary nanocrystals displayed reasonable activity. The optimum Zn substitution in the gallium-rich Cu-Ga-S ternary nanocrystals enhanced the H2 evolution rate, achieving an apparent quantum efficiency of >6% at 400 nm. © 2015 The Royal Society of Chemistry.

  9. CodonTest: modeling amino acid substitution preferences in coding sequences.

    Directory of Open Access Journals (Sweden)

    Wayne Delport

    2010-08-01

    Full Text Available Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes.

  10. Investigation of structural, optical, magnetic and electrical properties of tungsten doped Nisbnd Zn nano-ferrites

    Science.gov (United States)

    Pathania, Abhilash; Bhardwaj, Sanjay; Thakur, Shyam Singh; Mattei, Jean-Luc; Queffelec, Patrick; Panina, Larissa V.; Thakur, Preeti; Thakur, Atul

    2018-02-01

    Tungsten substituted nickel-zinc ferrite nanoparticles with chemical composition of Ni0.5Zn0.5WxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) were successfully synthesized by a chemical co-precipitation method. The prepared ferrites were pre sintered at 850 °C and then annealed at 1000 °C in a muffle furnace for 3 h each. This sintered powder was inspected by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM) to study the structural, optical, and magnetic properties. XRD measurement revealed the phase purity of all the nanoferrite samples with cubic spinel structure. The estimated crystallite size by X-ray line broadening is found in the range of 49-62 nm. FTIR spectra of all the samples have observed two prominent absorption bands in the range 400-700 cm-1 arising due to tetrahedral and octahedral stretching vibrations. Vibrating sample magnetometer experiments showed that the saturation magnetizations (MS) decreased with an increase in non-magnetic tungsten ion doping. The electrical resistivity of tungsten doped Nisbnd Zn nano ferrites were examined extensively as a function of temperature. With an increase in tungsten composition, resistivity was found to decrease from 2.2 × 105 Ω cm to 1.9 × 105 Ω cm which indicates the semiconducting behavior of the ferrite samples. The activation energy also decreased from 0.0264 to 0.0221 eV at x = 0.0 to x = 1.0. These low coercive field tungsten doped Nisbnd Zn ferrites are suitable for hyperthermia and sensor applications. These observations are explained in detail on the basis of various models and theories.

  11. Cobalt Oxide Catalysts Supported on CeO2–TiO2 for Ethanol Oxidation and N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Balabánová, Jana; Koloušek, D.; Klegová, A.; Pacultová, K.; Obalová, L.

    2017-01-01

    Roč. 12, č. 1 (2017), s. 121-139 ISSN 1878-5190. [Pannonian Symposium on Catalysis. Siófok, 19.09.2016-23.09.2016] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : cobalt oxide catalysts * ethanol total oxidation * N2O decomposition Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 1.264, year: 2016

  12. The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean

    Science.gov (United States)

    Saito, Mak A.; Noble, Abigail E.; Hawco, Nicholas; Twining, Benjamin S.; Ohnemus, Daniel C.; John, Seth G.; Lam, Phoebe; Conway, Tim M.; Johnson, Rod; Moran, Dawn; McIlvin, Matthew

    2017-10-01

    The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become ˜ 10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of ˜ 400 µmol Co mol-1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the

  13. Soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB ferromagnetic materials and their characterization

    Science.gov (United States)

    Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra

    2018-04-01

    Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size <100 nm. XRD micrographs revealed a tetragonal crystal structure and FTIR showed predominant N-H and O-H stretching indicates the involvement of these functional groups in the reduction and stabilization process of Co-NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.

  14. Manufacturing of Mn-Zn ferrite transformer cores

    International Nuclear Information System (INIS)

    Waqas, H.; Qureshi, A.H.; Hussain, N.; Ahmed, N.

    2012-01-01

    The present work is related to the development of soft ferrite transformer cores, which are extensively used in electronic devices such as switch mode power supplies, electromagnetic devices, computers, amplifiers etc. Mn-Zn Ferrite (soft ferrite) powders were prepared by conventional mixed oxide and auto combustion routes. These powders were calcined and then pressed in toroid shapes. Sintering was done at different temperatures to develop desired magnetic phase. Impedance resistance of sintered toroid cores was measured at different frequencies. Results revealed that Mn-Zn Ferrite cores synthesized by auto combustion route worked more efficiently in a high frequency range i.e. > 2MHz than the cores developed by conventional mixed oxide method. It was noticed that compact size, light weight and high impedance resistance are the prime advantages of auto combustion process which supported the performance of core in MHz frequency range. Furthermore, these compact size cores were successfully tested in linear pulse amplifier circuit of Pakistan Atomic Research Reactor-I. The fabrication of soft ferrite (Mn-Zn Ferrite) cores by different processing routes is an encouraging step towards indigenization of ferrite technology. (Orig./A.B.)

  15. Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor

    Energy Technology Data Exchange (ETDEWEB)

    Gabal, M.A., E-mail: mgabalabdonada@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al Angari, Y.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Zaki, H.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt)

    2014-08-01

    Soft Ni–Mg nano-crystalline ferrites with the general formula Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} (0≤x≤1) were synthesized through egg-white method. The precursor decomposition was followed by thermal analysis techniques. The obtained ferrites were characterized by X-ray diffraction, Fourier transform infrared and transmission electron microscopy measurements. X-ray diffraction showed the cubic spinel structure with crystallite size variation within the range 20–45 nm. The different structural data obtained were discussed in the view of ionic radii of the entire ions and their distribution within the lattice. The appropriate suggested cation distribution was then confirmed through Fourier transform infrared as well as electrical and magnetic properties measurements. Transmission electron microscopy exhibited a nano-crystal aggregation phenomenon. The observed size of the spherical particles agrees well with that obtained by X-ray diffraction. Hysteresis loop measurements revealed dilution in the obtained magnetic parameters by Mg-substitution due to the preferential occupancy of Mg{sup 2+} ions by the octahedral sites. Ac-electrical conductivity as a function of temperature and frequency exhibited a semi-conducting behavior with conductivity decreases by increasing Mg-content. The change in the slope of the curve indicates the changing in the conduction mechanism from electron hopping to polaron mechanism by increasing temperature. The obtained structural, electrical and magnetic properties were explained based on the cation distribution among tetrahedral and octahedral sites. - Highlights: • Ni–Mg nano-crystalline ferrites were synthesized through egg-white method. • An appropriate cation distribution was suggested. • Conductivity revealed a change in conduction mechanism by increasing temperature. • The effect of Mg-substitution on different properties was studied.

  16. Magnetic and structural studies of trivalent Co-substituted Cd-Mn ferrites

    Science.gov (United States)

    Amer, M. A.; Meaz, T. M.; El-Kestawy, M.; Ghoneim, A. I.

    2016-05-01

    Series of polycrystalline Cd0.4Mn0.6CoxFe2-xO4 ferrites, 0≤x≤1, were prepared by solid state reaction method. The samples were characterized by inductive coupling plasma, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectra and vibrating sample magnetometry. This study proved that all samples have single-phase cubic spinel structure. The true lattice constant, saturation magnetization, magnetic moment and trend of grain size and IR band νA showed decrease against x, whereas the trend of crystallite size, threshold frequency, Debye temperature, IR bands ν1 and ν2 and force constants F1 and F2, coercivity, anisotropy constant and residual magnetization showed increase. The IR analysis proved existence of Fe2+, Co2+, Fe4+, Co4+ and/or Mn4+ ions amongst the crystal sublattices. The characteristic bands ν1 and ν2 and force constants F1 and F2 showed decrease versus the tetrahedral- and octahedral-site bond length, respectively. The strain, specific surface area, refractive index, velocity, jump rate and remnant magnetization proved dependence on Co3+ ion content x.

  17. Magnetic domains in martensite of Ni-Mg-Ga alloy

    International Nuclear Information System (INIS)

    Kokorin, V.V.; Babij, O.M.; Dubinko, S.V.; Prokopov, A.R.

    2006-01-01

    The structural changes attendant on intermartensitic transformation in a Ni-Mg-Ga shape memory alloy are considered using magneto-optical visualization with the help of ferrite-garnet monocrystalline films. It is established that on the intermartensitic transformation the complete reorganization of martensite macrostructure fails. Martensite crystals resulted from the basic transformation change somewhat their sizes on intermartensitic transition. The existence of large-scale labyrinth magnetic domain structure is revealed [ru

  18. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  19. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  20. The physic properties of Bi-Zn codoped Y-type hexagonal ferrite

    International Nuclear Information System (INIS)

    Bai Yang; Zhou Ji; Gui Zhilun; L, Longtu; Qiao Lijie

    2008-01-01

    The magnetic and dielectric properties of Bi-Zn codoped Y-type hexagonal ferrite was investigated. The samples with composition of Ba 2-x Bi x Zn 0.8+x Co 0.8 Cu 0.4 Fe 12-x O 22 (x = 0-0.4) were prepared by the solid-state reaction method. Phase formation was characterized by X-ray diffraction. The microstructure was observed via scanning electron microscopy. The magnetic and dielectric properties were measured using an impedance analyzer. Direct current (dc) electrical resistivity was measured using a pA meter/dc voltage source. Minor Bi doping (x = 0.05-0.25) will not destroy the phase formation of Y-type hexagonal ferrite, but lower the phase formation temperature distinctly. Bi substitution can also promote the sintering process. The Bi-containing samples (x > 0.05) can be sintered well under 900 deg. C without any other addition. The sintering temperature is about 200 deg. C lower than that of the Bi-free sample. The Bi-Zn codoped samples exhibit excellent magnetic and dielectric properties in hyper frequency. These materials are suitable for multi-layer chip-inductive components

  1. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    Science.gov (United States)

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. Published by Elsevier B.V.

  2. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe2 O4 ) nanoparticles in zebrafish larvae.

    Science.gov (United States)

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou; Zhao, Fangfang; Ling, Zhaoxing; Xu, Chao

    2016-12-01

    Fascinating super paramagnetic uniqueness of iron oxide particles at nano-scale level make them extremely useful in the state of the art therapies, equipments, and techniques. Cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles (MNPs) are extensively used in nano-based medicine and electronics, results in extensive discharge and accumulation into the environment. However, very limited information is available for their endocrine disrupting potential in aquatic organisms. In this study, the thyroid endocrine disrupting ability of CoFe 2 O 4 NPs in Zebrafish larvae for 168-h post fertilization (hpf) was evaluated. The results showed the elevated amounts of T4 and T3 hormones by malformation of hypothalamus pituitary axis in zebrafish larvae. These elevated levels of whole body THs leads to delayed hatching, head and eye malformation, arrested development, and alterations in metabolism. The influence of THs disruption on ROS production and change in activities of catalase (CAT), mu-glutathione s-transferase (mu-GST), and acid phosphatase (AP) were also studied. The production of significantly higher amounts of in vivo generation of ROS leads to membrane damage and oxidative stress. Presences of NPs and NPs agglomerates/aggregates were also the contributing factors in mechanical damaging the membranes and physiological structure of thyroid axis. The increased activities of CAT, mu-GST, and AP confirmed the increased oxidative stress, possible DNA, and metabolic alterations, respectively. The excessive production of in vivo ROS leads to severe apoptosis in head, eye, and heart region confirming that malformation leads to malfunctioning of hypothalamus pituitary axis. ROS-induced oxidative DNA damage by formation of 8-OHdG DNA adducts elaborates the genotoxicity potential of CoFe 2 O 4 NPs. This study will help us to better understand the risk and assessment of endocrine disrupting potential of nanoparticles. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2068

  3. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy

    International Nuclear Information System (INIS)

    Metikos-Hukovic, M.; Babic, R.

    2007-01-01

    Passivation and corrosion behaviour of the cobalt and cobalt-base alloy Co30Cr6Mo was studied in a simulated physiological solution containing chloride and bicarbonate ions and with pH of 6.8. The oxido-reduction processes included solid state transformations occurring at the cobalt/electrolyte interface are interpreted using theories of surface electrochemistry. The dissolution of cobalt is significantly suppressed by alloying it with chromium and molybdenum, since the alloy exhibited 'chromium like' passivity. The structural and protective properties of passive oxide films formed spontaneously at the open circuit potential or during the anodic polarization were studied using electrochemical impedance spectroscopy in the wide frequency range

  4. Antibacterial activity of cobalt(II complexes with some benzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    2008-12-01

    Full Text Available The antibacterial activities of cobalt(II complexes with two series of benzimidazoles were evaluated in vitro against three Gram-positive bacterial strains (Bacillus cereus, Staphylococcus aureus, and Sarcina lutea and one Gram-negative isolate (Pseudomonas aeruginosa. The minimum inhibitory concentration was determined for all the complexes. The majority of the investtigated complexes displayed in vitro inhibitory activity against very persistent bacteria. They were found to be more active against Gram-positive than Gram-negative bacteria. It may be concluded that the antibacterial activity of the compounds is related to the cell wall structure of the tested bacteria. Comparing the inhibitory activities of the tested complexes, it was found that the 1-substituted-2-aminobenzimidazole derivatives were more active than complexes of 1-substituted-2-amino-5,6-dimethylbenzimidazoles. The effect of chemical structure on the antibacterial activity is discussed.

  5. Characterization of Austempered Ferritic Ductile Iron

    Science.gov (United States)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  6. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, V.; Meyer, M.; Malovichko, G. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Hunt, A. W. [Idaho Accelerator Center, Idaho State University, Pocatello, Idaho 83209 (United States)

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.

  7. Etude des propriétés magnéto-optiques des couches minces à base ...

    African Journals Online (AJOL)

    Study of themagneto-optical properties of thin films cobalt ferrite obtainedby the sol-gel. This work is devoted to the study of magneto-optical (Faraday rotation) of thin cobalt ferrite layers obtained by sol-gel. The contribution of the sol-gel method is very important and it allows obtaining thin film shaving a good optical quality.

  8. Cation disorder in Ga1212.

    Science.gov (United States)

    Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O

    2000-07-24

    Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.

  9. Zn substitution NiFe_2O_4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Mao, Junwei; Hou, Xianhua; Huang, Fengsi; Shen, Kaixiang; Lam, Kwok-ho; Ru, Qiang; Hu, Shejun

    2016-01-01

    Zn"2"+ ion substituted nickel ferrite nanomaterials with the chemical formula Ni_1_−_xZn_xFe_2O_4 for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g"−"1at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni_1_−_xZn_xFe_2O_4 anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  10. Ferrite measurements for SNS accelerating cavities

    International Nuclear Information System (INIS)

    Bendall, R.G.; Church, R.A.

    1979-03-01

    The RF system for the SNS has six double accelerating cavities each containing seventy ferrite toroids. Difficulties experienced in obtaining toroids to the required specifications are discussed and the two toroid test cavity built to test those supplied is described. Ferrite measurements are reported which were undertaken to measure; (a) μQf as a function of frequency and RF field level and (b) bias current as a function of frequency for different ranges of ferrite permeability μ. (U.K.)

  11. Residual dipolar couplings in sup 3 sup 1 P MAS spectra of PPh sub 3 substituted cobalt complexes

    CERN Document Server

    Szalontai, G

    2002-01-01

    Residual dipolar couplings between sup 3 sup 1 P- sup 5 sup 9 Co spin pairs were studied in sup 3 sup 1 P MAS spectra of mono- and dinuclear cobalt-triphenylphosphine complexes. These spectra can provide important information such as the scalar coupling between the dipolar phosphorus and the quadrupolar cobalt nuclei normally not available from solution phase studies. In case of complementary (NQR or x-ray) data even the relative orientation of the interacting shielding, dipolar, scalar couplings, and electric field gradient tensors or internuclear distances can be determined. Examples are shown both for well resolved and practically unresolved cases, factors which possibly control the spectral resolution are discussed in detail. (author)

  12. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure

    International Nuclear Information System (INIS)

    Petchsang, N.; Pon-On, W.; Hodak, J.H.; Tang, I.M.

    2009-01-01

    The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3x Fe 2x Co x (PO 4 ) 6 (OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 o C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2 O 4 . Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+ /Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+ ) in the Moessbauer spectrum for all the doped samples clearly indicates that the CoFe 2 O 4 .cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Moessbauer spectrums for the heavier-doped (x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2 O 3 impurity phase seen in the XRD patterns.

  13. High purity ferritic Cr-Mo stainless steel

    International Nuclear Information System (INIS)

    Knoth, J.

    1977-01-01

    In five years, E-BRITE 26-1 ferritic stainless steel has won an important place in the spectrum of materials suitable for use in chemical process equipment. It provides, in stainless steel, performance-capability characteristics comparable to more expensive alloys. It has demonstrated cost-effectiveness in equipment used for caustic, nitric-urea, organic chemicals, pulping liquors, refinery streams, and elsewhere. User confidence in the reliability and integrity of Grade XM 27 has increased to the point where large critical systems are now routinely specified in the alloy. The market acceptance of this material has attracted attempts to produce substitute versions of the alloy. Imitation, should be viewed with caution. Stabilized 26-IS must be examined over a lengthy period of time to determine if its own corrosion resistance, ductility, fabricability and reproducibility properties could ever be likened to those of E-BRITE 26-1. (orig.) [de

  14. Magnetic study of interatomic interactions, synthesis, structural and mass spectroscopy investigations of lanthanum gallate doped with cobalt and magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, D.A., E-mail: chemdim@mail.ru; Chezhina, N.V.; Lopatin, S.I.

    2015-03-05

    Highlights: • Single phase LaCo{sub x}Ga{sub 1−1.2x}Mg{sub 0.2x}O{sub 3} and LaCo{sub x}Ga{sub 1−1.5x}Mg{sub 0.5x}O{sub 3} solutions were obtained. • Two crystalline modifications of solid solutions were found by Rietveld method. • Ferromagnetic clusters including Co, Mg and accompanying oxygen vacancies are found. • Magnetic behavior of clusters is of superparamagnetic type. - Abstract: For the first time by X-ray method two phases of the solid solutions LaCo{sub x}Ga{sub 1−1.2x}Mg{sub 0.2x}O{sub 3−δ} and LaCo{sub x}Ga{sub 1−1.5x}Mg{sub 0.5x}O{sub 3−δ} (x = 0.01–0.10) with different structure were found – rhombohedral and orthorhombic phases. On the basis of the data on evaporation of the components a synthetic procedure was advanced allowing the losses of cobalt to be minimized. The study of magnetic characteristics of obtained solid solutions showed the formation of high nuclearity clusters containing cobalt atoms, and also magnesium and associated vacancies even in diluted solid solutions. Clusters are characterized by a competition between ferro- and antiferromagnetic exchange interactions, whereas the long order exchange is antiferromagnetic.

  15. Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite

    Science.gov (United States)

    Le, Trong Trung; Valdez-Nava, Zarel; Lebey, Thierry; Mazaleyrat, Frédéric

    2018-04-01

    In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT) and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz) for the new wide band gap semiconductors (SiC, GaN) allow to interleave switching cell at higher frequencies than silicon-based semiconductors (materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP) into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.

  16. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage

    2016-01-01

    : On the basis of five included studies, the ED10 values of aqueous cobalt chloride ranged between 0.0663 and 1.95 µg cobalt/cm(2), corresponding to 30.8-259 ppm. CONCLUSIONS: Our analysis provides an overview of the doses of cobalt that are required to elicit allergic cobalt contactdermatitis in sensitized...

  17. Inter-atomic bonding and dielectric polarization in Gd{sup 3+} incorporated Co-Zn ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, R.A. [Department of Physics, P.V.P. Arts, Commerce and Science College, Pravaranagar, MS (India); Desai, S.S. [Materials Research Laboratory, Shrikrishna Mahavidyalaya, Gunjoti 413613, MS (India); Patange, S.M., E-mail: drsmpatange@rediffmail.com [Materials Research Laboratory, Shrikrishna Mahavidyalaya, Gunjoti 413613, MS (India); Jadhav, S.S. [Department of Physics, Dnyanopasak Shikshan Mandal' s Arts, Commerce and Science College, Jintur 431509, MS (India); Jadhav, K.M. [Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431001, MS (India)

    2017-04-01

    A series of ferrite with a chemical composition Co{sub 0.7}Zn{sub 0.3}Gd{sub x}Fe{sub 2−x}O{sub 4} (where x=0.0 to x=0.1) were prepared by sol-gel auto-combustion method. X-ray diffraction pattern were used to determine the crystal structure and phase formation of the prepared samples. Scanning electron microscopy is used to study the surface morphology of the prepared samples. Elastic properties were determined from the infrared spectroscopy. Debye temperature, wave velocities, elastic constants found to increase with the increase in Gd{sup 3+} substitution. Dielectric properties such as dielectric constant and dielectric loss were studied as a function of Gd{sup 3+} substitution and frequency. Dielectric constant decreased with the increase in frequency and Gd{sup 3+} substitution. Behavior of dielectric properties was explained on the basis of Maxwell-Wagner interfacial polarization which in accordance with Koops phenomenological theory. Real and imaginary part of impedance was studied as a function of resistance and Gd{sup 3+} substitution. The behavior of impedance is systematically discussed on the basis of resistance-capacitance circuit.

  18. The use of 57Co-labeled bleomycin in the diagnosis of round lung images

    International Nuclear Information System (INIS)

    Vaillant, G.; Bertrand, A.; Nouel, J.P.

    1975-01-01

    As a result of its antimitotic nature, it has been affirmed that labeled bleomycin represents considerable progress in the diagnostic approach to the pulmonary intraparenchymatous round image. A comparative study of uptake of bleomycin, labeled with 57 Co, 67 Ga and 197 Hg, at the level of pulmonary intraparenchymatous round neoplastic foci, was performed on 15 ill subjects. The highest uptakes were obtained with labeled bleomycin. The long half-life of cobalt, however, necessitates extensive precautions to avoid contamination. This justifies the ongoing search for another tracer which can substitute for cobalt and has a shorter period. In addition, examination with cobalt should be reserved for very special cases [fr

  19. Tunable ferromagnetic resonance in La-Co substituted barium hexaferrites at millimeter wave frequencies

    Science.gov (United States)

    Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.

    2018-05-01

    Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.

  20. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Science.gov (United States)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  1. Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1)3-x A(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga

    International Nuclear Information System (INIS)

    Park, Sangmoon; Vogt, Thomas

    2009-01-01

    A new family of UV-activated phosphors made by substituting rare-earth activators such as trivalent Eu, Tb, Tm and Er into A(1) 3-x A(2) x MO 4 F host lattices (A(1)/A(2)=Sr, Ca, Ba; M=Al, Ga) are introduced and their activation and emission spectra as well as their CIE values reported. The Tm-substituted system can be activated using light with a wavelength of 360 nm. Relative intensities of a family of Tb-substituted green phosphors activated at 254 nm and with emissions centered near 548 nm are discussed.

  2. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  3. The effect of the volume fraction and viscosity on the compression and tension behavior of the cobalt-ferrite magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    H. Shokrollahi

    2016-03-01

    Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.

  4. Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction technique

    Science.gov (United States)

    Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.

    2017-12-01

    In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.

  5. Preparation and magnetic characterization of Y-type hexaferrites containing zinc, cobalt and copper

    International Nuclear Information System (INIS)

    Bai Yang; Zhou Ji; Gui Zhilun; Yue Zhensing; Li Longtu

    2003-01-01

    Y-type hexaferrites series with Ba 2 Me 2 Fe 12 O 22 (Me=Zn, Co, Cu) has been prepared by the solid-state reaction method. Y-type polycrystalline hexaferrite powders were characterized by X-ray diffraction and the magnetic characteristics were investigated by vibrating samples magnetometer. Experimental results show that the substitution of Co for Zn leads to a decrease of saturation magnetization and an increase of magnetic anisotropy. At room temperature, saturation magnetization does not increase linearly as Zn content increases due to the effect of the thermal agitation. Saturation magnetization of the Zn-Cu Y-type ferrite exhibits the similar variational rule at room temperature. As Cu substitute for Co, the saturation magnetization and magnetic anisotropy all decrease. Cu modification can lower the single-phase formed temperature distinctly as the magnetic properties slightly debase

  6. Simulation of non-linear coaxial line using ferrite beads

    International Nuclear Information System (INIS)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J.

    2002-01-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  7. Lattice dynamics and vibration modes frequencies for substitutional impurities in InP, GaP and ZnS

    International Nuclear Information System (INIS)

    Vandevyver, Michel; Plumelle, Pierre.

    1977-01-01

    The model used is a rigid-ion model with an effective ionic charge including general interactions for nearest and next nearest neighbours and long range Coulomb interactions. It provides a good fit with available neutron data and with infrared absorption results for InP. In this model, no hypothesis is made a priori on the interatomic forces and the eleven parameters given by the model are used. A mathematical model which employs a Green's function technique in the mass defect and the nearest neighbour force constant defect approximation is used to calculate the lattice dynamics of the imperfect crystal. The frequencies of the local modes, the gap modes and the band modes, are given for isolated substitutional impurities. The same calculation is achieved for GaP and ZnS and the results are compared with infrared data [fr

  8. HYSTERESIS AND ELECTRIC MODULUS ANALYSIS OF Y³⁺ DOPED MnNi-Y-TYPE HEXAGONAL FERRITE

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2016-03-01

    Full Text Available The magnetic, grain morphology and dielectric properties of synthesized Sr₂MnNiFe₁₂O₂₂+xY₂O₃ (x=0-5wt.% ferrite have been investigated via X-ray diffraction (XRD, scanning electron microscopy (SEM and dielectric spectroscopy, respectively. The nanostructure governs increase in inter-grain connectivity with substitution. The appearance of broad peaks in imaginary electric modulus plots (Mʺ show the existence of relaxation process in all these samples. The grain boundary contribution is clearly observed from Cole-Cole plots. The preferential site occupancy of Yttrium ions results in rapid increase of coercivity, hysteresis loops also revealed same effect of substitution. The improved value of coercivity is quite beneficial for the perpendicular recording media which is an emerging technology in the recording media.

  9. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  10. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    KAUST Repository

    Cabán-Acevedo, Miguel

    2015-09-14

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS 2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm at overpotentials as low as 48mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n -p-p silicon micropyramids achieved photocurrents up to 35 mA cm at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  11. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  12. Influence of Nd3+ substitution on structural and magnetic properties of Zinc ferrite

    International Nuclear Information System (INIS)

    Sharma, Nidhi; Kumar, Sushil; Aghamkar, Praveen

    2013-01-01

    Zinc ferrite samples, ZnFe 2-x Nd x O 4 (where x= 0.05, 0.075, 0.1), have been synthesized by coprecipitation technique and then heat treated at different temperatures. The structural and magnetic studies have been conducted by X-ray diffraction, Fourier transform infrared spectroscopy, Transmission electron microscopy and Vibrating sample magnetometer. X-ray diffraction shows the polycrystalline nature and spinel structure of samples. The average particle sizes of 28-32 nm are obtained through TEM images, which are in good agreement with the XRD results. The lattice constant has been found to increase with increase in Nd 3+ content in the sample. FTIR transmission spectra show two strong absorption bands in the frequency range 400-600 cm -1 , which are respectively attributed to the tetrahedral and octahedral sites of spinel structure. Magnetic properties such as coercivity, retentivity, as demonstrated in hysteresis curve of samples recorded by VSM, display super paramagnetic behaviour at 800℃. (author)

  13. Oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Asbroeck, P. van.

    1976-10-01

    The publication gives the available data on the DTO2 dispersion-strengthened ferritic alloy developed at C.E.N./S.C.K. Mol, Belgium. DTO2 is a Fe-Cr-Mo ferritic alloy, strengthened by addition of titanium oxide and of titanium leading to the formation of Chi phase. It was developed for use as canning material for fast breeder reactors. (author)

  14. Chiral smectogens with four-phenyl-ring molecular core, laterally substituted by iodine atom

    Czech Academy of Sciences Publication Activity Database

    Podoliak, Natalia; Novotná, Vladimíra; Kašpar, Miroslav; Hamplová, Věra; Pacherová, Oliva

    2015-01-01

    Roč. 42, č. 3 (2015), s. 404-411 ISSN 0267-8292 R&D Projects: GA ČR GA13-14133S; GA MŠk(CZ) LD14007 Institutional support: RVO:68378271 Keywords : liquid crystals * iodine lateral substitution * lactic acid unit * ferroelectric phase Subject RIV: JJ - Other Materials Impact factor: 2.244, year: 2015

  15. Fracturing of revision of a cobalt-chrome femoral head after fracturing of a ceramic femoral head, with diffuse metallosis. Case report

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Dantas Costa Marques

    2013-04-01

    Full Text Available We presente a case of a fracture of a cobalt-chrome femoral head after revision of a hip total prosthesis with ceramic femoral head fracture. During surgery we found the cobalt-chrome femoral head fracture, wear of the polyethylene and massive metallosis in muscular and cartilaginous tissue. Both femoral stem and acetabular cup were stable and without apparent wearing. After surgical debridement, we promoted the substitution of the femoral head and the acetabular polyethylene by similar ones. After 12 months of follow-up, the patient has no pain complaints, function limit or systemic signs associated with malign metallosis

  16. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology; Sintese e caracterizacao de nanoparticulas magneticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material hibrido em nanotecnologia

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth Luqueze

    2006-07-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H{sub 2}O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  17. Doping process of p-type GaN nanowires: A first principle study

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  18. Determination of cobalt-60 in seawater by solvent extraction with pyrrolidinedithiocarbamic acid

    International Nuclear Information System (INIS)

    Tseng, C.L.; Lo, J.M.

    1978-01-01

    Cobalt-60 was extracted from a large volume of seawater and concentrated in a small volume of organic solution of pyrrolidinedithiocarbamic acid (HPDC) in chloroform. All foreign nuclides in the organic phase were stripped completely with 12N HCl and 2N HNO 3 successively. By this procedure, a chemically pure Co-60 chelate, 60 Co(PDC) 3 , in chloroform was obtained. The recovery of Co-60 activity was found to average 99%. Cobalt-60 in seawater can thus be simply, rapidly and accurately determined by direct NaI(Tl) scintillation counting. The time for a single analysis, for example, exclusive of the counting operation, is about 40 min. The effects of various foreign nuclides on the extraction of Co-60 were examined by the use of 42 radiotracers and the results are tabulated. The nuclides Ag + , Mn 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Pb 2+ , Hg 2+ , Fe 3+ , Ga 3+ , In 3+ , As 3+ , Sn 4+ , and Cr 6+ were extracted almost completely into chloroform with cobalt as the pyrrolidinedithiocarbamates. The extraction yield of Sb 3+ was close to 90%. Appreciable fractions of Cs + , Ba 2+ , Cr 3+ , Zr 4+ and Np 5+ were also found in the organic phase. (T.I.)

  19. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    Science.gov (United States)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  20. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.