WorldWideScience

Sample records for ga-substituted cobalt ferrite

  1. High-temperature Thermoelectric and Microstructural Characteristics of Ga Substituted on the Co-site in Cobalt-based Oxides

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Yanagiya, S.; Sonne, Monica

    2011-01-01

    The effects of Ga substitution on the Co-site on the high-temperature thermoelectric properties and microstructure are investigated for the misfitlayered Ca3Co4O9 and the complex perovskite-related Sr3RECo4O10.5 (RE = rare earth) cobalt-based oxides. For both systems, substitution of Ga for Co...... results in a simultaneous increase in the Seebeck coefficient (S) and the electrical conductivity (σ), and the influence is more significant in the high temperature region. The power factor (S 2 σ) is thereby remarkably improved by Ga substitution, particularly at high temperatures. Texture factor...... calculations using x-ray diffraction pattern data for pressed and powder samples reveal that the Ga-doped samples are highly textured. Microstructure observed by scanning electron microscopy shows very well-crystallized grains for the samples with Ga substitution for Co. Among the Ga-doped samples, Ca3Co3.95Ga...

  2. Sonochemical Synthesis of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Partha P. Goswami

    2013-01-01

    Full Text Available Cobalt ferrite being a hard magnetic material with high coercivity and moderate magnetization has found wide-spread applications. In this paper, we have reported the sonochemical synthesis of cobalt ferrite nanoparticles using metal acetate precursors. The ferrite synthesis occurs in three steps (hydrolysis of acetates, oxidation of hydroxides, and in situ microcalcination of metal oxides that are facilitated by physical and chemical effects of cavitation bubbles. The physical and magnetic properties of the ferrite nano-particles thus synthesized have been found to be comparable with those reported in the literature using other synthesis techniques.

  3. Rapid phase synthesis of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavel, T., E-mail: shanmugavelnano@gmail.com [Department of Physics, Paavai Engineering College, Namakkal -637018 (India); Raj, S. Gokul [Department of Physics, Vel Tech University, Avadi, Chennai - 600 062 (India); Rajarajan, G. [Department of Physics, Mahendra Engineering College, Mallasamudram -637503 (India); Kumar, G. Ramesh [Department of Physics, University College of Engineering, Anna University Chennai, Arni- 632317 (India)

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  4. Spinel cobalt ferrite by complexometric synthesis

    NARCIS (Netherlands)

    Pham Duc Thang, P.D.T.; Rijnders, Augustinus J.H.M.; Blank, David H.A.

    2005-01-01

    Magnetic fine particles of cobalt ferrite (CoFe2O4) have been synthesized using complexometric method in which ethylene diamine tetra acetic acid C10H16N2O8 (EDTA) acts as a complexing agent. The crystallographic structure, microstructure and magnetic properties of the synthesized powder were

  5. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  6. Cobalt ferrite based magnetostrictive materials for magnetic stress sensor and actuator applications

    Science.gov (United States)

    Jiles, David C. (Inventor); Paulsen, Jason A. (Inventor); Snyder, John E. (Inventor); Lo, Chester C. H. (Inventor); Ring, Andrew P. (Inventor); Bormann, Keith A. (Inventor)

    2008-01-01

    Magnetostrictive material based on cobalt ferrite is described. The cobalt ferrite is substituted with transition metals (such manganese (Mn), chromium (Cr), zinc (Zn) and copper (Cu) or mixtures thereof) by substituting the transition metals for iron or cobalt to form substituted cobalt ferrite that provides mechanical properties that make the substituted cobalt ferrite material effective for use as sensors and actuators. The substitution of transition metals lowers the Curie temperature of the material (as compared to cobalt ferrite) while maintaining a suitable magnetostriction for stress sensing applications.

  7. Photocatalytic degradation of congo red using copper substituted cobalt ferrite

    Science.gov (United States)

    Kirankumar, V. S.; Hardik, B.; Sumathi, S.

    2017-11-01

    Co1-xCuxFe2O4 nanoparticles with x = 0 and 0.5 were synthesized through the combustion method. The as-made materials are face centered-cubic close-packed spinel structures. The characterization techniques such as powder XRD, FTIR, UV-DRS and SEM studies collectively verified that the formed products are cobalt ferrite and copper substituted cobalt ferrite nanoparticles. In addition, the mean crystalline size, lattice parameter and band gap energy of nanoparticles are calculated. The photocatalytic activity of the obtained Co1-xCuxFe2O4 spinel nanoparticles is evaluated by monitoring the degradation of congo red under visible light irradiation.

  8. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Science.gov (United States)

    de la Vega, A. Estrada; Garza-Navarro, M. A.; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V.

    2016-01-01

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  9. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  10. The structural and magnetic properties of dual phase cobalt ferrite.

    Science.gov (United States)

    Gore, Shyam K; Jadhav, Santosh S; Jadhav, Vijaykumar V; Patange, S M; Naushad, Mu; Mane, Rajaram S; Kim, Kwang Ho

    2017-05-31

    The bismuth (Bi 3+ )-doped cobalt ferrite nanostructures with dual phase, i.e. cubic spinel with space group Fd3m and perovskite with space group R3c, have been successfully engineered via self-ignited sol-gel combustion route. To obtain information about the phase analysis and structural parameters, like lattice constant, Rietveld refinement process is applied. The replacement of divalent Co 2+ by trivalent Bi 3+ cations have been confirmed from energy dispersive analysis of the ferrite samples. The micro-structural evolution of cobalt ferrite powders at room temperature under various Bi 3+ doping levels have been identified from the digital photoimages recorded using scanning electron microscopy. The hyperfine interactions, like isomer shift, quadrupole splitting and magnetic hyperfine fields, and cation distribution are confirmed from the Mossbauer spectra. Saturation magnetization is increased with Bi 3+ -addition up to x = 0.15 and then is decreased when x = 0.2. The coercivity is increased from 1457 to 2277 G with increasing Bi 3+ -doping level. The saturation magnetization, coercivity and remanent ratio for x = 0.15 sample is found to be the highest, indicating the potential of Bi 3+ -doping in enhancing the magnetic properties of cobalt ferrite.

  11. Manganese substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications

    OpenAIRE

    Paulsen, J. A.; Ring, A. P.; Lo, C. C. H.; Snyder, John Evan; Jiles, David

    2005-01-01

    Metal bonded cobalt ferrite composites have been shown to be promising candidate materials for use in magnetoelastic stress sensors, due to their large magnetostriction and high sensitivity of magnetization to stress. However previous results have shown that below 60 °C the cobalt ferrite material exhibits substantial magnetomechanical hysteresis. In the current study, measurements indicate that substituting Mn for some of the Fe in the cobalt ferrite can lower the Curie temperature of the ma...

  12. Femtosecond pulsed laser deposition of cobalt ferrite thin films

    Science.gov (United States)

    Dascalu, Georgiana; Pompilian, Gloria; Chazallon, Bertrand; Caltun, Ovidiu Florin; Gurlui, Silviu; Focsa, Cristian

    2013-08-01

    The insertion of different elements in the cobalt ferrite spinel structure can drastically change the electric and magnetic characteristics of CoFe2O4 bulks and thin films. Pulsed Laser Deposition (PLD) is a widely used technique that allows the growth of thin films with complex chemical formula. We present the results obtained for stoichiometric and Gadolinium-doped cobalt ferrite thin films deposited by PLD using a femtosecond laser with 1 kHz repetition rate. The structural properties of the as obtained samples were compared with other thin films deposited by ns-PLD. The structural characteristics and chemical composition of the samples were investigated using profilometry, Raman spectroscopy, X-Ray diffraction measurements and ToF-SIMS analysis. Cobalt ferrite thin films with a single spinel structure and a preferential growth direction have been obtained. The structural analysis results indicated the presence of internal stress for all the studied samples. By fs-PLD, uniform thin films were obtained in a short deposition time.

  13. Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

    Directory of Open Access Journals (Sweden)

    I. Sharifi

    2012-10-01

    Full Text Available Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.

  14. Synthesis and microwave absorbing properties of Cobalt ferrite

    Science.gov (United States)

    Liu, H. Y.; Li, Y. S.

    2018-01-01

    Cobalt ferrite power CoFe2O4 was synthesized through the chemical co-precipitation method. The structure, morphology and microwave absorbing properties were studied by changing raw materials, annealing temperature and experimental steps. The measurements of X-ray diffraction and scanning electron micrograph suggest that annealed CoFe2O4 sample is still a spinel structure. Moreover, the crystalline and grain sizes become large with the enhancement of annealing temperature. The measurements of microwave absorbing properties show that the reflection loss decreases continuously, and the wavelength of maximum absorption loss shift to short-wave limit as the sample thickness increases.

  15. Exchange spring like magnetic behavior in cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chithra, M.; Anumol, C.N. [Department of Physics, Central University of Kerala, Riverside Transit Campus, Nileshwar, P.O. Padnekkad, Kasaragod, Kerala 671314 (India); Sahu, Baidyanath [Department of Physics, I.I.T. Bombay, Powai, Mumbai 400076 (India); Sahoo, Subasa C., E-mail: subasa.cs@gmail.com [Department of Physics, Central University of Kerala, Riverside Transit Campus, Nileshwar, P.O. Padnekkad, Kasaragod, Kerala 671314 (India)

    2016-03-01

    Cobalt ferrite nanoparticles were prepared by sol–gel technique and were annealed at 900 °C in air for 2 h. Structural properties were studied by X-ray diffraction, Raman spectroscopy and Fourier transformed infrared spectroscopy. Scanning electron microscopy and transmission electron microscopy studies show presence of mostly two different sizes of grains in these samples. Magnetization value of 58.36 emu/g was observed at 300 K for the as prepared sample and an enhanced magnetization close to the bulk value of 80.59 emu/g was observed for the annealed sample. At 10 K a two stepped hysteresis loop showing exchange spring magnetic behavior was observed accompanied by very high values of coercivity and remanence. Two clear peaks were observed in the derivative of demagnetization curve in the as prepared sample where as two partially overlapped peaks were observed in the annealed sample. The observed magnetic properties can be understood on the basis of the grain size and their distribution leading to the different types of intergranular interactions in these nanoparticles. - Highlights: • Cobalt ferrite nanoparticles were prepared by sol–gel technique and were annealed. • Microscopy studies showed presence of mostly two different sizes of grains. • A two stepped magnetic hysteresis loop was observed in these samples at 10 K. • Two well resolved peaks were observed in the derivative of demagnetization curve. • Grain size and their distribution lead to such two stepped exchange spring behavior.

  16. Self-biased cobalt ferrite nanocomposites for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Hannour, Abdelkrim, E-mail: abdelkrim.hannour@hotmail.com [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Neveu, Sophie; Dupuis, Vincent [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France)

    2014-03-15

    Oriented CoFe{sub 2}O{sub 4} nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe{sub 2}O{sub 4} nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results.

  17. Self-biased cobalt ferrite nanocomposites for microwave applications

    International Nuclear Information System (INIS)

    Hannour, Abdelkrim; Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches; Neveu, Sophie; Dupuis, Vincent

    2014-01-01

    Oriented CoFe 2 O 4 nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe 2 O 4 nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results

  18. Chromium Substituted Cobalt Ferrites by Glycine-Nitrates Process

    Directory of Open Access Journals (Sweden)

    Dana Gingasu

    2015-12-01

    Full Text Available Chromium substituted cobalt ferrites (CoFe2–xCrxO4, 0 ≤ x ≤ 2 were synthesized through solution combustion method using glycine as fuel, named glycine-nitrates process (GNP. As evidenced by X-ray diffraction data (XRD, single cubic spinel phase was formed for all CoFe2–xCrxO4 (0 ≤ x ≤ 2 series. The cubic lattice parameter (a decreases with increasing chromium content. Room temperature 57Fe Mössbauer spectra revealed the Fe3+ and Cr3+ site occupancy, the local hyperfine magnetic fields and the substitution of Fe3+ by Cr3+ in the lattice. Scanning electron microscopy (SEM showed a refinement of particle size with the increase of Cr3+ content. Magnetic measurements from 5 K to 120 K have shown a dropping in the saturation magnetization as the chromium content increases. This behaviour has been explained in terms of substitution of Fe3+ by Cr3+ in the cubic lattice of cobalt ferrite.

  19. hermo-Physical and Mechanical Properties of Unsaturated Polyester /Cobalt Ferrite Composites

    Directory of Open Access Journals (Sweden)

    Lamees Salam Faiq

    2017-04-01

    Full Text Available Unsaturated polyester was used as a matrix which was filled with different percentages of cobalt ferrite using hand lay-up method. Cobalt ferrite was synthesized using solid state ceramic method with reagent of CoO and Fe2O3. Mechanical properties such tensile strength, Young's modulus and shore D hardness of the composite have been studied. All these properties have increased by 10% with increasing cobalt ferrite contents. Also the thermal properties such thermal conductivity and specific heat capacity are highly increased as the ferrite content increased, while the thermal diffusivity increased by 22 %. On the other hand dielectric strength of composite has been measured which increased by 50% by increasing the cobalt ferrite content.

  20. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Žalnėravičius, Rokas [State Research Institute Center for Physical Sciences and Technology (Lithuania); Paškevičius, Algimantas [Nature Research Centre, Laboratory of Biodeterioration Research (Lithuania); Kurtinaitiene, Marija; Jagminas, Arūnas, E-mail: arunas.jagminas@ftmc.lt [State Research Institute Center for Physical Sciences and Technology (Lithuania)

    2016-10-15

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe{sub 2}O{sub 4} Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract.

  1. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  2. Microwave non-resonant absorption in fine cobalt ferrite particles

    International Nuclear Information System (INIS)

    Mata-Zamora, M.E.; Montiel, H.; Alvarez, G.; Saniger, J.M.; Zamorano, R.; Valenzuela, R.

    2007-01-01

    Cobalt ferrite particles of average crystallite size of 11 nm were obtained by a sol-gel process at 400 deg. C . The powders were annealed at temperatures of 500, 600, 700 and 800 deg. C in air. Derivative microwave power absorption (dP/dH) measurements were carried out as a function of magnetic field (H DC ) at X band (9.4 GHz), in the field range -80-796 kA/m for all annealed temperatures. In order to compare the response of saturation magnetization measurements with high frequency measurements, we calculated the areas inside both the magnetization (A M ) and the absorption hysteresis loops (A LFS ). The dependence of these areas as a function of crystallite size is remarkably similar in both experiments

  3. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-01-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe 2 O 4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract

  4. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-10-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.

  5. Solvothermal synthesis of cobalt ferrite hollow spheres with chitosan.

    Science.gov (United States)

    Briceño, Sarah; Suarez, Jorge; Gonzalez, Gema

    2017-09-01

    Cobalt ferrite hollow spheres with chitosan (CoFe 2 O 4 /CS) were synthesized by two different approaches using the solvothermal method. The first approach involves in-situ incorporation of FeCl 3 :6H 2 O and CoNO 3 :6H 2 O in the solvothermal reaction (M1) and in second approach already prepared CoFe 2 O 4 nanoparticles (NPs) using the thermal decomposition method was placed in the solvothermal reaction to form the hollow spheres (M2). Structural identification of the samples were characterized by Fourier transform infrared spectra (FTIR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analyses (DSC-TGA) and energy dispersive X-ray spectroscopy (EDX). The magnetic properties were evaluated using a vibrating sample magnetometer (VSM). The presence of chitosan on the hollow sphere was confirmed by FTIR. The XRD analyses proved that the synthesized samples were cobalt ferrite with spinel structure. The structure of the surface and the average particle size of the spheres were observed by SEM and TEM showing the nano scale of the CoFe 2 O 4 component. Structural characterization demonstrating that chitosan does not affect the crystallinity, chemical composition, and magnetic properties of the CoFe 2 O 4 /CS. This work demonstrates that the CoFe 2 O 4 /CS prepared using the as synthesized CoFe 2 O 4 NPs have better structural and magnetic properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The antitumor effect of locoregional magnetic cobalt ferrite in dog mammary adenocarcinoma

    Science.gov (United States)

    Şincai, Mariana; Gângǎ, Diana; Bica, Doina; Vékás, Ladislau

    2001-01-01

    The endocytosis of nanosized magnetic particles by tumor cells led to numerous tests to establish the use of this phenomenon in antitumor therapy. The direct antitumor effect of a biocompatible cobalt-ferrite-based magnetic fluid directly inoculated in bitch mammary tumors was studied. A direct correlation between tumor cell lysis and cobalt ferrite was established in tumors. Massive endocytosis of magnetic particles was observed 1 h after the contact of magnetic fluid with tumor cells.

  7. Magnetic and magnetoelastic properties of M-substituted cobalt ferrites (M=Mn, Cr, Ga, Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Hoon [Iowa State Univ., Ames, IA (United States)

    2007-12-15

    Magnetic and magnetoelastic properties of a series of M-substituted cobalt ferrites, CoMxFe2-xO4 (M=Mn, Cr, Ga; x=0.0 to 0.8) and Ge-substituted cobalt ferrites Co1+xGexFe2-2xO4 (x=0.0 to 0.6) have been investigated.

  8. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  9. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique

    DEFF Research Database (Denmark)

    Cannas, C.; Musinu, A.; Piccaluga, G.

    2006-01-01

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavior...

  10. Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Huixia, Feng, E-mail: fenghx66@163.com; Baiyi, Chen; Deyi, Zhang; Jianqiang, Zhang; Lin, Tan

    2014-04-01

    In this paper, cobalt ferrite nano-particles were rapidly prepared using a reverse coprecipitation method. The effects of pH value, aging time, aging temperature and calcination temperature were studied by VSM, XRD and TEM. The results presented that the conditions to obtain the cobalt ferrite nano-particles with a perfect cubic spinel ferrite type structure are the pH value of 12.00, aging time of 60 min, aging temperature of 92 °C and calcination temperature of 800 °C. The crystallite size of cobalt ferrite increased with increasing the aging and calcination temperature. The saturation magnetization of cobalt ferrite increased with increasing the aging and calcination temperature. The VSM analysis demonstrated that the optimum sample has a high saturation magnetization and proper coercivity, 72.95 emu/g and 717 Oe, respectively. Furthermore, the particle size estimated from the TEM was seen to be larger than that observed from the XRD analysis. - Highlights: • Cobalt ferrite nano-particles were synthesized by reverse precipitation method. • The synthesis conditions were investigated in detail. • The optimum sample presents high saturation magnetization and proper coercivity. • The optimum sample was approximately spherical shape.

  11. Magnetization and anisotropy of cobalt ferrite thin films

    Science.gov (United States)

    Eskandari, F.; Porter, S. B.; Venkatesan, M.; Kameli, P.; Rode, K.; Coey, J. M. D.

    2017-12-01

    The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kA m-1 , which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 μB that is associated with the octahedrally coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (Ti O2 , MgO, MgA l2O4 , SrTi O3 , LSAT, LaAl O3 ) and as a function of temperature (500 -700 °C) and oxygen pressure (10-4-10 Pa ) . Magnetization at room-temperature ranges from 60 to 440 kA m-1 , and uniaxial substrate-induced anisotropy ranges from +220 kJ m-3 for films on deposited on MgO (100) to -2100 kJ m-3 for films deposited on MgA l2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kA m-1 , and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed.

  12. Liquid-phase syntheses of cobalt ferrite nanoparticles

    Science.gov (United States)

    Sinkó, Katalin; Manek, Enikő; Meiszterics, Anikó; Havancsák, Károly; Vainio, Ulla; Peterlik, Herwig

    2012-06-01

    The aim of the present study was to synthesize cobalt-ferrite (CoFe2O4) nanoparticles using various liquid phase methods; sol-gel route, co-precipitation process, and microemulsion technique. The effects of experimental parameters on the particle size, size distribution, morphology, and chemical composition have been studied. The anions of precursors (chloride and nitrate), the solvents (water, n-propanol, ethanol, and benzyl alcohol), the precipitating agent (ammonia, sodium carbonate, and oxalic acid), the surfactants (polydimethylsiloxane, ethyl acetate, citric acid, cethyltrimethylammonium bromide, and sodium dodecil sulfate), their concentrations, and heat treatments were varied in the experiments. The smallest particles (around 40 nm) with narrow polydispersity and spherical shape could be achieved by a simple, fast sol-gel technique in the medium of propanol and ethyl acetate. The size characterization methods have also been investigated. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and scanning electron microscopy (SEM) provide the comparison of methods. The SAXS data correspond with the sizes detected by SEM and differ from DLS data. The crystalline phases, morphology, and chemical composition of the particles with different shapes have been analyzed by X-ray diffraction, SEM, and energy dispersive X-ray spectrometer.

  13. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  14. Influence of the temperature in the electrochemical synthesis of cobalt ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mazario, E. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Morales, M.P. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid (Spain); Galindo, R. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Menendez, N. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles were synthesized by new electrochemical method. Black-Right-Pointing-Pointer Temperature affects to percentage of inclusion of Co and diameter of the synthesized nanoparticles. Black-Right-Pointing-Pointer At 80 Degree-Sign C and current densities of 50/25 mA cm{sup -2} applied to Fe and Co, respectively, a stoichiometric CoFe{sub 2}O{sub 4} nanoparticles with 40 nm of diameter were obtained. - Abstract: A new electrochemical method to synthesize cobalt ferrite nanoparticles has been developed. Magnetic measurement, Moessbauer spectroscopy, X-ray diffraction, inductive coupled plasma spectroscopy, and transmission electron microscopy were carried out to characterize the cobalt ferrites synthesized at different temperatures between 25 Degree-Sign C and 80 Degree-Sign C. These techniques confirm the efficiency of the electrochemical method. At room temperature a mixture of different compounds was obtained with a particle diameter around 20 nm, while at 80 Degree-Sign C the synthesis of cobalt ferrite leads to a stoichiometric spinel, with a crystallite size of 40 nm measured by Scherrer equation. The temperature was defined as an important parameter to obtain stoichiometric ferrites and different diameters.

  15. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    Science.gov (United States)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  16. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    observed in diamagnetically substituted spinel ferrites, hav- ing the general formula MFe2O4 (where M is a divalent cation). These have been extensively studied due to their unique electrical and magnetic properties, high resistivity, mechanical hardness and chemical stability. The diversity in the properties of such ferrites ...

  17. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template.

    Science.gov (United States)

    Menchaca-Nal, S; Londoño-Calderón, C L; Cerrutti, P; Foresti, M L; Pampillo, L; Bilovol, V; Candal, R; Martínez-García, R

    2016-02-10

    A facile method for the preparation of cobalt ferrite nanotubes by use of bacterial cellulose nanoribbons as a template is described. The proposed method relays on a simple coprecipitation operation, which is a technique extensively used for the synthesis of nanoparticles (either isolated or as aggregates) but not for the synthesis of nanotubes. The precursors employed in the synthesis are chlorides, and the procedure is carried out at low temperature (90 °C). By the method proposed a homogeneous distribution of cobalt ferrite nanotubes with an average diameter of 217 nm in the bacterial nanocellulose (BC) aerogel (3%) was obtained. The obtained nanotubes are formed by 26-102 nm cobalt ferrite clusters of cobalt ferrite nanoparticles with diameters in the 9-13 nm interval. The nanoparticles that form the nanotubes showed to have a certain crystalline disorder, which could be attributed in a greater extent to the small crystallite size, and, in a lesser extent, to microstrains existing in the crystalline lattice. The BC-templated-CoFe2O4 nanotubes exhibited magnetic behavior at room temperature. The magnetic properties showed to be influenced by a fraction of nanoparticles in superparamagnetic state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cu 2 and Al 3 co-substituted cobalt ferrite: structural analysis ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Cu 2 + and Al 3 + co-substituted cobalt ferrite: structural analysis, morphology and magnetic properties. SHADAB DABAGH ALI A ATI S K GHOSHAL SAMAD ZARE R M ROSNAN AHMED S JBARA ZULKAFLI OTHAMAN. Volume 39 Issue 4 August 2016 pp ...

  19. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Abstract. Synthesis of non-collinear (spin canted) ferrites having the formula, CoCdFe2−O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ ...

  20. Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Mažeika, Kęstutis; Jagminas, Arūnas

    2018-03-01

    The present study is focused on the determination the influence of cobalt content in the magnetic cobalt ferrite nanoparticles (Nps) on their antibacterial efficiency against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria and several Candida species, in particular C. parapsilosis and C. albicans. For the synthesis of Fe(II) substituted cobalt ferrite Nps by co-precipitation way, the L-lysine was used as the capping biocompatible agent and the particle size was successfully controlled to be in the range of 5-6.4 nm. The antimicrobial efficiencies of the CoxFe1-xFe2O4@Lys Nps, where x varies from 0.2 to 1.0, were evaluated through the quantitative analysis by comparing with that of Fe3O4@Lys Nps and L-lysine. In this way, it was evidenced that increase in the Co2+ content in the similar sized cobalt ferrite Nps resulted in an increase in their antimicrobial potency into 93.1-86.3 % for eukaryotic and into 96.4-42.7 % for prokaryotic strains. For characterization the composition, structure, and morphology of the tested herein Nps inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer, and FTIR spectroscopy techniques were conferred.

  1. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    with oxygen ions and predispose them to occupy tetrahe- dral sites only (Prasad et al 2011). Due to the immense importance of cadmium substituted ferrites, ..... the d.c. electrical resistivity, ρo the pre-exponential factor depending on the nature of material, T the absolute tempera- ture, k the Boltzmann constant and E the ...

  2. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ concentration is increased ...

  3. Investigations of cations distributions and morphology of cobalt ferrite magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandekar, Kamlesh V., E-mail: chandekar.kamlex@gmail.com; Kant, K. Mohan [Dept. of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, - 440010 (India)

    2016-05-06

    Cobalt ferrite nanoparticles were synthesized by co-precipitation method and structural properties was investigated by X-ray diffraction (XRD) at room temperature. X-ray diffraction data was used to determine lattice parameter, X-ray density, distributions of cations among tetrahedral and octahedral sites, site radii, ionic radii and bond length of inverse spinel cobalt ferrite. XRD analysis revealed crystallinity and high intense peak correspond to cubic inverse spinel structure with average crystalline size measured by X-ray line profile fitting was found to be 13nm for most intense peak (311). The surface morphology and microstructural feature was investigated by TEM analysis which revealed that particle size varying from 12-22 nm with selected electron diffraction pattern (SAED).

  4. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Peer, Petra; Filip, Petr

    2014-01-01

    Roč. 18, č. 43 (2014), s. 6919-6924 ISSN 1477-9226 R&D Projects: GA ČR GA202/09/1626 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : spinel nanocrystalline cobalt ferrite * nanoparticles * magnetorheological effect Subject RIV: BK - Fluid Dynamics Impact factor: 4.197, year: 2014

  5. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    OpenAIRE

    Sedlačík, Michal; Pavlínek, Vladimír; Peer, Petra; Filip, Petr

    2014-01-01

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating...

  6. Structural and Mössbauer investigation on barium titanate-cobalt ferrite composites

    Science.gov (United States)

    Leonel, Liliam V.; Silva, Juliana B.; Albuquerque, Adriana S.; Ardisson, José D.; Macedo, Waldemar A. A.; Mohallem, Nelcy D. S.

    2012-11-01

    Perovskite and spinels oxides have received renewed attention due to the possibility of combining both structures in di-phase composites to obtain multifunctional materials. In this work, barium titanate (perovskite)-cobalt ferrite (spinel) composite powders with different microstructures were obtained from thermal treatment of amorphous precursors at 500-1100 °C. The precursors were prepared by combining coprecipitation and sol-gel routes. Lyophilization of ferrite prior to mixing was used as a strategy to control interphase reaction. Mössbauer spectroscopy showed that the dispersion of coprecipitated ferrite in a viscous BaTiO3 precursor gel resulted in superparamagnetic behavior and reduction of the local magnetic field of site [B].

  7. Magnetic and structural properties of cobalt and nickel ferrites obtained by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, D.K.S.; Melo, D.M.A.; Araujo, J.H.; Costa, A.F. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Pimentel, P.M. [Universidade Federal Rural do Semi-Arido (UFERSA), Mossoro, RN (Brazil)

    2014-07-01

    Spinel-type ferrites have shown great potential for applications due to their optical electrical and magnetic properties. It has been reported that magnetic properties of ferrites depend on composition and cation distribution. According to the occupancy of cations in the A and B sites, these materials can exhibit ferromagnetic and antiferromagnetic behavior . In this work cobalt and nickel ferrites were prepared by microwave-assisted self-combustion synthesis. This synthesis process is a cost efficient method used to produce homogeneous and fine particles with high reproducibility. The resulting powders were characterized using X-ray diffraction combined with the Rietveld refinement method, infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and magnetic measurements. The Rietveld XRD data had shown to formation of the partially inverse spinel-type structure. SEM images revealed the formation of irregular porous powders. It is observed that the saturation magnetization and coercive field decreases with the presence of nickel in spinel structure. (author)

  8. Tuning of Heat Transfer Rate of Cobalt Manganese Ferrite Based Magnetic Fluids in Varying Magnetic Field

    Directory of Open Access Journals (Sweden)

    Margabandhu MARIMUTHU

    2017-08-01

    Full Text Available Magnetic fluids are the colloidal solutions containing suspended magnetic nanoparticles in carrier fluids. The present work analyzed the heat transfer characteristics of de-ionized water and transformer oil (base fluids based cobalt manganese ferrite (Co1-xMnxFe2O4 coated with oleic acid synthesized via co-precipitation technique magnetic fluids in  varying magnetic field. Experimental investigations were carried out to analyze the heat transfer property of synthesized magnetic fluids (MNF in varying magnetic field applied in perpendicular direction to the thermal gradient of magnetic fluids. The experimental results indicate that the magnetic fluids show enhancement in heat transfer rate than carrier fluids in absence of magnetic field and it shows decrement in heat transfer rate in presence of varying magnetic field. Thus, the results reveal that the heat transfer characteristics of cobalt manganese ferrite based magnetic fluids was tunable by controlling the direction and influence of magnetic field strength. This tunable heat transfer property of cobalt manganese ferrite based magnetic fluids could be applicable in heat transport phenomena of transformers and in microelectronic devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16662

  9. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  10. Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration

    Directory of Open Access Journals (Sweden)

    Ninad B. Velhal

    2015-09-01

    Full Text Available Nickel substituted cobalt ferrite nanoparticles with composition Co1−xNixFe2O4 (0.0 ≤ x ≤ 1.0 was synthesized using simple, low temperature auto combustion method. The X-ray diffraction patterns reveal the formation of cubic phase spinel structure. The crystallite size varies from 30-44 nm with the nickel content. Porous and agglomerated morphology of the bulk sample was displayed in the scanning electron microscopy. Micro Raman spectroscopy reveals continuous shift of Eg and Eg(2 stokes line up to 0.8 Ni substitution. The dispersion behavior of the dielectric constant with frequency and the semicircle nature of the impedance spectra show the cobalt nickel ferrite to have high resistance. The ferromagnetic nature is observed in all the samples, however, the maximum saturation magnetization was achieved by the 0.4 Ni substituted cobalt ferrite, which is up to the 92.87 emu/gm at 30K.

  11. Synthesis and Characterization of Cobalt Substituted Zinc Ferrite Nanoparticles by Microwave Combustion Method.

    Science.gov (United States)

    Sundararajan, M; Kennedy, L John; Vijaya, J Judith

    2015-09-01

    Pure and cobalt doped zinc ferrites were prepared by microwave combustion method using L-arginine as a fuel. The prepared samples were characterized by various instrumental techniques such as X-ray powder diffractometry, high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis, Fourier transformed infrared (FT-IR) spectroscopy, photoluminescence spectroscopy and UV-Visible diffuse reflectance spectroscopy. Vibrating sample magnetometry at room temperature was recorded to study the magnetic behavior of the samples. X-ray analysis confirmed the formation of zinc ferrites normal spinel-type structure with an average crystallite sizes in the range, 25.69 nm to 35.68 nm. The lattice parameters decreased as cobalt fraction was increased. The HR-SEM images showed nanoparticles are agglomerated. The estimated band gap energy value was found to decrease with an increase in cobalt content (1.87 to 1.62 eV). Broad visible emissions are observed in the photoluminescence spectra. A gradual increase in the coercivity and saturation magnetization (M(s)) were noted at relatively higher cobalt doping fractions.

  12. Magnetite and cobalt ferrite nanoparticles used as seeds for acid mine drainage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Mamba, Bhekie B.; Msagati, Titus A.M.

    2017-07-05

    Highlights: • Presence of α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} in AMD resulted in formation of crystalline ferrite. • Increasing settling time improved removal of Mg, Ca, Mn and Na from AMD. • Mixtures of ferrite nanoparticles were produced from AMD. • Formations of crystalline ferrite were more favored in the presence of heat. - Abstract: In this study, magnetite and cobalt ferrite nanoparticles were used as seeds for acid mine drainage (AMD) treatment at pH of 7.05 ± 0.35. Duplicate samples of AMD, one without heating and another with heating at 60 °C was treated under continuous stirring for 1 h. The filtrate analysis results from ICP-OES have shown complete removal of Al, Mg, and Mn, while for Fe, Ni and Zn over 90% removals were recorded. Particularly, settling time has significant effect on the removal of Mg, Ca and Na. The results from SQUID have shown superparamagnetic properties of the synthesised magnetic nanoparticles and ferrite sludge. The recovered nanoparticles from AMD are economically important and reduce the cost of waste disposal.

  13. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  14. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders.

    Science.gov (United States)

    Rus, S F; Vlazan, P; Herklotz, A

    2016-01-01

    Nanocrystalline ferrites; CoFe₂O₄ (CFO) and CoFe₁.₉Zr₀.₁O₄ (CFZO) have been synthesized through chemical coprecipitation method. The role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. The increase in the saturation magnetization with the substitution of Zr suggests the preferential occupation of Zr⁴⁺ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. In the present study the investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.

  15. Synthesis of surfactant-coated cobalt ferrite nanoparticles for adsorptive removal of acid blue 45 dye

    Science.gov (United States)

    Waheed Mushtaq, Muhammad; Kanwal, Farah; Imran, Muhammad; Ameen, Naila; Batool, Madeeha; Batool, Aisha; Bashir, Shahid; Mustansar Abbas, Syed; Rehman, Ata ur; Riaz, Saira; Naseem, Shahzad; Ullah, Zaka

    2018-03-01

    Cobalt ferrite (CoFe2O4) nanoparticles (NPs) are synthesized by wet chemical coprecipitation method using metal chlorides as precursors and potassium hydroxide (KOH) as a precipitant. The tergitol-1x (T-1x) and didecyldimethyl ammonium bromide (DDAB) are used as capping agents and their effect is investigated on particle size, size distribution and morphology of cobalt ferrite nanoparticles (CFNPs). The Fourier transform infrared spectroscopy confirms the synthesis of CFNPs and formation of metal-oxygen (M-O) bond. The spinel phase structure, morphology, polydispersity and magnetic properties of ferrite nanoparticles are investigated by x-ray diffraction, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometry analyses, respectively. The addition of capping agents effects the secondary growth of CFNPs and reduces their particle size, as is investigated by dynamic light scattering and atomic force microscopy. The results evidence that the DDAB is more promising surfactant to control the particle size (∼13 nm), polydispersity and aggregation of CFNPs. The synthesized CFNPs, CFNPs/T-1x and CFNPs/DDAB are used to study their adsorption potential for removal of acid blue 45 dye, and a maximum adsorptive removal of 92.25% is recorded by 0.1 g of CFNPs/DDAB at pH 2.5 and temperature 20 ± 1 °C. The results show that the dye is physically adsorbed by magnetic NPs and follows the Langmuir isotherm model.

  16. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2014-06-01

    Full Text Available Silica coated (30 wt% cobalt zinc ferrite (Co1−xZnxFe2O4, x=0, 0.2, 0.3, 0.4, 0.5 and 1 nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction (XRD reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared (FTIR spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy (SEM images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1−xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.

  17. Cu2+-modified physical properties of Cobalt-Nickel ferrite

    Science.gov (United States)

    Rajasekhar Babu, K.; Rao, K. Rama; Rajesh Babu, B.

    2017-07-01

    The present study focused on structural, magnetic and electrical properties of Cu substituted Co-Ni ferrite nanoparticles synthesized by sol-gel combustion method. X-ray diffraction, Fourier Transform infra-red spectroscopy (FTIR), magnetization, magnetic permeability and resistivity measurements were carried out to study the structural, magnetic and electrical properties. X-ray diffraction pattern confirms single phase spinel formation. Crystallite size determined from Scherer's method increases with Cu concentration. Distribution of cations was estimated from X-ray line intensity calculations, suggest that the majority of Cu2+ ions occupy octahedral (B) site. Saturation magnetization exhibit increasing trend from 40 emu/g (x = 0.0) to 60 emu/g (x = 0.4) with Cu concentration, though higher magnetic moment Ni ions are replaced by lower magnetic moment Cu ions. Magnetic permeability increases with increasing Cu concentration and shows a flat profile in the frequency range 1-50 MHz. Significant modification in DC electrical resistivity and activation energy are explained on the basis of hopping mechanism.

  18. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2014-11-15

    Mo-substituted cobalt ferrite nanoparticles; CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by a one-step solution combustion synthesis technique. The reactants were metal nitrates and glycine as a fuel. The samples were characterized using an X-ray diffraction (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). XRD analysis revealed a pure single phase of cubic spinel ferrites for all samples with x up to 0.3. The lattice parameter decreases with Mo{sup 6+} substitution linearly up to x=0.15, then nonlinearly for x≥0.2. Rietveld analysis and saturation magnetization (M{sub s}) revealed that Mo{sup 6+} replaced Fe{sup 3+} in the tetrahedral A-sites up to x=0.15, then it replaced Fe{sup 3+} in both A-sites and B-sites for x≥0.2. The saturation magnetization (M{sub s}) increases with increasing Mo{sup 6+} substitution up to x=0.15 then decreases. The crystallite size decreased while the microstrain increased with increasing Mo{sup 6+} substitution. Inserting Mo{sup 6+} produces large residents of defects and cation vacancies. - Highlights: • Nano-sized Mo-substituted cobalt ferrite CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by solution combustion. • The change in M{sub s} with increasing Mo-substitution was investigated. • The cations distributions of ferrites were obtained from Rietveld analysis. • Inserting Mo{sup 6+} produces large residents of defects and cation vacancies.

  19. Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites

    Science.gov (United States)

    Hashim, Mohd.; Raghasudha, M.; Meena, Sher Singh; Shah, Jyoti; Shirsath, Sagar E.; Kumar, Shalendra; Ravinder, D.; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-03-01

    Ce and Dy substituted Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were synthesized through the chemical route, citrate-gel auto-combustion method. The structural characterization was carried out with the help of XRD Rieveld analysis, SEM and EDAX analysis. Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. SEM and EDAX results show that the particles are homogeneous with slight agglomeration without any impurity pickup. The effect of RE ion doping (Ce and Dy) on the dielectric, magnetic and impedance studies was systematically investigated by LCR meter, Vibrating Sample Magnetometer and Impedance analyzer respectively at room temperature in the frequency range of 10 Hz-10 MHz. Various dielectric parameters viz., dielectric constant, dielectric loss and ac conductivity were measured. The dielectric constant of all the ferrite compositions shows normal dielectric dispersion of ferrites with frequency. Impedance analysis confirms that the conduction in present ferrites is majorly due to the grain boundary mechanism. Ferrite sample with x = 0.03 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electromagnetic devices. Magnetization measurements indicate that with increase in Ce and Dy content in cobalt ferrites, the magnetization values decreased and coercivity has increased.

  20. Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions

    International Nuclear Information System (INIS)

    Vicente, J. de; Bossis, G.; Lacis, S.; Guyot, M.

    2002-01-01

    Magnetic permeability data of cobalt ferrite and carbonyl iron suspensions are discussed. Using an induction method, the relative differential permeability, μ r,dif , was measured as a function of the internal magnetic field for different volume fractions of the solid phase. In the case of cobalt ferrite suspensions, the μ r,dif -H curve was obtained for a first increasing ramp of magnetic field (data series ''1''), a decreasing ramp (data series ''2''), and the second increasing one (data series ''3''). Series ''1'' showed a maximum in the μ r,dif -H trend that did not appear in series ''2'' and ''3''. Furthermore, the data in series ''2'' and ''3'' are always below those in series ''1''. The latter behavior could be ascribed to the presence of hysteresis, and in fact it was not observed in carbonyl iron suspensions, where hysteresis is absent. The presence of the maximum in permeability is common for both types of suspensions. It is found that it only disappears if the particle motions are restricted by dispersing them in a rigid (epoxy) matrix, or if the suspensions are previously structured by applying a magnetic field to a sample prepared in an elastomer matrix. We conclude that the maxima in μ r,dif -H curves are associated to the motion or orientation of the dispersed particles during application of the first field ramp. The comparison with predictions of models allows to deduce some quantitative information on the structures formed by the particles

  1. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  2. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    International Nuclear Information System (INIS)

    Ahmad, Rabia; Hussain Gul, Iftikhar; Zarrar, Muhammad; Anwar, Humaira; Khan Niazi, Muhammad Bilal; Khan, Azim

    2016-01-01

    Cadmium substituted cobalt ferrites with formula Cd x Co 1−x Fe 2 O 4 (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd 2+ concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd x Co 1−x Fe 2 O 4 the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd 2+ substituted Co-ferrites increases.

  3. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rabia [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan); Hussain Gul, Iftikhar, E-mail: iftikhar.gul@scme.nust.edu.pk [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Zarrar, Muhammad [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Anwar, Humaira [Islamabad Model College for Girls G-10/2, Islamabad (Pakistan); Khan Niazi, Muhammad Bilal [Department of Chemicals Engineering, SCME, NUST, H-12 Campus, Islamabad (Pakistan); Khan, Azim [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan)

    2016-05-01

    Cadmium substituted cobalt ferrites with formula Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd{sup 2+}concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd{sup 2+} substituted Co-ferrites increases.

  4. Investigation of Structural, Morphological, Magnetic Properties and Biomedical applications of Cu2+ Substituted Uncoated Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Margabandhu

    Full Text Available ABSTRACT In the present work, Cu2+ substituted cobalt ferrite (Co1-xCuxFe2O4, x = 0, 0.3, 0.5, 0.7 and 1 magnetic nanopowders were synthesized via chemical co-precipitation method. The prepared powders were investigated by various characterization methods such as X-ray diffraction analysis (XRD, scanning electron microscope analysis (SEM, vibrating sample magnetometer analysis (VSM and fourier transform infrared spectroscopy analysis (FTIR. The XRD analysis reveals that the synthesized nanopowders possess single phase centred cubic spinel structure. The average crystallite size of the particles ranging from 27-49 nm was calculated by using Debye-scherrer formula. Magnetic properties of the synthesized magnetic nanoparticles are studied by using VSM. The VSM results shows the magnetic properties such as coercivity, magnetic retentivity decreases with increase in copper substitution whereas the saturation magnetization shows increment and decrement in accordance with Cu2+ substitution in cobalt ferrite nanoparticles. SEM analysis reveals the morphology of synthesized magnetic nanoparticles. FTIR spectra of Cu2+ substituted cobalt ferrite magnetic nanoparticles were recorded in the frequency range 4000-400cm-1. The spectrum shows the presence of water adsorption and metal oxygen bonds. The adhesion nature of Cu2+ substituted cobalt ferrite magnetic nanoparticles with bacteria in reviewed results indicates that the synthesized nanoparticles could be used in biotechnology and biomedical applications.

  5. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  6. Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis.

    Science.gov (United States)

    Ortega, Klaus Friedel; Anke, Sven; Salamon, Soma; Özcan, Fatih; Heese, Justus; Andronescu, Corina; Landers, Joachim; Wende, Heiko; Schuhmann, Wolfgang; Muhler, Martin; Lunkenbein, Thomas; Behrens, Malte

    2017-09-12

    Monocrystalline, yet porous mosaic platelets of cobalt ferrite, CoFe 2 O 4 , can be synthesized from a layered double hydroxide (LDH) precursor by thermal decomposition. Using an equimolar mixture of Fe 2+ , Co 2+ , and Fe 3+ during co-precipitation, a mixture of LDH, (Fe II Co II ) 2/3 Fe III 1/3 (OH) 2 (CO 3 ) 1/6 ⋅m H 2 O, and the target spinel CoFe 2 O 4 can be obtained in the precursor. During calcination, the remaining Fe II fraction of the LDH is oxidized to Fe III leading to an overall Co 2+ :Fe 3+ ratio of 1:2 as required for spinel crystallization. This pre-adjustment of the spinel composition in the LDH precursor suggests a topotactic crystallization of cobalt ferrite and yields phase pure spinel in unusual anisotropic platelet morphology. The preferred topotactic relationship in most particles is [111] Spinel ∥[001] LDH . Due to the anion decomposition, holes are formed throughout the quasi monocrystalline platelets. This synthesis approach can be used for different ferrites and the unique microstructure leads to unusual chemical properties as shown by the application of the ex-LDH cobalt ferrite as catalyst in the selective oxidation of 2-propanol. Compared to commercial cobalt ferrite, which mainly catalyzes the oxidative dehydrogenation to acetone, the main reaction over the novel ex-LDH cobalt is dehydration to propene. Moreover, the oxygen evolution reaction (OER) activity of the ex-LDH catalyst was markedly higher compared to the commercial material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites

    Science.gov (United States)

    Greene, David; Serrano-Garcia, Raquel; Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    In this work, CoFe2O4@SiO2@TiO2 core-shell magnetic nanostructures have been prepared by coating of cobalt ferrite nanoparticles with the double SiO2/TiO2 layer using metallorganic precursors. The Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Analysis (EDX), Vibrational Sample Magnetometer (VSM) measurements and Raman spectroscopy results confirm the presence both of the silica and very thin TiO2 layers. The core-shell nanoparticles have been sintered at 600 °C and used as a catalyst in photo-oxidation reactions of methylene blue under UV light. Despite the additional non-magnetic coatings result in a lower value of the magnetic moment, the particles can still easily be retrieved from reaction mixtures by magnetic separation. This retention of magnetism was of particular importance allowing magnetic recovery and re-use of the catalyst. PMID:28344226

  8. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chaitali, E-mail: chaitalidey29@gmail.com [Centre for Research in Nanoscience & Nanotechnology, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Baishya, Kaushik [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Arup [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Goswami, Madhuri Mandal, E-mail: madhuri@bose.res.in [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Ajay [Dept. of Applied Optics and Photonics, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Mandal, Kalyan [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India)

    2017-04-01

    In this study, we report a novel synthesis method, characterization and application of a new class of ferromagnetic cubic cobalt ferrite magnetic nanoparticles (MNPs) for hyperthermia therapy and temperature triggered drug release. The MNPs are characterized by XRD, TEM, FESEM, AC magnetic hysteresis and VSM. These MNPs were coated with folic acid and loaded with an anticancer drug. The drug release studies were done at two different temperatures (37 °C and 44 °C) with progress of time. It was found that higher release of drug took place at elevated temperature (44 °C). We have developed a temperature sensitive drug delivery system which releases the heat sensitive drug selectively as the particles are heated up under AC magnetic field and controlled release is possible by changing the external AC magnetic field.

  9. Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Greene

    2014-04-01

    Full Text Available In this work, CoFe2O4@SiO2@TiO2 core-shell magnetic nanostructures have been prepared by coating of cobalt ferrite nanoparticles with the double SiO2/TiO2 layer using metallorganic precursors. The Transmission Electron Microscopy (TEM, Energy Dispersive X-Ray Analysis (EDX, Vibrational Sample Magnetometer (VSM measurements and Raman spectroscopy results confirm the presence both of the silica and very thin TiO2 layers. The core-shell nanoparticles have been sintered at 600 °C and used as a catalyst in photo-oxidation reactions of methylene blue under UV light. Despite the additional non-magnetic coatings result in a lower value of the magnetic moment, the particles can still easily be retrieved from reaction mixtures by magnetic separation. This retention of magnetism was of particular importance allowing magnetic recovery and re-use of the catalyst.

  10. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Directory of Open Access Journals (Sweden)

    G. E. Oliveira

    2013-06-01

    Full Text Available Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent.

  11. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals.

    Science.gov (United States)

    Song, Qing; Zhang, Z John

    2004-05-19

    By combining nonhydrolytic reaction with seed-mediated growth, high-quality and monodisperse spinel cobalt ferrite, CoFe(2)O(4), nanocrystals can be synthesized with a highly controllable shape of nearly spherical or almost perfectly cubic. The shape of the nanocrystals can also be reversibly interchanged between spherical and cubic morphology through controlling nanocrystal growth rate. Furthermore, the magnetic studies show that the blocking temperature, saturation, and remanent magnetization of nanocrystals are solely determined by the size regardless the spherical or cubic shape. However, the shape of the nanocrystals is a dominating factor for the coercivity of nanocrystals due to the effect of surface anisotropy. Such magnetic nanocrystals with distinct shapes possess tremendous potentials in fundamental understanding of magnetism and in technological applications of magnetic nanocrystals for high-density information storage.

  12. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  13. A comparative study of NiZn ferrites modified by the addition of cobalt

    Directory of Open Access Journals (Sweden)

    Pereira S.L.

    1999-01-01

    Full Text Available Off-stoichiometric NiZn ferrite was obtained by hydrothermal process and compacted in torus form under different pressures. Two samples A1 and A2 - cobalt doped (0.5 % were sintered at 1573 K in air atmosphere during 3 h. The magnetic properties were studied by vibrating sample magnetometry, Mössbauer spectroscopy and complex impedanciometry. X-ray diffraction and Hg porosimetry were used in order to determine the average grain size and the type of packing in the samples. Both samples exhibited superparamagnetic behavior in the hysteresis loop. This effect does not agree with Mössbauer results, which were fitted using Normos, a commercial computer program. All samples parameters were compared.

  14. The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shaima'a Jaber Kareem

    2018-02-01

    Full Text Available A sol-gel process prepared the nanoparticles of hard cobalt ferrite (CoFe2O4. Cobalt nitrate hexahydrate (Co (NO32⋅6H2O, iron nitrate nonahydrate (Fe (NO33⋅9H2O with using two catalysis acid (citric acid and alkaline (hydroxide ammonium were used as precursor materials. Crystallization behavior of the CoFe2O4 nanoparticles were studied by X-ray diffraction (XRD. Nanoparticles phases can change from amorphous to spinel ferrite crystalline depending on the calcinated temperature at 600°C, with using citric acid as a catalysis without finding forgone phase, while using hydroxide ammonium was shown second phase (α-Fe2O3 with CoFe2O4. Crystallite size was measured by Scherrer’s formula about (25.327 nm and (27.119 nm respectively. Structural properties were investigated by FTIR, which was appeared main bond of (Fe-O, (Co-O, (C-O, and (H-O. Scanning electron microscopy (FE- SEM was shown the microstructure observation of cobalt ferrite and the particle size at the range about (28.77-42.97 nm. Magnetization measurements were carried out on a vibrating sample magenometer (VSM that exhibited hard spinel ferrite.

  15. Magnetic and magneto elastic properties of cobalt ferrite ceramic compacted through cold isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Indla, Srinivas; Das, Dibakar, E-mail: ddse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Chelvane, Arout [Advanced Magnetic Group, Defense Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India)

    2016-05-06

    Nano crystalline CoFe{sub 2}O{sub 4} powder was prepared by combustion synthesis method. As synthesized powder was calcined at an appropriate condition to remove the impurities and to promote phase formation. Phase pure CoFe{sub 2}O{sub 4} powder was pressed into cylindrical rod at an applied pressure of 200 MPa using a cold isostatic pressing. Sintering of the green compact at 1350°c for 12 hrs resulted in sintered cylindrical rod with ~85% of the theoretical density. Single phase cubic spinel structure was observed in the powder x-ray diffraction pattern of the sintered pellet. Scanning electron micrographs (SEM) of the as sintered pellet revealed the microstructure to be composed of ferrite grains of average size ~4 µm. Saturation magnetization of 72 emu/g and coercivity of 355 Oe were observed for cobalt ferrite sample. The magnetostriction was measured on a circular disc (12 mm diameter and 12 mm length) with the strain gauge (350 Ω) mounted on the flat surface of the circular disc. Magnetostriciton of 180 ppm and strain derivative of 1 × 10{sup −9} m/A were observed for the sintered CoFe{sub 2}O{sub 4} sample.

  16. Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties.

    Science.gov (United States)

    Coker, Victoria S; Telling, Neil D; van der Laan, Gerrit; Pattrick, Richard A D; Pearce, Carolyn I; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E P; Lloyd, Jonathan R

    2009-07-28

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe(2)O(4)) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼10(6) erg cm(-3) can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies.

  17. Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Tomohiko Niizeki

    2015-05-01

    Full Text Available The longitudinal spin-Seebeck effect (LSSE has been investigated in cobalt ferrite (CFO, an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110 exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field (H dependence of the LSSE voltage (VLSSE in the Pt/CFO(110 sample with H ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with H ∥ [ 1 1 ̄ 0 ] shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of VLSSE has a linear relationship with the temperature difference (ΔT, giving the relatively large VLSSE /ΔT of about 3 μV/K for CFO(110 which was kept even at zero external field.

  18. Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine.

    Science.gov (United States)

    He, Yongzhen; Dai, Chaomeng; Zhou, Xuefei

    2017-01-01

    A magnetic spinel cobalt ferrite nanoparticle composite (CFO) was prepared via an ultrasonication-assisted co-precipitation method. The morphological structure and surface composition of CFO before and after reaction were investigated by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy, indicating the consumption of iron oxide during photodegradation. X-ray photoelectron spectroscopy and vibrating sample magnetometry confirm the preparation of the ferrite nanoparticle composite and its magnetic properties. The prepared CFO was then used for the photocatalytic degradation of carbamazepine (CBZ) as an example of pharmaceuticals and personal care products (PPCPs) from aqueous solution. The effects of the nanocomposite dosage, contact time, and solution pH on the photodegradation process were investigated. More than 96% of the CBZ was degraded within 100 min at 0.2 g·L -1 CFO in the presence of UV light. The reactive species for CBZ degradation in the CFO/UV system was identified as hydroxyl radicals by the methanol scavenging method. Combined with the detection of leached iron ions during the process, the CBZ degradation mechanism can be presumed to be heterogeneous and homogeneous photocatalytic degradation in the CFO/UV system. Furthermore, iminostilbene and acridine were detected as intermediate products by GC-MS.

  19. Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Quesada, Adrián [Instituto de Cerámica y Vidrio, CSIC, Madrid E-28049 (Spain); Martín-García, Laura; Sanz, Mikel; Oujja, Mohamed; Rebollar, Esther; Castillejo, Marta [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Prieto, Pilar; Muñoz-Martín, Ángel [Universidad Autónoma de Madrid, E-28049 (Spain); Aballe, Lucía [Alba Synchrotron Light Facility, CELLS, Barcelona (Spain); Marco, José F. [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain)

    2015-12-30

    Highlights: • Infrared pulsed deposition is used to grow single crystal mixed magnetite-cobalt ferrite films. • Distinct topography with two mound types on the surface of the film. • Suggested origin of segregation into two phases is oxygen deficiency during growth. • Mössbauer is required to quantify the two components. - Abstract: We have grown mixed magnetite/cobalt ferrite epitaxial films on SrTiO{sub 3} by infrared pulsed-laser deposition. Diffraction experiments indicate epitaxial growth with a relaxed lattice spacing. The films are flat with two distinct island types: nanometric rectangular mounds in two perpendicular orientations, and larger square islands, attributed to the two main components of the film as determined by Mössbauer spectroscopy. The origin of the segregation is suggested to be the oxygen-deficiency during growth.

  20. Spin Hall magnetoresistance at the interface between platinum and cobalt ferrite thin films with large magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Takeshi Tainosho

    2017-05-01

    Full Text Available The recently discovered spin Hall magnetoresistance (SMR effect is a useful means to obtain information on the magnetization process at the interface between a nonmagnetic metal and ferromagnetic insulators. We report the SMR measurements at the interface between platinum and cobalt ferrite thin films for samples with two different preferential directions of magnetization (out-of-plane and in-plane. The directional difference of the magnetic easy axis does not seem to influence the value of SMR.

  1. Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract

    Energy Technology Data Exchange (ETDEWEB)

    Gingasu, Dana [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Mindru, Ioana, E-mail: imandru@yahoo.com [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Mocioiu, Oana Catalina; Preda, Silviu; Stanica, Nicolae; Patron, Luminita [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Ianculescu, Adelina; Oprea, Ovidiu [Politehnica University of Bucharest, Faculty of Chemistry, 1-7 Polizu Street, 011061, Bucharest (Romania); Nita, Sultana; Paraschiv, Ileana [National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299, Bucharest (Romania); Popa, Marcela; Saviuc, Crina [University of Bucharest, Faculty of Biology, Microbiology Department, Research Institute of the University of Bucharest-ICUB, Life, Environmental and Earth Sciences Division, 91-95 Splaiul Independentei, Bucharest (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, Cellular and Molecular Pathology Department, 285 Mihai Bravu Avenue, Bucharest (Romania); Chifiriuc, Mariana Carmen [University of Bucharest, Faculty of Biology, Microbiology Department, Research Institute of the University of Bucharest-ICUB, Life, Environmental and Earth Sciences Division, 91-95 Splaiul Independentei, Bucharest (Romania)

    2016-10-01

    The nanocrystalline cobalt ferrites (CoFe{sub 2}O{sub 4}) were obtained through self-combustion and wet ferritization methods using aqueous extracts of sesame (Sesamum indicum L) seeds. The multimetallic complex compounds were characterized by Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy and thermal analysis. Phase identification, morphological evolution and magnetic properties of the obtained cobalt ferrites were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), FTIR and magnetic measurements. FE-SEM investigations revealed the particle size of CoFe{sub 2}O{sub 4} obtained by wet ferritization method ranged between 3 and 20.45 nm. Their antimicrobial, anti-biofilm and cytotoxic properties were evaluated. - Highlights: • CoFe{sub 2}O{sub 4} were obtained by two chemical synthesis methods. • Sesame seed extract was used as gelling or chelating agent. • The morphological features of CoFe{sub 2}O{sub 4} nanoparticles were evaluated. • CoFe{sub 2}O{sub 4} exhibited good microbicidal and anti-biofilm features.

  2. Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Topkaya, R., E-mail: rtopkaya@gyte.edu.tr [Gebze Institute of Technology, Department of Physics (Turkey); Akman, Oe. [Sakarya University, Department of Physics (Turkey); Kazan, S.; Aktas, B. [Gebze Institute of Technology, Department of Physics (Turkey); Durmus, Z.; Baykal, A. [Fatih University, Department of Chemistry (Turkey)

    2012-10-15

    Manganese-substituted cobalt ferrite nanoparticles coated with triethylene glycol (TREG) have been prepared by the glycothermal reaction. The effect of Mn substitution and coating on temperature-dependent magnetic properties of the TREG-coated Mn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles (0.0 {<=} x {<=} 0.8) with size of {approx}5-7 nm has been investigated in the temperature range of 10-300 K in a magnetic field up to 9 T. After the irreversible processes of the magnetic hysteresis curves were completed, the high-field regions of these curves were fitted by using a 'law of approach to saturation' to extract the magnetic properties, such as the effective anisotropy constant (K{sub eff}) and the anisotropy field (H{sub A}) etc. High coercive field of 12.6 kOe is observed in pure cobalt ferrite coated with TREG at 10 K. The low temperature unsaturated magnetization behaviour indicates the core-shell structure of the Mn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} NPs. Zero-field-cooled (ZFC) and field-cooled (FC) measurements revealed superparamagnetic phase of TREG-coated Mn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles at room temperature. The blocking and irreversibility temperatures obtained from ZFC-FC curves decrease at highest Mn concentration (x = 0.8). The existence of spin-glass-like surface layer with freezing temperature of 215 K was established with the applied field dependence of the blocking temperatures following the de Almeida-Thouless line for the Mn{sub 0.6}Co{sub 0.4}Fe{sub 2}O{sub 4} NPs. The shifted hysteresis loops with exchange bias field of 60 Oe and high-field irreversibility up to 60 kOe in FC M-H curve at 10 K show that spin-glass-like surface spins surrounds around ordered core material of the Mn{sub 0.6}Co{sub 0.4}Fe{sub 2}O{sub 4} NPs. FMR measurement show that all the TREG-coated Mn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles absorb microwave in broad field range of about ten thousands Oe. The spectra for all the

  3. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery

    International Nuclear Information System (INIS)

    Yao, Lu; Xi, Yuebin; Xi, Guoxi; Feng, Yong

    2016-01-01

    The combination of a sol–gel method and a hydrothermal method was successfully used for synthesizing the nano-crystalline cobalt ferrite powders with a spinel structure using spent Li-ion batteries as the raw materials. The phase composition, microstructure, magnetic properties and magnetostriction coefficient of cobalt ferrite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), magnetometer and magnetostrictive measurement instrument. The microstructure of the products exhibited hedgehog-like microspheres with particle size of approximately 5 μm. The different crystalline sizes and the microstructure of cobalt ferrites precursor were controlled by varying the hydrothermal time, which significantly affected the super-exchange and the deflection direction of the magnetic domain, and led to the change of the magnetic properties of sintered cylindrical samples. The saturation magnetization and maximum magnetostriction coefficient were 81.7 emu/g and −158.5 ppm, respectively, which was larger than that of products prepared by the sol-gel sintered method alone. - Graphical abstract: The magnetostriction of cobalt ferrites with a spinel structure was successfully prepared using the sol–gel–hydrothermal route using spent Li-ion batteries. On the basis of the aforementioned SEM observation, the formation of a hedgehog-like microsphere structure might involve two important steps: Ostwald ripening and self-assembly. - Highlights: • The cobalt ferrites were prepared by the sol–gel–hydrothermal route. • The cobalt ferrites show hedgehog-like microsphere particles in shape. • The microspheres size increased with increasing hydrothermal time. • The magnetostriction properties of the cobalt ferrite were enhanced.

  4. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Lu, E-mail: yaolu1020@126.com [Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, College of Environment, Henan Normal University, Xinxiang 453007 (China); College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang Henan 453003 (China); Xi, Yuebin [Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, College of Environment, Henan Normal University, Xinxiang 453007 (China); Xi, Guoxi, E-mail: yaolu001@163.com [Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, College of Environment, Henan Normal University, Xinxiang 453007 (China); Feng, Yong [Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, College of Environment, Henan Normal University, Xinxiang 453007 (China)

    2016-09-25

    The combination of a sol–gel method and a hydrothermal method was successfully used for synthesizing the nano-crystalline cobalt ferrite powders with a spinel structure using spent Li-ion batteries as the raw materials. The phase composition, microstructure, magnetic properties and magnetostriction coefficient of cobalt ferrite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), magnetometer and magnetostrictive measurement instrument. The microstructure of the products exhibited hedgehog-like microspheres with particle size of approximately 5 μm. The different crystalline sizes and the microstructure of cobalt ferrites precursor were controlled by varying the hydrothermal time, which significantly affected the super-exchange and the deflection direction of the magnetic domain, and led to the change of the magnetic properties of sintered cylindrical samples. The saturation magnetization and maximum magnetostriction coefficient were 81.7 emu/g and −158.5 ppm, respectively, which was larger than that of products prepared by the sol-gel sintered method alone. - Graphical abstract: The magnetostriction of cobalt ferrites with a spinel structure was successfully prepared using the sol–gel–hydrothermal route using spent Li-ion batteries. On the basis of the aforementioned SEM observation, the formation of a hedgehog-like microsphere structure might involve two important steps: Ostwald ripening and self-assembly. - Highlights: • The cobalt ferrites were prepared by the sol–gel–hydrothermal route. • The cobalt ferrites show hedgehog-like microsphere particles in shape. • The microspheres size increased with increasing hydrothermal time. • The magnetostriction properties of the cobalt ferrite were enhanced.

  5. Metallic magnetism and change of conductivity in the nano to bulk transition of cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, A.; Vanidha, D.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry–605 014 (India); Oudayakumar, K. [Department of Physics, Sri Manakula Vinayagar Engineering College, Puducherry–605 107 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry–605 014 (India)

    2013-11-14

    Variations in conductivity with particle size have been observed in cobalt ferrite, when synthesized by solgel auto-combustion method. Impedance analysis reveals metallic and semiconducting behavior at room temperature for a particle size of 6 nm and 52 nm, respectively. Upon thermal activation, metallic to semiconducting phase transition has been observed as a function of particle size and vice-versa. Grainboundary Resistance (R{sub gb}), increased drastically with particle size (19 MΩ for 6 nm and 259 MΩ for 52 nm) at room temperature. AC conductivity and dielectric constants exhibit similar metallic to semiconducting phase transition at 6 nm and semiconducting behavior at 52 nm with temperature in the selected frequencies. Enhanced magnetic moment with an increase in the grain size along with decreased coercivity (1444 G to 1146 G) reveals transition from single domain to multi-domain. Increased inter-particle interaction is responsible for metallicity at the nano level and on the contrary semiconductivity is attributed to bulk.

  6. Electrochemical performance of lanthanum calcium cobalt ferrite cathode interfaced to LAMOX electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng-Wei; Tsai, Dah-Shyang; Jin, Tsu-Yung; Chung, Wen-Hung [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (Taiwan); Chou, Chen-Chia [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106 (Taiwan)

    2008-05-15

    Lanthanum calcium cobalt ferrite (LCCF), a potential cathode composition for the LAMOX electrolyte, is studied on its electrocatalytic performance in oxygen reduction reaction (ORR) using impedance spectroscopy. Nyquist plots of LCCF impedance at 600-800 C display two arcs, in which the low-frequency arc is constantly larger than the high-frequency arc. When interfaced to the electrolyte containing 20 mol% tungsten, the ORR polarization resistance of LCCF exhibits a strong temperature dependency whose activation energy increases with increasing Co content, 190 (10 mol%)-220 (90 mol%) kJ mol{sup -} {sup 1}. Among the cathode compositions, LCCF82 (80 mol% Co) exhibits the best catalytic performance. Its zero-bias ORR resistance is 242.4 at 600 C, 0.845 {omega} cm{sup 2} at 800 C, along with the capacitance 7.79 (600 C), 14.93 mF cm{sup -} {sup 2} (800 C). The ORR resistance of LCCF82 decreases with increasing dc bias at 600 and 700 C, hardly changes at 800 C. The electrocatalytic activity of LCCF82 is also influenced by the tungsten content of its interfacing electrolyte. The exchange current density of LCCF82 correlates positively with the electrolyte ion conductivity which increases with decreasing tungsten content. (author)

  7. Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route

    International Nuclear Information System (INIS)

    Murugesan, C.; Perumal, M.; Chandrasekaran, G.

    2014-01-01

    Cobalt ferrite is synthesized by using low temperature auto combustion and high temperature ceramic methods. The prepared samples have values of lattice constant equal to 8.40 Å and 8.38 Å for auto combustion and ceramic methods respectively. The FTIR spectrum of samples of the auto combustion method shows a high frequency vibrational band at 580 cm −1 assigned to tetrahedral site and a low frequency vibrational band at 409 cm −1 assigned to octahedral site which are shifted to 590 cm −1 and 412 cm −1 for the ceramic method sample. SEM micrographs of samples show a substantial difference in surface morphology and size of the grains between the two methods. The frequency dependent dielectric constant and ac conductivity of the samples measured from 1 Hz to 2 MHz at room temperature are reported. The room temperature magnetic hysteresis parameters of the samples are measured using VSM. The measured values of saturation magnetization, coercivity and remanent magnetization are 42 emu/g, 1553 Oe, 18.5 emu/g for the auto combustion method, 66.7 emu/g, 379.6 Oe, and 17.3 emu/g for the ceramic method, respectively. The difference in preparation methods and size of the grains causes interesting changes in electrical and magnetic properties

  8. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  9. Harnessing microbial subsurface metal reduction activities to synthesize nanoscale cobalt ferrite with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-01-01

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe 2 O 4 ) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼ 10 6 erg cm -3 can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure

  10. Influence of Bi(3+)-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite.

    Science.gov (United States)

    Gore, Shyam K; Mane, Rajaram S; Naushad, Mu; Jadhav, Santosh S; Zate, Manohar K; Alothman, Z A; Hui, Biz K N

    2015-04-14

    The influence of Bi(3+)-doping on the magnetic and Mössbauer properties of cobalt ferrite (CoFe2O4), wherein the Fe(3+) ions are replaced by the Bi(3+) ions to form CoBixFe2-xO4 ferrites, where x = 0.0, 0.05, 0.1, 0.15 or 0.2, has been investigated. The structural and morphological properties of undoped and doped ferrites, synthesized chemically through a self-igniting sol-gel method, are initially screened using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The changes in magnetic moment of ions, their coupling with neighboring ions and cation exchange interactions are confirmed from the Mössbauer spectroscopy analysis. The effect of Bi(3+)-doping on the magnetic properties of CoFe2O4 ferrite is examined from the vibrating sample magnetometry spectra. Saturation magnetization and coercivity values are increased initially and then decreased, as result of Bi(3+)-doping. The obtained results with improved saturation magnetization (from 26.36 to 44.96 emu g(-1)), coercivity (from 1457 to 1863 Oe) and remanence magnetization (from 14.48 to 24.63 emu g(-1)) on 0.1-0.15 mol Bi(3+)-doping of CoBixFe2-xO4 demonstrate the usefulness for magnetic recording and memory devices.

  11. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    Science.gov (United States)

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  12. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  13. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes.

    Science.gov (United States)

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents.

  14. Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, P. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Silva, F. G. da [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Gomide, G.; Paula, F. L. O. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Campos, A. F. C. [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Perzynski, R. [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire PHENIX (France); Kern, C. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Depeyrot, J. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Aquino, R., E-mail: reaquino@unb.br [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil)

    2016-05-15

    We synthesize Zn-substituted cobalt ferrite (Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}, with 0 ≤ x ≤ 1) magnetic nanoparticles by a hydrothermal co-precipitation method in alkaline medium. The chemical composition is evaluated by atomic absorption spectroscopy and energy-dispersive X-ray spectroscopy techniques. The structure and morphology of the nanopaticles are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. XRD Rietveld refinements reveal the cation distribution among the tetrahedral (A) and octahedral (B) sites. It shows that up to x ~0.5 zinc ions occupy preferably A-sites, above which Zn ions begin also a gradual occupancy of B-sites. TEM images show nanoparticles with different shapes varying from spheres, cubes, to octahedrons. Hysteresis loop properties are studied at 300 and 5 K. These properties are strongly influenced by the Zn and Co proportion in the nanoparticle composition. At 300 K, only samples with high Co content present hysteresis. At 5 K, the reduced remanent magnetization ratio (M{sub R}/M{sub S}) and the coercivity (H{sub C}) suggest that nanoparticles with x < 0.5 have cubic anisotropy. A kink on the hysteresis loop, close to the remanence, is observed at low temperature. This feature is presumably associated to interplay between hard and soft anisotropy regimes in the powder samples.Graphical Abstract.

  15. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Qayyum, E-mail: qayyumzafar@gmail.com; Azmer, Mohamad Izzat [University of Malaya, Department of Physics, Low Dimensional Materials Research Centre (Malaysia); Al-Sehemi, Abdullah G. [King Khalid University, Department of Chemistry, Faculty of Science (Saudi Arabia); Al-Assiri, Mohammad S. [Najran University, Department of Physics, Faculty of Sciences and Arts (Saudi Arabia); Kalam, Abul [King Khalid University, Department of Chemistry, Faculty of Science (Saudi Arabia); Sulaiman, Khaulah [University of Malaya, Department of Physics, Low Dimensional Materials Research Centre (Malaysia)

    2016-07-15

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe{sub 2}O{sub 4} nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe{sub 2}O{sub 4}) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe{sub 2}O{sub 4}/Al) has been investigated at three different frequencies of the AC applied voltage (V{sub rms} ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  16. Surface spin-glass in cobalt ferrite nanoparticles dispersed in silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, F.; Sarwer, W. [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Kamran, M.; Mumtaz, M. [Materials Research Laboratory, Department of Physics, International Islamic University, Islamabad (Pakistan); Krenn, H. [Institute of Physics, Karl-Franzens University Graz, Universitätsplatz 5, A-8010 Graz (Austria); Letofsky-Papst, I. [Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, A-8010 Graz (Austria)

    2016-06-01

    Surface effects in cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles dispersed in a silica (SiO{sub 2}) matrix were studied by using AC and DC magnetization. Nanoparticles with different concentration of SiO{sub 2} were synthesized by using sol–gel method. Average crystallite size lies in the range 25–34 nm for different SiO{sub 2} concentration. TEM image showed that particles are spherical and elongated in shape. Nanoparticles with higher concentration of SiO{sub 2} exhibit two peaks in the out-of-phase ac-susceptibility. First peak lies in the high temperature regime and corresponds to average blocking temperature of the nanoparticles. Second peak lies in the low temperature regime and is attributed to surface spin-glass freezing in these nanoparticles. Low temperature peak showed SiO{sub 2} concentration dependence and was vanished for large uncoated nanoparticles. The frequency dependence of the AC-susceptibility of low temperature peak was fitted with dynamic scaling law which ensures the presence of spin-glass behavior. With increasing applied DC field, the low temperature peak showed less shift as compared to blocking peak, broaden, and decreased in magnitude which also signifies its identity as spin-glass peak for smaller nanoparticles. M–H loops showed the presence of more surface disorder in nanoparticles dispersed in 60% SiO{sub 2} matrix. All these measurements revealed that surface effects become strengthen with increasing SiO{sub 2} matrix concentration and surface spins freeze in to spin-glass state at low temperatures. - Highlights: • Surface effects in CoFe{sub 2}O{sub 4} nanoparticles dispersed in a SiO{sub 2} matrix were studied. • Out-of-phase AC-susceptibility exhibits two peaks for SiO{sub 2} coated nanoparticles. • First peak corresponds to average blocking temperature. • Second peak is attributed to surface spin-glass freezing • The spin-glass behavior depends upon the SiO{sub 2} matrix concentration.

  17. The effect of Y3+substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles.

    Science.gov (United States)

    Alves, T E P; Pessoni, H V S; Franco, A

    2017-06-28

    In this study we investigated the structural, optical band-gap, and magnetic properties of CoY x Fe 2-x O 4 (0 ≤ x ≤ 0.04) nanoparticles (NPs) synthesized using a combustion reaction method without the need for subsequent heat treatment or the calcing process. The particle size measured from X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images confirms the nanostructural character in the range of 16-36 nm. The optical band-gap (E g ) values increase with the Y 3+ ion (x) concentration being 3.30 and 3.58 eV for x = 0 and x = 0.04, respectively. The presence of yttrium in the cobalt ferrite (Y-doped cobalt ferrite) structure affects the magnetic properties. For instance, the saturation magnetization, M s and remanent magnetization, M r , decrease from 69 emu g -1 to 33 and 28 to 12 emu g -1 for x = 0 and x = 0.04, respectively. On the other hand the coercivity, H c , increases from 1100 to 1900 Oe for x = 0 and x = 0.04 at room temperature. Also we found that M s , M r , and H c decreased with increasing temperature up to 773 K. The cubic magnetocrystalline constant, K 1 , determined by using the "law of approach" (LA) to saturation decreases with Y 3+ ion concentration and temperature. K 1 values for x = 0 (x = 0.04) were 3.3 × 10 6 erg cm -3 (2.0 × 10 6 erg cm -3 ) and 0.4 × 10 6 erg cm -3 (0.3 × 10 6 erg cm -3 ) at 300 K and 773 K, respectively. The results were discussed in terms of inter-particle interactions induced by thermal fluctuations, and Co 2+ ion distribution over tetrahedral A-sites and octahedral B-sites of the spinel structure due to Y 3+ ion substitution.

  18. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  19. Exploring Reaction Conditions to Improve the Magnetic Response of Cobalt-Doped Ferrite Nanoparticles

    Science.gov (United States)

    Galarreta, Itziar; Gil de Muro, Izaskun; Lezama, Luis

    2018-01-01

    With the aim of studying the influence of synthesis parameters in structural and magnetic properties of cobalt-doped magnetite nanoparticles, Fe3−xCoxO4 (0 magnetic properties, both magnetization and electronic magnetic resonance, has led the conditions to improve the magnetic response of doped nanoparticles. Magnetization values of 86 emu·g−1 at room temperature (R.T.) have been obtained for the sample with the highest Co content and the highest reflux time. Magnetic characterization also displays a dependence of the magnetic anisotropy constant with the varying cobalt content. PMID:29370104

  20. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.

    Science.gov (United States)

    Londoño-Calderón, César Leandro; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-16

    A straightforward method for the synthesis of CoFe 2.7 /CoFe 2 O 4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe 2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe 2 O 4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe 2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  1. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology

    International Nuclear Information System (INIS)

    Camilo, Ruth Luqueze

    2006-01-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H 2 O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  2. Magnetic Nanoparticles: Synthesis, Characterization and Magnetic Properties of Cobalt Aluminum Ferrite.

    Science.gov (United States)

    Zaki, H M; Al-Heniti, Saleh H; Al-Hadeethi, Y; Alsanoosi, A M

    2016-05-01

    Nanoparticles of the ferrite system CoFe(2-x)Al(x)O4 (x = 0.0, 0.3, 0.7 and 1.0) were synthesized through the co-precipitation technique. Thermal decomposition process and formation of a single crystalline phase were followed using thermal differential analysis technique (DTA). X-ray powder diffraction patterns of the samples confirmed the formation of a nano-size single spinel phase. The average crystallite size was found to be in the range 20-63 nm for all samples. This was further confirmed by TEM of one of the samples, with concentration x = 1.0 which was found statistically to be 27 nm. This agrees well with the value of 24 nm deduced by means of X-ray diffraction method for the same sample. A considerable decrease in the intensity of the octahedral bands is observed as the aluminum concentration increases, and even vanishes completely at x = 1.0 indicating the migration of cations between the octahedral and tetrahedral sites. The magnetic hysteresis loops at room temperature showed decrease in both, coercivity and saturation magnetization as the non-magnetic Al3+ ions content increases. The relative values of M(r0/M(s) were found to be between 0.44 and 0.31 for the samples with a remarkable change in the squareness of the loops. This is highly beneficial for the microwave and memory devices applications of these nano sized ferrite system.

  3. As-grown enhancement of spinodal decomposition in spinel cobalt ferrite thin films by Dynamic Aurora pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Nipa [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Physics, Jagannath University, Dhaka 1100 (Bangladesh); Kawaguchi, Takahiko; Kumasaka, Wataru [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Das, Harinarayan [Materials Science Division, Atomic Energy Centre, Dhaka 1000 (Bangladesh); Shinozaki, Kazuo [School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Sakamoto, Naonori [Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan); Wakiya, Naoki, E-mail: wakiya.naoki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2017-06-15

    Highlights: • As-grown enhancement of spinodal decomposition (SD) in Co{sub x}Fe{sub 3−x}O{sub 4} film is observed. • Magnetic-field-induced ion-impingement enhances SD without any post-annealing. • The enhancement of SD is independent of the lattice-mismatch-induced strain. • This approach can promote SD in any thin film without post-deposition annealing. - Abstract: Cobalt ferrite Co{sub x}Fe{sub 3−x}O{sub 4} thin films with composition within the miscibility gap were grown using Dynamic Aurora pulsed laser deposition. X-ray diffraction patterns reveal as-grown phase separation to Fe-rich and Co-rich phases with no post-deposition annealing. The interconnected surface microstructure of thin film shows that this phase separation occurs through spinodal decomposition enhanced by magnetic-field-induced ion-impingement. The lattice parameter variation of the thin films with the magnetic field indicates that the composition fluctuations can be enhanced further by increasing the magnetic field. Results show that spinodal decomposition enhancement by magnetic-field-induced ion-impingement is independent of the lattice-mismatch-induced strain. This approach can promote spinodal decomposition in any thin film with no post-deposition annealing process.

  4. Stress-dependent crystal structure of lanthanum strontium cobalt ferrite by in situ synchrotron X-ray diffraction

    Science.gov (United States)

    Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.

    2018-02-01

    Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.

  5. Microwave properties of the Ga-substituted BaFe12O19 hexaferrites

    Science.gov (United States)

    Trukhanov, A. V.; Trukhanov, S. V.; Kostishyn, V. G.; Panina, L. V.; Kazakevich, I. S.; Trukhanov, An V.; Natarov, V. O.; Chitanov, D. N.; Turchenko, V. A.; Oleynik, V. V.; Yakovenko, E. S.; Macuy, L. Yu; Trukhanova, E. L.

    2017-07-01

    The crystal structure features and the unit cell parameters were refined using the powder x-ray method for the solid solutions BaFe12-x Ga x O19 (x = 0.1-1.2) barium hexagonal ferrites of M-type at 300 K. With increase of substitution level the unit cell parameters monotonically decrease. The temperature and field dependences of the specific magnetization were investigated by the vibration magnetometry method. The concentration dependence of the T C Curie temperature as well as the M S spontaneous specific magnetization and the H C coercive force at 300 K is constructed. With increase of substitution level the magnetic parameters monotonically decrease. The microwave properties of the considered solid solutions in the external magnetic bias field are also investigated at 300 K. With increase of Ga3+ concentration from x = 0.1 to x = 0.6 the frequency value of the natural ferromagnetic resonance (NFR) decreases in the beginning, and at further increase in concentration up to x = 1.2 it increases again. With increase in Ga3+ concentration the line width of the NFR increases that indicates the increase of frequency range where there is an intensive absorption of electromagnetic radiation (EMR). At the same time the peak amplitude of the resonant curve changes slightly. The frequency shift of the NFR in the external magnetic bias field takes place more intensively for the samples with small Ga3+ concentration. It is shown the prospects of use of the Ga-substituted barium hexagonal ferrite as the material effectively absorbing the high-frequency EMR.

  6. Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures

    Science.gov (United States)

    Senthil, V. P.; Gajendiran, J.; Raj, S. Gokul; Shanmugavel, T.; Ramesh Kumar, G.; Parthasaradhi Reddy, C.

    2018-03-01

    CoFe2O4 nanostructures have successfully via the auto-combustion sol-gel method. The effects of the calcined temperatures (600, 700 and 800 °C) on the structural and magnetic properties of CoFe2O4 were studied by XRD and VSM analysis. Well defined and sharp peaks corresponding to the CoFe2O4 were developed by increasing the calcination temperature in the XRD pattern. The functional groups of as prepared and calcined sample were identified by the FTIR spectra analysis. The VSM measurements showed that the saturation magnetization and coercivity increase with increasing calcination temperature. Significant differences in the magnetic properties of the CoFe2O4 nanoparticles have been observed and these differences seem to result from the calcination temperature of the spinel ferrite nanoparticles.

  7. Cobalt

    Science.gov (United States)

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of

  8. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites

    Science.gov (United States)

    Abraham, A. Godlyn; Manikandan, A.; Manikandan, E.; Vadivel, S.; Jaganathan, S. K.; Baykal, A.; Renganathan, P. Sri

    2018-04-01

    In this study, spinel magnesium cobalt ferrite (CoxMg1-xFe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanocomposites were synthesized successfully by modified sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as the source of divalent (Mg2+ and Co2+) and trivalent (Fe3+) cations, respectively and urea were used as the reducing (fuel) agent. The effects of cobalt ions on morphology, structural, optical, magnetic and photo-catalytic properties of spinel CoxMg1-xFe2O4 nanocomposites were investigated. Various characterization methods, including X-ray powder diffraction (XRD), high resolution scanning electron microscope (HR-SEM), transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and photo-catalytic degradation (PCD) activity were used to study the phase purity, microstructure, particle size, elemental composition, functional group determination, band gap calculation, magnetic properties and degradation efficiency of nanoparticles, respectively. The observed results showed that the final products consists cubic spinel phase with sphere-like nanoparticles morphologies. Furthermore, spinel Co0.6Mg0.4Fe2O4 nanocomposite showed highest PCD efficiency (98.55%) than other composition of ferrite nanoparticles.

  9. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, V.J., E-mail: v11131@rediffmail.com [Department of Chemistry, Smt.K.W.College, Sangli, MS 416416 (India); Bamane, S.R. [Department of Chemistry, Raja Shripatrao Bhagwantrao College, Aundh, Satara, MS (India); Shejwal, R.V. [L.B.S. College, Satara, MS (India); Patil, S.B. [A.Birnale College of Pharmacy, Sangli, MS (India)

    2016-11-01

    The functionalization and surface engineering of CoFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV–vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids. - Highlights: • CoFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} nanoparticles were surface functionalized with PEG and Chitosan respectively. • Hydrophobic multi therapeutic anticancer drug curcumin was loaded into these nanohybrids and their structure, morphologies were confirmed. • The effects of PEG and Chitosan coating over ferrites for curcumin release have been elaborated, and the Chitosan coated curcumin loaded Zinc ferrite nanohybrid exhibited higher drug delivery and anticancer effects.

  10. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Sawant, V.J.; Bamane, S.R.; Shejwal, R.V.; Patil, S.B.

    2016-01-01

    The functionalization and surface engineering of CoFe 2 O 4 and ZnFe 2 O 4 nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV–vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids. - Highlights: • CoFe 2 O 4 and ZnFe 2 O 4 nanoparticles were surface functionalized with PEG and Chitosan respectively. • Hydrophobic multi therapeutic anticancer drug curcumin was loaded into these nanohybrids and their structure, morphologies were confirmed. • The effects of PEG and Chitosan coating over ferrites for curcumin release have been elaborated, and the Chitosan coated curcumin loaded Zinc ferrite nanohybrid exhibited higher drug delivery and anticancer effects.

  11. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  12. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    Science.gov (United States)

    Sawant, V. J.; Bamane, S. R.; Shejwal, R. V.; Patil, S. B.

    2016-11-01

    The functionalization and surface engineering of CoFe2O4 and ZnFe2O4 nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV-vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids.

  13. Electrochemical hydroxyapatite-cobalt ferrite nanocomposite coatings as well hyperthermia treatment of cancer.

    Science.gov (United States)

    Abdel-Hamid, Z; Rashad, M M; Mahmoud, Salwa M; Kandil, A T

    2017-07-01

    The fabrication of hydroxyapatite-Co-ferrite nanocomposite coatings was performed on stainless steel by chronoamperometry technique. HA-CoFe 2 O 4 nanocomposite films were characterized using X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer (VSM). The results reveal that CoFe 2 O 4 nanoparticles dispersed within the HA matrix have flake and strip shapes. The magnetic property of the nanocomposite was increased by increasing the concentration of CoFe 2 O 4 and a good saturation magnetization value was found to be 20.6emu/g with 50% CoFe 2 O 4 . By comparing with pure CoFe 2 O 4 , the composite still retain moderate magnetization as well as its biocompatible characters. The specific absorption rate (SAR) values were altered according to the change in CoFe 2 O 4 concentration and the maximum SAR value was 125W/g. The incorporation of CoFe 2 O 4 nanoparticles with HA coating was increased the corrosion resistance of HA in simulated body fluid (SBF). The results indicated that HA-CoFe 2 O 4 nanocomposite coating could be a promising surface treatment technique for stainless steel medical implants as well hyperthermia treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cu{sup 2+}-modified physical properties of Cobalt-Nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhar Babu, K.; Rao, K. Rama [Department of Physics, Andhra University, Visakhapatnam, Andhra Pradesh 530003 (India); Rajesh Babu, B., E-mail: rajeshbabu.bitra@gmail.com [Department of Physics, GVP College of Engineering for Women, Visakhapatnam, Andhra Pradesh 530048 (India)

    2017-07-15

    Highlights: • In this work, Influence of Cu and cation redistribution is discussed in detail. • Theoretical and experimental results related to distribution, lattice constant are found to be consistent. • Substitution of Cu significantly modifies the magnetization, permeability, grain size and resistivity. - Abstract: The present study focused on structural, magnetic and electrical properties of Cu substituted Co-Ni ferrite nanoparticles synthesized by sol-gel combustion method. X-ray diffraction, Fourier Transform infra-red spectroscopy (FTIR), magnetization, magnetic permeability and resistivity measurements were carried out to study the structural, magnetic and electrical properties. X-ray diffraction pattern confirms single phase spinel formation. Crystallite size determined from Scherer’s method increases with Cu concentration. Distribution of cations was estimated from X-ray line intensity calculations, suggest that the majority of Cu{sup 2+} ions occupy octahedral (B) site. Saturation magnetization exhibit increasing trend from 40 emu/g (x = 0.0) to 60 emu/g (x = 0.4) with Cu concentration, though higher magnetic moment Ni ions are replaced by lower magnetic moment Cu ions. Magnetic permeability increases with increasing Cu concentration and shows a flat profile in the frequency range 1–50 MHz. Significant modification in DC electrical resistivity and activation energy are explained on the basis of hopping mechanism.

  15. Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles.

    Science.gov (United States)

    Datt, Gopal; Sen Bishwas, Mousumi; Manivel Raja, M; Abhyankar, A C

    2016-03-07

    Magnetic anomalies corresponding to the Verwey transition and reorientation of anisotropic vacancies are observed at 151 K and 306 K, respectively, in NiCoFe2O4 nanoparticles (NPs) synthesized by a modified-solvothermal method followed by annealing. Cationic disorder and spherical shape induced non-stoichiometry suppress the Verwey transition in the as-synthesized NPs. On the other hand, reorientation of anisotropic vacancies is quite robust. XRD and electron microscopy investigations confirm a single phase spinel structure and the surface morphology of the as-synthesized NPs changes from spherical to octahedral upon annealing. Rietveld analysis reveals that the Ni(2+) ions migrate from tetrahedral (A) to octahedral (B) sites upon annealing. The Mössbauer results show canted spins in both the NPs and the strength of superexchange is stronger in Co-O-Fe than Ni-O-Fe. Magnetic force images show that the as-synthesised NPs are single-domain whereas the annealed NPs are multi-domain octahedral particles. The FMR study reveals that both the NPs have a broad FMR line-width; and resonance properties are consistent with the random anisotropy model. The broad inhomogeneous FMR line-width, observation of the Verwey transition, tuning of the magnetic domain structure as well as the magnetic properties suggest that the NiCoFe2O4 ferrite NPs may be promising for future generation spintronics, magneto-electronics, and ultra-high-density recording media as well as for radar absorbing applications.

  16. A comparison of the magnetism of cobalt-, manganese-, and nickel-ferrite nanoparticles

    Science.gov (United States)

    Demirci, Ç. E.; Manna, P. K.; Wroczynskyj, Y.; Aktürk, S.; van Lierop, J.

    2018-01-01

    The microstructure, composition and magnetism of CoFe2O4, MnFe2O4 and NiFe2O4 nanoparticles of comparable sizes (∼20 nm) and interparticle spacings (∼20 nm) have been characterized from 10 to 400 K. The cation distributions of the tetrahedral and octahedral sites of the particles, that have cubic spinel structures, have a high degree of inversion, ∼0.98 for CoFe2O4, ∼0.80 for MnFe2O4 and NiFe2O4 nanoparticles. The blocking temperatures were  ∼300 K for the MnFe2O4 and NiFe2O4 nanoparticles, while the CoFe2O4 nanoparticles, due to their higher intrinsic anisotropy had a significantly higher blocking temperature above 400 K. Specifically, the magnetocrystalline anisotropy of the CoFe2O4 nanoparticles was K=(2.96+/-0.03)×106 ergs cm‑3, while for the MnFe2O4 nanoparticles, K=(0.04+/-0.01)×106 ergs cm‑3, and for the NiFe2O4 nanoparticles, K=(0.07+/-0.01)×106 ergs cm‑3. The magnetism of these three ferrite systems are discussed in detail with regards to their microstructures and cation distributions.

  17. Synthesis and magnetic properties study of a Nickel Cobalt Zinc Ferrite with low Zn O content

    CERN Document Server

    Hoor, M

    2003-01-01

    Attempt is made, in this work, to prepare and study the microstructure and magnetic properties of a Ni CO Zn ferrite compound with very low Zn O content of Ni sub 0 sub . sub 4 sub 6 sub 7 Zn sub 0 sub . sub 0 7 Co sub 0.015 Fe sub 0 sub . sub 5 sub 1 sub 1 O sub 4 composition. All of the samples were prepared by conventional ceramic route and the samples were sintered at 1150, 1200, 1250 and 1300 sup d eg sup C for 2 hr s. It was shown that, the higher the sintering temperature, the higher was saturation magnetisation, the measured relative permeability and the lower was H sub c of the samples. These were related to the increased sintered densities and grain size observed. Further, the highest quality factor (Q-factor) was obtained for the sample sintered at 1250 sup d eg sup C. The observed magnetic properties are assessed in relation with microstructure.

  18. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    Science.gov (United States)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  19. Electrochemical biosensors utilizing the electron transfer of hemoglobin immobilized on cobalt-substituted ferrite nanoparticles-chitosan film

    Energy Technology Data Exchange (ETDEWEB)

    Yang Weiying; Zhou Xia; Zheng Na [College of Chemistry and Chemical Engineering, Graduate University, Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049 (China); Li Xiangjun, E-mail: lixiangj@gucas.ac.cn [College of Chemistry and Chemical Engineering, Graduate University, Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049 (China); Yuan Zhuobin [College of Chemistry and Chemical Engineering, Graduate University, Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049 (China)

    2011-07-30

    Cobalt ferrite nanoparticles (Co{sub x}Fe{sub 3-x}O{sub 4}) and chitosan (CS) film were used to immobilize/adsorb hemoglobin (Hb) to create a protein electrode to study the direct electron transfer between the redox centers of the proteins and the electrode. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the Co{sub x}Fe{sub 3-x}O{sub 4} particles were nanoscale in size and formed an ordered layered structure. The native structure of the immobilized Hb was preserved as indicated by Fourier-transform infrared (FTIR) and UV-visible (UV-vis) spectroscopy. The Hb-Co{sub x}Fe{sub 3-x}O{sub 4}-CS modified electrode showed a pair of well-defined and quasi-reversible cyclic voltammetric peaks at -0.373 V (vs. SCE) and exhibited appreciable electrocatalytic activity for the reduction of H{sub 2}O{sub 2}. The catalysis currents increased linearly with H{sub 2}O{sub 2} concentration in a wide range of 5.0 x 10{sup -8} to 1.0 x 10{sup -3} mol L{sup -1} with a detection limit of 1.0 x 10{sup -8} mol L{sup -1} (S/N = 3) and had long-term stability. Finally, the proposed method was applied to investigate the coexistence of hydrogen peroxide with the interfering substances. Experimental results showed that the ascorbic acid, glucose, L-cysteine, uric acid, and dopamine at corresponding concentrations did not influence the detection of H{sub 2}O{sub 2}.

  20. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g-1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  1. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Gharibshahian, M. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of); Mirzaee, O., E-mail: O_mirzaee@semnan.ac.ir [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Nourbakhsh, M.S. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of)

    2017-03-01

    Cobalt ferrite nano particles were synthesized by Pechini sol-gel method and calcined at 700 °C in electrical and microwave furnace. The microwave calcined sample was coated with mesoporous silica by hydrothermal method. Characterization was performed by XRD, FESEM, TEM, VSM, BET and FTIR analysis. The cytotoxicity was evaluated by MTT assay with 3T3 fibroblast cells. The XRD and FTIR results confirmed spinal formation in both cases and verified the formation of silica coating on the nanoparticles. For microwave calcination, The XRD and SEM results demonstrated smaller and flat adhesion forms of nanoparticles with the average size of 15 nm. The VSM results demonstrated nearly superparamagnetic nanoparticles with significant saturation magnetization equal to 64 emu/g. By coating, saturation magnetization was decreased to 36 emu/g. Moreover, the BET results confirmed the formation of mesoporous coating with the average pore diameters of 2.8 nm and average pore volume of 0.82 cm{sup 3} g{sup −1}. Microwave calcined nanoparticles had the best structural and magnetic properties. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were synthesized using the microwave modified Pechini method. • The Effect of calcination route and silica coating on NPs properties was studied. • The nearly superparamagnetic nanoparticles were achieved by microwave calcination. • MFC NPs had the best magnetic properties and MTT assay showed no toxicity for MFC-MSC NPs. • A useful scheme was designed to achieve biological superparamagnetic core/shell NPs.

  2. Synthesis and characterization of cobalt and nickel ferrites containing nanoparticles dispersed in silicon; Sintese e carcacterizacao de ferritas de cobalto e niquel contendo nanoparticulas dispersas em oxido de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.P.; Sales, B.M.C.; Pinheiro, A.N.; Sousa, A.F. de; Valentini, A., E-mail: tiagoufc2003@yahoo.com.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica. Lab. de Adsorcao e Catalise; Herrera, W.T.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas em Fisica (CBPF), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Experimental

    2010-07-01

    Cobalt and nickel ferrites containing nanoparticles dispersed in silicon oxides were prepared via polymeric precursor method. The samples were characterized by X-ray diffraction (XDR), Fourier-transform infrared spectroscopy (FTIR), Moessbauer spectroscopy (MS) and N{sub 2} adsorption/desorption isotherms (BET). The analysis results of FTIR, XRD and MS revealed the presence of nickel and cobalt ferrite besides the existence of {gamma}-Fe{sub 2}O{sub 3}. Additionally, Moessbauer spectroscopy measurements at 300 K show that nanoparticles are in the superparamagnetic regime being blocked at 4.2 K. Furthermore, all the solids showed by nitrogen adsorption/desorption isotherms profiles characteristic of mesoporous materials. (author)

  3. Cobalt

    International Nuclear Information System (INIS)

    Stolyarova, I.A.; Bunakova, N.Yu.

    1983-01-01

    The neutron-activation method for determining cobalt in rocks, polymetallic and iron ores and rockforming minerals at 2x10 -6 -5x10 -3 % content is developed. Cobalt determination is based on the formation under the effect of thermal neutrons of nuclear reactor of the 60 Co radioactive isotope by the 59 Co (n, γ) 60 Co reaction with radiation energy of the most intensive line of 1333 keV. Cobalt can be determined by the scheme of the multicomponent analysis from the sample with other elements. Co is determined in the solution after separation of all determinable by the scheme elements. The 60 Co intensity is measured by the mUltichannel gamma-spectrometer with Ge(Li)-detector

  4. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Science.gov (United States)

    Kalam, Abul; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Du, Gaohui; Ahmad, Tokeer; Ahmad, Irfan; Pannipara, M.

    2018-03-01

    Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4) photocatalysts were synthesized by modified Solvothermal (MST) process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-visible (UV-vis) spectroscopy and N2 adsorption-desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590-619 cm-1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0-76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB) dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst.

  5. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    Directory of Open Access Journals (Sweden)

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  6. Preparation of Magnesium-Based Cobalt-Ferrites (Co1-xMgxFe2O4) Nanoparticles by Sol-Gel Auto Combustion Method

    Science.gov (United States)

    Gowreesan, S.; Ruban Kumar, A.

    The scope of the present work is in enhancing the particle size, and dielectric properties of Mg-substituted Cobalt ferrites nanoparticles prepared by sol-gel auto combustion method. The different ratios of Mg-substituted Co Ferrites (Co1-xMgxFe2O4(x=0.00, 0.05, 0.10, 0.15, 0.20 and 0.30)) are calcinated at 850∘C. The synthesized nanoparticles were characterized by powder XRD, FTIR, FE-SEM, EDX techniques and dielectric behavior. The structural parameters were confirmed from powder XRD and the average particle size is obtained from 39 to 67 nm due to the substitution of Mg2+ which was calculated by Debye Scherrer’s formula. FE-SEM showed the surface morphology of the different ratio of the sample. The dielectric loss has measured the frequency range of 50Hz-5MHz. From electrical modulus, conductivity relaxation and thermal activation of charge carriers has been discussed.

  7. Giant magneto-optical Kerr rotation, quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles doped in silica matrix as the only defect layer embedded in magnetophotonic crystals

    Science.gov (United States)

    Zamani, Mehdi; Hocini, Abdesselam

    2018-03-01

    In this work, we report on the theoretical study of one-dimensional magnetophotonic crystals (MPC) comprising of periodic dielectric structure Si/SiO and of silica matrix doped with cobalt-ferrite (CoFe2O4) magnetic nanoparticles as the only magnetic defect layer. Such structure can be prepared by sol-gel dip coating method that controls the thickness of each layer with nanometer level, hence, can overcome the problem of integration of the magneto-optical (MO) devices. We have studied the influence of the volume fraction (concentration of magnetic nanoparticles VF%) on the optical (reflectance, transmittance and absorption) and MO (Kerr rotation) responses in reflection-type one-dimensional MPCs. During investigation of the influence of magnetic nanoparticle's concentration, we found that giant Kerr rotations (even ≈135° for VF = 39%) can be obtained accompanied by large reflectance and low amounts for transmittance and absorption. We report on the demonstration of large MO quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles in the infrared regime. Given the large Kerr rotation, high reflectance accompanied by low absorption and nearly zero transmittance of the 1D MPC containing cobalt-ferrite magnetic nanoparticles, large MO Q factor and figure of merit are obtained.

  8. On the use of photoacoustic technique for monitoring the thermal properties of lanthanum strontium cobalt ferrite-yttria stabilized zirconia two-layer systems

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Leonardo; Gomes da Silva, Marcelo; Pereira de Souza, Vanessa [Laboratorio de Ciencias Fisicas, Centro de Ciencia e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602, Campos dos Goytacazes, RJ (Brazil); Vargas, Helion, E-mail: vargas@uenf.b [Laboratorio de Ciencias Fisicas, Centro de Ciencia e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602, Campos dos Goytacazes, RJ (Brazil); Ferreira Guimaraes, Valtency; Ramos Paes, Herval [Laboratorio de Materiais Avancados, Centro de Ciencia e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602, Campos dos Goytacazes, RJ (Brazil)

    2010-11-01

    In this work, lanthanum strontium cobalt ferrite (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}}) films deposited by spray-pyrolysis onto commercial yttria stabilized zirconia substrates were investigated by photothermal spectroscopy. It is shown that by using the thermal-electrical analogy model it is possible to obtain the thermal properties of two-layer composite systems simultaneously, without the need to spread them, and thus to evaluate the thermal mismatch between the substrate and the deposited film. The thermal diffusivity of the 8YSZ substrate was found to be 6.6 x 10{sup -3} cm{sup 2}s{sup -1}, whereas for the La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} films it ranged between 0.47 and 9.26 x 10{sup -4} cm{sup 2}s{sup -1}. We have found that for film thickness beyond 3.06 {mu}m the thermal expansion coefficient becomes relevant, indicating that the optimum film deposition time lies between 10 and 20 min.

  9. Comprehensive analysis of structure and temperature, frequency and concentration-dependent dielectric properties of lithium-substituted cobalt ferrites (Li x Co1- x Fe2O4)

    Science.gov (United States)

    Anjum, Safia; Nisa, Mehru; Sabah, Aneeqa; Rafique, M. S.; Zia, Rehana

    2017-08-01

    This paper has been dedicated to the synthesis and characterization of a series of lithium-substituted cobalt ferrites Li x Co1- x Fe2O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1). These samples have been prepared using simple ball milling machine through powder metallurgy route. The structural analysis is carried out using X-ray diffractometer and their 3D vitalization is simulated using diamond software. The frequency and temperature-dependent dielectric properties of prepared samples have been measured using inductor capacitor resistor (LCR) meter. The structural analysis confirms that all the prepared samples have inverse cubic spinel structure. It is also revealed that the crystallite size and lattice parameter decrease with the increasing concentration of lithium (Li+1) ions, it is due to the smaller ionic radii of lithium ions. The comprehensive analysis of frequency, concentration and temperature-dependent dielectric properties of prepared samples is described in this paper. It is observed that the dielectric constant and tangent loss have decreased and conductivity increased as the frequency increases. It is also revealed that the dielectric constant, tangent loss and AC conductivity increase as the concentration of lithium increases due to its lower electronegativity value. Temperature plays a vital role in enhancing the dielectric constant, tangent loss and AC conductivity because the mobility of ions increases as the temperature increases.

  10. On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films.

    Science.gov (United States)

    Quickel, Thomas E; Le, Van H; Brezesinski, Torsten; Tolbert, Sarah H

    2010-08-11

    In this work, we report the synthesis of periodic nanoporous cobalt ferrite (CFO) that exhibits tunable room temperature ferrimagnetism. The porous cubic CFO frameworks are fabricated by coassembly of inorganic precursors with a large amphiphilic diblock copolymer, referred to as KLE. The inverse spinel framework boasts an ordered open network of pores averaging 14 nm in diameter. The domain sizes of the crystallites are tunable from 6 to 15 nm, a control which comes at little cost to the ordering of the mesostructure. Increases in crystalline domain size directly correlate with increases in room temperature coercivity. In addition, these materials show a strong preference for out-of-plane oriented magnetization, which is unique in a thin film system. The preference is explained by in-plane tensile strain, combined with relaxation of the out-of-plane strain through flexing of the mesopores. It is envisioned that the pores of this ferrimagnet could facilitate the formation of a diverse range of exchange coupled composite materials.

  11. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination: Confirmation of the Suppression Mechanism with Preoxidized Ferrite Film for Deposition of Radioactive Cobalt

    International Nuclear Information System (INIS)

    Ito, Tsuyoshi; Hosokawa, Hideyuki; Nagase, Makoto; Aizawa, Motohiro; Fuse, Motomasa

    2012-09-01

    Recently, chemical decontamination at the beginning of a periodical inspection is applied to many Japanese boiling water reactor (BWR) plants in order to reduce radiation exposure. In the chemical decontamination, the oxides that have incorporated 60 Co are dissolved using reductive and oxidative chemical reagents. Some of the piping stainless steel (SS) base metal is exposed to the reactor water after this decontamination. The oxide film growth rate of the piping during plant operation just after the decontamination is higher than that just before it. Therefore, there is a possibility that the deposition amount of 60 Co on the piping just after decontamination is higher than that just before the chemical decontamination. The Hi-F Coat (Hitachi ferrite coating) process has been developed to lower recontamination after the chemical decontamination. In this process, a fine Fe 3 O 4 coating film is formed on the piping SS base metal in aqueous solution at 363 K using three chemical reagents: ferrous ion, oxidant, and pH adjuster. The growth rate of the corrosion oxide film that incorporated 60 Co on the piping during plant operation is suppressed by the fine ferrite film that blocks both diffusion of oxidant in the reactor water to the SS base metal and metal ions in the oxide film to the reactor water. As a result, the amount of 60 Co deposition is suppressed by the Hi-F coating film. In a previous report, we found that the Hi-F Coat process lowered the amount of 60 Co to 1/3 that for non-coated specimens. To improve the suppression of 60 Co deposition further, we combined the Hi-F Coat process with a pre-oxidation step which we named the pre-oxidized Hi-F Coat process. In laboratory experiments, using the pre-oxidized Hi-F Coat process we found the deposited amount of 60 Co was 1/10 that for non-coated specimens. By combining the Hi-F Coat process with the pre-oxidation step, the suppression effect of 60 Co deposition was three times higher than that of the Hi

  12. Synthesis and structural characterization of magnetic cadmium sulfide-cobalt ferrite nanocomposite, and study of its activity for dyes degradation under ultrasound

    Science.gov (United States)

    Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-11-01

    Cadmium sulfide-cobalt ferrite (CdS/CFO) nanocomposite was easily synthesized by one-step hydrothermal decomposition of cadmium diethyldithiocarbamate complex on the CoFe2O4 nanoparticles at 200 °C. Spectroscopic techniques of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and magnetic measurements were applied for characterizing the structure and morphology of the product. The results of FT-IR, XRD and EDX indicated that the CdS/CFO was highly pure. SEM and TEM results revealed that the CdS/CFO nanocomposite was formed from nearly uniform and sphere-like nanoparticles with the size of approximately 20 nm. The UV-vis absorption spectrum of the CdS/CFO nanocomposite showed the band gap of 2.21 eV, which made it suitable for sono-/photo catalytic purposes. By using the obtained CdS/CFO nanocomposite, an ultrasound-assisted advanced oxidation process (AOP) has been developed for catalytic degradation of methylene blue (MB), Rhodamine B (RhB), and methyl orange (MO)) in the presence of H2O2 as a green oxidant. CdS/CFO nanocomposite exhibited excellent sonocatalytic activity, so that, dyes were completely degraded in less than 10 min. The influences of crucial factors such as the H2O2 amount and catalyst dosage on the degradation efficiency were evaluated. The as-prepared CdS/CFO nanocomposite exhibited higher catalytic activity than pure CdS nanoparticles. Moreover, the magnetic property of CoFe2O4 made the nanocomposite recyclable.

  13. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe2 O4 ) nanoparticles in zebrafish larvae.

    Science.gov (United States)

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou; Zhao, Fangfang; Ling, Zhaoxing; Xu, Chao

    2016-12-01

    Fascinating super paramagnetic uniqueness of iron oxide particles at nano-scale level make them extremely useful in the state of the art therapies, equipments, and techniques. Cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles (MNPs) are extensively used in nano-based medicine and electronics, results in extensive discharge and accumulation into the environment. However, very limited information is available for their endocrine disrupting potential in aquatic organisms. In this study, the thyroid endocrine disrupting ability of CoFe 2 O 4 NPs in Zebrafish larvae for 168-h post fertilization (hpf) was evaluated. The results showed the elevated amounts of T4 and T3 hormones by malformation of hypothalamus pituitary axis in zebrafish larvae. These elevated levels of whole body THs leads to delayed hatching, head and eye malformation, arrested development, and alterations in metabolism. The influence of THs disruption on ROS production and change in activities of catalase (CAT), mu-glutathione s-transferase (mu-GST), and acid phosphatase (AP) were also studied. The production of significantly higher amounts of in vivo generation of ROS leads to membrane damage and oxidative stress. Presences of NPs and NPs agglomerates/aggregates were also the contributing factors in mechanical damaging the membranes and physiological structure of thyroid axis. The increased activities of CAT, mu-GST, and AP confirmed the increased oxidative stress, possible DNA, and metabolic alterations, respectively. The excessive production of in vivo ROS leads to severe apoptosis in head, eye, and heart region confirming that malformation leads to malfunctioning of hypothalamus pituitary axis. ROS-induced oxidative DNA damage by formation of 8-OHdG DNA adducts elaborates the genotoxicity potential of CoFe 2 O 4 NPs. This study will help us to better understand the risk and assessment of endocrine disrupting potential of nanoparticles. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2068

  14. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe{sub 2}O{sub 4}-SiO{sub 2}) to improve the corrosion protection performance of epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozlou, M., E-mail: Gharagozlou@icrc.ac.ir [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: Rramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Baradaran, Z. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran (Iran, Islamic Republic of)

    2016-07-30

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe{sub 2}O{sub 4}-SiO{sub 2}) on the corrosion protection properties of steel substrate. NiFe{sub 2}O{sub 4} and NiFe{sub 2}O{sub 4}-SiO{sub 2} nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe{sub 2}O{sub 4}-SiO{sub 2}) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe{sub 2}O{sub 4}-SiO{sub 2} nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  15. Structure and scintillation yield of Ce-doped Al–Ga substituted yttrium garnet

    International Nuclear Information System (INIS)

    Sidletskiy, Oleg; Kononets, Valerii; Lebbou, Kheirreddine; Neicheva, Svetlana; Voloshina, Olesya; Bondar, Valerii; Baumer, Vyacheslav; Belikov, Konstantin; Gektin, Alexander; Grinyov, Boris; Joubert, Marie-France

    2012-01-01

    Highlights: ► Range of Y 3 (Al 1−x Ga x ) 5 O 12 :Ce solid solution crystals are grown from melt by the Czochralski method. ► Light yield of mixed crystals reaches 130% of the YAG:Ce value at x ∼ 0.4. ► ∼1% of antisite defects is formed in YGG:Ce, but no evidence of this is obtained for the rest of crystals. -- Abstract: Structure and scintillation yield of Y 3 (Al 1−x Ga x ) 5 O 12 :Ce solid solution crystals are studied. Crystals are grown from melt by the Czochralski method. Distribution of host cations in crystal lattice is determined. Quantity of antisite defects in crystals is evaluated using XRD and atomic emission spectroscopy data. Trend of light output at Al/Ga substitution in Y 3 (Al 1−x Ga x ) 5 O 12 :Ce is determined for the first time. Light output in mixed crystals reaches 130% comparative to Ce-doped yttrium–aluminum garnet. Luminescence properties at Al/Ga substitution are evaluated.

  16. Electrical and Magnetic Properties of Polyvinyl Alcohol-Cobalt ...

    Indian Academy of Sciences (India)

    7

    [14] has reported the electrical transport properties of polyvinyl alcohol- selenium nanocomposite ... of Cobalt Ferrite Nanoparticles. Cobalt Ferrite nanoparticles are synthesized by wet chemical method using raw materials of ... constantly stirred using the magnetic stirrer until the pH level reached to 12. A specified amount.

  17. The effect of the volume fraction and viscosity on the compression and tension behavior of the cobalt-ferrite magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    H. Shokrollahi

    2016-03-01

    Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.

  18. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    have a narrow particle size, thereby influencing structural, electrical, and magnetic properties of spinel ferrites. Cobalt ferrite based nanomaterials are known to be a good candidate for magneto optical recording and very promising for applications in high-density storage (Panda et al 2003; Abo El Ata et al 2004; Zaki 2005).

  19. Cation distribution controlled dielectric, electrical and magnetic behavior of In{sup 3+} substituted cobalt ferrites synthesized via solid-state reaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rabia, E-mail: rabiabest@gmail.com [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Sharma, K.K., E-mail: kk.gautam@yahoo.co.in [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Kaur, Pawanpreet [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Kumar, Ravi [Centre for Material Science and Engineering, National Institute of Technology, Hamirpur, H.P 177 005 (India)

    2014-12-15

    We report the structural, cation distribution, dielectric, electrical and magnetic properties of CoFe{sub 2−x}In{sub x}O{sub 4} (0.0 ≤ x ≤ 0.6) ferrites. Rietveld fitted X-ray diffraction (XRD) patterns confirm the formation of single phase cubic spinel structure with Fd3m space group for all the samples. The comprehensive analysis of XRD based cation distribution has been performed to see the effect of In{sup 3+} ions substitution on various structural parameters such as site ionic radii, edge and bond lengths, interionic distances etc. The dielectric constant and tangent loss have been studied as a function of temperature and frequency. The dielectric data presented in electric modulus form reveals the presence of non-Debye relaxation behavior in considered ferrites. Both the AC and DC conductivities as a function of temperature are found to decrease with increasing In{sup 3+} content. The power law behavior of AC-conductivity indicates a strong correlation among electrons in these systems. The isothermal magnetization versus applied field curves with high field slope and significant coercivity suggest that studied materials are highly anisotropic with canted spin structures and exhibit ferrimagnetic behavior at 300 K. Magnetization gets enhanced up to 40% of In{sup 3+} substitution. The observed low dielectric losses and high resistivity can find their application in power transformers at high frequencies. - Highlights: • Rietveld refinement of CoIn{sub x}Fe{sub 2−x}O{sub 4} samples shows single phase cubic spinel structure. • Cation distribution matches well with experimental integrated intensity ratios. • Strength of magnetic interactions is found to increase with increasing In{sup 3+} substitution. • The present systems are highly correlated. • These material are promising candidate for power transformers at high frequencies.

  20. Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres

    Science.gov (United States)

    Thomas, Bintu; Alexander, L. K.

    2018-02-01

    The overall effectiveness of a photocatalytic water treatment method strongly depends on various physicochemical factors. Superparamagnetic photocatalysts have incomparable advantage of easy separation using external magnetic fields. So, the synthesis of efficient superparamagnetic photocatalysts and the development of a deep understanding of the factors influencing their catalytic performances are important. Co x Zn1-x Fe2O4 (x = 0, 0.5, 1) ferrite nanospheres were synthesized by the solvothermal route. The reduction of Cr(VI) and degradation of methyl orange (MO) impurities were carried out in single- and binary-component system under visible light irradiation. The adsorption experiments were done by the catalyst in the water solution containing the impurities. The magnetic and optical properties were studied by VSM and UV-Vis analysis. The nature of porosity was investigated using the BET method. 3D nanospheres of diameter about 5-10 nm were fabricated. The binary-contaminant system exhibited synergetic photocatalytic effect (80% improvement in activity rate) against the nanoparticles. The corresponding mechanism is discussed. CoFe2O4 exhibited better adsorption, photocatalytic and magnetic separation efficiency due to its higher surface area (50% higher), narrower band gap (25% lesser), smaller crystallite size, a strong magnetic strength (51.35 emu/g) and meso-macro hierarchical porous structure. The adsorption of Cr(VI) and MO can be approximated to the Langmuir and Freundlich model, respectively.

  1. The influence of Ga-substitution of the coercivity of Nd-(Fe,Co)-B-sintered permanent magnets

    International Nuclear Information System (INIS)

    Fidler, J.; Groiss, C.; Tokunaga, M.

    1990-01-01

    In Co-substituted Nd-Fe-B sintered magnets several additional phases such as Nd(Fe,Co) y B ? with y = 2,3 and 4 are found besides the hard magnetic phase and the Nd-rich intergranular phase. The low coercivity of the magnet is attributed to the occurrence of these soft ferromagnetic phases. In Ga-doped Nd-(Fe,Co)-B sintered magnets new intergranular phases, such as Nd(Ga,Fe,Co) and Nd(Ga,Fe,Co) 2 are found instead of the soft ferromagnetic Co-rich phases. From X-ray microanalysis data it is concluded that Ga substitutes the transition metal atoms in the 2:14:1-phase and Ga is not detected in the Nd- rich phase at all. The increase of the coercivity of Ga- doped magnets is correlated to a higher volume fraction of intergranular phases and an increased wetting during sintering due to these phases

  2. Solubility of cobalt in primary circuit solutions

    International Nuclear Information System (INIS)

    Lambert, I.; Joyer, F.

    1992-01-01

    The solubility of cobalt ferrite (CoFe 2 O 4 ) was measured in PWR primary circuit conditions, in the temperature range 250-350 deg C, and the results were compared with the ones obtained on magnetite and nickel ferrite. As in the former cases, it was found that, in the prevailing primary circuit conditions, the solubility of the cobalt ferrite was minimum at temperatures around 300 deg C, for cobalt as well as for iron. The equilibrium iron concentration is significantly lower than in the case of magnetite. The results are discussed in relation with the POTHY code, based only on thermodynamic laws and data, used for the prediction of the primary circuit chemistry

  3. Crystal field splitting and spin states of Co ions in cobalt ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} using magnetization and X-ray absorption spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.K., E-mail: anil@rrcat.gov.in [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Singh, M.N. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Achary, S.N. [Chemistry Division, BARC, Anushaktinagar, Mumbai 400085 (India); Sagdeo, A. [HXAL, Synchrotrons Utilization Section, RRCAT, Indore 452013 (India); Homi Bhabha National Institute, RRCAT, Indore 452013 (India); Shukla, D.K.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, Indore 452010 (India)

    2017-08-01

    Highlights: • Co ions in Co{sub 1.5}Fe{sub 1.5}O{sub 4} are found to be in high spin states. • XAS measurements have been used to estimate TM crystal field and core hole contributions to 3d orbital splitting. • The polycrystalline Co{sub 1.5}Fe{sub 1.5}O{sub 4} sample show two pinning centers and large magneto crystalline anisotropy. - Abstract: Structural, magnetic and electronic properties of partially inverted Cobalt Ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} is discussed in the present work. Single phase (SG: Fd3m) sample is synthesized by co-precipitation technique and subsequent air annealing. The values of saturation magnetization obtained from careful analysis of approach to saturation in initial M(H) curves are used to determine spin states of Co ions in tetrahedral (T{sub H}) and octahedral (O{sub H}) sites. Spin states of Co{sup 3+} ions in T{sub H} sites, which has not been reported in literature, were found to be in high spin state. Temperature variation of magnetic parameters has been studied. The sample shows magneto-crystalline anisotropy with two clearly distinct pinning centers. Oxygen K-edge and Fe as well as Co L{sub 2,3}-edge X-ray absorption (XAS) spectra have been used as complementary measurements to study crystal field splitting and core hole effects on transition metal (TM) 3d orbitals. The ratio of intensities of t{sub 2g} and e{sub g} absorption bands in O-K edge XAS spectrum is used to estimate the spin states of Co ions at O{sub H} and T{sub H} sites. The results are in agreement with those obtained from magnetization data, and favors Co{sup 3+} ions in T{sub H} sites in high spin states. Normalized areas of the satellite peaks in TM L{sub 2},{sub 3}-edge XAS spectra have been used to estimate 3d{sub n+1}L contribution in ground state wave function and the contributions were found to be significant.

  4. Ferromagnetic resonance and dielectric and magnetic properties of pure and diluted ferrites in millimeter waves

    Science.gov (United States)

    Afsar, Mohammed N.; Chen, Shu; Korolev, Konstantin A.

    2009-04-01

    Transmittance measurements on pure and diluted barium ferrites, nickel zinc manganese ferrites, and nickel cobalt copper ferrites in millimeter wave-frequency range from 30to120GHz have been performed for the first time. A free space millimeter wave magneto-optical approach has been successfully employed for the dielectric and magnetic characterization of ferrite materials. Simultaneous determination of dielectric permittivity and magnetic permeability has been carried out from a single set of transmittance measurements. Frequency dependences of the magnetic permeability and dielectric permittivity on pure and diluted ferrites in millimeter waves have been obtained.

  5. Synthesis and Characterization of Cobalt Ferrite Nanoparticles ...

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 4 (2013) >. Log in or Register to get access to full text downloads.

  6. Spin canting in ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J., E-mail: jmarx@physik.uni-kl.de; Huang, H.; Salih, K. S. M.; Thiel, W. R.; Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    Recently, an easily scalable process for the production of small (3 −7 nm) monodisperse superparamagnetic ferrite nanoparticles MeFe{sub 2}O{sub 4} (Me = Zn, Mn, Co) from iron metal and octanoic acid has been reported (Salih et al., Chem. Mater. 25 1430–1435 2013). Here we present a Mössbauer spectroscopic study of these ferrite nanoparticles in external magnetic fields of up to B = 5 T at liquid helium temperatures. Our analysis shows that all three systems show a comparable inversion degree and the cationic distribution for the tetrahedral A and the octahedral B sites has been determined to (Zn{sub 0.19}Fe{sub 0.81}){sup A}[Zn{sub 0.81}Fe{sub 1.19}] {sup B}O{sub 4}, (Mn{sub 0.15}Fe{sub 0.85}){sup A}[Mn{sub 0.85}Fe{sub 1.15}] {sup B}O{sub 4} and (Co{sub 0.27}Fe{sub 0.73}){sup A}[Co{sub 0.73}Fe{sub 1.27}] {sup B}O{sub 4}. Spin canting occurs presumably in the B-sites and spin canting angles of 33°, 51° and 59° have been determined for the zinc, the manganese, and the cobalt ferrite nanoparticles.

  7. ACICULAR FERRITE

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2015-09-01

    Full Text Available Intermediate austenite transformation develops in the temperature between the regions pearlitic and martensitic transformation [4]. Under continuous cooling steel at speeds below the critical value, but higher than those necessary for the decomposition of austenite by the diffusion mechanism, the formation of a mixture of different types of structures whose identification is not always unambiguous. This resulted in a different classification systems of microstructures of low-carbon steel after accelerated cooling and the absence of a common terminology relating to the products of austenite decomposition [3; 5 – 11]. In modern terminology, all of the intermediate transformation product classifications based on the differentiation of the following features – the morphology of bainite ferrite component (rack or plate, the presence of iron carbide precipitates, their distribution and morphology, as well as the presence or absence of residual austenite or martensite-austenite mixture. Identification of the products of the intermediate conversion not morphology ferrite component, and other characteristics by light microscopy is extremely difficult, and in some instances impossible due to the limited resolution of the light microscope, so for these purposes should be to use the method of transmission electron microscopy of thin foils. Electron microscopy studies show that low-carbon steels lamellar morphology of intermediate products decomposition of austenite is extremely rare, which is confirmed by foreign authors [2; 7; 9; 10].

  8. Controlled cobalt doping in biogenic magnetite nanoparticles.

    Science.gov (United States)

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-06

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.

  9. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  10. Mössbauer effect studies and X-ray diffraction analysis of cobalt ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Cobalt ferrite (CoxFe3–xO4) is prepared in powder form by thermal decomposition of iron and cobalt salts and is analysed by X-ray diffraction and Mössbauer spectroscopic techniques. The variation of. Mössbauer parameters, lattice parameters and crystallite size of the products formed with variation in the.

  11. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology; Sintese e caracterizacao de nanoparticulas magneticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material hibrido em nanotecnologia

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth Luqueze

    2006-07-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H{sub 2}O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  12. Controlled cobalt doping in biogenic magnetite nanoparticles

    Science.gov (United States)

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  13. Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties

    Science.gov (United States)

    Yadav, Raghvendra Singh; Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Wasserbauer, Jaromir; Hajdúchová, Miroslava; Enev, Vojtěch; Kuřitka, Ivo; Kožáková, Zuzana

    2016-02-01

    Nd3+ doped cobalt ferrite nanoparticles have been synthesized by starch-assisted sol-gel auto-combustion method. The significant role played by Nd3+ added to cobalt ferrite in changing cation distribution and further in influencing structural and magnetic properties, was explored and reported. The crystal structure formation and crystallite size were studied from X-ray diffraction studies. The microstructural features were investigated by field emission scanning electron microscopy and transmission electron microscopy that demonstrates the nanocrystalline grain formation with spherical morphology. An infrared spectroscopy study shows the presence of two absorption bands related to tetrahedral and octahedral group complexes within the spinel ferrite lattice system. The change in Raman modes in synthesized ferrite system were observed with Nd3+ substitution, particle size and cation redistribution. The impact of Nd3+ on cation distribution of Co2+ and Fe3+ at octahedral and tetrahedral sites in spinel ferrite cobalt ferrite nanoparticles was investigated by X-ray photoelectron spectroscopy. Room temperature magnetization measurements showed that the saturation magnetization and coercivity increase with addition of Nd3+ substitution in cobalt ferrite.

  14. Modern Ferrite Technology

    CERN Document Server

    Goldman, Alex

    2006-01-01

    Modern Ferrite Technology, 2nd Ed. offers the readers an expert overview of the latest ferrite advances as well as their applications in electronic components. This volume develops the interplay among material properties, component specification and device requirements using ferrites. Throughout, emphasis is placed on practical technological concerns as opposed to mathematical and physical aspects of the subject. The book traces the origin of the magnetic effect in ferrites from the level of the simplest particle and then increases the scope to include larger hierarchies. From the desired magnetic properties, the author deduces the physical and chemical material parameters, taking into consideration major chemistry, impurity levels, ceramic microstructures and grain boundary effects. He then discusses the processing conditions and associated conditions required for implementation. In addition to conventional ceramic techniques, he describes non-conventional methods such as co-precipitation, co-spray roasting ...

  15. Observation and manipulation of magnetic domains in sol gel derived thin films of spinel ferrites

    Science.gov (United States)

    Datar, Ashwini A.; Mathe, Vikas L.

    2017-12-01

    Thin films of spinel ferrites, namely zinc substituted nickel, cobalt ferrite, and manganese substituted cobalt ferrite, were synthesized using sol-gel derived spin-coating techniques. The films were characterized using x-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy techniques for the analysis of structural, morphological and vibrational band transition properties, which confirm the spinel phase formation of the films. The magnetic force microscopy (MFM) technique was used to observe the magnetic domain structure present in the synthesized films. Further, the films were subjected to an external DC magnetic field of 2 kG to orient the magnetic domains and analyzed using an ex situ MFM technique.

  16. Sonochemical synthesis of Gd3+doped CoFe2O4spinel ferrite nanoparticles and its physical properties.

    Science.gov (United States)

    Yadav, Raghvendra Singh; Kuřitka, Ivo; Vilcakova, Jarmila; Havlica, Jaromir; Kalina, Lukas; Urbánek, Pavel; Machovsky, Michal; Skoda, David; Masař, Milan; Holek, Martin

    2018-01-01

    In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFe 2-x Gd x O 4 ; x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd 3+ substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFe 2-x Gd x O 4 nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd 3+ substitution in CoFe 2 O 4 nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd 3+ doped cobalt ferrite (CoFe 2-x Gd x O 4 ; x=0.20) exhibit enhanced dielectric constant (277 at 100Hz) and ac conductivity (20.2×10 -9 S/cm at 100Hz). The modulus spectroscopy demonstrated the impact of Gd 3+ substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd 3+ substitution from 234.32Oe (x=0.00) to 12.60Oe (x=0.05) and further increases from 12.60Oe (x=0.05) to 68.62Oe (x=0.20). Moreover, saturation magnetization decreases with Gd 3+ substitution from 40.19emu/g (x=0.00) to 21.58emu/g (x=0.20). This work demonstrates that the grain size and cation

  17. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  18. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  19. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  20. Mössbauer effect studies and X-ray diffraction analysis of cobalt ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Mössbauer effect studies and X-ray diffraction analysis of cobalt ferrite prepared in powder form by thermal decomposition method. M D Joseph Sebastian B Rudraswamy M C Radhakrishna Ramani. Magnetic Materials Volume 26 Issue 5 August 2003 pp ...

  1. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films

    NARCIS (Netherlands)

    Lisfi, A.; Williams, C.M.; Nguyen, L.T.; Lodder, J.C.; Coleman, A.; Corcoran, H.; Johnson, A.; Chang, P.; Abhishek Kumar, A.K.; Kumar, A.; Morgan, W.

    2007-01-01

    Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition

  2. Nano copper and cobalt ferrites as heterogeneous catalysts for the ...

    Indian Academy of Sciences (India)

    tachrome Instruments, UK). Melting points were deter- mined on a capillary melting point apparatus and are uncorrected. 1HNMR and 13CNMR ... The mass spectrum was recorded using a Perkin-Elmer. PE SCIEX-API 2000, equipped with ESI source used online with a HPLC system after the ultraviolet (UV) detector.

  3. Cu 2 + and Al 3 + co-substituted cobalt ferrite

    Indian Academy of Sciences (India)

    X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emissionscanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) are used for studying the effect of variation in the Cu–Al substitution and its impact on particle size, magnetic properties such as Ms and Hc.

  4. Cu and Al co-substituted cobalt ferrite: structural analysis ...

    Indian Academy of Sciences (India)

    ties such as high electrical resistivity, high permeability and negligible eddy current losses for high-frequency electro- magnetic wave propagation make them suitable for many technological applications such as high-density magnetic storage, microwave and telecommunication devices, mag- netic fluids, drug delivery and ...

  5. Nano copper and cobalt ferrites as heterogeneous catalysts for the ...

    Indian Academy of Sciences (India)

    pharmaceutically active organic compounds. Many bio- logically active natural products were found to contain substituted imidazole structures. Tri aryl imidazole is the main structural unit in some widely used drugs such as ketoconazole,3 proton pump inhibitors omeprazole,4 cimetidine,5 clotrimazole6 and metronidazole,7 ...

  6. Cu and Al co-substituted cobalt ferrite: structural analysis ...

    Indian Academy of Sciences (India)

    The nanostructural features were examined by FESEM images. Infrared absorption (IR) spectra shows two vibrational bands; at around. 600 (v1) and 400 cm−1 (v2). .... of these materials are surrounded by oxygen atoms and give rise to super-exchange interaction between the tetrahedral and octahedral sublattices, which ...

  7. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  8. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  9. Ferrites – what is new?

    Indian Academy of Sciences (India)

    Ferrites; conductivity; magnetoresistance; spin compensation temperature; irradiation effect; nanoparticle. ... changes in magneto-resistance (MR) in the region of magnetic compensation temperature of a typical ferrite .... scattering of conduction electrons by the changes in the magnetic ordering caused by ex- ternal field.

  10. Wideband and enhanced microwave absorption performance of doped barium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Pingyuan; Xiong, Kun [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Ju, Kui [Guizhou Institute of Metallurgy and Chemical Engineering, Guiyang 550002 (China); Li, Shengnan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Xu, Guangliang, E-mail: xuguangliang@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2015-07-01

    To achieve stronger microwave attenuation and larger bandwidth in electromagnetic absorber, the nickel ions (Ni{sup 2+}) and manganese ions (Mn{sup 2+}) were employed to partially replace the cobalt ions (Co{sup 2+}) in BaCoTiFe{sub 10}O{sub 19}, and the doped barium hexaferrite (Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19} and Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19}) powders were synthesized via the sol–gel combustion method. Subsequently, the microwave absorbing composites were prepared by mixing the ferrite powders with the paraffin. The X-ray diffraction (XRD) patterns of the doped ferrites confirmed the formation of the M-type barium ferrite, and no other types of barium ferrite could be found. Based on the electromagnetic parameters measured by the vector net-analyzer, it was found that the composite (Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19}) possessed a minimum reflection loss of −52.8 dB at 13.4 GHz with a matching thickness of 1.8 mm and the bandwidth below −15 dB was 5.8 GHz. Moreover, the maximum attenuation of Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19} could reach −69 dB when its thickness was 1.8 mm, and also the bandwidth less than −20 dB was ranging from 13.2 GHz to 18 GHz. Thus, Ba(MnNi){sub 0.2}Co{sub 0.6}TiFe{sub 10}O{sub 19} and Ba(MnNi){sub 0.25}Co{sub 0.5}TiFe{sub 10}O{sub 19} could be the good microwave absorbers, which have great potentials to be applied in the high frequency fields of the microwave absorbing materials. - Highlights: • The Co was first time substituted by Mn–Ni in ferrites. • The substituted ferrites had good microwave absorption. • The doped ferrites had broad bandwidth and low reflection loss.

  11. Distribution of cations in nanosize and bulk Co-Zn ferrites

    Czech Academy of Sciences Publication Activity Database

    Veverka, Miroslav; Jirák, Zdeněk; Kaman, Ondřej; Knížek, Karel; Maryško, Miroslav; Pollert, Emil; Závěta, K.; Lančok, Adriana; Dlouhá, M.; Vratislav, S.

    2011-01-01

    Roč. 22, č. 34 (2011), 345701/1-345701/7 ISSN 0957-4484 R&D Projects: GA ČR GAP204/10/0035; GA ČR(CZ) GAP108/11/0807 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40320502 Keywords : cobalt zinc ferrites * nanoparticles distribution of cations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.979, year: 2011

  12. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  13. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Othman, H.A. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt); Eltabey, M.M. [Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shibin El-Kom, Menoufia (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia); Ibrahim, Samia E.; El-Deen, L.M. Sharaf; Elkholy, M.M. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt)

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2}) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO{sub 3} and BO{sub 4} are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100–100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization M{sub S} and coercive field H{sub C} were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of M{sub S} and H{sub C} increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  14. Hyperfine Interactions in Ferrites with Spinel Structure

    OpenAIRE

    Chlan, Vojtěch

    2013-01-01

    Title: Hyperfine Interactions in Ferrites with Spinel Structure Author: Vojtěch Chlan Faculty of Mathematics and Physics, Charles University in Prague Supervisor: Prof. RNDr. Helena Štěpánková, CSc. Abstract: Ferrite systems with spinel structure, manganese ferrite, lithium ferrite and magnetite, are studied experimentally by nuclear magnetic resonance (NMR) spectroscopy and from the first principles by electron structure calculations based on density functional theory (DFT). Manganese ferrit...

  15. Cobalt sensitization and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P

    2012-01-01

    : This clinical review article presents clinical and scientific data on cobalt sensitization and dermatitis. It is concluded that cobalt despite being a strong sensitizer and a prevalent contact allergen to come up on patch testing should be regarded as a very complex metal to test with. Exposure...... data together with clinical data from metal workers heavily exposed to cobalt suggest that patch-test reactions are sometimes false positive and that patch testers should carefully evaluate their clinical relevance....

  16. The geobiochemistry of cobalt.

    Science.gov (United States)

    Hamilton, E I

    1994-06-30

    In the crust of the Earth cobalt is present in a greater abundance than lead, molybdenum or cadmium. The concentration and distribution of cobalt is discussed in relation to major terrestrial, aquatic and atmospheric systems. The processes which control or influence the transfer of this element in major ecosystems are evaluated in terms of bioavailability to plants, animals and man. The concept of geochemical provinces is considered in relation to the regional availability of cobalt and then its transfer along foodchains to man. Areas and environments which contain high or low concentrations of cobalt are considered in relation to the health of plants, animals and man; the special case of exposure to cobalt from the manufacturing industry is discussed. The association between cobalt and hard metal disease is noted. The use of various radionuclides of cobalt is considered as a means of tracing cobalt through complex ecosystems. The state of the art for measuring the concentration of cobalt is discussed with special reference to the quality of analytical data and the availability of suitable reference materials.

  17. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  18. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

    Science.gov (United States)

    Makridis, A; Chatzitheodorou, I; Topouridou, K; Yavropoulou, M P; Angelakeris, M; Dendrinou-Samara, C

    2016-06-01

    The application of ferrite magnetic nanoparticles (MNPs) in medicine finds its rapidly developing emphasis on heating mediators for magnetic hyperthermia, the ever-promising "fourth leg" of cancer treatment. Usage of MNPs depends largely on the preparation processes to select optimal conditions and effective routes to finely tailor MNPs. Microwave heating, instead of conventional heating offers nanocrystals at significantly enhanced rate and yield. In this work, a facile mass-production microwave hydrothermal synthetic approach was used to synthesize stable ferromagnetic manganese and cobalt ferrite nanoparticles with sizes smaller than 14 nm from metal acetylacetonates in the presence of octadecylamine. Prolonging the reaction time from 15 to 60 min, led to ferrites with improved crystallinity while the sizes are slight increased. The high crystallinity magnetic nanoparticles showed exceptional magnetic heating parameters. In vitro application was performed using the human osteosarcoma cell line Saos-2 incubated with manganese ferrite nanoparticles. Hyperthermia applied in a two cycle process, while AC magnetic field remained on until the upper limit of 45 °C was achieved. The comparative results of the AC hyperthermia efficiency of ferrite nanoparticles in combination with the in vitro study coincide with the magnetic features and their tunability may be further exploited for AC magnetic hyperthermia driven applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of cobalt substitution on structural, electrical and magnetic properties of NiFe2O4

    Directory of Open Access Journals (Sweden)

    Kannipamula Vijaya Babu

    2017-03-01

    Full Text Available Nickel ferrite and cobalt substituted nickel ferrite were synthesized by sol-gel method using citric acid as chelating reagent. X-ray diffraction revealed the formation of nanocrystalline particles having spinel structure with space group Fd3m. FTIR spectra showed fundamental absorption bands in the range 400–1300 cm-1, related to iron ions on both octahedral and tetrahedral sites which are typical for ferrite structure. SEM analyses confirmed that the particles are agglomerated with an average size of about 1.5 µm. The ferrite powders were pressed at 5 MPa and sintered at 1200 °C for 5 h. Conductivities, impedance analyses and dielectric properties of NiFe2O4 and Ni0.7Co0.3Fe2O4 ceramics were investigated over the frequency range of 20 Hz to 1 MHz at room temperature. The obtained experimental results are in good agreement with the reported values.

  20. Electrodeposition of Cobalt Nanowires

    International Nuclear Information System (INIS)

    Ahn, Sungbok; Hong, Kimin

    2013-01-01

    We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of CoSO 4 and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/cm 2 and DAESA concentration was 1 mL/L

  1. Phosphine modified cobalt hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Rensburg, H. van; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St. Andrews (United Kingdom); Janse van Rensburg, W. [Sasol Technology, Sasolburg (South Africa)

    2006-07-01

    An ongoing challenge in phosphine modified cobalt hydroformylation is the fundamental understanding of the electronic and steric properties of phosphine ligands that influence the selectivity and activity of the catalytic reaction. A series of acyclic and cyclic phosphines have been prepared and tested in phosphine modified cobalt hydroformylation of 1-octene. Molecular modelling on a series of phospholanes showed some interesting theoretical and experimental correlations. We also evaluated the use of N-heterocyclic carbenes as an alternative for phosphines in modified cobalt hydroformylation. (orig.)

  2. Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method.

    Science.gov (United States)

    Mazarío, E; Herrasti, P; Morales, M P; Menéndez, N

    2012-09-07

    Uniform size cobalt ferrite nanoparticles have been synthesized in one step using an electrochemical technique. Synthesis parameters such as the current density, temperature and stirring were optimized to produce pure cobalt ferrite. The nanoparticles have been investigated by means of magnetic measurements, Mössbauer spectroscopy, x-ray powder diffraction and transmission electron microscopy. The average size of the electrosynthesized samples was controlled by the synthesis parameters and this showed a rather narrow size distribution. The x-ray analysis shows that the CoFe(2)O(4) obtained presents a totally inverse spinel structure. The magnetic properties of the stoichiometric nanoparticles show ferromagnetic behavior at room temperature with a coercivity up to 6386 Oe and a saturation magnetization of 85 emu g(-1).

  3. Articles comprising ferritic stainless steels

    Science.gov (United States)

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  4. The use of ferrites at microwave frequencies

    CERN Document Server

    Thourel, Léo

    1964-01-01

    The Use of Ferrites at Microwave Frequencies describes the applications of ferrites at microwave frequencies and the apparatus involved. Topics covered range from the properties of ferrites to gyromagnetic and non-reciprocal effects, ferrite isolators, circulators, and modulators. The use of ferrites in variable frequency filter cavities is also discussed. Mathematical explanations are reduced to the strict minimum and only the results of calculations are indicated. This book consists of seven chapters and opens with a review of the theory of magnetism, touching on subjects such as the BOHR m

  5. Cobalt release from inexpensive jewellery

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten Stendahl; Menné, Torkil

    2010-01-01

    . Conclusions: This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future....... Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Results: Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these...

  6. Wrought cobalt- base superalloys

    Science.gov (United States)

    Klarstrom, D. L.

    1993-08-01

    Wrought cobalt-base superalloys are used extensively in gas turbine engines because of their excellent high-temperature creep and fatigue strengths and resistance to hot corrosion attack. In addition, the unique character of the oxide scales that form on some of the alloys provides outstanding resistance to high-temperature sliding wear. This article provides a review of the evolutionary development of wrought cobalt-base alloys in terms of alloy design and physical metallurgy. The topics include solid-so-lution strengthening, carbide precipitation characteristics, and attempts to introduce age hardening. The use of PHACOMP to enhance thermal stability characteristics and the incorporation of rare-earth ele-ments to improve oxidation resistance is also reviewed and discussed. The further development of cobalt-base superalloys has been severely hampered by past political events, which have accentuated the strategic vulnerability of cobalt as a base or as an alloying element. Consequently, alternative alloys have been developed that use little or no cobalt. One such alternative, Haynes® 230TMalloy, is discussed briefly.

  7. Magneto-optical Kerr spectra and magnetic properties of Co-substituted M-type strontium ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiansong, E-mail: xiansongliu@ahu.edu.cn [Engineering Technology Research Center of Magnetic Materials, Anhui Province, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Fernandez-Garcia, Lucia [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo UO - Principado de Asturias, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Hu Feng; Zhu Deru [Engineering Technology Research Center of Magnetic Materials, Anhui Province, School of Physics and Materials Science, Anhui University, Hefei 230039 (China); Suarez, Marta; Menendez, Jose Luis [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo UO - Principado de Asturias, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Prepare single phase ferrites by substituted with Co{sup 2+}. Black-Right-Pointing-Pointer The magnetic properties were remarkably modified. Black-Right-Pointing-Pointer A very noticeable Kerr activity was obtained for the Co-substituted ferrites. - Abstract: M-type strontium ferrites SrFe{sub 12-x}Co{sub x}O{sub 19} (x = 0, 0.05, 0.10, 0.15, 0.20) were prepared by the conventional ceramic technology. The structure, magnetic properties and magneto-optical Kerr activity of the samples were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and magneto-optical ellipsometry, respectively. X-ray diffraction showed that all the samples were single phase ferrites. The magnetic properties, especially the coercive field, were remarkably modified due to the substitution of cobalt. Most importantly, a noticeable Kerr activity was demonstrated in the Co-substituted M-type strontium ferrites with x = 0.20.

  8. The Idaho cobalt belt

    Science.gov (United States)

    Bookstrom, Arthur A.

    2013-01-01

    The Idaho cobalt belt (ICB) is a northwest-trending belt of cobalt (Co) +/- copper (Cu)-bearing deposits and prospects in the Salmon River Mountains of east-central Idaho, U.S.A. The ICB is about 55 km long and 10 km long in its central part, which contains multiple strata-bound ore zones in the Blackbird mine area. The Black Pine and Iron Creek Co-Cu prospects are southeast of Blackbird, and the Tinkers Pride, Bonanza Copper, Elk Creek, and Salmon Canyon Copper prospects are northwest of Blackbird.

  9. High-Q ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.; Earley, L.M.

    1983-01-01

    Rapid cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Initial tests of a small (10-cm-diam) quarter-wave singly re-entrant cavity tuned by several different ferrites indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity

  10. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites

    Directory of Open Access Journals (Sweden)

    Aiman Zubair

    Full Text Available Europium (Eu doped spinel cobalt ferrites having composition CoEuxFe2−xO4 where x = 0.00, 0.03, 0.06, 0.09, 0.12 were fabricated by co-precipitation route. In order to observe the phase development of the ferrite samples, thermo-gravimetric analysis was carried out. The synthesized samples were subjected to X-ray diffraction analysis for structural investigation. All the samples were found to constitute face centered cubic (FCC spinel structure belonging to Fd3m space group. Scanning electron microscopy revealed the formation of nanocrystalline grains with spherical shape. Energy dispersive X-ray spectra confirmed the presence of Co, Eu, Fe and O elements with no existence of any impurity. The magnetic hysteresis curves measured at room temperature exhibited ferrimagnetic behavior with maximum saturation magnetization (Ms of 65 emu/g and coercivity (Hc of 966 Oe. The origin of ferrimagnetism in Eu doped cobalt ferrites was discussed in detail with reverence to the allocation of Co2+ and Fe3+ ions within the spinel lattice. The overall coercivity was increased (944–966 Oe and magnetization was decreased (65–46 emu/g with the substitution of Eu3+. The enhancement of former is ascribed to the transition from multi domain to single domain state and reduction in lateral is attributed to the incorporation of nonmagnetic Eu ions for Fe, resulting in weak superexchange interactions. Keywords: Europium doped cobalt ferrites, Co-precipitation, X-ray diffraction, Scanning electron microscopy, Magnetic properties

  11. Cobalt/Fullerene Spinterfaces

    NARCIS (Netherlands)

    Wang, Kai

    2015-01-01

    Spintronics is a multidisciplinary research field and it explores phenomena that interlink the spin and charge degrees of freedom. The thesis focuses on spin-polarized electronic transports in cobalt (Co) and fullerene (C60) based vertical spintronic devices. It starts with a review about

  12. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The manganese (II), cobalt (II), nickel (II) and copper (II) complexes of N, N' – bis(benzoin)ethylenediiminato have been prepared and characterized by infrared, elemental analysis, conductivity measurements and solubility. The potentiometric, and elemental analyses studies of the complexes revealed 1:1 ...

  13. High density nonmagnetic cobalt in thin films

    OpenAIRE

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Dev, B. N.

    2017-01-01

    Recently high density (HD) nonmagnetic (NM) cobalt has been discovered in a cobalt thin film, grown on Si(111). This cobalt film had a natural cobalt oxide at the top. The oxide layer forms when the film is taken out of the electron-beam deposition chamber and exposed to air. Thin HD NM cobalt layers were found near the cobalt/silicon and the cobalt-oxide/cobalt interfaces, while the thicker mid-depth region of the film was hcp cobalt with normal density and normal magnetic moment. If an ultr...

  14. Some of Physical Properties of Nanostructured (Mg1-xCoxFe2O4 Ferrites Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Ammer Alsherefi

    2018-01-01

    Full Text Available Sol-gel auto combustion technique was used to prepare nanoparticles of magnesium-cobalt ferrites with the chemical formula Mg1-xCoxFe2O4 for  (x=0, 0.2, 0.4, 0.6, 0.8, 1, where x added as weight  percentages, and sintering  at temperature (1100 oC. The X-ray patterns of prepared powder has confirmed the structure of cubic spinel structure (fcc. The prepared samples were composed of nearly spherical nano particles .An average particle size of  magnesium-cobalt ferrite  were  calculated  using  Debye Scherer’s relation is equal 53.12 nm. The surface structure of the samples was investigated by Scanning Electron Microscope(SEM. The electromagnetic properties for prepared samples were investigated using Vector Network Analyzer (VNA in X-band microwave region.

  15. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Ferrites are also used in camouflaging military aircrafts and missiles against radar detection (Meshram et al 2002). Among the spinel type ferrites, nickel ... agglomeration of the particles. The precipitate formed was separated and washed several times in distilled water to free it from ions and other impurities. Finally it was.

  16. Ferrite Solutions for Electromagnetic Shock Lines

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Phillip D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dudley, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Primm, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The goal of this work is to develop tools and test procedures for identifying ferrites suitable for use in shock line applications. Electromagnetic shocklines have been used to provide fast rising voltage pulses for many applications. In these applications a slow rising pulse is injected into the line where currents drive the ferrites into saturation leading to a fast rising output pulse. A shockline’s unique capabilities could be applied to new detonator configurations. A properly conditioned voltage pulse is critical for fire set applications. A carefully designed shockline could provide a passive solution to generating a fast rising voltage pulse for the fire set. Traditional circuits use ferrites operating in a linear regime. Shock lines push the ferrites well into the nonlinear regime where very few tools and data currently exist. Ferrite material is key to the operation of these shock lines, and tools for identifying suitable ferrites are critical. This report describes an experimental setup to that allows testing of ferrite samples and comparison to models with the goal of identifying optimal ferrites for shockline use.

  17. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  18. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage

    2016-01-01

    BACKGROUND: Cobalt is a strong skin sensitizer (grade 5 of 5 in the guinea-pig maximization test) that is used in various industrial and consumer applications. To prevent sensitization to cobalt and elicitation of allergic cobalt dermatitis, information about the elicitation threshold level...... of cobalt is important. OBJECTIVE: To identify the dermatitis elicitation threshold levels in cobalt-allergic individuals. MATERIALS AND METHODS: Published patch test dose-response studies were reviewed to determine the elicitation dose (ED) levels in dermatitis patients with a previous positive patch test...... reaction to cobalt. A logistic dose-response model was applied to data collected from the published literature to estimate ED values. The 95% confidence interval (CI) for the ratio of mean doses that can elicit a reaction in 10% (ED(10)) of a population was calculated with Fieller's method. RESULTS...

  19. Magnetoviscous effect of ferrite-based magnetic fluid for EOR application

    Science.gov (United States)

    Latiff, Noor Rasyada Ahmad; Soleimani, Hassan; Zaid, Hasnah Mohd; Adil, Muhammad

    2016-11-01

    Magnetic fluid is proposed as a substitute for the application of polymer solution as a means to recover the residual oil left in the bypassed region in oil reservoirs. When subjected to magnetic field, the viscosity of magnetic fluids increases and enable flow control. In this study, the response of magnetic nanofluid with the applied magnetic field was observed as a function of shear rate. Two types of samples, namely magnetite and cobalt ferrite of 0.1% w/v of different polydispersity index, saturation magnetization and mean hydrodynamic particle size were used. The strength of the applied magnetic field was also varied to investigate the effect of magnetic field strength on the viscosity enhancement of magnetic fluid. Shear dependence response of the magnetic fluid exhibit non-Newtonian behavior when magnetic field of 20 to 40 mT was applied. Viscosity of the magnetic fluid reduced with increasing shear rates, showing shear thinning behavior. At a particular shear rate, viscosity remains constant when the strength of magnetic field increases indicating saturation in chain length even at low field. Magnetoviscous effect (MVE) is calculated as an indicator for a viscosity gain magnitude when magnetic field is applied. Cobalt ferrite sample shows larger MVE compared to magnetite that may be attributed to the higher polydispersity index. In conclusion, particle size distribution is the most dominant factor affecting MVE of the dilute magnetic fluid when magnetic field is applied.

  20. Pulse Sharpening Effects in Ferrites

    Science.gov (United States)

    1981-07-01

    the magnetic field h is obtained by solving the experimental results with the theory . In the case of zero (1 )-(3). Over the voltage range shown the...transmission line theory with steady-state fre- The results have shown that the ferrite pulse sharpener is quency w,, the extent of mismatch at the...dielectric sleeves (farads/meter). E2 ++ + Z2 h Peak magnetic field in spin reversal region ( Oersteds ). 1m Mean magnetic length: ir(d + a)(meters). 2 1 [rL

  1. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ali, M., E-mail: m.benali06@gmail.com [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco); El Maalam, K. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco); El Moussaoui, H.; Mounkachi, O. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Hamedoun, M., E-mail: m.hamedoun@mascir.com [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco)

    2016-01-15

    Synthesization of zinc-substituted cobalt ferrites nano-particles Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0–0.3) has been achieved by the sol/gel method. The characterization of the synthesized nano-particles has been done by X-ray diffractometry (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FITR). The relation between the composition and magnetic properties has been investigated by Magnetic Properties Measurement System (MPMS). The results revealed that the nanoparticles size is in the range of 11–28 nm. It was found that the zinc substitution in cobalt ferrite increases saturation magnetization from 60.92 emu/g (x=0) to 74.67 emu/g (x=0.3). Nevertheless, zinc concentrations cause a significant decrease in coercivity.▪ - Highlights: • The nanocrystals size of synthesized of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} is of 11–28 nm. • The zinc substitution in cobalt ferrite increase saturation magnetization. • The increase of zinc concentration causes a significant decrease in coercivity.

  2. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method

    International Nuclear Information System (INIS)

    Ben Ali, M.; El Maalam, K.; El Moussaoui, H.; Mounkachi, O.; Hamedoun, M.; Masrour, R.; Hlil, E.K.; Benyoussef, A.

    2016-01-01

    Synthesization of zinc-substituted cobalt ferrites nano-particles Co 1−x Zn x Fe 2 O 4 (x=0.0–0.3) has been achieved by the sol/gel method. The characterization of the synthesized nano-particles has been done by X-ray diffractometry (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FITR). The relation between the composition and magnetic properties has been investigated by Magnetic Properties Measurement System (MPMS). The results revealed that the nanoparticles size is in the range of 11–28 nm. It was found that the zinc substitution in cobalt ferrite increases saturation magnetization from 60.92 emu/g (x=0) to 74.67 emu/g (x=0.3). Nevertheless, zinc concentrations cause a significant decrease in coercivity.▪ - Highlights: • The nanocrystals size of synthesized of Co 1−x Zn x Fe 2 O 4 is of 11–28 nm. • The zinc substitution in cobalt ferrite increase saturation magnetization. • The increase of zinc concentration causes a significant decrease in coercivity.

  3. Electric Field Tunable Microwave and MM-wave Ferrite Devices

    Science.gov (United States)

    2010-04-30

    spinel ferrite can be used to achieve very high magnetizations for the low millimeter wave frequency range, and hexagonal ferrite films can be used for...piezoelectric effect manifests as a frequency shift in the spin wave spectrum or ferromagnetic resonance (FMR) for the ferrite . The traditional magnetic ...garnet (YIG), nickel zinc ferrite , or barium ferrite for the magnetic phase and lead zirconate titanate (PZT), lead magnesium niobate- lead titanate

  4. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  5. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  6. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    optical recording and electronic devices. (Gaikwad et al 2011). The structural, electrical and magnetic properties of these spinel ferrites are dependent on magnetic interaction and distribution of cations among tetrahedral (A) and octahedral (B) ...

  7. Continuous removal of radioactive cobalt from water

    International Nuclear Information System (INIS)

    Silver, G.L.

    1987-01-01

    More than 99% of radioactive cobalt can be removed from water by precipitation as cobalt(III) hydroxide. The process is continuous and uses either sodium hypochlorite or oxygen and calcium sulfite to oxidize the cobalt. Carbonate and phosphate interfere with cobalt removal, but the process has potential for other applications such as thallium removal and sewage treatment. (author)

  8. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    structured spinel ferrites such as Ni0.5Zn0.5Fe2O4 and Mn0.67Zn0.33Fe2O4 and also that of the nanocomposite Nd2Fe14B/-Fe permanent magnetic material. The increase in the magnetic transition temperature of Ni-Zn ferrite from 538 K in the ...

  9. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    . For geometries without ferrite, these zones can be defined only on basis of distance from coils. The simulation results indicate that magnetic field profile in the surroundings is influenced for ferrite based geometries and the three zones tend to overlap. This overlapping is studied via Comsol simulations...

  10. Barium ferrite nanoparticles prepared by self-propagating low ...

    Indian Academy of Sciences (India)

    Administrator

    temperature combustion method using ... talline barium ferrite. Keywords. Barium ferrite; self-propagating combustion method; magnetic property; X-ray diffraction; morphology. 1. Introduction .... known that γ-Fe2O3 is a cubic spinel, whose chemical.

  11. Electrocatalytic Activity of Electropolymerized Cobalt ...

    African Journals Online (AJOL)

    NICO

    2010-09-20

    Sep 20, 2010 ... KEYWORDS. Electrocatalysis, 6-mercaptopurine, 2-mercaptobenzimidazole, cobalt tetraaminophthalocyanine, electropolymeric film. 1. Introduction ... have been used to prepare polymeric film modified electrodes; among them ... ultrasonicated thoroughly in 50.0 % nitric acid, ethanol and distilled water ...

  12. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  13. Obtaining of PA 6/Ni ferrite composites. Structural characterization by XRD of the ferrites powders and composites

    International Nuclear Information System (INIS)

    Bezerra, Daniella C.; Gouveia, Taciana R. de; Leite, Amanda M.D.; Costa, Ana Cristina F.M.; Araujo, Edcleide M.

    2009-01-01

    In general, the ferrites are absorbers of electromagnetic radiation and have the versatility to be manufactured with different geometries, or be used in the form of polycrystalline ferrites (sintered sample), or composites of ferrite (in addition of the powder appropriate matrix). The nylon 6, in turn, belongs to a class of polymers, attractive for applications in engineering due to the combination of properties such as dimensional stability, good resistance to impact without notch and excellent chemical resistance. The objective of this study was to characterize structurally the Ni ferrite powders and nylon 6/ Ni ferrite composites obtained by X-ray diffraction (DRX). The Ni ferrite powders were mixed with a polymer matrix of nylon 6 in internal mixer Haake Blucher at a temperature of 240 deg C and 60 rpm, at concentrations of 10 and 30 wt.% of Ni ferrite powders. For both concentrations we observed the characteristic diffraction peaks of ferrite and nylon 6. (author)

  14. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  15. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    tric loss, ε″ and dielectric loss tangent, tan δ, have been studied for nanocrystalline ferrite samples as a func- tion of frequency. The dielectric constant and dielectric loss obtained for the nanocrystalline ferrites proposed by this technique possess lower value than that of the ferrites prepared by other methods for the same ...

  16. Tailoring magnetic and dielectric properties of rubber ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine ...

  17. Ferrite Loaded Coils for Improved Wireless Power Transfer Efficiency

    Science.gov (United States)

    2015-09-01

    a proven technology in some commercial applications, such as charging electronic toothbrushes and cellphones, there are several problems inherent to...ferrite materials. In this report, various ferrite configurations were evaluated using Computer Simulation Technology , and several high performance...ferrite configurations were evaluated using Computer Simulation Technology , and several high performance models were selected for construction and

  18. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  19. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  20. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  1. Enhanced strain sensitivity in magnetostrictive spinel ferrite Co1-xZnxFe2O4

    Science.gov (United States)

    Bhame, Shekhar D.; Joy, P. A.

    2018-02-01

    We report the magnetic and magnetoelastic properties of spinel oxide system Co1-xZnxFe2O4 (CZF series) where x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. All the composition were prepared by conventional solid state synthesis method and exhibited pure spinel phase formation. The lattice parameters showed gradual increase indicating uniform distribution Zn ions in cobalt ferrite lattice. The magnetic properties such as saturation magnetization and coercive field were drastically affected with Zn substitution showing enhanced saturation magnetization and a sharp decrease in the coercivity. The room temperature magnetostrictive properties showed a promising 30% enhancement in the slope of magnetostriction curve for x = 0.2 composition and a reasonable magnetostrictive strain of 110 ppm indicating its suitability as a promising magnetostrictive material.

  2. Micromagnetic simulations of spinel ferrite particles

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Christine C., E-mail: ccdantas@iae.cta.b [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Gama, Adriana M., E-mail: adriana-gama@uol.com.b [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)

    2010-10-15

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M{sub 1}-{sub n}Zn{sub n}Fe{sub 2}O{sub 4} (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={l_brace}Fe, Mn, Co, Ni, Mg, Cu {r_brace}; (b) for n=0.1: M = {l_brace}Fe, Mg{r_brace} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {l_brace}Mg, Cu{r_brace} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe{sub 3}O{sub 4} (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe{sub 3}O{sub 4} one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  3. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...... additive. This method makes it possible to deposit nickel, cobalt, nickel or cobalt platings without internal stresses....

  4. Formation and magnetic properties of Mn-Zn ferrites nanoparticles

    International Nuclear Information System (INIS)

    Kronkalns, G.

    2003-01-01

    The magnetic properties of ferrites are dependent on the crystalline structure and the location of metal ions in the material. The correct crystalline structure of a certain ferrite is formed by a special, very complex, technology. Bulk ferrites are synthesized at high temperatures (>1300 K) under a special, very complex, thermal treatment. On the other hand, the preparation of ferrite nanoparticles for magnetic fluids (MF) synthesis demands another special technology. More commonly used is the wet chemical coprecipitation production technology of magnetic nanoparticles for MF. The ferrites synthesized by the wet chemical method have different magnetic characteristics if compared o the ferrites prepared by standard ceramic methods. In this paper the preparation and physical properties of ultrafine Mn 0.5 Zn 0.5 Fe 2 O 4 ferrite particles and MF on its base, after their special thermal treatment, are studied. (author)

  5. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach.

    Science.gov (United States)

    Yu, Byong Yong; Kwak, Seung-Yeop

    2011-10-21

    Based on a self-assembly strategy, spherical mesoporous cobalt and nickel ferrite nanocrystal clusters with a large surface area and narrow size distribution were successfully synthesized for the first time via a template-free solvothermal process in ethylene glycol and subsequent heat treatment. In this work, the mesopores in the ferrite clusters were derived mainly from interior voids between aggregated primary nanoparticles (with crystallite size of less than 7 nm) and disordered particle packing domains. The concentration of sodium acetate is shown herein to play a crucial role in the formation of mesoporous ferrite spherical clusters. These ferrite clusters were characterized in detail using wide-angle X-ray diffraction, thermogravimetric-differential thermal analysis, (57)Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, standard and high-resolution transmission electron microscopy, and other techniques. The results confirmed the formation of both pure-phase ferrite clusters with highly crystalline spinel structure, uniform size (about 160 nm) and spherical morphology, and worm-like mesopore structures. The BET specific surface areas and mean pore sizes of the mesoporous Co and Ni-ferrite clusters were as high as 160 m(2) g(-1) and 182 m(2) g(-1), and 7.91 nm and 6.87 nm, respectively. A model for the formation of the spherical clusters in our system is proposed on the basis of the results. The magnetic properties of both samples were investigated at 300 K, and it was found that these materials are superparamagnetic. This journal is © The Royal Society of Chemistry 2011

  6. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  7. Co-containing spinel ferrite thin-film perpendicular magnetic recording media with Mn-Zn ferrite backlayer

    OpenAIRE

    Yamamoto, Setsuo; Kuniki, Hirofumi; Kurisu, Hiroki; Matsuura, Mitsuru

    2003-01-01

    Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered perpendicular media were prepared using reactive ECR sputtering and magnetron sputtering methods, and their magnetic and structural properties and recording characteristics were studied. The Mn-Zn ferrite thin-film backlayer had saturation magnetization of 3.5 kG and coercivity of 60 Oe. Reproduced voltage for the Co-containing ferrite thin-film/Mn-Zn ferrite thin-film double-layered medium was about twice of that for the ...

  8. Distribution of cations in nanosize and bulk Co-Zn ferrites.

    Science.gov (United States)

    Veverka, M; Jirák, Z; Kaman, O; Knížek, K; Maryško, M; Pollert, E; Závěta, K; Lančok, A; Dlouhá, M; Vratislav, S

    2011-08-26

    The structural and magnetic properties of Co(1-x)Zn(x)Fe2O4 ferrites (Co-Zn ferrites) are investigated in a narrow compositional range around x = 0.6, which is of interest because of applications in magnetic fluid hyperthermia. The study by x-ray and neutron diffraction, Mössbauer spectroscopy and magnetization measurements is done on nanoparticles prepared by the coprecipitation method and bulk samples sintered at high temperatures. In spite of the known preference of Zn2+ for tetrahedral (A) sites and Co2+ for octahedral [B] sites, the cations are distributed nearly evenly over the two sites of spinel structure and there is also a variable number of [B] site vacancies (see text), making cobalt ions trivalent. In particular for x = 0.6, the cationic distribution is refined to [Formula: see text] and [Formula: see text] for the 13 nm particles (T(C) = 335 K) and bulk sample (T(C) = 351 K), respectively.

  9. Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites

    Science.gov (United States)

    Nikzad, Alireza; Parvizi, Roghaieh; Rezaei, Ghasem; Vaseghi, Behrooz; Khordad, Reza

    2018-02-01

    A series of Co- and Gd-substituted NiFe2O4 ferrite nanoparticles with the formula Ni1- x Co x Fe2- y Gd y O4 (where x = 0.0-1.0 and y = 0.0-0.1) have been successfully synthesized using a hydrothermal method. X-ray diffraction and field emission scanning electron microscopy results indicated that a highly crystallized spherical ferrite nanoparticle structure was obtained along with an increase in the lattice parameters. Compositional analysis of the prepared nanoferrite powders has been carried out using energy-dispersive x-ray (EDX) spectra. The EDX analysis reveals the presence of Ni, Co, Gd and Fe elements in the specimens. Magnetization and the coercive field improved dramatically with an increase in the amount of cobalt and gadolinium added, attributed to the redistribution of cations in the spinel nanoferrite structure. Saturation magnetization and coercivity values up to 99 emu/g and 918 Oe, respectively, were measured using a vibration sample magnetometer at room temperature. Comparative microwave absorption experiments demonstrated that the reflection loss (RL) properties enhanced with increasing substitution of cations in the Ni-ferrite spinel structure for an absorber thickness of 1.8 mm. A maximum RL of - 26.7 dB was obtained for substituted Ni-Co-Gd nanoferrite with x = 1.0 and y = 0.1 at a frequency of 9.4 GHz with a bandwidth of 3.6 GHz (RL ≤ - 10 dB). Experimental results revealed that the synthesized nanoparticles possessed great potential in microwave absorption applications.

  10. Transport of cobalt-60 industrial radiation sources

    Science.gov (United States)

    Kunstadt, Peter; Gibson, Wayne

    This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.

  11. Cobalt-containing alloys and their ability to release cobalt and cause dermatitis.

    Science.gov (United States)

    Julander, Anneli; Hindsén, Monica; Skare, Lizbet; Lidén, Carola

    2009-03-01

    Cobalt, nickel, and chromium are important skin sensitizers. However, knowledge about cobalt exposure and causes of cobalt sensitization is limited. To study release of cobalt, nickel, and chromium from some cobalt-containing hard metal alloys and to test reactivity to the materials in cobalt-sensitized patients. Discs suitable for patch testing were made of some hard metal alloys. Cobalt, nickel, and chromium release from the materials was determined by immersion in artificial sweat (2 min, 1 hr, 1 day, and 1 week). Patch test reactivity to the discs and to serial dilutions of cobalt and nickel was assessed in previously patch-tested dermatitis patients (19 cobalt positive and 18 cobalt-negative controls). All discs released cobalt, nickel, and chromium. Some discs released large amounts of cobalt (highest concentration: 290 microg/cm(2)/week). Seven discs elicited three or more positive test reactions. The concentration of released cobalt was high enough to elicit allergic contact dermatitis in cobalt-sensitized patients. As the materials in the discs are used in wear parts of hard metal tools, individuals with contact allergy to cobalt may develop hand eczema when handling such materials.

  12. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  13. Ferromagnetic Behavior in Zinc Ferrite Nanoparticles Synthesized ...

    African Journals Online (AJOL)

    Zinc ferrite have been produced and used by humans since long time, however understanding of ZnFe2O4 as a nano structured materials is very useful in order to be used for technological applications. ZnFe2O4 structural, magnetic and electrical properties are different when synthesized using different techniques.

  14. Synthesis of lithium ferrites from polymetallic carboxylates

    Directory of Open Access Journals (Sweden)

    STEFANIA STOLERIU

    2008-10-01

    Full Text Available Lithium ferrite was prepared by the thermal decomposition of three polynuclear complex compounds containing as ligands the anions of malic, tartaric and gluconic acid: (NH42[Fe2.5Li0.5(C4H4O53(OH4(H2O2]×4H2O (I, (NH46[Fe2.5Li0.5(C4H4O63(OH8]×2H2O (II and (NH42[Fe2.5Li0.5(C6H11O73(OH7] (III. The polynuclear complex precursors were characterized by chemical analysis, IR and UV–Vis spectra, magnetic measurements and thermal analysis. The obtained lithium ferrites were characterized by XRD, scanning electron microscopy, IR spectra and magnetic measurements. The single α-Li0.5Fe2.5O4 phase was obtained by thermal decomposition of the tartarate complex annealed at 700 °C for 1 h. The magnetization value ≈ 50 emu g-1 is lower than that obtained for the bulk lithium ferrite due to the nanostructural character of the ferrite. The particle size was smaller than 100 nm.

  15. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    It should be noted that the values of the parameters in modeling procedure can be found in an earlier study (Tong et al 2004). 4. Results and discussion. In figures 1(a)–(c), the achieved results from the modeling of austenite to ferrite transformation are exhibited. In figure 1(a), the austenite grains achieved from the normal ...

  16. Residual stresses in cold drawn ferritic rods

    International Nuclear Information System (INIS)

    Atienza, J.M.; Martinez-Perez, M.L.; Ruiz-Hervias, J.; Mompean, F.; Garcia-Hernandez, M.; Elices, M.

    2005-01-01

    The residual stress state generated by cold-drawing in a ferritic steel rod has been determined. Stress profiles in the three principal directions were measured by neutron and X-ray diffraction and calculated by 3D finite element simulation. The agreement between the simulations and the experimental data is excellent

  17. Cadmium substituted high permeability lithium ferrite

    Indian Academy of Sciences (India)

    Unknown

    3, 0⋅4, 0⋅5 and 0⋅6 were pre- pared by a double sintering ... Lithium ferrites; initial permeability; grain size; microstructure; magnetic properties. 1. Introduction ... The single-phase spinel nature of the samples was con- firmed from X-ray ...

  18. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  19. Magnetic resonance in superparamagnetic zinc ferrite

    Indian Academy of Sciences (India)

    and EPR spectroscopy (Singh et al 2008a, b, 2010). In-field. Mössbauer spectroscopy at low temperature performed on these samples indicate that nanosized zinc ferrite exhibits antiferromagnetic ordering below blocking temperature. (Singh et al 2012). To get information about the spin- dynamics of nanosized system, ...

  20. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    Abstract. In this research, an algorithm based on the Q-state Potts model is presented for modeling the austenite to ferrite transformation. In the algorithm, it is possible to exactly track boundary migration of the phase formed during transformation. In the algorithm, effects of changes in chemical free energy, strain free energy ...

  1. Magnetic resonance in superparamagnetic zinc ferrite

    Indian Academy of Sciences (India)

    In the present work, we have synthesized zinc ferrite nanoparticles by nitrate method. Presence of almost zero value of coercivity and remanence in the hysteresis of these samples shows the superparamagnetic nature at room temperature. Electron paramagnetic resonance spectroscopy performed on these samples in the ...

  2. Cobalt production in RAPS-1

    International Nuclear Information System (INIS)

    Krishnan, P.D.; Purandare, H.D.

    1978-01-01

    At present in RAPS-1 radioisotope Co 60 is produced by irradiating Co 59 in the adjusters which perform the function of regulation of reactivity, power and xenon override. But the manrem expenditure of the crew handling the charge and discharge of the adjusters is going to be prohibitively high. It is therefore proposed to irradiate Co 59 in the fuel channel positions. The physics optimisation study for such irradiation is presented. The burnup penalty and loss of power are estimated to produce the required quantity of Co 60 after optimising the number of cobalt pencils in a bundle and the positions of the cobalt producing channels in the reactor core. (author)

  3. Cobalt(II) and Cobalt(III) Coordination Compounds.

    Science.gov (United States)

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  4. Dielectric and magnetic behavior of nanocrystalline Cu{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4} ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Jadoun, Priya, E-mail: priya4jadoun@gmail.com; Sharma, Jyoti; Prashant, B. L.; Dolia, S. N.; Bhatnagar, Deepak; Saxena, V. K. [Department of Physics, University of Rajasthan, Jaipur 302012 (India)

    2016-05-23

    The mixed copper cobalt ferrite nanoparticles (Cu{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) have been synthesized by sol-gel auto combustion route with aqueous metal nitrates and citric acid as the precursor. The crystal structure has been analyzed by X-Ray diffraction (XRD) method. XRD reveals the formation of single phase cubic spinel structure. The Scanning Electron Microscopy (SEM) is used for morphological studies. The dielectric measurements at room temperature show the decrease in dielectric constant with increasing frequency which is attributed to Maxwell Wagner model and conduction mechanism in ferrites.The magnetic measurements show ferromagnetic behavior at room temperature and large coercivity is observed on cooling down the temperature to 20 K.

  5. Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

    Science.gov (United States)

    Dabagh, Shadab; Chaudhary, Kashif; Haider, Zuhaib; Ali, Jalil

    2018-03-01

    Substitution of cobalt (Co2+) ions in cobalt ferrite (CoFe2O4) with copper (Cu2+) and aluminum (Al3+) ions allows variations in their electric and magnetic properties which can be optimized for specific applications. In this article, synthesis of inverse-spinel Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nanoparticles by substituting Cu2+ and Al3+ ions in CoFe2O4 via co-precipitation method is reported. By controlling copper and aluminum (Cu-Al) substituent ratio, the magnetic moment and coercivity of synthesized cobalt ferrite nanoparticles is optimized. The role of substituents on the structure, particle size, morphology, and magnetic properties of nano-crystalline ferrite is investigated. The Co1-xCuxFe2-xAlxO4 (0.0 ≤ x≤ 0.8) nanoparticles with crystallite size in the range of 23.1-26.5 nm are observed, 26.5 nm for x = 0.0-23.1 nm for x = 0.8. The inverse-spinel structure of synthesized Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nano-particles is confirmed by characteristic vibrational bands at tetrahedral and octahedral sites using Fourier transform infrared spectroscopy. A decreases in coercive field and magnetic moment is observed as Cu-Al contents are increased (x = 0.0-0.8). The positive anisotropy of synthesized particles Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) is obtained in the range 1.96 × 105 J/m3 for x = 0.0 to 0.29 × 105 J/m3 for x = 0.8.

  6. Electrocatalytic Activity of Electropolymerized Cobalt ...

    African Journals Online (AJOL)

    NICO

    2010-09-20

    Sep 20, 2010 ... The electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine (poly-CoTAPc) film modified on the glassy carbon electrode ... nation of these sulphhydryl compounds in human metabolism is essential for .... adduct product was formed by the coordination axially between. Co(II)TAPc and ...

  7. The cobalt-60 container scanner

    International Nuclear Information System (INIS)

    Jigang, A.; Liye, Z.; Yisi, L.; Haifeng, W.; Zhifang, W.; Liqiang, W.; Yuanshi, Z.; Xincheng, X.; Furong, L.; Baozeng, G.; Chunfa, S.

    1997-01-01

    The Institute of Nuclear Energy Technology (INET) has successfully designed and constructed a container (cargo) scanner, which uses cobalt-60 of 100-300 Ci as radiation source. The following performances of the Cobalt-60 container scanner have been achieved at INET: a) IQI (Image Quality Indicator) - 2.5% behind 100 mm of steel; b) CI (Contrast Indicator) - 0.7% behind 100 mm of steel; c) SP (Steel Penetration) - 240 mm of steel; d) Maximum Dose per Scanning - 0.02mGy; e) Throughput - twenty 40-foot containers per hour. These performances are equal or similar to those of the accelerator scanners. Besides these nice enough inspection properties, the Cobalt-60 scanner possesses many other special features which are better than accelerator scanners: a) cheap price - it will be only or two tenths of the accelerator scanner's; b) low radiation intensity - the radiation protection problem is much easier to solve and a lot of money can be saved on the radiation shielding building; c) much smaller area for installation and operation; d) simple operation and convenient maintenance; e) high reliability and stability. The Cobalt-60 container (or cargo) scanner is satisfied for boundary customs, seaports, airports and railway stations etc. Because of the nice special features said above, it is more suitable to be applied widely. Its high properties and low price will make it have much better application prospects

  8. Cobalt 60 commercial irradiation facilities

    International Nuclear Information System (INIS)

    West, G.

    1985-01-01

    The advantage of using cobalt 60 for ionizing treatment is that it has excellent penetration. Gamma plants are also very efficient, in as much as there is very little mechanical or electrical equipment in a gamma irradiation facility. The average efficiency of a gamma plant is usually around 95% of all available processing time

  9. Characterization of feline serum-cobalt binding.

    Science.gov (United States)

    Schnelle, Amy N; Barger, Anne M; MacNeill, Amy L; Mitchell, Mark M; Solter, Philip

    2015-06-01

    Oxidative stress inhibits albumin's ability to complex with cobalt. Feline serum-cobalt binding has not been described. The objective was to develop a cobalt binding test for use with feline serum, and correlate the results with other biochemical and cellular constituents in blood, and with clinical diseases of cats. A colorimetric test of cobalt binding, based on the oxidation-reduction reaction of Co(+2) and dithiothreitol, was developed using feline serum. The test was used to measure cobalt binding in stored serum from 176 cats presented to the University of Illinois Veterinary Teaching Hospital for a variety of disease conditions. Time-matched hematology and biochemical data, and clinical information, were obtained from the medical record of each cat and correlated with the serum-cobalt binding results. Serial dilution of feline serum with phosphate-buffered saline resulted in a highly linear decrease in serum-cobalt binding (r(2)  = .9984). Serum-cobalt binding of the clinical samples also correlated with albumin concentrations in a stepwise linear regression model (r(2)  = .425), and both cobalt binding and albumin were significantly decreased in cases of inflammation. Albumin and cobalt binding also shared significant correlations with several erythron variables, and serum concentration of total calcium and bilirubin. The correlation of cobalt binding measured by a colorimetric test with albumin concentration in the clinical samples and with serum dilution is consistent with feline albumin-cobalt complex formation. Hypoalbuminemia is the likely cause of reduced serum-cobalt binding in inflammation and the correlations observed between cobalt binding and other variables. © 2015 American Society for Veterinary Clinical Pathology.

  10. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    International Nuclear Information System (INIS)

    Munjal, Sandeep; Khare, Neeraj

    2016-01-01

    We have synthesized CoFe 2 O 4 (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible in water and form a stable aqueous solution with high electrophoretic mobility.

  11. Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles.

    Science.gov (United States)

    Lojk, Jasna; Strojan, Klemen; Miš, Katarina; Bregar, Boštjan Vladimir; Hafner Bratkovič, Iva; Bizjak, Maruša; Pirkmajer, Sergej; Pavlin, Mojca

    2017-03-15

    Potential nanoparticle (NP) toxicity is one of crucial problems that limit the applicability of NPs. When designing NPs for biomedical and biotechnological applications it is thus important to understand the mechanisms of their toxicity. In this study, we analysed the stress responses of previously designed polyacrylic acid (PAA) and polyethylenimine (PEI) coated NPs on primary human myoblasts (MYO) and B16 mouse melanoma cell line. Negatively charged PAA did not induce cell toxicity, reactive oxygen species (ROS) or activate the transcription factor NF-κB in either cell line even at high concentrations (100μg/ml). On the other hand, positively charged PEI NPs induced a concentration dependent necrotic cell death and an increase in ROS following 24h incubation already at low concentrations (>4μg/ml). Moreover, PEI NPs induced NF-κB activation 15-30min after incubation in MYO cells, most probably through activation of TLR4 receptor. Interestingly, there was no NF-κB response to PEI NPs in B16 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination

    International Nuclear Information System (INIS)

    Goh, S.C.; Chia, C.H.; Zakaria, S.; Yusoff, M.; Haw, C.Y.; Ahmadi, Sh.; Huang, N.M.; Lim, H.N.

    2010-01-01

    In this work, CoFe 2 O 4 nanocrystals with high saturation magnetization (M s ) and high coercivity (H c ) have been fabricated via a simple hydrothermal method and without subsequent calcination. The resulting CoFe 2 O 4 nanocrystals are characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectrometry, differential scanning calorimetry and vibrating sample magnetometry. The results indicate that CoFe 2 O 4 nanocrystals are single crystal and the average crystallite size is increasing with the hydrothermal temperature. The electron micrographs show that the nanocrystals are well-dispersed and possess uniform size. The shape of CoFe 2 O 4 nanocrystals is transformed from spherical into rod by increasing the hydrothermal temperature. The nanocrystals show relatively high M s of 74.8 emu g -1 and H c of 2216 Oe, as compared to previous reported results. The obtained results reveal the applicability of this method for efficiently producing well crystallized and relatively high magnetic properties CoFe 2 O 4 nanocrystals as compared to other methods. More importantly, it does not require further calcination processes.

  13. Surface modification of Cobalt ferrite nano-hollowspheres for inherent multiple photoluminescence and enhanced photocatalytic activities

    Science.gov (United States)

    Talukdar, Souvanik; Mandal, Dipika; Mandal, Kalyan

    2017-03-01

    Nano-hollow spheres (NHSs) are the new drift in magnetic nanostructures as they provide more surface area at nano length scale with enhanced magnetic properties compared to their nanoparticle counterpart. Here we reported the synthesis of biocompatible CoFe2O4 NHSs of diameter around 250 nm and emergence of intrinsic multiple photoluminescence from blue, green to red on modifying their surface with small organic ligands like tartrate. The surface modified NHSs also showed notable photocatalytic activity towards the degradation of environmentally malefic dyes like Methylene Blue and Rhodamine B. The surface modified NHSs are found to exhibit superior magnetic properties.

  14. Synthesis and characterization cobalt ferrite and evaluation of performance in the transesterification methyl two lipid sources

    International Nuclear Information System (INIS)

    Cunha, R.B.L.; Costa, A.C.F.M.; Dantas, B.B.; Silva, A.S.

    2011-01-01

    The cottonseed and soybean oils are two lipid matrices that can be used to obtain biodiesel through the use of homogeneous catalysts, which increase operating costs. The use of heterogeneous catalysts can remedy this problem. Thus, this study aimed to evaluate the use of heterogeneous catalyst CoFe 2 O 4 synthesized by combustion reaction in the transesterification of methyl cottonseed oil, soybean and their mixtures (1:1). The sample was characterized by XRD and textural analysis by nitrogen adsorption. The catalytic tests were conducted at 200 deg C, molar ratio of oil:ethanol 1:15, 2% of catalyst and 3 hours. The results show that the synthesis has been effective in obtaining the phase CoFe2O4 with surface area of 23.75 m 2 g -1 . Tests for transesterification of methyl cottonseed oil, soybean and their blends indicated that the material under study resulted conversions above 50%. The highest efficiency was obtained for the reaction using the mixture of oils. (author)

  15. Magnetization and stability study of a cobalt-ferrite-based ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Saeed, E-mail: skamali@utsi.edu [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388 (United States); Pouryazdan, Mohsen [Institute for Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD), 64287 Darmstadt (Germany); Ghafari, Mohammad [Institute for Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan (Japan); Rahman, Masoud; Stroeve, Pieter [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Hahn, Horst [Institute for Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD), 64287 Darmstadt (Germany); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 Japan (Japan)

    2016-04-15

    In this study the structural and magnetization properties of a CoFe{sub 2}O{sub 4}-based ferrofluid was investigated using x-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), Mössbauer spectroscopy, and magnetic Compton scattering (MCS) measurements. The XRD diagram indicates that the nanoparticles in the ferrofluid are inverse spinel and TEM graph shows that the ferrofluid consists of spherical nanoparticles with an average diameter of 18± 1 nm, in good agreement with the size, 19.4 nm, extracted from line broadening of the XRD peaks. According to EDS measurements the composition of the nanoparticles is CoFe{sub 2}O{sub 4}. Mössbauer spectroscopy shows that the cation distributions are (Co{sub 0.38}Fe{sub 0.62})[Co{sub 0.62}Fe{sub 1.38}]O{sub 4}. The MCS measurement, performed at 10 K, indicates that the magnetization of the nanoparticles is similar to magnetization of maghemite and magnetite. While the magnetization of the inverse spinels are in [111] direction, interestingly, the magnetization deduced from MCS is in [100] direction. The CoFe{sub 2}O{sub 4}-based ferrofluid is found to be stable at ambient conditions, which is important for applications.

  16. Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajnish [Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801103 (India); Singh, Rakesh Kr. [Aryabhatta Center for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna 800001 (India); Zope, Mukesh Kumar [Indira Gandhi Institute of Medical Sciences, Sheikhpura, Patna 800014 (India); Kar, Manoranjan, E-mail: mano@iitp.ac.in [Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801103 (India)

    2017-06-15

    Highlights: • Increase of lattice parameter due to Pb substitution in CFO. • Magnetism due to lattice strain in nonmagnetic (Pb) substituted CFO. • Saturation magnetization increases up to 2% Pb concentration. • Magnetocrystalline anisotropy constant increases up to 2% Pb concentration. • Existence of non-collinear spin structure which can be explained by three sublattice model of Yafet and Kittel. - Abstract: Co{sub 1−x}Pb{sub x}Fe{sub 2}O{sub 4} (x = 00–0.15) have been synthesized using citric acid modified sol-gel method. Samples for x ≤ 0.02 have been ball milled to reduce the particle size. Hence, all the materials under the study are in almost equal crystallite size (∼15 nm). The phase purity and structural study have been carried out using X-ray powder diffraction (XRD) technique. The Rietveld refinement of XRD patterns reveals the increasing lattice parameter with the lead (Pb) concentration. Detailed analysis of the Raman spectroscopy data supports the XRD pattern analysis results. Magnetic hysteresis loop measurements have been performed using Vibrating Sample Magnetometer (VSM) at room temperature over field range of ±20 kOe. Magnetocrystalline anisotropy constant was calculated using Law of Approach (LA) to saturation, which shows increasing behavior till 2% Pb concentration. The large difference in experimental and theoretical saturation magnetic moment per formula unit shows existence of three sublattice model suggested by Yafet-Kittel.

  17. Electrical Properties and Dipole Relaxation Behavior of Zinc-Substituted Cobalt Ferrite

    Science.gov (United States)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2017-12-01

    Co1- x Zn x Fe2O4 ceramics with x = 0.00, 0.05, 0.10, 0.15 and 0.20 were synthesized by a modified citric acid sol-gel method. The crystalline phase of the samples was characterized by the powder x-ray diffraction technique (XRD) and the Rietveld analysis of the XRD patterns. The morphology and particle size were studied using field emission scanning electron microscopy. Fourier transform infrared spectroscopy studies were consistent with the XRD results. The impedance measurements were carried out from 100 Hz to 10 MHz at different temperatures from 40°C to 300°C. The frequency dispersion of dielectric was analyzed with a modified Debye equation. The activation energy derived from the dielectric constant and the impedance follows the Arrhenius law and are comparable with each other. The dielectric relaxation and impedance relaxation are correlated in terms of activation energy, show a good temperature stability of the dielectrics and are useful for their applications in microelectronic devices such as filters, capacitors, resonators, etc.

  18. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy

    Science.gov (United States)

    Habib, A. H.; Ondeck, C. L.; Chaudhary, P.; Bockstaller, M. R.; McHenry, M. E.

    2008-04-01

    Magnetic nanoparticles (MNPs) offer promise for local hyperthermia or thermoablative cancer therapy. Magnetic hyperthermia uses MNPs to heat cancerous regions in an rf field. Metallic MNPs have larger magnetic moments than iron oxides, allowing similar heating at lower concentrations. By tuning the magnetic anisotropy in alloys, the heating rate at a particular particle size can be optimized. Fe-Co core-shell MNPs have protective CoFe2O4 shell which prevents oxidation. The oxide coating also aids in functionalization and improves biocompatibility of the MNPs. We predict the specific loss power (SLP) for FeCo (SLP ˜450W /g) at biocompatible fields to be significantly larger in comparision to oxide materials. The anisotropy of Fe-Co MNPs may be tuned by composition and/or shape variation to achieve the maximum SLP at a desired particle size.

  19. Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures

    Directory of Open Access Journals (Sweden)

    Adeela Nairan

    2016-04-01

    Full Text Available In this work MnxCo1−xFe2O4 nanoparticles (NPs were synthesized using a chemical co-precipitation method. Phase purity and structural analyses of synthesized NPs were performed by X-ray diffractometer (XRD. Transmission electron microscopy (TEM reveals the presence of highly crystalline and narrowly-dispersed NPs with average diameter of 14 nm. The Fourier transform infrared (FTIR spectrum was measured in the range of 400–4000 cm−1 which confirmed the formation of vibrational frequency bands associated with the entire spinel structure. Temperature-dependent magnetic properties in anti-ferromagnet (AFM and ferromagnet (FM structure were investigated with the aid of a physical property measurement system (PPMS. It was observed that magnetic interactions between the AFM (Mn and FM (CoFe2O4 material arise below the Neel temperature of the dopant. Furthermore, hysteresis response was clearly pronounced for the enhancement in magnetic parameters by varying temperature towards absolute zero. It is shown that magnetic properties have been tuned as a function of temperature and an externally-applied field.

  20. Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures.

    Science.gov (United States)

    Nairan, Adeela; Khan, Maaz; Khan, Usman; Iqbal, Munawar; Riaz, Saira; Naseem, Shahzad

    2016-04-18

    In this work Mn x Co 1- x Fe₂O₄ nanoparticles (NPs) were synthesized using a chemical co-precipitation method. Phase purity and structural analyses of synthesized NPs were performed by X-ray diffractometer (XRD). Transmission electron microscopy (TEM) reveals the presence of highly crystalline and narrowly-dispersed NPs with average diameter of 14 nm. The Fourier transform infrared (FTIR) spectrum was measured in the range of 400-4000 cm -1 which confirmed the formation of vibrational frequency bands associated with the entire spinel structure. Temperature-dependent magnetic properties in anti-ferromagnet (AFM) and ferromagnet (FM) structure were investigated with the aid of a physical property measurement system (PPMS). It was observed that magnetic interactions between the AFM (Mn) and FM (CoFe₂O₄) material arise below the Neel temperature of the dopant. Furthermore, hysteresis response was clearly pronounced for the enhancement in magnetic parameters by varying temperature towards absolute zero. It is shown that magnetic properties have been tuned as a function of temperature and an externally-applied field.

  1. and aluminum-substituted cobalt ferrite prepared by co-precipitation

    Indian Academy of Sciences (India)

    1Shiv Chhatrapati College, Aurangabad 431 004, India. 2Department of Physics, Dr. B. A. Marathwada University, Aurangabad 431 004, India. ∗Corresponding author. E-mail: ... S T Alone and K M Jadhav a wide spectrum of magnetic structures, ferrimagnetic order, cluster spin glass etc. [8]. No systematic investigations of ...

  2. Growth and characterization of multiferroic barium titanate-cobalt ferrite thin film nanostructures

    Science.gov (United States)

    Zheng, Haimei

    Multiferroic materials which display simultaneous ferroelectricity and magnetism have been stimulating significant interest both from the basic science and application point of view. It was proposed that composites with one piezoelectric phase and one magnetostrictive phase can be magnetoelectrically coupled via a stress mediation. The coexistence of magnetic and electric subsystems as well as the magnetoelectric effect of the material allows an additional degree of freedom in the design of actuators, transducers, and storage devices. Previous work on such materials has been focused on bulk ceramics. In the present work, we created vertically aligned multiferroic BaTiO 3-CoFe2O4 thin film nanostructures using pulsed laser deposition. Spinel CoFe2O4 and perovskite BaTiO 3 spontaneously separated during the film growth. CoFe2O 4 forms nano-pillar arrays embedded in a BaTiO3 matrix, which show three-dimensional heteroepitaxy. CoFe2O4 pillars have uniform size and spacing. As the growth temperature increases the lateral size of the pillars also increases. The size of the CoFe2O 4 pillars as a function of growth temperature at a constant growth rate follows an Arrhenius behaviour. The formation of the BaTiO3-CoFe 2O4 nanostructures is a process directed by both thermodynamic equilibrium and kinetic diffusion. Lattice mismatch strain, interface energy, elastic moduli and molar ratio of the two phases, etc., are considered to play important roles in the growth dynamics leading to the nanoscale pattern formation of BaTiO3-CoFe2O4 nanostructures. Magnetic measurements exhibit that all the films have a large uniaxial magnetic anisotropy with an easy axis normal to the film plane. It was calculated that stress anisotropy is the main contribution to the anisotropy field. We measured the ferroelectric and piezoelectric properties of the films, which correspond to the present of BaTiO3 phase. The system shows a strong coupling of the two order parameters of polarization and magnetization through the coupled lattices. This approach to the formation of self-assembled ferroelectric/ferro(ferri-)magnetic nanostructures is generic. We have created similar nanostructures from other spinel-perovskite systems such as BiFeO3-CoFe2O 4, BaTiO3-NiFe2O4, etc., thus making it of great interest and value to a broad materials community.

  3. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  4. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    Science.gov (United States)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus

    2010-08-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.

  5. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  6. Low-Loss Ferrite Components for NASA Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ferrite based isolators and circulators have been successfully demonstrated at microwave, millimeter-wave and submillimeter-wave frequencies. These components are...

  7. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  8. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Unknown

    Ferrite grade iron oxides from ore rejects. 333. S 250 MK III were used to find out the particle size distributions in the final oxide products. 3. Results and discussion. 3.1 Phase identification. The dhkl values of all oxide products were compared with the JCPDS files: 24–81 and 25–1402. All were found to be mainly γ-Fe2O3 ...

  9. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    Ferrite samples with composition, CdCo1−Fe2O4 ( = 0.80, 0.85, 0.90, 0.95 and 1.0), were prepared by standard ceramic method and characterized by XRD, IR and SEM techniques. X-ray analysis confirms the formation of single phase cubic spinel structure. Lattice constant and grain size of the samples increase with ...

  10. Magnetocapacitance effects in MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Y. M. Xu

    2015-11-01

    Full Text Available The magnetocapacitance effects of MnZn ferrites with different initial permeabilities have been studied systematically. Both intrinsic effect associated with magnetoelectric coupling and extrinsic effect, which means the combined contribution of magnetoresistance and the Maxwell-Wagner effect, have been observed simultaneously. Analysis shows that the relationship between the origins of both is in competitive equilibrium. Either of both mechanisms plays a dominant role in magnetocapacitance effects under different conditions, respectively, such as permeability and frequency of applied signals.

  11. Ferritic stainless steels: corrosion resistance + economy

    International Nuclear Information System (INIS)

    Remus, A.L.

    1976-01-01

    Ferritic stainless steels provide corrosion resistance at lower cost. They include Type 409, Type 439, 18SR, 20-Mo (1.6 Mo), 18-2 (2 Mo), 26-1S, E-Brite 26-1, 29 Cr-4 Mo, and 29 Cr-4 Mo-2 Ni. Their corrosion and mechanical properties are examined. Resistance to stress-corrosion cracking is an advantage compared to austenitic types

  12. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    GHz region and chlorine gas sensors (Gotic et al 1998;. Gopal Reddy et al 1999). Among the ferrites, the ... (10 ml, 0⋅5 molar) and nickel nitrate (10 ml, 0⋅5 molar) were added slowly to a mixture of NaOH (10 ml, .... duced the surface to volume ratio increases and the num- ber of iron ions in B sites increases. This results in ...

  13. Cadmium substituted high permeability lithium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Polycrystalline Li0⋅5 – x/2CdxFe2⋅5 – x/2O4 ferrites where x = 0, 0⋅1, 0⋅2, 0⋅3, 0⋅4, 0⋅5 and 0⋅6 were pre- pared by a double sintering ceramic technique and characterized by X-ray diffraction and scanning electron microscopy (SEM). The lattice parameter is found to increase monotonically with the cadmium ...

  14. Preparation and Characterization of Manganese Ferrite Aluminates

    Directory of Open Access Journals (Sweden)

    R. L. Dhiman

    2008-01-01

    Full Text Available Aluminum doped manganese ferrites MnAlxFe2−xO4 with 0.0≤x≤1.0 have been prepared by the double ceramic route. The formation of mixed spinel phase has been confirmed by X-ray diffraction analysis. The unit cell parameter `aO' is found to decrease linearly with aluminum concentration due to smaller ionic radius of aluminum. The cation distributions were estimated from X-ray diffraction intensities of various planes. The theoretical lattice parameter, X-ray density, oxygen positional parameter, ionic radii, jump length, and bonds and edges lengths of the tetrahedral (A and octahedral (B sites were determined. 57Fe Mössbauer spectra recorded at room temperature were fitted with two sextets corresponding to Fe3+ ions at A- and B-sites. In the present ferrite system, the area ratio of Fe3+ ions at the A- and B-sites determined from the spectral analysis of Mössbauer spectra gives evidence that Al3+ ions replace iron ions at B-sites. This change in the site preference reflects an abrupt change in magnetic hyperfine fields at A- and B-sites as aluminum concentration increases, which has been explained on the basis of supertransferred hyperfine field. On the basis of estimated cation distribution, it is concluded that aluminum doped manganese ferrites exhibit a 55% normal spinel structure.

  15. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    International Nuclear Information System (INIS)

    Ramesh, Thimmasandra Narayan

    2010-01-01

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co 3 O 4 . The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co 3 O 4 phase.

  16. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  17. Contribution to the structural study of austeno-ferritic steels. Morphological and analytical definition of the ferritic phase

    International Nuclear Information System (INIS)

    Bathily, Alassane.

    1977-07-01

    Conditions of fast and selective austenite dissolution were defined by means of current-voltage curves using AISI 316-type materials (welding beads). The ferritic phase was isolated and identified with X-rays. The percentages of ferrite were compared gravimetrically with those obtained by traditional methods. The ferrite isolated was chemically analysed by atomic absorption, the only doubtful value being carbon. It is shown by this method that a morphological study of the solidification of the ferritic lattice is possible, even for percentages around 1% [fr

  18. Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.

    2008-01-01

    The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and

  19. Mineral resource of the month: cobalt

    Science.gov (United States)

    Shedd, Kim B.

    2009-01-01

    Cobalt is a metal used in numerous commercial, industrial and military applications. On a global basis, the leading use of cobalt is in rechargeable lithium-ion, nickel-cadmium and nickel-metal hydride battery electrodes. Cobalt use has grown rapidly since the early 1990s, with the development of new battery technologies and an increase in demand for portable electronics such as cell phones, laptop computers and cordless power tools.

  20. Derivative spectrophotometry of cobalt alloys

    International Nuclear Information System (INIS)

    Spitsyn, P.K.

    1985-01-01

    The method of derivative spectrophotometry is briefly described, and derivative absorption spectra are presented for samarium, cobalt, and commercial Sm-Co alloys. It is shown that the use of derivative spectrophotometry not only improves the accuracy and selectivity of element determinations but also simplifies the analysis of alloys. Results of a statistical evaluation of the metrological characteristics of the analytical procedure described here are presented. 8 references

  1. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola

    2012-01-01

    -containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult...

  2. EFTF cobalt test assembly results

    International Nuclear Information System (INIS)

    Rawlins, J.A.; Wootan, D.W.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1988-01-01

    A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility during Cycle 9A for 137.7 equivalent full power days at a power level fo 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal to produce Co-60, and a set of 4 pins with europium oxide to produce Gd-153, a radioisotope used in detection of the bone disease Osteoporosis. Post-irradiation examination of the cobalt pins determined the Co-60 produced with an accuracy of about 5 %. The measured Co-60 spatially distributed concentrations were within 20 % of the calculated concentrations. The assembly average Co-60 measured activity was 4 % less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes Eu-152 and Eu-154 to an absolute accuracy of about 10 %. The measured europium radioisotpe anc Gd-153 concentrations were within 20 % of calculated values. In conclusion, the hydride assembly performed well and is an excellent vehicle for many Fast Flux Test Facility isotope production applications. The results also demonstrate that the calculational methods developed by the Westinghouse Hanford Company are very accurate. (author)

  3. Spectrophotometric determination of cobalt with phenanthrenequinone monoxime.

    Science.gov (United States)

    Trikha, K C; Katyal, M; Singh, R P

    1967-08-01

    Phenanthrenequinone monoxime reacts with cobalt to form a yellow-orange insoluble 1:3 (cobalt:ligand) complex which is extractable into chloroform in the pH range 4.45-8.0. The determination of cobalt is carried out at 470 mmu. Beer's law is obeyed over the concentration range 0-3.0 ppm of cobalt. The sensitivity is 0-00336 mug of Co/cm(2) for 0.001 absorbance. The effect of a number of foreign ions has been studied.

  4. Cobalt accumulation and circulation by blackgum trees

    International Nuclear Information System (INIS)

    Thomas, W.A.

    1975-01-01

    Blackgum (Nyssa sylvatica Marsh.) trees accumulate far greater concentrations of cobalt in mature foliage than do other species on the same site (363 ppM in ash of blackgum, compared with about 3 ppM by mockernut hickory and about 1 ppM by red maple, tulip tree, and white oak). Cobalt concentrations in dormant woody tissues of blackgum also significantly exceed those in the other four species. Inoculation of six blackgums with 60 Co revealed that cobalt remains mobile in the trees for at least 3 years. Foliar concentrations of stable cobalt increase uniformly until senescence. In late August, foliage accounts for only 9 percent of total tree weight but 57 percent of total tree cobalt. Losses of cobalt from trees occur almost entirely by leaf abscission, and the loss rates of weight and cobalt from decomposing litter are similar. Retention of cobalt in the biologically active soil layers perpetuates zones of cobalt concentration created by this species in woodlands

  5. on the magnetic properties of ultra-fine zinc ferrites

    NARCIS (Netherlands)

    Anantharaman, M.R.; Jagatheesan, S.; Malini, K.A.; Sindhu, S.; Narayanasamy, A.; Chinnasamy, C.N.; Jacobs, J.P.; Reijne, S.; Seshan, Kulathuiyer; Smits, R.H.H.; Smits, R.H.H.; Brongersma, H.H.

    1998-01-01

    Zinc ferrite belongs to the class of normal spinels where it is assumed to have a cation distribution of Zn2+(Fe3+)2(O2−)4, and it is purported to be showing zero net magnetisation. However, there have been recent reports suggesting that zinc ferrite exhibits anomaly in its magnetisation. Zinc

  6. Electroless Ni–P–ferrite composite coatings for microwave ...

    Indian Academy of Sciences (India)

    posite coating, namely, Ni–P–ferrite, nanosized ferrite particles are co-deposited in the Ni–P matrix. The composite coating with thickness less than ∼0.1 mm has been produced and found to exhibit about 20 db of absorption of microwave in the range of 12–18 GHz, which can be exploited for radar applications. 2.

  7. Nano copper ferrite: A reusable catalyst for the synthesis of , ...

    Indian Academy of Sciences (India)

    Copper ferrite nano material as reusable heterogeneous initiator in the synthesis of , -unsaturated ketones and allylation to acid chlorides are presented. The reaction of allylichalides with various acid chlorides is achieved in the presence of copper ferrite nano powders at room temperature in tetrahydrofuran (THF).

  8. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    ions essentially breaks up the ferrimagnetically active oxygen polyhedra. This created nanoscale regions of ferrites. Saturation magnetization and coercive field show a strong dependence on the size of the ferrite grains. Superparamagnetic behaviour is observed from the. Mössbauer spectra of nanostructured NiFe2O4, ...

  9. Development and characterization of nickel–zinc spinel ferrite for ...

    Indian Academy of Sciences (India)

    This paper deals with the development and characterization of nickel–zinc spinel ferrite (Ni(1–) ZnFe2O4) for microwave absorption at 2.4 GHz (ISM band). The ferrite powder was prepared by dry attrition and sintering process. Complex permittivity and permeability of the prepared sample have been determined by ...

  10. Synthesis and characterization of zinc ferrite nanoparticles obtained ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The self-propagating low-temperature combustion method was used to produce nanocrystalline particles of zinc ferrite. The products were characterized for chemical and phase composition, morphology and magnetic properties. The results obtained showed the formation of single-phase zinc ferrite nanoparticles.

  11. A seeded ambient temperature ferrite process for treatment of AMD ...

    African Journals Online (AJOL)

    A seeded ambient temperature ferrite process for treatment of AMD waters: magnetite formation in the presence and absence of calcium ions under steady state operation. ... promising for AMD treatment. Keywords: Ferrite process, Magnetite seed, Calcium interference, Acid mine drainage (WaterSA: 2003 29(2): 117-124) ...

  12. Fundamental study of a one-step ambient temperature ferrite ...

    African Journals Online (AJOL)

    Fundamental study of a one-step ambient temperature ferrite process for treatment of acid mine drainage waters: rapid communication. ... The approach involves the controlled oxidation of ferrous-containing AMD water at ambient temperatures in the presence of magnetite seed. The resulting oxidation product is the ferrite ...

  13. Performance Variation of Ferrite Magnet PMBLDC Motor with Temperature

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    The price fluctuations of rare earth metals and the uncertainty in their availability has generated an increased interest in ferrite magnet machines. The influence of temperature on BH characteristics of the ferrite magnet differ considerably from that of the rare earth magnet and hence, requires...... a different approach when deciding their operating point. In this work, laboratory measured BH curves of a ferrite magnet are used for estimating the possibility of demagnetization in a segmented axial torus (SAT) permanent magnet brushless DC (PMBLDC) motor. The BH characteristics for different temperatures...... have been used to study the performance variation of the ferrite magnet SAT PMBLDC motor with temperature. A detailed analysis is carried out to ensure that, the designed ferrite magnet motor is capable of delivering the specified torque throughout the operating speed, without any irreversible...

  14. AC and DC electrical conductivity, dielectric and magnetic properties of Co0.65Zn0.35Fe2- x Mo x O4 ( x = 0.0, 0.1 and 0.2) ferrites

    Science.gov (United States)

    Pradhan, A. K.; Saha, S.; Nath, T. K.

    2017-11-01

    Cobalt-Zinc ferrites are an important material for designing multiferroic composite. The Mo (4d-transition metal) doped Cobalt-Zinc ferrites are synthesized using ceramic (solid-state reaction) method. Investigation of detailed ac and dc electrical conductivity, dielectric and magnetic properties of Co0.65Zn0.35Fe2- x Mo x O4 ( x = 0.0, 0.1 and 0.2) spinel ferrites have been reported here. The recorded XRD pattern confirms the formation of inverse spinel structure of the material. The dielectric dispersion has been studied in detail and the existence of non-Debye type relaxation behavior has been confirmed. The dielectric tangent loss is found to be very small at high frequency. The ac conductivity follows the correlated barrier hopping like model. Also the conduction process can be best explained on the basis of Verwey-de Boer mechanism. Magnetic phase transition of the material is estimated from magnetization vs. temperature plots.

  15. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid.

    Directory of Open Access Journals (Sweden)

    Noor Muhammad

    Full Text Available Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4-C2H6O2 (manganese zinc ferrite-ethylene glycol, NiZnFe2O4-C2H6O2 (Nickel zinc ferrite-ethylene glycol, Fe2O4-C2H6O2 (magnetite ferrite-ethylene glycol, NiZnFe2O4-H2O (Nickel zinc ferrite-water, MnZnFe2O4-H2O (manganese zinc ferrite-water, and Fe2O4-H2O (magnetite ferrite-water nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier's law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto-thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement.

  16. CASS Ferrite and Grain Structure Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Clayton O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  17. Plasticity of oxide dispersion strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Zakine, C.; Prioul, C.; Alamo, A.; Francois, D.

    1993-01-01

    Two 13%Cr oxide dispersion strengthened (ODS) ferritic alloys, DT and DY, exhibiting different oxide particle size distribution and a χ phase precipitation were studied. Their tensile properties have been tested from 20 to 700 C. Experimental observations during room temperature tensile tests performed in a scanning electronic microscope have shown that the main damage mechanism consists in microcracking of the χ phase precipitates on grain boundaries. These alloys are high tensile and creep resistant between 500 and 700 C. Their strongly stress-sensitive creep behaviour can be described by usual creep laws and incorporating a threshold stress below which the creep rate is negligible. (orig.)

  18. Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fantechi, Elvira; Innocenti, Claudia; Albino, Martin; Lottini, Elisabetta [INSTM and Department of Chemistry “U. Schiff”, Università di Firenze, via della Lastruccia 3, Sesto Fiorentino, I-50019 Firenze (Italy); Sangregorio, Claudio, E-mail: csangregorio@iccom.cnr.it [C.N.R. – I.C.C.O.M., via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)

    2015-04-15

    Magnetite nanoparticles (NPs) are extensively investigated for biomedical applications, particularly as contrast agents for Magnetic Resonance Imaging and as heat mediators in Magnetic Fluid Hyperthermia. For the latter, one of the goal of the research is to obtain materials with improved hyperthermic properties. A valuable strategy is the increase of the magnetic anisotropy of commonly employed magnetite through the total or partial substitution of Fe{sup 2+} ions with Co{sup 2+} ions. Here we present a study on a family of 8 nm Co-doped magnetite NPs (Co{sub x}Fe{sub 3−x}O{sub 4}), with composition ranging from pure magnetite (x=0) to stoichiometric cobalt ferrite (x=1), aimed to investigate the evolution of the hyperthermic properties with the increase of Co content. We found that the addition of a small amount of Co is enough to sharply increase the Specific Absorption Rate (SAR). The SAR further increases with x but it reaches a maximum for an intermediate value (x=0.6). Such anomalous behavior is ascribed to the intrinsic magnetic properties of the material, and, in particular, to the magnetic anisotropy, which displays the same peculiar trend. The Co-doping thus may represent an effective strategy to improve the poor hyperthermic efficiency of very small magnetite NPs (<10 nm). - Highlights: • A series of 8 nm non-stoichiometric cobalt ferrite nanoparticles was synthesized. • The Co:Fe molar ratio was varied systematically from 0 to 0.5. • The SAR was observed to have a maximum at intermediate Co content. • The hyperthermic results are explained on the basis of the magnetic anisotropy. • Co-doping is an effective strategy to improve the SAR of Fe{sub 3}O{sub 4} NPs less than 10 nm.

  19. Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

    Directory of Open Access Journals (Sweden)

    Shadab Dabagh

    2018-03-01

    Full Text Available Substitution of cobalt (Co2+ ions in cobalt ferrite (CoFe2O4 with copper (Cu2+ and aluminum (Al3+ ions allows variations in their electric and magnetic properties which can be optimized for specific applications. In this article, synthesis of inverse-spinel Co1−xCuxFe2−xAlxO4 (0.0 ≤ x ≤ 0.8 nanoparticles by substituting Cu2+ and Al3+ ions in CoFe2O4 via co-precipitation method is reported. By controlling copper and aluminum (Cu-Al substituent ratio, the magnetic moment and coercivity of synthesized cobalt ferrite nanoparticles is optimized. The role of substituents on the structure, particle size, morphology, and magnetic properties of nano-crystalline ferrite is investigated. The Co1−xCuxFe2−xAlxO4 (0.0 ≤ x≤ 0.8 nanoparticles with crystallite size in the range of 23.1–26.5 nm are observed, 26.5 nm for x = 0.0–23.1 nm for x = 0.8. The inverse-spinel structure of synthesized Co1−xCuxFe2−xAlxO4 (0.0 ≤ x ≤ 0.8 nano-particles is confirmed by characteristic vibrational bands at tetrahedral and octahedral sites using Fourier transform infrared spectroscopy. A decreases in coercive field and magnetic moment is observed as Cu-Al contents are increased (x = 0.0–0.8. The positive anisotropy of synthesized particles Co1−xCuxFe2−xAlxO4 (0.0 ≤ x ≤ 0.8 is obtained in the range 1.96 × 105 J/m3 for x = 0.0 to 0.29 × 105 J/m3 for x = 0.8. Keywords: Co-precipitation method, XRD, Spinel ferrites, VSM, TEM

  20. Cobalt-chitosan: Magnetic and biodegradable heterogeneous ...

    Indian Academy of Sciences (India)

    A novel and biodegradable cobalt-chitosan as a magnetic heterogeneous catalyst was synthesized and characterized by XPS, FT-IR, EDX and TEM. Catalytic performance of cobalt- chitosan was tested by aerobic oxidation of alkyl arenes and alcohols. The results show that the catalyst exhibits excellent conversion for ...

  1. Cobalt-chitosan: Magnetic and biodegradable heterogeneous ...

    Indian Academy of Sciences (India)

    Abstract. A novel and biodegradable cobalt-chitosan as a magnetic heterogeneous catalyst was synthesized and characterized by XPS, FT-IR, EDX and TEM. Catalytic performance of cobalt- chitosan was tested by aerobic oxidation of alkyl arenes and alcohols. The results show that the catalyst exhibits excellent ...

  2. Cobalt removal from wastewater using pine sawdust

    African Journals Online (AJOL)

    StudentLab

    2012-05-15

    May 15, 2012 ... was evaluated as an adsorbent in the treatment of wastewater containing cobalt ions. A two-level three ... showed adsorption capabilities for cobalt, and hence it could be an option in the quest to use waste to treat wastewater. ... using the Rushton turbine impellers for 30 min, and then separated by vacuum ...

  3. Cobalt 60 availability for radiation processing

    International Nuclear Information System (INIS)

    Fraser, F.M.

    1986-01-01

    In the last 20 years, the steady and significant growth in the application of radiation processing to industrial sterilization has been seen. The principal application of this technology is the sterilization of disposable medical products, food irradiation, the irradiation of personal care goods and so on. At present, more than 70 million curies of cobalt-60 supplied by Atomic Energy of Canada Ltd. have been used for gamma processing in these applications. This is estimated to be more than 80 % of the total cobalt-60 in service in the world. Commercial food irradiation has an exciting future, and as to the impact of food irradiation on the availability of cobalt-60 over the next ten years, two principal factors must be examined, namely, the anticipated demand for cobalt-60 in all radiation processing applications, and the supply of cobalt-60 to reliably meet the expected demand. As for the cobalt-60 in service today, 90 % is used for the sterilization of disposable medical products, 5 % for food irradiation, and 5 % for other application. The demand for up to 30 million curies of cobalt-60 is expected over the next 10 years. Today, it is estimated that over 150,000 tons of spices, fruit and fish are irradiated. The potential cobalt-60 production could exceed 110 million curies per year. Gamma processing application will demand nearly 50 million curies in 1990. (Kako, I.)

  4. Cobalt Complexes as Antiviral and Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Eddie L. Chang

    2010-05-01

    Full Text Available Metal ion complexes are playing an increasing role in the development of antimicrobials. We review here the antimicrobial properties of cobalt coordination complexes in oxidation state 3+. In addition to reviewing the cobalt complexes containing polydentate donor ligands, we also focus on the antimicrobial activity of the homoleptic [Co(NH36]3+ ion.

  5. Cobalt-chitosan: Magnetic and biodegradable heterogeneous ...

    Indian Academy of Sciences (India)

    Cobalt-chitosan: Magnetic and biodegradable catalyst. 1931. Table 3. Effects of the solvent, temperature and base on oxidation of phenylethyl alcohol using cobalt-chitosan.a. Entry. Solvent. Temperature. Base. Yield (%) b. 1. DMF. 100. K2CO3. 60. 2. DMF. 100. KOH. 60. 3. CH3CN. 80. K2CO3. 65. 4. H2O reflux. KOH. 10. 5.

  6. Cobalt Derivatives as Promising Therapeutic Agents

    Science.gov (United States)

    Heffern, Marie C.; Yamamoto, Natsuho; Holbrook, Robert J.; Eckermann, Amanda L.; Meade, Thomas J.

    2013-01-01

    Inorganic complexes are versatile platforms for the development of potent and selective pharmaceutical agents. Cobalt possesses a diverse array of properties that can be manipulated to yield promising drug candidates. Investigations into the mechanism of cobalt therapeutic agents can provide valuable insight into the physicochemical properties that can be harnessed for drug development. This review presents examples of bioactive cobalt complexes with special attention to their mechanisms of action. Specifically, cobalt complexes that elicit biological effects through protein inhibition, modification of drug activity, and bioreductive activation are discussed. Insights gained from these examples reveal features of cobalt that can be rationally tuned to produce therapeutics with high specificity and improved efficacy for the biomolecule or pathway of interest. PMID:23270779

  7. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  8. Structure of cobalt sulfate tetrahydrate

    International Nuclear Information System (INIS)

    Kellersohn, T.

    1992-01-01

    Cobalt(II) sulfate tetrahydrate-d 8 , CoSO 4 -4D 2 O, mineralogical name aplowite, monoclinic, P2 1 /n a = 5.952 (1), b = 13.576 (2), c = 7.908 (1) A. The title compound belongs to the rozenite group of minerals. The characteristic structural units are [Co 2 (SO 4 ) 2 (D 2 O) 8 ] heteropolyhedral clusters which are linked by hydrogen bonds of medium strength. One of the water molecules is very asymmetrically bonded, with one H (D) atom being involved in a long bifurcated hydrogen bond. (orig.)

  9. Mecanosynthesis of partially inverted zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Nachbaur, Virginie [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 St Etienne du Rouvray (France)], E-mail: virginie.nachbaur@univ-rouen.fr; Tauvel, Guillaume; Verdier, Thomas [Laboratoire d' Analyse Spectroscopique et de Traitements de Surfaces, Universite de Rouen, 76801 St Etienne du Rouvray (France); Jean, Malick [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 St Etienne du Rouvray (France); Juraszek, Jean [Laboratoire d' Analyse Spectroscopique et de Traitements de Surfaces, Universite de Rouen, 76801 St Etienne du Rouvray (France); Houvet, David [LUSAC (EA2607), Groupe Ceramique Capteurs Composants et Procedes, Universite de Caen Basse-Normandie, BP 78, 50130 Cherbourg Octeville (France)

    2009-04-03

    Synthesis of zinc ferrite (ZnFe{sub 2}O{sub 4}) by high-energy ball-milling from a powder mixture of zinc oxide (ZnO) and hematite ({alpha}-Fe{sub 2}O{sub 3}) is investigated. The millings are performed under air using tungsten carbide vials and balls. The spinel phase appears within 2 h grinding and the reaction is almost complete after 24 h. The broadening of X-ray diffraction lines shows that the crystallite size is around 10 nm. Moessbauer spectra indicate that there is some inversion in the ferrite, leading to the formula (Zn{sub 0.31}{sup 2+}Fe{sub 0.69}{sup 3+}){sub A}(Zn{sub 0.69}{sup 2+}Fe{sub 1.31}{sup 3+}){sub B}O{sub 4}{sup 2-} for the 24 h sample. We also show that preliminary millings of the initial oxides (zincite and hematite) slow down the reaction. Finally, dilatometric studies show that the shrinkage proceeds in several steps, due to a grain size distribution in the sample.

  10. Beam impedance of ferrite kicker magnets

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.

    1989-03-01

    We have measured the longitudinal beam impedance of a typical pulsed magnet that will be used in the Advanced Light Source. The magnets are of a ferrite window-frame design with a single plate conductor on each side. Two separate power supplies are used to drive current in opposite directions in the two conductors. The continuity of the ferrite yoke is interrupted by two copper plates 1 mm thick in the center of the top and bottom of the window frame. This increases the reluctance of the magnetic path, and thus decreases the flux which couples the beam. The measurements were made by exciting a 1/8'' rod along the beam path through the magnet. This makes a 185 ohm transmission line, and it was terminated in a resistive divider at the exit end. A 3 GHz network analyzer was used to measure S 21 through the magnet, and longitudinal beam impedance was calculated from this data. The impedance is dominated by two low frequency resonances in the magnet winding and drive current. 8 figs

  11. Irradiation embrittlement of ferritic stainless steels

    International Nuclear Information System (INIS)

    Suganuma, K.; Kayano, H.

    1984-01-01

    The characteristics of the irradiation embrittlement of some ferritic stainless steels were examined by tensile tests. Steels selected in this investigation were classified into three groups: chi phase, precipitation hardened Fe-13Cr steels; tempered martensitic Fe-12Cr steels; and low alloy steels. The latter steels were chosen in order to compare the irradiation embrittlement characteristics with those of stainless steels. The stainless steels were superior to the low alloy steels with regard to the irradiation embrittlement (the changes in both ductile-brittle transition temperature (DBTT) and unstable plastic flow transition temperature (UPFTT)), irrespective of whether these stainless steels had chi phase precipitated structures or tempered martensitic structures. The suppression of the DBTT increase owing to irradiation results from low yield stress increase Δσsub(y) and high |[dσsub(y)(u)/dT]|, where u denotes unirradiated, in the stainless steels. The suppression of the UPFTT results from the high work hardening rate or the high work exponent and the low Lueders strain in the stainless steels. These characteristics of irradiation embrittlement in the ferritic stainless steels are thought to be caused by the defect structure, which is modified by Cr atoms. (author)

  12. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  13. Manufacturing of Mn-Zn ferrite transformer cores

    International Nuclear Information System (INIS)

    Waqas, H.; Qureshi, A.H.; Hussain, N.; Ahmed, N.

    2012-01-01

    The present work is related to the development of soft ferrite transformer cores, which are extensively used in electronic devices such as switch mode power supplies, electromagnetic devices, computers, amplifiers etc. Mn-Zn Ferrite (soft ferrite) powders were prepared by conventional mixed oxide and auto combustion routes. These powders were calcined and then pressed in toroid shapes. Sintering was done at different temperatures to develop desired magnetic phase. Impedance resistance of sintered toroid cores was measured at different frequencies. Results revealed that Mn-Zn Ferrite cores synthesized by auto combustion route worked more efficiently in a high frequency range i.e. > 2MHz than the cores developed by conventional mixed oxide method. It was noticed that compact size, light weight and high impedance resistance are the prime advantages of auto combustion process which supported the performance of core in MHz frequency range. Furthermore, these compact size cores were successfully tested in linear pulse amplifier circuit of Pakistan Atomic Research Reactor-I. The fabrication of soft ferrite (Mn-Zn Ferrite) cores by different processing routes is an encouraging step towards indigenization of ferrite technology. (Orig./A.B.)

  14. Investigation of superparamagnetism in pure and chromium substituted cobalt nanoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Raghasudha, M., E-mail: raghasudha_m@yahoo.co.in [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Ravinder, D. [Department of Physics, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Veerasomaiah, P. [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India)

    2016-12-15

    Nanostructured magnetic materials with the chemical composition CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} were synthesized through Citrate-gel chemical synthesis with a crystallite size of 6.5 nm and 10.7 nm respectively. Structural characterization of the samples was performed by X-ray diffraction analysis and magnetic properties were studied using Vibrating Sample Magnetometer (VSM). Magnetization measurements as a function of applied magnetic field ±10 T at various temperatures 5 K, 25 K, 310 K and 355 K were carried out. Field cooled (FC) and Zero field cooled (ZFC) magnetization measurements under a magnetic field of 100 Oe for temperature ranging from 5–400 K were studied. The blocking temperature (T{sub b}) for both the ferrites was observed to be around 355 K. Below blocking temperature they showed ferromagnetic behavior and above which they are superparamagnetic in nature that favors their application in the biomedical field. The substitution of paramagnetic Cr{sup 3+} ions for magnetic Fe{sup 3+} ion in cobalt ferrite has resulted in a decrease in magnetization and the coercivity of the samples. CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} nanoferrites with observed low coercivity of 338 Oe make them desirable in high frequency transformers due to their very soft magnetic behavior. - Highlights: • Particle size of CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} is 6.5 nm and 10.7 nm respectively. • At 5 K and 25 K the materials were ferromagnetic in nature with high coercivity. • Materials show superparamagnetic behavior above room temperature. • Blocking temperature is at around 355 K where coercivity and remanence are zero. • Materials are suitable for hyperthermia cancer therapy.

  15. Nickel acts as an adjuvant during cobalt sensitization

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menne; Nielsen, Morten Milek; Vennegaard, Marie T.

    2015-01-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We...... investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found...... that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses...

  16. Fast ferrite tuner for the BNL synchrotron light source

    International Nuclear Information System (INIS)

    Pivit, E.; Hanna, S.M.; Keane, J.

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs

  17. The mechanism of nickel ferrite formation by glow discharge effect

    Science.gov (United States)

    Frolova, L. A.

    2018-04-01

    The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

  18. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  19. Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets

    Directory of Open Access Journals (Sweden)

    M. Venkatesh

    2016-09-01

    Full Text Available Nickel ferrite nanoplatelets have been successfully synthesized by a simple microwave assisted combustion method using trisodium citrate as a fuel. The prepared sample was chemically and structurally characterized by different techniques and the magnetic behaviour was studied by field dependent magnetization measurement. The obtained results indicate that the prepared sample is phase pure nickel ferrite nanoplatelets having size in the range of 40–50 nm and it exhibits a soft ferromagnetic nature with saturation magnetization of 49 emu/g and coercivity of 167 G. Hence proposed method is a facile approach to obtain nickel ferrite nanoplatelets for broad spectrum of applications.

  20. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments. The major application is in the health care industry where irradiators are used to sterilize single use medical products. These irradiators are designed and built by MDS Nordion and are used by manufacturers of surgical kits, gloves, gowns, drapes and other medical products. The irradiator is a large shielded room with a storage pool for the cobalt-60 sources. The medical products are circulated through the shielded room and exposed to the cobalt-60 sources. This treatment sterilizes the medical products which can then be shipped to hospitals for immediate use. Other applications for this irradiation technology include sanitisation of cosmetics, microbial reduction of pharmaceutical raw materials and food irradiation. The cobalt-60 sources are manufactured by MDS Nordion in their Cobalt Operations Facility in Kanata. More than 75,000 cobalt-60 sources for use in irradiators have been manufactured by MDS Nordion. The cobalt-60 sources are double encapsulated in stainless steel capsules, seal welded and helium leak tested. Each source may contain up to 14,000 curies. These sources are shipped to over 170 industrial irradiators around the world. This paper will focus on the MDS Nordion proprietary technology used to produce the cobalt-60 isotope in CANDU reactors. Almost 55 years ago MDS Nordion and Atomic Energy of Canada developed the process for manufacturing cobalt-60 at the Chalk River Labs, in Ontario, Canada. A cobalt-59 target was introduced into a research reactor where the cobalt-59 atom absorbed one neutron to become cobalt-60. Once the cobalt-60 material was removed from the research reactor it was encapsulated in stainless steel and seal welded using a Tungsten Inert Gas weld. The first cobalt-60 sources manufactured using material from the Chalk River Labs were used in cancer

  1. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.

    Science.gov (United States)

    Anagnostopoulou, E; Grindi, B; Lacroix, L-M; Ott, F; Panagiotopoulos, I; Viau, G

    2016-02-21

    We demonstrate in this paper the feasibility to elaborate rare-earth free permanent magnets based on cobalt nanorods assemblies with energy product (BH)max exceeding 150 kJ m(-3). The cobalt rods were prepared by the polyol process and assembled from wet suspensions under a magnetic field. Magnetization loops of dense assemblies with remanence to a saturation of 0.99 and squareness of 0.96 were measured. The almost perfect M(H) loop squareness together with electron microscopy and small angle neutron scattering demonstrate the excellent alignment of the rods within the assemblies. The magnetic volume fraction was carefully measured by coupling magnetic and thermogravimetric analysis and found in the range from 45 to 55%, depending on the rod diameter and the alignment procedure. This allowed a quantitative assessment of the (BH)max values. The highest (BH)max of 165 kJ m(-3) was obtained for a sample combining a high magnetic volume fraction and a very large M(H) loop squareness. This study shows that this bottom-up approach is very promising to get new hard magnetic materials that can compete in the permanent magnet panorama and fill the gap between the ferrites and the NdFeB magnets.

  2. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik; Ahn, Seungyoung

    2015-01-01

    Power transfer capability of wireless power transfer systems is highly dependent on the magnetic design of the primary and secondary inductors and is measured quantitatively by the coupling factor. The inductors are designed by placing the coil over a ferrite base to increase the coupling factor...... and measurement results are presented for different air gaps between the coils and at different gap distances between the ferrite base and added ferrite. This paper is beneficial in improving the coupling factor while adding minimum weight to wireless power transfer system....

  3. Moessbauer spectroscopic characterization of ferrite ceramics

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1999-01-01

    The principle of Moessbauer effect and the nature of hyperfine interactions were presented. The discovery of the Moessbauer effect was the basis of a new spectroscopic technique, called Moessbauer spectroscopy, which has already made important contribution to research in physics, chemistry, metallurgy, mineralogy and biochemistry. In the present work the selected ferrites such as spinel ferrite, NiFe 2 O 4 , and some rare earth orthoferrites and garnets were investigated using Moessbauer spectroscopy. X-ray powder diffraction and Fourier transform infrared spectroscopy were used as complementary techniques. The formation of NiFe 2 O 4 was monitored during the thermal decomposition of mixed salt (Ni(NO 3 ) 2 +2Fe(NO 3 ) 3 )nH 2 O. The ferritization of Ni 2+ ions was observed at 500 deg. C and after heating at 1300 deg. C the stoichiometric NiFe 2 O 4 was produced. The Moessbauer parameters obtained for NiFe 2 O 4 , d Fe = 0.36 mm s -1 and HMF = 528 kOe, can be ascribed to Fe 3+ ions in the octahedral sublattice, while parameters d Fe = 0.28 mm s -1 and HMF = 494 kOe can be ascribed to Fe 3+ ions in the tetrahedral lattice. The effect of ball-milling of NiFe 2 O 4 was monitored. The formation of oxide phases and their properties in the systems Nd 2 O 3 -Fe 2 O 3 , Sm 2 O 3 -Fe 2 O 3 , Gd 2 O 3 -Fe 2 O 3 , Eu 2 O 3 -Fe 2 O 3 and Er 2 O 3 -Fe 2 O 3 were also investigated. Quantitative distributions of oxide phases, a-Fe 2 O 3 , R 2 O 3 , R 3 Fe 5 O 12 and RFeO 3 , R = Gd or Eu, were determined for the systems xGd 2 O 3 +(1-x)Fe 2 O 3 and xEu 2 O 3 +(1-x)Fe 2 O 3 . The samples, prepared by chemical coprecipitation in the system xEu 2 O 3 +(1-x)Fe 2 O 3 , 0≤x≤1, were completely amorphous as observed by XRD, even at the relatively high temperature of the sample preparation (600 deg. C). Similar behavior was observed during the formation of Er 3 Fe 5 O 12 . Moessbauer spectroscopy indicated that this 'amorphous' phase is actually composed of very small and/or poor

  4. Cobalt-60 production in CANDU power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Malkoske, G.R.; Norton, J.L. [MDS Nordion, Kanata, Ontario (Canada); Slack, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2002-07-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  5. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  6. A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells.

    Science.gov (United States)

    Makridis, Antonios; Tziomaki, Magdalini; Topouridou, Konstantina; Yavropoulou, Maria P; Yovos, John G; Kalogirou, Orestis; Samaras, Theodoros; Angelakeris, Mavroeidis

    2016-11-01

    The present study examines the heating efficiency of a combination of manganese or cobalt ferrites in a binary (Co- or Mn-) ferrite nanoparticle form with magnetite, covered with citric acid to improve biocompatibility. The nanoparticle synthesis is based on the aqueous co-precipitation of proper salts, a facile, low-cost, environmentally friendly and high yield synthetic approach. By detailed structural and magnetic characterisation, the direct influence of structural and magnetic features on magnetic hyperthermia concludes to optimum heating efficiency. At a second stage, best performing magnetic nanoparticles undergo in vitro testing in three cell lines: one cancer cell line and two reference healthy cell lines. Both binary ferrite (MnFe2O4/Fe3O4 and CoFe2O4/Fe3O4) appear to be internalised and well tolerated by the cells while a versatile hyperthermia protocol is attempted in an effort to further improve their in vitro performance. Within this protocol, hyperthermia sequences are split in two runs with an intermediate 48 h time interval cell incubation stage while in each run a variable field mode (single or multiple pulses) is applied. Single-pulse field mode represents a typical hyperthermia application scheme where cells undergo the thermal shock continuously. On the other hand multiple-pulses mode refers to multiple, much shorter in duration AC field changes (field ON/OFFs), at each hyperthermia run, resulting eventually in high heating rate and much more harmful cell treatment. Consequently, we propose a novel series of improved performance heat mediators based on ferrite structures which show maximum efficiency at cancer cells when combined with a versatile multiple-pulse hyperthermia module.

  7. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    Directory of Open Access Journals (Sweden)

    K Bi

    Full Text Available A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.

  8. Band-notched ultrawide band antenna loaded with ferrite slab

    Science.gov (United States)

    Wang, Hao; Zong, Weihua; Sun, Nian X.; Lin, Hwaider; Li, Shandong

    2017-05-01

    In this paper, a novel technique to design a band-notched UWB antenna by using Yttrium Iron Garnet (YIG) ferrite is proposed. A printed slot UWB antenna with size of 21mm×26 mm×0.8 mm is adopted as a basic antenna. A piece of ferrite slab with size of 5 mm×10 mm×2 mm is attached on the feeding layer of the antenna to achieve band-notched characteristics. The measured -10 dB bandwidth of the antenna without ferrite slab is 2.91-10.98 GHz. With loading of ferrite slab, the bandwidth turns to 2.73-5.12 and 5.87-10.78 GHz. A band notch of 5.12- 5.87 GHz is achieved to filter WLAN 5 GHz (5.15-5.825 GHz) band. The proposed technique has virtue of easy fabrication and keeping antenna miniaturization.

  9. Magnetic characterization of rare earth doped spinel ferrite

    Science.gov (United States)

    Abdellatif, M. H.; El-Komy, G. M.; Azab, A. A.

    2017-11-01

    Doping spinel structure with large rare earth ions can alter the physical properties of the lattice, which can be used for tuning the magnetic and electrical properties of the ferrite material. We investigated the effect of rare earth doping on the crystal properties such as magnetoimpedance. The X-ray and HRTEM data revealed that the strain increases with increasing the ionic radius of the rare-earth. The Study implemented three types of rare earth, namely Dy, Gd, and Sm. The rare earth ions are in the Spinel crystal of Mn-Cr ferrite. The magnetoimpedance showed all negative slope, with the Gd-doped Mn-Cr ferrite sample, have the giant magnetoimpedance up to 60% drop in impedance at electric field frequency 10 kHz. The magnetisation and remanence of the samples were correlated to the microstrain, in which the magnetisation and remanence of the rare earth doped Mn-Cr ferrite samples decrease as the microstrain increases.

  10. Mössbauer and magnetization studies of nanosize chromium ferrite

    African Journals Online (AJOL)

    user

    ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Synthesized chromium ferrite powders were in good phase and showed spinel structure in the XRD pattern. Nanocrystalline CrF powder ...

  11. Antiresonance in (Ni,Zn) ferrite-carbon nanofibres nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Fernandez-Garcia, L.; Suarez, M.; Menéndez, J.L.; Pecharromán, C.; Torrecillas, R.; Peretyagin, P.Y.; Petzelt, Jan; Savinov, Maxim; Frait, Zdeněk

    2015-01-01

    Roč. 2, č. 5 (2015), 055003 ISSN 2053-1591 Institutional support: RVO:68378271 Keywords : ceramic composites * ferromagnetic resonance * ferrite devices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.968, year: 2015

  12. Austenitization of FerriticDuctile Iron

    Directory of Open Access Journals (Sweden)

    Krzyńska A.

    2014-12-01

    Full Text Available Austenitization is the first step of heat treatment preceding the isothermal quenching of ductile iron in austempered ductile iron (ADI manufacturing. Usually, the starting material for the ADI production is ductile iron with more convenient pearlitic matrix. In this paper we present the results of research concerning the austenitizing of ductile iron with ferritic matrix, where all carbon dissolved in austenite must come from graphite nodules. The scope of research includedcarrying out the process of austenitization at 900° Cusing a variable times ranging from 5 to 240minutes,and then observations of the microstructure of the samples after different austenitizing times. These were supplemented with micro-hardness testing. The research showed that the process of saturating austenite with carbon is limited by the rate of dissolution of carbon from nodular graphite precipitates

  13. Joining Techniques for Ferritic ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    V.G. Krishnardula; V.G. Krishnardula; D.E. Clark; T.C. Totemeier

    2005-06-01

    This report presents results of research on advanced joining techniques for ferritic oxide-dispersion strengthened alloys MA956 and PM2000. The joining techniques studied were resistance pressure welding (also known as pressure forge welding), transient liquid phase bonding, and diffusion bonding. All techniques were shown to produce sound joints in fine-grained, unrecrystallized alloys. Post-bond heat treatment to produce a coarse-grained, recrystallized microstructure resulted in grain growth across the bondline for transient liquid phase and diffusion bonds, giving microstructures essentially identical to that of the parent alloy in the recrystallized condition. The effects of bond orientation, boron interlayer thickness, and bonding parameters are discussed for transient liquid phase and diffusion bonding. The report concludes with a brief discussion of ODS joining techniques and their applicability to GEN IV reactor systems.

  14. Positron annihilation characterization of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Glade, S.C.; Wirth, B.D.; Odette, G.R.; Toyama, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    Nanostructured ferritic alloys (NFAs) were produced by mechanically alloying Fe-14Cr-3W-0.4Ti and 0.25Y 2 O 3 (wt%) powders followed by hot isostatic pressing consolidation at 850, 1000 and 1150 deg. C. Positron annihilation lifetime and orbital momentum spectroscopy measurements are in qualitative agreement with small angle neutron scattering, transmission electron microscopy and atom probe tomography observations, indicating that up to 50% of the annihilations occur at high densities of Y-Ti-O enriched nm-scale features (NFs). Some annihilations may also occur in small cavities. In Y-free control alloys, that do not contain NFs, positrons primarily annihilate in the Fe-Cr matrix and at features such as dislocations, while a small fraction annihilate in large cavities or Ar bubbles.

  15. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  16. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  17. DARHT-II Injector Transients and the Ferrite Damper

    International Nuclear Information System (INIS)

    Heimbucher, Lynn; Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-01-01

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6

  18. Preparation of electrodeposited cobalt nanowires

    Directory of Open Access Journals (Sweden)

    Valeska da Rocha Caffarena

    2006-06-01

    Full Text Available Nanostructured magnetic materials have great interest because of their applications in high-density magnetic information storage and for magnetic sensors. The electrodeposition of materials into porous alumina arrays is a suitable technique to produce nanomaterials, since highly ordered uniform nanomaterials can be obtained simply and cheaply. In this work, template-assisted Co nanowire arrays were prepared by electrodeposition into nanometer-sized pores of an alumite film using a two-electrode electrochemical cell. The Co nanowires were electrodeposited from a solution of 400 g/L of CoSO4.7H2O and 40 g/L of H3BO3. The morphology of the samples was investigated by means of TEM and AFM. The structural characteristic of the samples was examined using XRD, EDX and FTIR, which confirm the cobalt nanowire formation.

  19. Tuning the magnetism of ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Viñas, S. Liébana [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Departamento de Física Aplicada, Universidade de Vigo, Vigo 36310 (Spain); Simeonidis, K. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Li, Z.-A.; Ma, Z. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Myrovali, E.; Makridis, A.; Sakellari, D. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Angelakeris, M., E-mail: agelaker@auth.gr [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Wiedwald, U.; Spasova, M. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Farle, M., E-mail: michael.farle@uni-due.de [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany)

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe{sub 2}O{sub 4} where M=Fe, Co, Mn) and core–shell ferrite nanoparticles consisting of a magnetically softer (MnFe{sub 2}O{sub 4}) or magnetically harder (CoFe{sub 2}O{sub 4}) core and a magnetite (Fe{sub 3}O{sub 4}) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe{sub 2}O{sub 4}) by Fe{sub 3}O{sub 4} provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe{sub 3}O{sub 4} outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects. - Highlights: • Magnetic hyperthermia is studied for 10 nm single and core/shell ferrite nanoparticles. • Maximum heating rate is observed for Fe{sub 3}O{sub 4}-coated CoFe{sub 2}O{sub 4} nanoparticles. • The increase is attributed to the interaction of phases with different anisotropy. • The presence of biocompatible Fe{sub 3}O{sub 4} shell potentially minimizes toxic side-effects.

  20. Composition dependence of structural, magnetic and electrical properties of Co substituted magnesium ferrite

    Science.gov (United States)

    Ramarao, K.; Rajesh Babu, B.; Kishore Babu, B.; Veeraiah, V.; Ramarao, S. D.; Rajasekhar, K.; Venkateswara Rao, A.

    2018-01-01

    In this work cobalt substituted magnesium spinel ferrite having general formula Mg1-xCoxFe2O4 (where x = 0.0, 0.1, 0.15,0.2,0.25 and 0.3) was synthesized by solid state reaction method. All the sample are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Vibrating sample magnetometer (VSM) and dc resistivity measurements. XRD analysis confirms the formation of single phase spinel and the calculated lattice constant 'aexp' from XRD decreases as substitution of Co (x) is increased. The FTIR spectra reveled two prominent frequency bands in the wave number range 400-600 cm-1, which confirm the cubic spinel structure. Magnetic studies revealed that the saturation magnetization attains a maximum value when x = 0.2, and then decreases for higher concentration of (x). This non-linear trend in magnetization has been explained on the basis of redistribution of magnetic and non-magnetic cations among A and B sites of the spinel lattice. A significant influence of cation distribution observed on DC electrical resistivity and activation energy.

  1. Cobalt-60 control in Ontario Hydro reactors

    International Nuclear Information System (INIS)

    Lacy, C.S.

    1988-01-01

    This paper discusses the impact of specifying reduced Cobalt-59 in the primary heat transport circuit materials of construction on the radiation fields developed around the primary circuit. An eight-fold reduction in steam generator radiation fields due to Cobalt-60 has been observed for two identical sets of reactors, one with and one without Cobalt-59 control. The comparison is between eight reactors at the Pickering Nuclear Generating Station (PNGS). Units 5 to 8 (PNGS-B) are identical to Units 1 to 4 (PNGS-A) except that PNGS-B has reduced impurity Cobalt-59 in the alloys of construction and a reduced use of stellite. The effects of chemistry control are also discussed

  2. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  3. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr

    2005-05-15

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  4. Transport properties of cobalt at low temperatures

    DEFF Research Database (Denmark)

    Radharkishna, P.; Nielsen, Mourits

    1965-01-01

    Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering.......Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering....

  5. [Are the cobalt hip prosthesis dangerous?].

    Science.gov (United States)

    Mistretta, Virginie; Kurth, William; Charlier, Corinne

    The placement of a hip prosthesis is one of the most common orthopedic surgical procedures. Some implants contain metal and are therefore capable of releasing metal particles like cobalt in patients who wear metal prostheses. Cobalt can be responsible of local toxicity (including metallosis, hypersensitivity reaction, and benign tumor) or systemic toxicity (including cardiomyopathy, polycythemia, hypothyroidism, and neurological disorders). To monitor potential toxicity of metal hip prostheses, an annual monitoring of patients implanted is recommended and includes clinical examination, radiological examination and blood cobalt determination. The cobalt concentration in blood allows to estimate the risk of toxicity and to evaluate the performance of the implant. The currently recommended threshold value is equal to 7 µg of cobalt per liter of blood. Our study, conducted on 251 patients over a period of 4 years, has shown that the cobalt concentration average was 2.51 µg/l in blood, with 51 patients having a cobaltemia higher than the threshold of 7 µg/l. © 2016 médecine/sciences – Inserm.

  6. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Science.gov (United States)

    2010-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts. ...

  7. Nickel acts as an adjuvant during cobalt sensitization.

    Science.gov (United States)

    Bonefeld, Charlotte Menné; Nielsen, Morten Milek; Vennegaard, Marie T; Johansen, Jeanne Duus; Geisler, Carsten; Thyssen, Jacob P

    2015-03-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses in the draining lymph nodes compared to mice sensitized with cobalt alone. In contrast, the presence of cobalt during nickel sensitization only induced an increased CD8(+) T cell proliferation during challenge to nickel. Thus, the presence of nickel during cobalt sensitization potentiated the challenge response against cobalt more than the presence of cobalt during sensitization to nickel affected the challenge response against nickel. Taken together, our study demonstrates that sensitization with a mixture of nickel and cobalt leads to an increased immune response to both nickel and cobalt, especially to cobalt, and furthermore that the adjuvant effect appears to correlate with the inflammatory properties of the allergen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil

    2010-01-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure.......Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure....

  9. A novel method to synthesize cobalt oxide (Co3O4) nanowires from cobalt (Co) nanobowls

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Madhavi, S.; Ramanujan, R.V.

    2010-01-01

    A novel method suitable for the synthesis of the cobalt oxide (Co3O4) nanowires at targeted regions is presented in this report. Cobalt (Co) nanobowls synthesized by colloidal crystal directed assembly were transformed into Co3O4 nanowires by a simple heat treatment process. Co nanobowls exhibited...

  10. Synthesis of new cobalt aluminophosphate framework by opening a cobalt methylphosphonate layered material

    Czech Academy of Sciences Publication Activity Database

    Zaarour, M.; Pérez, O.; Boullay, P.; Martens, J.; Mihailova, B.; Karaghiosoff, K.; Palatinus, Lukáš; Mintova, S.

    2017-01-01

    Roč. 19, č. 34 (2017), s. 5100-5105 ISSN 1466-8033 Institutional support: RVO:68378271 Keywords : cobalt aluminophosphate * cobalt methylphosphonate * layered materials * crystallic structure * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.474, year: 2016

  11. Biological responses of isolated macrophages to cobalt metal and tungsten carbide-cobalt powders.

    Science.gov (United States)

    Lison, D; Lauwerys, R

    1991-10-01

    A previous study from this laboratory, using morphological and biochemical (LDH release) parameters, has shown that tungsten carbide-cobalt dust exhibits a greater cytotoxicity toward isolated macrophages than cobalt metal powder alone. The present study extends this comparison by examining additional biological parameters. Glucose uptake and superoxide anion production by isolated macrophages were significantly more depressed by the tungsten carbide-cobalt mixture (WC-Co) than by cobalt alone (Co) while pure tungsten carbide (WC) had no effect or even stimulated the cells. For glucose-6-phosphate dehydrogenase and cell-associated plasminogen activator (PA) activities, no difference between Co and WC-Co dusts was observed. These observations add further evidence to our previous findings regarding the different biological reactivity of cobalt metal alone or mixed with tungsten carbide.

  12. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  13. FERROMAGNETIC RESONANCE AND THE FARADAY EFFECT IN SOME FERRITES WITH A SPINEL AND GARNET STRUCTURE,

    Science.gov (United States)

    MAGNETIC MATERIALS, * MAGNETIC RESONANCE), (*MAGNETOOPTICS, MAGNETIC MATERIALS), FERRITES , GARNET, SINGLE CRYSTALS, ANISOTROPY, CHEMICAL COMPOUNDS, SUPERHIGH FREQUENCY, MAGNETIC FIELDS, POLARIZATION, USSR

  14. Synthesis of Samarium Cobalt Nanoblades

    Energy Technology Data Exchange (ETDEWEB)

    Darren M. Steele

    2010-08-25

    As new portable particle acceleration technologies become feasible the need for small high performance permanent magnets becomes critical. With particle accelerating cavities of a few microns, the photonic crystal fiber (PCF) candidate demands magnets of comparable size. To address this need, samarium cobalt (SmCo) nanoblades were attempted to be synthesized using the polyol process. Since it is preferable to have blades of 1-2 {micro}m in length, key parameters affecting size and morphology including method of stirring, reaction temperature, reaction time and addition of hydroxide were examined. Nanoparticles consisting of 70-200 nm spherical clusters with a 3-5 nm polyvinylpyrrolidone (PVP) coating were synthesized at 285 C and found to be ferromagnetic. Nanoblades of 25nm in length were observed at the surface of the nanoclusters and appeared to suggest agglomeration was occurring even with PVP employed. Morphology and size were characterized using a transmission electron microscope (TEM). Powder X-Ray Diffraction (XRD) analysis was conducted to determine composition but no supportive evidence for any particular SmCo phase has yet been observed.

  15. IN SITU AND POST REACTION COBALT-INCORPORATION INTO ...

    African Journals Online (AJOL)

    bridged silica materials decreased with increasing loading of APTS as well as after cobalt incorporation. Thermogravimetric analysis and Raman spectroscopy show that the surfactant is removed by solvent extraction. Cobalt ion incorporation is ...

  16. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    Science.gov (United States)

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established. PMID:24701183

  17. Cobalt: A vital element in the aircraft engine industry

    Science.gov (United States)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  18. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    Directory of Open Access Journals (Sweden)

    Grzegorz Kowalski

    2014-01-01

    Full Text Available A study of polyaniline (PANI doping with various cobalt compounds, that is, cobalt(II chloride, cobalt(II acetate, and cobalt(II salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  19. Ferrite-based magnetic nanofluids used in hyperthermia applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Ibrahim [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Amiri, S. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2012-03-15

    Magnetic ferrofluids (magnetic nanofluids) have received special attention due to their various biomedical applications such as drug delivery and hyperthermia treatment for cancer. The biological applications impose some special requirements. For example, the well-known iron oxide ferrofluids become undesirable because their iron atoms are poorly distinguishable from those of hemoglobin. A conceivable solution is to use mixed-ferrites (MFe{sub 2}O{sub 4} where M=Co, Mn, Ni, Zn) to have a range of magnetic properties. These ferrites have attracted special attention because they save time, and because of their low inherent toxicity, ease of synthesis, physical and chemical stabilities and suitable magnetic properties. Based on the importance of ferrite particles in ferrofluids for hyperthermia treatment, this paper gives a summary on the physical concepts of ferrofluids, hyperthermia principal, magnetic properties and synthesis methods of nanosized ferrites. - Highlights: Black-Right-Pointing-Pointer This paper gives a suitable summary and literature survey on the ferrofluids. Black-Right-Pointing-Pointer Ferrofluids have an important role in biomedicine and our life. Black-Right-Pointing-Pointer Ferrofluids include a magnetic core, surfactant and a liquid medium. Black-Right-Pointing-Pointer Nano-ferrites' cores are good candidates for hyperthermia purposes. Black-Right-Pointing-Pointer They present a suitable heat generation for hyperthermia.

  20. Synthesis and microstructure of manganese ferrite colloidal nanocrystals.

    Science.gov (United States)

    Carta, D; Casula, M F; Floris, P; Falqui, A; Mountjoy, G; Boni, A; Sangregorio, C; Corrias, A

    2010-05-21

    The atomic level structure of a series of monodisperse single crystalline nanoparticles with a magnetic core of manganese ferrite was studied using X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) techniques at both the Fe and Mn K-edges, and conventional and high resolution transmission electron microscopy (TEM and HRTEM). In particular, insights on the non-stoichiometry and on the inversion degree of manganese ferrite nanocrystals of different size were obtained by the use of complementary structural and spectroscopic characterization techniques. The inversion degree of the ferrite nanocrystals, i.e. the cation distribution between the octahedral and tetrahedral sites in the spinel structure, was found to be much higher (around 0.6) than the literature values reported for bulk stoichiometric manganese ferrite (around 0.2). The high inversion degree of the nanoparticles is ascribed to the partial oxidation of Mn(2+) to Mn(3+) which was evidenced by XANES, leading to non-stoichiometric manganese ferrite.

  1. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  2. Feedback controlled hybrid fast ferrite tuners

    International Nuclear Information System (INIS)

    Remsen, D.B.; Phelps, D.A.; deGrassie, J.S.; Cary, W.P.; Pinsker, R.I.; Moeller, C.P.; Arnold, W.; Martin, S.; Pivit, E.

    1993-09-01

    A low power ANT-Bosch fast ferrite tuner (FFT) was successfully tested into (1) the lumped circuit equivalent of an antenna strap with dynamic plasma loading, and (2) a plasma loaded antenna strap in DIII-D. When the FFT accessible mismatch range was phase-shifted to encompass the plasma-induced variation in reflection coefficient, the 50 Ω source was matched (to within the desired 1.4 : 1 voltage standing wave ratio). The time required to achieve this match (i.e., the response time) was typically a few hundred milliseconds, mostly due to a relatively slow network analyzer-computer system. The response time for the active components of the FFT was 10 to 20 msec, or much faster than the present state-of-the-art for dynamic stub tuners. Future FFT tests are planned, that will utilize the DIII-D computer (capable of submillisecond feedback control), as well as several upgrades to the active control circuit, to produce a FFT feedback control system with a response time approaching 1 msec

  3. Magnetostatic excitations in thin ferrite films

    International Nuclear Information System (INIS)

    Zil'berman, P.E.; Lugovskoi, A.V.

    1987-01-01

    The authors discuss the influence of the exchange interaction and dissipative processes in thin ferrite films on the eigenfrequency spectrum of magnetostatic standing waves and on the dispersion relation and attenuation of magnetostatic traveling waves. For the first time they obtain explicitly the dispersion relation for magnetostatic waves (MSWs) in a tangential saturating magnetic field H 0 to second order (inclusive) in the exchange interaction parameter λ. The authors obtain computer solutions for this equation in the complex frequency (ω) plane (for standing waves) or wave-number (q) plane (for traveling waves). The authors show that the dispersion relation constructed from the standing-wave spectrum is different from that of the traveling waves if λ≠0, even if dissipation is neglected. The traveling waves have auxiliary branches of the dispersion relation with weak damping near the spin-wave-resonance (SWR) frequencies. Dissipation has only a relatively weak effect on the frequency spectrum of the standing waves, shifting it upward. For the traveling waves, however, dissipation leads to qualitative changes in the structure of the dispersion relation, giving rise to new branches, forbidden bands, reentrant and anomalous-dispersion regions

  4. Evaluation of a.c. conductivity of rubber ferrite composites from ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Rubber ferrite composites; a.c. electrical conductivity; mixed ferrites; electrical properties; magnetic materials; polymer magnets. 1. Introduction. Ferrites constitute an important group of magnetic mate- rials with a wide range of applications due to their mag- netic properties and low dielectric loss (Elhiti 1994; Smit.

  5. Low temperature sintering of MgCuZn ferrite and its electrical and ...

    Indian Academy of Sciences (India)

    Unknown

    The chip inductors made of the ferrite fired at 910 C with 12 mol% Cu exhibited higher d.c. resistance. From these studies it is concluded that the good quality chip inductor can be obtained using the MgCuZn ferrites. Keywords. Low temperature sintering; MgCuZn ferrite; shrinkage; resistivity; permeability; quality factor. 1.

  6. Low temperature sintering of MgCuZn ferrite and its electrical and ...

    Indian Academy of Sciences (India)

    cm was obtained for the ferrite with 12 mol% Cu at relatively low sintering temperature (910°C). The magnetic properties of the ferrites also improved by the Cu substitution. The chip inductors made of the ferrite fired at 910 C with 12 mol% Cu ...

  7. Association between cobalt allergy and dermatitis caused by leather articles

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus

    2015-01-01

    BACKGROUND: Cobalt is a strong skin sensitizer and a prevalent contact allergen. Recent studies have recognized exposure to leather articles as a potential cause of cobalt allergy. OBJECTIVES: To examine the association between contact allergy to cobalt and a history of dermatitis resulting from....... CONCLUSIONS: Our study suggests a positive association between cobalt allergy and a history of dermatitis caused by non-occupational exposure to leather articles....

  8. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  9. The physiological effect of cobalt on watermelon cultivation

    International Nuclear Information System (INIS)

    Yao Naihua; Jin Yafang; Sun Yaochen; Huang Yiming

    1993-01-01

    Cobalt has essential physiological action on both animals and plants. For the latter it can raise plant's nitrogen-fixing ability and saccharine content. Spray of cobalt mixed with other nutritive elements can improve the germinatit of seeds and the yield of fruit. For specifying the nutritive function of cobalt upon watermelon, isotope 60 Co was mixed into a complex leaf nutritive aqua and the regularity of transferring and absorbing cobalt in the watermelon's body was investigated

  10. Relaxation resistance of heat resisting alloys with cobalt

    International Nuclear Information System (INIS)

    Borzdyka, A.M.

    1977-01-01

    Relaxation resistance of refractory nickel-chromium alloys containing 5 to 14 % cobalt is under study. The tests involve the use of circular samples at 800 deg to 850 deg C. It is shown that an alloy containing 14% cobalt possesses the best relaxation resistance exceeding that of nickel-chromium alloys without any cobalt by a factor of 1.5 to 2. The relaxation resistance of an alloy with 5% cobalt can be increased by hardening at repeated loading

  11. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  12. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a...

  13. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  14. Assessment of cobalt levels in wastewater, soil and vegetable ...

    African Journals Online (AJOL)

    User

    Cobalt concentrations in this study were higher than maximum contaminant levels set by Standard. Organizations such as WHO and FAO in wastewater while below their limits in vegetables. Key words: Cobalt level, Kubanni River, soil, vegetable, wastewater. INTRODUCTION. Cobalt is beneficial to human because it is part ...

  15. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  16. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  17. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  18. Ferrite core non-linearity in coils for magnetic neurostimulation.

    Science.gov (United States)

    RamRakhyani, Anil Kumar; Lazzi, Gianluca

    2014-10-01

    The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.

  19. The nature of temper brittleness of high-chromium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V. [Central Scientific-Research Institute for Ferrous Metallurgy, Moscow (Russian Federation)

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  20. Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media

    International Nuclear Information System (INIS)

    Maza R.; Wilson, J.A.; Hetherington, R.

    1995-01-01

    This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media

  1. Effects of In{sub 3+} substitution on structural properties, cation distribution and Mössbauer spectra of CoFe{sub 2}O{sub 4} ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ravi, E-mail: ranade65@gmail.com [Centre for Material Science and Engineering, National Institute of Technology Hamirpur (H.P.)-177005 (India); Pandit, Rabia; Sharma, K. K.; Kaur, Pawanpreet [Department of Physics, National Institute of Technology Hamirpur (H.P.)-177005 (India)

    2014-04-24

    The use of non-destructive, high resolution technique namely Mössbauer spectroscopy is discussed in detail for the investigation of structural and magnetic properties of Fe based indium substituted cobalt ferrites. The polycrystalline samples of CoFe{sub 2−x}In{sub x}O{sub 4} (x = 0.2, 0.6) were prepared by double sintering solid state reaction method. To ensure a single phase formation of the as prepared samples the X-ray diffraction (XRD) data of the powdered samples was Rietveld refined using Fd3m space group. An excellent agreement is obtained between the integrated intensity ratios of 57 Fe spectra at A- and B-sites and those calculated on the basis of cation distribution the cation distribution obtained data analysis. The results of Mössbauer spectra and cation distribution are also correlated well with magnetization versus applied field (M-H) study.

  2. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  3. Cobalt-free nickel-base superalloys

    International Nuclear Information System (INIS)

    Koizumi, Yutaka; Yamazaki, Michio; Harada, Hiroshi

    1979-01-01

    Cobalt-free nickel-base cast superalloys have been developed. Cobalt is considered to be a beneficial element to strengthen the alloys but should be eliminated in alloys to be used for direct cycle helium turbine driven by helium gas from HTGR (high temp. gas reactor). The elimination of cobalt is required to avoid the formation of radioactive 60 Co from the debris or scales of the alloys. Cobalt-free alloys are also desirable from another viewpoint, i.e. recently the shortage of the element has become a serious problem in industry. Cobalt-free Mar-M200 type alloys modified by the additions of 0.15 - 0.2 wt% B and 1 - 1.5 wt% Hf were found to have a creep rupture strength superior or comparable to that of the original Mar-M200 alloy bearing cobalt. The ductility in tensile test at 800 0 C, as cast or after prolonged heating at 900 0 C (the tensile test was done without removing the surface layer affected by the heating), was also improved by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf. The morphology of grain boundaries became intricated by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf, to such a degree that one can hardly distinguish grain boundaries by microscopes. The change in the grain boundary morphology was considered, as suggested previously by one of the authors (M.Y.), to be the reason for the improvements in the creep rupture strength and tensile ductility. (author)

  4. Structural and morphological characteristics of composite: polyamide 6/ferrite nickel

    International Nuclear Information System (INIS)

    Fernandes, P.C.; Santos, P.T.A.; Silva, T.R.G.; Araujo, E.M.; Costa, A.C.F.M.

    2010-01-01

    This study aims to evaluate the structural and morphological characteristics of a composite polyamide 6 with 50% loading of nickel ferrite. The ferrite was obtained by combustion synthesis and calcined in muffle furnace at 700 deg C. The polymer matrix was previously dried in vacuum oven at 80 deg C / 48 h to eliminate moisture. The composites were characterized by XRD and SEM. XRD results show the incorporation of cargo in the matrix, and that increasing temperature led to a considerable increase in crystallinity. The particle size of the load in the matrix was changed by increasing temperature. (author)

  5. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  6. Synthesize of Superparamagnetic Zinc Ferrite Nanoparticles at Room Temperature

    Directory of Open Access Journals (Sweden)

    R. Raeisi Shahraki

    2012-12-01

    Full Text Available Superparamagnetic single phase zinc ferrite nanoparticles have been prepared by coprecipitation method at 20 °C without any subsequent calcination. The composition, crystallite size, microstructure and magnetic properties of the prepared nanoparticles were investigated using X-ray diffraction (XRD, field emission scanning electron microscope (FESEM, transmission electron microscope (TEM, Fourier transmission infrared spectrum (FTIR and vibrating sample magnetometer (VSM. The XRD pattern proved that the nanoparticles were single phase cubic spinel ZnFe2O4 with crystallite size of 5nm. The magnetic measurement showed that the as-prepared nanoparticles of zinc ferrite were superparamagnet at room temperature.

  7. Modeling ferrite electromagnetic response in the time domain

    International Nuclear Information System (INIS)

    Johnson, J.; DeFord, J.F.; Craig, G.D.

    1989-01-01

    The behavior of ferrite loads commonly found in induction accelertors has important consequences for the performance of these accelerators. Previous work by the authors on modeling the electromagnetic fields in induction cavities has focussed upon use of a simple, phenomenological model for the process of magnetization reversal in these ferrite loads. In this paper we consider a model for magnetization reversal which is more deeply rooted in theory, and present a simulation of the reversal process based upon this model for an idealized set of boundary conditions. 7 refs., 3 figs

  8. Microstructural examination of commercial ferritic alloys at 299 DPA

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-11-01

    Microstructures and density change measurements are reported for Martensitic commercial steels HT-9 and Modified 9Cr-lMo (T9) and oxide dispersion strengthened ferritic alloys MA956 and NU957 following irradiation in the FFTF/MOTA at 420 degrees C to 200 DPA. Swelling as determined by density change remains below 2% for all conditions. Microstructures are found to be stable except in recrystallized grains of MA957, which are fabrication artifacts, with only minor swelling in the Martensitic steels and α' precipitation in alloys with 12% or more chromium. These results further demonstrate the high swelling resistance and microstructural stability of the ferritic alloy class

  9. Recycler model magnet test on temperature compensation for strontium ferrite

    International Nuclear Information System (INIS)

    Yamada, R.; Foster, W.; Ostiguy, F.; Wake, M.

    1995-10-01

    The Recycler ring magnet will be made of Strontium ferrite permanent magnets. A strontium ferrite permanent magnet without compensation has a temperature coefficient of -0.2 % in dB/dT. To compensate this effect, we are utilizing 30 % Ni 70 % Fe alloy, a temperature compensation ferromagnetic material with a low Curie point. To search for optimum commercially available material and optimum condition, we made a couple of simple model magnets, and tested with several different compensating material. The test results are reported and its optimal conditions are shown. Several different configurations were tested including a possible 2 kG magnet configuration

  10. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    Various ferrites (Fe-, Li-, Ni/Zn/Cu-, Co-, Co/Ni, Ba- and Sr-ferrites) were investigated with respect to their application for hyperthermia. Temperature changes under an alternating magnetic field were observed. The area of hysteresis loop was much larger in the Ba- and Sr-ferrites than for that of the Fe-, Ni/Zn/Cu-, Li-, Co- and Co/Ni-ferrites. Co-ferrite exhibited the most applicable temperature change ΔT=19.25K (29.62W/gs), in distilled water when the field was 110A/m

  11. Oxidation rate in ferritic superheater materials

    International Nuclear Information System (INIS)

    Falk, I.

    1992-05-01

    On the steam side of superheater tubes, compact oxide layers are formed which have a tendency to crack and flake off (exfoliate). Oxide particles then travel with the steam and can give rise to erosion damage in valves and on turbine blades. In an evaluation of conditions in superheater tubes from Swedish power boilers, it was found that the exfoliation frequency for one material quality (SS 2218) was greater than for other qualities. Against this background, a literature study has been carried out in order to determine which mechanisms govern the build-up of oxide and the exfoliation phenomenon. The study reveals that the oxide morphology is similar on all ferritic steels with Cr contents up to 5%. and that the oxide properties can therefore be expected to be similar. The reason why the exfoliation frequency is greater for tubes of SS 2218 is probably that the tubes have been exposed to higher temperatures. SS 2218 (2.25 Cr) is normally used in a higher temperature range which is accompanied by improved strength data as compared with SS 2216 (1 Cr). The principal cause of the exfoliation is said to be stresses which arise in the oxide during the cooling-down process associated with shutdowns. The stresses give rise to longitudinal cracks in the oxide, and are formed as a result of differences in thermal expansion between the oxide and the tube material. In addition, accounts are presented of oxidation constants and growth velocities, and thickness and running time. These data constitute a valuable basis for practical estimates of the operating temperature in routine checks and investigations into damage in superheater tubes. (au)

  12. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  13. Superparamagnetic response of zinc ferrite incrusted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Maldonado, K.L., E-mail: liliana.lopez.maldonado@gmail.com [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la, E-mail: pmpresa@ucm.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Betancourt, I., E-mail: israelb@unam.mx [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); Farias Mancilla, J.R., E-mail: rurik.farias@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Matutes Aquino, J.A., E-mail: jose.matutes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Hernando, A., E-mail: antonio.hernando@externos.adif.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); and others

    2015-07-15

    Highlights: • Incrusted nanoparticles are found at the surface of ZnFe{sub 2}O{sub 4} microparticles. • Magnetic contribution of nano and microparticles are analyzed by different models. • Langevin model is used to calculate the nanoparticles-superparamagnetic diameter. • Susceptibility and Langevin analysis and calculations agree with experimental data. - Abstract: Zinc ferrite is synthesized via mechano-activation, followed by thermal treatment. Spinel ZnFe{sub 2}O{sub 4} single phase is confirmed by X-ray diffraction. SEM micrographs show large particles with average particle size 〈D{sub part}〉 = 1 μm, with particles in intimate contact. However, TEM micrographs show incrusted nanocrystallites at the particles surface, with average nanocrystallite size calculated as 〈D{sub inc}〉 ≈ 5 nm. The blocking temperature at 118 K in the ZFC–FC curves indicates the presence of a superparamagnetic response which is attributable to the incrusted nanocrystallites. Moreover, the hysteresis loops show the coexistence of superpara- and paramagnetic responses. The former is observable at the low field region; meanwhile, the second one is responsible of the lack of saturation at high field region. This last behavior is related to a paramagnetic contribution coming from well-ordered crystalline microdomains. The hysteresis loops are analyzed by means of two different models. The first one is the susceptibility model used to examine separately the para- and superparamagnetic contributions. The fittings with the theoretical model confirm the presence of the above mentioned magnetic contributions. Finally, using the Langevin-based model, the average superparamagnetic diameter 〈D{sub SPM}〉 is calculated. The obtained value 〈D{sub SPM}〉 = 4.7 nm (∼5 nm) is consistent with the average nanocrystallite size observed by TEM.

  14. Enhancement of electrical properties due to Cr3+ substitution in Co-ferrite nanoparticles synthesized by two chemical techniques

    Science.gov (United States)

    Pervaiz, Erum; Gul, I. H.

    2012-11-01

    Nanocrystalline cobalt ferrites with nominal composition CoCrxFe2-xO4 ranging from x=0.0 to 0.5 with step increment of 0.25 were prepared by sol-gel auto combustion and chemical co-precipitation techniques. A comparative study of structural, electrical and magnetic properties of these ferrites has been measured using different characterization techniques. Structural and micro-structural studies were measured using X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy and atomic force microscopy. Crystallite sizes of the series are within the range of 12-29±2 nm. Lattice parameters decrease by increasing Cr3+ concentration. FTIR confirms the presence of two lattice absorption bands. DC electrical resistivity increases to a value of ˜1010 Ω-cm with increase in Cr3+ concentration, but the most significant increase is in samples prepared by sol-gel combustion. Dielectric properties have been measured as a function of frequency at room temperature. Dielectric loss decreases to 0.1037 and 0.0108 at 5 MHz for chemical co-precipitation and sol-gel combustion, respectively. Impedance measurements further helped in analyzing the electrical properties and to separate the grain and grain boundary resistance effects using a complex impedance analysis. Magnetic parameters were studied using a vibrating sample magnetometer in the applied field of 10 kOe. The saturation magnetization decreased from 63 to 10.8 emu/gm with increase in Cr3+ concentration.

  15. EXAFS Determination of the Structure of Cobalt in Carbon-Supported Cobalt and Cobalt-Molybdenum Sulfide Hydrodesulfurization Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Bouwens, S.M.A.M.; Veen, J.A.R. van; Beer, V.H.J. de; Prins, R.

    1991-01-01

    The structure of the cobalt present in carbon-supported Co and Co-Mo sulfide catalysts was studied by means of X-ray absorption spectroscopy at the Co K-edge and by X-ray photoelectron spectroscopy (XPS). Thiophene hydrodesulfurization activities were used to measure the catalytic properties of

  16. Effect of cobalt on the primary productivity of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.M.; Panigrahi, S.; Azeez, P.A.

    1987-10-01

    Cobalt, a micronutrient for biological organisms, is a metal of wide use. Main sources of Co to the environment are combustion of fossil fuels, smelters, cobalt processing facilities, sewage and industrial wastes. Atomic power plants and nuclear weapon detonations form an important source of radioisotopes of this metal to the environment. Cobalt has been included in the 14 toxic trace elements of critical importance from the point of view of environmental pollution and health hazards. Cobalt deficiency leads to diseases like stunted growth. At toxic level, Co inhibits heme biosynthesis and enzyme activities. The present study reports the effect of cobalt on biomass productivity of blue-green alga Spirulina platensis.

  17. Reduction of mixed oxide spinels: nickel ferrite and alumina doped nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Allender, J.; De Jonghe, L. C.

    1976-01-01

    When oxide ceramics are used in a hydrogen environment at elevated temperatures they will be reduced at a rate which can depend on a variety of parameters. The presence of minor amounts of alloying elements, e.g., can significantly alter the reduction rate. Since practical oxide ceramics generally contain mixed oxides of two or more metals, an understanding of the reduction behavior of mixed oxides, as well as an understanding of the effects of minor alloying elements in this, is important as a guide to extending the usefulness of oxide ceramics, and may serve to help in selecting raw materials that contain elements beneficial in improving resistance to reduction. In this paper, how the hydrogen reduction of nickel ferrites at 1000/sup 0/C is affected by the presence of 3.5 cation mole % aluminum in solid solution is studied.

  18. Toxicity and bioactivity of cobalt nanoparticles on the monocytes.

    Science.gov (United States)

    Liu, Ya-ke; Ye, Jun; Han, Qing-lin; Tao, Ran; Liu, Fan; Wang, Wei

    2015-05-01

    To explore the toxicity and biological activity of cobalt nanoparticles on the osteoclasts. Analyze the relationship between cobalt nanoparticles and osteolysis. Monocyte-macrophages (RAW 264.7) was cultured in vitro, osteoclast-like cells were induced by lipopolysaccharides (LPS). After RAW 264.7 was induced for 24 h, Methyl Thiazolium Tetrazolium (MTT) biological toxicity test of osteoclast-like cell was preceded using Cobalt nanoparticles (set 4 concentrations: 10, 20, 50, 100 μM) and cobalt chloride (set 4 concentrations: 10, 20, 50, 100 μM) at 2, 4, 8, 24 and 48 h respectively. The relative expression of mRNA of CA II and Cat K after RAW 264.7 induction was determined by Q-PCR. mRNA relative expression of CA II, Cat K were reduced at multiple concentrations both cobalt nanoparticles and cobalt chloride, and was time and concentration dependent, cobalt nanoparticles are more significant than cobalt chloride group. But when the cobalt nanoparticles concentration is in 10-50 μM, the mRNA relative expression of CA II, Cat K increased. Cobalt nanoparticles have biological toxicity. At multiple concentrations, the differentiation and proliferation of osteoclasts was inhibited, but when the concentration of cobalt nanoparticles is in 10-50 μM, it has been strengthened. © 2015 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  19. OXYGEN-1S AND COBALT-2P X-RAY ABSORPTION OF COBALT OXIDES

    NARCIS (Netherlands)

    DEGROOT, FMF; ABBATE, M; VANELP, J; SAWATZKY, GA; MA, YJ; CHEN, CT; SETTE, F

    1993-01-01

    The oxygen ls and cobalt 2p x-ray absorption spectra of CoO, Li-doped CoO and LiCoO2 have been measured with 0.1 eV resolution. The cobalt 2p spectra are analysed with a ligand-field multiplet model and the inclusion of charge-transfer effects is discussed. The oxygen ls spectra are interpreted as

  20. Cobalt reduction of NSSS valve hardfacings for ALARA

    International Nuclear Information System (INIS)

    Kim, Joo Hak; Lee, Sang Sub

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author)

  1. Mechanochemical Preparation of Cobalt Nanoparticles through a Novel Intramolecular Reaction in Cobalt(II Complexes

    Directory of Open Access Journals (Sweden)

    Seyed Abolghasem Kahani

    2015-01-01

    Full Text Available A novel solid state reaction involving a series of cobalt(II hydrazine-azides has been used to prepare metallic cobalt nanoparticles. The reactions of [Co(N2H4(N32], [Co(N2H42(N32], and [Co(N2H4(N3Cl]·H2O via NaOH, KOH as reactants were carried out in the solid state. These complexes undergo an intramolecular two-electron oxidation-reduction reaction at room temperature, producing metallic cobalt nanoparticles (Co1–Co6. The aforementioned complexes contain cobalt(II that is an oxidizing agent and also hydrazine ligand as a reducing agent. Other products produced include sodium azide and ammonia gas. The cobalt metal nanoparticles were characterized using X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and vibrating sample magnetometer (VSM. The synthesized cobalt nanoparticles have similar morphologies; however, their particle size distributions are different.

  2. Association of structural and enhanced transport properties in RE substituted cobalt nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, S.; Fatima-tuz-Zahra; Anis-ur-Rehman, M., E-mail: marehman@comsats.edu.pk

    2016-08-25

    Spinel ferrites belong to an important class of compounds which has variety of electrical and magnetic applications. Neodymium doped cobalt ferrites with composition CoFe{sub 2-x}Nd{sub x}O{sub 4} where x = 0.00, 0.05, 0.10, 0.15, 0.20 were synthesized by wet chemical route called simplified sol-gel method. Prepared samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) for structural analysis. All the samples were found spinel cubic belonging to Fd-3m space group. To analyze temperature effects on phase transition and to check thermal stability differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were done. Sample with x = 0.00 was found to be thermally more stable than remaining samples. Electrical analysis was done by using two probe method. DC electrical resistivity and drift mobility of sintered samples were measured as a function of temperature in the range from room temperature to 450 °C. It was observed that DC electrical resistivity has a direct dependence on dopant concentration but indirect dependence on temperature. Verwey hopping model was used to describe the results of DC electrical resistivity. Activation energy calculated from linear plots of DC resistivity for all samples was in the range of 0.532–0.594 eV. Rarely reported thermal transport properties that include thermal conductivity, thermal diffusivity and volumetric heat capacity were measured by Advantageous Transient Plane Source (ATPS) method. All the samples showed values near to that of thermal insulators. Thermal conductivity of all samples was increased up to 100–120 °C and then decreased. This behavior was thoroughly studied. - Highlights: • Phase pure nanoparticles of CoFe{sub 2-x}Nd{sub x}O{sub 4}(x = 0.00–0.20) by simplified sol-gel method. • XRD and FTIR spectroscopy confirmed the spinel structure of ferrites. • x = 0.00 was found to be thermally more stable than rest of the samples by TGA

  3. Cobalt (II) supported on ethylenediamine-functionalized ...

    Indian Academy of Sciences (India)

    Ethylenediamine-functionalized nanocellulose complexed with cobalt(II) was found to be a highly efficient heterogeneous catalyst for the room temperature aerobic oxidation of various types of primary and secondary benzylic alcohols into their corresponding aldehydes and ketones, respectively. The catalyst showed no ...

  4. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  5. Water Adsorption on Free Cobalt Cluster Cations

    NARCIS (Netherlands)

    Kiawi, Denis M.; Bakker, Joost M.; Oomens, Jos; Buma, Wybren Jan; Jamshidi, Zahra; Visscher, Lucas; Waters, L. B. F. M.

    2015-01-01

    Cationic cobalt clusters complexed with water Con+–H2O (n = 6–20) are produced through laser ablation and investigated via infrared multiple photon dissociation (IR-MPD) spectroscopy in the 200–1700 cm–1 spectral range. All spectra exhibit a resonance close to the 1595 cm–1 frequency of the free

  6. Water adsorption on free cobalt cluster cations

    NARCIS (Netherlands)

    Kiawi, D.M.; Bakker, J.M.; Oomens, J.; Buma, W.J.; Jamshidi, Z.; Visscher, L.; Waters, L.B.F.M.

    2015-01-01

    Cationic cobalt clusters complexed with water Con+-​H2O (n = 6-​20) are produced through laser ablation and investigated via IR multiple photon dissocn. (IR-​MPD) spectroscopy in the 200-​1700 cm-​1 spectral range. All spectra exhibit a resonance close to the 1595 cm-​1 frequency of the free water

  7. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    Science.gov (United States)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  8. Barium Ferrite Films Grown By Pulsed Laser Ablation

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.; de Haan, P.; Roesthuis, F.J.G.

    1998-01-01

    Abstract available only. It is known that barium ferrite (BaFe12019) can grow with perpendicular anisotropy on A1203 a single crystal substrate,' but also on an amorphous substrate by using a ZnO buffer.2 Because of its large magnetic anisotropy which can easily overcome the shape anisotropy of the

  9. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  10. Development and characterization of nickel–zinc spinel ferrite for ...

    Indian Academy of Sciences (India)

    Wintec

    The measured parameters have been used to determine its wave absorption properties over a frequency range 2⋅1–2⋅6 GHz. Keywords. Ferrites; microwave absorbers; complex permeability. 1. Introduction. Microwave absorbers are very useful in many applications like radar cross-section reduction, EMI/EMC problems,.

  11. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  12. Determination of delta ferrite volumetric fraction in austenitic stainless steels

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray difraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Forster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  13. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Torres C.

    2013-01-01

    Full Text Available Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer’s formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  14. Mössbauer and magnetization studies of nanosize chromium ferrite ...

    African Journals Online (AJOL)

    Nanosize chromium ferrite (CrF) powder samples were synthesized by citrate precursor route in the size range of 6 to 35 nm. The structural and magnetic behaviour of these samples were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Synthesized ...

  15. Structural and magnetic properties of ball milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1998-01-01

    The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces ca...

  16. Carbon diffusion in carbon-supersaturated ferrite and austenite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 586, FEB (2014), s. 129-135 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * Carbon supersaturation * Carbon supersaturation * Ferrite * Austenite Subject RIV: BJ - Thermodynamics Impact factor: 2.999, year: 2014

  17. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    Because of their extensive application in radio, television, microwave and satellite communication, bubble devices, audio-video, digital recording and as permanent magnets. (Viswanathan and Murthy 1990), ferrites have opened a new vista in the field of chemical physics of materials. Keeping in view these technological ...

  18. Magneto-optical properties of manganese ferrite films

    Czech Academy of Sciences Publication Activity Database

    Šimša, Zdeněk; Thailhades, P.; Presmanes, L.; Bonningue, C.

    242-245, - (2002), s. 381-383 ISSN 0304-8853 Grant - others:project BARRANDE(XX) 88057 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferrite s spinel * Faraday rotation * magneto-optical films thin films sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  19. High coercivity in nanostructured Co-ferrite thin films

    Indian Academy of Sciences (India)

    with a thickness of ~ 100 nm deposited using PLD with a substrate temperature at 550°C. The Co-ferrite films prepared by PLD at over ... the high coercivity is related with a large residual strain, which may induce an additional magnetic anisotropy .... of the spinel phase for both sol–gel and sputtering grown films starts at ...

  20. Synthesis and characterization of zinc ferrite nanoparticles obtained ...

    Indian Academy of Sciences (India)

    Administrator

    Among various nanomaterials, mainly spinel ferrite (MFe2O4, M = Ni, Co, Mn, Zn, etc.) nanoparticles have become immensely popular magnetic materials for a wide variety of applications such as electronic ignition systems, generators, vending machines, medical implants, wrist watches, inductor core, transformer circuits, ...

  1. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    xErxO4 (where x = 0⋅2, 0⋅4, 0⋅6, 0⋅8 and. 1⋅0) were ... Plots of dielectric constant (ε′) vs frequency show a normal dielectric behaviour of spinel ferrites. The frequency ..... with temperature may be due to a magnetic transition, where the ...

  2. Irradiation proposition of ferritic steels in a russian reactor

    International Nuclear Information System (INIS)

    Seran, J.L.; Decours, J.; Levy, L.

    1987-04-01

    Using the low temperatures of russian reactors, a sample irradiation is proposed to study mechanical properties and swelling of martensitic steels (EM10, T91, 1.4914, HT9), ferrito-martensitic (EM12) and ferritic (F17), at temperatures lower than 400 0 C [fr

  3. Influence of silicon substitution on the properties of lithium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek [National Physical Laboratory (India); Pandey, Vibhav [National Physical Laboratory (India); Kotnala, R.K. [National Physical Laboratory (India)]. E-mail: rkkotnala@mail.nplindia.ernet.in; Kishan, Hari [National Physical Laboratory (India); Kumar, Nitender [Solid State Physical Laboratory, Lucknow Road, New Delhi 110007 (India); Kothari, P.C. [National Physical Laboratory (India)

    2007-09-27

    Silicon substituted lithium ferrite of different compositions (Li{sub 0.5(1+x)}Si {sub x}Fe{sub 2.5-1.5x}O{sub 4}) were prepared for x = 0-0.6 by ceramic standard technique. The magnetic and electrical properties of synthesized samples have been determined. A structural characterization of all the samples was conducted by the X-ray diffraction technique. The grain size ranging from 5.5 to 16 {mu}m were studied with respect to compositions by SEM pictures. The maximum value 75.23 emu/g of saturation magnetization of silicon substituted lithium ferrite at x = 0.4 molar concentration of silicon was observed. The measured real part of dielectric constant ({epsilon}') and loss tangent (tan {delta}) of mixed Li-Si ferrite decreases with increasing silicon concentration in ferrite. Such variations in dielectric properties are due of Fe{sup 2+} and Fe{sup 3+} concentrations on octahedral sites and electronic hopping frequency between Fe{sup 2+} and Fe{sup 3+} ions.

  4. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    microwave and satellite communication, bubble devices, audio-video, digital recording and as permanent magnets. (Viswanathan and Murthy 1990), ferrites have .... higher internal magnetic field values at 77 K as compared to 300 K are expected as the magnitude of this parameter is temperature dependent (Bhide 1973; ...

  5. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  6. Lithium ferrite: The study on magnetic and complex permittivity characteristics

    Directory of Open Access Journals (Sweden)

    Madhavaprasad Dasari

    2017-03-01

    Full Text Available Lithium ferrite (Li0.5Fe2.5O4 powder was prepared by solid state reaction method, which was finally pressed and sintered at 1150 °C. The spinel structure of the lithium ferrite was confirmed by X-ray diffraction and grain size estimation was obtained from scanning electron microscope (SEM. Fourier transform infrared spectroscopy (FTIR confirmed the presence of primary and secondary absorption bands characteristic for spinel structure. The force constants were estimated using absorption bands for the lithium ferrite. Magnetization and dielectric studies were carried out for the sintered sample. Saturation magnetization (Ms of 59.6 emu/g was achieved and variation of magnetization with temperature was used to identify the Curie temperature. The complex permittivity (ε∗ for the lithium ferrite sample was obtained for wide frequency range up to 3 GHz and discussed based on available models. The Curie temperature was estimated around 480 °C and verified from both magnetization versus temperature and dielectric constant versus temperature measurements.

  7. Development and characterization of nickel–zinc spinel ferrite for ...

    Indian Academy of Sciences (India)

    Wintec

    Development and characterization of nickel–zinc spinel ferrite. 769. Figure 6. (a) Imaginary (εr) vs frequency, (b) real (εr) vs frequency, (c) |εr| vs frequency, (d) imaginary (μr) vs frequency, (e) real (μr) vs frequency and (f) |μr| vs frequency. Table 1. Ferrimagnetic resonance fre- quency for various values of δ. δ. Measured fr ...

  8. Tailoring magnetic and dielectric properties of rubber ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Safari Ardi M, Dick W and McQueen D H 1995 Plastics,. Rubber and Composites – Processing and Applications 24 157. Soshin Chikazumi 1964 Physics of magnetism (New York: John. Wiley & Sons Inc.) Smit J and Wijn H P G 1959 Ferrites (The Netherlands: Phillips. Technical Library). Sung Soo Kim and Dae Hee Han ...

  9. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  10. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    International Nuclear Information System (INIS)

    Cahill, B.M.

    2002-01-01

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting transmission lines, culminating in the design of two compact electromagnetic controlled beam steered patch and slot antenna arrays. The second part investigates the use of active frequency selective surfaces (AFSS), which are later used to cover a uPVC constructed enclosure. Field intensity measurements are taken from within the enclosure to determine the dynamic screening effectiveness. Trans Tech G-350 Ferrite is investigated to determine its application in printed microstrip and stripline phase shifting transmission lines. 50-Ohm transmission lines are constructed using the ferrite tile and interfaced to Rogers RT Duroid 5870 substrate. Scattering parameter measurements are made under the application of variable magnetic fields to the ferrite. Later, two types of planar microwave beam steering antennas are constructed. The first uses the ferrites integrated into the Duroid as microstrip lines with 3 patch antennas as the radiating elements. The second uses stripline transmission lines, with slot antennas as the radiating sources etched into the ground plane of the triplate. Beam steering is achieved by the application of an external electromagnet. An AFSS is constructed by the interposition of PIN diodes into a dipole FSS array. Transmission response measurements are then made for various angles of electromagnetic wave incidence. Two states of operation exist: when a current is passed through the diodes and when the diodes are switched off. These two states form a high pass and band stop space filter respectively. An enclosure covered with the AFSS is constructed and externally illuminated in the range 2.0 - 2.8GHz. A probe antenna inside the enclosure positioned at various locations through out the volume is used to establish the effective screening action of the AFSS in 3 dimensional space. (author)

  11. Investigating magnetic proximity effects at ferrite/Pt interfaces

    Science.gov (United States)

    Collet, M.; Mattana, R.; Moussy, J.-B.; Ollefs, K.; Collin, S.; Deranlot, C.; Anane, A.; Cros, V.; Petroff, F.; Wilhelm, F.; Rogalev, A.

    2017-11-01

    Spintronic devices based on pure spin currents have drawn a lot of attention during the last few years for low energy device design. One approach to generate pure spin currents is to combine a metallic or insulating ferromagnetic layer with a non-magnetic metallic layer with a large spin-orbit coupling. A recent controversy has arisen in the possible role of magnetic proximity effects at ferromagnetic/non-magnetic interfaces, which can hamper the understanding of pure spin current generation mechanisms. While magnetic proximity effects have been frequently observed at ferromagnetic metal/non-magnetic interfaces, there are only a few studies on ferromagnetic insulator/non-magnetic interfaces. Regarding the use of ferromagnetic insulators, the focus has been mainly on yttrium iron garnet (YIG). However, investigation of induced magnetic moments at YIG/Pt interfaces has engendered contradictory results. Here, we propose to study insulating ferrites for which electronic and magnetic properties can be modulated. Magnetic proximity effects have been investigated at MnFe2O4/Pt, CoFe2O4/Pt, and NiFe2O4/Pt interfaces by X-ray circular magnetic dichroism (XMCD) measurements at the Pt L3 edge. Although hybridization with Pt seems to be different among the ferrites, we do not detect any XMCD signal as the signature of an induced magnetism in Pt. We have then studied the Fe3O4 ferrite below and above the Verwey transition temperature. No XMCD signal has been measured in the insulating or conducting phase of Fe3O4. This suggests that the absence of magnetic proximity effects at ferrite/Pt interfaces is not linked to the insulating character or not of the ferrites.

  12. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  13. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

    International Nuclear Information System (INIS)

    Pahuja, Poonam; Kotnala, R.K.; Tandon, R.P.

    2014-01-01

    Highlights: • Rare earth ions Dy 3+ , Gd 3+ and Sm 3+ have been substituted in Ba 0.95 Sr 0.05 TiO 3 (BST). • Ni 0.8 Co 0.2 Fe 2 O 4 has been used as ferrimagnetic phase to obtain composites. • Substitution of these ions increases dielectric constant of BST and composites. • Magnetoelectric coefficient of composites increases on substitution of these ions. - Abstract: Effect of substitution of rare earth ions (Dy 3+ , Gd 3+ and Sm 3+ ) on various properties of Ba 0.95 Sr 0.05 TiO 3 (BST) i.e. the composition Ba 0.95−1.5x Sr 0.05 R x TiO 3 (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni 0.8 Co 0.2 Fe 2 O 4 (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba 2+ and Ti 4+ sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P–E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC

  14. Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method

    Science.gov (United States)

    Routray, Krutika L.; Sanyal, Dirtha; Behera, Dhrubananda

    2017-12-01

    CoFe2-xBixO4 nanoferrites with x = 0, 0.05, 0.1, 0.5, and 1.0 have been synthesized by the glycine nitrate process. The present study investigates the effect of Bi3+ substitution on the microstructural, dielectric, ferroelectric, magnetic, and Mossbauer properties of CoFe2O4 nanoparticles. The X-ray diffraction technique was used to confirm the phase purity and estimate the crystallite size which revealed the formation of a secondary phase when Bi3+ concentration exceeds x = 0.5. Transmission electron microscopy indicated the formation of grains by aggregation of small crystallites with a reduction in grain size to 20 nm with an increase in Bi3+ content and also divulged the lattice parameter value to be 8.378 Å, confirming the crystalline nature of the synthesised sample. Dielectric properties performed in the frequency range of 100 Hz to 1 MHz determined that the dielectric behavior is attributed to the Maxwell-Wagner polarization and the activation energy of the specimens is calculated from the dielectric measurements. The hysteresis curve indicated the ferrimagnetic nature of the samples. The samples also exhibited a well saturated P-E loop with gradual lowering in remenant polarization, coercive field, and saturation polarization with an increase in bismuth concentration. Mössbauer spectroscopy analysis confirmed the changes in magnetic moment of ions, their coupling with neighbouring ions, and cation exchange interactions. Owing to the high physical, thermal, and chemical stabilities, these magnetic ceramics, CoFe2-xBixO4, possesses tremendous potential in major understanding of magnetism and in magnetic recording applications for high density information storage.

  15. High-throughput investigation of orientations effect on nanoscale magnetization reversal in cobalt ferrite thin films induced by electric field

    Science.gov (United States)

    Dhanapal, Pravarthana; Guo, Shanshan; Wang, Baomin; Yang, Huali; Agarwal, Sandeep; Zhan, Qingfeng; Li, Run-Wei

    2017-10-01

    The magnetoelectric device concept which enables the non-volatile electric field control of magnetism needs to be investigated for the development of practical information storage devices. In this aspect, the emerging field of magneto-ionics based on the modulation of magnetism by field-driven ion migration is promising because it only requires a simple sample structure in the solid state and has good cyclability. However, the degree of ion migration within the magnetic structure is strongly dependent on the crystal orientations. Since the epitaxial films growing on the commercial single crystal substrates have limited orientations, the ability of magnetism modulated by field-driven ion migration cannot be optimized and understood by using these data. In this work, we utilized the high-throughput synthesis approach, namely, combinatorial substrate epitaxy, which utilizes a polycrystalline substrate. This provides a platform to develop and understand the degree of ionic migration in different orientations of the model system CoFe2O4 (CFO) films. The library of electric driven nanoscale magnetization reversal data of CFO with different orientations was obtained by applying the electric field in the same region of known CFO grain orientations. It was determined from the analysis that the [110] crystal direction exhibits the maximum nanoscale magnetization reversal ratio. This is mainly attributed to the ease Co2+ migration in the [110] direction under the electric field assisted by a Fe3+ and oxygen vacancies.

  16. Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method

    Science.gov (United States)

    Motavallian, Pourya; Abasht, Behzad; Abdollah-Pour, Hassan

    2018-04-01

    Nanocrystalline CoZrxFe2-xO4 (0 ≤ x ≤ 0.3 in a step of 0.05) powders were synthesized by Pechini sol-gel method. The dry gel was grinded and calcined at 700 °C in a static air atmosphere for 1 h. Some tests such as thermo gravimetric analysis (TGA) combined with differential analysis (DTA), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the thermal behaviour, structural bonds identification, crystallographic properties, morphology and magnetic properties of the obtained powders. X-ray diffraction revealed a single-phase cubic spinel structure for all samples, where the crystallite size decreases; the lattice parameter simultaneously increases with substitution of Zr. The results of FE-SEM showed that the particle size is in the 20-70 nm range. The magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were measured from the hysteresis loops. The greatest amount of saturation magnetization for CoZr0.05Fe1.95O4 sample was 67.9 emu·g-1.

  17. Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Gama, Adriana M., E-mail: adrianaamg@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Rezende, Mirabel C., E-mail: mirabelmcr@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Dantas, Christine C., E-mail: christineccd@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)

    2011-11-15

    We report the analysis of measurements of the complex magnetic permeability ({mu}{sub r}) and dielectric permittivity ({epsilon}{sub r}) spectra of a rubber radar absorbing material (RAM) with various MnZn ferrite volume fractions. The transmission/reflection measurements were carried out in a vector network analyzer. Optimum conditions for the maximum microwave absorption were determined by substituting the complex permeability and permittivity in the impedance matching equation. Both the MnZn ferrite content and the RAM thickness effects on the microwave absorption properties, in the frequency range of 2-18 GHz, were evaluated. The results show that the complex permeability and permittivity spectra of the RAM increase directly with the ferrite volume fraction. Reflection loss calculations by the impedance matching degree (reflection coefficient) show the dependence of this parameter on both thickness and composition of RAM. - Highlights: > Permeability and permittivity spectra of a MnZn ferrite RAM (2-18 GHz) are given. > Higher MnZn volume fraction favors increase of RAM/'s permeability and permittivity. > Minimum RL as a function of frequency, thickness and MnZn volume fraction given. > Higher thicknesses imply better absorption; optimum band shifts to lower frequencies. > For higher volume fractions, smaller thickness might offer better absorption (>10 GHz).

  18. Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites

    Science.gov (United States)

    Ditta, Allah; Khan, Muhammad Azhar; Junaid, Muhammad; Khalil, R. M. Arif; Warsi, Muhammad Farooq

    2017-02-01

    Gadolinium (Gd) and Dysprosium (Dy) co-doped Ni-Co (Ni0.4Co0.6Fe2O4) ferrites were prepared by micro-emulsion route. X-ray diffraction (XRD) analysis indicated the development of cubic spinel structure. The lattice parameter and X-ray density were found to increase from 8.24 to 8.31 Å and 5.57 to 5.91 (gm/cm3) respectively as the Gd-Dy contents increased in nickel-cobalt ferrites. The crystallite size calculated from the Scherrer's formula exhibited the formation of nanocrystalline ferrites (13-26 nm). Two foremost absorption bands observed in FTIR spectra within 400 cm-1 (υ2) to 600 cm-1 (υ1) which correspond to stretching vibrations of tetrahedral and octahedral complexes respectively. The dielectric constant (ε) and dielectric loss (tanδ) were decreased by the optimization of frequency and abrupt decrease in the low frequency region and higher values in the high frequency region were observed. The dielectric dispersion was due to rapid decrease of dielectric constant in the low frequency region. This variation of dielectric dispersion was explicated in the light of space charge polarization model of Maxwell-Wagner. The dielectric loss occurs in these ferrites due to electron hopping and defects in the dipoles. The electron hopping was possible at low frequency range but at higher frequency the dielectric loss was decreased with the decrease of electron hopping. Magnetic properties were observed by measuring M-H loops. Due to low dielectric loss and dielectric constant these materials were appropriate in the fabrication of switching and memory storage devices.

  19. Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ditta, Allah [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Junaid, Muhammad, E-mail: junaid.malik95@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khalil, R.M. Arif [Department of Physics, Sahiwal Sub-Campus Bahauddin Zakariya University, Sahiwal (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2017-02-15

    Gadolinium (Gd) and Dysprosium (Dy) co-doped Ni-Co (Ni{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}) ferrites were prepared by micro-emulsion route. X-ray diffraction (XRD) analysis indicated the development of cubic spinel structure. The lattice parameter and X-ray density were found to increase from 8.24 to 8.31 Å and 5.57 to 5.91 (gm/cm{sup 3}) respectively as the Gd-Dy contents increased in nickel-cobalt ferrites. The crystallite size calculated from the Scherrer's formula exhibited the formation of nanocrystalline ferrites (13–26 nm). Two foremost absorption bands observed in FTIR spectra within 400 cm{sup −1} (υ{sub 2}) to 600 cm{sup −1} (υ{sub 1}) which correspond to stretching vibrations of tetrahedral and octahedral complexes respectively. The dielectric constant (ε) and dielectric loss (tanδ) were decreased by the optimization of frequency and abrupt decrease in the low frequency region and higher values in the high frequency region were observed. The dielectric dispersion was due to rapid decrease of dielectric constant in the low frequency region. This variation of dielectric dispersion was explicated in the light of space charge polarization model of Maxwell-Wagner. The dielectric loss occurs in these ferrites due to electron hopping and defects in the dipoles. The electron hopping was possible at low frequency range but at higher frequency the dielectric loss was decreased with the decrease of electron hopping. Magnetic properties were observed by measuring M-H loops. Due to low dielectric loss and dielectric constant these materials were appropriate in the fabrication of switching and memory storage devices.

  20. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu–Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu–Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2–18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than ‑19 dB in 2–18 GHz, and the maximum of ‑23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu–Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu–Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  1. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions

    International Nuclear Information System (INIS)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing; Richards, George

    2016-01-01

    Highlights: • BaFe 2 O 4 and CaFe 2 O 4 are excellent for chemical looping coal gasification. • BaFe 2 O 4 and CaFe 2 O 4 have minimal reactivity with synthesis gas. • Steam enhances the gasification process with these oxygen carriers. • Reaction rates of steam gasification of coal with CaFe 2 O 4 was better than with gaseous oxygen. • Coal gasification appears to be via solid–solid interaction with the oxygen carrier. - Abstract: Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe 2 O 4 ) and calcium ferrite (CaFe 2 O 4 ). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe 2 O 4 and CaFe 2 O 4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H 2 ) and carbon monoxide (CO), but carbon dioxide (CO 2 ) remained low because these oxygen carriers have minimal reactivity with H 2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H 2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  2. Preparation and characterization of Nickel-and cobalt-doped magnetites

    Directory of Open Access Journals (Sweden)

    Lelis Maria de Fátima Fontes

    2003-01-01

    Full Text Available Nickel- and cobalt-doped magnetites were prepared by a co-precipitation method and studied in some detail, in an effort to identify some effects of the doping cations on the magnetic, crystallographic and morphological properties of the resulting spinel. The synthetic samples were characterized by conventional chemical analysis, powder X-ray diffractometry, Mössbauer spectroscopy, saturation magnetization and scanning electron microscopy. From chemical analysis, the continuous increase of Ni2+ or Co2+ is accompanied by a simultaneous decrease of the Fe2+ contents, in the spinel structure. The magnetization values also decrease continuously with increasing doping cation contents. Mössbauer parameters are characteristic of substituted magnetites and indicate the presence of a single phase only. Based on the inverted intensities of the lines 1 (leftmost, on the negative Doppler velocity scale and 2 of Mössbauer spectra of doped samples, relatively to the pure magnetite, it was assumed that the isomorphical substitution occurs preferentially on octahedral coordination sites of the spinel structure. The coercive field of these ferrites decrease steadily with Ni2+ but increases with Co2+ contents, reaching a maximum at x = 0.38, in the general formula Co xFe3-xO4 .

  3. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction

    Science.gov (United States)

    Babar, P. T.; Lokhande, A. C.; Pawar, B. S.; Gang, M. G.; Jo, Eunjin; Go, Changsik; Suryawanshi, M. P.; Pawar, S. M.; Kim, Jin Hyeok

    2018-01-01

    The development of an inexpensive, stable, and highly active electrocatalyst for oxygen evolution reaction (OER) is essential for the practical application of water splitting. Herein, we have synthesized an electrodeposited cobalt hydroxide on nickel foam and subsequently annealed in an air atmosphere at 400 °C for 2 h. In-depth characterization of all the films using X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) techniques, which reveals major changes for their structural, morphological, compositional and electrochemical properties, respectively. The cobalt hydroxide nanosheet film shows high catalytic activity with 290 mV overpotential at 10 mA cm-2 and 91 mV dec-1 Tafel slope and robust stability (24 h) for OER in 1 M KOH electrolyte compared to cobalt oxide (340 mV). The better OER activity of cobalt hydroxide in comparison to cobalt oxide originated from high active sites, enhanced surface, and charge transport capability.

  4. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H.

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  5. Radiation and thermal effects on cobalt retention by Mexican aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Rangel, J.I. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico 11801, D. F. (Mexico); Unidad Academica Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Frac. La Penuela, Zacatecas, Zacatecas 98068 (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100 Col. Centro C. P. 50000, Toluca, Edo. de Mexico (Mexico); Solache-Rios, M. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico 11801, D. F. (Mexico)]. E-mail: msr@nuclear.inin.mx; Nunez-Monreal, J.E. [Unidad Academica de Ciencias Quimicas, Programa de Ingenieria Quimica, Universidad Autonoma de Zacatecas, Km. 0.5 Carr. a Cd. Cuauhtemoc., Guadalupe, Zacatecas 98600 (Mexico)

    2007-05-15

    Thermal and radiation effects on the leaching of cobalt from two cobalt exchanged zeolites and one clay were determined. The cobalt exchanged aluminosilicates were heated at different temperatures (500, 700, 900 and 1100 deg. C), and the materials were then treated with NaCl (1 and 5 M) and HNO{sub 3} (0.001 and 1 M) solutions to determine the leaching behavior of cobalt from the materials. Cobalt showed greater stability when the materials were heated at the highest temperature. The unheated samples and those heated at 1100 deg. C were gamma irradiated, and it was found that cobalt leaching from gamma irradiated aluminosilicates was higher than that for non-irradiated materials.

  6. Optimization of multiroute synthesis for polyaniline-barium ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ghzaiel, Tayssir, E-mail: tayssir.ben-ghzaiel@satie.ens-cachan.fr [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France); Dhaoui, Wadia [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); Pasko, Alexander; Mazaleyrat, Frédéric [SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France)

    2016-08-15

    A comparative study of physicochemical and magnetic properties of Polyaniline-BaFe{sub 12}O{sub 19} composites prepared by Solid-Based Polymerization (SBP) and by Aqueous-Based Polymerization (ABP) is carried out. The composites obtained by the latter method underwent a grinding to study the influence of shear stress. Thus, in a systematic approach, an investigation of stirring effect was done by synthesizing these composites using aqueous-based polymerization but without mechanical stirring. Different mass ratio of BaFe{sub 12}O{sub 19} was used to explore their impact on composites properties. X-ray diffraction, FTIR, SEM, TGA, conductivity and vibrating sample magnetometer measurements were performed. Structural and morphological investigations confirmed the presence of polyaniline and barium hexaferrite phase, which were in interaction in the composites regardless the polymerization route. The powder obtained by solid-based pathway revealed distinct particles with uniform distribution for various compositions (wt. %) of BaFe{sub 12}O{sub 19} in Pani, while the composites obtained by aqueous-based polymerization presented agglomerated nanostructures. Thermogravimetric analysis exhibited an improved thermal stability for Pani-BaFe{sub 12}O{sub 19} obtained by solid-based route. The electric conductivity has displayed decreasing trend of DC conductivity with the increase of BaFe{sub 12}O{sub 19} particles in the polymer matrix. Magnetic studies showed a ferromagnetic behaviour for all composites. The saturation magnetization monotonously increased with the increasing of BaFe{sub 12}O{sub 19} amount. The magnetic properties of the powders were mainly related to the hexaferrite loading which was determined using measured magnetic data. These results revealed that magnetization saturation was dependant of volume fraction of ferrite in the composites which was significantly affected by the reaction medium and mechanical stirring. The powders obtained by solid

  7. A spot test for detection of cobalt release – early experience and findings

    DEFF Research Database (Denmark)

    Thyssen, Jacob P.; Menné, Torkil; Johansen, Jeanne D.

    2010-01-01

    Background: It is often difficult to establish clinical relevance of metal exposure in cobalt-allergic patients. Dermatologists and patients may incorrectly assume that many metallic items release cobalt at levels that may cause cobalt dermatitis. Cobalt-allergic patients may be unaware...... also be used as a gel test if combined with an agar preparation. We found no false-positive reactions when testing metals and alloys known not to contain cobalt. However, one cobalt-containing alloy, which elicited cobalt dermatitis in cobalt-allergic patients, was negative upon cobalt gel testing....... Conclusions: The cobalt test detects amounts of cobalt release that approximate the elicitation concentration seen in cobalt-allergic patients. It may serve as a useful tool in dermatology offices and workplaces....

  8. DC breakdown experiments with cobalt electrodes

    CERN Document Server

    Descoeudres, Antoine; Nordlund, Kai

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. The conditioning speed, breakdown field and field enhancement factor of cobalt have been measured. The average breakdown field after conditioning reaches 615 MV/m, which places cobalt amongst the best materials tested so far. By comparison with results and properties of other metals, the high breakdown field of Co could be due to its high work function and maybe also to its hexagonal crystal structure. Geneva, Switzerland (June 2009) CLIC – Note – 875

  9. Process for obtaining cobalt and lanthanum nickelate

    International Nuclear Information System (INIS)

    Tapcov, V.; Samusi, N.; Gulea, A.; Horosun, I.; Stasiuc, V.; Petrenco, P.

    1999-01-01

    The invention relates to the process for obtaining polycrystalline ceramics of cobalt and lanthanum nickelate with the perovskite structure from coordinative hetero metallic compounds. The obtained products can be utilized in the industry in the capacity of catalysts. Summary of the invention consists in obtaining polycrystalline ceramics LaCoO 3 and LaNiO 3 with the perovskite structure by pyrolysis of the parent compounds, namely, the coordinative hetero metallic compounds of the lanthanum cobalt or lanthanum nickel. The pyrolysis of the parent compound runs during one hour at 800 C. The technical result of the invention consists in lowering the temperature of the parent compound pyrolysis containing the precise ratio of metals necessary for ceramics obtaining

  10. Cobalt oxides from crystal chemistry to physics

    CERN Document Server

    Raveau, Bernard

    2012-01-01

    Unparalleled in the breadth and depth of its coverage of all important aspects, this book systematically treats the electronic and magnetic properties of stoichiometric and non-stoichiometric cobaltites in both ordered and disordered phases. Authored by a pioneer and a rising star in the field, the monograph summarizes, organizes and streamlines the otherwise difficult-to-obtain information on this topic. An introductory chapter sets forth the crystal chemistry of cobalt oxides to lay the groundwork for an understanding of the complex phenomena observed in this materials class. Special emphasis is placed on a comprehensive discussion of cobaltite physical properties in different structural families. Providing a thorough introduction to cobalt oxides from a chemical and physical viewpoint as a basis for understanding their intricacies, this is a must-have for both experienced researchers as well as entrants to the field.

  11. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  12. Cobalt metabolism and toxicology-A brief update

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Lars Ole, E-mail: LOSimonsen@dadlnet.dk; Harbak, Henrik; Bennekou, Poul

    2012-08-15

    Cobalt metabolism and toxicology are summarized. The biological functions of cobalt are updated in the light of recent understanding of cobalt interference with the sensing in almost all animal cells of oxygen deficiency (hypoxia). Cobalt (Co{sup 2+}) stabilizes the transcriptional activator hypoxia-inducible factor (HIF) and thus mimics hypoxia and stimulates erythropoietin (Epo) production, but probably also by the same mechanism induces a coordinated up-regulation of a number of adaptive responses to hypoxia, many with potential carcinogenic effects. This means on the other hand that cobalt (Co{sup 2+}) also may have beneficial effects under conditions of tissue hypoxia, and possibly can represent an alternative to hypoxic preconditioning. Cobalt is acutely toxic in larger doses, and in mammalian in vitro test systems cobalt ions and cobalt metal are cytotoxic and induce apoptosis and at higher concentrations necrosis with inflammatory response. Cobalt metal and salts are also genotoxic, mainly caused by oxidative DNA damage by reactive oxygen species, perhaps combined with inhibition of DNA repair. Of note, the evidence for carcinogenicity of cobalt metal and cobalt sulfate is considered sufficient in experimental animals, but is as yet considered inadequate in humans. Interestingly, some of the toxic effects of cobalt (Co{sup 2+}) have recently been proposed to be due to putative inhibition of Ca{sup 2+} entry and Ca{sup 2+}-signaling and competition with Ca{sup 2+} for intracellular Ca{sup 2+}-binding proteins. The tissue partitioning of cobalt (Co{sup 2+}) and its time-dependence after administration of a single dose have been studied in man, but mainly in laboratory animals. Cobalt is accumulated primarily in liver, kidney, pancreas, and heart, with the relative content in skeleton and skeletal muscle increasing with time after cobalt administration. In man the renal excretion is initially rapid but decreasing over the first days, followed by a second, slow

  13. Leather Contains Cobalt and Poses a Risk of Allergic Contact Dermatitis: Cobalt Indicator Solution and X-ray Florescence Spectrometry as Screening Tests.

    Science.gov (United States)

    Hamann, Dathan; Hamann, Carsten R; Kishi, Patrick; Menné, Torkil; Johansen, Jeanne D; Thyssen, Jacob P

    2016-01-01

    Cobalt was recently identified in a leather couch responsible for dermatitis. Cobalt content/release in leather in the United States is unknown. We evaluated leather for cobalt content/release and investigated screening methods for identifying cobalt in leather. One hundred thirty-one leather swatches were screened for cobalt content/release with X-ray fluorescence (XRF) spectrometry and cobalt indicator solution (CIS). Samples with positive screens and 1 negative control were analyzed using inductively-coupled plasma mass spectrometry (ICPMS). CIS showed that 5 of 131 samples contained cobalt, subsequently found to be between 1 and 190 parts per million (ppm) when evaluated with ICPMS. The XRF analysis showed that 6 samples contained >5% cobalt, subsequently found to contain greater than 300 ppm cobalt by ICPMS. 7 of 12 tested swatches contained cobalt in excess of 100 ppm. One sample contained greater than 1000 ppm cobalt. The prevalence of swatches containing cobalt at levels in excess of 190 ppm was at least 5% (n = 7; total, N = 131). Some leather consumer goods contain and release cobalt. Cobalt indicator solution is a poor screening test for cobalt in leather while XRF screening may be effective. Leather is a new source of cobalt exposure. Exposures to metal allergens are changing in ways that impact clinical decision making.

  14. Infrared and Raman Spectroscopic Study of Carbon-Cobalt Composites

    Directory of Open Access Journals (Sweden)

    André Tembre

    2011-01-01

    Full Text Available Analysis of carbon-cobalt thin films using infrared spectroscopy has shown existence of carbon-cobalt stretching mode and great porosity. The Raman spectroscopy and high-resolution transmission electron microscopy have been used in order to investigate the microstructure of the films. These films exhibit complex Raman spectra suggesting the presence of amorphous and crystallized phases. The different fractions of phases and the correlation between the atomic bond structures and the Raman features depend on the cobalt content.

  15. Speciation studies of cobalt in sea water

    International Nuclear Information System (INIS)

    Toteja, R.S.D.; Sudersanan, M.; Iyer, R.K.

    1995-01-01

    Recent results on the speciation of cobalt in simulated and actual sea water is reported using ion exchangers. The influence of magnesium ions in affecting the composition of ion exchangers and subsequent interpretation of the results is discussed. The results indicated that Co +2 may predominate in both the simulated and actual sea water and the presence of other constituents in sea water does not affect the nature of complex species present. (author). 2 refs., 3 tabs., 1 fig

  16. Sputtering yield measurements on single crystal cobalt

    International Nuclear Information System (INIS)

    Chernysh, V.S.; Johansen, A.; Sarholt-Kristensen, L.

    1981-01-01

    Single crystals of cobalt have been bombarded with 80 keV A + ions in the direction of the h.c.p. structure and in the direction of the f.c.c. structure. The sputtering yields, measured by the weight loss method, depend on the crystal structure, and damage, introduced by the ion bombardment, is shown to play a significant role in the explanation of the measured sputtering yields. (Auth.)

  17. Photoionization of cobalt impuritiesin zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Ivanov, V.; Godlewski, M.; Dejneka, Alexandr

    2015-01-01

    Roč. 252, č. 9 (2015), s. 1988-1992 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : absorption band * cobalt * photoionization * electron spin resonance * pulsed mode * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  18. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Univ. of Rochester, NY (United States)

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  19. The cobalt radioactive isotopes in environment

    International Nuclear Information System (INIS)

    2007-01-01

    For the year 1993 the total activity released in cobalt is 69 GBq for the whole of nuclear power plants. The part of activity in cobalt for La Hague in 1993 is 8 GBq of 58 Co and 2 GBq of 60 Co. The radioactive isotopes released by nuclear power plants or the reprocessing plant of La Hague under liquid effluents are shared by half between 58 Co and 60 Co. The exposure to sealed sources is the most important risk for the cobalt. The risk of acute exposure can associate a local irradiation of several decades of grays inducing a radiological burns, deep burn to treat in surgery by resection or graft even amputation. A global irradiation of organism for several grays induces an acute irradiation syndrome, often serious. At long term the stochastic effects are represented by leukemia and radio-induced cancers. The increase of probability of their occurrence is 1% by sievert. We must remind that the natural spontaneous probability is 25%. (N.C.)

  20. Uptake of radionuclides caesium and cobalt

    International Nuclear Information System (INIS)

    Lukac, P.; Foldesova, M.

    1995-01-01

    By means of chemical treatment ammonium, potassium, sodium and H-form of zeolite were prepared. The chemical modifications of zeolite were carried out with: 2M solution of NaNO 3 , NH 4 NO 3 , KNO 3 ; 0,1M solution of HCl; NaOH solution of different concentration. The method of model radioactive solution was used to find the sorption ability for cesium and cobalt every modified zeolite. The model solution were 0.05M solution of cobalt labelled by 60 Co or cesium labelled by 137 Cs. The highest sorption ability was observed for zeolite modified by NaOH. The influence of pH on uptake of cesium and cobalt by modified zeolite was searched as well. The experimental data (leaching tests, compressive strength measurement and porosity) were measured for the case the Cs and Cs from model water solution and radioactive waste water were up taken on chemically modified zeolite and were subsequently incorporated into cement casts on blast furnace cement slags basis. The leachability was tested in water, in basis solution and in acid solution. The leachability in water and basic solution was negligible, in acid solution it was less than 4% which is inside of value of applied measure method. The compressive strength, porosity and leaching experiment are hopefully and show good mechanical stability and good retention of observed radionuclides in samples exposed in leaching solutions. (J.K.)

  1. Osseointegration of cobalt-chrome alloy implants.

    Science.gov (United States)

    Mavrogenis, Andreas F; Papagelopoulos, Panayiotis J; Babis, George C

    2011-01-01

    Osseointegration or osteointegration refers to a direct bone-to-metal interface without interposition of non-bone tissue. The long-term clinical success of bone implants is critically related to wide bone-to-implant direct contact. However, only poor bone formation or even host bone resorption have been shown where bone is in tight contact with the implant surface. It has been suggested that an appropriate space between implant and host bone may be useful for early peri-implant bone formation. Additionally, osseointegration depends on the topographical and chemical characteristics of the implant surface. Cobalt-chrome (Co-Cr) is a metal alloy of cobalt and chromium. Because of its high strength, temperature endurance and wear resistance, it is commonly used in dental and orthopedic implants. In orthopedic implants it is usually composed of cobalt with chromium, molybdenum, and traces of other elements. Co-Cr alloys are especially useful where high stiffness or a highly polished and extremely wear-resistant material is required. This article reviews the Co-Cr alloy orthopedic implants in terms of their properties, porous coating, osseointegration, outcome, and failure.

  2. Hot corrosion of low cobalt alloys

    Science.gov (United States)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  3. High Frequency Magneto Dielectric Effects In Self Assembled Ferrite Ferroelectric Core Shell Nanoparticles

    Science.gov (United States)

    2014-09-10

    magneto-electric interactions Appl. Phys. Lett. 105, 072905 (2014); 10.1063/1.4893699 Magnetic field assisted self-assembly of ferrite -ferroelectric...10.1063/1.4795820 Co- ferrite spinel and FeCo alloy core shell nanocomposites and mesoporous systems for multifunctional applications J. Appl. Phys...1. The stress in the ferrite phase is assumed to be produced by applied magnetic field and transferred to ferroelectric shell. Strain and stress

  4. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    Science.gov (United States)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  5. Towards a Cycle without Loss. Cobalt in the Aircraft Industry,

    Science.gov (United States)

    COBALT , *AIRCRAFT INDUSTRY, *STRATEGIC MATERIALS, *MANUFACTURING, CYCLES, SUPERALLOYS , HIGH STRENGTH ALLOYS, STEEL, TOOL STEEL, ALLOYS, QUANTITATIVE ANALYSIS, MATERIALS RECOVERY, RATES, ALLOYS, RECYCLED MATERIALS, LOSSES, SYMPOSIA

  6. Consumer leather exposure: an unrecognized cause of cobalt sensitization

    DEFF Research Database (Denmark)

    Thyssen, J.P.; Johansen, Jeanne D.; Jellesen, Morten Stendahl

    2013-01-01

    BACKGROUND: A patient who had suffered from persistent generalized dermatitis for 7 years was diagnosed with cobalt sensitization, and his leather couch was suspected as the culprit, owing to the clinical presentation mimicking allergic chromium dermatitis resulting from leather furniture exposure...... have found high levels of cobalt sensitization, but not nickel sensitization, in patients with foot dermatitis. We raise the possibility that cobalt may be widely released from leather items, and advise dermatologists to consider this in patients with positive cobalt patch test reactions. © 2013 John...

  7. Measurement for cobalt target activity and its axial distribution

    International Nuclear Information System (INIS)

    Li Xingyuan; Chen Zigen.

    1985-01-01

    Cobalt target activity and its axial distribution are measured in process of producing radioactive isotopes 60 Co by irradiation in HFETR. Cobalt target activity is obtained with measured data at 3.60 m and 4.60 m, relative axial distribution of cobalt target activity is obtained with one at 30 cm, and axial distribution of cobalt target activity(or specific activity) is obtained with both of data. The difference between this specific activity and measured result for 60 Co teletherapy sources in the end is less than +- 5%

  8. Cobalt metabolism and toxicology—A brief update

    International Nuclear Information System (INIS)

    Simonsen, Lars Ole; Harbak, Henrik; Bennekou, Poul

    2012-01-01

    Cobalt metabolism and toxicology are summarized. The biological functions of cobalt are updated in the light of recent understanding of cobalt interference with the sensing in almost all animal cells of oxygen deficiency (hypoxia). Cobalt (Co 2+ ) stabilizes the transcriptional activator hypoxia-inducible factor (HIF) and thus mimics hypoxia and stimulates erythropoietin (Epo) production, but probably also by the same mechanism induces a coordinated up-regulation of a number of adaptive responses to hypoxia, many with potential carcinogenic effects. This means on the other hand that cobalt (Co 2+ ) also may have beneficial effects under conditions of tissue hypoxia, and possibly can represent an alternative to hypoxic preconditioning. Cobalt is acutely toxic in larger doses, and in mammalian in vitro test systems cobalt ions and cobalt metal are cytotoxic and induce apoptosis and at higher concentrations necrosis with inflammatory response. Cobalt metal and salts are also genotoxic, mainly caused by oxidative DNA damage by reactive oxygen species, perhaps combined with inhibition of DNA repair. Of note, the evidence for carcinogenicity of cobalt metal and cobalt sulfate is considered sufficient in experimental animals, but is as yet considered inadequate in humans. Interestingly, some of the toxic effects of cobalt (Co 2+ ) have recently been proposed to be due to putative inhibition of Ca 2+ entry and Ca 2+ -signaling and competition with Ca 2+ for intracellular Ca 2+ -binding proteins. The tissue partitioning of cobalt (Co 2+ ) and its time-dependence after administration of a single dose have been studied in man, but mainly in laboratory animals. Cobalt is accumulated primarily in liver, kidney, pancreas, and heart, with the relative content in skeleton and skeletal muscle increasing with time after cobalt administration. In man the renal excretion is initially rapid but decreasing over the first days, followed by a second, slow phase lasting several weeks, and

  9. Cobalt, nickel and chromium release from dental tools and alloys.

    Science.gov (United States)

    Kettelarij, Jolinde A B; Lidén, Carola; Axén, Emmy; Julander, Anneli

    2014-01-01

    Cobalt-chromium alloys are used as casting alloys by dental technicians when producing dental prostheses and implants. Skin exposure and metal release from alloys and tools used by the dental technicians have not been studied previously. To study the release of cobalt, nickel and chromium from alloys and tools that come into contact with the skin of dental technicians. Cobalt and nickel release from tools and alloys was tested with the cobalt spot test and the dimethylglyoxime test for nickel. Also, the release of cobalt, nickel and chromium in artificial sweat (EN1811) at different time-points was assessed. Analysis was performed with inductively coupled plasma-mass spectrometry. Sixty-one tools were spot tested; 20% released nickel and 23% released cobalt. Twenty-one tools and five dental alloys were immersed in artificial sweat. All tools released cobalt, nickel and chromium. The ranges were 0.0047-820, 0.0051-10 and 0.010-160 µg/cm(2) /week for cobalt, nickel and chromium, respectively. All dental alloys released cobalt in artificial sweat, with a range of 0.0010-17 µg/cm(2) /week, and they also released nickel and chromium at low concentrations. Sensitizing metals are released from tools and alloys used by dental technicians. This may cause contact allergy and hand eczema. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Cobalt Ions Improve the Strength of Epoxy Resins

    Science.gov (United States)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  11. Pharmacokinetics of inorganic cobalt and a vitamin B12 supplement in the Thoroughbred horse: Differentiating cobalt abuse from supplementation.

    Science.gov (United States)

    Hillyer, L L; Ridd, Z; Fenwick, S; Hincks, P; Paine, S W

    2018-05-01

    While cobalt is an essential micronutrient for vitamin B 12 synthesis in the horse, at supraphysiological concentrations, it has been shown to enhance performance in human subjects and rats, and there is evidence that its administration in high doses to horses poses a welfare threat. Animal sport regulators currently control cobalt abuse via international race day thresholds, but this work was initiated to explore means of potentially adding to application of those thresholds since cobalt may be present in physiological concentrations. To devise a scientific basis for differentiation between presence of cobalt from bona fide supplementation and cobalt doping through the use of ratios. Six Thoroughbred horses were given 10 mL vitamin B 12 /cobalt supplement (Hemo-15 ® ; Vetoquinol, Buckingham, Buckinghamshire, UK., 1.5 mg B 12 , 7 mg cobalt gluconate = 983 μg total Co) as an i.v. bolus then an i.v. infusion (15 min) of 100 mg cobalt chloride (45.39 mg Co) 6 weeks later. Pre-and post-administration plasma and urine samples were analysed for cobalt and vitamin B 12 . Urine and plasma samples were analysed for vitamin B 12 using an immunoassay and cobalt concentrations were measured via ICP-MS. Baseline concentrations of cobalt in urine and plasma for each horse were subtracted from their cobalt concentrations post-administration for the PK analysis. Compartmental analysis was used for the determination of plasma PK parameters for cobalt using commercially available software. On administration of a vitamin B 12 /cobalt supplement, the ratio of cobalt to vitamin B 12 in plasma rapidly increased to approximately 3 and then rapidly declined below a ratio of 1 and then back to near baseline over the next week. On administration of 100 mg cobalt chloride, the ratio initially exceeded 10 in plasma and then declined with the lower 95% confidence interval remaining above a ratio of 1 for 7 days. For two horses with extended sampling, the plasma ratio remained above one for

  12. Nitrogen alloying of the 12% Cr martensitic-ferritic steel

    Science.gov (United States)

    Kudryavtsev, A. S.; Artem'eva, D. A.; Mikhailov, M. S.

    2017-08-01

    The influence of the nitrogen content on the structure and mechanical properties of heat and corrosion resistant 12% Cr martensitic-ferritic steel developed at the Central Research Institute of Structural Materials Prometey has been studied. Steel containing 0.061 wt % nitrogen possesses a high level of mechanical properties. The decrease in the nitrogen content to 0.017 wt % leads to an increase of structurally free ferrite fraction in the steel, a decrease in the density of dislocations, a decrease of structural dispersity and the absence of finely dispersed precipitates of niobium and vanadium nitrides and carbides. As a result, there is a decrease in the strength properties, especially in the heat resistance.

  13. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    International Nuclear Information System (INIS)

    Kefeni, Kebede K.; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-01

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  14. Beam test of ferrite absorber in TRISTAN MR

    International Nuclear Information System (INIS)

    Tajima, T.; Asano, K.; Furuya, T.; Ishi, Y.; Kijima, Y.; Mitsunobu, S.; Sennyu, K.; Takahashi, T.

    1996-06-01

    A study on the effect of beams on the ferrite absorber was performed using TRISTAN MR. The tested absorber consists of a 300 mm-diam. copper pipe with 4 mm-thick ferrite inner layer, which was fabricated with Hot Isostatic Press (HIP) technique. No spark, damage, or degradation were observed up to the highest available single bunch current of 4.4 mA, i.e. 2.8x10 11 electrons per bunch, which is 8.5 times higher than that of KEKB low energy ring. The loss factor showed significant increase with bunch shortening, e.g. 2.6 V/pC at 4 mm was about 40% higher than the value predicted by the calculation assuming Gaussian bunch and no incoming power from outside of the chamber. (author)

  15. Electromagnetic properties of photodefinable barium ferrite polymer composites

    Directory of Open Access Journals (Sweden)

    Olusegun Sholiyi

    2014-07-01

    Full Text Available This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3–6 μm for coarse and 0.8–1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM. The Thru, Reflect, Line (TRL calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

  16. Morphology control of hexagonal strontium ferrite micro/nano-crystals

    Directory of Open Access Journals (Sweden)

    Deyang Chen

    2017-05-01

    Full Text Available In this study, controllable morphology evolution of hexagonal strontium ferrite (SrFe12O19 micro/nano-crystals has been demonstrated. Single phase strontium ferrite platelets with hexagonal morphology were successfully prepared by conventional ceramic process. In the hexagonal crystals, it is revealed that the anisotropic growth rate is changed, with the increasing of ball milling time, from relatively high rate along the direction (c-axis to direction, leading to the morphology evolution. Moreover, the optimal saturation magnetization (MS is 69.5 emu/g, which is intensely close to the theoretical value (72 emu/g. This study provides the direct evidence of the enhanced reaction activity induced by high energy ball milling in strontium hexaferrite platelets and the obtained SrFe12O19 particles are promising for the hard magnet application and the magnetoelectric electronics.

  17. Issues Affecting the Synthetic Scalability of Ternary Metal Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lauren Morrow

    2015-01-01

    Full Text Available Ternary Mn-Zn ferrite (MnxZn1-xFe2O4 nanoparticles (NPs have been prepared by the thermal decomposition of an oleate complex, sodium dodecylbenzenesulfonate (SDBS mediated hydrazine decomposition of the chloride salts, and triethylene glycol (TREG mediated thermal decomposition of the metal acetylacetonates. Only the first method was found to facilitate the synthesis of uniform, isolable NPs with the correct Mn : Zn ratio (0.7 : 0.3 as characterized by small angle X-ray scattering (SAXS, transmission electron microscopy (TEM, and inductively coupled plasma-optical emission spectroscopy (ICP-OES. Scaling allowed for retention of the composition and size; however, attempts to prepare Zn-rich ferrites did not result in NP formation. Thermogravimetric analysis (TGA indicated that the incomplete decomposition of the metal-oleate complexes prior to NP nucleation for Zn-rich compositions is the cause.

  18. Magnetically Directed Targeting Aggregation of Radiolabelled Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yuh-Feng Wang

    2011-01-01

    Full Text Available Ferrite magnetic nanoparticles (Fe3O4 or iron (II,III oxide; 15–25 nm of diameter were developed. These magnetic nanoparticles are a potential vehicle for magnetically induced target aggregation in living animals. In this preliminary study, the radiochemical purity for the radiolabeled magnetic nanoparticles was examined, and the possibility of the magnetically induced targeting of the radio-nanoparticles was evaluated. Our results showed that radiolabeled ferrite nanoparticles can be used as magnetic targeting agents with high labeling efficiency and stability. These particles can be distributed within living animals via intravenous injection, and the biodistribution of the particles can be potentially controlled by external magnetism. These evaluations will be the groundwork for the future development of delivery techniques for radiopharmaceuticals through external magnetic control.

  19. Glassy behavior of diluted Cu-Zn ferrites

    Science.gov (United States)

    Akhter, Shahida; Hakim, M. A.; Hoque, S. M.; Mathieu, R.; Nordblad, P.

    2018-04-01

    The magnetic behavior of Zn substituted Cu-Zn spinel ferrites having chemical formula Cu1-xZnxFe2O4 (x = 0.7, 0.8, 0.9 and 1.0) has been studied by SQUID magnetometry, by means of magnetic hysteresis, field-cooled (FC) and zero-field-cooled (ZFC) magnetization, memory effect and low field ac susceptibility measurements. These measurements suggest that the ferrimagnetic phase of the x ≤ 0.8 samples is gradually turned into a spin glass (x ≥ 0.9). The compound with x = 0.9 exhibits the typical dynamical behavior of spin glasses, with indication of aging, rejuvenation and memory effects. The evolution of the magnetic properties of Cu-Zn spinel ferrites with substitution of Zn for Cu is discussed.

  20. Chemisorption of cyanogen chloride by spinel ferrite magnetic nanoparticles.

    Science.gov (United States)

    Glover, T Grant; DeCoste, Jared B; Sabo, Daniel; Zhang, Z John

    2013-05-07

    Spinel ferrite magnetic nanoparticles, MnFe2O4, NiFe2O4, and CoFe2O4, were synthesized and used as gas-phase adsorbents for the removal of cyanogen chloride from dry air. Fixed-bed adsorption breakthrough experiments show adsorption wave behavior at the leading edge of the breakthrough curve that is not typical of physically adsorbed species. Fourier transform infrared spectroscopy (FTIR) results indicate that CK is reacting with the spinel ferrite surface and forming a carbamate species. The reaction is shown to be a function of the hydroxyl groups and adsorbed water on the surface of the particles as well as the metallic composition of the particles. The surface reaction decreases the remnant and saturation magnetism of the MnFe2O4 and CoFe2O4 particles by approximately 25%.

  1. Dielectric Spectroscopy of Localized Electrical Charges in Ferrite Thin Film

    Science.gov (United States)

    Abdellatif, M. H.; Azab, A. A.; Moustafa, A. M.

    2018-01-01

    A thin film of Gd-doped Mn-Cr ferrite has been prepared by pulsed laser deposition from a bulk sample of the same ferrite prepared by the conventional double sintering ceramic technique. The charge localization and surface conduction in the ferromagnetic thin film were studied. The relaxation of the dielectric dipoles after exposure to an external alternating-current (AC) electric field was investigated. The effect of charge localization on the real and imaginary parts of the dielectric modulus was studied. The charge localization in the thin film was enhanced and thereby the Maxwell-Wagner-type interfacial polarization. The increase in interfacial polarization is a direct result of the enhanced charge localization. The sample was characterized in terms of its AC and direct-current (DC) electrical conductivity, and thermally stimulated discharge current.

  2. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-15

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  3. Preparation of lanthanum ferrite powder at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Andoulsi, R.; Horchani-Naifer, K.; Ferid, M., E-mail: karima_horchani@yahoo.com [Physical Chemistry Laboratory of Mineral Materials and their Applications, Hammam-Lif (Tunisia)

    2012-01-15

    Single lanthanum ferrite phase was successfully prepared at low processing temperature using the polymerizable complex method. To implement this work, several techniques such as differential scanning calorimetry, X-ray diffraction, Fourier Transform Infrared Spectroscopy, scanning electron microscopy and BET surface area measurements were used. Throw the obtained results, it was shown that steps of preparing the powder precursor and temperature of its calcination are critical parameters for avoiding phase segregation and obtaining pure lanthanum ferrite compound. Thus, a single perovskite phase was obtained at 600 deg C. At this temperature, the powder was found to be fine and homogeneous with an average crystallite size of 13 nm and a specific surface area of 12.5 m{sup 2}.g{sup -1}. (author)

  4. Design and screening of nanoprecipitates-strengthened advanced ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Tianyi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States); He, Li [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-30

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, and thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.

  5. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  6. Microwave absorbing materials using Ag-NiZn ferrite core-shell nanopowders as fillers

    International Nuclear Information System (INIS)

    Peng, C.-H.; Wang, H.-W.; Kan, S.-W.; Shen, M.-Z.; Wei, Y.-M.; Chen, S.-Y.

    2004-01-01

    Silver nanoparticles coated with Ni 0.5 Zn 0.5 Fe 2 O 4 spinel ferrites, forming a core-shell structure, were synthesized by utilizing hydrothermal method at different ferrite/silver ratio (ferrite/silver=6/1, 4/1, 2/1, 1/1, 1/6) and introduced into polyurethane matrix to be a microwave absorber. The complex permittivity (ε',ε'') and permeability (μ',μ'') of absorbing composite materials consisted of ferrite/silver core-shell nanopowders and polyurethane were measured in the frequency range of 2-15GHz. The reflection loss and matching frequency were calculated from measured data using theory of the absorbing wall for different ferrite/silver ratios. It was found that the matching frequency for reflection loss exceeded a satisfactory -25dB at 9.0GHz for using NiZn ferrite as a filler shifts to higher frequencies (10.9-13.7GHz) as the ferrite/silver ratio of core-shell nano-filler decreased from 6/1 to 2/1. The present result demonstrates that microwave absorbers using ferrite/silver core-shell filler can be fabricated for the applications over 9GHz, with reflection loss more than-25dB for specific frequencies, by controlling the ferrite/silver ratio of the core-shell nano-fillers in the composites

  7. Fabrication and electromagnetic properties of flake ferrite particles based on diatomite

    International Nuclear Information System (INIS)

    Zhang Deyuan; Zhang Wenqiang; Cai Jun

    2011-01-01

    Hexagonal ferrite BaZn 1.1 Co 0.9 Fe 16 O 27 coated surfaces of diatomite flakes of low density were synthesized by a sol-gel method. The phase structures, morphologies, particle size and chemical compositions of the composites were characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The results show that hexagonal ferrite coated diatomite flakes can be achieved, and that the coating consisted of BaZn 1.1 Co 0.9 Fe 16 O 27 nanoparticles. The vibranting sample magnetometer results reveal that the flake ferrite particles have static magnetic properties. The complex permeability and permittivity of the composites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of these ferrite particles are discussed. The results indicate that the flake ferrites have the potential to be used as a lightweight broad band microwave absorber. - Highlights: → We synthesize the flake ferrite particles using diatomite as a template. → Flake ferrite particles' coating layers are constituted by BaZn 1.1 Co 0.9 Fe 16 O 27 nanoparticles. → Flake ferrite particles have good static magnetic properties.→ Flake ferrites are a kind lightweight broad band microwave absorber.

  8. Methods of acicular ferrite forming in the weld bead metal (Brief analysis

    Directory of Open Access Journals (Sweden)

    Володимир Олександрович Лебедєв

    2016-11-01

    Full Text Available A brief analysis of the methods of acicular ferrite formation as the most preferable structural component in the weld metal has been presented. The term «acicular ferrite» is meant as a structure that forms during pearlite and martensite transformation and austenite decomposition. Acicular ferrite is a packet structure consisting of battens of bainitic ferrite, there being no cementite particles inside these battens at all. The chemical elements most effectively influencing on the formation of acicular ferrite have been considered and their combined effect as well. It has been shown in particular, that the most effective chemical element in terms of impact toughness and cost relation is manganese. Besides, the results of multipass surfacing with impulse and constant feed of low-alloy steel wire electrode have been considered. According to these results acicular ferrite forms in both cases. However, at impulse feed of the electrode wire high mechanical properties of surfacing layer were got in the first passes, the form of the acicular ferrite crystallite has been improved and volume shares of polygonal and lamellar ferrite have been reduced. An assumption has been made, according to which acicular ferrite in the surfacing layer may be obtained through superposition of mechanical low-frequency oscillation on the welding torch or on the welding pool instead of periodic thermal effect due to electrode wire periodic feed

  9. Nanophotonic Modulator with Bismuth Ferrite as Low-loss Switchable Material

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2015-01-01

    We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved.......We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved....

  10. Effect of particle size on degree of inversion in ferrites

    International Nuclear Information System (INIS)

    Siddique, M.; Butt, N.M.

    2012-01-01

    Ferrites with the spinel structure are important materials because of their structural, magnetic and electrical properties. The suitability of these materials depends on both the intrinsic behavior of the material and the effects of the grain size. Moessbauer spectroscopy was employed to investigate the cation distribution and degree of inversion in bulk and nano sized particles of CuFe/sub 2/O/sub 4/, MnFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ ferrites. The Moessbauer spectra of all bulk ferrites showed complete magnetic behavior, whereas nanoparticle ferrites showed combination of ferromagnetic and superparamagnetic components. Moreover, the cation distribution in nanoparticle materials was also found to be different to that of their bulk counterparts indicating the particle size dependency. The inversion of Cu and Ni ions in bulk sample was greater than that of nanoparticles; whereas the inversion of Mn ions was less in bulk material as compared to the nanoparticles. Hence the degree of inversion decreased in CuFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ samples whereas, it increased in MnFe/sub 2/O/sub 4/ as the particle size decreased and thus showed the anomalous behavior in this case. The nanoparticle samples also showed paramagnetic behaviour due to superparamagnetism and this effect is more prominent in MnFe/sub 2/O/sub 4/. Moessbauer spectra of bulk and nanoparticles CuFe/sub 2/O/sub 4/ is shown. (Orig./A.B.)

  11. Synthesis of ferrite grade γ-Fe2O3

    Indian Academy of Sciences (India)

    Unknown

    carboxylates in air yield α-Fe2O3, but the controlled atmosphere of moisture requires for the oxalates to stabi- lize the metastable γ-Fe2O3. ... a starting material in ferrites synthesis enhances the solid state reaction and a better quality material could ... In air the ferrous oxalate decomposes to α-. Fe2O3, while in a controlled ...

  12. Oriented Y-typehexagonal ferrite thin films prepared by chemical

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Kužel, R.; Knížek, Karel; Drbohlav, Ivo

    2013-01-01

    Roč. 203, JULY (2013), s. 100-105 ISSN 0022-4596 R&D Projects: GA ČR GA13-03708S Institutional support: RVO:61388980 ; RVO:68378271 Keywords : Y-type hexagonal ferrites * chemical solution deposition * thin films * epitaxial growth Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.200, year: 2013

  13. NiZnCu ferrite applied for LTCC microinductor

    Energy Technology Data Exchange (ETDEWEB)

    Guzdek, P., E-mail: pguzdek@ite.waw.p [Institute of Electron Technology, 30-701 Krakow, ul.ZabLocie 39 (Poland); Kulawik, J.; Zaraska, K.; Bienkowski, A. [Institute of Electron Technology, 30-701 Krakow, ul.ZabLocie 39 (Poland)

    2010-10-15

    This paper describes the fabrication of thin magnetic layers for an LTCC planar-type inductor with a 0.11 mm thickness. The thin ferrite layers were fabricated by tape casting method. Synthesis conditions and X-ray analysis (300 K) of the Ni{sub 0.3}Zn{sub 0.62}Cu{sub 0.08}Fe{sub 2}O{sub 4} ferrite are presented. A pure cubic, Fd 3m crystal structure was observed for the Ni{sub 0.3}Zn{sub 0.62}Cu{sub 0.08}Fe{sub 2}O{sub 4} ferrite. The complex impedance and dielectric permittivity of Ni{sub 0.3}Zn{sub 0.62}Cu{sub 0.08}Fe{sub 2}O{sub 4} ferrite were determined as a function of temperature (from -55 to 170 {sup o}C) and frequency (from 10 Hz to 2 MHz). Dc resistivity was measured in a temperature range from -55 to 170 {sup o}C. Magnetization and magnetic hysteresis were measured by a vibrating sample magnetometer (VSM) in an applied magnetic field up to 60 kOe. The inductance and quality factor were measured in a frequency range 0.1-120 MHz. With the help of finite elements method (FEM) simulation it is possible to calculate the elements electrical parameters and optimize the design. This paper presents a magnetic field modelling of an inductor structure.

  14. The superspin glass transition in zinc ferrite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kořínková, T.; Jirák, T.; Maryško, Miroslav; Veverka, Miroslav

    2015-01-01

    Roč. 117, č. 17 (2015), "17C706-1"-"17C706-4" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GAP108/11/0807; GA ČR GAP204/10/0035 Institutional support: RVO:68378271 Keywords : superspin glass * zinc ferrite * doped magnetite * magnetic nanoparticles * thermal decomposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  15. Temperature dependence of sound velocity in yttrium ferrite

    International Nuclear Information System (INIS)

    L'vov, V.A.

    1979-01-01

    The effect of the phonon-magnon and phonon-phonon interoctions on the temperature dependence of the longitudinal sound velocity in yttrium ferrite is considered. It has been shown that at low temperatures four-particle phonon-magnon processes produce the basic contribution to renormalization of the sound velocity. At higher temperatures the temperature dependence of the sound velocity is mainly defined by phonon-phonon processes

  16. Dielectric behaviour of erbium substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Dielectric properties such as dielectric constant (ε′) and dielectric loss tangent (tan δ) of mixed. Mn–Zn–Er ferrites having the compositional formula Mn0⋅58Zn0⋅37Fe2⋅05–xErxO4 (where x = 0⋅2, 0⋅4, 0⋅6, 0⋅8 and. 1⋅0) were measured at room temperature in the frequency range 1–13 MHz using a HP ...

  17. Manganese zinc ferrite nanoparticles as efficient catalysts for wet ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/jcsc/127/03/0537-0546. Keywords. Spinel ferrites; catalytic activity; wet peroxide oxidation; 4-chlorophenol; water treatment. Abstract. Manganese substituted zinc nanoparticles, MnxZn1−xFe2O4 (x = 0.0, 0.25, 0.5, 0.75, 1.0) prepared by sol gel method were found to be efficient catalysts for ...

  18. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  19. Unusual thermal stability of nano-structured ferritic alloys

    International Nuclear Information System (INIS)

    Wang, X.L.; Liu, C.T.; Keiderling, U.; Stoica, A.D.; Yang, L.; Miller, M.K.; Fu, C.L.; Ma, D.; An, K.

    2012-01-01

    Highlights: ► A nanostructured steel is examined by in situ small angle neutron scattering and high-temperature neutron diffraction. ► A bi-modal particle size distribution is identified by small angle neutron scattering. ► The nanometer sized clusters are thermally stable up to 1400 °C. ► The microstructure of the material is stable at high-temperatures, with no evidence of recrystallization or grain growth. - Abstract: A scientific question vitally important to the materials community is whether there exist “self-assembled” nanoclusters that are thermodynamically stable at elevated temperatures. Using in situ neutron scattering, we have characterized the structure and thermal stability of a nano-structured ferritic alloy. Nanometer sized nanoclusters were found to persist up to ∼1400 °C, providing direct evidence of a thermodynamically stable alloying state for the nanoclusters. High-temperature neutron diffraction measurements show a stable ferritic matrix, with little evidence of recrystallization or grain growth at temperatures up to 1300 °C. This result suggests that thermally stable nanoclusters and the oxygen-vacancy interaction limit the diffusion of Fe atoms and hence the mobility of grain boundaries, stabilizing the microstructure of the ferritic matrix at high temperatures.

  20. Unusual thermal stability of nano-structured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L., E-mail: wangxl@ornl.gov [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Liu, C.T. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of System Engineering and Engineering Management, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong (Hong Kong); Keiderling, U. [Helmholtz Center Berlin for Materials and Energy, Glienicker Strasse 100, D-14109 Berlin (Germany); Stoica, A.D.; Yang, L. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Miller, M.K.; Fu, C.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ma, D.; An, K. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer A nanostructured steel is examined by in situ small angle neutron scattering and high-temperature neutron diffraction. Black-Right-Pointing-Pointer A bi-modal particle size distribution is identified by small angle neutron scattering. Black-Right-Pointing-Pointer The nanometer sized clusters are thermally stable up to 1400 Degree-Sign C. Black-Right-Pointing-Pointer The microstructure of the material is stable at high-temperatures, with no evidence of recrystallization or grain growth. - Abstract: A scientific question vitally important to the materials community is whether there exist 'self-assembled' nanoclusters that are thermodynamically stable at elevated temperatures. Using in situ neutron scattering, we have characterized the structure and thermal stability of a nano-structured ferritic alloy. Nanometer sized nanoclusters were found to persist up to {approx}1400 Degree-Sign C, providing direct evidence of a thermodynamically stable alloying state for the nanoclusters. High-temperature neutron diffraction measurements show a stable ferritic matrix, with little evidence of recrystallization or grain growth at temperatures up to 1300 Degree-Sign C. This result suggests that thermally stable nanoclusters and the oxygen-vacancy interaction limit the diffusion of Fe atoms and hence the mobility of grain boundaries, stabilizing the microstructure of the ferritic matrix at high temperatures.